AN IMPLEMENTATION OF THE SCHICK-WCLVERTON AND
THE JELINSKI-MORANDA SOFTWARE RELIABILITY MODELS

by
JOBNNIE CTIS RANKIN
B.S., Oklahoma State University, 1970

A MASTER'S REPORT

supmitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

gL g - .
_OLL IAII-E[ID 1889448 it
Lk '

Ao ®

R4

198

/
R 36 ACKNOWLEDGEMENTS

C.d

I would like to thank several people for the invaluable
assistance given me during my efforts with this project.
The first is my major advisor, Dr. David A. Gustafson.
_Dr. Gustafson's direction and personal interest in my
project were what kept me going through difficult times.
Additionally, Mr. Robert Young and Mr. Carlos Qualls
provided me with expert technical assistance during the
course of my work. And finally, I would like to thank
Mrs. Mary Beth Cole for her tremendous support. With-
out all of these people and their contributions, I could

not have completed this work.

TABLE OF CONTENTS

ACKNOWLEDGEMENT

TABLE OF CONTENTS .

LIST OQF FIGURES . . & & & o o w = & & 4

LIST OF TABLES

CHAPTER 1:

CHAPTER 2

.
.

CHAPTER 3:

CHAPTER 4:

APPENDIX

APPENDIX

APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX

APPENDIX
APPENDIX

A.

INTRODUCTION

DESIGN ISSUES . . « « « + =
TESTING AND VALIDATION
CONCLUSIONS

LOGIC AND DATA FLOW OF THE
IMPLEMENTATION . £

IMPLEMENTATION STRUCTURE AND SPAN
OF CONTROL . . . o e e e e e

MODULE SPECIFICATIONS/DESCRIPTIONS
ISSUES OF MODIFICATION

SCHICK-WOLVERTON SOFTWARE
RELTABILITY MODEL

JELINSKI-MORANDA SOFTWARE
RELIABILITY MODEL

VALIDATION OF PROGRAM MODEL
COMPUTATIONS« . .

SOLUTION FORMATS
PROGRAM SOURCE CODE LISTINGS . . .

i1%

1id

iv

® wn = <

10

T

19
27

. 36

. 40

43

. 46
v B

57

¥ R - - .U ¥, B - O L B R o

[
o

'—l
'—l

12.

13,

LIST OF FIGURES

General Logic Flow of the Main Program .

General Logic Flow of Display Driver Program .

General Implementation Schematic .
Prompting Procedures Schematic

Model Coﬁputation Schematie
Print Tabular Display Schematic

Graphical Solution Schematic .,

Chromatics Display Device Schematic
Plotter Display Device Schematic

Tabular Solution Format Example
(Both Models Selected)

Tabular Solution Format Example
(Schick-Wolverton Model Selected).

Tabular Solution Format Example
(Jelinski-Moranda Model Selected).

Graphical Output Example .

iv

. 137
. 17
. 20
. 21
v 22
. 23
. 24
v 29
. 26

. 53

. 54

. 55
. 36

LS I - T L

Comparison
Comparison
Comparison
Comparison

Comparison

LIST OF TABLES

of Model Accuracy
of Model Accuracy
of Model Accuracy
of Model -Accuracy

of Model Accuracy

Case
Case
Case
Case

Case

LS, I - N L D - T

47
.48
.49
.50
.51

Page 1

CHAPTER ONE
INTRODUCTION

One of the major tasks facing the software engineer
in the program development cycle is the-determination of
when a sufficient amount of testing has been performed.
This is not an easy decision to make. Determining that a
sufficient amount of testing has been conducted is in a
sense a statement of the degree of the correctness of a
software package. The degree of difficulty which is as-
sociated with this decision drastically increases as the
size of the software package increases. In addition, there
are factors which tend to exert pressure to reach this deter-
mination as expeditiously as possible. These are mostly
economic factors of course, such as, time, the cost of
large manpower requirements to perform the testing functions,
the cost of the associated adﬁinistrative requirements to
perform the testing function, and the overall cost of the
testing effort. It is widely accepted that the testing and
certification effort is one of the more expensive portions
of the developmental cycle and thus any efforts toward allow-
ing this determination to be made accurately and as soon as
possible wou;d be welcome by the software engineer.

The Software Reliability Model has evolved as an aid

in making this determination[3, 9, 10]. The process of

Page 2

determining sufficiency of testing can be accomplished with
more confidence, less time, and reduced cost by the use of

a valid error prediction model [12,13,15]. Thus, the Soft-

ware Reliability Model has become an important factor in the
area of testing.

It should not be construed that this model is the answer
to each and every problem in testing. It is obviously not.
The Software Reliability Model would be utilized most effec-
tively in an integrated role with other alternatives to deter-
mining sufficiency of the testing effort. These other alter-
natives include number of errors discovered over a period of
time, the number of paths of a program executed during testing
and this number's relationship with the total paths of the
program [3,5,13], and the criticality of those errors discov-
ered. Although these alternatives are frequently used in the
decision making process to determine this sufficiency of test-
ing [13], there is certainly room for improvement in the area.
The Software Reliability Model would be useful as one of the
collection of indicators that the software engineer may use
to reach a sound decision as to when enough testing has been
done. |

With this statement of the importance of testing and
specifically the determination of when enough of the testing
process has been performed, the purpose of this project is
twofold. The first is to provide the Department of Computer
Science at Kaﬂsas State University with a tool that could be

used in classroom applications. Basic software engineering

Page 3

courses offered in the department include material discus-
sing the program development cycle quite extensively, and
naturally enough the testing phase of the cycle is also
extensively covered. It is intended this implementation be
integrated into the testing material of the development cycle
as an indication of how the Software Reliability Model could
be integrated into the decision making process to determine
sufficiency of testing.

The second purpose of this project is to increase my
expertise and exposure in an area I will have continued ex-
posure to within the military environment, that of testing,
and to provide me with the framework of a package that can
be utilized at other computer facilities performing various
functions within the Army.

This implementation is an interactive program which is
designed to compute the estimated reliability associated
with a number of errors in a partially debugged sofware pack-
age. The implementation offers the use of two currently
accepted Software Reliability Models, the Schick-Wolverton
and the Jelinski-Moranda model. Appendices E and F have
additional details of these two models. The implementation
has been designed to support a user friendly approach to the
interactive process by providing two distinct levels of
interaction, an expanded instruction sequence for a user un-
familiar with the program and a minimum instruction sequence
for a user who is more experienced with the program execu-
tion sequence. See Appendix I for details of the degree of

interaction and instruction sequences offered.

Page 4

Besides reliability estimates, the implementation in-
corporates other meaningful estimates of importance to the
managerial level and to the software engineer. These est-
imates are the mean time to failure of the software project
and the time to discover all remaining errors within the
software project. As a byproduct of the reliability models
in general, these two estimates have an important place in
the determination of sufficiency of testing by the very

nature of the information they convey. An estimate which
is an accurate reflection of a mean time to failure rate

would be of keen interest to a manager of a project. The
same type of generalized statement can also be made about
the time to discover all errors within the software package
estimate. This information could prove to be invaluable in
projecting schedules, curtailing costs, determining suffi-
ciency of testing, or any number of other decisions that the
manager and/or software engineer must make during the devel-
opment cycle of a software project.

All computations of this implementation may be pre-
sented on two solution forms. These are a tabular form on
which the reliability estimate, mean time to failure, time
to discover all errors within the package, and other statis-
tical information is presented, and a graphical form on
which reliability is plotted versus mean time to failure for
the software package. See Appendix H for examples of these

solution forms.

Page 5

CHAPTER TWO
DESIGN ISSUES

In the preliminary design phase of this implementation,
the overall effort was directed to designing an implementa-
tion package that would meet the purposes, as outlined in
Chapter 1, for doing this project. Two basic goals surfaced
from this effort. They were first of all to design a system
implementation package that was highly '"user friendly" in
nature and secondly to design a system implementation package
as far as future modifications were concerned and thus in-
crease the usefulness of the implementation to the Depart-
ment of Computer Science. See Appendix D for a detailed dis-
Cussion of modification issues relative to this project.

In deciding how to approach the design of the overall
project, it became obvious that the package should be highly
modular in nature, with functions of querying the user to
collect data necessary for the models to operate on and the
actual computations themselves being performed within sep-
arate packages. The mechanics of drawing the solutions would
also be modularized into separate packages. This approach
led to the development of three separate programs, one to
interface with the user and collect all necessary data to
perform the computations on, and one for each display device
used. The initial planning called for two devices to be

incorporated, the Chromatics display device and the Plotter

Page 6

display device. This decision avoided one monstrously large
implementation package and allowed the development of three
medium sized packages.

A subsequent issue addressed in the design phase was
the form of the solution offered to the user. Although
the initial planning was for a graphical solution, it be-
came obvious in investigating and researching the models
to be used, that they offered information of importance
that would not be displayable on a graph. This led to the
décision to incorporate a tabular type solution format and
offer the user the choice of which, or both, format he de-
sired. This decision turned out to be wise for it allowed
a more accurate presentation of the computation of the model
than can be interpolated from a graph. However, I did not
feel that this increase in detail completely negated the
value of a graphical solution in that the graphical solution
is extremely valuable in showing trends in the data collected
during the testing cycle of some software project.

The issue of providing a relatively user friendly inter-
face was easily solved. Two levels of interaction were
chosen, as detailed in Chapter 1 and Appendix I, and the
decision was made to provide a '"help" function to assist
the user in moments of indecision as to the proper response
to a program generated query.

In refrospect, I am firmly convinced that this decision

was the proper and correct one. I feel I have accomplished

Page 7

a design that will facilitate the incorporation of modifi-
cations easily and efficiently, and am certain that my design
assisted greatly in the programming and debugging phases of

the implementation.

Page 8

CHAPTER THREE
TESTING AND VALIDATION

Testing of this project was difficult at best. 1In
the testing process, three phases were used. These were
-exercising the user interface, verifying the accuracy of
the implementations of the models, and verifying the accur-
acy of the graphical solutions. As in most projects, more
time was spent in debugging and testing than in the actual

programming. The approach for each phase is presented be-
low.

To thoroughly test the interface of the implementation
with the user, two steps were used. The first was to exer-

cise each decision node of the interface procedures and

the second was to utilize 24 undergraduate students to sepa-
rately execute the program and offer a critique of its inter-
face potential. I found this latter step to be of immeas-
urable value. Through the candid remarks of these student
testers, I was able to refine initial instructions, queries,
and assistance messages to the user to provide a meaningful,
straight forward series of directions. This obviously
enhances the ability for someone unfamiliar with a statis-
tical reliability package to be able to successfully exe-
Cute this implementation. No formal data as to the number
of errors discovered during step 1 of this phase or concern-

ing those suggestions made during step 2 of this phase was

kept.

Page 9

In exercising each decision node of the interface
procedures with the user, errors were discovered and correc-
ted. As each of these decision nodes in the interface it-
self is dependent upon a user input, this step was actually
easy to accomplish.

Verifying the accuracy of the program computations was
inherently more complicated than the exercise of the user
interface. This is obviously a function of the highly math-
ematical nature of the models used. The accuracy was veri-
fied by hand calculating the various forms of solutions of
each model over a range of inputs. See Appendix G for a
representative sample of inputs used in this verification of -
model accuracy. Some difficulty was encountered in choosing
the inputs to examine because the size and number of the in-
put parameters that could be successfully calculated by hand
was limited. Nevertheless, the results of these efforts
indicate a sound basis for judging the implementation cal-
culations to be correct.

Finally, the last phase of the testing process was
easily accomplished after the computations of the program
were verified. This last phase was the verification of the
graphical data and that was of course very dependent upon
the model calculations being correct. Once this fact was
established, this phase became an exercise in verification
of the conversion of the model data to x and y graphical
coordinates. Numerous graphs were analyzed and the results

were positive in that the graphs are accurate.

Page 10

CHAPTER FOUR
CONCLUSIONS

I feel that this project has satisfied my purposes
for doing it. I have certainly increased my expertise in
the area of software reliability and the area of reliabil-
ity in general. '

The implementation works well but after being so
éctively involved, I can see a necessary addition to make
this implementation particularly useful to the Department
of Computer Science. This addition would be in the area
of adding display devices used.

I feel that at least two more types of display devices
could be added with relatively little difficulty. The two
types I would recommend are the Spinwriter device and the
CRT terminal itself. The addition of the Spinwriter device
would provide an additional hardcopy capability to the
implementation. At present, only the plotter offers the
hardcopy capability. The addition of the CRT as a display
device would provide the implementation with an increased
flexibility, if only in so much as increasing the number of
devices available for use. To be widely used in the Depart-
ment, more devices will be needed and the CRT addition could
certainly‘do that. I have expanded on the issue of modifi-

cations to this implementation in Appendix D.

Page 11

Finally, in evaluating this implementation, I must also
consider the negative aspects. I feel there was one major
detriment to my efforts and that was the language chosen to
do this implementation, PASCAL. PASCAL was not the language
suited for this application. FORTRAN is much better suited
due to its power in handling the arithmetic computations
which were necessary to perform. The very nature of the
computational models used in this implementation is highly
mathematical. The absence of capabilities in the Inter-
data implementation of PASCAL such as mixed mode arithmetic,
exponentiation, the standard functions used to raise the nat-
ural logarithm base to a power, a square root capability,
and the inability to directly write real numbers caused me
many hours of grief. A typical implementation of the FORTRAN
language would have solved these problems, albeit creating

some self-documentation short comings in the process.

Page 12

APPENDIX A
LOGIC AND DATA FLOW OF THE IMPLEMENTATION

The logic flow of the main program of this implementation

is divided into five phases. These are the establishment of

a prompting level, querying and obtaining user data, perfor-
ming the computations upon the data by the applicable reli-
ability model, preparing the user selected solution forms

for display, and presenting the selected solution forms to

the user. This flow is represented in the Figure 1. Also
Appendices B and C for other pertinent information concern-
ing span of control during execution of this implementation
and specifications and descriptions of modules of the main

program and the display driver programs.

Page 13

USER RESPONSE TO
MAIN BODY QUERY

ESTABLISH
PROMPTING
LEVEL

PROMPTING LEVEL SELECTED

.
COLLECT
USER
DATA
USER DATA
COMPUTE
MODEL
METRICS
CALCULATED
VALUES
PRESENT
SOLUTION
FORMS

Figure 1. General Logic Flow of the Main Program.

Page 14

The logic flow of the main program of the implementa-
tion is summarized as follows, by procedure function.

a. The user is queried as to which level of interac-
tive prompting he desires. There are two options which are
available, full or partial prompting. This initial inter-
active session is conducted through the main body of the
program. Once the user has decided upon the level of promp-
ting option procedure where the remainder of the execution
is controlled.

b. The prompting procedure selected again controls the
execution sequence of the main program. Specific functions
performed are as follows:

1. Directs the user through the inputs which are
necessary to collect all data required to compute the esti-
mates of solutions by the respective reliability models.
These are as follows:

a. Which reliability model to use.
b. Which solution form is desired.

. The scale of the mean time to failure axis

[e]

if the graphical solution was selected.

d. The number of errors estimated to be initial-
ly present in the software package.

e. The number of error testing intervals.

f. The time length associated with each of the
error testing intervals.

2. After successfully collecting all input data,

the prompting procedure invokes the procedures to compute

Page 15

the solution forms of the program. There are separate pro-
cedures for the Schick-Wolverton and the Jelinski-Moranda
models. |

3. After computation of the model results, the
prompting procedure invokes the respective procedures to
load the results computed into the form which was selected
by the user. Again, this form may be graphical or tabular.
There are separate procedures to load Schick-Wolverton and
Jelinski-Moranda data into the tabular soclution form and
to convert the data into coordinates to be graphed.

4. If the tabular solution form was selected,
the prompting procedure invokes the tabular solution print-
ing procedure. If both solution forms were selected, the
tabular solution form is presented to the user first.

5. If the graphical solution was selected, the
prompting procedure invokes a procedure used to obtain the
display device the user desires to use. The candidates are
the Chromatics or Plotter display devices.

6. After the device has been specified, the promp-
ting procedure invokes a procedure which in turn invokes the
particular display device driver program selected by the
user,

7. Upon finishing the above tasks, the prompting
procedure passes control back to the main body of the prog-
ram,

c. Upon receipt of control from the prompting proce-

dure, the implementation program is terminated.

Page 16

d. At each step of the prompting procedure, interaction
is carried on with the user in a "user friendly" fashion.
All input data is for legality checked and the user notified
and asked to reenter that data found to be in error.

e. Finally, at each step of the prompting procedure,
access to an assistance procedure is provided for the con-
venience of the user.

The logical flow of the display driver program por-
tion of this implementation is divided into three phases.
These phases are receiving control from the main program,
drawing and labeling the graphical framework, and then
drawing the graphical solutions themselves. See Appendices
B and C for other pertinent information concerning logic
flow, specifications and descriptions of modules of the dis-
play driver programs. Flow within the display driver pro-
gram is represented in Figure 2.

The logic flow of the display driver programs is
sumnarized as follows:

a. Receipt of control and the graphical coordinates
to be plotted is received by the main body of the driver
program. The procedure to control the activities of the
driver program is then invoked.

b. The controller procedure directs all further
execution of the program. This procedure performs the
following functions:

1. Invokes the system initialization procedure

to draw and label the graphical framework.

GRAPHICAL DATA
PASSED FROM
MAIN PROGRAM

DETERMINATION
OF REQUIRED
GRAPHS

h' S

INITIALIZATION

OF

GRAPH

Figure 2. General Logic Flow of Display Driver

Program.

3

DATA POINTS
PLOTTED
ON GRAPH

Page 17

Page 18

2. Invokes the graph drawing procedure to plot the
coordinates on the graphical framework.

3. Returns control to the main body of the driver
program.

c. The procedure used to initialize the system uses
the primitive commands of the respective display device to
draw the graphical framework, to label the intervals of the
x and y axis, to label each axis, and to provide the legend
to enable the user to distinguish data presented on the
graph.

d. The procedure used to actually draw the graphs
again interfaces with the primitives of the associated dis-
play device to perform the task of drawing lines at the

proper locations.

Page 19

APPENDIX B
IMPLEMENTATION STRUCTURE AND SPAN OF CONTROL

The program structure and span of control of certain
procedures are depicted in the Figures 3 through 9. Control
is indicated in each figure by the connecting line. The
General Implementation Schematic (Figure 3) is successively

broken down to provide detail as the logic and control flow.

Page 20

MAIN BODY
PROMPTING
PROCEDURES
MODEL TABULAR
COMPUTATION SOLUTION
PROCEDURES PROCEDURES
GRAPHICAL
SOLUTION
PROCEDURES

Figure 3. General Implementation Schematic.

PROMPTING
PROCEDURES

Page 21

SCHICK-WOLVERTON

JELINSKI-MORANDA

LOAD S-W
. TABULAR DISPLAY

LOAD J-M
TABULAR DISPLAY

COMPUTE WRITE
HELP STRING
COMPUTE READ PRINT TABULAR
INTEGER DISPLAY
COLLECT GRAPH LOAD S-W
INFORMATION GRAPH DATA
DRAW LOAD J-M
GRAPHS GRAPH DATA

Figure 4. Prompting Procedures Schematic.

MODEL
COMPUTATION
PROCEDURES

E RAISED TO
THE POWER OF X

Page 22

SQUARE
ROOT

Figure 5. Model Computation Schematic.

PRINT
TABULAR
DISPLAY

WRITE TABULAR
SOLUTION

Pagze 23

WRITE
INTEGER

Figure 6. Print Tabular Display Schematic.

DRAW
GRAPH

PROGRAM
CHROFIX

Page 24

PROGRAM
PLOTFIX

Figure 7. Graphical Solution Schematic.

NOTE : Invocations of Program Chrofix and
Program Plotfix are external to the

main program.

Figure 8. Chromatics Display Device Schematic.

Page 25

DISPLAY DEVICE
PRIMITIVES

MAIN BODY
USER
PROGRAM
SET UP OUTPUT
SYSTEM LINE
DRAW
GRAPHS

MAIN BODY

Figure 9. Plotter Display Device Schematic.

Page 26

DISPLAY DEVICE
PRIMITIVES

USER
PROGRAM
SET UP OUTPUT
SYSTEM LINE
DRAW
GRAPHS

Page 27
APPENDIX C

"MODULE SPECIFICATIONS/DESCRIPTIONS

As each major function of the iﬁplementation is accom-
plished through a specific procedure or procedures, the for-
mal specifications and descriptions of the procedures are
described below. Additional details of each procedure are
provided in Appendix I.

Procedures of the main program are as follows:

a. Procedure Provide Full Prompting. This procedure
provides an elaborate interface with the user to collect the
information necessary to perform the model calculations and
present the solutions. Questions are preceded with complete
explanations of what the question is and what the possible
answers are. Access to an assistance procedure is provided
with each question. The procedure controls the execution
sequence of the main program. This execution sequence and
the span of control of this procedure is detailed in Appen-
dices A and B, respectively.

This procedure is invoked from the main body with no
parameters. The procedure exercises access to global data
variables used to indicate the following:

1. The number of errors initially present in the

software package being analyzed.

Page 28

2. The number of testing intervals.

3. The length of each testing interval.

4. The number of software errors discovered to
date in the testing process.

5. As assistance indicator used to cause the assis-
tance procedure to present amplifying instructions pertain-
'ing to a particular question.

Outputs of this procedure are text type queries made
to the CRT screen.

b. Procedure Partial Prompting. This procedure per-
forms the identical functions of the previous procedure with
the exception of the degree of explanation provided. All
access to global data variables, procedure invocations,
execution sequence, and output is done in the same manner.

c. Procedure Compute Schick-Wolverton. This procedure
performs the computations of the data in accordance with
the Schick-Wolverton model. This procedure is invoked from
either of the two prompting procedures, with no parameters.
The procedure's span of control, or access with respect to
other procedures, is presented in Appendix B. There are no
outputs from this procedure.

The procedure exercises access to global data variables
used to indicate the following:

1. The computed reliability.

2. The computed constant of proportionality.

3. The computed mean time to failure.

4. The computed standard deviation.

Page 29

5. The computed time to discover all errors.

6. The number of errors initially present in the
software package.

7. The number of testing intervals.

8. The length of each testing interval.

9. The number of errors discovered to date in the
testing process.

d. Procedure Compute Jelinski-Moranda. This procedure
performs the same functions in the same manner as the previ-
ous procedure, with the obvious exception that it is for the
Jelinski-Moranda model. Span of control, invocation, outputs,
access to global data variables are as defined for the Schick-
Wolverton computational procedure.

e. Procedure Square Root. This procedure is used to
calculate a square root. It is invoked from either of the
two model computational procedures, with the input parameter
of the value for which the root is desired. This procedure
has no access with respect to other procedures or global
data variables and performs no output functions.

f. Procedure Load Tabular Display S-W. This procedure
performs the process of initializing the variables used in
the Schick-Wolverton portion of the tabular form of solution.
This procedure is invoked from either of the two prompting
procedures, with no input parameters. The procedure has
no access -with respect to other procedures and performs no
output functions.

The procedure exercises access to global data variables

Page

used to indicate the following:
1. The computed reliability.
2. The computed constant of proportionality.
3. The computed mean time to failure.
4. The computed standard deviation.
5. The computed time to discover all errors.
6. The data variables used to represent the
above variables in the solution form.

g. Procedure Load Tabular Display J-M. This proce-
dure performs the same function as the previous procedure
for the Jelinski-Moranda portion of the tabular solution
form. The invocation, span of control with respect to
other procedures, and output functions are also the same.

The procedure exercises access to the same type of
global data variables as the preceding procedure but ob-
viously pertaining to the Jelinski-Moranda model.

h. Procedure Print Tabular Display. This procedure
is used to output the tabular solution to the CRT face.
The procedure is invoked from either of the two prompting
procedures, with the input parameter of which model was
selected for use. The span of control with respect to
other procedures is presented in Appendix B.

The procedure exercises access to the global data
variables of the tabular display. These are the variables
defined by the two previous loading procedures.

i. Procedure Write Integer. This procedure is used
to print an integer value to the CRT face. The procedure

is invoked by Procedure Print Tabular Display, with an

30

Page 31

input parameter of a line of text. The procedure accesses
no other procedures or global data variables,

i, Précedure Write Tabular Solution. This procedure
provides the textual information of the tabular solution
on the CRT. The procedure is invoked from Procedure Print
Tabular Solution, with an input parameter of a text string.
The procedure exercises no access to other procedures or
global data variables. .

k. Procedure Collect Graph Information. This proce-
dure performs the function of querying the user as to where
the graphical solution is to be displayed. The procedure
is invoked from either of the two prompting procedures, with
no input parameters. The procedure's span of control with
respect to other procedures is presented in Appendix B.

The procedure produces no ouput.

The procedure exercises access to the following global
data variables used to indicate the following:

1. The destination of the graphical solution.
2. As assistance indicator used to cause the
assistance procedure to present amplifying instructions.

1. Procedure Load Graph Data S-W. This procedure
provides the computational function of converting the computed
reliability and the computed mean time to failure of the
Schick-Wolverton model to coordinate points for display on
the selected display device. The procedure is invoked from
either of the two prompting procedures, with the input para-

meter of the scale selected for the mean time to failure axis

Page 32

of the graphical solution. This procedure exercises no con-
trol over other procedures and outputs nothing.

The procedure exercises access to the following global
data Variébles used to indicate the following:

1. The computed reliability.

2. The computed mean time to failure.

3. The number of errors discovered to date in the
testing process.

4, The scale selected for the mean time to failure
axis.

5. The data elements necessary to hold the coordin-
ate points for subsequent plotting by the display driver pro-
gram,

m. Procedure Load Graph Data J-M. This procedure per-
forms exactly the same function as the previous procedure,
with the obvious exception that it deals with the Jelinski-
Moranda model. The span of control with respect to other
procedures and global data variables is also the same. The
procedure is invoked by either of the two brompting proce-
dures, with the input parameter of the scale selected for
the mean time to failure axis of the graphical solution.

n. Procedure Help. This procedure provides amplifying
instructions to the user, based on the iﬂput parameter of
the assistance control flag. This procedureis invoked from
either of the two prompting procedures or the Collect Graph
Information procedure. The procedure accesses control over

only the assistance flag. The procedure's span of control

Page 33

over other procedures is limited to the procedure used to
write a string of textual information to the CRT screen.

0. Profedure Write String. This procedure provides
the implementation with the function of presenting textual
information on the CRT screen. This procedure is invoked
from-either of the two prompting procedures, Procedure
Collect Graph Information, Procedure Help,and the main body,
with an input parameter of a text string. The procedure
exercises no access over other procedures or global data
variables.

p- Procedure Read Integer. This procedure is used to
read integer input values from the CRT face. The procedure
is invoked from either of the two prompting procedures, with
an input parameter of the number read. This procedure
exercises no access to other procedures or global data vari-
ables.

Q. Procedure Draw Graphs. This procedure is used to
control the execution and invocation of the display driver
programs. The procedure is invoked from either of the two
prompting procedures. The procedure's span of control with
respect to othér procedures is presented in Appendix B. The
procedure does not output and exercises access to the global
data variable used to indicate the destination of the graph-
ical solution, or where the graphical solution is to be
presented.

Procedures of the display driver programs are as fol-

lows. Additional details of each procedure are presented in

Page 34

Appendix I.

a. Procedure User Program. This procedure is used to
control the execution sequence of the respective display
device program. The procedure is invoked by the main prog-
ram, with an input parameter of the coordinates to be plotted.
The ﬁrocedure's span of control with respect to other proce-
dures is presented in Appendix B. The procedure exercises
no access to global data variables and does no output functions.

b. Procedure Set Up the System. This procedure is used
to draw the graphical framework of the graphical solution,
label each axis of the graph, and provide the necessary notes
for user understanding of the presented graph. The procedure
exercises no access with respect to other procedures and
accesses only the global data variable of the scale selected
for the mean time to failure axis. The procedure is invoked
from the previous procedure.

¢. Procedure Draw Graph. This procedure performs the
plotting of the coordinates on the graphical framework. It
is invoked from the Procedure User Program, with no input
parameters. The procedure exercises no access with respect
to other procedures and exercises access to only the global
data variable used to contain the graph coordinate points
to be plotted.

