AN EXPERIMENTAL INVESTIGATION OF THE CUTTING FORCES AND WEAR AREA OF A SINGLE DIAMOND

by

DON HELLAR

B.S., Kansas State University, 1970

42-6074

A MASTER'S THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mechanical Engineering

Kansas State University

Manhattan, Kansas

1972

Approved By:

Major Professor

1972 1972 H44 CDOCU-Ment

TABLE OF CONTENTS

Cha	apter		Page								
		List of Tables									
	±	List of Figures									
	ist in	Symbols Used									
14	Ţ	Introduction									
	II.	Description of Experiment									
•	III	Experimental Procedure									
3.0	IV	Experimental Results									
,	7	Conclusion									
o 3	71	Recommendations									
\$	₹.	References									
	20										
		1 Computer Program	33								
		2 Experimental Data	38								
		3 Diagram of Worn Diamond and Calculations	43								

LIST OF TABLES

Table	*	Page
1	Cutting Conditions	14
2	Theoretical Results	2.4

LIST OF FIGURES

Figure			Page
1		Typical Diamond Mill Center	3
2		Typical Petroleum Diamond Bit	3
3		Schematic of Cutting with a Worn Diamond	4
4		Test Dynamometer	7
5		Test Diamond in Holder	. 7
6		Test Set-Up	8
7a	36	New Test Diamond (X58.6)	10
7b		Profile of New Test Diamond (X58.6)	10
8a		Test Diamond after 40 Runs	11.
85		Profile of Test Diamond after 40 Runs	11
9a		Test Diamond after 96 Runs	12
9ъ		Profile of Test Diamond after 96 Runs	12
10		Fractured Diamond	16
11		Normal Cutting Force vs. Distance Traveled	18
12		Tangential Cutting Force vs. Distance Traveled	19
13		Axial Cutting Force vs. Distance Traveled	20
14		Normal Force vs. Wear Area	21
15		Tangential Force vs. Wear Area	22
16		Normal Force vs. Distance Traveled	25
17		Tangential Force vs. Distance Traveled	26
1.8		Wear Area ve Distance Traveled	27

	y y	
Figure		Page
19	Wear Depth vs. Distance Traveled	28
20	Diamond Wear Volume vs. Volume Removed	29

SYMBOLS USED

Radius of Diamond а Depth of Cut Depth of Diamond Wear h wd Axial Cutting Force X Tangential Cutting Force Y Normal Cutting Force Z Radius of Wear Area (Planimeter) * R Radius of Wear Area (Profile) Wear Area (Planimeter) Wear Area (Profile) Diamond Wear Angle

CHAPTER I

INTRODUCTION

They have long been used in bits by the mining and oil industry for drilling and coring rock formations that are so hard that they cannot be economically drilled or cored by any other means.

Often the costs involved are high. For example, down-time on an offshore drilling rig can cost as much as \$1200 per hour and a large diamond drill bit may cost as much as \$20,000. With costs like this, even a small improvement in design and operation can result in large savings.

The use of diamonds has been rather limited due to the expense of natural diamonds. Only small crystals (suitable for abrasive tools only) have been capable of being produced by synthesis. Thus, it is still necessary to use natural diamonds in some cutting tools, especially oil well drill bits. In general, the cost of diamonds (either natural or synthetic) is high and the supply somewhat limited. Therefore, it is important to learn more about the basic cutting action of diamond tools so that they may be designed and operated more efficiently.

Industry has acquired a certain level of experience in the design of diamond tools, but this has been based mainly on trial and error.

Appl, et. al. [1], has developed a theory of diamond cutting action;

By altering the distance between atoms of a substance when it is under severe compression leads to significant changes in its properties. By using a polymorphic transformation of the crystal structure, the new properties are maintained.

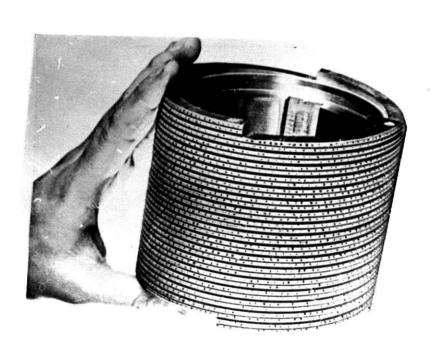
but there is insufficient experimental work to verify the theory. Most previous experimental work deals primarily with metal cutting i.e.,

Loladze and Bokachava [4] and Keen and Grogan [3].

Reese [6] determined experimentally the cutting forces for a single spherical diamond while cutting Indiana Limestone. Limestone is not very abrasive, and so wear of the diamond was not a factor in these tests. In many applications, however, the life and hence the cutting cost is critically dependent on the wear of the diamonds during operation. Thus, it is important to learn more about the wear of diamonds during cutting.

Most industrial tools consist of approximately spherical shaped diamonds held in a metal matrix. Fig.'s 1 and 2 show typical diamond tools. The diamonds usually protrude from the surface and are arranged in some pattern. The cutting action thus depends on the total action of all the individual diamonds. For this reason, a single-point diamond tool was selected to determine the effect of diamond wear on the cutting forces. The cutting action of a worn single-point diamond is shown in Fig. 3.

Recent work by Keen and Grogan [3] has shown that the diamond life or amount of wear is affected considerably by the orientation of the diamond. This work has shown that when the tools were oriented so that the 111 or 110 planes were close to the top face, wear resistance was increased. A check with Sidley Diamond Tool Company, the manufacturer of the tools used, revealed that the 110 plane was oriented toward the top face so this factor was not considered.


THIS BOOK
CONTAINS
NUMEROUS
PICTURES THAT
ARE ATTACHED
TO DOCUMENTS
CROOKED.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Typical Petroleum Diamond Bit

Figure 2

Typical Diamond Mill Cutter

Figure 1

THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE. THIS IS AS RECEIVED FROM CUSTOMER.

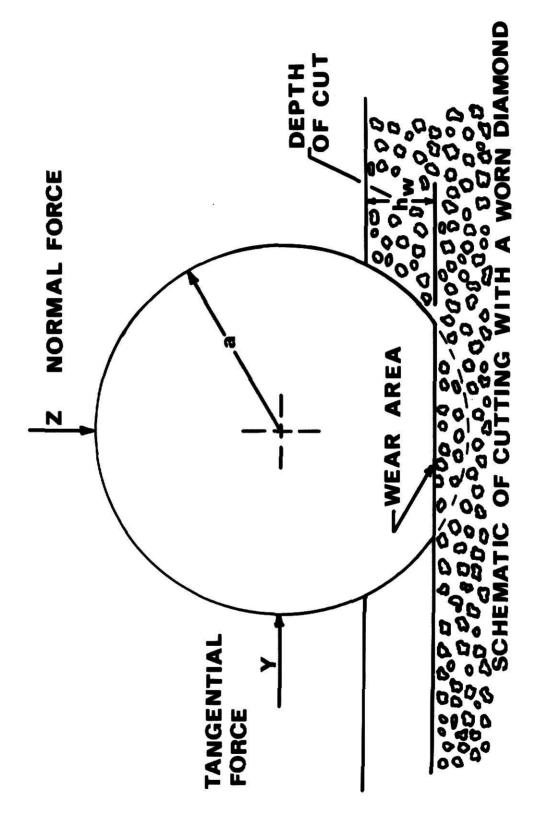


Figure 3

The mechanism which causes the cutting surface of diamonds to wear is not entirely understood. However, those studying wear believe that the principle cause of wear is mechanical in nature. With that assumption, Appl, et. al. [1], has developed a theory for a single diamond. The purpose of this work was to obtain basic experimental data to check the validity of the theory and to obtain information relating to the rate of diamond wear. The experiment consisted of cutting on a cylindrical rock (Georgia granite) mounted in a lathe with a single spherical diamond and measuring the cutting forces.

