

CUSTOM BIOMEDICAL SENSORS FOR APPLICATION IN WIRELESS BODY AREA
NETWORKS AND MEDICAL DEVICE INTEGRATION FRAMEWORKS

by

KEJIA LI

M.S., Kansas State University, 2010

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical & Computer Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2012

Abstract

The U.S. health care system is one of the most advanced and costly systems in the world.

The health services supply/demand gap is being enlarged by the aging population coupled with

shortages in the traditional health care workforce and new information technology workers. This

will not change if the current medical system adheres to the traditional hospital-centered model.

One promising solution is to incorporate patient-centered, point-of-care test systems that promote

proactive and preventive care by utilizing technology advancements in sensors, devices,

communication standards, engineering systems, and information infrastructures.

Biomedical devices optimized for home and mobile health care environments will drive

this transition. This dissertation documents research and development focused on biomedical

device design for this purpose (including a wearable wireless pulse oximeter, motion sensor, and

two-thumb electrocardiograph) and, more importantly, their interactions with other medical

components, their supporting information infrastructures, and processing tools that illustrate the

effectiveness of their data. The GumPack concept and prototype introduced in Chapter 2

addresses these aspects, as it is a sensor-laden device, a host for a local body area network

(BAN), a portal to external integration frameworks, and a data processing platform. GumPack

sensor-component design (Chapters 3 and 4) is oriented toward surface applications (e.g., touch

and measure), an everyday-carry form factor, and reconfigurability. Onboard tagging technology

(Chapters 5 and 6) enhances sensor functionality by providing, e.g., a signal quality index and

confidence coefficient for itself and/or next-tier medical components (e.g., a hub).

Sensor interaction and integration work includes applications based on the GumPack

design (Chapters 7 through 9) and the Medical Device Coordination Framework (Chapters 10

through 12). A high-resolution, wireless BAN is presented in Chapter 8, followed by a new

physiological use case for pulse wave velocity estimation in Chapter 9. The collaborative MDCF

work is transitioned to a web-based Hospital Information Integration System (Chapter 11) by

employing database, AJAX, and Java Servlet technology. Given the preceding sensor designs

and the availability of information infrastructures like the MDCF, medical platform-oriented

devices (Chapter 12) could be an innovative and efficient way to design medical devices for

hospital and home health care applications.

CUSTOM BIOMEDICAL SENSORS FOR APPLICATION IN WIRELESS BODY AREA

NETWORKS AND MEDICAL DEVICE INTEGRATION FRAMEWORKS

by

KEJIA LI

M.S., Kansas State University, 2010

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical & Computer Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2012

Approved by:

Major Professor
Steve Warren

Copyright

KEJIA LI

2012

Abstract

The U.S. health care system is one of the most advanced and costly systems in the world.

The health services supply/demand gap is being enlarged by the aging population coupled with

shortages in the traditional health care workforce and new information technology workers. This

will not change if the current medical system adheres to the traditional hospital-centered model.

One promising solution is to incorporate patient-centered, point-of-care test systems that promote

proactive and preventive care by utilizing technology advancements in sensors, devices,

communication standards, engineering systems, and information infrastructures.

Biomedical devices optimized for home and mobile health care environments will drive

this transition. This dissertation documents research and development focused on biomedical

device design for this purpose (including a wearable wireless pulse oximeter, motion sensor, and

two-thumb electrocardiograph) and, more importantly, their interactions with other medical

components, their supporting information infrastructures, and processing tools that illustrate the

effectiveness of their data. The GumPack concept and prototype introduced in Chapter 2

addresses these aspects, as it is a sensor-laden device, a host for a local body area network

(BAN), a portal to external integration frameworks, and a data processing platform. GumPack

sensor-component design (Chapters 3 and 4) is oriented toward surface applications (e.g., touch

and measure), an everyday-carry form factor, and reconfigurability. Onboard tagging technology

(Chapters 5 and 6) enhances sensor functionality by providing, e.g., a signal quality index and

confidence coefficient for itself and/or next-tier medical components (e.g., a hub).

Sensor interaction and integration work includes applications based on the GumPack

design (Chapters 7 through 9) and the Medical Device Coordination Framework (Chapters 10

through 12). A high-resolution, wireless BAN is presented in Chapter 8, followed by a new

physiological use case for pulse wave velocity estimation in Chapter 9. The collaborative MDCF

work is transitioned to a web-based Hospital Information Integration System (Chapter 11) by

employing database, AJAX, and Java Servlet technology. Given the preceding sensor designs

and the availability of information infrastructures like the MDCF, medical platform-oriented

devices (Chapter 12) could be an innovative and efficient way to design medical devices for

hospital and home health care applications.