Both display driver programs of this implementation
contain the above three procedures. The function of the
procedures is identical in each driver program. Addition-

ally, each driver program contains several procedures used

Page 35

to invoke the primitives of the respective display device.
The procedures are not listed in this documentation but may

be referenced in the user manuals associated with the res-

pective display device.

Page 36

APPENDIX D

ISSUES OF MODIFICATION

As mentioned in the first chapter of this report, one
goal of this implementation was to facilitate future modi-
fications., During the design phase of the implementation,

I realized that there would exist a greﬁt potential to
expand this implementation, particularly in the addition of
display devices. For that reason, functions of the program
were encapsulated into specific procedures, almost on a
one-to-one basis (see Appendix C for detailed information
pertaining to procedural functions). As an example of this
approach, the process of loading the tabular solution form
for each of the two models of the implementation was divided
into two procedures, one for each model. Additionally, the
process of loading the data to be displayed graphically for
each of the two models was also divided into separate pro-
cedures.

I approached other classical issues of program modifi-
cation through the facilities of the PASCAL programming lan-
guage itself. These issues are, in part, addressed below.

a. Array Declarations. Arrays are declared with
the upper bound as a constant. Any change to these
array sizes can then be accomplished through changing
only one constant. Arrays of the implementation that
are candidate for future modification are‘ the two arrays

that contain the respective model's error interval length and

Page 37

the respective model's graphical x and y coordinates. See
Appendix I for more detailed information concerning arrays
and their use in the implementation programs.

b. PASCAL For Loop Limits. All '"for" loops used with-
in the programs are specified with a maximum range as a con-
stant or a variable value, not a specific value. As in 'a’
above, changes to the upper limits of the loops can then be
made through the modification of the appropriate constant.
See Appendix I for more detailed information concerning the
. use of For Loops within the implementation programs.

c. Special Values Used in Computations. Throughout
the program, these types of values are referenced, almost
exclusively in comparisons or computations. Examples are
in the process of calculating the y coordinates for the mean
time to failure values of a respective model, a constant is
used to denote the origin of the graph and another constant
is used to denote the number of pixels per unit of the parti-
cular device. A final example occurs in the computation of
square roots. The accuracy of the root produced is described
in terms of a constant. Any change to accuracy desired in
the square root procedure or graphical presentation on a dis-
play device can then be more easily changed by simply changing
the values of their associated constants.

The modification issue of supporting additional display
drive programs, and thus additional display devices, is some-
what straight forward. As explained in detail in Appendix I,

the interface between the main program of this implementation

Page 38

and the display driver programs is an external one. The
addition of a display device would then require a separate
display d}iver program and the invocation of this program
from the main program.

There are several other important issues of modifi-
cation that should also be addressed. These are the mod-
ification of the display driver program interface, the
modification of the display drivers themselves, and a mod-
ification to the graphical solution form.

Concerning the issue of the display driver program
interface, this implementation treats all display driver
programs as external to the main program, in the sense of
an external procedure call. This interface was chosen to
restrict the size of the main driver program and because
of multiple external procedure invocations from the display
driver programs themselves. The alternate interface cap-
ability investigated during the design of the implementation
did not suppo-t the external calls of the display driver
programs and thus was eliminated, not without much effort,
however. Therefore, to change the interface with the exist-
ing display driver programs, the driver programs themselves
would need to -e modified to remove these external procedure
invocations. Examples of invocations made externally from
the driver programs are trigonometric function calls used
in drawing routines of each display driver program. See
Appendix I for additional information and examples concerning
the external invocations of these display driver programs.

The next area of modification that should be addressed

Page 39

is in the display driver program modification. These pro-
grams were already developed to perform those primitive
functions of plotting and were modified by me to produce
the particular results that were needed in this implemen-
tation. These results were to accept the graphical data
from the main program, to draw the initial graphical frame-
work, to label the graphical framework, and to draw the
graphs themselves. Unfortunately, these existing driver
programs are not flexible in the classical issues of mod-
ification discussed earlier. Those procedures added to
perform the functions just mentioned do follow the guide-
lines I set down for modification support in the main pro-
gram however.

The final area of modification that should be addressed
is the graphical solution form itself. The present solution
form, as shown in Appendix H, presents the relationship be-
tween reliability and mean time to failure for each inter-
val of the software project. AS this relationship is con-
cerned with each preceeding interval, this often causes wide
fluctuations in the values displayed on the graph. The pro-
posed modification would be to depict the relationship between
reliability and mean time to failure for an interval of con-
stant length. The interval length to be displayed would be
selected by the user before the graphical solution is pre-

sented.

Page 40

APPENDIX E
SCHICK-WOLVERTON SOFTWARE RELIABILITY MODEL

The Schick-Wolverton Reliability Model was developed
by George J. Schick and Raymon W. Wolvarton. The model
computes a reliability estimate and estimates of the mean
time to failure and total time necessary to discover all
errors within a software package.

Estimates produced by the model are statistically

based upon the following hazard function [13]:
Z(t;) = O(N-(i-1))ty

where § is a constant of proportionality calculated
for each iteration of the model and used to
keep the area under the reliability curve

equal to one.

N is the number of errors initially present in
the software package. This value can be est-

imated or calculated.

th

t; is the time between the i and (i-l)St error

discovery. This is often referred to as the

ith debugging interval.

i is a specific discovered error.

Page 41

Additionally, the model is based on the following
four assumptions[2,8,13,16]:

a. The amount of time between error occurrences is
statistically modeled by a Rayleigh distribufion.

b. The error occurrence rate is proportional to the
number of errors remaining in the system and the time spent
in error discovery (debugging) testing.

c. Only one error is discovered in each debugging
interval.

d. Each error discovered is immediately removed,
reducing the number of errors remaining by one.

The reliability model has the following form [17]:
. 2
R(t;) = exp(-0(N-(i-1))t;/2)

The estimated time to discover all remaining errors

of the software package has the following form [17]:

= /'
TDRE s ‘170
where n is the number of errors discovered to date

and the remaining variables are as defined

previously.

The estimated mean time to failure of the system has

the following form [17]:

MTTE = {fT/(2-¢.[N-n])] %

Page 42

Finally, the constant of proportionality is calculated

by the following form [13]:

-

I 2 1

Page 43

APPENDIX F
JELINSKI-MORANDA SOFTWARE RELIABILITY MODEL

The Jelinski-Moranda Reliability Model was developed
by Z. Jelinski and P. B. Moranda. The model computes the
reliability estimate and estimates for the total time re-
quired to discover all remaining errors and the mean time
to failure of the software package.

Estimates produced by the model are based statistically

on the following hazard function [7,14,17]:

Z(t;) = §(N-(i-1))

where 0 is a constant of proportionality calculated
for each iteration of the model and used to
keep the area under the reliability curve to

one.

N is the number of errors initially present in
the software package. This value can be esti-

mated or calculated.
i is a specific discovered error.

Additionally, the model is based on the following five
assumptions [1,2,4,9]:

a. The amount of debugging time between error

Page 44

oﬁcurrences has an error occurrence rate proportional to the
number of errors remaining.

b. Each error discovered is immediately removed,
reducing the number of errors remaining in the software
package by one.

c. The occurrence rate between errors is constant.

d. All errors remaining in the program at any given
time are equally likely to occur.

e. Only one error is discovered in each debugging
interval.

The reliability model has the following form [17]:

R(ti) = exp(—¢ (N' (i'l))ti)

where t, is the time between the ith and (i-l)St
error discovery. This is often referred
to as the ith debugging interval.
and other variables are as defiﬁed prev-

iously.

i
—

The estimated time to discover all remaining errors

of the software package has the following form [17]:

TDRE =[h£1 /5 :I/ 0

1=1
where n is the number of errors discovered to date
and the remaining variables are as defined

previously.

Page 45

The estimated mean time to failure of the system has

the following form [17]:

MTTE = 1/(¢-(N—n))

Finally, the constant of proportionality is calculated

by the following form [13]:

n

-=)>

NT -iE (1-1) 54
=1

where T is defined to be the summation of the length

n
of each debugging interval, or T =£§1ti

and all other variables are as defined pre-

viously.

Page 46

APPENDIX G

VALIDATION OF PROGRAM MODEL COMPUTATIONS

Page 47

INPUT DATA

Initial Errors

Number of Errors Discovered
Number of Testing Intervals
Length of Respective Intervals

=5
=5

= 50

=1,2,3,4,5

HAND CALCULATED

SOLUTIONS FOR SCHICK-WOLVERTON

PROGRAM CALCULATED

.205 Reliability
.0070 Constant of
Proportionality
3.155 MTTF
180.866 Time to Discover

Remaining Errors

.21
.007

180

HAND CALCULATED

SOLUTIONS FOR JELINSKI-MORANDA

PROGRAM CALCULATED

.113 Reliability .11
.00379 Constant of .0038
Proportionality
3.034 MTTF 3
1159.25 Time to Discover 1159
Remaining Errors
Table 1. Comparison of Model Accuracy - Case 1.

Page 438

INPUT DATA
Initial Errors = 100
Number of Errors Discovered = 20
Number of Testing Intervals = 20
Length of Respective -Intervals =1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1
1,1,1,1
SOLUTIONS FOR SCHICK-WOLVERTON
HAND CALCULATED PROGRAM CALCULATED
.409 Reliability .41
.02221 Constant of .0222
Proportionality
1.09 MTTF 1
224 .38 Time to Discover 224
Remaining Errors
SOLUTIONS FOR JELINSKI-MORANDA
HAND CALCULATED PROGRAM CALCULATED
A1l Reliability L4l
.01103 Constant of .0110
Proportionality
1.03 MTTF 1
448 .87 Time to Discover 449
Remaining Errors

Table 2. Comparison of Model Accuracy - Case 2.

Page 49

INPUT DATA
Initial Errors = 5
Number of Errors Discovered = 4
Number of Testing Intervals = 4
Length of Respective Intervals =1,2,3,4

SOLUTIONS FOR SCHICK-WOLVERTON

HAND CALCULATED PROGRAM CALCULATED
.249 Reliability .25
.08561 Constant of .0856
Proportionality
4,11 MTTF 4
12.23 Time to Discover 12

Remaining Errors

SOLUTIONS FOR JELINSKI-MORANDA

HAND CALCULATED PROGRAM CALCULATED
.5905 Reliability 2D
.00738 Constant of .0074
Proportionality
- 3.04 MTTF | 3
8.21 Time to Discover 8

Remaining Errors

Table 3. Comparison of Model Accuracy - Case 3.

Page 50

INPUT DATA
Initial Errors =_90
Number of Errors Discovered = 27
Number of Testing Intervals = 27
Length of Respective Intervals =1,1,1,2,2,2,3,3,3
4,4,4,5,5,5,6,6,6
7!7!7’8:818:9’939
SOLUTIONS FOR SCHICK-WOLVERTON
HAND CALCULATED PROGRAM CALCULATED
123 Reliability 32
.00078 Constant of .0008
Proportionality
5.02 MTTF 5
5705.19 Time to Discover 5705
Remaining Errors
SOLUTIONS FOR JELINSKI-MORANDA
HAND CALCULATED PROGRAM CALCULATED
.209 Reliability .21
.00272 Constant of .0027
Proportionality
5.989 MTTF 6
1726.15 Time to Discover 1726
Remaining Errors

Table 4. Comparison of Model Accuracy - Case 4.

Page 51

INPUT DATA

Initial Errors =
Number of Errors Discovered =
Number of Testing Intervals =

- = =

Length of Respective Intervals =

SOLUTIONS FOR SCHICK-WOLVERTON

HAND CALCULATED PROGRAM CALCULATED
.369 Reliability .37
2203 Constant of + 25
Proportionality
1.02 MTTF 1
9.87 Time to Discover 10

Remaining Errors

SOLUTIONS FOR JELINSKI-MORANDA

HAND CALCULATED PROGRAM CALCULATED
L4204 Reliability 42
«1253 Constant of .1250
Proportionality
1.01 MTTF 1
20.76 Time to Discover 21

Remaining Errors

Table 5. Comparison of Model Accuracy - Case 5.

Page 52

APPENDIX H
SOLUTION FORMATS

Page 53

- TABULAR DISPLAY

- SCHICK-WOLVERTON DATA IS AS FOLLOWS.

- RELIABILITY IS 0.37

- STANDARD DEVIATION IS 1

- CONSTANT OF PROPORTIONALITY IS 0.10000
- MEAN TIME TO FAILURE IS 1

- TIME TO DISCOVER ALL ERRORS IS 1

- JELINSKI-MORANDA DATA IS AS FOLLOWS.

- RELIABILITY IS 0.40

- STANDARD DEVIATION IS 1

- CONSTANT OF PROPORTIONALITY IS 0.10000
- MEAN TIME TO FAILURE IS 1

- TIME TO DISCOVER ALL ERRORS IS 1

PRESS THE RETURN KEY WHEN YOU ARE FINISHED
READING THIS PAGE

Figure 10. Tabular Sclution Format Example (Both
Models Selected).

- TABULAR DISPLAY

- SCHICK-WOLVERTON DATA IS AS FOLLOWS.

- RELIABILITY IS 0.37

- STANDARD DEVIATION IS 1

- CONSTANT OF PROPORTIONALITY IS 0.10000
- MEAN TIME TO FAILURE IS 1

- TIME TO DISCOVER ALL ERRORS IS 1

PRESS THE RETURN KEY WHEN YOU HAVE FINISHED
READING THIS PAGE

Figure 11. Tabular Solution Format Example
(Schick-Wolverton Model Selected).

Page 54

TABULAR DISPLAY

JELINSKI-MORANDA DATA IS AS FOLLOWS.

RELIABILITY IS 0.37

STANDARD DEVIATION -IS 1

CONSTANT OF PROPORTIONALITY IS 0.10000
MEAN TIME TO FAILURE IS 1

TIME TO DISCOVER ALL ERRORS IS 1

PRESS THE RETURN KEY WHEN YOU HAVE FINISHED
READING THIS PAGE

Figure 12. Tabular Solution Format Example
(Jelinski-Moranda Model Selected).

Page 55

56

ge

Pa

Figure 13.

I I | l | i l l i

.2 .3 .4 .5 .6 .7 .8 .3 1.0
RELIABILITY

SCHICK~UOLUVERTON DATA IS IN BLACK

JELINSKI-NMORANDA DARTA 1S 1IN GREEN

Graphical Output Example.

Page 57

APPENDIX 1

PROGRAM SOURCE CODE LISTINGS

MAIN PROGRAM PREFIX PAGE 1

" THIS PROGRAM COMPUTES THE RELIABILITY
AND THE "

" MEAN TIME TO FAILURE OF A PARTIALLY
DEBUGGED "

" SOFTWARE PACKAGE, THE PROGRAM IS
INTERACTIVE IN "

" NATURE AND WAS PREPARED TO MEET THE
REQUIREMENT "

® QF A REPORT FOR THE DEGREE COF MASTER OF
SCIENCE ¢

n IN COMPUTER SCIENCE.

L THIS PROGRAM WAS PREPARED BY
L

n
]

" JOHNNIE 0. RANKIN
"

n
|]

" 1 DECEMBER 1981
n

"
n

n AT EKANSAS STATE UNIVERSITY
L]

"
n

ud MAJOR ADVISOR FOR THIS PROJECT
n

n
n

n WAS
n

n
"

" DR. DAVID A. GUSTAFSON

NSNS RSN R S RN RN NN RN B R R NN R ERENNRRN

MAIN PROGRAM PREFIX PAGE 2

"KANSAS STATE UNIVERSITY" "DEPARTMENT OF
COMPUTER SCIENCE™
CONST COPYRIGHT = 'COPYRIGHT ROBERT YOUNG
19787;

" THE FOLLOWING PROCEDURES ARE A HEADER
REQUIRED BY THE "

" INTERDATA PASCAL COMPILER 1IN USE IN
FATRCHILD HALL "
"$¢d¢¢d###F+ £ PREFIX & #######4#4#4#" CONST

NL = "(:10:)'; FF = '{:12:)'; CR =
'"(:13:)'; EM = "(:25:)'; CONST PAGELENGTH =
512; TYPE PAGE = ARRAY (.1..PAGELENGTH.) OF
CHAR; CONST LINELENGTH = 132; TYPE LINE =
ARRAY (.1..LINELENGTH.) OF CHAR; CONST
IDLENGTH = 12; TYPE IDENTIFIER = ARRAY
(.1..IDLENGTH.) OF CHAR; TYPE FILE = 1..2;
TYPE FILEKIND = (EMPTY, SCRATCH, ASCII,

SEQCODE, CONCODE); TYPE FILEATTR = RECORD
KIND: FILEKIND;
ADDR: INTEGER;
PROTECTED: BOOLEAN;
NOTUSED: ARRAY (.1..5.) OF
INTEGER
END; TYPE IODEVICE =
(TYPEDEVICE, DISKDEVICE, TAPEDEVICE,
PRINTDEVICE, CARDDEVICE); TYPE IOOPERATION =
(INPUT, OUTPUT, MOVE, CONTROL); TYPE IOARG =
(WRITEEOF, REWIND, UPSPACE, BACKSPACE); TYPE
IORESULT =
(COMPLETE, INTERVENTION, TRANSMISSION,
FAILURE,
ENDFILE, ENDMEDIUM, STARTMEDIUM); TYPE
IOPARAM = RECORD
OPERATION: IOOPERATION;
STATUS: IORESULT;
ARG: IOARG
END; TYPE TASKKIND z
(INPUTTASK, JOBTASK, OUTPUTTASK); TYPE ARGTAG
(NILTYPE, BOOLTYPE, INTTYPE, IDTYPE,
PTRTYPE); TYPE POINTER = 6BOOLEAN;
TYPE PASSPTR = @PASSLINK;
TYPE PASSLINK = RECORD
OPTIONS: SET OF CHAR;
FILLER1: ARRAY(.1..7.) OF INTEGER;
FILLER2: BOOLEAN;
RESET _POINT: INTEGER;
FILLER3: ARRAY (.1..11.) OF POINTER
END;
TYPE ARGTYPE = RECORD
CASE TAG: ARGTAG OF
NILTYPE, BOOLTYPE: (BOOL:
BOOLEAN) ;
INTTYPE: (INT: INTEGER);

MAIN PROGRAM PREFIX PAGE 3

IDTYPE: (ID: IDENTIFIER);
PTRTYPE: (PTR: PASSPTR)
END; CONST MAXARG = 10; TIPE
ARGLIST = ARRAY (.1..MAXARG.) OF ARGTYPE;

MAIN PROGRAM PREFIX PAGE 4

NEEN R R RN NN IR R RN RN REN AN SR RSN REF R AR RS
nE
#n

n&# INSTANCES OF THE FOLLOWING RECORD ARE
USED TO HOLD DATA #n

"# APPLICABLE TO THE GRAPHICAL DISPLAY
DEVICE WHICH MAY BE #v

"% SELECTED FOR USE WITHIN THIS PROGRAM.
EACH PROGRAM ol

"# CONTROLLING THESE DISPLAY DEVICES IS
TREATED AS AN EX- #n

"# TERNAL PROCEDURE AND IS PASSED THE
RESPECTIVE INSTANCE #n

"% QOF THIS RECORD, INSTANCES USED IN THIS
PROGRAM ARE b

n# CHROM DATA, USED FOR THE CHROMATICS
DEVICE, PLOT DATA, &0

n% USED FOR THE PLOTTER DEVICE, AND SPIN
DATA, USED FOR THE®#®

nE SPIN WRITER DEVICE.
&n

n
#n
MRS RN R RSN R R R AN R RN R RN RN E TR RRERE

TYPE COORDINATE = RECORD
S_W_PLOT

: ARRAY(.1..250,1..2.) OF INTEGER;
J_M_PLOT

: ARRAY(.1..250,1..2.) OF INTEGER;
COMBINATION_SELECTED

: INTEGER;

SCALE_DESIRED
: INTEGER;

NUMBER_OF_ERRORS_OBSERVED
: INTEGER

END;

MAIN PROGRAM PREFIX

PAGE 5

TYPE ARGSEQ = (INP, OUT); TYPE PROGRESULT =

(TERMINATED,

OVERFLOW, .

RANGEERROR, VARIANTERROR,

HEAPLIMIT,
TIMELIMIT, CALLERROR);
PROCEDURE WRITE(C:

FILE; ID:

CHAR);
OPEN(F:

GET(F:

BLOCK: UNIV PAGE);
PROCEDURE MARK(VAR TOP:
INTEGER);

INTEGER;

PROCEDURE RELEASE(TOP:
IDENTIFY (HEADER: LINE);

INTEGER;

STACKLIMIT,
PROCEDURE READ(VAR C:
CHAR);
IDENTIFIER; VAR
BOOLEAN) ; PROCEDURE CLOSE(F: FILE);

FILE; P:

VAR BLOCK:
PAGE); PROCEDURE PUT(F: FILE; P: INTEGER;
FUNCTION LENGTH(F: FILE):

POINTERERROR,

CODELIMIT,

PROCEDURE
FOUND:
PROCEDURE
UNIV
VAR

INTEGER);
PROCEDURE

PROCEDURE ACCEPT(VAR

C: CHAR); PROCEDURE DISPLAY(C: CHAR);
PROCEDURE NOTUSED; PROCEDURE NOTUSED2;
PROCEDURE NOTUSED3; PROCEDURE NOTUSED4 ;
PROCEDURE NOTUSED5; PROCEDURE NOTUSEDG;
PROCEDURE NOTUSEDT; PROCEDURE NOTUSEDS;
PROCEDURE NOTUSED9; PROCEDURE NOTUSED10;
PROCEDURE RUN(ID: IDENTIFIER; VAR PARAM:
COCRDINATE;

VAR LINE: INTEGER; VAR RESULT:

PROGRESULT);

MAIN PROGRAM DECLARATION AREA PAGE 6

NESEEEERERR SRR NER RSN N NN NE R NN S AN R R AR RREN

PROGRAM RELIABILITY MODEL (PARAM: LINE);
LIt XX R E R N R Y R R IR R R R Rl R IR RIRERIR IR Rz IR ZIR IR 2R3 1)

TR RN R R R RN R EE
ni

&m n% THIS PROGRAM COULD NOT HAVE BEEN
COMPLETED WITH-#" ®w# QUT THE ABLE ASSISTANCE
OF MR. ROBERTY YOUNG OF #" "% THE COMPUTER
SCIENCE DEPARTMENT, CARDWELL HALL, #" "# AND
MR. CARLOS QUALLS, DEPARTMENT OF COMPUTER g
"# SCIENCE, FAIRCHILD HALL, MR. YOUNG!'S
EXPERTISE #m n&% PROVED TO BE INVALUABLE TO ME
IN THE AREA OF #n nw& ESTABLISHING THE
INTERFACE BETWEEN THE INTERDATA#® w& AND THE
REMOTE DISPLAY DEVICES. MR. QUALLS WAS #n n#
AN IMMENSE HELP THROUGH HIS KNOWLEDGE OF THE
#n n¥% TNTERDATA SYSTEM, ESPECIALLY TROUBLE

SHOOTING &n w&% AND DEBUGGING TECHNIQUES,
#n ng

#n
N R R S RN SR RSB P NN SRR E NN RN ERRR SN

CONST

MAX ALLOWED =
250;

FULL_LEVEL =
lFl;

PARTIAL_LEVEL =
IPl;

NEED_HELP =
'IHI;

DO_NOT_NEED_HELP =
INI ;

BLANK = !
's

VAR

INITIAL_ERRORS -
INTEGER;

TOTAL_INTERVALS :
INTEGER;

ERRORS_DISCOVERED :
INTEGER;

DESTINATION
INTEGER;

I 2
INTEGER;

J :
INTEGER;

HELP_FLAG

MAIN PROGRAM DECLARATION AREA

INTEGER;

TAB_S W _RELIABILITY

INTEGER;

TAB_S W_MTTF

INTEGER;

TAB_S_W_TIME TO_FIND_ALL_ERRCRS

INTEGER;

TAB_S W_STD

INTEGER;

TAB_S_W_PHI

INTEGER;

TAB_J_M RELIABILITY

INTEGER;

TAB_J_M MITF

INTEGER;

TAB_J_M TIME_TO_FIND_ALL_ERRORS

INTEGER;

TAB_J_M_STD

INTEGER;

TAB_J_M_pHI

INTEGER;

REAL;
REAL;
REAL;
REAL;
REAL;
REAL;
REAL;
REAL;
REAL;
REAL;

REAL;

CHAR;

CHAR;

J_M TIME_TO FIND_ALL_ ERRORS

S_W_TIME_TO_FIND ALL_ERRORS

J_M_STANDARD_DEVIATION
S_W_STANDARD_DEVIATION
S_W_PHI

J_M_PHI

ANSWER

S_W_RELIABILITY
S_W_MTTF

J_M _RELIABILITY

J_M MTTF

MESSAGE _IN

DUMMY

SUCCESSFUL_INPUT

BOOLEAN;

J_M_DATA 1

PAGE

L]

L1

MAIN PROGRAM DECLARATION AREA PAGE

ARRAY(.1..MAX_ALLOWED.) OF INTEGER;
S_W_DATA_1
ARRAY(.1..MAX ALLOWED.) OF INTEGER;

CHROM_DATA
COORDINATE;

PLOT_DATA
COORDINATE;

SPIN_DATA
COORDINATE;

PROCEDURE CHROFIX(PARAM : COORDINATE);
EXTERN;

PROCEDURE PLOTFIX(PARAM : COORDINATE);
EXTERN;

PROCEDURE SPINFIX(PARAM : COORDINATE);
EXTERN;

FUNCTION DEXP(VALUE : REAL) : REAL;
FORTRAN;

PROCEDURE WRITE STRING PAGE 1

PROCEDURE WRITE_STRING(TEXT : LINE);

MU NSRS NN RN RS R AN AN SRR AN A NN SRR RE RN
ni
#n

"# THIS PROCEDURE IS USED TO OQUTPUT CONVERSATIONAL TYPE
&n

"# MESSAGES TO THE USER AT THE CRT FACE. IT IS INVOKED
#n

"# FROM SEVERAL PLACES WITHIN THE PROGRAM, BUT PRIMARILY
#n

"# FROM THE PROMPTING PROCEDURES AND THE COLLECT GRAPH
#n

ni INFORMATION PROCEDURE.
#n

ni
#n

NN R NN SN RN NN R RN R NN

VAR
I : INTEGER;

BEGIN "PROCEDURE WRITE STRING"
I, i= 13
WHILE(TEXT(.I.) <> '(:0:)')DO
BEGIN
DISPLAY(TEXT(.I.));
I := SUCC(I)
END;
DISPLAY(NL)
END; "PROCEDURE WRITE STRING"

PROCEDURE WRITE INTEGER PAGE 1

PROCEDURE WRITE_INTEGER(I : INTEGER);

NEREENE RN RN RS E NN E R E NN RPN SRR R AR RN RS
"

n# THIS PROCEDURE IS USED TO PRINT INTEGER NUMBERS
"# ON THE TABULAR DISPLAY SOLUTION FORH. IT 18

n& INVOKED FROM THE PROCEDURE PRINT TABULAR

DISPLAY, #n

NERSEREERERERTURER IS RN EFERARAREREEU NSRS UERERRNREREER

CONST
BLANK = ' 1
ASTERISK = TET,
VAR
DIGIT ¢ INTEGER;
INT ¢ INTEGER;
J : INTEGER;
INTSTRING : ARRAY(.1..11.) OF CHAR;
BEGIN "PROCEDURE WRITE INTEGER™
DIGIT = D
INT := ABS(I);
J t= 03
FOR J := 1 TO 11 DO

INTSTRING(.J.) := BLANK;
Jd = 11;
REPEAT
DIGIT := INT MOD 10;
INTSTRING(.J.) := CHR(DIGIT + 48);
INT := INT DIV 10;
J := PRED(J)
UNTIL ((INT = 0) OR (J = 0));
IFIKO
THEN INTSTRING(.J.) := ASTERISK;
FOR J := 1 TO 11 DO
IF(INTSTRING(.J.) <> BLANK)
THEN
DISPLAY(INTSTRING(.J.));
DISPLAY(NL)
END; "PROCEDURE WRITE INTEGER"