Periodically the cutting tool was removed and photographed through a microscope to determine the nature and extent of diamond wear.

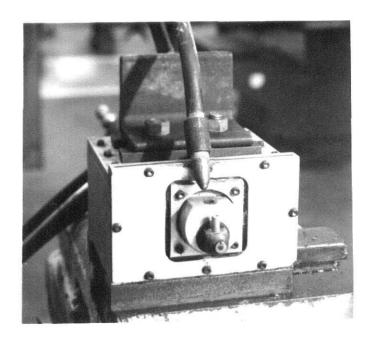
CHAPTER II

DESCRIPTION OF EXPERIMENT

The test set-up consisted of rotating a cylindrical piece of rock in a lathe. A single-point diamond tool was used to cut the rock with the forces acting on the diamond being measured with a specially built dynamometer (Fig. 4). The forces were then recorded on two Sanborn recorders. A constant flow of water was provided to keep the diamond cool and to remove the cuttings.

The rock used was Georgia granite. Mandrels were centered and cemented to each end for mounting in the lathe. The rock was cut to a cylinder before any tests were made.

The diamond used was initially spherical, .092 inch in diameter (8 per carat). It was mounted in a metal matrix (Fig. 5) with .040 inch protruding. This matrix was then mounted in the dynamometer.


The dynamometer used was especially designed and built for Reese [6] by Lebow and was used for this experiment with no modifications.

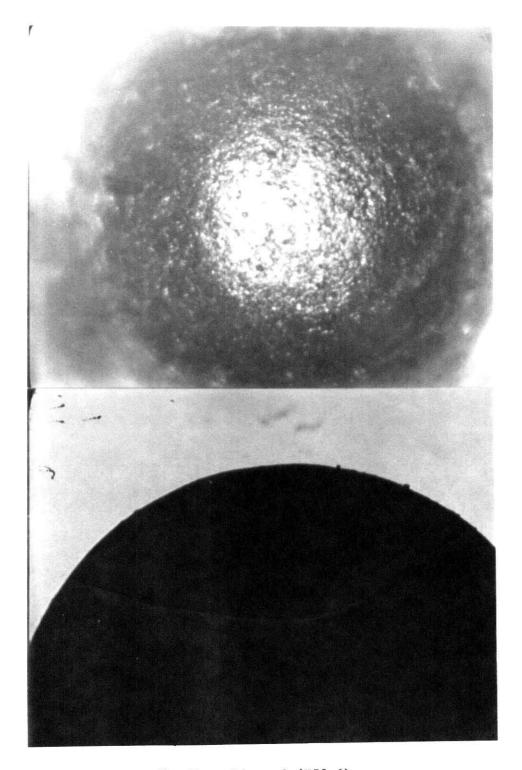
It had a range of 100 pounds in the normal direction and a 50-pound range in the axial and tangential directions. Calibrated resistors could be switched into the strain gage bridge of each direction. These resistors corresponded to a known force. By doing this, the recorders could easily be calibrated. Two channels of one recorder were used to record the normal and tangential forces. The axial force was recorded on a second Sanborn recorder. The test set-up is shown in Fig. 6.

A continuous cut was taken with the forces recorded during the entire cut. In order to find an average force for the entire cut,

Test Diamond in Holder
Figure 5

Test Dynamometer
Figure 4

Test Set-Up


Figure 6

readings were taken in three places from the recordings. One reading was taken at each end and one in the center. The end readings were taken about one inch from the end of the stone so that the measured loads were unaffected by end conditions. These readings were then averaged to give a single reading for each run. After each eight runs, the diamond was removed from the dynamometer and photographed through a microscope. Typical photos are shown in Fig.'s 7, 8 and 9. Finding the area of the diamond flat spot was accomplished by two methods, yielding different areas but following similar trends.

From Fig. 8a, the area of the flat spot could be measured using a planimeter. It was assumed that the flat spots were flat. Otherwise, the entire area would not be in focus at one time. From this reading, the radius of a circle with the same area was determined. By using identities, (appendix 1) the volume of diamond worn away could be determined.

From Fig. 8b, the diameter of the flat spot could be measured. Again, by using identities, the volume of the diamond worn away could be computed.

Computer programs were written for each method and the different measurements were inserted to yield the desired information.

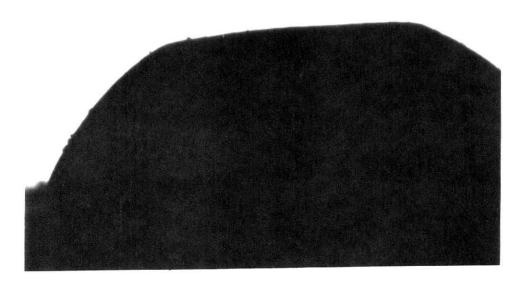
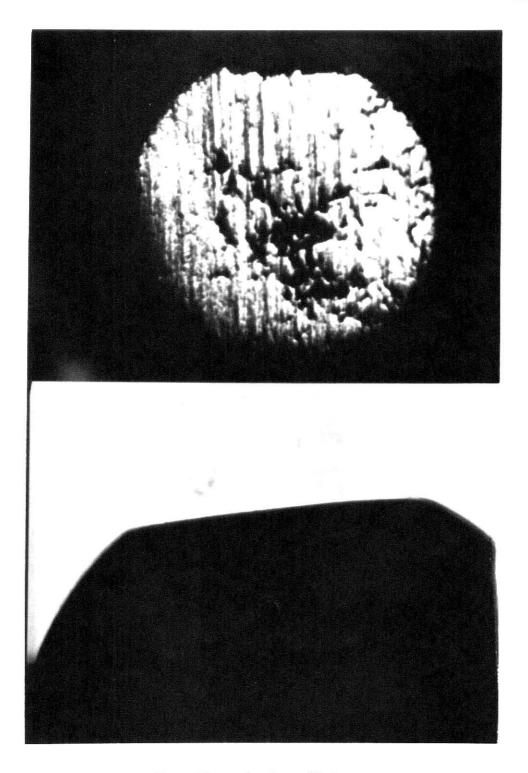

New Test Diamond (X58.6)

Figure 7a

Profile of New Test Diamond (X58.6)

Figure 7b



Test Diamond after 40 Runs

Figure 8a

Profile of Test Diamond after 40 Runs

Figure 8b

Test Diamond after 96 Runs

Figure 9a

Profile of Test Diamond after 96 Runs

Figure 9b

CHAPTER III

EXPERIMENTAL PROCEDURE

At the beginning of this experiment, the only cutting speed reference was by Reese. He had used a surface speed of 60 ft. per minute. This was determined to be too slow, as virtually no diamond wear was visible at the end of his test. For the second diamond, a surface speed of 435 ft. per minute was used. This was too fast, as the diamond was greatly worn after three cuts. For the third diamond, a speed of 185 ft. per minute was chosen. This again proved to give very little wear, so for diamond No. 4 a speed of 220 ft. per minute was chosen. This speed was apparently very near the natural frequency of the system as the rock vibrated very badly. The test was discontinued so that the dynamometer would not be damaged. For the final test diamond (No. 5), a beginning surface speed of 173 ft. per minute was used. Due to the fact that the lathe only had fixed speeds of rotation, the surface speed decreased somewhat as the rock became smaller. (See Table 1).