vi

Table of Contents

List of Figures ... x	

List of Tables .. xvii	

Acknowledgements .. xviii	

Chapter 1 - Introduction .. 1	

Custom Biomedical Sensors ... 2	

Wireless Body Area Networks ... 5	

Medical Device Integration Frameworks ... 6	

Chapter 2 - GumPack Platform ... 9	

Goal and Objectives .. 10	

Technology Overview ... 11	

GumPack Concept Model ... 13	

Chapter 3 - Surface Component Design ... 15	

Processor SC ... 15	

Motion Sensor SC ... 17	

Electrocardiograph SC .. 19	

ZigBee Coordinator SC .. 21	

Generic Surface Component ... 23	

Chapter 4 - Pulse Oximeter Sensor Design ... 26	

Requirements and Device Layout ... 27	

AC Extraction and Drift Resistance .. 30	

Closed-Loop System ... 33	

Removable Noise .. 34	

Motion Artifact ... 35	

MATLAB Interface .. 37	

Device Prototype ... 38	

Measurement Data .. 40	

Chapter 5 - Onboard Tagging Technology ... 48	

Technology Overview ... 49	

vii

Onboard and Real-Time Tags ... 50	

Tag Type and Content ... 50	

Tag Format and Indices .. 52	

Chapter 6 - Application A: Feature Detection on a Pulse Oximeter ... 54	

Algorithm Flow ... 56	

Feature Selection ... 60	

Observations and Hierarchical Decision-Making ... 65	

Communication Protocol and MATLAB Interface .. 71	

Downsampling and Compact Representation ... 72	

Feature-Extraction and Decision-Making Performance ... 74	

Chapter 7 - Sensor Integration and Interaction ... 76	

Surface Substrate and Interconnection Interface .. 76	

Cuboid Assembly .. 77	

Software Architecture ... 79	

GumPack Component Connection Framework .. 81	

Chiclet Network and Device Interoperability Standards .. 84	

Web Server and User Interface ... 86	

Prototype and Initial Results ... 87	

Chapter 8 - High Resolution WBAN .. 91	

IEEE 802.15.4 MAC Layer .. 91	

Issue 1: Lost and Wandering Frames .. 91	

Issue 2: Timeline Distortion ... 92	

Frame Field Definition .. 93	

Timeline Restoration in MATLAB ... 94	

Chapter 9 - Application B: Pulse Wave Velocity Estimation ... 96	

Study Description and Experimental Setup .. 97	

Basic Approach ... 98	

Signal Synchronization ... 98	

Signal Preprocessing ... 100	

Pulse Travel Time Extraction ... 102	

Count Differences ... 103	

viii

Pulse Wave Velocity Estimation .. 103	

WBAN Approach ... 105	

Decomposition of the Sensor Data Streams .. 105	

Timeline-Recovered Waveforms .. 106	

Defragmentation and Curve Fitting .. 106	

Synchronization and Feature Extraction ... 108	

Chapter 10 - Medical Device Coordination Framework ... 109	

JMS and MDCF Architecture ... 109	

Scenario Creation and Installation .. 111	

Medical Device Class ... 113	

Transformer Class ... 114	

Display Class .. 117	

Chapter 11 - Application C: HIIS ... 120	

From MDCF to HIIS ... 120	

ActiveMQ, AJAX, and MySQL Database .. 122	

HIIS Interface and Consoles ... 127	

Scenario Creation in the HIIS ... 131	

Scenario APP Configuration and Execution in the HIIS .. 133	

Running the HIIS on a Mobile Platform ... 137	

Chapter 12 - Medical Platform-Oriented Device .. 139	

Moving from Conventional Medical Devices to MPODs .. 139	

Object-Oriented Model ... 142	

APP Logic Pool .. 145	

APP Library .. 147	

Case 1: Parallel Processing ... 149	

Case 2: Multiple Devices .. 150	

Case 3: Closed-Loop Behavior ... 151	

Chapter 13 - Conclusion ... 152	

References ... 156	

Appendix A – GumPack Hardware Interconnection Interface ... 164	

Appendix B – GumPack Hardware Schematics and PCB Layouts .. 166	

ix

Appendix C – Screenshots of the GumPack Web Interface ... 171	

Appendix D – Instructions to Install the JRE on the GumPack .. 176	

Appendix E – Exporting the MDCF to the GumPack .. 179	

Appendix F – Acronyms and Abbreviations .. 184	

x

List of Figures

Figure 2.1. A prototype GumPack design and demonstrative Web interface (closest surface:

single-lead electrocardiograph). .. 11	

Figure 2.2. GumPack cuboid conceptual model. .. 13	

Figure 2.3. Wireless network architecture of a GumPack. ... 14	

Figure 3.1. Gumstix Overo board (left) and custom wireless reflectance pulse oximeter (right). 16	

Figure 3.2. Motion sensor surface component (top view). ... 18	

Figure 3.3. Motion sensor surface component (bottom view) with two 70-pin connectors. 18	

Figure 3.4. ECG surface component (top and bottom view). ... 20	

Figure 3.5. ECG surface component with commercial electrodes. ... 21	

Figure 3.6. ZigBee coordinator surface component (top view). ... 22	

Figure 3.7. ZigBee coordinator surface component (bottom view). ... 22	

Figure 3.8. Diagram of a generic surface component (GSC) and the interface to the GumPack

Component Connection Framework (GCCF). .. 24	

Figure 3.9. Infusion pump design using GSC model fitting. .. 25	

Figure 4.1. Circuit-level system layout. Coordinated by the microcontroller, signal baselines are

digitally extracted as an alternative to conventional filtering. .. 29	

Figure 4.2. A differential amplifier with gain G compares the first-stage PPG (S1) to a DC

reference voltage to obtain the second-stage PPG (S2). .. 31	

Figure 4.3. Palm PPG data before (blue) and after (red) compensation. 32	

Figure 4.4. Pulse oximeter control flow that illustrates how the first-stage PPG (S1) can be used

to create the second-stage PPG (S2), where both signals provide feedback to stabilize the

acquisition process. ... 33	

Figure 4.5. An example of removable noise: (a) compensated PPG corrupted by ambient noise

and (b) frequency spectrum of these data sampled at 240 Hz. ... 35	

Figure 4.6. (a) PPG severely corrupted by hand motion along three axes. (b) Frequency spectrum

of the 28 seconds of data sampled at 100 Hz. ... 36	

Figure 4.7. Three uncompensated PPGs acquired at fs = 240 Hz under similar slight-motion

conditions but with different parameter pairs (W, A). ... 37	

xi

Figure 4.8. Pulse oximeter MATLAB GUI. In this example, a series of calibration coefficients

(lower right) is extracted from the current data (upper right). .. 38	

Figure 4.9. Top view of the wireless reflectance pulse oximeter. .. 39	

Figure 4.10. Bottom view of the wireless reflectance pulse oximeter. ... 39	

Figure 4.11. Fingertip results: 25 seconds of near-infrared PPG data. ... 41	

Figure 4.12. Fingertip results: 25 seconds of red PPG data. ... 42	

Figure 4.13. Fingertip results: 25 seconds of near-infrared magnitude spectra. 42	

Figure 4.14. Fingertip results: 25 seconds of red magnitude spectra. ... 43	

Figure 4.15. Fingertip signal processing and digital volume pulse (DVP) analysis. 44	

Figure 4.16. Wrist PPGs corresponding to the placement locations in Figure 4.17. 45	

Figure 4.17. Pulse oximeter measurement locations on the left wrist. ... 45	

Figure 4.18. Earlobe results: (a) near-infrared channel and (b) red channel. 46	

Figure 4.19. Temple results: (a) time-domain PPG with respiration and swallowing motion and

(b) the corresponding frequency-domain spectrum. ... 47	

Figure 5.1. Tags embedded in an original data stream. .. 49	

Figure 5.2. Data frame structure for a custom pulse oximeter that employs serial communication

(R: red channel; IR: near-infrared channel; AC & DC: pulsatile and baseline samples). 52	

Figure 5.3. Tag frame structure for a custom pulse oximeter. The frame length is N bytes

containing K tags. .. 53	

Figure 6.1. Feature detection algorithm flow. The wireless reflectance pulse oximeter appears on

the left. .. 57	

Figure 6.2. Triangular structures identified for the “compact representation.” 58	

Figure 6.3. Feature 1 (baseline variation count) statistics for 20 subjects. 61	

Figure 6.4. Feature 2 (rising count) statistics for 20 subjects. .. 63	

Figure 6.5. Feature 3 (falling count) statistics for 20 subjects. ... 63	

Figure 6.6. Feature 4 (saturation index) statistics for 20 subjects. ... 64	

Figure 6.7. Ratio of falling time to rising time statistics for 20 subjects. 65	

Figure 6.8. Three-step hierarchical decision-making approach. ... 66	

Figure 6.9. Histograms of Observation 3 for valid PPG data. .. 67	

Figure 6.10. Histograms of Observation 3 for invalid PPG data. ... 68	

xii

Figure 6.11. Histograms of (a) Observation 1 for no motion and (b) Observation 2 for no

saturation. .. 70	

Figure 6.12. Data frame structure used in wireless and serial communication. 71	

Figure 6.13. Tag frame structure used in wireless and serial communication. 72	

Figure 6.14. MATLAB interface developed to visualize the feature detection algorithm results.

All algorithm-related parameters and decisions are ascertained on the wireless unit prior to

transmission. ... 72	

Figure 6.15. Time-domain depiction of (a) an original PPG, (b) its downsampled representation.

and (c) its “compact representation.” .. 73	

Figure 6.16. A typical data set consisting of 33 three-second segments. 74	

Figure 6.17. Four features extracted from the 33 segments. ... 75	

Figure 7.1. Surface substrate circuit board (fully populated version). .. 76	

Figure 7.2. SolidWorks design of the GumPack inner cuboid. .. 78	

Figure 7.3. Machined GumPack inner cuboid. ... 78	

Figure 7.4. GumPack software architecture. ... 80	

Figure 7.5. Profile memory chip field definitions. .. 83	

Figure 7.6. GCCF finite state machine (FSM). ... 84	

Figure 7.7. GumPack Chiclet network and medical device interoperability. 85	

Figure 7.8. GumPack web server login page. ... 86	

Figure 7.9. GumPack prototype and Chiclets. .. 87	

Figure 7.10. Caspa camera board alongside a motion sensor SC. .. 88	

Figure 7.11. Unfiltered ECG sampled from an ECG SC. ... 89	

Figure 7.12. Frequency spectrum of the unfiltered ECG. ... 90	

Figure 8.1. An example star-topology network. Each frame sent by a sensor node carries a

sequence # to address the issue of lost and wandering frames. .. 92	

Figure 8.2. Ticket production and consumption mechanism inside the Coordinator to address the

timeline distortion issue. ... 93	

Figure 8.3. Frame field definitions for the Coordinator and sensor nodes on the application layer

of the custom communication protocol. .. 93	

xiii

Figure 8.4. Original data stream with sequence #s in the received order (blue crosses) and the

recovered time-aligned sequence (red dots). Placeholder frames are assigned negative

sequence #s. .. 94	

Figure 8.5. Linear regression – relative delay to recover the distorted timeline. 95	

Figure 9.1. Measurement setup with one pulse oximeter (sensor) at the wrist and the other at the

fingertip. The primary arterial tree of the hand is depicted to illustrate the pulse travel path.