PROCEDURE WRITE TABULAR SOLUTION PAGE 1

PROCEDURE WRITE_TABULAR_SOLUTION(TEXT : LINE);

ng &
w# THIS PROCEDURE WRITES THE TEXT PORTION OF THE TAB- #%
"# ULAR DISPLAY. IT IS INVOKED FROM THE PROCEDURE &n
"&# PRINT TABULAR DISPLAY. THE FUNCTIONING OF THIS L
& PROCEDURE IS ALMOST IDENTICAL WITH PROCEDURE WRITE_ #"
n# STRING. . &
ng &#n

NEEEEEEE NSNS NN RN R AN RN AR R NN NN E R R E R ERENAEEY

VAR
I : INTEGER;

BEGIN "PROCEDURE WRITE TABULAR SOLUTION®

I =y
WHILE(TEXT(.I.) <> '(:0:)')DO
BEGIN
DISPLAY(TEXT(.I.));
I := Succ(I)
END

END; "PROCEDURE WRITE TABULAR SOLUTION"

PROCEDURE READ INTEGER

PROCEDURE READ_INTEGER(VAR NUMBER_IN : INTEGER};

PAGE 1

NEREEXNREUAF AR AT EREER LR RANER U RR RN ARG E SRR REREn

n#
ni

THIS PROCEDURE PERFORMS THE FUNCTION OF READING

"% AN INTEGER VALUE WHICH HAS BEEN INPUT BY THE USER %%

OF THIS PROGRAM. IT IS INVOKED FROM BOTH OF TH
PROMPTING MODELS,

E #»
%®#n
#n

NMEEER NSRRI N NN NSRRGSR NN RN EEN

CONST
MAXINT = 327673
TYPE
DIGIT = 10',,1'9"%;
VAR
OVERFLOW : BOOLEAN;
DUMMY : INTEGER;
DIGITS : SET OF DIGIT;
c : CHAR;
BEGIN "PROCEDURE READ INTEGER"
DUMMY := 0;
NUMBER_IN := 0;
OVERFLOW := FALSE;

DIGITS 1z [e)
FOR C := '0' TO '9' DO
DIGITS := DIGITS + (.C.);
ACCEPT(C);
WHILE((C IN DIGITS) AND (NOT OVERFLOW))DO
BEGIN
DUMMY := ORD(C) = ORD('0');
IF(NUMBER_IN > (MAXINT - DUMMY)DIV 10)
THEN
OVERFLOW := TRUE
ELSE
NUMBER_IN := 10 # NUMBER_IN + DUMMY;
ACCEPT(C)
END;
IF(OVERFLOW)
THEN
BEGIN
NUMBER_IN := MAXINT;
WHILE(C IN DIGITS)DO
ACCEPT(C)
END

END; "PROCEDURE READ INTEGER"

PROCEDURE HELP PAGE 1

PROCEDURE HELP(VAR CALL_FOR_HELP : INTEGER);

NEREEEER NS CHE NN N RN A EHIRNN BRI U RN BN AR E RN RN NN

n§
#n

"% THIS PROCEDURE'S PURPOSE IS TO PROVIDE
ADDITIONAL #n

n® ASSISTANCE TO THE USER IN THE
EXECUTION OF THE PRO-#"

n# GRAM. IT IS INVOKED FROM THE MAIN
BODY, FROM EACH #nv

n# PROMPTING PROCEDURE, AND FROM THE
COLLECT GRAPH #w

ne INFORMATION PROCEDURE.
sn

nE
#n
NEEERER NN E RN R NN RN RS E RN R RN SRR ISR R R U R ER

CONST
BLANK =1y
VAR
DUMMY : CHAR;
I : INTEGER;

BEGIN "PROCEDURE HELFPY

IF(CALL_FOR_HELP = 1)
THEN
BEGIN "CALL FOR HELP = 1"

WRITE_STRING('THIS PROGRAM ALLOWS
YOU TO COMPUTE THE (:0:)}');

WRITE_STRING('RELIABILITY
ASSOCIATED WITH AN ESTIMATE (:0:)');

WRITE_STRING('OF ERRORS IN &
SOFTWARE PACKAGE. THIS (:0:)');

WRITE_STRING('COMPUTATION WILL BE
PERFORMED BY EITHER (:0:)');

WRITE_STRING('COMBINATION OF TWO
SOFTWARE RELIABILITY (:0:)');

WRITE_STRING('MODELS, THE
SCHICK-WOLVERTON AND/OR THE (:0:)');

WRITE_STRING('JELINSKI-MORANDA
MODEL. DURING EXECUTION (:0:)');

WRITE_STRING('YOU WILL RESPOND TO
A SERIES OF QUESTIONS (:0:)');

WRITE_STRING('CONCERNING YOUR
DESIRES OF THE PROGRAM. (:0:)");

PROCEDURE HELP PAGE 2

WRITE_STRING('TWO SOLUTION FORMS
ARE OFFERED, A GRAPHICAL(:0:)"):

WRITE_STRING('SOLUTION ON WHICH
RELIABILITY AND MEAN TIME (:0:)');

WRITE_STRING('TO FAILURE ARE
PLOTTED AND A TABULAR FORM (:0:)');

WRITE_STRING('OF RELIABILITY AND
THE MEAN TIME TO FAILURE. {:0:)');

WRITE_STRING('YOU MAY USE BOTH
FORMS IF YOU DESIRE. PRESS (:0:)');

WRITE_STRING('THE RETURN KEY WHEN
YOU ARE FINISHED READ- (:0:)');

WRITE_STRING('ING THIS PAGE.
[20x)%)5

FOR I := 1 TO 6 DO DISPLAY(NL);

ACCEPT (DUMMY) ;
FOR I := 1 TO 25 DO DISPLAY(NL);
WRITE_STRING('THE SERIES OF

QUESTIONS YOU WILL BE ASKED (:0:)');

WRITE STRING('IS INTENDED TO LEAD
YOU THROUGH A SUCCESSFUL (:0:)');

WRITE_STRING('EXECUTION OF THE
PROGRAM. YOU WILL BE ASKED (:0:)");

WRITE_STRING('A GENERAL QUESTION
AS TO WHICH PROMPTING (:0:)');

WRITE_STRING('LEVEL YOU DESIRE TO
USE DURING EXECUTION (:0:)');

WRITE_STRING('OF THE PROGRAM.
THERE ARE TWO CHOICES WHICH (:0:)");

WRITE_STRING('ARE AVAILABLE 1TO
YOU. THESE ARE FULL AND (:0:)');

WRITE_STRING('PARTIAL PROMPTING.
FULL PROMPTING REQUIRES (:0:)');

WRITE_STRING('NO FAMILIARITY WITH
THE EXECUTION OF THIS (:0:)');

WRITE STRING("PROGRAM. IF THIS IS
YOUR FIRST EXECUTION OF (:0:)');

WRITE_STRING('THE PROGRAM, 1
STRONGLY RECOMMEND YQU SELECT (:0:)');

WRITE STRING('THE FULL PROMPTING
OPTION. CONVERSLY, THE (:0:)");

WRITE_STRING('OPTION OF PARTIAL
PROMPTING IS INTENDED FOR (:0:)');

WRITE_STRING('THE USER WHO IS
SOMEWHAT FAMILIAR WITH THE (:0:)');

WRITE_STRING('EXECUTION SEQUENCE
OF THIS PROGRAM, THERE IS (:0:)");

WRITE_STRING('LESS DETAIL PROVIDED
IN THIS PROMPTING OPTION. (:0:)");

WRITE_STRING('PRESS THE RETURN KEY
WHEN YOU ARE FINISHED (:0:)');

WRITE_STRING('READING WITH THIS
PAGE. (:0:)");

FOR I := 1 TO 4 DO DISPLAY(NL);

PROCEDURE HELP PAGE 3

ACCEPT(DUMMY) ;

FOR I := 1 TO 25 DO DISPLAY(NL);

WRITE_STRING('THE EXECUTION OF
THIS PROGRAM HAS BEEN MADE (:0:)');

WRITE_STRING('AS PAINLESS AS
POSSIBLE. HOWEVER, I FULLY (:0:)');

WRITE_STRING('REALIZE THAT YOU MAY
NOT BE AN EXPERT IN THE (:0:)');

WRITE_STRING('THEORY OF SOFTWARE
RELIABILITY MODELS AND (:0:)');

WRITE_STRING(*THAT YOU MAY FEEL
UNCOMFORTABLE WITH SOME OF (:0:)');

WRITE_STRING('THE QUESTIONS POSED
DURING THE EXECUTION (:0:)');

WRITE_STRING('SEQUENCE. FOR THIS
REASON, YOU WILL BE (:0:)');

WRITE_STRING(' AFFORDED THE
OPPORTUNITY TO ASK FOR HELP (:0:)');

WRITE_STRING('AT ANY TIME DURING
THE INITIAL QUESTIONING (:0:)');

WRITE_STRING('PROCESS. EACH CALL
FOR HELP WILL BE KEYED (:0:)');

WRITE_STRING('TO THE PARTICULAR
QUESTION WHICH WAS BEING (:0:)');

WRITE_STRING('ASKED AT THE TIME OF
THE CALL FOR HELP. (:0:)');

WRITE_STRING('PRESS THE RETURN KEY
WHEN WHEN YOU ARE FINISH- (:0:)');

WRITE_STRING('ED READING THIS
PAGE. (:0:)1);

FOR I := 1 TO 8 DO DISPLAY(NL);

ACCEPT(DUMMY);

CALL_FOR_HELP:=0;

FOR I := 1 TO 25 DO DISPLAY(NL)

END; "CALL FOR HELP = 1"

IF(CALL_FOR_HELP = 2)
THEN
BEGIN "CALL FOR HELP = 2"
WRITE_STRING('THE LEVEL OF
PROMPTING REFERS TO THE DEGREE (:0:)'};

WRITE_STRING('OF EXPLANATION
PRESENTED IN EACH QUESTION OF (:0:)');
WRITE_STRING('THE EXECUTION
SBQUENCE, THERE ARE TWO LEVELS (:0:)');
WRITE_STRING('OF PROMPTING
AVAILABLE TO YOU, FULL OR PARTIAL (:0:)");
WRITE_STRING('PROMPTING. FULL

PROMPTING PROVIDES COMPLETE (:0:)');
WRITE_STRING('EXPLANATIONS OF
QUESTIONS AND POSSIBLE (:0:)');
WRITE_STRING('RESPONSES, IT IS
TO BE ASSOCIATED WITH A (:0:)');

PROCEDURE HELP PAGE 4

WRITE_STRING('USER WHO IS NOT
FAMILIAR WITH THE EXECUTION (:0:)');

WRITE_STRING('SEQUENCE OF THE
PROGRAM. PARTIAL PROMPTING (:0:)');

WRITE STRING('LEVEL PROVIDES
MINIMAL INFORMATION PERTAINING (:0:)');

WRITE_STRING('TO A QUESTION AND
ITS SET OF RESPONSES. IT (:0:)');

WRITE_STRING('IS INTENDED FOR
USE BY A MORE EXPERIENCED (:0:)');

WRITE_STRING('USER OF THIS
PROGRAM, SINCE YOU INVOKED (:0:)');

WRITE_STRING('HELP FROM THE
PROMPTING LEVEL QUESTION, (:0:)");

WRITE_STRING('I RECOMMEND YOU
SELECT THE FULL PROMPTING (:0:)');

WRITE_STRING('OPTION. PRESS THE
RETURN KEY WHEN YOU (:0:)");

WRITE_STRING('ARE FINISHED
READING THIS PAGE. (:0:)');

FOR I := 1 TO 5 DO DISPLAY(NL);

ACCEPT(DUMMY) ;

CALL_FOR_HELP:=0;

FOR I := 1 TO 25 DO DISPLAY(NL)

END; "CALL FOR HELP = 2"

IF(CALL_FOR_HELP = 3)
THEN
BEGIN "CALL FOR HELP = 3"

WRITE_STRING('THERE ARE WO
MODELS WHICH MAY BE USED (:0:)');

WRITE _STRING('BY YOU IN THE
EXECUTION OF THIS PROGRAM. (:0:)');

WRITE_STRING('YOU WILL BE
ALLOWED TO USE ANY COMBINATION (:0:)');

WRITE_STRING('OF THE TWO MODELS.
THE TWO MODELS ARE (:0:)');

WRITE_STRING('THE
SCHICK-WOLVERTON MODEL AND THE (:0:)%);

WRITE_STRING('JELINSKI-MORANDA
MODEL. (:0:)');

DISPLAY(NL);

WRITE_STRING('A SEMI=-DETAILED
DISCUSSION OF EACH MODEL (:0:)}1');

WRITE_STRING('FOLLOWS. PRESS
THE RETURN KEY WHEN YOU (:0:)');

WRITE_STRING("HAVE FINISHED
READING THIS PAGE. (:0:)');

FOR I := 1 TO 12 DO
DISPLAY(ML);

ACCEPT (DUMMY) ;

FOR I := 1 TO 25 DO

DISPLAY(NL);

PROCEDURE HELP PAGE 5

WRITE_STRING('THE
SCHICK-WOLVERTON MODEL COMPUTES A4 (:0:)1');

WRITE_STRING('A RELIABILITY
ESTIMATE AND AN ESTIMATE (:0:)'");

WRITE_STRING('OF THE MEAN TIME
TO FAILURE OF A SOFTWARE (:0:)1');

WRITE_STRING('PROJECT, BASED
UPON A HAZARD FUNCTION AND (:0:)");

WRITE_STRING('AND THE FOLLOWING
THREE ASSUMPTIONS. (:0:)');

WRITE_STRING('THE AMOUNT OF
DEGUGGING TIME BETWEEN ERROR (:0:)');

WRITE_STRING('OCCURENCES HAS 4
RAYLEIGH DISTRIBUTION. (:0:)');

WRITE_STRING('THE ERROR RATE IS
PROPORTIONAL TO THE (:0:)');

WRITE_STRING('NUMBER OF ERRORS
REMAINING AND THE TIME (:0:)1);

WRITE_STRING('SPENT IN
DEBUGGING. FINALLY, EACH (:0:)");

WRITE_STRING('ERROR DISCOVERED
IS IMMEDIATELY REMOVED, (:0:)}");

WRITE_STRING('THUS REDUCING THE
ERROR TOTAL BY ONE. (:0:)');

WRITE_STRING('THE PARAMATERS OF
THE MODEL ARE AS (:0:)');

WRITE STRING('"FOLLOWS. 1.
TOTAL NUMBER OF INITIAL (:0:)');

WRITE_STRING('ERRORS-EITHER
CALCULATED OR ESTIMATED (:0:)');

WRITE_STRING('BY SOME METHOD.
2. TIME INTERVAL (:0:)1');

WRITE_STRING('BETWEEN ERROR
DISCOVERIES., 3. TOTAL (:0:)');

WRITE_STRING('NUMBER OF TIME
INTERVALS. 4. THE (:0:)');

WRITE_STRING('CUMULATIVE NUMBER
OF ERRORS TO THE (:0:)1);

WRITE_STRING('PRESENT TIME.
PRESS THE RETURN KEY WHEN (:0:)');

WRITE_STRING('YOU HAVE FINISHED
READING THIS PAGE. (:0:)');

ACCEPT(DUMMY) ;

FOR I := 1 TO 25 DO
DISPLAY(NL);

WRITE_STRING('THE RELIABILITY
MODEL IS OF THE FORM (:0:)');

DISPLAY(NL);

WRITE_STRING(' R(T) =
EXP(-PHI#(N-(I-1))(T*¥2)/2) (:0:)");

DISPLAY(NL);

WRITE _STRING('WHERE PHI IS &
CONSTANT OF PROPORTIONALITY, . (:0:)');
WRITE_STRING('N IS THE TOTAL

PROCEDURE HELP PAGE 6

NUMBER OF ERRORS WHICH (:0:)');

WRITE_STRING('ARE ESTIMATED TO
BE IN THE PROGRAM, (:0:)");

WRITE_STRING('I IS A PARTICULAR
ERROR OCCURENCE, (:0:)');

WRITE_STRING('AND T IS THE TIME
INTERVAL ASSOCIATED (:0:)}');

WRITE _STRING('WITH THE ITH ERROR
OCCURENCE. (:0:)");

WRITE_STRING('PRESS THE RETURN
KEY WHEN YOU ARE (:0:)1');

WRITE_STRING('FINISHED READING
THIS PAGE. (:0:)');

FOR I := 1 TO 10 DO
DISPLAY(NL);

ACCEPT (DUMMY);

FOR I = 1 TO 25 DO
DISPLAY(NL);

WRITE_STRING('THE
JELINSKI-MORANDA RELIABILITY MODEL (:0:)");

WRITE_STRING('COMPUTES A
RELIABILITY ESTIMATE AND A MEAN (:0:)');

WRITE_STRING('TIME TO FAILUE
ESTIMATE BASED UPON A (:0:)');

WRITE_STRING('HAZARD FUNCTION
AND THE FOLLOWING FOUR (:0:)1);

WRITE_STRING('ASSUMPTIONS. 1.
THE AMOUNT OF DEBUGGING (:0:)}1");

WRITE_STRING('TIME BETWEEN ERROR
OCCURENCES HAS AN (:0:)');

WRITE_STRING('ERROR OCCURENCE
RATE PROPORTIONAL TO THE (:0:)');

WRITE_STRING('TO THE NUMBER OF
ERRORS REMAINING., (:0:)}1');

WRITE_STRING{'2. [EACH ERROR
DISCOVERED IS IMMEDIATELY (:0:)');

WRITE_STRING('REMOVED, THUS
DECREASING THE TOTAL ERRORS (:0:)");

WRITE STRING('BY ONE. 3. THE
OCCURENCE RATE BETWEEN (:0:)');

WRITE_STRING('ERRORS 1S
CONSTANT. 4. ALL ERRORS WHICH (:0:)');

WRITE_STRING('REMAIN 1IN THE
PROGRAM AT ANY GIVEN TIME (:0:)');

WRITE_STRING('ARE FQUALLY LIKELY
TO OCCUR. (:0:)');

WRITE_STRING('THE PARAMETERS OF
THE MODEL ARE AS (:0:)');

WRITE_STRING('FOLLOWS. THE
TOTAL NUMBER OF INITIAL (:0:)');

WRITE_STRING('ERRORS -
CALCULATED OR ESTIMATED. THE (:0:)');

WRITE_STRING('TIME INTERVAL
BETWEEN ERROR DISCOVERIES. (:0:)'):

PROCEDURE HELP PAGE 7

WRITE_STRING('THE TOTAL NUMBER
OF TIME INTERVALS. (:0:)'):

WRITE STRING('THE NUMBER OF
ERRORS FOUND TO PRESENT TIME. (:0:)');

WRITE_STRING('PRESS THE RETURN
KEY WHEN YOU ARE (:0:)");

WRITE_STRING('FINISHED READING
THIS PAGE. (:0:)');

ACCEPT (DUMMY) ;

FOR I := 1 TO 25 DO
DISPLAY(NL);

WRITE_STRING('THE RELIABILITY
FUNCTION HAS THE FOLLOWING FORM. (:0:)');

DISPLAY(HNL);

WRITE_STRING(® R(T) =
EXP(=-PHI#(N~N1)®T), WHERE (:0:)');

DISPLAY(NL);

WRITE_STRING('PHI IS A

PROPORTIONALITY CONSTANT, N IS (:0:)');

WRITE_STRING('THE TOTAL NUMBER
OF INITIAL ERRORS, N1 (:0:)");

WRITE STRING('IS A PARTICULAR
ERROR OCCURENCE, AND T (:0:)');

WRITE_STRING('IS THE TIME
INTERVAL ASSOCIATED WITH THE (:0:)');

WRITE_STRING('PARTICULAR ERROR
OCCURENCE. (:0:)");

DISPLAY(MNL);

WRITE_STRING('PRESS THE RETURN
KEY WHEN YOU ARE (:0:)');

WRITE STRING('FINISHED READING
THIS PAGE. (:0:)');

FOR I := 1 TO 10 Do
DISPLAY(NL);

ACCEPT (DUMMY) ;

CALL_FOR_HELP := O;

FOR I := 1 TO 25 DO DISPLAY(NL)

END; "CALL FOR HELP = 3"

IF(CALL_FOR_HELP = 1)
THEN
BEGIN "CALL FOR HELP = 4w

WRITE_STRING('THERE ARE THO
FORMS OF SOLUTIONS WHICH (:0:)'");

WRITE STRING('YOU MAY CHOOSE 1IN
THIS PROGRAM. ONE IS (:0:)');

WRITE_STRING('A GRAPHICAL
SOLUTION AND THE OTHER IS A (:0:)");

WRITE STRING('TABULAR SOLUTION.
THE GRAPHICAL FORM (:0:)");

WRITE_STRING(*CONTAINS THE
COMPUTED RELIABILITY AND (:0:)");

WRITE_STRING('IS PLOTTED AGAINST

PROCEDURE HELP PAGE 8

THE COMPUTED (:0:)");

WRITE_STRING('MEAN TIME TO
FAILURE, THERE MAY BE (:0:)");

WRITE_STRING('MULTIPLE MODELS
PRESENTING DATA ON (:0:)');

WRITE_STRING('THE GRAPH. THIS
GRAPH MAY BE PRESENTED (:0:)');

WRITE_STRING('AT EITHER OF TWO
LOCATIONS. THESE LOCATIONS (:0:)');

WRITE_STRING('ARE THE CHROMATICS
COLOR CRT OR THE PLOTTER (:0:)');

WRITE_STRING('DISPLAY DEVICE.
THE TARULAR SOLUTION (:0:)');

WRITE_STRING('IS MERELY A
PRESENTATION OF SOLUTIONS (:0:)');

WRITE _STRING('COMPUTED BY THE
MODEL OR MODELS IN (:0:)');

WRITE STRING('A READABLE FORM,
IF YOU ARE NOT (:0:)');

WRITE_STRING('FAMILIAR WITH THE
EXECUTION OF THIS (:0:)');

WRITE_STRING('PROGRAM, I
RECOMMEND BOTH SOLUTIONS. (:0:)');

WRITE STRING('PRESS THE RETURN
KEY WHEN YOU ARE (:0:)');

WRITE STRING('FINISHED READING
THIS PAGE. (:0:)1%);

FOR I := 1 TO 3 DO DISPLAY(NL);

ACCEPT(DUMMY);

CALL_FOR_HELP := 0;

FOR I := 1 TO 25 DO DISPLAY(NL)

END; "CALL FOR HELP = 4)"

IF(CALL_FOR_HELP = 5)
THEN
BEGIN "CALL FOR HELP = 5"

WRITE _STRING('THE SCALE OF THE
GRAPHICAL SOLUTION IS (:0:)7);

WRITE_STRING('ONLY PARTLY
DETERMINED BY YOU. THE (:0:)');

WRITE _STRING('SCALE OF THE
VERTICAL AXIS, OR THE MEAN (:0:)");

WRITE STRING('TIME TO FAILURE
AXIS, .IS THE VARIABLE (:0:)');

WRITE_STRING('SCALE AXIS AND YOU
MUST ENTER THE SCALE (:0:)1');

WRITE _STRING('WHICH YOU DESIRE
TO SEE PRESENTED., THE (:0:)');

WRITE_STRING("CANDIDATES ARE
DAYS, WEEEKS, OR MONTHS. (:0:)');

WRITE_STRING('SINCE THE MEAN
TIME TO FAILURE IS A (:0:)');

WRITE_STRING('"MEASURE OF TIME,

PROCEDURE HELP PAGE 9

IT IS OBVIOUS THAT THE (:0:)");

WRITE_STRING('SCALE WOULD NEED
TO BE IN TIME, INSURE (:0:)');

WRITE_STRING('THAT THE SCALE YOU
SELECT FOR THIS AXIS (:0:)");

WRITE_STRING('IS COMPATIBLE WITH
THE DATA YOU HAVE (:0:)');

WRITE_STRING('ENTERED FOR YOUR
MODEL OR MODELS. FOR (:0:)');

WRITE_STRING('INSTANCE, . IF YOU
HAVE SELECTED THE (:0:)');

WRITE STRING{ 'SCHICK-WOLVERTON
MODEL AND YOUR TIME (:0:)');

WRITE_STRING('INTERVAL OF ERROR
DISCOVERY IS IN DAYS, (:0:)');

WRITE_STRING('THEN YOUR SCALE
FOR THE MEAN TIME TO (:0:)');

WRITE_STRING('FAILURE AXIS
SHOULD ALSO BE IN DAYS. (:0:)");

WRITE_STRING('IF IT IS NOT, YOU
RUN THE RISK OF BEING (:0:)}');

WRITE_STRING('PRESENTED WITH A
WILDLY SKEWED GRAPH. (:0:)');

WRITE_STRING('PRESS THE RETURN
KEY WHEN YOU ARE (:0:)');

WRITE_STRING('FINISHED READING
THIS PAGE. (:0:)');

ACCEPT(DUMMY);

CALL_FOR_HELP := 03

FOR I := 1 TO 25 DO DISPLAY(NL)

END; "CALL FOR HELP = 5%

IF(CALL _FOR_HELP = 6)
THEN
BEGIN "CALL FOR HELP = 6"

WRITE_STRING('DATA TO BE ENTERED
FOR THE MODELS (:0:)');

WRITE_STRING(' CAN BE DIVIDED OR
CHARACTERIZED INTO (:0:)');

WRITE_STRING('FOUR MAIN
CATEGORIES. THESE ARE (:0:)');

WRITE_STRING('THE TOTAL NUMBER
OF ERRORS ESTIMATED (:0:)');

WRITE_STRING('TO BE PRESENT 1IN
THE SOFTWARE PACKAGE (:0:)');

WRITE_STRING('YOU ARE
CONSIDERING, THE TIME INTERVAL (:0:)");

WRITE_STRING('ASSOCIATED WITH
ERROR DISCOVERIES, THE (:0:)');

WRITE_STRING('NUMBER OF
INTERVALS PRESENT, AND THE (:0:)');

WRITE_STRING('CUMULATIVE NUMBER
OF ERRORS DISCOVERED (:0:)1');

PROCEDURE HELP PAGE 10

WRITE_STRING('TO THE PRESENT
TIME. YOU MUST INSURE (:0:)');

WRITE_STRING('THAT THESE DATA
VALUES ARE POSITIVE (:0:)');

WRITE_STRING('INTEGER VALUES.
IF NOT, YOUR INPUT (:0:)');

WRITE_STRING('WILL BE IDENTIFIED
IN ERROR AND YOU (:0:)");

WRITE_STRING('WILL HAVE TO
RE-ENTER THE DATA. (:0:)');

WRITE_STRING(*PRESS THE RETURN
KEY WHEN YOU ARE (:0:)");

WRITE_STRING('FINISHED READING
THIS PAGE. (:0:)');

FOR I := 1 TO 6 DO DISPLAY(NL);

ACCEPT(DUMMY) ;

FOR I := 1 TO 25 DO
DISPLAY(NL);

WRITE_STRING('THE TWO MODELS OF
THIS PROGRAM WILL (:0:)");

WRITE_STRING('ASSUME THAT THERE
IS ONLY ONE ERROR (:0:)1);

WRITE_STRING('DISCOVERED IN EACH
INTERVAL. THEREFORE, (:0:)}"');

WRITE_STRING('THE CUMULATIVE
ERRORS DISCOVERED IS (:0:)');

WRITE_STRING('EQUAL TO THE TOTAL
NUMBER OF INTERVALS. (:0:)');

WRITE_STRING('ADDITIONALLY, DO
NOT ALLOW THE TOTAL (:0:)');

WRITE_STRING('INTERVALS TO EQUAL
OR EXCEED THE INITIAL (:0:)');

WRITE_STRING('ERRORS. YOU ARE
RESTRICTED TO A MAXIMUM (:0:)');

WRITE_STRING('OF 250 TOTAL
INTERVALS. FINALLY, IF YOU (:0:)');

WRITE_STRING('SELECTED BOTH THE
MODELS FOR SOLUTIONS, (:0:)');

WRITE_STRING('YOU ONLY NEED TO
ENTER THE DATA ONE TIME. (:0:)');

WRITE_STRING('PRESS THE RETURN
KEY WHEN YOU (:0:)");

WRITE_STRING('ARE FINISHED
READING THIS PAGE. (:0:)');