For diamonds No. 3, 4, and 5, a feed of .0025 inch per revolution and for No. 2 a feed of .005 inch was used. A cut depth of .005 inch was used for all diamonds. The cuts were overlapping so that a smooth surface was left after the diamond had passed. Once a new diamond was put into use, all conditions were left the same. The rock diameter was measured after every run.

Diamond Number	RPM	Surface Speed	Feed	Cut
2	212	435	0.005	0.005
3	91	185	0.0025	0.005
4	110	220	0.0025	0.005
5	91	173	0.0025	0.005

CUTTING CONDITIONS

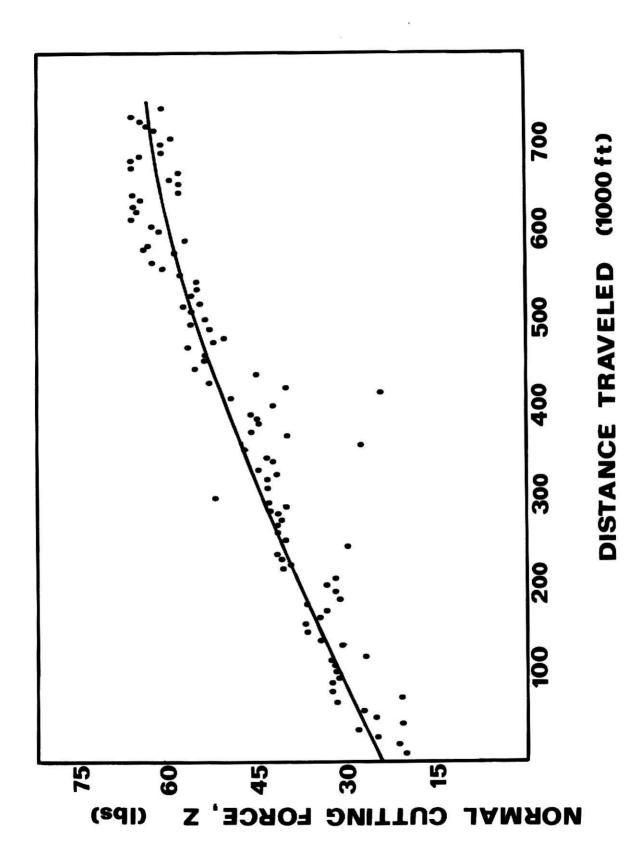
Table No. 1

After cutting with diamonds No. 3 and 4, it was concluded that the diamond may fracture under severe loading. Severe loading occurred when too deep a cut was accidentally taken. Some fracturing may be desired under actual cutting conditions to provide a sharp cutting edge, but for this study fractures were not desired. A photograph of the fractured diamond is shown in Fig. 10.

When the diamond fractured, a decrease in cutting forces occurred.

As the sharp edge wore away, the forces increased and eventually became higher than the level prior to fracture. When diamond No. 3 fractured, enough of the diamond broke away that further tests would have been meaningless. The diamond was not worn enough prior to this to yield any useable information.

Diamond No. 4 broke on the first run in such a way that the area of the flat spot was still measureable. The tests on this diamond were continued until the vibrations became too large. It was not known whether the vibrations were due to the diamond being worn or if the speed coincided with the natural frequency of the system. The reason was assumed to be the latter because such large vibrations were not noticed with other worn diamonds.


The wear tests on diamond No. 5 proceeded very well yielding good data. The diamond wore at a slow rate, requiring a very large amount of cutting time to yield the desired results. For the final wear measurements, diamond No. 5 had traveled over 140 miles. For these reasons, all the data presented is taken from diamond No. 5.

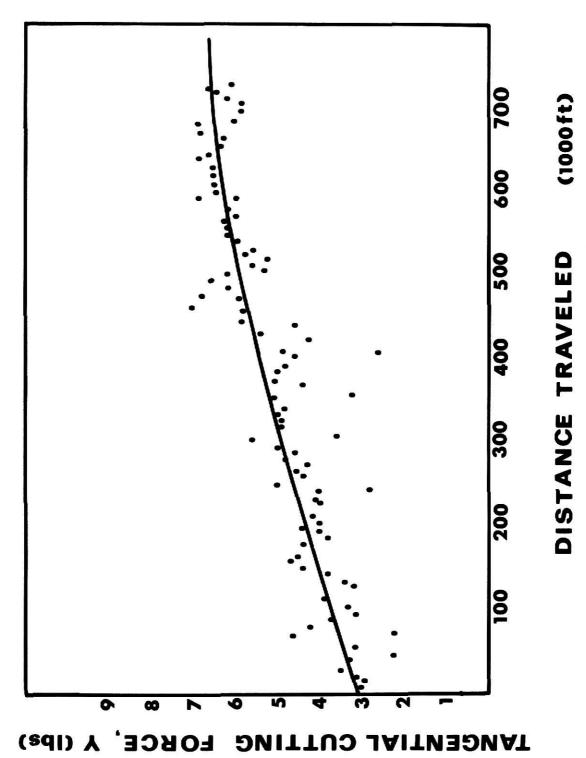
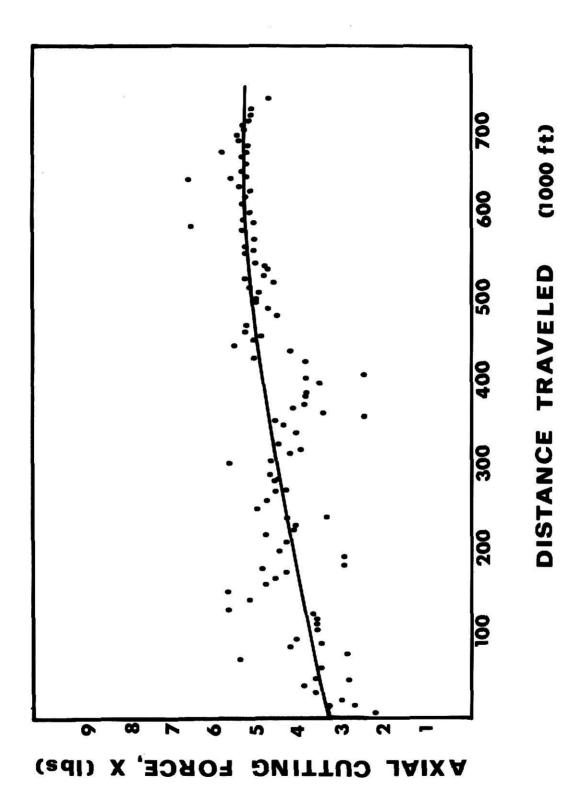

Fractured Diamond

Figure 10

Fig.'s 11, 12, and 13 show how the forces changed in relationship to the distance traveled. The forces were lowest when the diamond was new, but as the diamond wore, the forces became larger. This is shown in Fig.'s 14 and 15.