This figure is adapted from [88]. .. 98	

Figure 9.2. A MATLAB interface that simultaneously communicates with two pulse oximeters

on different serial ports. .. 99	

Figure 9.3. Punched raw PPG waveforms that are aligned (synchronized). 100	

Figure 9.4. Synchronized raw PPG waveforms with the punch marks removed. 101	

Figure 9.5. Filtered PPG waveforms. The channels are still synchronized due to the same group

delay imposed by the linear-phase lowpass filter. .. 101	

Figure 9.6. First derivative (b) and second derivative (c) of a pair of filtered single-cycle PPGs

(a). Three delays, d1, d2, and d3, are extracted according the count differences represented

by the line at y = 0 in (b) and (c). .. 102	

Figure 9.7. The original frame sequence decomposed into two PPGs. Each frame carries two AC

values, but only one is plotted here. .. 106	

Figure 9.8. Two PPGs with data points time-aligned. .. 107	

Figure 9.9. Representative waveform for eight PPG cycles worth of discontinuous, discrete data.

 ... 107	

Figure 9.10. Statistically synchronized, continuous PPGs from two sensor nodes. 108	

Figure 10.1. MDCF architecture and example APP virtual machine (lower right). 111	

Figure 10.2. MDCF Development Environment (upper left), auto-generated files (upper right),

and MDCF Administrative Console (lower right). ... 112	

Figure 10.3. Snapshot of a Java code segment for the MD class in a pulse oximeter scenario. . 113	

Figure 10.4. Snapshot of a Java code segment for the MD class with a nested MDP class. 114	

Figure 10.5. Java classes GenericDeviceMessage (left) and GUIMessage (right). 115	

Figure 10.6. The Java code segment for the Transformer class that describes the main

transformation procedure. ... 115	

Figure 10.7. PPG waveform visualized in a Display class. .. 117	

xiv

Figure 10.8. Numeric physiological values. ... 118	

Figure 10.9. Instantiation of a GenericDeviceMessage (left, partial content) and its corresponding

GUIMessage (right, full content) processed by the Feature Detection transformer. 118	

Figure 10.10. Numeric features visualized in a Display class. ... 119	

Figure 10.11. Physiological values influenced by feature detection results. 119	

Figure 11.1. MDCF architecture based on the MOM model and the publish-subscribe

mechanism. ... 120	

Figure 11.2. HIIS architecture utilizing ActiveMQ and AJAX. ... 121	

Figure 11.3. HIIS architecture improved by automatic transformer assignment and a mobile

device interface. .. 122	

Figure 11.4. ActiveMQ startup information. .. 126	

Figure 11.5. ActiveMQ WebConsole with topic information. ... 127	

Figure 11.6. HIIS homepage with patient information, user identity, and administration tools. 128	

Figure 11.7. HIIS homepage with medical device information. ... 128	

Figure 11.8. HIIS homepage with clinical scenario information. ... 129	

Figure 11.9. Patient record management console in the HIIS. ... 130	

Figure 11.10. Scenario management console in the HIIS. .. 130	

Figure 11.11. Scenario creation console in the HIIS. ... 131	

Figure 11.12. Creation of an example scenario in the HIIS Scenario Creation Console. 132	

Figure 11.13. Automatically created scenario script and Java code templates in the HIIS

Scenarion Creation Console. ... 132	

Figure 11.14. Upload of a new scenario to the server in the HIIS Scenario Creation Console. . 133	

Figure 11.15. Example patient console in the HIIS that displays patient information, connected

medical devices, and active scenarios. .. 134	

Figure 11.16. Selection and assignment of medical devices and components in the patient

console. ... 135	

Figure 11.17. Sequence to configure and start a scenario for a patient in the patient console. .. 136	

Figure 11.18. APP display for the button and infusion pump scenario in the HIIS. 137	

Figure 11.19. Access to the HIIS with a mobile device. ... 138	

Figure 11.20. Patient scenario display on a mobile device. .. 138	

Figure 12.1. Elements of a conventional medical device. .. 140	

xv

Figure 12.2. A custom reflectance pulse oximeter (left) and two representative PPGs acquired

with the device (right). .. 142	

Figure 12.3. Object-oriented model for device-related MDCF components. 143	

Figure 12.4. An example component pool for PPG-oriented APPs. Transformer components are

depicted as colored bubbles in the middle area (interconnections will be configured for

specific clinical scenarios). ... 148	

Figure 12.5. System-level diagram for a pulse oximeter APP that employs parallel transformers.

 ... 149	

Figure 12.6. System-level diagram for a pulse wave velocity APP that employs multiple pulse

oximeters (devices). .. 150	

Figure 12.7. System-level diagram for a cardiovascular parameter extraction APP that exhibits

closed-loop behavior. .. 151	

Figure C.1. GumPack web interface - Dashboard tag. Data acquired from an accelerometer,

gyroscope, pulse oximeter, and ECG sensor. ... 171	

Figure C.2. GumPack web interface - Devices tag. Data selection and analysis for a pulse

oximeter. ... 172	

Figure C.3. GumPack web interface - Trackers tag. ... 173	

Figure C.4. GumPack web interface - File Repository page. ... 174	

Figure C.5. GumPack system resources allocated for the web server lighttpd. 175	

Figure D.1 Configuration file for Wi-Fi access. ... 177	

Figure D.2. Wireless interface configuration after connecting to the access point successfully. 177	

Figure E.1. Example scenario with an MDCF client running on the GumPack. 179	

Figure E.2. Exporting resources to a JAR file in Eclipse. .. 180	

Figure E.3. Choosing the launch configuration and file properties in the last step of a runnable

JAR file export. ... 181	

Figure E.4. Original code in the MDCF when receiving a message regarding a publish topic. . 182	

Figure E.5. Modified code in the GumPack when receiving a message regarding a publish topic.

 ... 182	

Figure E.6. Original code in the MDCF when receiving a message regarding a subscribe topic.

 ... 183	

xvi

Figure E.7. Modified code on the GumPack when receiving a message regarding a subscribe

topic. .. 183	

xvii

List of Tables

Table 4.1. Wireless Reflectance Pulse Oximeter Design Requirements 28	

Table 5.1. Tag Types Used in Onboard Tagging Technology .. 51	

Table 6.1. Observation Description Given the Original Four Features .. 65	

Table 6.2. Hypothesis Definition and Pd for Each Step .. 69	

Table 6.3. Hierarchical Decision Rule Results ... 75	

Table 9.1. PWV Results from a Ten-Second PPG Waveform Pair from One Subject 104	

Table 10.1. Features Extracted from PPGs ... 116	

Table A.1. GumPack Hardware Interface Pin Definition ... 164	

Table F.1. Acronyms and Abbreviation .. 184	

xviii

Acknowledgements

The author wishes to thank Dr. Steve Warren, Dr. Bala Natarajan, and Dr. John Hatcliff

for their helpful advice and assistance throughout this program, This work was supported in part

by the National Science Foundation under grants BES–0093916, BES–0440183, and CNS–

0551626, as well as the 2011 CIMIT (Center for Integration of Medicine & Innovative

Technology) prize for primary healthcare. Opinions, findings, conclusions, or recommendations

expressed in this material are those of the author and do not necessarily reflect the views of the

NSF or CIMIT.