FOR I := 1 TO 9 DO DISPLAY(NL);

ACCEPT (DUMMY) ;

FOR I := 1 TO 25 Do
DISPLAY(NL};

CALL_FOR_HELP:=0

END; "CALL FOR HELP = 6"

IF(CALL_FOR_HELP = 7T)
THEN

PROCEDURE HELP PAGE 11

BEGIN "CALL FOR HELP = 7"

WRITE_STRING('YOU WILL BE
ALLOWED TO DISPLAY A GRAPHICAL (:0:)1');

WRITE_STRING('SOLUTION ANY AT
ONE OF TWO DEVICES., THET (:0:)');

WRITE_STRING('DEVICES ARE THE
CHROMATICS COLOR CRT AND THE (:0:)');

WRITE_STRING('THE PLOTTER.
YOU MUST PERFORM CERTAIN (:0:)');

WRITE_STRING('SYSTEM
CONFIGURATION ACTIONS PRIOR TO USING (:0:)');

WRITE_STRING(' THESE DEVICES
HOWEVER. IF YOU HAVE NOT DONE (:0:)');

WRITE_STRING('THIS YET, YOU
CANNOT USE THESE OPTIONS. SEE (:0:)');

WRITE _STRING('THE USERS MANUAL
FOR A DESCRIPTION OF ACTIONS(:0:)");

WRITE_STRING('NECESSARY TO
CONFIGURE THE SYSTEM TO ENABLE (:0:)');

WRITE_STRING('THE INTERDATA TO
COMMUNICATE WITH THESE OTHER(:0:)1');

WRITE_STRING('DEVICES. PRESS
THE RETURN KEY WHEN YOU ARE (:0:)");

WRITE_STRING('FINISHED READING
THIS PAGE. (§0:)1);

FOR I := 1 TO 10 DO
DISPLAY(NL);

ACCEPT (DUMMY) ;

FOR I := 1 TO 25 DO
DISPLAY(HNL);

CALL_FOR_HELP := 0

END "CALL FOR HELP = 7"

END; "PROCEDURE HELP*®

PROCEDURE SQUARE ROOT PAGE 1

PROCEDURE SQUARE_ROOT(VALUE : REAL);

NEE R E NN SRR NN R D E R NN RN AN AR ERERR SRS
ne
#n
n"# THIS PROCEDURE CALCULATES THE SQUARE
ROOT OF A #n
"# NUMBER AND RETURNS IT TO THE CALLING
PROCEDURE IN #v
"# A VARIABLE NAMED ANSWER. THE
PROCEDURE IS INVOKED#%
"%# FROM EITHER OF THE TWO RELIABILITY
MODEL COMPUTAT-#"%
ng ION PROCEDURES.
#n
nE
En
NSRS IR UGN N E NN R RN NN IR O RN SRR EEEEN

CONST
DELTA
EPSILON

0.001;
0.001;

VAR
ROOT : REAL;

BEGIN "PROCEDURE SQUARE_ROOT™
ROOT t= 0.0;
ANSWER := 0.0;
IF(VALUE < DELTA)
THEN
ANSWER := 0.0
ELSE
BEGIN
ROOT := 1.0;
REPEAT
ROOT 1= (VALUE/ROOT +
ROQT)/2.0
UNTIL ABS(VALUE/(ROOT # ROOT) =
1.0) < EPSILON;
ANSWER := ROOT
END
END; "PROCEDURE SQUARE_ROOT"®

PROCEDURE COLLECT GRAPH INFORMATION PAGE 1

PROCEDURE
COLLECT_GRAPH_INFORMATION(S_W_SELECTED, J_M_SELECTED, ALL_SELE
: BOOLEAN);

NER RS S AR RSN NE RO RS E RSN R RN
n#
&n

"# THIS PROCEDURE GATHERS THE NECESSARY
INFORMATION FROM THE®##

"&# USER TO DETERMINE WHICH DISPLAY
DEVICE HE/SHE WISHES THE #»

"# GRAPHICAL SOLUTION TO BE PRESENTED.
THE PROCEDURE IS &n

"# INVOKED FROM BOTH OF THE PROMPTING

PROCEDURES. En
n

#n
NEEEERNEER N RS R R E R F AN NN AN R R RN E NI R RN RS

CONST
CHROMATICS = 'C';
SPINWRITER = 15';
FLOTTER = 'PA;
CHROM_AND_SPIN = 1X';
CHROM_AND_PLQT = 'B';
SPIN_AND_PLOT = 1Z°';
ALL_THREE = Al
NEED_HELP = VH';
BLANK = v
VAR
MESSAGE_IN : CHAR;
DUMMY : CHAR;
HELP_ FLAG : INTEGER;
I : INTEGER;
SUCCESSFUL_INPUT : BOOLEAN;
BEGIN "PROCEDURE COLLECT GRAPH
INFORMATION®™
MESSAGE_IN := BLANK;
DUMMY := BLANK;
HELP_FLAG t= 03
I 1= 03
SUCCESSFUL_INPUT := FALSE;

FOR I := 1 TO 25 DO DISPLAY(NL);

WRITE_STRING('YOU MAY SELECT EITHER
OF TWO DISPLAY DEVICES (:0:)");

WRITE_STRING('TO DEPICT YOUR
GRAPHICAL SOLUTION ON. THESE ARE(:0:)');

WRITE_STRING('THE CHROMATICS COLOR
CRT AND THE PLOTTER DEVICE.(:0:)');

PROCEDURE COLLECT GRAPH INFORMATION PAGE 2

WRITE_STRING('TO SELECT THE
CHROMATICS COLOR CRT DEVICE, .YOU (:0:)');

WRITE STRING('MUST ENTER C. TO
SELECT THE PLOTTER, ENTER P.(:0:)");

WRITE_STRING('TO INVOKE THE HELP
PROCEDURE, ENTER AN H. (o))

FOR I := 1 TO 15 DO DISPLAY(NL);

SUCCESSFUL_INPUT := FALSE;

WHILE(NOT SUCCESSFUL_INPUT)DO

BEGIN "WHILE"
WRITE_STRING('PLEASE ENTER YOUR

CHOICE NOW. (:0:)');

ACCEPT (MESSAGE_IN);

ACCEPT (DUMMY) ;

CASE MESSAGE IN OF
CHROMATICS : BEGIN
SUCCESSFUL_INPUT

IF(S_W_SELECTED)
THEN
DESTINATION

IF(J_M_SELECTED)
THEN
DESTINATION

IF(ALL_SELECTED)
THEN
DESTINATION

END;
SPINWRITER : BEGIN
SUCCESSFUL_INPUT

IF(S_W_SELECTED)
THEN
DESTINATION

IF(J_M_SELECTED)
THEN
DESTINATION

IF(ALL_SELECTED)
THEN
DESTINATION

END;
PLOTTER : BEGIN
SUCCESSFUL_INPUT

IF(S_W_SELECTED)
THEN
DESTINATION

PROCEDURE COLLECT GRAPH INFORMATION

TRUE;

10;

113

12

TRUE;

14;

TRUE;

175

CHROM_AND_pLOT

CHROM_AND SPIN

SPIN_AND_PLOT

PAGE 3

IF(J_M_SELECTED)
THEN
DESTINATION

IF(ALL_SELECTED)
THEN
DESTINATION

END;
: BEGIN
SUCCESSFUL_INFPUT

IF(S_W_SELECTED)
THEN
DESTINATION

IF(J_M_SELECTED)
THEN
DESTINATION

IF(ALI_SELECTED)
THEN
DESTINATION

END;
: BEGIN
SUCCESSFUL_INPUT

IF(S_W_SELECTED)
THEN
DESTINATION

IF(J_M_SELECTED)
THEN
DESTINATION

IF(ALL_SELECTED)
THEN
DESTINATION

END;
: BEGIN
SUCCESSFUL_INPUT

IF(S_W_SELECTED)
THEN
DESTINATION

IF(J_M_SELECTED)
THEN
DESTINATION

IF(ALL_SELECTED)
THEN

PROCEDURE COLLECT GRAPH INFORMATION PAGE 4

DESTINATION
:= 18
END;
ALL_THREE : BEGIN
SUCCESSFUL_INPUT
:= TRUE;
IF(S_W_SELECTED)
THEN
DESTINATION
1= 195
IF(J_M SELECTED)
THEN
DESTINATION
1= 203
IF(ALL_SELECTED)
THEN
DESTINATION
sz 21
END;
NEED_HELP : BEGIN
SUCCESSFUL_INPUT
:= FALSE;
HELP_FLAG
H
HELP(HELP_FLAG)
END;
ELSE : BEGIN
SUCCESSFUL_INPUT
:= FALSE;

WRITE_STRING(' ERROR
IN YOUR INPUT.(:0:)")
END
END "CASE OF MESSAGE IN®
END; "WHILE"

FOR I := 1 TO 25 DO DISPLAY(NL);

WRITE_STRING('AT THIS TIME PRESS THE
BREAK KEY AND(:0:)');

WRITE_STRING('ENTER THE WORD PROMPT.
THIS STEP IS(:0:)');

WRITE STRING('NECESSARY TO AVOID
SKEWING THE SCALES(:0:)");

WRITE_STRING('OF THE GRAPH ON THE
DEVICES SELECTED. (:0:)');

WRITE_STRING('WHEN YOU TAKE THE
ACTION, YOU WILL (:0:)');

WRITE_STRING('NO LONGER RECEIVE THE
PROMPT SYMBOL (:0:)');

WRITE_STRING('ON THE CRT FACE. LOOK
FOR THE CURSOR(:0:)');

WRITE_STRING('TO BLINK WHEN THE
PROGRAM IS WAITING(:0:)');

WRITE_STRING('FOR INPUT FROM YOU.
THIS SHOULD NOT(:0:)');

WRITE_STRING('PRESENT A BIG PROBLEM

PROCEDURE COLLECT GRAPH INFORMATION PAGE 5

AS THE ONLY (:0:)1');

WRITE_STRING('TIME YOU NEED TO INPUT
AN ACTION WITH(:0:)');

WRITE_STRING('THE PROMPT OFF IS AFTER
THE GRAPH IS(:0:)");

WRITE_STRING('DRAWN AND THE PROGRAM
HAS HALTED. AT(:0:)');

WRITE_STRING('THAT TIME, REENTER THE
WORD PROMPT.(:0:)');

WRITE_STRING('IF YOU HAVE SELECTED
THE PLOTTER, INSURE(:0:)');

WRITE _STRING('THAT DEVICE PA42: IS
NOT ASSIGNED TO(:0:)');

WRITE_STRING('THE INTERDATA. IF YOU
DO NOT KNOW(:0:)');

WRITE_STRING('HOW TO CHECK, . CONSULT
WITH AN OPERATOR.(:0:)');

WRITE_STRING('PRESS THE RETURN KEY
WHEN YOU HAVE (:0:)');

WRITE_STRING('COMPLETED THESE
ACTIONS. (:0:)1);

FOR I := 1 TO 2 DO DISPLAY(NL);

ACCEPT (DUMMY)

END; "PROCEDURE COLLECT GRAPH

INFORMATION"

PROCEDURE LOAD S-W GRAPH DATA PAGE 1

PROCEDURE LOAD_S_W_GRAPH_DATA(SCALE_SELECTED
: INTEGER);

NERNGERERENNRENRRCNEEERNNARERANERER SRR REITRNERER RN RERERER

ng
En

"# THIS PROCEDURE LOADS THE COORDINATE
RECORD INSTANCE o

"# WITH THE DATA NECESSARY TO PLOT THE
GRAPH ON EITHER OF &7

"&# THE DISPLAY DEVICES. IT IS CALLED FROM
EITHER OF THE #&»

"# TWO PROMPTING PROCEDURES. IT*'S
FUNCTIONING IS EXACTLY #v

"# LIKE THE LOAD_J_M_GRAPH_DATA PROCEDURE, .
EXCEPT THAT IT #n

"# IS FOR THE SCHICK-WOLVERTON MODEL.
an

ni
&n
NER NN N SRR R RN RN RS SR NN SRR NN TR R NN RN RN R RN RN

CONST
CHROMATICS_ORIGIN = 100;
CHROMATICS_PIXELS_PER_UNIT = 30;
PLOTTER_ORIGIN = 800;
PLOTTER_PIXELS PER_UNIT = 200;

VAR
TEMP ¢ REAL;
J : INTEGER;

BEGIN "PROCEDURE LOAD SCHICK-WOLVERTON
GRAPH DATA"
FOR J := 1 TO ERRORS_DISCOVERED DO
BEGIN "FOR LOOP"

"LOAD RELIABILITY FOR CHROMATICS
GRAPH"

TEMP
CONV(CHROM_DATA.S W_PLOT(.J,1.));
TEMP := TEMP / 10.0;
TEMP v TEMP
CONV(CHROMATICS_PIXELS PER_UNIT)
CONV(CHROMATICS_ORIGIN);
CHROM_DATA.S W_PLOT(.J,1.) r=
ROUND(TEMP) ;

+ =

"LOAD MEAN TIME TO FAILURE FOR
CHROMATICS GRAPH"

PROCEDURE LOAD S-W GRAPH DATA PAGE 2

CHROM_DATA.S_W_PLOT(.J,2.) :
CHROM_DATA, S W_PLOT(.J,2.)
(CHROMATICS_PIXELS_PER_UNIT DIV 2)
CHROMATICS_ORIGIN;

IF(CHROM_DATA.S W_PLOT(.J,2.) >

+ ®m

4o0)
THEN
CHROM_DATA. S_W_PLOT(.J,2.) :=
450;
"LOAD RELIABILITY FOR PLOTTER
GRAPH"

TEMP
CONV(PLOT DATA.S W_PLOT(.J,1.));

TEMP := TEMP / 10.0;

TEMP i= TEMP
CONV(PLOTTER_PIXELS PER_UNIT)
CONV(PLOTTER_ORIGIN);

PLOT_DATA.S W_PLOT(.Jd,1.)
ROUND(TEMP) ;

+ =

(1]

"LOAD MEAN TIME TO FAILURE FOR
PLOTTER GRAPH"

PLOT_DATA.S_W_PLOT(.J,2.) :

PLOT_DATA. S_W_PLOT(.J,2.) #
PLOTTER_PIXELS_ PER_UNIT DIV y i
PLOTTER_ORIGIN;

IF(PLOT_DATA.S_W_PLOT(.J,2.) >
1900)

THEN

PLOT_DATA.S_W_PLOT(.J,2.) :=

1900

END; "FOR LOOP"

CHROM_DATA, NUMBER_OF_ERRORS_OBSERVED :
ERRORS_DISCOVERED;

PLOT_DATA. NUMBER_OF_ERRORS_OBSERVED :
ERRORS_DISCOVERED;

CHROM_DATA. SCALE_DESIRED :
SCALE_SELECTED;

PLOT_DATA, SCALE_DESIRED :
SCALE_SELECTED;

CHROM_DATA.COMBINATION_SELECTED :
DESTINATION;

PLOT_DATA, COMBINATION_SELECTED 5=
DESTINATION

END; "PROCEDURE LOAD SCHICK-WOLVERTON

GRAPH DATA"

n

PROCEDURE LOAD J-M GRAPH DATA PAGE 1

PROCEDURE LOAD_J_M_GRAPH_DATA(SCALE_ SELECTED
: INTEGER);

NN N RN RN RSN RSN R RN RSN RN RN R RN R
ng
&n

"# THIS PROCEDURE FUNCTIONS EXACTLY THE
SAME WAY AND HAS #n

"®# THE SAME OVERALL PURPOSE AS THE
LOAD_S_W_GRAPH_DATA #n

"%# PROCEDURE, EXCEPT IT IS FOR THE
JELINSKI-MORANDA #n

nE MODEL.
&#n

n#
&n

MR R R SRR RN RN RN NN NN R RN R AR

CONST
CHROMATICS_ORIGIN = 100;
CHROMATICS_PIXELS_PER_UNIT = 30;
PLOTTER_ORIGIN = 800;
PLOTTER_PIXELS_PER_UNIT = 200;

VAR
TEMP : REAL;
J : INTEGER;

BEGIN "PROCEDURE LOAD JELINSKI-MORANDA
GRAPH DATA"
FOR J := 1 TO ERRORS_DISCOVERED DO
BEGIN "FOR LOOP™

"LOAD RELIABILITY FOR CHROMATICS
GRAPH"

TEMP i=
CONV(CHROM_DATA.J_M_PLOT(.Jd,1.));

TEMP := TEMP / 10.0;

TEMP 3= TEMP
CONV(CHROMATICS_PIXELS_PER_UNIT)
CONV(CHROMATICS_ORIGIN);

CHROM_DATA.J_M PLOT(.Jd,1.) 3

+ =

n

ROUND(TEMP) ;

"LOAD MEAN TIME TO FAILURE FOR
CHROMATICS GRAPH"

+ @

CHROM_DATA. J_M_PLOT(.Jd,2.)
CHROM_DATA.J_M_PLOT(.J,2.)
(CHROMATICS_PIXELS_PER_UNIT DIV 2)
CHROMATICS_ORIGIN;

IF(CHROM_DATA.J_M_PLOT(.J,2.) >
hnny

PROCEDURE LOAD J-M GRAPH DATA PAGE 2

THEN
CHROM_DATA.J_M_PLOT(.J,2.) :=

450;

"LOAD RELIABILITY FOR PLOTTER
GRAPH"

TEMP
CONV(PLOT_DATA.J_M_PLOT(.J,1.));
TEMP := TEMP / 10.0;

TEMP 1= TEMP &
CONV(PLOTTER_PIXELS_PER_UNIT) +
CONV (PLOTTER_ORIGIN) ;

PLOT_DATA.J_M_PLOT(.Jd,1.) HE

ROUND(TEMP) ;

"LOAD MEAN TIME TO FAILURE FOR
PLOTTER GRAPH"

PLOT_DATA.J_M_PLOT(.J,2.)

PLOT_DATA.J_M_PLOT(.J,2.) "
PLOTTER_PIXELS_PER_UNIT DIV y +
PLOTTER_ORIGIN;

IF(PLOT_DATA.J_M_PLOT(.J,2.) >
1900)

THEN
PLOT_DATA.J_M_PLOT(.J,2.) i=

1900

END; "FOR LOOP"

CHROM_DATA, NUMBER_OF_ERRORS_OBSERVED :
ERRORS_DISCOVERED;

PLOT_DATA. NUMBER_OF_ERRORS_OBSERVED :
ERRORS_DISCOVERED;

CHROM_DATA. SCALE_DESIRED :
SCALE_SELECTED;

PLOT_DATA. SCALE_DESIRED :
SCALE_SELECTED;

CHROM_DATA.COMBINATION_SELECTED
DESTINATION;

PLOT_DATA.COMBINATION_SELECTED i=
DESTINATION

END; "PROCEDURE LOAD JELINSKI-MORANDA

GRAPH DATA"

PROCEDURE DRAW GRAPH PAGE 1

PROCEDURE DRAW_GRAPH;

NESRSR SRR RSN AR R RSN R R AR RN RN RN RN
na
&#n
ne THIS PROCEDURE CONTROLS THE
COORDINATION OF THE EXTERNAL#"
"% PROGRAMS USED IN DRAWING GRAPHS AT THE
DISPLAY DEVICES, #¢
"# CONTROL IS EXERCISED USING THE VARIABLE
DESTINATION AS #&n

"# THE END POINT FOR THE GRAPH,
sn

n§
#®n

"% CODE IS PRESENT TO ALLOW THE SPIN
WRITER DEVICE TO BE &n

"# INVOKED AT A LATER TIME, WHEN THE
PROGRAM IS MODIFIED TQ #n

"# DRAW GRAPHS oN THE DEVICE.
#n

BEGIN "PROCEDURE DRAW GRAPH"
CASE DESTINATION OF

152435 CHROFIX(CHROM_DATA);

4,5,6: SPINFIX(SPIN_DATA);

7,8,9: PLOTFIX(PLOT_DATA);

10,11,12: BEGIN
CHROFIX(CHROM_DATA);
PLOTFIX(PLOT_DATA)

END;

13,14,15: BEGIN
CHROFIX(CHROM_DATA);
SPINFIX(SPIN_DATA)

END;

16,17,18: BEGIN
SPINFIX(SPIN_DATA);
PLOTFIX(PLOT_DATA)

END;

19,20,21: BEGIN
CHROFIX(CHROM DATA});
PLOTFIX(PLOT_DATA);
SPINFIX(SPIN_DATA)

END
END "CASE OF DESTINATION™
END; "PROCEDURE DRAW GRAPH"

PROCEDURE LOAD TABULAR DISPLAY S-W PAGE 1

PROCEDURE LOAD_TABULAR_DISPLAY_ S W;

NSRRI RSN AR NSRRI N
ni
#n
"# THIS PROCEDURE PERFORMS THE LOADING OF
THE DATA COM-#"
"# PUTED BY THE SCHICK-WOLVERTON MODEL
FOR DISPLAY ON &v
"# THE TABULAR SOLUTION. VARIABLE VALUES
ARE CONVERTED®"
"# FROM REAL VALUES TO INTEGER VALUES FOR
DISPLAY ON &n
" THIS SOLUTION FORM.
&0
"
&n
N RN F R E RN RN ENARR AR R AN

BEGIN "LOAD TABULAR DISPLAY FOR S_W
MODEL™
TAB_S W_RELIABILITY i=
ROUND(S_W_RELIABILITY # 100.0);
TAB_S W_MITF := ROUND(S_W_MITF);

TAB_S_W_STD =
ROUND(S_W_STANDARD DEVIATION);

TAB_S W_PHI := ROUND(S_W_PHI 8
10000.0) ;

TAB_S W_TIME_TO_FIND_ ALL_ERRORS
ROUND(S_W_TIME_TO_FIND ALL_ ERRORS)
END; "LOAD TABULAR DISPLAY FOR S_W

MODEL™"

PROCEDURE LOAD TABULAR DISPLAY J=M PAGE 1

PROCEDURE LOAD_TABULAR_DISPLAY_J_M;

NN R R AN RN RN RN R RN RN RN
ng
&n
"% THIS PROCEDURE PERFORMS THE SAME
FUNCTION AND IN THE &0
"# SAME MANNER AS THE LOAD TABULAR
DISPLAY S_W PROCEDURE, #n
"# EXCEPT THAT IS OBVIOUSLY FOR THE DATA

OF THE JELINSKI- #"
" MORANDA MODEL.
1
ne
un
NN NN RN RN RN RN R AR RN RS

BEGIN "LOAD TABULAR DISPLAY FOR J_M
MODEL™
_ TAB_J_M_RELIABILITY
ROUND(J_M_RELIABILITY # 100.0);
TAB_J_M_MTTF := ROUND(J_M_MTTF);
TAB_J_M_STD 1=
ROUND(J_M_STANDARD_DEVIATION);
TAB_J_M _pHI := ROUND(J_M_PHI
10000.0) ;
TAB_J_M TIME_TO_FIND_ALL_ERRORS
ROUND(J_M_TIME_TO_FIND_ALL_ERRORS)
END; "LOAD TABULAR DISPLAY FOR J M

.
]

MODEL"

PROCEDURE PRINT TABULAR DISPLAY PAGE 1

PROCEDURE
PRINT_TABULAR_DISPLAY(S W_SELECTED, J_M_SELECTED, ALL_SELECTED
: BOOLEAN);

MRS SN N R SRR RS R AN R RN NN AR REE
n
#n
m# THIS PROCEDURE PRINTS THE FRAME WORK OF
THE TABULAR FORM #»
"# OF SOLUTION AND THEN PRINTS THE DATA
LOADED BY EACH OF THE #"
"# RESPECTIVE LOAD TABULAR DISPLAY
PROCEDURES FOR THEIR RE- #n
na SPECTIVE MODELS.
&n
i
E&n
NEERERER SRR RGNS NN N E RN NN RN R RO E RN RN RS

VAR
I : INTEGER;
DUMMY : CHAR;

BEGIN "PROCEDURE PRINT THE TABULAR
SOLUTION"
FOR I := 1 TO 25 DO
DISPLAY(NL);

IF(S_W_SELECTED)
THEN
BEGIN
WRITE_TABULAR_SOLUTION(' TABULAR
SOLUTION (:0:)");
DISPLAY(NL);
DISPLAY(NL);
DISPLAY(NL);
WRITE_TABULAR_SOLUTION(*SCHICK-WOLVERTON
DATA IS AS FOLLOWS. (:0:)');
DISPLAY(NL);
DISPLAY(NL);
IF(TAB_S W_RELIABILITY < 10)
THEN
WRITE_TABULAR_SOLUTION('RELIABILITY
IS 0.0(:0:)1)
ELSE
WRITE_TABULAR_SOLUTION('RELIABILITY
IS 0.(:0:));
WRITE_INTEGER(TAB_S W_RELIABILITY);
WRITE TABULAR_SOLUTION('STANDARD
DEVIATION IS (:0:)');
WRITE_INTEGER(TAB_S W_STD);

PROCEDURE PRINT TABULAR DISPLAY PAGE 2

IF(TAB_S_W_PHI < 10)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTINALITY IS 0.000(:0:)');
IF((TAB_S W_PHI >= 10) AND
(TAB_S_W_PHI < 100))
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
QOF PROPORTIONALITY IS 0.00(:0:)');
IF((TAB_S_W_pHI >= 100) AND
(TAB_S_W_PHI < 1000))
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.0(:0:)');
IF(TAB_S _W_PHI >= 1000)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.(:0:)');
WRITE_INTEGER(TAB_S W_PHI);
WRITE_TABULAR_SOLUTION('MEAN TIME
TO FAILURE IS (:0:)");
WRITE_INTEGER(TAB_S_W_MTTF);
WRITE_TABULAR_SOLUTION('TIME TO
DISCOVER ALL ERRORS IS (:0:)');
WRITE INTEGER(TAB_S W_TIME_TO_FIND_ALL ERRORS);

FOR I :=1 TO 8 DO DISPLAY(MNL)
END;

IF(J_M_SELECTED)
THEN
BEGIN
WRITE_TABULAR_SOLUTION('TABULAR
SOLUTION (:0:)1');
DISPLAY(NL);
DISPLAY(NL);
DISPLAY(NL);
WRITE_TABULAR_SOLUTION('JELINSKI-MORANDA
DATA IS AS FOLLOWS. (:0:)');
DISPLAY(NL);
DISPLAY(NL);
IF(TAB_J_M RELIABILITY < 10)
THEN
WRITE_TABULAR_SOLUTION('RELIABILITY
IS 0.0(:0:)")
ELSE
WRITE_TABULAR_SOLUTION(*RELIABILITY
IS 0.(:0:)");
WRITE_INTEGER(TAB_J_M_RELIABILITY);
WRITE_TABULAR_SOLUTION(' STANDARD
DEVIATION IS (:0:)");
WRITE INTEGER(TAB_J_M_STD);
IF(TAB_J_M_PHI < 10)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT

PROCEDURE PRINT TABULAR DISPLAY PAGE 3

OF PROPORTIONALITY IS 0.000(:0:)');
IF((TAB_J_M_PHI »>= 10) AND
(TAB_J_M_PHI < 100))
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.00(:0:)');
IF((TAB_J_M_PHI >= 100) AND
(TAB_J_M_PHI < 1000))
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.0(:0:)");
IF(TAB_J_M PHI >= 1000)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.(:0:)");
WRITE_INTEGER(TAB_J_M_PHI);
WRITE_TABULAR_SOLUTION('MEAN TIME
TO FAILURE IS (:0:)");
WRITE _INTEGER(TAB_J_M_MITF);
WRITE TABULAR_SOLUTION('TIME TO
DISCOVER ALL ERRORS IS (:0:)');
WRITE INTEGER(TAB_J_M TIME_TO_FIND_ALL_ERRORS);
FOR I := 1 TO 8 DO DISPLAY(NL)
END;