Normal Cutting Force vs. Distance Traveled Figure 11

Tangential Cutting Force vs. Distance Traveled

Figure 12

Axial Cutting Force vs. Distance Traveled

Figure 13

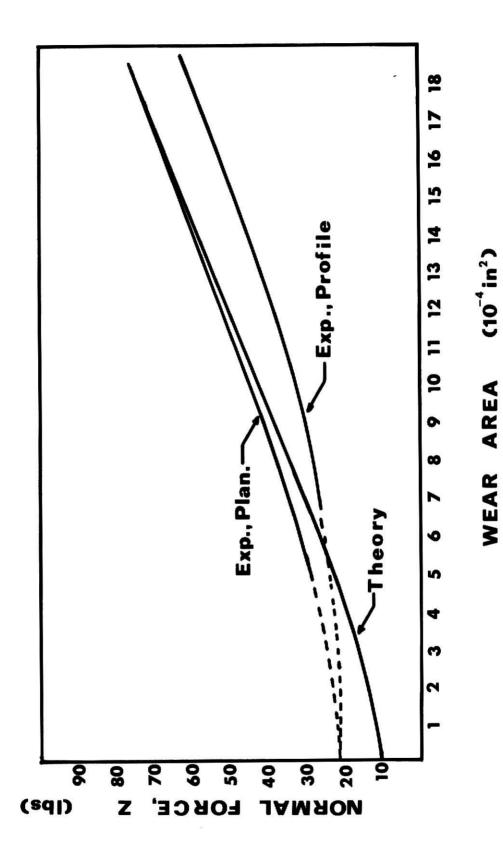
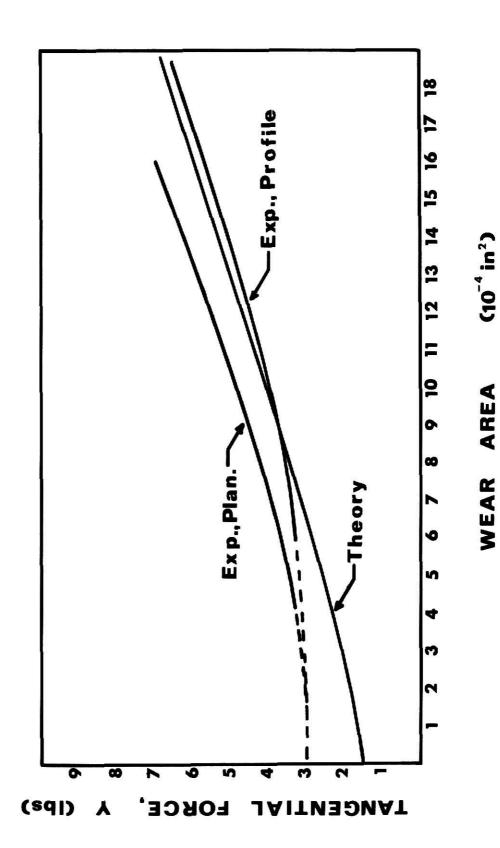



Figure 14

Normal Force vs. Wear Area

Tangential Force vs. Wear Area

Figure 15

By using the theory developed by Appl, (appendix 2), the data in Table 2 was obtained. This theoretical data was then plotted on the same co-ordinates as the experimental data. These graphs are shown in Fig.'s 16, 17, 18, 19, and 20.

As can be seen from Fig.'s 16 and 17, the theoretical forces were lower than the experimental forces when the diamond was new, but as the diamond wore, the curves approached the same levels. It is also seen in Fig. 18, that the experimental diamond wore faster than the theoretical diamond at first, but as the experimental wear area leveled off, the theoretical wear area surpassed it. The reasons for this are not entirely understood.

\$89032.

435057.

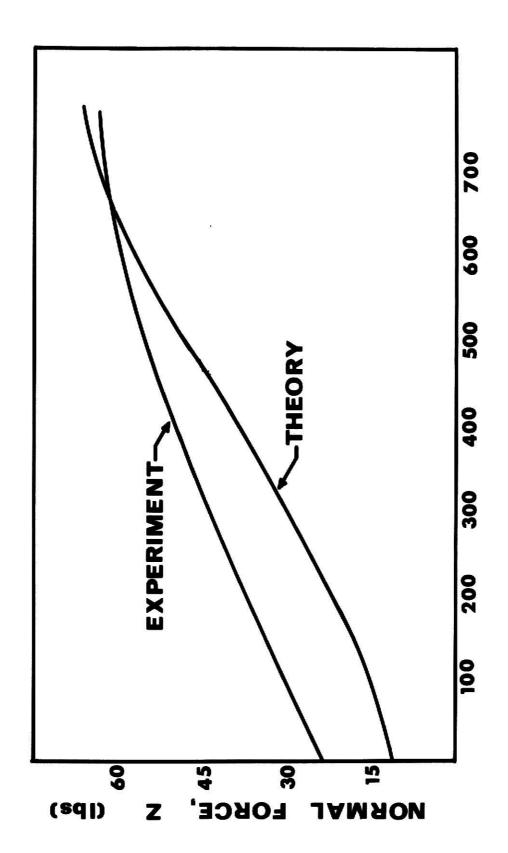
366427.

674189.

303480.