1

Chapter 1 - Introduction

The U.S. medical system offers many of the most advanced technologies, treatments, and

therapies in the world. It is also one of the main cradles for innovation in health care, from

biotechnology to medical devices and systems, under the supervision of the U.S. Food and Drug

Administration (FDA). On the other hand, this system is one of the most costly health care

systems in the world. The average annual premium for family medical coverage through an

employer reached $15,073 in 2011, an increase of 9 percent relative to the prior year, according

to a new study by the Kaiser Family Foundation [1]. The evolving aging population, driven by

the wave of baby boomers that approach retirement [2], will impose significant pressure on a

medical system with already crowded hospital rooms and long waiting lists for surgeries such as

heart transplants. Increasing demands from more patients for more care services, coupled with

shortages in the healthcare workforce, could eventually pose a crisis for current medical systems.

Regarding physicians and nurses, the nation is looking at a future shortage of about 300,000

nurses and 35,000 to 44,000 adult-care generalist physicians practicing family medicine and

general internal medicine [3]. Health information technology (HIT) workers present the other

significant shortage, as technology tools such as electronic health records (EHRs) and health

information exchanges (HIEs) begin to be widely adopted in the health care industry [4]. An

additional 35,000 HIT workers are needed by 2018, as reported by the Bureau of Labor

Statistics.

The healthcare system needs a transformation, given the long-unchanged and

disappointing situation of rising medical care costs and rapidly increasing demands that exceed

health care supplies. One feasible solution is to utilize technology advancements in sensors,

devices, communication standards, engineering systems, information infrastructures, etc. and

transit to bottom-to-top approaches that rely on the large consumer base. In order to realize a

patient-centric, point-of-care system that focuses on proactive and preventive care, consumer

medical devices should penetrate into the large user space, providing the infrastructure for a

necessary healthcare transition.

There will be a 'healthcare war' in the near future involving all of us. To win this war, the

'technology weapons' need to be placed into the hands of the largest group affected by this war:

2

the patients and individuals who are concerned about their health and wellbeing. Hospitals

should not be the only places where medical care is provided. Instead, the health care system

should be distributed across homes or travel with individuals (i.e., mobile health care).

Technology will help realize this transition by bringing medical devices and systems to the

consumer and interconnecting them with the hospital information infrastructure.

Smart phones, as consumer digital devices, have already been vastly integrated into

people’s daily lives. Mobile health applications have begun to incorporate smart phone

platforms, utilizing their increasing processing speed, friendly user interfaces, and

communication capabilities. Efforts include (a) attaching biomedical sensors directly or

indirectly to a smart phone to track a user’s physiological indices, (b) using the components

already integrated inside the phone, such as accelerometers and cameras, for medical purposes,

and (c) the creation of a variety of health-related APPs. AliveCor’s iPhone ECG case turns a

phone into an ECG device by sliding a case with ECG electrodes onto the back of the phone [5].

Imec and Holst Centre, together with TASS, developed a wireless receiver on an Android phone

to form a body area network (BAN) to monitor ECG, EEG, EMG, etc [6]. The integrated camera

on the phone has been proven to obtain accurate heart rate measurements [7] and other

physiological variables such as respiratory rate and oxygen saturation by analyzing PPG signals

[8]. Thousands of APPs can be downloaded from APP stores in the categories of medicine,

health, and fitness [9].

 Custom Biomedical Sensors
The creation of consumer medical devices (e.g., smart-phone-based medical devices) will

serve as the foundation for this health care transition. From a system-level engineering

perspective, consumer electronics are embedded systems, consisting of basic components such as

processors, memory, and input/output interfaces. In the context of health monitoring, the

development of biomedical sensors and/or actuators is a challenge of utmost importance. Custom

biomedical sensors optimized for home and mobile health care environments will be pivotal

factors in this transition.

However, in this scenario, the user or operator of a medical device will not often be a

trained caregiver, but rather a consumer who may have varied experience with consumer devices

like smart phones and computers. Even with the availability of professional and technical

3

support, patients will be on their own in many circumstances, including times when they set up

devices, acquire measurements, and read results. Hence, there are three basic requirements for

the design of custom biomedical sensors in order to minimize usage complexity, ensure result

reliability, and improve safety:

1. Non-invasive measurements will be the foremost product of biomedical devices used

outside of hospitals. For example, to measure blood glucose, most glucose meters acquire blood

samples by skin punctures. Non-invasive glucose monitoring technology [10] will provide a

much easier way for diabetics to manage their care, dramatically or completely reducing pain

and the chance for infection. Several methods are described in [10] to non-invasively acquire

glucose readings, such as near infrared spectroscopy and transdermal measurement. An approach

to use tears instead of minimally invasive blood samples has also been investigated [11]. The

primary challenge for the use of most non-invasive biomedical sensors as indirect methods is to

improve performance and obtain reliable results given common issues like baseline wandering,

the influence of sweat, and surface artifacts. Non-invasive techniques may also initially involve

invasive procedures, such as implanting medical components.

2. Continuous monitoring is important from the perspective of mobile applications. This

does not always mean continuous data acquisition, but rather the capability to provide reliable

performance during a change in measurement context (e.g., stepping outside of the house). The

main idea is that wearing or using a biomedical sensor should minimally influence a user’s

normal activities while maintaining the ability to acquire valid data. Since these devices will be

used outside of relatively controlled hospital environments, biomedical sensors designed for

consumers should consider the more severe conditions of daily life, such as movement, sweating,

and exposure to sunlight. For example, motion artifact is a common issue in electrocardiograph

and pulse oximeter design. However, motion itself is a common parameter continuously

recorded by motion sensors like accelerometers and gyroscopes, so this parameter can help a

device to compensate for alterations in data due to real-world conditions. Identification of

context change and accurate extraction of the target physiological parameters are of utmost

importance.

3. Surface biosensors, a concept described in [12], will be prolific in future care

scenarios. For instance, several types of wearable designs for ambulatory pulse oximeters exist.

Some of these use ring form factors, and others use finger clips. These designs use

4

predominantly transmission-mode sensors. For broader use with wrist watches, head bands,

socks, sensor ‘Band Aids’, and other wearable platforms that are unobtrusive and well suited for

mobility, it makes sense to consider reflectance-mode layouts. This is especially true when one

contemplates the immense potential of surface biosensors: medical sensors embedded in the

surface of everyday consumer electronics such as handheld personal device assistants (PDAs),

cell phones, smart phones, tablet PCs, head-mounted displays, etc.

More properties must be considered when designing custom biomedical sensors for home

and mobile health care environments, including safety, durability, and reusability. There are

generally two ways to categorized these devices: according to their functionality (i.e., the

parameter(s) monitored) and their design principle (i.e., how each measurement is obtained).

Functionality is the first item that draws a customer to a medical device. It covers the primary

vital signs [13] (core body temperature, weight, pulse rate, blood pressure, and respiratory rate),

other circulatory system parameters (e.g., blood oxygen saturation and blood glucose level),

nerve system parameters (e.g., pain and mood), activity level (e.g., gait speed), and other

parameters that help to predict and/or diagnose health conditions.