IF(ALL_SELECTED)
THEN
BEGIN
WRITE_TABULAR_SOLUTION('TABULAR
SOLUTION (:0:)');
DISPLAY(NL);
DISPLAY(NL);
DISPLAY(NL);
WRITE_TABULAR_SOLUTION('SCHICK=WOLVERTON
DATA IS AS FOLLOWS. (:0:)");
DISPLAY(NL);
DISPLAY(NL);
IF(TAB_S_W_RELIABILITY < 10)
THEN
WRITE_TABULAR_SOLUTION('RELIABILITY
IS 0.0(:0:)")
ELSE
WRITE_TABULAR_SOLUTION('RELIABILITY
IS 0.(:0:)%);
WRITE_INTEGER(TAB_S W_RELIABILITY);
WRITE_TABULAR_SOLUTION(' STANDARD
DEVIATION IS (:0:)');
WRITE_INTEGER(TAB_S W_STD);
IF(TAB_S W_PHI < 10)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.000(:0:)");
IF((TAB_S W_PHI »>= 10) AND

(TAB_S_W_PHI < 100))

PROCEDURE PRINT TABULAR DISPLAY PAGE 4

THEN
WRITE TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.00(:0:)');
IF((TAB_S_W_PHI >= 100) AND
(TAB_S_W_PHI < 1000))
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.0(:0:)");
IF(TAB_S_W_PHI >= 1000)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.(:0:)");
WRITE INTEGER(TAB_S_W_PHI);
WRITE_TABULAR_SOLUTION('MEAN TIME
TO FAILURE IS (:0:)");
WRITE_INTEGER(TAB_S_ W_MITF);
WRITE_TABULAR_SOLUTION('TIME TO
DISCOVER ALL ERRORS IS (:0:)');
WRITE_INTEGER(TAB_S_W_TIME_TO_FIND_ALL_ERRORS);
DISPLAY(NL);
DISPLAY(NL);
WRITE _TABULAR_SOLUTION(! JELINSKI-MORANDA
DATA IS AS FOLLOWS. (:0:)');
DISPLAY(NL);
DISPLAY(NL);
IF(TAB_J_M RELIABILITY < 10)
THEN
WRITE_TABULAR_SOLUTION('RELIABILITY
IS 0.0(:0:)")
ELSE
WRITE_TABULAR_SOLUTION('RELIABILITY
IS 0.(:0:)");
WRITE INTEGER(TAB_J M_RELIABILITY);
WRITE_TABULAR_SOLUTION('STANDARD
DEVIATION IS (:0:)');
WRITE_INTEGER(TAB_J_M_STD);
IF(TAB_J_M PHI < 10)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.000(:0:)");
IF((TAB_J_M _PHI »>= 10) AND
(TAB_J_M_PHI < 100))
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.00(:0:)');
IF((TAB_J_M_PHI >= 100) AND
(TAB_J_M_PHI < 1000))
THEN
WRITE_TABULAR_ SOLUTION(*CONSTANT
OF PROPORTIONALITY IS 0.0(:0:)');
IF(TAB_J_M PHI >= 1000)
THEN
WRITE_TABULAR_SOLUTION('CONSTANT
OF PROPORTIONALITY IS 0.(:0:)');

PROCEDURE PRINT TABULAR DISPLAY PAGE 5

WRITE_INTEGER(TAB_J_M_PHI);
WRITE_TABULAR_SOLUTION('MEAN TIME
TO FAILURE IS (:0:)");
WRITE_INTEGER(TAB_J_M_MTTF);
WRITE_TABULAR_SOLUTION('TIME_TO_DISCOVER_ALL_ERR
IS (:0:)');
WRITE_INTEGER(TAB_J_M_TIME_TO_ FIND_ALL_ERRORS)
END;

DISPLAY(NL);

DISPLAY(NL):

WRITE_TABULAR_SOLUTION('PRESS THE RETURN
KEY WHEN YOU ARE (:0:)');

WRITE_TABULAR_SOLUTION('FINISHED READING
THIS PAGE.(:0:)");

DISPLAY(NL);

ACCEPT (DUMMY)

END; "PROCEDURE PRINT THE TABULAR

SOLUTION"

PROCEDURE COMPUTE JELINSKI-MORANDA PAGE 1

PROCEDURE COMPUTE_JELINSKI_MORANDA;

NEREEEREC SSRGS R NN ENERNE NN R ES NN IR NSRS NNEERS

ni
&n

"# THIS PROCEDURE PERFORMS ALL THE
COMPUTATIONS ASSOCIATED#"

"®# WITH THE JELINSKI-MORANDA SOFTIWARE
RELIABILITY MODEL. &7

"# COMPUTATIONS PERFOMED ARE THE SOFTWARE
RELIABILITY, .THE#"

"# MEAN TIME TO FAILURE, THE CALCULATION OF
THE CONSTANT #n

"# OF PROPORTIONALITY, . THE CALCULATION OF
THE STANDARD &n

ni DEVIATION ASSOCIATED WITH THE
RELIABILITY FUNCTION, AND#n

n# THE ESTIMATED TIME TO DISCOVER ALL
ERRORS WITHIN THE &n

"# SOFTWARE PACKAGE BEING EXAMINED, THIS
PROCEDURE IS &n

"# INVOKED FROM EITHER OF THE TWO PROMPTING

PROCEDURES. Lo
ng

#n
NSRS RN SRR SE N EE R EH RS EGN RN NSRS N RS

VAR
PHI_SUB_1 :
REAL;

PHI_SUB_2
REAL;
VALUE

REAL;
SUM_OF_INTERVALS
ARRAY(.1..MAX_ALLOWED.) OF INTEGER;
I
INTEGER;

BEGIN "PROCEDURE
COMPUTE_JELINSKI MORANDA™
J_M_TIME_TO_FIND_ ALL_ERRORS 5=
0.0;

J_M_STANDARD_DEVIATION :
0.0;
J_M_PHI

0.0;

PHI_SUB_1

(1]

0.0;
PHI_SUB 2

0.0;

PROCEDURE COMPUTE JELINSKI-MORANDA PAGE 2

VALUE 1=
0.0;

ANSWER t=
0.0;

J_M_RELIABILITY t=
0.0;

J_M_MTTF t=
0.0;

I 1= 0;

FOR I := 1 TO MAX ALLOWED DO

SUM_OF_INTERVALS(.I.) :t= 0

SUM_OF_INTERVALS(.1.)
J_M DATA_1(.1.);
FOR I := 2 TO ERRORS_DISCOVERED DO
SUM_OF_INTERVALS(.I.)
SUM_OF_INTERVALS(.I=1.) + J_M DATA_1(.I.);
FOR I := 1 TO ERRORS_DISCOVERED DO
BEGIN "FOR LOOP"
PHI_SUB_1 := CONV(INITIAL_ERRORS #
SUM_OF_INTERVALS(.I.))
PHI_SUB_2:
® J_M_DATA_1(.I.));
J_M PHI := CONV(I)/(PHI_SUB_1 -
PHI_SUB_?);

;PHI_SUB _2 + CONV((I-1)

J_M_MTTF := 1.0/(J_M_PHI @
CONV(INITIAL ERRORS - I));
CHROM _DATA.J_M_PLOT(.I,2.)
ROUND(J_M_MTTF);
PLOT_DATA.J_M_PLOT(.I,2.)
ROUND(J_M_MTTF);
SPIN_DATA.J_M_PLOT(.I,2.)
ROUND(J_M_MTTF);
VALUE 1= -J_M_PHI
CONV((INITIAL_ERRORS- I) ® J_M DATA 1(.I.));
J_M_RELIABILITY := DEXP(VALUE);
CHROM_DATA.J_M_PLOT(.I,1.) 1=
ROUND(J_M_RELIABILITY # 100.0);
PLOT_DATA.J_M_PLOT(.I,1.) t=
ROUND(J_M_RELIABILITY # 100.0);
SPIN_DATA.J_M_PLOT(.I,1.) 1=
ROUND(J_M_RELIABILITY ¥ 100.0);
END; "FOR LOOP™
VALUE := 0.0;
FOR I := 1 TO (INITIAL_ERRORS =~
ERRORS_DISCOVERED) DO
BEGIN "FOR LOOP"
J_M_TIME_TO_FIND_ALL_ERRORS 1=
(J_M_TIME_TO_FIND_ALL_ERRORS + (1.0/CONV(I)));
VALUE := VALUE + 1.0/CONV(I # I)
END; "FOR LOOP"
J_M_TIME TO_FIND_ALL_ERRORS 1=
J_M_TIME_TO FIND_ALL_ERRORS/J_M_PHI;
IF((VALUE <= 1.1) AND (VALUE >= 0.9))
THEN

PROCEDURE COMPUTE JELINSKI-MORANDA PAGE 3

ANSWER := 1.0

ELSE
SQUARE,_ROOT(VALUE) ;
J_M_STANDARD_DEVIATION iz
ANSWER/ J_M_PHI
END; "PROCEDURE

COMPUTE_JELINSKI_MORANDA"

PROCEDURE COMPUTE SCHICK-WOLVERTON PAGE 1

PROCEDURE COMPUTE_SCHICK_WOLVERTON;

NSRRI R R SR NN NN R NN R RN N RN ERENE N

ni
&n

"# THIS PROCEDURE PERFORMS THE SAME
FUNCTION AS THE PRIOR #&v

"# PROCEDURE, . EXCEPT OF COURSE FOR THE
SCHICK-WOLVERTON &n

"# SOFTWARE RELIABILITY MODEL AND NOT THE
JELINSKI- &n

"# MORANDA MODEL. ALTHOUGH THE BASIS OF
THE COMPUTATIONS #n

"# BETWEEN THE TWO MODELS IS DIFFERENT,
THE VARIQOUS FORMS &n

"# QF ANSWERS BEING SUPPLIED BY THIS MODEL

ARE THE SAME, #v
nE

&n
NSRRI N IR RS S NN EF R A NN R NN R NN SR E RN RN EE RS

CONST
PIE -
3.14159265359;

VAR
PHI_SUB_1 :
REAL;

PHI_SUB_ 2
REAL;

PHI_SUB_3
VALUE

REAL;

REAL;
SUM_OF_INTERVALS
INTEGER;
I
INTEGER;

BEGIN "PROCEDURE
COMPUTE_SCHICK_WOLVERTON"™
S_W_TIME TO FIND ALL_ERRORS t=
0.0;
S_W_STANDARD_DEVIATION =

0.0;

S_W_PHI :
0.0;
PHI_SUB_1

0.0;

PHI_SUB_2 :

PROCEDURE COMPUTE SCHICK-WOLVERTON PAGE 2

0.0;

PHI_SUB_3 oz
0.0;

VALUE :=
0.0;

S_W_RELIABILITY t=
0.0;

S_W_MTTF 1=
0.0;

ANSWER 1=
0.0;

SUM_OF_INTERVALS :
I :
FOR I := 1 TO ERRORS_DISCOVERED DO
BEGIN "FOR LOOP™
PHI_SUB_1 = PHI_SUB_1 +

2.0/CONV(INITIAL_ERRORS - (I-1));

PHI_SUB_? 1= PHI_SUB_2 +
CONV(S_W_DATA_1(.I.)®S_W DATA 1(.I.));

PHI_SUB_3 := 1.0/PHI_SUB_2;

S_W_PHI := PHI_SUB 1 * PHI_SUB_3;

VALUE := -S_W_PHI &
CONV((INITIAL_ERRORS - (I=1)) &
S_W_DATA_1(.I.) # S W_DATA_1(.I.)) / 2.0;

S_W_RELIABILITY := DEXP(VALUE);

CHROM_DATA.S_W_PLOT(.I,1.)
ROUND(S_W_RELIABILITY # 100.0);

PLOT_DATA.S_W_PLOT(.I,1.)
ROUND(S_W_RELIABILITY # 100.0);

SPIN_DATA.S W_PLOT(.I,1.)
ROUND(S_W_RELIABILITY # 100.0);

VALUE := PIE/(2.0 #® S_W_PHI
CONV(INITIAL_ERRORS - I));

IF((VALUE <= 1.1) AND (VALUE >=

oo

0.9))
THEN
ANSWER := 1.0
ELSE
SQUARE_ROOT(VALUE) ;
S_W_MTTF := ANSWER;
CHROM_DATA.S_W_PLOT(.I,2.) t=
ROUND(S_W_MTTF);
PLOT_DATA.S_W_PLOT(.I,2.)
ROUND(S_W_MTTF);
SPIN_DATA.S_W_PLOT(.I,2.)
ROUND(S_W_MTTF)
END; "FOR LOOP™
VALUE := 0.0;
FORI := 1 TO (INITIAL_ERRORS -
ERRORS_DISCOVERED) DO
BEGIN "FOR LOOP"
S_W_TIME_TO_FIND_ALL_ERRORS :=
S_W_TIME_TO_FIND_ALL_ERRORS + (1.0/CONV(I));
VALUE := VALUE + 1.0/CONV(I ¥ I)

.

-*s
n

PROCEDURE COMPUTE SCHICK-WOLVERTON PAGE 3

END; "FOR LOOP"
S_W_TIME_TO_FIND_ALL_ERRORS 1z

S_W_TIME_TO_FIND_ALL_ERRORS / S W_PHI;
IF((VALUE <= 1.1) AND (VALUE »>=

0.9))
THEN
ANSWER := 1.0
ELSE
SQUARE_ROOT(VALUE) ;
S_W_STANDARD_DEVIATION &=
ANSWER/S_W_PHI
END; "PROCEDURE

COMPUTE_SCHICK_WOLVERTON®

PROCEDURE PARTIAL PROMPTING PAGE 1

PROCEDURE PARTIAL_PROMPTING;

TR RN RN NN N N O RN SRR NN RN R

"
&n

"&# THIS PROCEDURE IS ONE OF THE TWO MAIN
DRIVERS OF THIS &n

"# PROGRAM, THE OTHER BEING PROCEDURE
FULL_PROMPTING. FROM &n

"# THIS PROCEDURE, .THE USER IS QUERIED AS
TO HIS DATA AND THE#"

"# DATA IS COLLECTED AND COORDINATED
THROUGH THE COMPUTATION #»

"# AND SOLUTION PRESENTATION PROCESS.
THIS PROCEDURE HAS o

"# ACCESS TO ALMOST ANY OTHER PROCEDURE
WITHIN THIS PROGRAM #&©

mn % AND TYPICALLY CALLS SEVERAL
PROCEDURES TO COMPUTE, LOAD, #&»

ni AND DISPLAY SOLUTION FORMS,
&n

ng
&n

"# THIS PROCEDURE IS DESIGNED FOR THE
MORE EXPERIENCED USER #®

"# OF THE PROGRAM AND PROVIDES ONLY
MINIMAL DETAIL TO ENABLE &©

"# THE USER TO SUCCESSFULLY EXECUTE THE

PROGRAM. fn
n§

CONST
BLANK = ' ¥
SCHICK_WOLVERTON = 18t
JELINSKI_MORANDA = 1Jt;
NEED_HELP = 'H';
DO_NOT_NEED_HELP = '™N';
GRAPHICAL = 1G';
TABULAR = 'T';
BOTH = 'B';
DAYS = 'DY;
WEEKS = 'W';
MONTHS = ™M';

VAR
SUCCESSFUL__INPUT : BOOLEAN;
S_W_SELECTED : BOOLEAN;
J_M SELECTED : BOOLEAN;
ALL_SELECTED : BOOLEAN;

PROCEDURE PARTIAL PROMPTING PAGE 2

HELP_FLAG : INTEGER;
NUMBER_IN : INTEGER;
SOLUTION_SELECTED : INTEGER;
SCALE_SELECTED : INTEGER;
ERROR_COUNTER : INTEGER;
I : INTEGER;
MESSAGE_IN : CHAR;

DUMMY : CHAR;

BEGIN "PROCEDURE PARTIAL PROMPTING®

SUCCESSFUL_INPUT := FALSE;
S_W_SELECTED := FALSE;
J_M_SELECTED := FALSE;
ALL_SELECTED := FALSE;
HELP_FLAG := 03
INITIAL_ERRORS := 03
TOTAL_INTERVALS := 0;
ERRORS_DISCOVERED 1= 03
NUMBER_IN = 03
SOLUTION_SELECTED iz 0;
SCALE_SELECTED := 03
ERROR_COUNTER = 0;
I = 03
MESSAGE_IN := BLANK;
DUMMY := BLANK;
FOR I := 1 TO MAX_ALLOWED DO
BEGIN
S_W_DATA_1(.I.) := 0;
J_M DATA_1(.I.) :=0
END;

WRITE_STRING('ENTER THE MODEL OR MODELS
YOU DESIRE (:0:)1');
WRITE_STRING('TO USE IN THIS EXECUTION.
ENTER S (:0:)");
WRITE_STRING('FOR THE SCHICK-WOLVERTON
MODEL, ENTER (:0:)');
WRITE_STRING('J FOR THE
JELINSKI-MORANDA MODEL, OR (:0:)');
WRITE_STRING('B FOR A COMBINATION OF
BOTH THE MODELS. (:0:)');
WRITE_STRING('PLEASE ENTER YOUR CHOICE
NOW., (:0:)1);
FOR I := 1 TO 16 DO DISPLAY(NL);
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE®
ACCEPT(MESSAGE_IN); ACCEPT(DUMMY);
CASE MESSAGF_IN OF
SCHICK_WOLVERTON : BEGIN
SUCCESSFUL_INPUT:=TRUE;
S_W_SELECTED:=TRUE
END;
JELINSKI_MORANDA : BEGIN

.

PROCEDURE PARTIAL PROMPTING PAGE 3

SUCCESSFUL_INPUT:=TRUE;
J_M SELECTED:=TRUE
END;
BOTH ¢ BEGIN
SUCCESSFUL_INPUT:=TRUE;
ALL _SELECTED:=TRUE
END;
NEED_HELP : BEGIN
SUCCESSFUL_INPUT:=FALSE;
HELP_FLAG:=3;
HELP(HELP_FLAG) ;
WRITE_STRING('ENTER
YOUR MODEL CHOICE.(:0:)"')
END;
BEGIN
SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING('ERROR

ELSE

(1]

IN YOUR INPUT. (:0:)"')
END
END "CASE OF MESSAGE IN"
END; "WHILE"
FOR I := 1 TO 25 DO DISPLAY(NL);;
WRITE_STRING('WHICH TYPE OF SOLUTION DO
YOU DESIRE? (:0:)');
WRITE_STRING('ENTER G FOR THE GRAPHICAL
SOLUTION, T (:0:)');
WRITE_STRING('FOR THE TABULAR SOLUTION,
OR B FOR (:0:)');
WRITE_STRING('BOTH SOLUTION FORMS., IF
YOU CHOOSE THE (:0:)1);
WRITE_STRING('GRAPHICAL SOLUTION, YOU
WILL BE QUERIED (:0:)');
WRITE STRING('AS TO YOUR CHOICE OF
DISPLAY DEVICES (:0:)");
WRITE_STRING('AT A LATER TIME. PLEASE
ENTER YOUR (:0:)');
WRITE_STRING('ANSWER AT THIS TIME.
(:0:)%);
FOR I := 1 TO 14 DO DISPLAY(NL);
SUCCESSFUL_INPUT := FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"
ACCEPT(MESSAGE_IN); ACCEPT(DUMMY);
CASE MESSAGE_IN OF
GRAPHICAL : BEGIN
SUCCESSFUL_INPUT:=TRUE;
SOLUTION_SELECTED: =
END;
TABULAR : BEGIN
SUCCESSFUL_INPUT:=TRUE;
SOLUTION_SELECTED:=
END;
BOTH : BEGIN
SUCCESSFUL_INPUT:=TRUE;

PROCEDURE PARTIAL PROMPTING PAGE 4

SOLUTION_SELECTED:=
END;
NEED_HELP : BEGIN
SUCCESSFUL_INPUT:=FALSE;
HELP_FLAG:=4;
HELP(HELP_FLAG);
WRITE_STRING('ENTER
YOUR CHOICE OF SOLUTIONS.(:0:)')
END;
ELSE : BEGIN
SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING('ERROR
IN YOUR INPUT. (:0:)')
END
END "CASE OF MESSAGE IN"
END; "WHILE"
FOR I := 1 TO 25 DO DISPLAY(NL);;
IF((SOLUTION_SELECTED = 1) OR
(SOLUTION_SELECTED = 3))
THEN
BEGIN "IF GRAPHICAL SOLUTION IS TO
BE USED®
WRITE_STRING('WHAT SCALE DO YOU
WISH ON YOUR GRAPH (:0:)1');
WRITE_STRING('FOR THE MEAN TIME
TO FAILURE AXIS? (:0:)");
WRITE_STRING('ENTER D FOR DAYS, W
FOR WEEKS, OR M (:0:)');
WRITE_STRING('FOR MONTHS. ENTER
YOUR CHOICE NOW. (:0:)');
FOR I := 1 TO 18 DO DISPLAY(NL);
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"
ACCEPT(MESSAGE_IN);
ACCEPT(DUMMY) ;
CASE MESSAGE_IN OF
DAYS : BEGIN
SUCCESSFUL_INPUT:=TRUE;
SCALE_SELECTED: =
END;
BEGIN
SUCCESSFUL_INPUT:=TRUE;
SCALE_SELECTED:=2

WEEKS

.e

END;

MONTHS s BEGIN
SUCCESSFUL_INPUT:=TRUE;
SCALE_SELECTED:=

END;

NEED_HELP : BEGIN

SUCCESSFUL_INPUT:=FALSE;
HELP_FLAG:=5;
HELP(HELP_FLAG) ;
WRITE_STRING("ENTER

PROCEDURE PARTIAL PROMPTING PAGE 5

GRAPHICAL SOLUTION SCALE DESIRED.(:0:)"')
END;
ELSE : BEGIN
SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING('ERROR
IN YOUR INPUT.(:0:)')
END
END "CASE OF MESSAGE INW
END; "WHILE"
FOR I := 1 TO 25 DO
DISPLAY(NL);
END; "IF GRAPHICAL SOLUTION IS
TO BE USED"
"ENTER DATA FOR THE MODEL, OR
MODELS, SELECTED"
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"
WRITE_STRING('ENTER THE NUMBER
OF INITIAL ERRORS. (:0:)');
WRITE_STRING('IF YoUu HAVE
SELECTED BOTH MODELS, YOU (:0:)'):
WRITE_STRING('ARE REQUIRED TO
ONLY ENTER THE DATA ONCE. (:0:)');
FOR I := 1 TO 18 DO
DISPLAY(NL);
READ_INTEGER(NUMBER_IN) ;
IF(NUMBER_IN <= 0)
THEN
ERROR_COUNTER : =SUCC (ERROR_COUNTER)
ELSE
INITIAL_ERRORS:=NUMBER_IN;
WRITE STRING('ENTER THE TOTAL
NUMBER OF INTERVALS. (:0:)%);
FOR I := 1 TO 19 DO DISPLAY(NL);
READ_INTEGER(NUMBER_IN);

IF((NUMBER_IN <= 0) OR
(NUMBER_IN > MAX_ALLOWED) OR (NUMBER_IN »>=
INITIAL_ERRORS))
THEN
ERROR_COUNTER: =SUCC(ERROR_COUNTER)
ELSE
BEGIN

TOTAL_INTERVALS:=NUMBER_IN;
ERRORS_DISCOVERED: =NUMBER_IN

END;

IF(ERROR_COUNTER <> 0)
THEN

BEGIN
ERROR_COUNTER:=0;
SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING("ERROR IN

YOUR INPUT. (:0:)1)
END

PROCEDURE PARTIAL PROMPTING PAGE 6

ELSE
SUCCESSFUL_INPUT := TRUE
END; "WHILE"
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"
WRITE STRING('ENTER THE LENGTH
OF THE TIME INTERVALS (:0:)');
WRITE _STRING('SPECIFIED ABOVE,
ONE AT A TIME. (:0:)");
FOR I =:= 1 TO 19 DO
DISPLAY(NL);
FOR I:=1 TO TOTAL_INTERVALS DO
BEGIN "FOR LOOP"™
WRITE_STRING('ENTER AN
INTERVAL NOW. (:0:)');
READ_INTEGER(NUMBER_IN) ;
IF(NUMBER_IN <= 0)

THEN
ERROR_COUNTER : =SUCC(ERROR_COUNTER)
ELSE
BEGIN
IF((S_W_SELECTED) OR
(ALL_SELECTED))
THEN
S_W_DATA_1(.I.):=NUMBER_IN;
IF((J_M_SELECTED) OR
(ALL_SELECTED))

THEN
J_M_DATA_1(.I.):=NUMBER_IN
END

END; "FOR LOOP"
IF(ERROR_COUNTER <> 0)
THEN
BEGIN
ERROR_COUNTER:=0;
SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING('ERROR IN
YOUR INPUT. (:0:)')
END
ELSE
SUCCESSFUL_INPUT := TRUE
END; "WHILE"
IF((S_W_SELECTED) OR (ALL_SELECTED))
THEN
COMPUTE_SCHICK_WOLVERTON;
IF((J_M_SELECTED) OR (ALL_SELECTED))
THEN
COMPUTE_JELINSKI_MORANDA;
IF((SOLUTION_SELECTED = 2) OR
(SOLUTION_SELECTED = 3))
THEN
BEGIN
IF((S_W_SELECTED) OR

PROCEDURE PARTIAL PROMPTING PAGE 7

(ALL_SELECTED))
THEN
LOAD_TABULAR_DISPLAY_ S W;
IF((J_M_SELECTED) OR
(ALL_SELECTED))
THEN
LOAD_TABULAR_DISPLAY_ J_M;
PRINT_TABULAR_DISPLAY(S_W_SELECTED, J_M SELEC

END;
IF({SOLUTION_SELECTED = 1) OR
(SOLUTION_SELECTED = 3))
THEN
BEGIN
COLLECT_GRAPH_INFORMATION(S_ W_SELECTED, J_M_SEL
IF((S_W_SELECTED) OR
(ALL_SELECTED))
THEN
LOAD_S_W_GRAPH_DATA(SCALF,_SELECTED);
IF((J_M_SELECTED) OR
(ALL_SELECTED))
THEN
LOAD_J_M _GRAPH_DATA(SCALE_SELECTED);
DRAW_GRAPH
END

END; "PROCEDURE PARTIAL PROMPTINGT

PROCEDURE PROVIDE FULL PROMPTING PAGE 1

PROCEDURE PROVIDE_FULL_PROMPTING ;

NN NN RN RN RN R RN RN RN
ni
&n
"# THIS PROCEDURE PERFORMS EXACTLY THE
SAME FUNCTIONS AS #n
"# PROCEDURE PARTIAL PROMPTING, BUT WITH
MUCH MORE DETAIL #v
"# BEING SUPPLIED TO THE USER SO THAT HE
MAY SUCCESSFULLY &n
"% EXECUTE THE PROGRAM. IT IS DESIGNED
FOR THE LESS EX- #»
"# PERIENCED USER OF THIS PROGRAM.
#n
ng
#n
WA TEETIIT TR I LET I e s aqdzesdiaz Rt e iqtistestintll)

CONST

BLANK g %
SCHICK_WOLVERTON = 15°;
JELINSKI_MORANDA = 1Jv;
BOTH = TBY;
NEED_HELP = THt;

DO _NOT_NEED_HELP = INY3
GRAPHICAL = 1Gt;
TABULAR = “T¥;
DAYS = "Dv;
WEEKS = '3
MONTHS = fM';

VAR

SUCCESSFUL_INPUT : BOOLEAN;
S_W_SELECTED : BOOLEAN;
J_M SELECTED : BOOLEAN;
ALL SELECTED ¢« BOOLEAN;
HELP_FLAG : INTEGER;
NUMBER_IN : INTEGER;
ERROR_COUNTER : INTEGER;
SOLUTION_SELECTED : INTEGER;
SCALE_SELECTED : INTEGER;
I : INTEGER;
MESSAGE IN : CHAR;
DUMMY : CHAR;

BEGIN "PROCEDURE PROVIDE FULL PROMPTING"
SUCCESSFUL_INPUT := FALSE;
S_W_SELECTED t= FALSE;

J_M _SELECTED := FALSE;

PROCEDURE PROVIDE FULL PROMPTING PAGE 2

ALL SELECTED := FALSE;
HELP_FLAG = 03
INITIAL_ERRORS := 0;
TOTAL_INTERVALS := 0;
ERRORS_DISCOVERED := 03
SOLUTION_SELECTED iz 0;
SCALE_SELECTED = 0;
NUMBER_IN := 03
ERROR_COUNTER := 03
I := 03
MESSAGE 1IN := BLANK;
DUMMY := BLANK;
FOR I := 1 TO MAX_ALLOWED DO
BEGIN
S_W_DATA_1(.I.) 3= 03
J_M DATA_1(.I.) t= 0
END;