JULY 1 1972

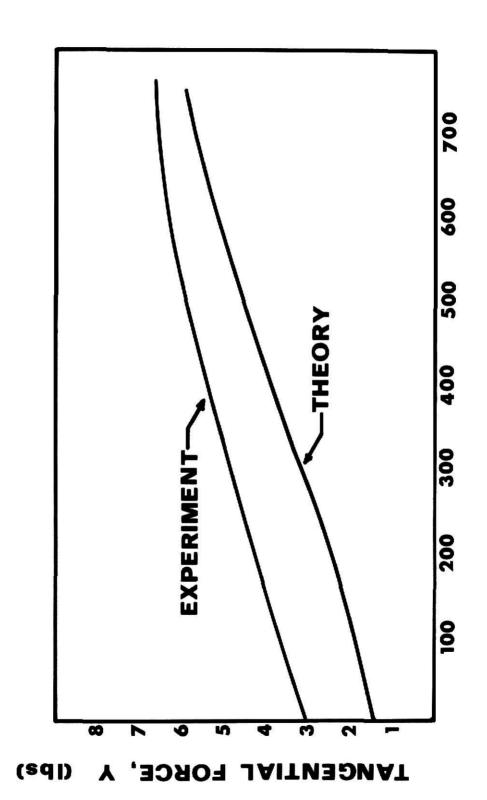
GEURCIA GRANITE


F.C. APPL

	ENERGY	137889.	138910.	142078.	147783.	156631.	169183.	185819.	206512.	231333.	260144.	292766.	329018.	368655.	411200.	456446.	505292*	556034
	WEAK DEPTH	000000	0.000	0.0001	0.003	\$000°0	0.0007	0.0010	0.0014	0.0018	0.0023	0.0028	0.0033	0-00-0	1,0000	0.0054	0.0062	0.0070
,	WEAR AREA	00000*0	0.00001	0.00003	0.00007	0.00013	0.00020	0.00029	0.00039	0.00051	0.00063	0.00078	0.00093	0.00110	0.00128c	0.00147	0.00166	0.00187
	VOLUME	0.00001250	0.00001250	0.00001250	0.00001250	0.00001250	0.00001250	0.0001249	0.00001250	0.0001250	0.00001250	0.0001250	0.00001250	0.00001250	0.00001251	0.00001251	0.00001250	0.00001250
12. 8.000 0.04600 50.00 60.00 00.00 1.100 1.100 1.100 1.100 1.100 2.300E-12	LAMDA	11.517	11.537	11.677	12.041	12.693	13.640	14.844	16.255	17.817	19.489	21.240	23.048	24.898	26.779	28.683	30.605	32.540
2344 180 2000 179	æ	0.609261	910600000	656800010	9.0007601	0.0006765	0.0035985	9.0005299	0.0004724	0.0004243	0.0003842	0.00033536	0.0003224	9.0002984	0.0002781	9.0002613	0.0032449	3.0002314
6 IV)	RFS LOAD	12.8657	12-7848	12.7635	13,0969	14.0329	15.7102	15.1840	21.4585	25.4883	14.2253	1619.24	41.6162	46.1703	5×.2344	67.7579	15.6965	75.00.07
PAXIMUM NCWPAL STRESS (LF/S RADIUS OF STG-FES 114) AMGLE OF INTERNAL FRICTION COMPRESSIVE STRENGTH (LG/S COMPRESSIVE STRENGTH (LG/S CEFFICIENT OF FRICTION CEFFICIENT OF FRICTION CHEFFICIAL OF FRICTION CHEFFICIAL STRENGTH (LR/S) COMFILING PRESSURE (LR/S) COMFILING PRESSURE (LR/S) CEMIFR SLIVING ANGLE (DEC)	IAN LCAD	1.72365	1.73639	1.77576	1.84707	1,95783	2.11481	2,32113	2.58074	14168-5	3.25173	3.65960	4.11278	4-60827	5.14369	5.71463	6.31844	6.95276
PAXIMUM NCHPAL BLAMBUSS PER CAR RABIUS OF SIGIE ANGLE OF INTERN COMPRESSIVE SIR SHEAR SIMES AT CCEFFICIENI OF CHIP SHEEP RATI GEORGIA GRANITE EFFECTIVE ANGLE EFFECTIVE SELILING MEAR PACICA	KEAR ANG NOR LOAD	12.1497	12.6663	12.6363	12.9661	13.8941	15.5672	18,0352	21.3027	25.3234	30,0499	35.4296	41.4125	41.9494	54.3944	62.4971	70.4136	78.6973
8	MEAR ANG	.0	2.	<i>;</i>	4)	4 2	10.	12.	14.	16.	18.	20.	22.	24.	.92	26.	30.	32.

DISTANCE

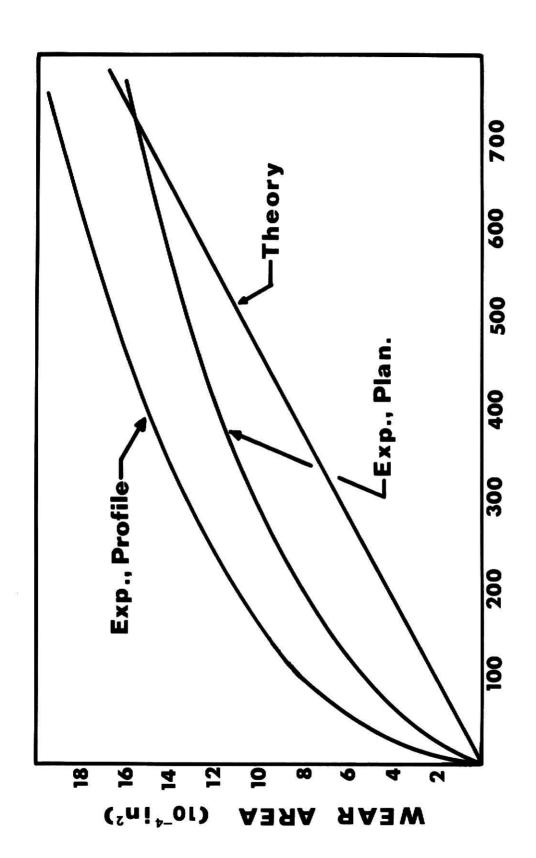
3066.


12258. 27567. 48973. 76451. 109966. 149478. 246294.

Normal Force vs. Distance Traveled

DISTANCE TRAVELED (1000 ft)

Figure 16

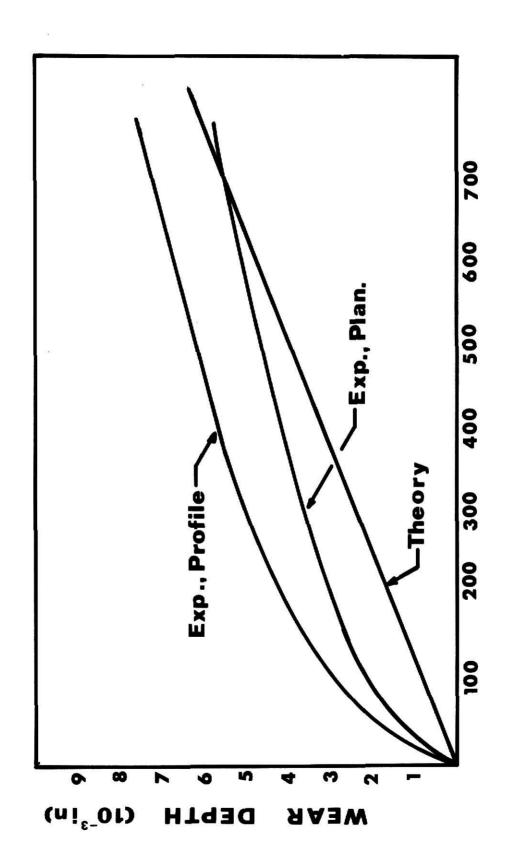


Tangential Force vs. Distance Traveled

DISTANCE TRAVELED (1000 ft)

Figure 17

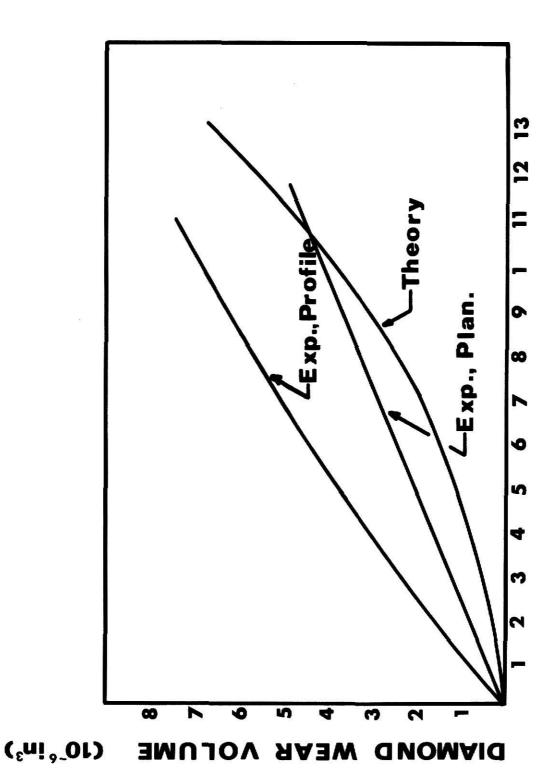
(1000ft)



Wear Area vs. Distance Traveled

DISTANCE TRAVELED

Figure 18


(1000ft)

Wear Depth vs. Distance Traveled

DISTANCE TRAVELED

Figure 19

VOLUME REMOVED (10 in³)
Diamond Wear Volume vs. Volume Removed

Figure 20

CHAPTER V

CONCLUSION

The forces were analyzed in relation to cutting distance and wear area. It was found that there was a definite relationship between the rate of wear and the cutting speed, but because of the time element, this was not considered.