The following sensing methods are apt to be employed: optical (e.g., light-based sensor

or imaging system), acoustic (e.g., ultrasound), and electrode-based (e.g., ECG, EMG, EOG, or

bioimpedance). There are many design variations in each category, including contact versus non-

contact. In this dissertation, several specific sensor designs are presented in Chapters 3 and 4. For

example, in a reflectance pulse oximeter design, the sensor can employ a single small photodiode

[14] as in most transmittance sensors. However, tissue is highly forward scattering, so the

relative number of remitted photons detected in reflectance mode is low, yielding lower-quality

PPGs [15]. Improved sensor configurations are therefore often adopted to better acquire the

radial reflectance profile, including a ring-shaped photodiode design [16], [17], a photodiode

array around the central LEDs [18], and conversely an LED array around a central photodiode

[19]. These designs generally employ cascaded high pass and low pass filters to extract the PPGs

[20]. Such analog filters inevitably alter and even distort the signals of interest. These alterations

are visibly obvious in some papers, and cycle-to-cycle inconsistencies can be significant. For

this reason, a filter-free design is desirable (see Chapter 4).

Another special category of custom biomedical sensor is single-use and disposable. The

obvious advantage of single-use solutions for certain monitoring situations is that no sensor

5

cleaning and sterilization is needed. This reduces the risk of infection, may provide more

accurate results, and can be more cost effective than traditional technologies. For example, a

single-use pressure sensor could be cheaper than a sanitary pressure transducer that requires

autoclaving and recalibration after each use [21].

 Wireless Body Area Networks
Wireless body area networks have received significant attention in recent years due to

their potential to enable patient-centered wellness monitoring, where the continuous acquisition

of health indicators such as heart rate and activity level have garnered primary emphasis.

Technical focus areas within this domain include sensor miniaturization [14], wearable sensors

[22], ultra low-power circuits [23], communication protocols [24], and network topologies.

General rules related to, e.g., low power and reliability, guide each WBAN development phase.

The physical components in a WBAN fall into two categories depending on their roles in

the network: sensor (transmitter) and coordinator/hub/base-station (receiver). Note that in many

applications, sensor nodes also receive data (e.g., commands) from coordinator nodes. This

basic structure implies two fundamental roles of a WBAN: an integrated sensor collection and a

health gateway (coordinator).

Various sensor configurations can constitute a WBAN. Motion sensors are used in [25]

for computer-assisted physical rehabilitation. An 8-channel EEG system based on a WBAN is

described in [26]. Two wearable sensors (a pulse oximeter and a blood pressure monitor) and a

GPS module are employed in a wireless system for patients in a disaster scene in [27]. A wireless

body sensor network that provides a finger photoplethysmogram (PPG), an electrocardiogram

(ECG), and continuous cuffless blood pressure via a 3D accelerometer patch is presented in [28].

A BAN in [24] contains two accelerometers, an ECG sensor, a blood pressure sensor, and a pulse

oximeter; it detects context change and determines the state of each sensor (e.g., data rate).

In these WBAN applications, the gateway role is primarily to coordinate sensor activities

and stream data to a computer for storage, analysis, and display. Furthermore, these data could

be forwarded to an external network such as a Medical Device Coordination Framework

(MDCF) [29] introduced in the next section. In practice, the Internet would be a reasonable

candidate for the 'external network.' Recently, eDevice announced the HealthGO platform which

utilizes Freescale's Home Health Hub reference platform [30]. HealthGO was reported as the

6

first fully customizable data aggregation platform in industry, supporting remote patient

monitoring. Its key tasks include universal connectivity for patients/devices and data delivery for

remote device management through global communication network services (e.g., cellular and

Ethernet). A similar technology from Qualcomm Life – 2net platform – provides a wireless

health network that connects medical devices and a cloud-based system through a 2net Hub [31].

WBAN protocols contain a common component and an application-specific component.

Since early 2008, the IEEE 802.15 Task Group 6 has addressed WBAN communication

standards, which are likely to be based on the medium access control (MAC) layer of the current

IEEE 802.15.4 standard [32]. Such a communication protocol should ensure high network

capacity, energy efficiency, and adequate quality of service [33]. The protocol defines what data

are transmitted and received, as well as when and how this occurs. To a large degree, these

items determine the network performance, as they affect power consumption, data throughput,

and packet loss rates. Data management techniques like adaptive duty cycles and message

prioritization [24] can be considered if a monitoring scenario involves patient state/context

changes and/or the coexistence of different types of sensor nodes.

Diverse and creative application-layer schemes can be designed and evaluated for various

WBAN scenarios. A new wireless body area network is introduced in Chapter 8, which presents

a WBAN that emphasizes high-resolution raw data, real-time operation, and time

synchronization of intra-sensor data and inter-sensor waveforms. Utilizing this WBAN, Chapter

9 describes a new physiological use case for pulse wave velocity estimation.

 Medical Device Integration Frameworks
Many medical devices on the market support some form of connectivity through serial

ports, Ethernet, 802.11b/g/n or Bluetooth wireless, etc. Unfortunately, device interoperability is

lacking due to the limited implementation of interfacing standards, and connectivity is usually

only leveraged by Medical Device Data Systems (MDDSs) that uni-directionally transfer

data/events from devices to composite monitors or EHRs. In contrast, electronic devices in other

domains have widely adopted interfacing standards that allow “plug-and-play” interoperability.

Many of these devices can be connected to computing platforms with flexible software

frameworks that enable developers to easily build complex monitoring and data sharing

applications, some of which employ closed-loop control algorithms. The realization of medical

7

systems with these capabilities has been slow, partially because of the need for careful device

regulation coupled with issues such as cost, liability, infrastructure availability, and the existence

of a user community (both patients and providers) that is not always technology-savvy – similar

barriers that adopters of telemedicine technology have faced since the early 1990s. As a result,

medical devices are predominantly stand-alone or networked in pre-arranged collections, where

the number of possible device configurations and the resulting interactions between these devices

are limited to a carefully controlled subset of possible embodiments. Device implementations are

therefore static by nature so as to streamline the device regulation process and limit liabilities

incurred.

In previous collaborative work with engineers from the U.S. Food and Drug

Administration and researchers from the University of Pennsylvania [34], KSU researchers have

implemented a medical computing and device integration platform called the Medical Device

Coordination Framework (described in Chapter 10 and upgraded to a web-based Hospital

Information Integration System in Chapter 11). The MDCF provides many of the capabilities

called out in the Integrated Clinical Environment (ICE) platform [35] specified in the ASTM

F2761-09 standard. An ICE-compliant implementation can be viewed as a computing platform

(architecture, hardware, and software services) that allows heterogeneous medical devices to be

integrated to create medical systems that support high-acuity patient care, similar in criticality

and functionality to Integrated Modular Avionics. ICE provides services that expose data and

control aspects of integrated devices to an ICE Supervisor Application. Individual medical

devices that provide data and administer treatment are connected to a shared network substrate

managed by the ICE Network Controller. This system can manage multiple devices simul-

taneously based on extensible clinical APPs. Each APP can combine input from multiple

devices, synthesize it, display it, and possibly take action, instructing devices to alter their

behavior based on feedback from other devices.

At issue is the desire to move toward intelligent device collections that include

operational attributes similar to devices in the evolving consumer electronics domain. In that

space, devices are fully networked and rely heavily on functional improvements through

automated and user-initiated APP upgrades; updates that are currently manifested in software but

can also be realized through hardware technologies such as FPGAs. Architecturally, this design

space can be approached two ways:

8

1. Complex highly-capable devices that incorporate reconfiguration and decision-

making capabilities onboard and then feed their data to the network with which they interact.