WRITE_STRING('YOU WILL BE PROVIDED
WITH A COMPLETE EXPLANATION(:0:)');
WRITE_STRING('OF QUESTIONS AND
RESPONSES IN THE THIS PROMPTING MODE.(:0:)');
WRITE_STRING('WHICH MODEL OR MODELS
DO YOU DESIRE TO USE IN YOUR(:0:)');
WRITE_STRING('SOLUTION. THE
CANDIDATES ARE THE SCHICK-WOLVERTON,(:0:)1');
WRITE_STRING('THE JELINSKI-MORANDA,
OR BOTH THESE MODELS. EACH WILL(:0:)}');
WRITE_STRING('PROVIDE YOU WITH THE
MEAN TIME TO FAILURE AND THE RE-(:0:)');
WRITE_STRING('LIABILITY ASSOCIATED
WITH THE SOFTWARE PACKAGE WHICH(:0:)1');
WRITE_STRING('YOU ENTER DATA FOR.
TO SELECT THE MODEL YOU DESIRE(:0:)');
WRITE_STRING('TO USE, ENTER A SINGLE
LETTER AS FOLLOWS. TO SELECT(:0:)");
WRITE_STRING('THE SCHICK-WOLVERTON
MODEL, ENTER AN S. TO SELECT THE(:0:)');
WRITE_STRING(' JELINSKI-MORANDA
MODEL, ENTER A J., TO SELECT BOTH OF(:0:)');
WRITE_STRING('THE MODELS, ENTER A B.
TO INVOKE THE HELP PROCEDURE(:0:)');
WRITE_STRING('ENTER AN H.(:0:)");
FOR I := 1 TO 8 DO DISPLAY(NL);
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"
WRITE_STRING('WHICH MODELS DO
YOU DESIRE TO USE? ENTER AN S,J,B, OR H.
(:0:)");
ACCEPT(MESSAGE_IN);
ACCEPT(DUMMY) ;
CASE MESSAGE_IN OF
SCHICK_WOLVERTON : BEGIN
SUCCESSFUL_INPUT:=TRUE;

PROCEDURE PROVIDE FULL PROMPTING

JELINSKI_MORANDA

BOTH

NEED_HELP

PAGE 3

S_W_SELECTED:=TRUE
END;

: BEGIN

SUCCESSFUL_INPUT:=TRUE;
J_M_SELECTED:=TRUE

END;

BEGIN
SUCCESSFUL_INPUT:=TRUE;
ALL_SELECTED:=TRUE

END;

BEGIN
SUCCESSFUL_INPUT:=FALSE
HELP_FLAG:=3;
HELP(HELP_FLAG)

END;
BEGIN

se

ELSE

SUCCESSFUL_INPUT: =FALSE
WRITE_STRING('ERROR

IN YOUR INPUT, (:0:)")
END
END "CASE OF MESSAGE IN"
END; "WHILE®
FOR I := 1 TO 23 DO DISPLAY(NL);
WRITE_STRING('WHICH TYPE SOLUTION DO
YOU DESIRE AS YOUR OUT- (:0:)');
WRITE_STRING('PUT. THE CANDIDATES
ARE A GRAPHICAL SOLUTION, (:0:)');
WRITE_STRING('A TABULAR SOLUTION, OR
BOTH. THE GRAPHICAL (:0:)');
WRITE_STRING('SOLUTION PROVIDES YOUR
DATA PLOTTED AGAINST (:0:)');
WRITE_STRING('THE RELIABILITY AND
THE MEAN TIME TO FAILURE, (:0:)');
WRITE_STRING('THE GRAPH MAY BE
PRESENTED ON ANY ONE OF THE (:0:)');
WRITE_STRING('FOLLOWING TWO DEVICES,
THE CHROMATICS COLOR CRT, (:0:)1');

WRITE_STRING('OR THE PLOTTER
GRAPHICAL DISPLAY DEVICE. (:0:)');
WRITE_STRING('YOU WILL BE ASKED

LATER WHICH DEVICE (:0:)');

WRITE_STRING('YOU DESIRE TO USE
DURING THIS EXECUTION. (:0:)1');

WRITE_STRING('THE TABULAR SOLUTION
LISTS IN TABLE FORM THE (:0:)');

WRITE_STRING('SOLUTIONS OF THE

PROGRAM, TO SELECT ONLY THE (:0:)');
WRITE_STRING('GRAPHICAL SOLUTION,
ENTER G. TO SELECT ONLY (:0:)');
WRITE_STRING('THE TABULAR SOLUTION,
ENTER T. TO SELECT BOTH (:0:)");
WRITE_STRING('TYPES OF SOLUTIONS,
ENTER B. TO INVOKE THE (:0:)');

WRITE_STRING('HELP PROCEDURE, ENTER

PROCEDURE PROVIDE FULL PROMPTING PAGE 4

He (:0:)1);
FOR I := 1 TO 5 DO DISPLAY(NL);
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN
WRITE STRING('WHICH TYPE OF
SOLUTION DO YOU DESIRE? ENTER G,T,B, OR H.
(:0:));
ACCEPT (MESSAGE_IN);
ACCEPT (DUMMY) ;
CASE MESSAGE_IN OF
GRAPHICAL : BEGIN
SUCCESSFUL_INPUT:=TRUE;
SOLUTION_SELECTED:=

END;

BEGIN
SUCCESSFUL_INPUT:=TRUE;
SOLUTION_SELECTED:=2

END;

BOTH : BEGIN
SUCCESSFUL_INPUT:=TRUE;
SOLUTION_SELECTED:=3

END;

NEED_HELP : BEGIN

SUCCESSFUL_INPUT:=FALSE;

TABULAR

HELP_FLAG:=4;
HELP(HELP_FLAG)
END;
ELSE ¢ BEGIN

SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING ('ERROR
IN YOUR INPUT. (:0:)')
END
END "CASE OF MESSAGE IN"
END; ®"WHILE"
FOR I := 1 TO 23 DO DISPLAY(NL);
IF((SOLUTION_SELECTED = 1) OR
(SOLUTION_SELECTED = 3))
THEN
BEGIN "IF GRAPHICAL SOLUTION IS
TO BE USED"
WRITE_STRING('WHAT SCALE DO
YOU WISH ON YOUR GRAPH FOR THE(:0:)');
WRITE _STRING('MEAN TIME TO
FAILURE AXIS? THE POSSIBLE VALUES(:0:)');
WRITE_STRING('ARE DAYS, WEEKS,
OR MONTHS. THIS SCALE SHOULD BE(:0:)');
WRITE_STRING('COMPATIBLE WITH
YOUR DATA, THAT IS, IF THE DATA(:0:)");
WRITE_STRING('YOU HAVE FOR THE
INTERVAL BETWEEN THE DISCOVERY(:0:)');
WRITE_STRING('OF ERRORS IS IN
DAYS, THEN YOUR SCALE SHOULD ALSO(:0:)'):
WRITE_STRING('BE IN DAYS. IF

PROCEDURE PROVIDE FULL PROMPTING PAGE 5

IT IS NOT, YOU MAY BE PRESENTED(:0:)');
WRITE_STRING('WITH A WILDLY
SKEWED GRAPH. TO SELECT DAYS, ENTER(:0:)}");
WRITE_STRING('D, TO SELECT
WEEKS, W, .AND TO SELECT MONTHS, (:0:)");
WRITE_STRING('ENTER AN M. TO
INVOKE THE HELP PROCEDURE, .ENTER(:0:)');
WRITE_STRING('AN H.(:0:)");
FOR I := 1 TO 10 DO
DISPLAY(NL);

SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"™
WRITE_STRING('WHAT SCALE

DO YOU WISH TO USE? ENTER AN M,W,D, OR H.

(:0:)1);

ACCEPT (DUMMY) ;

ACCEPT (MESSAGE_IN);

CASE MESSAGE_IN OF

DAYS : BEGIN

SUCCESSFUL_INPUT:=TRU
SCALE_SELECTED:=
END;

WEEKS : BEGIN
SUCCESSFUL_INPUT:=TRU
SCALE_SELECTED:=

END;

MONTHS : BEGIN
SUCCESSFUL_INPUT:=TRU
SCALE_SELECTED:=

END;

BEGIN
SUCCESSFUL_INPUT:=FAL
HELP_FLAG:=5;
HELP(HELP_FLAG)

END;

BEGIN
SUCCESSFUL_INPUT:=FAL
WRITE_STRING('ERROR

.

NEED_HELP

ELSE

(1]

IN YOUR INPUT. (:0:)"')

END
END "CASE OF MESSAGE
INI!
END; "WHILE"
FOR I := 1 TO 23 DO
DISPLAY(NL)

IS TO BE USED"®
"ENTER DATA FOR THE MODEL, OR

END; "IF GRAPHICAL SOLUTION

MODELS, SELECTED"

WRITE STRING('FOR THE MODEL YOU

SELECTED, YOU MUST ENTER (:0:)');

WRITE_STRING(' THREE TYPES OF
INFORMATION.

YOU MUST ENTER (:0:)');

PROCEDURE PROVIDE FULL PROMPTING PAGE 6

WRITE_STRING('THE NUMBER OF INITIAL
ERRORS ESTIMATED TO BE (:0:)1');
WRITE STRING('PRESENT IN YOUR
SOFTWARE PACKAGE. YOU HAVE (:0:)');
WRITE_STRING('TO ALSO ENTER THE
TOTAL NUMBER OF INTERVALS (:0:)');
WRITE_STRING("BETWEEN THE DISCOVERY
OF AN ERROR. FINALLY, (:0:)");
WRITE_STRING('MUST ENTER THE LENGTH
OF EACH ERROR INTERVAL (:0:)');
WRITE_STRING('OF THE TOTAL YOU
SPECIFIED EARLIER., YOU (:0:)');
WRITE_STRING('ARE RESTRICTED TO A
MAXIMUM NUMBER OF 250 (:0:)');
WRITE_STRING('INTERVALS. YOU DO NOT
ENTER THE TOTAL NUMBER (:0:)');
WRITE_STRING('OF ERRORS DISCOVERED
AS THE MODELS WILL ASSUME (:0:)');
WRITE_STRING('ONLY ONE ERROR WAS
DISCOVERED PER INTERVAL. (:0:)');
WRITE_STRING('THE TOTAL NUMBER OF
ERRORS DISCOVERED IS EQUAL (:0:)');
WRITE_STRING('TO THE TOTAL NUMBER OF
INTERVALS SPECIFIED. (:0:)');
WRITE_STRING('INSURE THAT YOUR DATA
IS A POSITIVE INTEGER. (:0:)");
WRITE_STRING('IF ANY PIECE OF DATA
IS FOUND TO BE IN ERROR, (:0:)");
WRITE_STRING('YOU WILL BE REQUIRED
TO RE-ENTER THAT DATA. (:0:)');
WRITE_STRING('INSURE THAT YOUR TOTAL
INTERVALS DOES NOT (:0:)');
WRITE_STRING('BQUAL OR EXCEED THE
INITIAL ERRORS ESTIMATED. (:0:)!);
WRITE_STRING('PRESS THE RETURN KEY
WHEN YOU ARE FINISHED (:0:)');
WRITE_STRING('READING THIS PAGE.
(:0:)");
DISPLAY(NL);
ACCEPT (DUMMY) ;
FOR I := 1 TO 23 DO DISPLAY(NL);
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"®
WRITE_STRING('DO YOU NEED HELP?
IF YOU DO, ENTER H. (:0:)');
WRITE_STRING('IF YOU DO NOT,
ENTER N. (:0:)1');
FOR I := 1 TO 20 DO
DISPLAY(NL);
ACCEPT (MESSAGE_IN);
ACCEPT(DUMMY);
CASE MESSAGE_IN OF
NEED_HELP : BEGIN

PROCEDURE PROVIDE FULL PROMPTING PAGE 7

SUCCESSFUL_INPUT:=TRUE;
HELP_FLAG:=6;
HELP(HELP_FLAG)

END;
DO_NOT_NEED_HELP :
SUCCESSFUL_INPUT:=TRUE;
ELSE : BEGIN

SUCCESSFUL_INPUT:=FALSE
WRITE STRING('ERROR
IN INPUT. (:0:)f)
END
END "CASE OF MESSAGE_IN"
END; "WHILE"
FOR I := 1 TO 23 DO DISPLAY(NL);
SUCCESSFUL,_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE®
WRITE_STRING('ENTER THE NUMBER
OF INITIAL ERRORS. (:0:)');
WRITE_STRING('IF YOU HAVE
SELECTED BOTH MODELS, YOU (:0:)');
WRITE_STRING('ARE REQUIRED TO
ONLY ENTER THE DATA ONCE, (:0:)');
FOR I := 1 TO 18 DO
DISPLAY(NL);
READ_INTEGER(NUMBER_IN) ;
IF(NUMBER_IN <= 0)
THEN
ERROR_COUNTER : =SUCC({ERROR_COUNTER)
ELSE
INITIAL_ERRORS:=NUMBER_IN;
WRITE STRING('ENTER THE TOTAL
NUMBER OF INTERVALS. (:0:)");
FOR I := 1 TO 21 DO

DISPLAY(ML);
READ_INTEGER(NUMBER_IN);
IF((NUMBER_IN <= 0) OR
(NUMBER_IN > MAX_ALLOWED) OR (NUMBER_IN »>=
INITIAL_ERRORS))
THEN
ERROR_COUNTER : =SUCC({ERROR_COUNTER)
ELSE
BEGIN

TOTAL_INTERVALS:=NUMBER_IN;
ERRORS_DISCOVERED: =NUMBER_IN

END;

IF(ERROR_COUNTER <> 0)
THEN

BEGIN
ERROR_COUNTER: =0;
SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING('ERROR IN

YOUR INPUT. (:0:)1)
END

PROCEDURE PROVIDE FULL PROMPTING PAGE 8

ELSE
SUCCESSFUL_INPUT := TRUE
END; "WHILE"
SUCCESSFUL_INPUT:=FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"
WRITE STRING('ENTER THE LENGTH
OF THE TIME INTERVALS (:0:)");
WRITE_STRING('YOU HAVE SPECIFIED
ABOVE, ONE AT A TIME. (:0:)');
FOR I := 1 TO 19 DO
DISPLAY(NL);
FOR I:=1 TO TOTAL_INTERVALS DO
BEGIN "FOR LOOP™
WRITE_STRING('ENTER AN
INTERVAL NOW. (:0:)');
READ_INTEGER(NUMBER_IN);
IF(NUMBER_IN <= 0)
THEN
ERROR_COUNTER: =SUCC(ERROR_COUNTER)
ELSE
BEGIN
IF((S_W_SELECTED) OR
(ALL_SELECTED))
THEN
S_W_DATA_1(.I.):=NUMBER_IN;
IF((J_M_SELECTED) OR
(ALL_SELECTED))
THEN
J_M DATA 1(.I.):=NUMBER_IN
END
END; "FOR LOOP"
IF(ERROR_COUNTER <> 0)
THEN
BEGIN
ERROR_COUNTER:=0;
SUCCESSFUL_INPUT:=FALSE;
WRITE_STRING('ERROR IN
YOUR INPUT. (:0:)')
END
ELSE
SUCCESSFUL_INPUT := TRUE
END; "WHILE"
IF((S_W_SELECTED) OR (ALL_SELECTED))
THEN
COMPUTE_SCHICK_WOLVERTON;
IF((J_M_SELECTED) OR (ALL_SELECTED))
THEN
COMPUTE_JELINSKI_MORANDA;
IF((SOLUTION_SELECTED = 2) OR
(SOLUTION_SELECTED = 3))
THEN
BEGIN
IF((S_W_SELECTED) OR

PROCEDURE PROVIDE FULL PROMPTING PAGE 9

(ALL_SELECTED))
THEN
LOAD_TABULAR_DISPLAY S W;
IF((J_M _SELECTED) OR
(ALL_SELECTED))
THEN

LOAD_TABULAR_DISPLAY_J_M;
PRINT_TABULAR_DISPLAY(S_W_SELECTED, J_M_SELEC

END;
IF((SOLUTION _SELECTED = 1) OR
(SOLUTION_SELECTED = 3)})
THEN
BEGIN
COLLECT_GRAPH_INFORMATION(S W_SELECTED,J_M_S
IF((S_W_SELECTED) OR
{ALL_SELECTED))
THEN
LOAD_S W_GRAPH_DATA(SCALE_SELECTED);
IF((J_M_SELECTED) OR
(ALL_SELECTED))
THEN
LOAD J_M GRAPH_DATA(SCALE_SELECTED);
DRAW_GRAPH

END
END; "PROCEDURE PROVIDE FULL PROMPTING®

MAIN PROGRAM MAIN BODY

FALSE;
0.0;
0.0;
0.0;
0.0;
0.0;
0.0;

0.0;

INITIAL_ERRORS
TOTAL_INTERVALS
ERRORS_DISCOVERED

I

d

HELP_FLAG

TAB_S W _RELIABILITY

e e

TAB_S_W_MTTF

PAGE

BEGIN "PROGRAM RELIABILITY MODEL"

s

(1]

TAB S W _TIME_TO_FIND_ALL_ERRORS:=

TAB_S_W_STD
TAB_S W_PHI
TAB_J_M_RELIABILITY

TAB_J_M_MTTF

TAB_J_M TIME_TO_FIND_ALL_ERRORS:

TAB_J_M_STD

TAB_J_M PHI

DESTINATION
SUCCESSFUL_INPUT
J_M_TIME_TO_FIND ALL_ERRORS
S_W_TIME_TO_FIND_ ALL_ERRORS
J_M_STANDARD DEVIATION
S_W_STANDARD_DEVIATION
S_W_PHI

J_M_PHI

ANSWER

S_W_RELIABILITY

e

1

MAIN PROGRAM MAIN BODY PAGE 2

0.0;
S_W_MTTF i=
0.0;
J_M RELIABILITY &=
0.0;
J_M_MTTF H
0.0;
MESSAGE_IN]
BLANK;
DUMMY 1=
BLANK;
FOR I := 1 TO MAX_ALLOWED DO
BEGIN "FOR LOOP®
J_M_DATA_1(.I.) 1=
0;
S_W_DATA_1(.I.) i=
0
END; "FOR LOOP®
FOR I := 1 TO MAX_ALLOWED DO
BEGIN
FOR J := 1 TO 2 DO
BEGIN
CHROM_DATA.S W_PLOT(.I,d.)
:= 100;
CHROM_DATA.J_M PLOT(.I,d.)
= 100;
PLOT_DATA.S W_PLOT(.I,J.)
= 100;
PLOT_DATA.J M _PLOT(.I,Jd.)
= 100;
SPIN_DATA.S W_PLOT(.I,Jd.)
t= 100;
SPIN_DATA.J_M PLOT(.I,J.)
:= 100
END
END;

WRITE_STRING('WELCOME TO A PROGRAM
WHICH WILL COMPUTE THE (:0:)');

WRITE_STRING('SOFTWARE RELIABILITY
OF A PARTIALLY DEBUGGED(:0:)');

WRITE_STRING('SOFTWARE PACKAGE.
THERE ARE TWO LEVELS OF (:0:)'");

WRITE_STRING("' INTERACTION
AVATLABLE TO YOU. THESE ARE THE(:0:)1');

WRITE_STRING('FULL PROMPTING MODE
AND THE PARTIAL PROMPTING(:0:)1');

WRITE_STRING('MODE. IF THIS IS
YOUR FIRST EXECUTION OF THE(:0:)');

WRITE_STRING('PROGRAM, I SUGGEST
YOU USE THE FULL OPTION. (:0:)");

WRITE_STRING('ADDITIONALLY, . THERE
IS A HELP PROCEDURE FOR (:0:)');

WRITE_STRING('YOUR USE.
EXPLANATIONS FOR ITS USE ARE PRO- (:0:)');

MAIN PROGRAM MAIN BODY PAGE 3

WRITE _STRING('VIDED WITHIN THE
PROMPTING OPTIONS. ENTER AN(:0:)'");

WRITE_STRING('H AT THIS TIME IF
YOU DESIRE HELP OR AN N IF (:0:)');

WRITE_STRING('YOU DO NOT DESIRE A
MORE DETAILED DESCRIPTION(:0:)');

WRITE STRING('OF THIS PROGRAM.
(:0:)");

FOR I := 1 TO 9 DO DISPLAY(NL);

SOCCESSFUL_INPUT := FALSE;

WHILE(NOT SUCCESSFUL_INPUT)DO

BEGIN "WHILE"

ACCEPT(MESSAGE_IN);

ACCEPT(DUMMY) ;

CASE MESSAGE IN OF

NEED_HELP : BEGIN
SUCCESSFUL_INPUT:=TRU
HELP_FLAG:=1;
HELP{HELP_FLAG)
END;

DO_NOT NEED_HELP :
SUCCESSFUL_INPUT:=TRUE;
ELSE : BEGIN
SUCCESSFUL_INPUT:=FAL
WRITE_STRING('ERROR
IN YOUR INPUT.ENTER H OR N.(:0:)")
END
END "CASE MESSAGE IN"
END; "WHILE"
FOR I := 1 TO 23 DO DISPLAY(NL);
WRITE_STRING('WHICH LEVEL OF
PROMPTING DO YOU DESIRE? ENTER(:0:)");
WRITE_STRING('AN F FOR THE FULL
PROMPTING OPTION OR A P FOR(:0:)');
WRITE_STRING('THE PARTIAL
PROMPTING OPTION. YOU MAY ALSO(:0:)');
WRITE_STRING('ENTER AN H FOR HELP
IF YOU DESIRE. PLEASE (:0:)');
WRITE_STRING('ENTER YOUR CHOICE OF
OPTIONS NOW.(:0:)');
FOR I := 1 TO 17 DO DISPLAY(NL);
SUCCESSFUL_INPUT := FALSE;
WHILE(NOT SUCCESSFUL_INPUT)DO
BEGIN "WHILE"
ACCEPT (MESSAGE_IN);
ACCEPT (DUMMY) ;
CASE MESSAGE_IN OF
PARTIAL_LEVEL : BEGIN
SUCCESSFUL_INPUT
:= TRUE;
PARTIAL_PROMPTING
END;
FULL_LEVEL : BEGIN
SUCCESSFUL_INPUT

MAIN PROGRAM MAIN BODY PAGE 4

:= TRUE;

PROVIDE_FULL_PROMPTING
END;
NEED_HELP ¢ BEGIN

SUCCESSFUL_INPUT

:= FALSE;
HELP_FLAG

1= 23

HELP(HELP_FLAG);
WRITE_STRING({ 'PLEASE
SELECT YOUR PROMPTING OPTION BY ENTERING A P
OR AN F.(:0:)');
END;
ELSE : BEGIN
SUCCESSFUL_INPUT
:= FALSE;
WRITE _STRING('ERROR
IN YOUR INPUT, SELECT YOUR PROMPTING

OPTION.(:0:)")
END

END "CASE MESSAGE IN"
END "WHILE®
END, "PROGRAM RELIABILITY MODEL"

CHROMATICS DISFLAY PROGRAM PAGE 1

"ROBERT YOUNG" "EANSAS STATE UNIVERSITY"
"DEPARTMENT OF COMPUTER SCIENCE"

CONST COPYRIGHT = T'COPYRIGHT ROBERT YOUNG
1978 "¢ 4### # PREFIX # #F##4##4#44"
CONST NL = '(:10:)"

; FF = *(:12:)!

; CR T(:13:)?

; EM '"(:25:)" ; CONST PAGELENGTH = 512 ;
TYPE PAGE = ARRAY (. 1 .. PAGELENGTH .) OF
CHAR ; CONST LINELENGTH = 132 ; TYPE LINE =
ARRAY (., 1 .. LINELENGTH .) OF CHAR;

NEGES S RN R RN RSN R RN E NN E NS RC R SR E R NN ARERBURERES
n#
#n
"# THE FOLLOWING RECORD TYPE IS THE MEANS
BY WHICH ALL #®
"% DATA IS PASSED TO THIS PROGRAM. THIS
PROGRAM HAS #w
"# BEEN TREATED AS AN EXTERNAL PROCEDURE
AND THIS FORM #w
"#¢ OF A RECORD IS THE PARAMETER OF THE

PROGRAM CALL. in
ng

#n

"&# AN INSTANCE OF THIS RECORD IS
INSTANTIATED IN THE .

"# PROGRAM HEADING., THE VARIABLE DECLARED
IS PARAM. i

ni

"# ALL IDENTIFIERS USED WITHIN THE RECORD
SHOULD BE &n
"# SELF-EXPLANATORY AND NEED NO FURTHER

EXPLANATION. -
"E

#n
MR R RN SRE R SEEE TN SRR AN RN N RN SRRSO

TYPE COORDINATE = RECORD

S_W_PLOT
ARRAY(.1..250,1..2.) OF INTEGER;

J_M PLOT
ARRAY(.1..250,1..2.,) OF INTEGER;

COMBINATION_SELECTED

: INTEGER;

SCALE_DESIRED
: INTEGER;

NUMBER_OF_ERRORS_OBSERVED
: INTEGER

END;

CHROMATICS DISPLAY PROGRAM PAGE 2

CONST IDLENGTH = 12 ; TYPE IDENTIFIER = ARRAY
(. 1 .. IDLENGTH .) OF CHAR ; TYPE FILE = 1 ..
2 ; TYPE FILEKIND = (EMPTY . SCRATCH , ASCII
, SEQCODE , CONCODE) ; TYPE FILEATTR
= RECORD
KIND : FILEKIND
; ADDR : INTEGER
; PROTECTED : BOOLEAN
; NOTUSED : ARRAY (. 1 .. 5 .) OF
INTEGER
END ; TYPE IODEVICE
= (TYPEDEVICE , DISKDEVICE , TAPEDEVICE ,
PRINTDEVICE
, CARDDEVICE) ; TYPE IOOPERATION = (
INPUT , OUTPUT , MOVE , CONTROL) ; TYPE IOARG
= (WRITEEOF , REWIND , UPSPACE , BACKSPACE)
: TYPE IORESULT
= (COMPLETE , INTERVENTION , TRANSMISSION
, FAILURE . .ENDFILE
, [ENDMEDIUM , STARTMEDIUM) ; TYPE
TOPARAM
= RECORD
OPERATION : IOOPERATION
; STATUS : IORESULT
; ARG : IOARG
END ; TYPE TASKKIND = (INPUTTASK ,
JOBTASK , . OUTPUTTASK) ; TYPE ARGTAG = (
NILTYPE , BOOLTYPE , INTTYPE , IDTYPE , .
PTRTYPE)} ; TYPE POINTER = @ BOOLEAN ; TYPE
PASSPTR = @ PASSLINK ; TYPE PASSLINK
= RECORD
OPTIONS : SET OF CHAR
; FILLER1 : ARRAY (. 1 .. T .) OF
INTEGER
; FILLER2 : BOOLEAN
; RESET_POINT : INTEGER
: FILLER3 : ARRAY (. 1 .. 11 .) OF
POINTER
END ; TYPE ARGTYPE
= RECORD
CASE TAG : ARGTAG
OF NILTYPE , BOOLTYPE : (BOOL :

BOOLEAN)
; INTTYPE : (INT : INTEGER)
; IDTYPE : (ID : IDENTIFIER)
; PTRTYPE : (PTR : PASSPTR)
END ; CONST MAXARG = 10 ; TYPE ARGLIST =

ARRAY (. 1 .. MAXARG .) OF ARGTYPE ; TYPE
ARGSEQ = (INP . OUT) ; TYPE PROGRESULT
= (TERMINATED . OVERFLOW , POINTERERROR ,
RANGEERROR
, VARIANTERROR , HEAPLIMIT , STACKLIMIT
, CODELIMIT , TIMELIMIT
, CALLERROR) ; PROCEDURE READ (VAR C :

CHROMATICS DISPLAY PROGRAM PAGE 3

CHAR) ; PROCEDURE WRITE (C : CHAR)
PROCEDURE OPEN (F : FILE ; ID : IDENTIFIER
VAR FQUND : BOOLEAW) ; PROCEDURE CLOSE (F
FILE) ; PROCEDURE GET (F : FILE ; P :
INTEGER ; VAR BLOCK : UNIV PAGE) ; PROCEDURE
PUT (F : FILE ; P : INTEGER ; VAR BLOCK :
UNIV PAGE) ; FUNCTION LENGTH (F : FILE) :
INTEGER ; PROCEDURE MARK (VAR TOP : INTEGER)
; PROCEDURE RELEASE (TOP : INTEGER) ;

?