It is felt that this study is valid and a good beginning point for further studies. It is important to learn more about the speed effect.

This will require that data for several different speeds be obtained.

CHAPTER VI

RECOMMENDATIONS

To enhance the value of this work, several additional tests need to be made. Other types of rock should be tested, as granite is a small part of the rock cut in practice.

Another variable not considered was diamond size. All the tests were based on a .092 inch diamond. It is expected that similar results would be obtained for diamonds of other size, but this should be verified experimentally.

A lathe with variable speed is recommended for further tests. This would allow the cutting speed to be held constant.

It would also be helpful if a method to measure diamond wear area could be devised that did not require that the diamond be removed from the dynamometer. This would reduce the possibility of taking too deep a cut which could cause premature diamond fracture.

REFERENCES

- 1. Appl, F. C., D. S. Rowley, and H. C. Bridwell. Theoretical Analysis of Cutting and Wear of Surface Set Diamond Cutting Tools. Salt Lake City: Christensen Diamond Products Company, 1967.
- 2. Gerhardt, J. S., "Thermal Problems and Grinding Wheel Characteristics". Technical Paper, No. MR70-805, Society of Manufacturing Engineer, 1970.
- 3. Keen, D. and A. F. Grogan. "Wear of Single Point Diamond Tools in the Machining of Aluminum/Silicon Alloy Pistons A Final Report". Industrial Diamond Review, June 1971, 228-235.
- 4. Loladze, T. N., and G. V. Bokuchava. The Wear of Diamonds and Diamond Wheels.
- 5. Peterson, C. R., "Rolling Cutter Forces". Paper, November SPE 2393.
 American Institute of Mining, Metallurgical, and Petroleum Engineers,
 Inc. 1969.
- 6. Reese, J. H. "An Experimental Investigation of the Cutting Action of a Single Diamond." (Unpublished Master's Report, Kansas State University, 1970).

ILLEGIBLE DOCUMENT

THE FOLLOWING DOCUMENT(S) IS OF POOR LEGIBILITY IN THE ORIGINAL

THIS IS THE BEST COPY AVAILABLE

APPENDIX 1

COMPUTER PROGRAM

(2)		- 1	1,015(45),MRA3(95),	Contradiction of the Contradiction	CL 401+1 CARIFILOT FNUIELIU		23	R			A LUMB + SAF	DAT WERK AKEN ZA.			10.00 T T T T T T T T T T T T T T T T T T		F12.51	: :	•	(LB/SQ IN) F7.0)	, Fil.4)	, FlO. 5)	0.10	113	F9-7	7.4X.F8.3		rE12.43		68-58 5	1 (x), 1 x=1,10),100PYS			TO.			 en i	N .								8							*
	1.105.1		1 1/1/13	9811941 Cr. 21941 717941 721341 74	2 1106117 11661771 7	CENTRAL CENTRAL CENTRAL	PURIOR CHICAGON CHICA			ATT AS ASSET SEE SEE OF A SAME AND THE	**************************************	ALE AND THE DESIGNATION OF THE PROPERTY OF THE	T. DIANT TO THE STATE OF THE ST	TO SEE THE SECOND SEE SEE SECOND SEE SECOND	PERSONAL STREET OF STREET	DIAKONOS PEA CARAL SECONDARIO	KADIUS OF STONES (IN)	AMSLE OF INTERNAL FRICTION (DEG)	CEMPRESSIVE STREVGTM (LBZSG IN)	>	70	CTIC Switch SATIO ********	EFFECTIVE ANCHE THEEL		CLUST STILLING VACLE (DES)	2x,+10.0,4x,F10.5,1X,+10.4,2x,	110. H, 4x, F8, 5, 4x, F7, 4, 31, F4, C, 2x, F11, 01	WELK FACTUR		ALL SENSE SWITCHES, DATE, AND MUMBER COPILS IN COL	THI. PLICHZ, SHICHI, SWICHS, LIUTE	181) (1) 11 1407		1 = 5	3	PARAMETERS	TALL	설		ERS ARD KON DESCRIPTION	į		•	JELPSI , PSI PAX	RAMFTERS.	b	T.X.	N.	AT DC -ADMA C) BY G G G G G G G G G G G G G G G G G G	10 10 10 10 10 10 10 10 10 10 10 10 10 1		ec i	B
7.4.3	ALL SANS LITE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	501 LNG 101 NEV 2 75	1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		TOUR PROCE	- FUKKA1(A) 10.00	/ FORMAT (1H)	A 2 C28 AT 1 C35 / 1 E-1 2	* * - *COOP *		7 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3		. 4		FUNNATIONS	FU-CVAT	PASTIVARDI) I VM NI I		0 CAPPI CAPPI D	LOGNATIONS THE				-	35 FIRMATTENATH	HAIN LAST/ SHEND!	f	45 REAL (5, 1755) SWTC		1233 FURNATION : 100 4	010011 - 04000	J W	BLAD FERMATION P	0 READ(5,1)	52 READ(5,1) ALPO	ACAD (5.5)WKS	STAD ELL PAKAMELEKS	1256 FORMAT (24A3)	45	59 READ(5,1) 0PC					68 READ(5.1) VCVD		.00000	1 3	ERR3 = . CC0001	ICCOO* # 2 XXX
8:	-		·		٠.,٠	r uf	٠. ٧	:	(*	· c				. ~	,	14	۶.	91	<u>د</u>	<u>ت</u> .	<u>.</u>	: .			57	25		26	2.7	ڼ	2.8		- -	10.4	u	<u>ں</u> ر	33	34	313	ر پر	2.2	. 88	39		v	4	4.5		5	45	u	94	ž.