2. Platform-oriented frameworks where simple data-acquisition devices upload their

data to a computing platform capable of performing complicated data processing operations with

reconfigurable APPs made up of components, or transformers.

The first approach lends itself well to (a) some wireless scenarios where immediate

assessments of data viability can avoid the needless transmission of data with limited diagnostic

value, (b) applications where hardware optimizations for known scenarios would improve device

operation, and/or (c) applications where the static nature of this functionality directly impacts the

ability to regulate the associated devices. The onboard tagging technology (Chapter 5) falls into

this category, and a feature detection application for a custom reflectance pulse oximeter is

demonstrated in Chapter 6.

The second approach is appropriate for applications where (a) more flexible (or more

numerous) data analyses are desired, (b) access to a broader developer based is appealing, and/or

(c) verification and validation approaches for reconfigurable devices can be put in place to

protect patients and providers from developer oversights. The work in Chapter 12 explores this

approach and aims to develop a vision of what can be called a "medical platform-aggregated

device" (MPAD). An MPAD is a composite medical device whose functionality is achieved by

aggregating (a) medical platform-oriented devices (MPODs) – hardware components –such as

sensors and actuators that are designed to be integrated (either by wire or wirelessly) with a

computing platform that supports safety and security guarantees appropriate for medical devices

and (b) applications (APPs) hosted on the computing platform that interact with platform-

connected devices, implement data processing and control algorithms, and realize visual displays

and control panels used by patients or caregivers.

9

Chapter 2 - GumPack Platform

Wearable and everyday carry devices that integrate with regional or hospital information

networks promise to increase the quality of care rendered to individuals that desire mobility yet

require frequent or continuous health monitoring [36], [37]. The maturation of interoperability

standards such as IEEE 11073 – Personal Health Data (11073 PHD) [38], coupled with the

proliferation of wireless communication standards, plug-and-play wired technologies, small

medical sensors, and low-power computation and visualization tools (that are in large part driven

by the smart phone industry) offer promise for the creation of small, effective portable medical

devices that can be customized to meet the needs of the individual user. Sensor-laden devices

that offer the connectivity of a cell phone and are small enough to attach to a keychain or be

carried in a purse like lipstick, an inhaler, or a pocket knife are especially attractive, as such

items would be culturally accepted, inconspicuous, and minimize the effects of the medical

monitoring process on day-to-day existence.

Cell phone centric development (see examples in Chapter 1) seems at first glance to be an

effective match for everyday-carry medical devices that promote the transition to patient-

centered care. However, a smart phone is not natively designed to be a professional platform for

medical applications. The physical interface to a phone is limited by its wired/wireless

connections, each of which adds an additional communication layer and requires extra electronic

parts, affecting the device cost, power consumption, and form factor. Further, standardization at

the hardware level can be difficult because manufacturers define different interfaces for each

embedded element. This inaccessibility to embedded hardware resources within a smart phone

further extends to its firmware, whose development is constrained to the software development

kits (SDKs) provided by the respective manufacturers. Finally, thread priorities in smart phones

are optimized for voice communication rather than data gathering, which brings into question the

reliability of physiological data that must acquired these external ports. In summary, a phone-

based platform and its supporting development kit is far from an open embedded environment

that can provide the freedom to design an optimized consumer medical device. Moreover, the

integration of a reliable and efficient information framework within the current operating

10

systems that facilitates device reconfigurability and interoperability will be impossible without

strong technical support from phone manufacturers.

This chapter addresses a new type of multi-sensor medical monitoring device (nickname:

GumPack) whose functionality and architecture are notably different relative to current research

and commercial devices. The design attempts to optimize the low-power versus high-

performance tradeoff relevant to mobile embedded systems. One trend in wearable medical

device design is to form a body area network with wearable sensors that connect to a smart

phone. The phone then serves as a computation platform and information-forwarding hub, and

the devices are assumed to be ‘dumb,’ computationally hobbled, and unable to coordinate with

other nearby devices: their only role is to acquire and forward data to the hub. This wastes

battery power and frustrates device creativity because hardware development kits for smart

phones are generally unavailable, so the topology is fixed. Third-party designers cannot create,

e.g., reconfigurable surface-sensor collections on these phones. The technology proposed here

leapfrogs this design space by providing a small, reconfigurable, medical sensor platform that

can be carried everyday and operate up to six hours on a single battery charge when transmitting

device data continuously over a Wi-Fi connection. It will offer a computer-grade signal

processor, support security functionality (user identification, device authentication, and secure

data access), and encourage real-time interoperability.

 Goal and Objectives
The overall goal of this GumPack effort is to prototype and evaluate a new type of multi-

sensor medical monitoring device that offers a small size, the processing capabilities of a

computer, the ability to host multiple biomedical sensors that can be reconfigured based upon

patient need, and communication and networking resources that allow the device to upload data

to a patient’s electronic health record via the Internet. A GumPack provides a platform for the

research content documented in this dissertation, including custom biomedical sensor design,

sensor integration and interaction, and medical device integration frameworks. Five technical

objectives support the overall goal mentioned above:

1. Design a small medical system in the form of a cuboid, where each surface can host a

different plug-and-play medical device, processing sub-system, or connectivity mechanism.

11

2. Overlay an information framework on the mobile system that promotes medical device

reconfigurability and interaction with remote information frameworks.

3. Demonstrate the sensibility of this approach with a collection of snap-on surface

devices.

4. Unveil the use of the GumPack as a body area network hub that can interface to

wearable/nearby sensors (“Chiclets”) via ZigBee wireless telemetry.

5. Illustrate the ability of the GumPack to perform advanced system and data processing

tasks often reserved for personal computers and to interact with remote systems using Wi-Fi.

 Technology Overview
A GumPack is a new type of everyday-carry, multi-sensor medical monitoring device

whose layout and functionality offer the potential to leapfrog the design space specified by

mobile phones connected to dumb medical devices. A rectangular cuboid prototype for this

device is depicted in Figure 2.1. As the GumPack is rotated each quarter turn, the user is

presented with a different face of the cuboid, where a new device resides. These surface

elements can be switched out in a plug-and-play manner to match a user’s specific care needs.

Figure 2.1. A prototype GumPack design and demonstrative Web interface (closest

surface: single-lead electrocardiograph).

12

The everyday carry vital sign monitor is also intended to serve as a body area network

hub to support additional wearable or nearby devices (Chiclets – described later in this

dissertation). The monitor is designed to be one component that operates within a ubiquitous

home infrastructure yet also offers patient mobility outside of the home. Operationally, it will

supply continuous or processed data in real time or in store-and-forward mode. On-board

storage will allow a PHR to travel with the user, and advanced computation capabilities will

promote onboard signal processing operations such as filtering, parameter extraction, and

spectral analysis.

From a connectivity viewpoint, the base platform will offer cell-phone, Wi-Fi, and lower-

power wireless (e.g., Bluetooth and ZigBee) support, depending on whether the unit

communicates with a remote system or a local body area network. USB serial communication

and rechargeability are important features, as is Web interface support, which will allow nearby

devices such as smart phones and tablets to view these sensor data, e.g., when a display

component is absent on the GumPack.

Note that this design’s resource collection makes it a good base platform for algorithms

that address context/situation awareness, physiological models that assess patient health given

multi-sensory inputs, intelligent agents, and on-board analyses for local decision making

(including the ability to maximize battery life through onboard processing, minimizing the need

for telemetry). Role-based operation and device-level security (e.g., user identification, device

authentication, and secure data access) are also sensible targets for this design, which seeks to

optimize the low-power versus high-performance tradeoff relevant to all mobile embedded

systems.