E

e we we

PROCEDURE IDENTIFY (HEADER : LINE)
PROCEDURE ACCEPT (VAR C : CHAR) ; PROCEDUR
DISPLAY (C : CHAR) ; PROCEDURE NOTUSED
PROCEDURE NOTUSED2 ; PROCEDURE NOTUSED3
PROCEDURE NOTUSED4 ; PROCEDURE NOTUSEDS
PROCEDURE NOTUSED6 ; PROCEDURE NOTUSEDT
PROCEDURE NOTUSED8 ; PROCEDURE NOTUUED9
PROCEDURE NOTUSED10 ; PROCEDURE RUN

(ID : IDENTIFIER
VAR PARAM : ARGLIST
VAR LINE : INTEGER
VAR RESULT : PROGRESULT

.
H

e WE Wy we we

et W wE w

PROGRAM CHROFIX (PARAM : COORDINATE);

NEREE RN IR NS N RN RN RS I RN SN N R SR E N SR EEE R TR RR RS

n#
#n

"# PROGRAM CHROFIX WAS ORIGINALLY AUTHORED
BY THEORDORE JOHN #n

"# SOCOFLOSKY, A FORMER GRADUATE STUDENT AT
KSU. WITH THE EXCEP-#»

"¢ TION OF PROCEDURES USER_PROG,
SET_UP_SYSTEM, DRAW_GRAPH, AND #v

"# QUTPUT_LINE, ALL PROCEDURES USED IN THIS
PROGRAM WERE WRITTEN #v

"% BY SOCOFLOSKY. THE PURPOSE OF THESE
PROCEDURES IS TO PROVIDE #m

"# THE NECESSARY INTERFACE BETWEEN THE
INTERDATA COMPUTER AND THE®"

"# CHROMATICS COLOR DISPLAY DEVICE AND TO
PROVIDE ANY PROGRAMMER #u

"# WITH THE CAPABILITY TO OPERATE THE DEVICE

REMOTELY. e
ng

#n

"% THE PROCEDURES MENTIONED ABOVE AS THE
EXCEPTIONS WERE AUTHORED#"

"% BY MYSELF AND PROVIDE THE MECHANISMS TO
DRAW THE GRAPHICAL &n

"% SOLUTION ITSELF ON THE CHROMATICS CRT
FACE, &n

CHROMATICS DISPLAY PROGRAM PAGE 4

n#
#n
N R R N N RN I N E N A RN NN N R RS F NN NN FE RN AR ER NS

NEE R RGNS SRR R SRR R RN F N R E R
na
&n n® TNTERDATA OPERATING SYSTEM 32MT3 SVC

INTERFACE ROUTINE TYPES il uled
#n
NN R R R RSN NN NN RN RSN R

"MISCELLANEQUS DATA TYPES"
TYPE CHAR1 = PACKED ARRAY [1 .. 1] OF
CHAR

; TYPE CHAR3 = PACKED ARRAY [1 .. 3] OF
CHAR

; TYPE CHAR8 = PACKED ARRAY [1 .. 8] OF
CHAR

; TYPE CHARY = PACKED ARRAY [1 .. 4] OF
CHAR

; TYPE CHAR16 = ARRAY [1 .. 16] OF CHAR
; TYPE CHAR28 = ARRAY [1 .. 28] OF CHAR
"SVC1 PARAMETER BLOCK"®
; TYPE SVC1_BLOCK
= RECORD
SVC1_FUNC : BYTE "FUNCTION CODE"
; SVC1_LU : BYTE "LOGICAL UNIT NUMBER"
; SVC1_STAT : BYTE "DEV-INDEP STATUS"
; SVC1_DEV_STAT : BYTE "DEV=-DEPENDENT

STATUS"

: SVC1_BUFSTART : INTEGER
"ADDRESS(BUFFER)"

; SVC1_BUFEND : INTEGER
"ADDRESS(BUFFER)+SIZE({BUFFER)=-1"

; SVC1_RANDOM_ADDR : INTEGER "RANDOM
ADDRESS FOR DASD"

3 SVC1_XFER_LEN : INTEGER "IRANSFER
LENGTH"

; SVC1_RESERVED : INTEGER "“RESERVED

FOR ITAM USE"
]
END "SVC 1 FUNCTION CODES"
; CONST SVC1_DATA_XFER = #00
SVC1_COMMAND = #80
SVC1_READ = #U0
SVC1_WRITE = #20
SVC1_TESTSET = #60
SVC1_TESTIO = #00
SVCI1_ASCII = #00
SVC1_BINARY = #10
SVC1_PROCEED = #00
SVC1_WAIT = #08
SVC1_SEQL = #00

e Mo Wa Wa we WE We We W WE

CHROMATICS DISPLAY PROGRAM PAGE 5

SVC1_RANDOM = #04
SVC1_CWAIT = #00
SVC1_UNC_PROC = #02
SVC1_FORMAT = #00
SVC1_IMAGE = #01

WE WY WS WET WE WP WE wy ME WE ws WM

SVC1_REW = #40
SVC1_BSR = #20
SVC1_FSR = #10
SVC1_WFM = #08
SVC1_FSF = #04
SVC1_BSF = #02
SVC1_RESV_FN = #01 nsve 1

DEVICE-INDEPENDENT STATUS CODES™
H CONS'I' SVC1_OK = #00
; SVC1_ERROR = #80
SVC1_ILGFN = #40
SVC1_DU =
SVC1_EQOM =
SVC1_ECF =
SVC1_UNRV =
SVC1_RECV =
SVC1_ILGLU = 1
SVC1_DEVBUSY = #7F "FILE DESCRIPTOR FOR
SVCT7 REQUESTS"
; TYPE FD_TYPE
= PACKED RECORD
VOLN : CHARL4 "VOLUME NAME"
; FN : CHAR8 "FILE NAME"
; EXTN : CHAR3 "EXTENSION"
; ACCT : CHAR M"ACCOUNT NUMBER

#20
#1
#0
#
it

WE WE We W Wwe W e WE We

0
8
04
0
#

CODE"®

-

END "SVC 7 PARAMETER BLOCK"
; TYPE SVCT7_BLOCK
= RECORD
SVC7_CMD : BYTE "COMMAND®
; SVCT_MOD : BYTE "“MODIFIER/DEVICE

TYPE"
; SVCT_STAT : BYTE "STATUS®
; SVC7 LU : BYTE "LOGICAL UNIT NUMBER"
; SVC7_KEYS : SHORTINTEGER "READ/WRITE
KEYSn

; SVCT_RECLEN : SHORTINTEGER "LOGICAL
RECORD LENGTH"

; SVCT_FD : FD_TYPE "FILE DESCRIPTOR"

; SVCT_SIZE : INTEGER "“FILE(/INDEX)
SIZE"

]
END "SVC 7 COMMAND CODES"™
; CONST SVCT_ALLOC = #80
; SVCT_ASSIGN = #40
; SVCT_CHAP = #20
; SVCT_RENAME = #10
; SVCT7_REPROT = #08

CHROMATICS DISPLAY PROGRAM PAGE 6

SVC7_CLOSE = #04
SVC7_DELETE = #02
SVC7_CHECKPT = #01
SVCT_FETCH_ATTR = #00 "SVC 7 MODIFIER
CODES - ACCESS PRIVILEGES"
; CONST SVCT_AP_SRO = #00

3 SVC7_AP_ERO = #20
; SVCT_AP_SWO = #10
; SVCT_AP_EWO = #60
; SVC7_AP_SRW = #80
; SVCT_AP_SREW = #A0
; SVCT_AP_ERSW = #CO

+ SVCT_AP_ERW = #E0 "SVC T MODIFIER CODES
- BUFFERING/FILE TYPE"
; CONST SVC7_BUF_DEFAULT = #00
; SVCT_BUF_PHYS = #08
SVC7_BUF_LOG = #10
SVC7_BUF_SVC15 = #18
SVC7_FTYPE CONTIG = #00

We We We wWe We Wy we

SVCT_FTYPE CHAIN = #
SVCT_FTYPE INDEX = #02
SVC7_FTYPE ITAM = #07

3 CONST BLACK =0
BLUE = 1
GREEN = 2
CYAN = 3

RED = 4
MAGENTA = 5
YELLOW = 6
WHITE = 7

WE WE WE WE WE WO Wa W we

VAR ALINE : LINE

; J o TEMPX , TEMPY : INTEGER

; OUTLINE : ARRAY [1 .. 132] OF CHAR
QUTPUT_CCUNTER : INTEGER

C : CHAR

f,Y , x1 , Y1, X2, Y2 , RADIUS :
INTEGER

; COLOR_NUM : INTEGER

; SVC1_OUT : SVC1_BLOCK;

e

we wa wy

NEREEEE RN RN USEFULL PROCEDURES
SR RGN RNRRE

PROCEDURE SVC1 (SV_OUT : SVC1_BLOCK);
EXTERN;

PROCEDURE OUTPUT(C : CHAR);

CHROMATICS DISPLAY PROGRAM PAGE T
FORWARD;

PROCEDURE OUTPUT DEC(I : INTEGER);
VAR I100 : INTEGER;
BEGIN "PROCEDURE OUTPUT DECIMAL™
I100 := I DIV 100;
OUTPUT(CHR(I100 + 48));
OUTPUT{(CHR(((I - I100 # 100) DIV 10)
+ 48));
OUTPUT(CHR((I MOD 10) + 48))
END; "PROCEDURE OUTPUT DECIMAL™

PROCEDURE INIT_SVC;
BEGIN "INIT SVC CALLS"
WITH SVC1_OUT DO
BEGIN
SVC1_FUNC i= SVC1_WRITE +
SVC1_IMAGE;
SVC1_LU := 03
SVC1_STAT := 0;
SVC1_DEV_STAT :=
SVC1_BUFSTART :=

0
ADDRESS (OUTLINE

END;
OUTPUT_COUNTER :=
END; "PROCEDURE INIT SVC CALLS"®

PROCEDURE MODE;
BEGIN "PROCEDURE MODE"
OUTPUT(CHR(1))
END; "PROCEDURE MODE"

PROCEDURE OUTPUT_COORD(X,Y : INTEGER);
BEGIN "PROCEDURE QUTPUT CQORDINATE"
OUTPUT_DEC(X);
OUTPUT_DEC(Y)
END; "PROCEDURE OUTPUT COORDINATE®

PROCEDURE SHIP_QUT;
BEGIN "PROCEDURE SHIP OUT"
SVC1_O0UT . SVC1_BUFEND
:= SVCi1_ouT . SVC1_BUFSTART +
OUTPUT_COUNTER - 1 ;
sSvc1 (SVC1_0UT);
OUTPUT_COUNTER := 0
END; "PROCEDURE SHIP QUT"

PROCEDURE OUTPUT (C : CHAR);
BEGIN "PROCEDURE OUTPUT"
OUTPUT_COUNTER 1= suce (
OUTPUT_COUNTER);
OUTLINE [OUTPUT COUNTER] := C
END; "PROCEDURE OUTPUT"

CHROMATICS DISPLAY PROGRAM PAGE 8

PROCEDURE MOVE_CURSOR (X , Y : INTEGER);
"3.6.3.5"

BEGIN "PROCEDURE MOVE CURSORM
MODE;
OUTPUT ('U');
OUTPUT COORD (X , Y);
SHIP_OUT

END; "PROCEDURE MOVE CURSOR™

PROCEDURE SELECT COLOR (COLOR_NUM :
INTEGER); "3.7.4.1"

BEGIN™ PROCEDURE SELECT COLOR"
MODE;
OUTPUT ('Ct);
OUTPUT (CHR (COLOR_NUM + 48));
SHIP_QUT

END; "PROCEDURE SELECT COLOR"

PROCEDURE BACKGROUND_ON; "3.7.4.3"
BEGIN "PROCEDURE BACKGROUND ON*
MODE;
OUTPUT('M') ;
SHIP_OUT
END; "PROCEDURE BACKGROUND ON™

PROCEDURE BACKGROUND_OFF; "3.7.4.4"
BEGIN "PROCEDURE BACKGROUND OFF"
MODE;
OUTPUT('N');
SHIP_OUT
END; "PROCEDURE BACKGROUND OFF"

PROCEDURE ERASE_PAGE; "3.7.5.17
BEGIN "PROCEDURE ERASE PAGE"
OUTPUT(CHR(12));
SHIP_OUT
END; "PROCEDURE ERASE PAGE"

PROCEDURE PLOT_ON; "3.9.1"
BEGIN "PROCEDURE PLOT ON®
MODE;
QUTPUT('G');
SHIP_OUT
END; "PROCEDURE PLOT ON"

PROCEDURE PLOT_OFF; "3.9.2"
BEGIN "PROCEDURE FLOT OFF™
OUTPUT(CHR(21));
SHIP_OQUT
END; "PROCEDURE FLOT OFF"

PROCEDURE VECTOR (X1 , Y1 , X2, Y2 :
INTEGER); "3.9.5.7"
BEGIN "PROCEDURE VECTOR"

CHROMATICS DISPLAY PROGRAM PAGE 9

OUTPUT(CHR(39));
OUTPUT_COORD(X1,Y1);
OUTPUT_COORD(X2,Y2);
SHIP_OUT

END; "PROCEDURE VECTOR™

NSRS NN R RN TR E NSNS RN RN S RO
]

#

®# THE FOLLOWING PROCEDURES AREN'T PRIMITIVES

OF THE CHROMATICS #
® THEY ARE ADDED FOR THE CONVENIENCE OF THE

PROGRAMMER. bd
&

#
SRR E RN N R R SN RN R R R RN SN E AN NN NS RN AR REN

PROCEDURE FIX (K : INTEGER);
BEGIN "PROCEDURE FIX"
FOR J:= K DOWNTO 0 DO
"NOTHING BUT DELAY THE INTERDATA"
END; ®"PROCEDURE FIX"

FUNCTION DCOS(RADIANS : REAL) : REAL;
FORTRAN;

FUNCTION DSIN (RADIANS : REAL) : REAL;
FORTRAN;

CHROMATICS DISPLAY PROGRAM PAGE 10

PROCEDURE DRAW_GRAPH(WHICH_ONE : INTEGER);

TR RS R IR N R N R E SRR C NN IR EREERES
"
&n
n# THIS PROCEDURE IS USED TO DRAW THE
GRAPHS ON THE #n
"# CHROMATICS CRT. THE PROCEDURE
ESSENTIALLY CONTROLS #®n
"# PRIMITIVE OPERATIONS AND INCLUDES A
SIMPLE ROUTINE @ &m
"# TO OBTAIN THE COORDINATES FROM THE

PASSED RECORD. En
ug

&n

n# Y-AXIS COORDINATES ARE CONTAINED IN
COLUMN ONE OF #n

"# OF THE PLOT ARRAYS AND THE Y-AXIS
COORDINATES ARE #v

"# CONTAINED IN THE SECOND COLUMN.
&n

"# DRAWING THE GRAPH THEN BECOMES ONLY A
SIMPLE MATTER #"

"#§ OF VECTORING FROM ONE SET OF

COORDINATES TO THE NEXT, #n
e

#n

"# THE CASE STATEMENT INDICATES THROUGH
THE VALUES OF &w

"# THE VARIABLE WHICH _ONE WHICH MODEL'S
GRAPH TO DRAW, #n

"# A VALUE OF 100 REFERENCES THE
SCHICK-WOLVERTON MODEL, ¥

"# 200 REFERENCES THE JELINSKI-MORANDA
MODEL, AND 300 #w

"# AND 400 REFERENCE BOTH MODELS BEING

SELECTED. LA
n#

&n
NEEEER RSN R SRR RN N RN RN NN NSRRI RS E R RN NN NN

VAR I :; INTEGER;
BEGIN "“DRAW GRAPH"
PLOT_QOFF;
FIX(300000);
CASE WHICH_ONE OF
100,300 : BEGIN
SELECT COLOR(RED);
WITH PARAM DO
BEGIN
MOVE_CURSOR(100,100);
PLOT_ON;

CHROMATICS DISPLAY PROGRAM PAGE 11

I :=1;
VECTOR(100,100,S_W_PLOT(.I,1.).,S_
IF(NUMBER_OF_ERRORS OBSERVED
> 1)
THEN
FORI := 2 TO
NUMBER_OF_ ERRORS_OBSERVED DO
VECTOR(S W_PLOT({.I=-1,1.),S_
PLOT_OFF;
MOVE_CURSOR(0,0)
END
END;
200,400 : BEGIN
SELECT_COLOR(WHITE);
WITH PARAM DO
BEGIN
MOVE_CURSOR(100,100);
PLOT_ON;
I :=1;
VECTOR(100,100,J_M PLOT(.I,1.),d_
IF (NUMBER_OF_ERRORS_OBSERVED
> 1)
THEN
FORI := 2 TO
NUMBER_OF ERRORS_OBSERVED DO
VECTOR(J_M pLOT(.I-1,1.),d_
FLOT_OFF;
MOVE_CURSOR(0,0)
END
END
END "CASE OF WHICH ONE"
END; "DRAW GRAPH"

CHROMATICS DISPLAY PROGRAM PAGE 12

PROCEDURE OUTPUT_LINE(ALINE : LINE);

NEEERAS RSN IR RN RN AR AN ENE RO E NN RN N R R EEEE
ni
#n

n% THIS PROCEDURE IS USED TO MARK THE
SCALE OF THE X &n
"# AND Y AXIS OF THE GRAPH AND TO WRITE

THE LEGENDS. L
ng

a&n
MG R IR AR R RN SRR NG R BN RN R R E NN NE R

VAR I : INTEGER;
BEGIN "PROCEDURE OUTPUT LINE"
HE
WHILE(ALINE(.I.) <> '(:0:)') DO
BEGIN
OUTPUT(ALINE(.I.));
I := SUCC(I)
END;
SHIP_QUT
END; "PROCEDURE OQUTPUT LINE"

CHROMATICS DISPLAY PROGRAM PAGE 13

PROCEDURE SET_UP_SYSTEM;

(LIt PR R T ISRt Ra s st tdtda ol i algdid it idigtsds
i
&n
"# THIS PROCEDURE IS USED TO INITIALIZE
THE CHROMATICS #n
"# CRT FACE. THE GRAPHICAL FRAME IS
INITIALIZED HERE, AS #n
"# WELL AS THE LEGENDS AND SCALE
MARKINGS., THE ORIGIN OF #nv

" THE GRAPH 15 100,100.
&n

naE
#n
NSRRI R R E RN BN BN RN RN NN E R R RN E RN RO

BEGIN "SET UP SYSTEM"
BACKGROUND_ON;
SELECT COLOR(BLUE);
BACKG ROUND_OFF ;
FIX(300000);
ERASE_PAGE;
FIX(300000);
PLOT_ON;
SELECT_COLOR(RED);

WSET UP X AXIS OF CHROMATICS CRT"

VECTOR(100,100,400, 100) ;
VECTOR(100,100,100,465);
VECTOR(130,100,130,094);
VECTOR(160,100,160,004) ;
VECTOR(190,100,190,094);
VECTOR(220, 100,220,094} ;
YECTOR(250, 100,250,094) ;
VECTOR(280,100,280,094);
VECTOR(310,100,310,094);
VECTOR(340,100,340,094);
VECTOR(370,100,370.094);
VECTOR(400,100,400,094) ;

"SET UP Y-AXIS ON CHROMATICS CRT"

VECTOR(100,130,094,130);
VECTOR(100,160,094 ,160) ;
VECTOR{ 100,190,094,190);
VECTOR(100,220,094,220) ;
YECTOR(100,250,094,250);
VECTOR(100,280,094,280);
VECTOR(100,310,094,310);
VECTOR(100,340,094 ,340);

CHROMATICS DISPLAY PROGRAM PAGE 14

VECTOR(100,370,094,370);
VECTOR(100,400,094,400);
VECTOR(100,450,094,450);
PLOT_OFF;

"LABEL THE X=-AXIS FOR RELIABILITY"

FIX(300000);
MOVE_CURSOR(125, 88) ;
OUTPUT_LINE('.1(:0:)");
MOVE_CURSOR(155,88) ;
OUTPUT_LINE('.2(:0:)');
MOVE_CURSOR(18 ,88) ;
OUTPUT_LINE('.3(:0:)');
MOVE_CURSOR(215,88);
OUTPUT_LINE('.4(:0:)");
MOVE_CURSOR(245, 88) ;
OUTPUT_LINE('.5(:0:)');
MOVE_CURSOR(275, 88) ;
OUTPUT LINE('.6(:0:)');
MOVE_CURSOR(305, 88) ;
OUTPUT_LINE('.7(:0:)"');
MOVE_CURSOR(335,88);
OUTPUT_LINE('.8(:0:)');
MOVE_CURSOR(365, 88) ;
OUTPUT_LINE('.9(:0:)");
MOVE_CURSOR(395, 88);
OUTPUT_LINE('1.0(:0:)");

"LABEL THE Y-AXIS FOR MTTF"

MOVE_CURSOR(07 8,135);
OUTPUT_LINE('2(:0:)");
MOVE_CURSOR(07 8,165) ;
OUTPUT_LINE('4(:0:)");
MOVE_CURSOR(078,195);
OUTPUT_LINE('6(:0:)"');
MOVE_CURSOR(07 8,225) ;
OUTPUT_LINE('8(:0:)");
MOVE_CURSOR(07 8,255) ;
OUTPUT_LINE('10(:0:)");
MOVE_CURSOR(07 8,285)
OUTPUT_LINE('12(:0:)');
MOVE_CURSOR(07 8,315);
QUTPUT_LINE('14(:0:)1');
MOVE_CURSOR(07 8,345) ;
OUTPUT_LINE('16(:0:)');
MOVE_CURSOR(07 8,375) ;
OUTPUT_LINE('18(:0:)");
MOVE_CURSOR(07 8,405) ;
OUTPUT_LINE('20(:0:)');
MOVE_CURSOR(072,455)
CUTPUT_LINE('>20(:0:)");

]
.
]
]

CHROMATICS DISPLAY PROGRAM PAGE 15
"LABEL THE Y-AXIS AS MTTF"

MOVE_CURSOR(028,320);
OUTPUT _LINE('MITF(:0:)");
MOVE_CURSOR(028,290);
OUTPUT_LINE(' IN(:0:)');
MOVE_CURSOR(028,260);
IF(PARAM, SCALE DESIRED = 1)
THEN
OUTPUT_LINE('DAYS(:0:)")
ELSE
IF(PARAM. SCALE_DESIRED = 2)
THEN
OUTPUT_LINE('WEEKS(:0:)1")
ELSE
OUTPUT_LINE("MONTHS(:0:)1!);

"LABEL THE X-~AXIS AS RELIABILITY"

MOVE_CURSOR(220,070) ;
OUTPUT_LINE('RELIABILITY(:0:)');

"PUT NOTE IN REFERENCE COLOR OF EACH
MODEL"

"AND MOVE THE CURSCR BACK TO THE
ORIGIN."

MOVE_CURSOR(160,050) ;

OUTPUT_LINE('SCHICK-WOLVERTON DATA IS
IN RED.(:0:)");

SELECT COLOR(WHITE);

MOVE_CURSOR(160,03 8) ;

OUTPUT_LINE('JELINSKI~-MORANDA DATA IS
IN WHITE.(:0:)");

MOVE_CURSOR(0,0)

END; "PROCEDURE SET UP SYSTEM"®

CHROMATICS DISPLAY PROGRAM PAGE 16

PROCEDURE USER_PROG;

(EEY TR R RLTZIT 2223222222222 2 8222 e 2 R dRd i Ridsl]s)

n#
&n

m® THIS PROCEDURE DETERMINES WHICH MODEL
HAS BEEN CHOSEN #7

n# TO PRESENT A GRAPH ON THE CHROMTICS.
THE KEY IS THE wn

"# YARIABLE COMBINATION_SELECTED, WHICH
IS PASSED BY THE &

m"# CALLING PROGRAM. THIS VARIABLE
COINCIDES WITH PROGRAM &7

. PROJECT'S DESTINATION.
#n

ni
En
NSRS REEN R NN R NN N NN RN RSN E NN R RS ERE NN RN E RN

VAR WHICH_ONE : INTEGER;
BEGIN "PROCEDURE USER PROGRAM"
SET_UP_SYSTEM;
CASE PARAM.COMBINATION_SELECTED OF
1,10.13,19 : BEGIN
WHICH _ONE := 100;
DRAW_GRAPH(WHICH_ONE)
END;
2,11,14,20 : BEGIN
WHICH_ONE := 200;
DRAW_GRAPH(WHICH_ONE)
END;
3.12,15.21 : BEGIN
WHICH_ONE := 300;
DRAW_GRAPH(WHICH_ONE);
WHICH_ONE := 400;
DRAW_GRAPH(WHICH_ONE)
END
END; "CASE OF COMBINATION SELECTED"
PLOT_OFF
END; "PROCEDURE USER PROGRAM®

BEGIN "PROGRAM CHROFIX"
INIT_SVC;
USER_PROG

END. "PROGRAM CHROFIX"

PLOTTER DISPLAY PROGRAM PAGE 1

"ROBERT YOUNG" "DEPARTMENT OF COMPUTER
SCIENCE"

CONST COPYRIGHT =

1978 "//t7771710¢47 #
CONST NUL = '(:00:)"

ME WS A e ME WE WS W WA ME WS WS WS WS WP WE ME MA WA ME Wy S %er W WME M ME ME M WE We WA e WA WE WO e M We WE W WA We W we e e s

MODE = *(:01:)?
X-BAR = '|!?

BS = "(:08:)!
NAK = *(:15:)?
Y_BAR = ing

NL = "(:10:)"
A= AT

INCR_X BAR = '"#°
FF = 1(:12:)?

c = Ct

INCR_Y BAR = 3!
CR = "(:13:)"

G = 'G?

DOT_ = ¢!

CAN = '"(:24:)1?
H = tH?
INCR_DOT = '&°¢
EM = *(:25:)"
M= '™

VECT = *(:39:)!
SUB = "(:26:)"
N = "N

'COPYRIGHT ROBERT YOUNG
PREFIX # #####d##E44" ;

CONCAT_VECTOR = ('

ESC = "(:27:)!
Q = 'QT

ARC =)

FS = %(:28:)!
U= gt
CIRCLE = T#1
GS = "(:29:)!

V= '"7W?

RECT = '+!

RS = '(:30:)"
W= 'yt

ZERO = Q7
US = "{:31:)?
X = 1X1¢

ONE = 11!

SP = '(:32:)!
Y = 11!

THO = 21t

DEL = *(:127:)!
P S = tFt
THREE = '3!
P_U = 'H

P D= 11t
FOUR = t4°

M_A = 'K’

PLOTTER DISPLAY PROGRAM PAGE 2

; MR = 'J¢

: FIVE = '5¢
; DL = 'Lt

y DLC = 17Y

! SIX = 't

s DS = "¢

; DF = '4*

; SEVEN = 17°
; C_LE = 'B!

; CD=CR

; EIGHT = '8!
; P.C = ot

: R_C = /!