2 6

```
37 STAR = 51.44P)
COSAL = COSAL
TARA (D = 51TAL FORSAL
TARA (D = 51TAL
TARA (D = 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       447 ERR=[ALP!-ALP]: (ALP!-ALP)/ (ALP+ALP)
WYIT(::,1)ALP,ALP!,Cy.GyERN
1610-X-X-743141;451,449
A49 Dela[P=GEALP/?.0
ALP=ALP+OELA[P
GGT0437
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           433 SIGMASIG

STRB-2.3+SIGMA

ALD-ALF/PIC

SI=FAN+2.0+C(OSAL/(I.0-SINAL)

SWx=SIGPA+((A1*EPSP)-A2)

434 BXB-EEI*5-D

435 BXB-EEI*0-D

438 HIN=1.6/BET
                                                                                                                                                                                                                                                                                                                                                                                                                                              1F(56/6)447,443,443
ALP1=ALP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ALP-ALP-DELALP
GOTC437
                                                                                                                                                                                                                                                                                                                                                                                        ALP=BLF-CELALP
PSIzetta/8
                                    UCLALPSO.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINE
1=1+1
                                                           ALPEALDS
                                                                                                                                                                                                                                                                                                                                                                   ALPI= ALP
                                                                                                                                                                                                                                                                                                                                                                                                                              6010437
                                                                              KKITE
                                                                                                                                                                                                                                                                                                                                              5=99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       435
                                                                                                                                                                                                                                                                                                                                                                                                                                                   144
                                        453
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                165
```

```
P2S5S#(ITI#(COSLA-CFS(PSIMI))+((Tf2/4.C)*(COS(2.0*PSIM)-COS2L))
520 P2S#(P2SSS*AZ)-P2SS +P2S
                                                                                                                                                                                                                                                                                                                                                                                                                                          PZ4=10. - 2.0+8ET+PSIM)

PZ4= ((2.+8ET+S) MATINA + 5 MAZL+BIN) + (-EMZBL)

PZ4= (2.+8ET+S) MATINA + 5 MAZL+BIN) + (-EMZBL)

PZ4= PZN+FRZPP+(2.-0+PSIN(PSIM) + SIN(2.0+PSIM) + BIN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          P2s=P2s*([EW2RD*(2.0*BET*SIN(PSIN)+COS(PSIN))

1-(IEFZEL)*([Z.0*BET*SINLA)*COSLA)))/((4.0*BXB)+1.0))

SL2 P2SS*(IT2*A1*EPIB)/(4.0*BXB))

P2SS=P2SS*(-((EW2BL)*((BET*SINZL)*CCS2L))*EM2BP*(BET*SIN(2.0*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       356 PIS=PZN=1(1)37....
357 PZN=PZN/PI
358 PNZ(1)=PZN+ADZ+SIGMA
358 PIN=(EPZSP+(3ET+SIN(Z,0+PSTh)+COS(Z,0+PSTM)))-(ENZBL+(1BET+
PIN=(EPZSP+(3ET+SIN(Z,0+PSTh)+COS(Z,0+PSTM)))-(ENZBL+(1BET+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            P24=((F2~/EXR1)+(A2+(SINZL-TAMX2-SIN(Z.U+PSIW)+Z.O+PSIW)))
PIS+P2A+((T13/Z.G)-(T14/Pl))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               P2(1)=P2A#AC2#516MA+P1#AD2#5IRd#U#SIN(PSIN(PSIN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               362 PIN=(PIN=AI)/9xAI
PIN=(FIN=FI)/9xAI
366 PIN=(FIN>FI)/8.0
PNI(I)*PIN*ACZ*SIGP*PI*STR**ADZ*SIV(PSIM)*SIN(PSIM)
503 PISC=PIS*U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PILL)=PIA+ADZ+SIGHA+PI+ADZ+STRB+SIN(PSIW)+SIN(PSIW)
                                                                                                                                    CAP2=APX2-SIN(APX2)-(2.34PSIN-SIN(2.04PSIN))
                                                                                                                                                                                                                               APPR2=APPR2+( (APPR2-APPR1) / (CAP2-CAP1) | *ERR1
                                                                                                                                                                                                                                                                                                                        CUT(11=40#(COS(PSIN)-CCS(TAP))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5C4 III=(2.0*1J1)-((4.0*1J2)/PI)
5O6 II2=(2.0*TJ5)-((4.0*TJ6)/PI)
5O8 PZS=III4A14EPIB
POINT (1) = PS [ NA ( I = 1) = DEL PS |
PSIN * PS [ NI ( I ) = PI (
                                                                                       G=2.0evCL(f)/(AD2evCvD)
APP42=(0.75+C)++0.37+PSIW
APH2=2.0*APP42
                                                                                                                                                                                               F (ERRCR-ERRC) 337, 337, 326
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1PSIL) +COS(2.0*PSIK)))
                                                                                                                                                                                                                                                                                                                                                                                 6 51M2L=51M (T4MX2)
7 COS2L=CMS (TAMX2)
8 BLXM2=(-2,10EET+TAM
9 EWEBL=EXP (ELXM2)
                            (MISa)1.15 = +Sat.15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  526 P2A = (P24+P25U)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PZSU=L*PZS
PIA = [PIV+PISU]
                                                                                                                                                                                                                                                                                                         TAMD(1)=TAM/PIC
                                                                                                                                                                                                                                                                                                                                        SIM b=Sin (TAP)
                                                                                                                                                                                                                                                                                                                                                                  344 TAMX2=2.001AP
346 SIM2L=SIN (TAMX
347 COS2L=COS (TAMX
348 BLRP2=(-2.10EE)
359 EM2BL=EXP (PLXP
                                                                                                                                                                                                                                                                                                                                                      COSL #=COS (TAP)
                                                                                                                                                                  ELA-FARI/DAP2
ELADA-ERR*ERR
                                         VOL ( ! )= VAL ( ! )
                                                                                                                                                                                                                                                           APPRI = APPR3
GO TO 216
                                                                                                                                                                                                               APPR3 = APPR2
                                                                                                                                                    ERRI SC-OAP 2
                                                                          APPR 1=FSIW
                                                                                                                                                                                                                                                                                          TAM-APPRZ
                                                                                                                                                                                                                                              CAPI = CAPZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                530 CONTINLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    $75
                                                                                                                      316
                                                                                                                                                                                                                326
                                                                                                                                                                                                                                                                                          337
                                                                                                                                                                                                                                                                                                                                                                                                                                                              362
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    202
203
204
205
205
207
207
207
207
207
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         211
```

APPENDIX 2
EXPERIMENTAL DATA

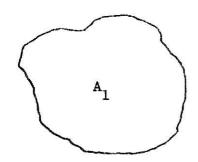
Run No.	2	" 'Y	x	Rock Diameter (in)	Diamond _4 2 Wear Area (10 in) (Profile) (Plan)
1	1.4	3.0	2.2	7.293	
2	19	219	217	7.283	
3	21	3.1	3.0	7.276	
4	25	3.5	3.6	7.267	
5	27	3.2	3.9	7.258	
6	21	2.2	2.8	7.249	
7	26	3.1	3.6	7.238	2.
8	27	3.2	3.5	7.230	6.600 4.51
9	32	4.6	5.4	7.220	×
10	20	2.2	2.9	7.210	
11	33	4.2	4.2	7.197	
12	33	3.7	3.5	7.187	· ·
13	31	3.1	4.1	7.179	
14	32	3.3	3.6	7.169	
15	32	3.9	3.6	7.158	S 4
16	33	4.0	3.6	7.149	8.96 6.49
17	27	3.2	3.7	7.139	\$
18	31	3.4	5.7	7.129	
19	30	3.8	5.2	7.121	