At present, the GumPack does not provide a cell-phone-like user interface (e.g., touch

screen). However, a user can alternatively utilize a phone, a tablet, Internet TV, or any device

that supports Wi-Fi and Web browsing as an indirect access interface. While the data depicted on

the iPad interface in Figure 2.1 are real measurement results collected from the GumPack and a

network of Chiclet sub-sensors, they currently do not update in real-time, and the graphical

interface itself is not needed for device operation. This demonstrative GumPack Web interface

also provides early implementations of a health & wellness tracker, a device configuration panel,

and file checkout using a registered GumPack account (see Chapter 7).

13

 GumPack Concept Model
The rectangular cuboid object illustrated in Figure 2.2 is the initial GumPack concept

model that consists of (a) up to four surface components, (b) four surface substrates, (c) a camera

and a microphone, (d) wired connectors, and (e) a battery. Each surface component and substrate

pair is connected by two 70-pin connectors. The Gumstix Overo board [39] (see Figure 3.1, left

side) is a required surface component that supports core computing/control, component

coordination, power management, and basic communication, while the configuration of the other

surface components is flexible. A surface component can be a reflectance pulse oximeter, a two-

thumb ECG, a sensor conditioning board, an expansion board, or even another Overo board.

One type of expansion board, e.g., a ZigBee coordinator, can create a local low-power wireless

network, e.g., a body area network, using Chiclets: small, wearable, low-power wireless sensors

(see Chapter 3 for a detailed description of each surface component).

Figure 2.2. GumPack cuboid conceptual model.

Figure 2.3 illustrates the GumPack communication flexibility in terms of wireless

network functionality. The Wi-Fi module, in managed mode, enables the GumPack to potentially

connect to a Hospital Information System via an access point. In ad-hoc mode, the GumPack is a

14

local data server for handheld devices to access. For example, one could display processed PPG

data on a nearby iPad. A local ZigBee network of Chiclets can coexist with a Wi-Fi mode. For a

use case of, e.g., ‘motion pattern recognition,’ Chiclets could be accelerometers that send data

from different body locations to the GumPack while the GumPack simultaneously runs other

medical device components.

Figure 2.3. Wireless network architecture of a GumPack.

From the perspective of standards and interoperability, the modularized, configurable,

and expandable GumPack design will require specifications for ‘surface component’ design and

medical data streaming. Such standards will be important for team collaboration, device

upgrades, and integration with other information systems. The ISO/IEEE 11073 standards

(including the Personal Health Data subset) are being assessed as an interoperability complement

to the transport standards (e.g., ZigBee, Wi-Fi, and USB) already supported by the GumPack

hardware.

15

Chapter 3 - Surface Component Design

The surface component (SC) and Chiclet concept provided by the GumPack platform

serves two purposes: (a) traditional custom biomedical sensor design and (b) sensor integration

and interaction based on the uniform interface provided on a GumPack, which functions as a

medical components hub. The first item is addressed by four example SC designs and a generic

SC template in this chapter, as well as a pulse oximeter Chiclet design in the next chapter. The

second item unfolds in Chapters 7 through 9.

A conventional way to upgrade a device typically involves redesigning the whole

embedded system with new software support, such as utilizing a new CPU for a smart phone.

With the GumPack platform, a more flexible and innovative approach is to plug in only the SCs

that support the functionality a user really needs, such as a new biomedical sensor. This is one

major benefit of the GumPack design. Four instantiations of GumPack SCs are described below.

 Processor SC
The primary SC hosts a processor and other system resources such as memory, a network

interface, etc. The processor SC is a compulsory element in the GumPack design, whereas the

other SCs are optional and depend on patient needs. A processor SC plugged into an SS form a

minimum system.

At present, this SC utilizes Texas Instruments’ OMAP3530 high-performance

applications processor. Several powerful subsystems housed in this chip include (a) an ARM

Cortex-A8 microprocessor, (b) a TMS320DM64x+ digital signal processor, (c) an SGX graphics

accelerator, and (d) a camera image signal processor. It supports numerous HLOS and RTOS

solutions, including Linux and Windows CE, providing maximum flexibility over a wide range

of end applications. More specifically, the Gumstix Overo board (see Figure 3.1 (left side)) is

employed as a processor SC.

16

Figure 3.1. Gumstix Overo board (left) and custom wireless reflectance pulse oximeter

(right).

The Overo board size is 58 mm by 17 mm, which constrains the smallest GumPack size

to 58 mm x 17 mm x 17 mm. This SC provides more signals than are defined on the 44-pin

interconnection interface, e.g., camera signals, display signals, memory bus signals, JTAG

signals, etc., many of which are directly derived from the OMAP3530 processor. Future use of

these signals will depend on the GumPack applications employed.

Other notable features of the Overo board include a Wi-Fi/Bluetooth module, which

supports most GumPack wireless applications, and a Micro SD card module, which enables a

fast switchover of the entire software system (even the boot loader), e.g., from onboard FLASH

to the inserted Micro SD card. Current consumption is approximately 250 mA (500 mA with Wi-

Fi active). Actual power consumption will depend on the GumPack configuration and system

resource usage (e.g., CPU usage, Wi-Fi active time, etc.).

17

 Motion Sensor SC
Motion sensors have been widely embedded in consumer electronics, since they provide

useful information about device attitude and user activity. Applications based on motion sensors,

especially accelerometers, include screen auto rotation, game controllers, and system auto

wakeup (using an inertial interrupt function). In the biomedical domain, motion sensors are used

to monitor patients’ daily physical activity [40] or as a reference signal to reduce motion artifact

in, e.g., ECGs [41] and PPGs [42].

Given its ability to support generic applications, the GumPack design can be viewed as

both a consumer electronics platform and a collection of medical devices (sensors). The first

natively designed GumPack-ready SC is the motion sensor board in Figure 3.2 (top view) and

Figure 3.3 (bottom view). The board size is 58 mm by 17.5 mm. Two types of motion sensors

are mounted on this SC board: one 3-axis accelerometer and two gyroscopes (1- and 2-axis). The

relative x, y, and z directions are printed on the board (see the lower left corner in Figure 3.2).

The accelerometer employs STMicroelectronics’s LIS33DE unit, an ultra compact low-power (<

1 mW) three axis linear module. It sends the measured acceleration (including the direction of

gravity) within the range of ±8 g through the I2C serial interface with an address of 0x1d. The

gyroscopes are STMicroelectronics’s low-power LY510ALH (z-axis) and LPR410AL (x, y-axis)

units. They provide angular rate data within the range of ±100 dps (degrees per second) through

an analog output (connected to the ADC pins of the GumPack).

A profile memory chip comes with all SCs and plays an important role in the GumPack

Component Connection Framework (GCCF) introduced in Chapter 7. For the motion sensor SC,

Microchip’s 24AA01, a low-power (< 1 mA) EEPROM, is adopted. A GumPack can access its

1024 bits of memory space through the I2C serial interface with the address 0x50.

On the bottom side of the motion sensor SC, one can find the two 70-pin connectors

(header), as in Figure 3.3, that match the 70-pin connectors (receptacle) on the surface substrate.

When the SC is plugged into the system, it is automatically identified (on the I2C bus) and

authenticated (with information in EEPROM). It can then begin to provide motion data,

consistent with the functionality realized by the GCCF.

18

Figure 3.2. Motion sensor surface component (top view).

Figure 3.3. Motion sensor surface component (bottom view) with two 70-pin connectors.