; NINE = 'g?
; P_ON = "(:12)°
1

P_OFF = '(:3:)'

; SIGNS = ["=t , '+!] ; CONST PAGELENGTH =
512 ; TYPE PAGE = ARRAY (. 1 .. PAGELENGTH .)
OF CHAR ; CONST LINELENGTH = 132 ; TYPE LINE =
ARRAY (. 1 .. LINELENGTH .) OF CHAR ; CONST
IDLENGTH = 12 ; TYPE IDENTIFIER = ARRAY (. 1
.. IDLENGTH .) OF CHAR;

NN RN R NSRRI RN R BRI RN NGB ENERN
n§
wn

"# THE FOLLOWING RECORD TYPE IS THE MEANS
BY WHICH ALL #v

"# DATA IS PASSED TO THIS PROGRAM. THIS
PROGRAM HAS an

"% BEEN TREATED AS AN EXTERNAL PROCEDURE
AND THIS FORM &%

n"# OF A RECORD IS THE PARAMETER OF THE
PROGRAM CALL. hE

ng
#n

n# AN INSTANCE OF THIS RECORD IS
INSTANTIATED IN THE i

"# PROGRAM HEADING. THE VARIABLE DECLARED

IS PARAM. &n
ng

#n
n# ALL IDENTIFIERS USED WITHIN THE RECORD

SHOULD BE *n
"# SELF-EXPLANATORY AND NEED NO FURTHER
EXPLANATION. &n

n"e
#n
NEEEE RN NSRS NN NS RN RN RN RN R BN E R B RN RN ES

TYPE COORDINATE = RECORD
S W_PLOT

PLOTTER DISPLAY PROGRAM PAGE 3

¢ ARRAY(.1..250,1..2.) OF INTEGER;
J_M_PLOT

: ARRAY(.1..250,1..2.) OF INTEGER;
COMBINATION_SELECTED

: INTEGER;

SCALE DESIRED
: INTEGER;

NUMBER_OF_ERRORS_OBSERVED
: INTEGER

END;

TYPE FILE = 1 .., 2 ; TYPE FILEKIND = (EMPTY
» SCRATCH , ASCII , SEQCODE , CONCODE) ; TYPE
FILEATTR

= RECORD
KIND : FILEKIND
; ADDR : INTEGER
; PROTECTED : BOOLEAN
; NOTUSED : ARRAY (. 1 .. 5 .) OF

END ; TYPE IODEVICE
= (TYPEDEVICE , DISKDEVICE , TAPEDEVICE ,
PRINTDEVICE
. CARDDEVICE) ; TYPE IOOPERATION = (
INPUT , OUTPUT , MOVE , CONTROL) ; TYPE IOARG
(WRITEEOF , REWIND , UPSPACE . BACKSPACE)
TYPE IORESULT
= (COMPLETE , .INTERVENTION , TRANSMISSION
y FAILURE . ENDFILE
s ENDMEDIUM , STARTMEDIUM) ; TYPE
IOPARAM
= RECORD
OPERATION : IOOPERATION
; STATUS : IORESULT
; ARG : IOARG
END ; TYPE TASKKIND = (INPUTTASK ,
JOBTASK , OUTPUTTASK) ; TYPE ARGTAG = (
NILTYPE , . BOOLTYPE , INTTYPE , IDTYPE ,
PTRTYPE) ; TYPE POINTER = € BOOLEAN ; TYPE
PASSPTR = € PASSLINK ; TYPE PASSLINK
= RECORD
OPTIONS : SET OF CHAR
; FILLER1 : ARRAY (. 1 .. T .) OF
INTEGER
; FILLER2 : BOOLEAN
; RESET_POINT : INTEGER
; FILLER3 : ARRAY (. 1 .. 11 .) OF
POINTER
END ; TYPE ARGTYPE
= RECORD
CASE TAG : ARGTAG
OF NILTYPE , BOOLTYPE : (BOOL :
BOOLEAN)

- It

PLOTTER DISPLAY PROGRAM PAGE 4

; INTTYPE : (INT : INTEGER)
; IDTYPE : (ID : IDENTIFIER)
; PTRTYPE : (PTR : PASSPTR)
END ; CONST MAXARG = 10 ; TYPE ARGLIST =
ARRAY (. 1 .. MAXARG .) OF ARGTYPE ; TYPE
ARGSEQ = (INP , OUT) ; TYPE PROGRESULT
= (TERMINATED . OVERFLOW , .POINTERERROR ,
RANGEERROR
, VARIANTERROR , HEAPLIMIT , STACKLIMIT
, CODELIMIT , TIMELIMIT
. CALLERROR) ; PROCEDURE READ (VAR CH
: CHAR) ; PROCEDURE WRITE (CH : CHAR)}
PROCEDURE OPEN (F : FILE ; ID : IDENTIFIER
VAR FOUND : BOOLEAN) ; PROCEDURE CLOSE (F

FILE) ; PROCEDURE GET (F : FILE ; P :
INTEGER ; VAR BLOCK : UNIV PAGE) ; PROCEDURE
PUT (F : FILE ; P : INTEGER ; VAR BLOCK :

UNIV PAGE) ; FUNCTION LENGTH (F : FILE) :
INTEGER ; PROCEDURE MARK (VAR TOP : INTEGER)
: PROCEDURE RELEASE (TOP : INTEGER) ;
PROCEDURE IDENTIFY (HEADER : LINE)
PROCEDURE ACCEPT (VAR CH : CHAR) ; PROCEDURE
DISPLAY (CH : CHAR) ; PROCEDURE READPAGE (
VAR BLOCK : UNIV PAGE ; VAR EOF : BOOLEAN) ;
PROCEDURE WRITEPAGE (BLOCK : UNIV PAGE ; EOF
: BOOLEAN) ; PROCEDURE READLINE (VAR TEXT :
UNIV LINE) ; PROCEDURE WRITELINE (TEXT :
UNIV LINE) ; PROCEDURE RUN

(ID : IDENTIFIER

; VAR PARAM : ARGLIST

: VAR LINE : INTEGER

; VAR RESULT : PROGRESULT

)3

PLOTTER DISPLAY PROGRAM PAGE 5

PROGRAM PLOTFIX (PARAM : COORDINATE);

NN S R R R N F R B U R RN R N FE RNV RN AN EE RO R

ni
&n

"# PROGRAM PLOTFIX WAS ORIGINALLY AUTHORED
BY THEODORE JOHN e

"% SOCOFLOSKY, A FORMER GRADUATE STUDENT AT
KSU. WITH THE EXCEP-#"

"# TION OF THE PROCEDURES USER PROG, SET UP
SYSTEM, DRAW GRAPH, &®

"# AND OUTPUT LINE, ALL PROCEDURES USED 1IN
THIS PROGRAM WERE ™

"® WRITTEN BY SOCOFLOSKY. THE PURPOSE OF
THESE PROCEDURES IS TO #n

"% PROVIDE THE NECESSARY INTERFACE BETWEEN
THE INTERDATA COMPUTER#"

% AND THE PLOTTER DISPLAY DEVICE AND TO
PROVIDE THE PROGRAMMER #n

"# WITH THE CAPABILITY TO OPERATE THE

DEVICE REMOTELY. &y
nE

&n
"# THE PROCEDURES MENTIONED ABOVE AS
EXCEPTIONS WERE AUTHORED BY #7
"# MYSELF AND PROVIDE THE MECHANISM FOR
DRAWING THE GRAPHICAL &n
ni SOLUTION ON THE PLOTTER.
an
ng
En
NEE SRR RN R R AR A N RN A RN RN RN R BN AN RN

CONST "THESE CONSTANTS REFER TO PEN COLOR
FOR THE PLOTTER"

BLACK = 101;

RED s 13

GREEN = 121;

LIGHT_BLUE = '3';

DARK_BLUE = '4°%;

PUORPLE = 5%;

YELLOW = 16%;

BLANK =

TYPE COMMAND_TYFE =

(S_MOVE_CURSOR,S_X_BAR,S Y BAR.S INCR_X BAR,
S INCR_Y_BAR, S DOT,S_INCR_DOT,S_VECT
S_CONCAT_VECTOR, S ARC,S_CIRCLE.S_REC
CHARACTER) ;
"$EJECT™

PLOTTER DISPLAY PROGRAM PAGE 6

VAR
OUTPUT_COUNT : INTEGER;
WIDTH_CHAR : INTEGER;
HEIGHT_CHAR : INTEGER;
V_OR_H_CHAR ¢ INTEGER;
Y 1 : INTEGER;
X1 : INTEGER;
X1,X2,X3,11,12 : INTEGER;
COMMAND : COMMAND_TYPE;
PEN_IS_DOWN : BOOLEAN;
PLOT_ON : BOOLEAN;
SET_BACK_ON : BOOLEAN;
FIRST I_X_BAR : BOOLEAN;
CH : CHAR;
CHA ¢ CHAR;
X_OR_T : CHAR;
TEXT, COORD : LINE;

FUNCTION DCOS(RADIANS : REAL) : REAL;
FORTRAN;

FUNCTION DSIN(RADIANS : REAL) : REAL;
FORTRAN;

PROCEDURE OUTPUT CHAR (CH : CHAR);
"IMAGE MODE OUTPUT"
BEGIN "PROCEDURE OUTPUT CHARACTER™
OUTPUT_COUNT := SUCC (OUTPUT_COUNT);
TEXT [OUTPUT COUNT] := CH;
IF OUTPUT_COUNT = 80
THEN BEGIN WRITELINE (TEXT)
OUTPUT_COUNT := 0 END
END; "PROCEDURE OUTPUT CHARACTER"

PROCEDURE FLUSH_TEXT;

BEGIN "PROCEDURE FLUSH TEXT"

FOR OUTPUT_COUNT := OUTPUT_COUNT + 1
TO 80

DO TEXT [OUTPUT_COUNT] := '(:00:)"';
WRITELINE (TEXT);
OUTPUT_COUNT := 0

END; "PROCEDURE FLUSH TEXT"

PROCEDURE OUTPUT_INT (I : INTEGER);
FORWARD;

PROCEDURE OUTPUT_LINE (STRING : LINE);
VAR INDEX : INTEGER;
BEGIN "TERMINATE ON NL,'$' OR 80 BUT DO
NOT SHIP NL*"
INDEX := 1;
OUTPUT_CHAR (D_C);
OUTPUT_INT (HEIGHT CHAR);
OUTPUT_CHAR (SP);

PLOTTER DISPLAY PROGRAM PAGE T

OUTPUT_INT (V_OR_H_CHAR);
OUTPUT_CHAR (SP);
OUTPUT _INT (WIDTH CHAR);
OUTPUT_CHAR (SP);
QUTPUT_CHAR (C_E);
WHILE (STRING [INDEX] <> NL)
AND (INDEX < 81)
AND (STRING [INDEX] <> '$')
DO BEGIN
OUTPUT_CHAR (STRING [INDEX]);
INDEX := SUCC (INDEX)
END;
OUTPUT_CHAR (C_D);
FLUSH_TEXT
END; "PROCEDURE OUTPUT LINE"™

PROCEDURE OUTPUT_INT;

VAR I1000 , I100 , I10 : INTEGER;

BEGIN "PROCEDURE OUTPUT INTEGER™
I1000 := I DIV 1000;
OUTPUT_CHAR (CHR (I1000 + 48));
I100 := (I - I1000 ¥ 1000) DIV 100;
OUTPUT _CHAR (CHR (I100 + 48));
I10 := (I - I1000 # 1000 - I100 ® 100

) DIV 10;

OUTPUT_CHAR (CHR (I10 + 48));
OUTPUT CHAR (CHR ((I MOD 10) + 48

))
END; "PROCEDURE OUTPUT INTEGER"

PROCEDURE PEN_DOWN;
BEGIN PEN IS_DOWN := TRUE ; OUTPUT_CHAR

(P_D) END;

PROCEDURE PEN_UP;
BEGIN PEN_IS DOWN := FALSE ; OUTPUT_CHAR
(P_U) END;

PROCEDURE SET COLOR(CHA : CHAR):
BEGIN "PROCEDURE SELECT PEN COLOR"
OUTPUT_CHAR (P_S);
OUTPUT CHAR (CHR (ORD (CHA) + 1)

OUTPUT_CHAR (SP);
FLUSH_TEXT
END; "PROCEDURE SELECT PEN COLOR"

PROCEDURE MOVE_CURSOR (X_1 , Y_1 :
INTEGER);
BEGIN "PROCEDURE MOVE PLOTTER CURSOR"
OUTPUT_INT (X_1);
OUTPUT_CHAR (R C);
OUTPUT_INT (Y_1);
OUTPUT CHAR (M_A)

PLOTTER DISPLAY PROGRAM PAGE 8
END; "PROCEDURE MOVE PLOTTER CURSOR™

PROCEDURE FIX(NUMBER : INTEGER);
VAR
I : INTEGER;
BEGIN "PROCEDURE FIX"
FOR I := 1 TO NUMBER DO
BEGIN
"SLOW THE INTERDATA DOWN™
END
END; "PROCEDURE FIX"

PLOTTER DISPLAY PROGRAM PAGE 9

PROCEDURE SET_UP_SYSTEM;

MR R RGN RN RS AN R E AN IR R RN RN NSRS
n
#n
"# THIS PROCEDURE IS USED TO INITIALIZE
THE PLOTTER DIS-#n
"8 PLAY. THE GRAPHICAL FRAME I3
INITIALIZED HERE, AS &0
n# WELL AS THE LEGENDS AND SCALE
MARKINGS. THE ORIGIN #&w
ne OF THE GRAPH IS 800, 800.
#n
ng
&#n
NEEEERENENERIC U NN NN E N N R R RS RN EE RS RSN EER

VAR
I : INTEGER;
BEGIN "PROCEDURE SET UP THE SYSTEM"
"DRAW THE X AND Y AXIS OF GRAPH"
WIDTH CHAR := 36;
HEIGHT_CHAR := 36;
SET_COLOR(DARK_BLUE) ;
PEN_UP;
MOVE_CURSOR(800,800);
PEN DOWN;
MOVE_CURSOR(2800,800);
PEN UP;
MOVE_CURSOR(800,800} ;
PEN. DOWN;
MOVE_CURSOR(800,2100);
PEN UP;
FLUSH_TEXT;
"LABEL THE X AXIS OF THE GRAPHY
FIX(300000);
FOR I :=1 TO 10 DO
BEGIN
PEN_UP;
MOVE_CURSOR((800 + 200 &
I1),800);
PEN_DOCWN;
MOVE_CURSOR((80 + 200 ®
I1),750);
PEN_UP
END;

MOVE_CURSOR(2600, 800) ;
PEN DOWN;

PLOTTER DISPLAY PROGRAM

MOVE_CURSOR(2600,750) ;

PEN UP;

MOVE_CURSOR(2800, 800) ;

PEN DOWN;

MOVE_CURSOR(2800,750) ;
QUTPUT_COUNT := 0;
HEIGHT_CHAR := 36;
WIDTH _CHAR := 36;
OUTPUT_CHAR(P_ON) ;

PEN_ UP;

MOVE_CURSOR(1000,650) ;
OUTPUT_LINE('.1$");

PEN_UP;

MOVE_CURSOR(1200,650) ;
OUTPUT LINE('.2$');

PEN_UP;

MOVE_CURSOR(1400,650) ;
OUTPUT LINE('.3$');

PEN UP;

MOVE_CURSOR(1600,650) ;
OUTPUT_LINE('.48');

PEN_UP;

MOVE_CURSOR(1800,650);
OUTPUT_LINE('.5%');

FIX(300000);
PEN UP;

MOVE_CURSOR(2000,650) ;
OUTPUT_LINE('.68');

PEN_UP;

MOVE CURSOR(2200,650);
OUTPUT_LINE('.7$");

PEN_UP;

MOVE_CURSOR(2400,650) ;
OUTPUT _LINE('.8$');

PEN_UP;

MOVE_CURSOR(2400,800) ;

PEN DOWN;

MOVE_CURSOR(2400,750);

PEN_ UP;

MOVE_CURSOR(2600,650) ;
OUTPUT LINE('.9$');

PEN_UP;

MOVE CURSOR(2600,800);

PEN DOWN;

MOVE_CURSOR(2600,750) ;

PEN_UP;

MOVE_CURSOR(2800,650);
OUTPUT_LINE('1.0$');

PEN UP;

MOVE_CURSOR(2800,800) ;

PEN_DOWN;

MOVE_CURSOR(2800,750) ;

PEN_UP;
FLUSH_TEXT;

PAGE 10

I));

I));

PLOTTER DISPLAY PROGRAM

"LABEL THE Y AXIS OF THE GRAPH"

FIX(300000);
FOR I := 1 TO 11 DO
BEGIN
PEN_UP;
MOVE_CURSOR(800,(80 + 100

PEN_DOWN;
MOVE_CURSOR(750,(80 + 100

PEN_UP

END;
MOVE_CURSOR(800,1900) ;
PEN_DOWN;
MOVE_CURSOR(750,1900);
PEN_UP;
OUTPUT_COUNT :
HEIGHT CHAR := 3
WIDTH_CHAR := 36
OUTPUT. CHAR(P_ON);
PEN UP;
MOVE_CURSOR(650,900);
OUTPUT_LINE('2%");
PEN UP;
MOVE_CURSOR(650,1000);
OUTPUT_LINE('4$');
PEN_UP;
MOVE_CURSOR(650,1100);
OUTPUT_LINE('6$");
PEN_UP;
MOVE_CURSOR(650,1200);
OUTPUT_LINE('8$');
PEN_UP;
MOVE CURSOR(650,1300);
OUTPUT LINE('10$');
FIX(300000);
PEN_UP;
MOVE_CURSOR(650,1400);
OUTPUT LINE('12$");
PEN_UP;
MOVE_CURSOR(650,1500);
OUTPUT_LINE('14$");
PEN_UP;
MOVE_CURSOR(650,1600);
OUTPUT_LINE('16$');
PEN_UP;
MOVE_CURSOR(650,1700);
QUTPUT_LINE('18$1%);
PEN_UP;
MOVE_CURSOR(800, 1800);
PEN_DOWN;
MOVE_CURSOR(750,1800);
PEN_UP;

0
6
)

PAGE 11

PLOTTER DISPLAY PROGRAM PAGE 12

MOVE_CURSOR(650,1800) ;
OUTPUT_LINE('20$');
PEN_UP;

MOVE_CURSOR(800, 1800) ;
PEN_DOWN;
MOVE_CURSOR(750,1800);
PEN_UP;
MOVE_CURSOR(620,1900) ;
OUTPUT_LINE('>20$');
PEN_UP;

MOVE_CURSOR(800,1900);
PEN. DOWN;
MOVE_CURSOR(750,1900);
FLUSH_TEXT;

"LABEL THE Y AXIS AS MTTF"

FIX(300000);
PEN UP;
MOVE CURSOR(300,1500);
OQUTPUT LINE('MTTF$');
PEN_UP;
MOVE_CURSOR(300, 1400) ;
OUTPUT_LINE(' IN$');
PEN_UP;
MOVE_CURSOR(300,1300);
IF(PARAM. SCALE DESIRED = 1)
THEN
OUTPUT LINE('DAYS$!')
ELSE
IF(PARAM. SCALE DESIRED = 2)
THEN
OUTPUT LINE('WEEKS$')
ELSE
OUTPUT LINE('MONTHS$');
FLUSH_TEXT;

"LABEL THE X AXIS AS RELIABILITY"

PEN_UP;

MOVE_CURSOR(1600,550) ;

OUTPUT_LINE('RELIABILITY$');

PEN_UP;

SET_COLOR(BLACK);

MOVE_CURSOR(1200,450) ;

OUTPUT_LINE(*SCHICK=-WOLVERTON DATA
IS IN BLACK$');

PEN_UP;

SET_COLOR(GREEN) ;

MOVE_CURSOR(1200,350) ;

OUTPUT_LINE('JELINSKI-MORANDA DATA
IS IN GREEN$');

SET_COLOR(BLACK) ;

PEN_UP;

PLOTTER DISPLAY PROGRAM PAGE 13

MOVE_CURSOR(0,0);
FLUSH_TEXT
END; "PROCEDURE SET UP THE SYSTEM"

PLOTTER DISPLAY PROGRAM PAGE 14

PROCEDURE DRAW_GRAPH(WHICH_ONE : INTEGER);

NESEEE R R RN N R R RN R RN E R EE SRR RN R RN E RN RN
ni
@n

®# THIS PROCEDURE IS USED TO DRAW THE
GRAPHS ON THE PLOT- #n
"# ER DEVICE. THE PROCEDURE ESSENTIALLY

CONTROLS THE &n
u# PRIMITIVE OPERATIONS OF THE PLOTTER
AND INCLUDES A LA

"# SIMPLE ROUTINE TO OBTAIN THE
COORDINATES FROM THE PAS- #&n

ne SED RECORD,
#n

n§
#n

"# X-AXIS COORDINATES ARE CONTAINED IN
COLUMN ONE OF THE #n

"# PLOT ARRAYS AND THE Y-AXIS
COORDINATES ARE CONTANED IN %0

n# COLUMN TWO OF THE PLOT ARRAYS OF THE
RECORD TYPE. DRAW-#"

"# TNG THE GRAPH THEN BECOMES ONLY A
MATTER OF MOVING THE #"

"# PLOTTER PEN FROM ONE SET OF

COCRDINATES TO THE NEXT. Ll
ng

"# THE CASE STATEMENT INDICATES THROUGH
THE VALUES OF THE #7

"# VARIABLE WHICH_ONE WHICH MODEL'S
GRAPH TO DRAW. A VALUES"

ni OF 100 REFERENCES THE
SCHICK-WOLVERTON MODEL, A VALUE QF#n

n# 200 REFERENCES THE JELINSKI-MORANDA
MODEL, AND VAUES OF #&n

"# 300 AND 400 REFERENCE BOTH MODELS

BEING SELECTED. L
n#

&n
N R N E N F NN N RN AR NN RN IR NN O N R R ER R NN NN EN

VAR I : INTEGER;
BEGIN "PROCEDURE DRAW GRAPH®
CASE WHICH_ONE OF
100,300 : BEGIN
SET_COLOR(BLACK);
WITH PARAM DO
BEGIN
PEN_UP;
MOVE_CURSOR(800, 800) ;

PLOTTER DISPLAY PROGRAM PAGE 15

PEN_DOWN;
I :=1;
MOVE_CURSOR(S_W_PLOT(.I,1.),S_W
IF(NUMBER_OF_ ERRORS_OBSERVED
> 1)
THEN
FOR I :=2 TO
NUMBER_OF ERRORS_OBSERVED DO
MOVE_CURSOR{S_W_PLOT(.I,1
PEN_UP;
MOVE_CURSOR(0,0)
END
END;
200,400 : BEGIN
SET_COLOR(GREEN) ;
WITH PARAM DO
BEGIN
PEN_UP;
MOVE_CURSOR(800, 800) ;
PEN_DOWN;
I := 13
MOVE_CURSOR(J_M _PLOT(.I,1.),J_M
IF(NUMBER_OF_ERRORS_OBSERVED
> 1)
THEN
FOR I :=2 TO
NUMBER_OF ERRORS_OBSERVED DO
MOVE_CURSOR(J_M PLOT(.I,1
PEN_UP;
MOVE_CURSOR(0,0)
END
END
END; "CASE OF WHICH ONE"
PEN_UP;
SET_COLOR(BLANK) ;
MOVE_CURSOR(0,0)
END; "PROCEDURE DRAW GRAPH"

PLOTTER DISPLAY PROGRAM PAGE 16

PROCEDURE USER_PROGRAM;

REFEREERERBURRRR RN R RN AR U RN E UG R RO RN RS

L
En

"# THIS PROCEDURE DETERMINES WHICH MODEL
HAS BEEN CHOSEN m

n# T0O PRESENT A GRAPH ON THE PLOTTER.
THE KEY IS THE VAR~ #m

n"# TABLE COMBINATION SELECTED, WHICH IS
PASSED BY THE CALL-#&n"

"# TNG PROGRAM, THIS VARIABLE COINCIDES
WITH THE PROGRAM #v

w# PROJECT'S VARIABLE NAMED DESTINATION.
#n

ni
#n
M R N R R R R RS R U NN N N RN IR R RN DR NN

VAR WHICH _ONE : INTEGER;
BEGIN "PROCEDURE USER PROGRAM"
SET_UP_SYSTEM;
CASE PARAM,COMBINATION_SELECTED OF

T+10,19 : BEGIN
WHICH_ONE := 100;
DRAW_GRAPH(WHICH_ONE)

END;

8,11,20 : BEGIN =
WHICH_ONE := 200;
DRAW_GRAPH(WHICH_ONE)

END;

9,12,21 : BEGIN
WHICH_ONE := 300;
DRAW_GRAPH(WHICH_ONE);
WHICH_ONE := 400;
DRAW_GRAPH(WHICH_ONE)

END
END "CASE OF COMBINATION SELECTED"
END; "PROCEDURE USER PROGRAM"

BEGIN "PROGRAM PLOTFIX"
V_OR_H CHAR := 0;
USER_PROGRAM;
FLUSH_ TEXT "EMPTY THE CUTPUT BUFFER"
END. "PROGRAM PLOTFIX"

Page 58

LIST OF REFERENCES

Goel, Armit and K. Okumoto, "Time-Dependent Error
Detection Rate Model for Software Reliability and
Other Performance MMeasures'", IEEE Transactions on
Reliability, Vol. R-28, No.3, August 1979, pp 206-
211.

Hamilton, Patricia and J. Musa, '"Measuring
Reliability of Computation Software Centers",
Proceedings of the 3d International Conference
on Software Engineering, May 1978, pp 29-36.

Lipow, M., "On Software Reliability'", IEEE
Transactions on Reliability, Vol. R-28, No. 3,
August 1979, pp 178-180.

Littlewood, B., ''How to Measure Soffware Reliability
and How Not To'", IEEE Transactions on Reliability,
Vol. R-28, No. 3, pp 103-110.

Littlewood, B., "Software Reliability Models for
Modular Program Structure', IEEE Transactions on
Reliability, Vol. R-28, No. 2, pp 241-247.

Littlewood, B., "A Reliability Model for Markov
Structured Software'", Proceedings of the International

Conference on Reliable Software, May 1975, pp 204-207.

Littlewood, B., "Theories of Software Reliability:
How Good Are They and How Can They Be Improved',

IEEE Transactions on Software Engineering, Vol. SE-6,
No. 5, September 1980, pp 489-500.

Miyamato, I., "Toward an Effective Software
Reliability Evaluation', Proceedings of the 3d
International Conference on Software Engineering,
May 1978, pp 46-53.

Musa, John, "A Theory of Software Reliability and Its
Application (Revised)'", An Abstract, Bell Telephone
Laboratories, Inc., pp 157-212.

10.

11

12.

13.

14,

15.

16.

i

Page 59

Musa, John, '"Validity of Execution Time Theory of
Software Reliability™, IEEE Transactions on
Reliability, Vol. R-28, No. 3, August 1979, pp 181-
192,

Putnam, Lawrence, "A General Empirical Solution

to the Macro Software Sizing and Estimating Problem",
IEEE Transactions on Software Engineering, Vol. SE-4,
No. 4, July 1979, pp 345-360.

Rubey, R., J. Dana, P. Biche, "Quantative Aspects of
Software Validation", IEEE Transactions on Software
Engineering, Vol. SE-4, No. 2, June 1975, pp 150-
155.

Schick, G., R. Wolverton, "An Analysis of Competing
Software Reliability Models'", IEEE Transactions on
Software Engineering, Vol. SE-4, No. 2, March 1978,
pp 104-120.

Sukert, A., "Empirical Validation of Three Software
Error Prediction Models'", IEEE Transactions on
Reliability, Vol. R-28, No. 3, August 1979, pp 199-
205.

Sukert, A., A. Goel, "Error Modeling Applications

.in Software Quality Assurance", Proceedings of the

Software Quality and Assurance Workshop, November
1978, pp 33-38.

Trvedi, A., M. Shooman, "A Many State Markov Model

for the Estimation and Prediction of Computer
Software Performance Parameters', Proceedings of
the International Conference on Reliable Software,
Apral 1975, pp 208-215.

Quantative Software Models, Data and Analysis Center
for Software, March 1979, pp 3.2-3.12.

AN IMPLEMENTATION OF THE SCHICK-WOLVERTON AND
THE JELINSKI-MORANDA SOFTWARE RELIABILITY MODELS

by

JOHNNIE OTIS RANKIN
B.S., Oklahoma State University, 1970

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

ABSTRACT

Of key interest to the Software Engineer during the
prbgram development process is the area of testing. The
Software Engineer is faced with the question of determin-
ing when a sufficient level of testing has been conducted.
The software reliability model has evolved as a tool to
assist the Software Engineer in making this determination.

This report is an implementation of two software re-
liability models, the Schick-Wolverton and the Jelinski-
Moranda models. The majority of this report concerns the
specifics of the implementation programs, including the
design factors used, the logic flow of the programs, the
definitions of modular entities of the programs, and a

Guide for Users of the Implementation.