EXPERIMENTAL DATA

Run No.	3	Υ	× x	Rock Diameter (in)	Diamono Wear Area ((Profile)	
20	34	4.4	5.7	7.113	9	
21	37	4.7	4.8	7.103		
22	35	4.5	4.6	7.091		
23	33	4.1	4.3	7.082		
24	37	4.4	4.9	7.063	10.86	8.56
25	31	3.8	2.9	7.053		
26	32	4.0	2.9	7.043		
27	33	4.4	4.5	7.034	a	
28	32	4.0	4.3	7.024		
29	41	4.2	4.8	7.014		
30	40	4.0	4.2	7.004		¥
31	41	4.0	4.1	6.995		
32	42	4.0	4.3	6.985	12.31	9.28
33	30	2.8	3.3	6.974		
34	40	5.0	5.0	6.967		
35	42	4.4	4.8	6.958		
36	42	4.6	4.6	6.948		
37	40	4.4	4.3	6.938		
38	42	4.8	4.6	6.928		<i>(f</i>)
39	40	4.6	4.5	6.919		a.
40	44	5.0	4.7	6.909	13.39	9.72
41	52	5.6	5.7	6.899		

EXPERIMENTAL DATA

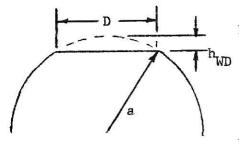
Run No.	2	Y	X	Rock Diameter (in)	Diamo Wear Area (Profile)	
42	44	3.6	4.7	6.885		
43	44	4.9	4.2	6.876		
44	43	4.9	4.0	6.865		
45	45	5.0	4.5	6.855		
46	43	4.8	4.1	6.845		ti .
47	44	4.9	4.4	6.835		
48	48	5.1	4.5	6.826	14.29	10,48
49	28	3.3	2.5	6.817		<u></u>
50	41	4.4	3.5	6.809		
51	46	5.1	4.2	6.799	SI.	
52	45	5.0	3.9	6.790		
53	45	5.0	3.9	6.780		
54	46	4.9	3.9	6.771		
55	43	4.6	3.6	6.762		
56	49	4.9	3.9	6.752	15.22	11.35
57	23	2.6	2.4	6.742		
58	41	4.3	3.9	6.734		
59	53	5.4	5.1	6.727		tu.
60	45	4.6	4.3	6.718		
61	55	5.9	5.6	6.709		
62	53	5.7	5.1	6.699		
63	53	5.8	5.0	6.690		34


EXPERIMENTAL DATA

Run No.	Z	Y *	x	Rock Diameter (in)	Diamo Wear Area (Profile)	
64	56	7.0	5.3	6.679	16.18	11.93
65	52	5.8	5.3	6.670		
66	51	6.8	4.6	6.661		
67	53	6.2	4.8	6.651		
68	55	6.6	5.1	6.641	4)	
69	54	6.2	5.1	6.632		
70	55	5.3	5.0	6.621		
71	57	5.6	5.2	6.611		
72	53	5.2	4.7	6.602	16.92	12.87
73	55	5.8	5.3	6.593		55
74	54	5.7	4.9	6.584		
75	53	5.7	4.8	6.574		
76	58	6.0	4.9	6.564		
77	61	6.2	5.1	6.555		
78	63	6.3	5.3	6.545		
79	59	6.0	4.6	6.534		
80	64	6.2	5.1	6.525	17.67	13.62
81	.63	6.9	6.6	6.515		
82	57	6.1	5.1	6.506	8	
83	62	6.5	5.3	6.495		
84	63	6.5	5.2	6.484	8	
85	66	6.5	5.3	6.473		
86	65	6.7	5.4	6.463		

				* 8		42
	28	EXF	PERIMENTAL	DATA	r • ₈	92
Run No.	7	Y	X	Rock Diameter (in)	Diamo Wear Area (Profile)	(1
87	65	6.6	5.3	6.453		
88	64	6.6	5.2	6.444	18.18	14.47
89	6 6	6.9	6.7	6.433		
90	59	6.7	5.7	6.423		
91	59	6.3	5.3	6.412		
92	60	6.4	5.4	6.402		
93	59	6.3	5.3	6.392		
94	66	6.9	5.9	6.383		
95	67	6.9	5.3	6.371		
96	65	6.1	5.3	6.362	18.70	14.90
97	61	5.9	5.5	6.352		
98	61	5.9	5.5	6.343		
99	60	5.9	5.4	6.333		
100	62	6.2	5.4	6.324		ą;
101	63	6.2	5.3	6.314		
102	65	6.5	5.3	6.304		20
103	67	6.7	5.7	6.294	266	
104	61	6.1	4.8	6.284	19.50	15.43

APPENDIX 3


Diagram of Worn Diamond and Calculations

Area measured with a planimeter from Fig. 8a

$$A_1 = \pi (R_{eq})^2$$
 $R_{eq} = (A/\pi)^{1/2}$

 R_{eq} is the radius of a circle with area A_1 (Plan).

D is measured from Fig. 8b

$$D = 2 R^*$$

$$R^* = D/2$$

 R^* is the radius of a circle with area A_2 (Profile).

$$h_{WD} = a - (a^2 - R^2)^{1/2}$$

$$Vol = \frac{\pi}{3} (h_{WD})^2 (3a - h_{WD})$$

ACKNOWLEDGEMENTS

I would like to thank Dr. F. C. Appl for his assistance and advice. I would also like to thank Carl Hansen for his assistance with the experimental work. I am also grateful for financial support given by Kansas State University and Christensen Diamond Products Company. I would very much like to thank my parents for their patience and understanding love during the time I was in school.

VITA

DONALD L. HELLAR

Candidate for the Degree Master of Science

THESIS:

An Experimental Investigation of the Cutting Forces and

Wear Area of a Single Diamond

MAJOR FIELD:

Mechanical Engineering

BIOGRAPHICAL:

Personal Data: Born September 18, 1948 at Kingman, Kansas;

the son of Alva L. and Bernice E. Hellar.

Education:

Graduated from high school at Cunningham, Kansas in 1966; received an A.A. degree from Pratt Community Junior College in 1968; received a B.S. in Mechanical Engineering

from Kansas State University in 1970; completed requirements for the M.S. degree in August 1972.

AN EXPERIMENTAL INVESTIGATION OF THE CUTTING FORCES AND WEAR AREA OF A SINGLE DIAMOND

by

DON HELLAR

B.S., Kansas State University, 1970

AN ABSTRACT OF A MASTER'S THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mechanical Engineering

Kansas State University

Manhattan, Kansas

1972

ABSTRACT

The use of diamonds as a cutting tool material has a long history. With the increased use of diamonds for this purpose and the large costs that are involved, studies of the cutting action and wear of the diamond have become more important.

The purpose of this work, was to discover how a diamond wears under actual cutting conditions, and to compare these results with a previously developed theory on diamond wear. To do this, a diamond was used as a cutting tool for cutting a cylindrical piece of granite chucked in a lathe. The cutting forces were recorded on a specially built dynamometer.

The experimental results revealed that the relationship between diamond wear and cutting distance did not increase linearly, but progressed rapidly in the beginning and then slowed down. All experimental results were compared to the theory and found to be of similar trends but of slightly different magnitudes.