19

 Electrocardiograph SC
An electrocardiograph (ECG) is a standard clinical device that is also popular in mobile

health care environments. It transduces tissue biopotential differences into millivolt-level

electrical signals using differential electrode pairs. ECG variations are often distinguished by the

number of leads employed (one ECG lead results from two electrodes), such as 3-, 5-, and 12-

lead configurations. In the context of a wearable medical device, a single lead ECG [43] can help

to minimize device size and power consumption.

An ECG SC is a single-lead ECG board natively designed for the GumPack, as in Figure

3.4. The board size is 58 mm by 17.5 mm. Two electrodes are integrated into the top side of the

board in the form of conductive solder pads. During the measurement, two digits (e.g., thumbs)

from different hands need to be carefully placed on the two onboard electrodes and kept still

without touching other electronic parts. A single-lead ECG lacks a reference signal from a third

electrode, which makes it different to manage relative to a regular 3-lead ECG system. The ECG

SC design is based on the Medical ECG Application Circuits described in Texas Instruments’

INA321 datasheet [44]. The TI INA321 is the instrumentation amplifier component, and the TI

OPA2336 is the operational amplifier.

 Two types of reference voltage schemes are available, as noted in Figure 3.4 (upper).

The purpose of a reference voltage is to keep the ECG signal in the range of 0 to 3.3 V at all

amplification stages, providing baseline wandering control. REF 1 is fixed at 1.65 V (or half of

the power supply level). REF 2 is output by a digital-to-analog converter (DAC) from an Analog

Devices AD5315 chip. The particular value of REF 2 is sent through the I2C serial interface at

the address 0x0c. Given access to REF2, digital baseline control could lead to a full digital ECG

circuit without an analog filter. Such a design could yield a high-fidelity, unfiltered (i.e.,

distortion-free) electrocardiogram. A similar scheme was employed in the reflectance pulse

oximeter mentioned in Chapter 4.

20

Figure 3.4. ECG surface component (top and bottom view).

Figure 3.5 shows an alternative usage mode for the ECG SC. The electrodes (sensors) are

transported separately from the board and plugged in when needed. Commercial electrodes offer

hands-free measurement and higher signal quality. This is a typical example of using accessories

to improve the functionality of a surface component while keeping the GumPack unit in a

compact form factor. This use case also indicates that the sensors need not be housed on the

same SC at all times, since the board acts only as a signal conditioning circuit and interface to

the GumPack. This concept will be elaborated upon in the section Generic Surface Component.

Note that the jumper cap is also identified in Figure 3.5. In this case, REF 1 (half of the supply

voltage) is selected.

21

Figure 3.5. ECG surface component with commercial electrodes.

 ZigBee Coordinator SC
The GumPack can host up to three biomedical devices or sensors in the form of SCs. To

further extend its hosting capacity (e.g., to associate it with a body area network, where low-cost,

low-power components are required), a ZigBee coordinator SC has been designed – see Figure

3.6 and Figure 3.7. The board size is 58 mm by 24 mm.

To simplify the design procedure, the same Jennic JN5139 wireless microcontroller is

used in the ZigBee coordinator SC as was used in the wireless pulse oximeter in Figure 3.1 (right

side). The JN5139 was designed for robust and secure low-power wireless applications. It

integrates a 32-bit RISC processor with a 2.4 GHz IEEE 802.15.4 (ZigBee) transceiver, 192 kB

of ROM, 96 kB of RAM, and a mix of analog and digital peripherals. The wireless link requires

the most current of all of the optional SCs, with a TX (transmitter) current draw of 38 mA and an

RX (receiver) current draw of 37 mA. The CPU consumes 7.75 mA at full speed, and the current

required by the peripherals (ADC, DAC, UART, Timer, etc.) is less than 1 mA in aggregate. The

JN5139 sleep current (with an active sleep timer) is only 2.6 µA. When compared to the 250 mA

current consumption of the Wi-Fi/Bluetooth module on the processor SC, the ZigBee coordinator

22

SC demonstrates its low-power advantage for a body area network (a 250 kbps data rate within a

10 m range).

Figure 3.6. ZigBee coordinator surface component (top view).

Figure 3.7. ZigBee coordinator surface component (bottom view).

Given the onboard USB bridge chip and mini-USB connector, the ZigBee coordinator SC

can be programmed by and communicate with, e.g., a computer as a standalone device. These

parts are needed because the firmware on the JN5139 module needs to be frequently updated in

the development stage. Because of this feature, the GumPack could be the host to rewrite the

23

firmware on the JN5139 microcontroller. This is sensible, since a change in Chiclet functionality

and topology warrants a corresponding change in the firmware of their coordinator SC (see

Chapter 7).

At present, data communication between a ZigBee coordinator SC and its GumPack host

occurs only through either the UART or Intelligent Peripheral interface. A UART serial

communication interface is a regular mechanism to communicate with other devices, while the

JN5139 features a high-speed, low-processor-overhead Intelligent Peripheral interface that

functions as an SPI slave. One significant advantage of using the Intelligent Peripheral interface

is that transmitted and received data are held in a dedicated area of memory without CPU

intervention.

A surface component developer should note that the processor SC logic level is 1.8 V.

Signals from other SCs need to be adjusted to match this level if they seek to communicate with

one another. Since the JN5139 uses a 3.3 V power supply and its logic level is also 3.3 V, a

voltage level translator is employed as shown in Figure 3.7. The TXB0106 is a 6-bit bidirectional

voltage level translator from Texas Instruments. The 6 channels are used for SPI (4-bit) and

UART (2-bit) data communication interfaces.

 Generic Surface Component
Three native GumPack-ready surface components have been introduced. Design patterns

can be extracted from them as guidance for a broader category of surface component. Figure 3.8

presents a generic surface component (GSC) model within the larger scope of the GumPack

system. The GumPack Component Connection Framework (GCCF) provides a software

interface to SC interconnections – this framework is unfolded in Chapter 7. Here, the SC block

diagram on the left of Figure 3.8 is the focus.

The ‘Sensor’ block indicates a signal input module, including a sensor, conditioning

circuit, and hardware interface. The ‘ID’ module is a memory chip storing SC identification and

data communication information (e.g., data format). The ‘Actuator’ block is a module that

receives information from the GumPack. It could be a real actuator, like a motor, or a feedback

input on the sensor module.

24

Figure 3.8. Diagram of a generic surface component (GSC) and the interface to the

GumPack Component Connection Framework (GCCF).

The hardware interface to the GumPack core is both analog and digital. The analog

interface includes ADCs and DACs, which are unnecessary on the SC side, while the digital

interface includes GPIOs and buses, which typically require corresponding bus controllers on the

SC side. For the ID module, an I2C interface is required by the GCCF; the address should be in

the range of 0x03 – 0x77 and different from other I2C addresses that have already been allocated.

As noted for the ECG SC, neither the sensors nor the actuators are necessarily onboard. A

system-level design of an infusion pump SC is introduced as an example to demonstrate how

other medical devices could (partially) work within a GSC scheme. Information related to this

discussion can be found in Texas Instruments’ Medical Application Guide – Diagnostic, Patient

Monitoring and Therapy [45]. An infusion system often consists of (a) a fluid reservoir, (b) a

catheter system, and (c) a device that combines electronics and mechanics to generate and

regulate fluid flow. An infusion pump usually refers to the third element. Sensors (part of a

sensor module), that monitor the flow passing through the catheter system, and a pump (part of

25

an actuator module) that drives the flow are both attached to the catheter system. Here, after a

GumPack SC is connected to these two modules, an infusion system could be built to manage the

process. Figure 3.9 illustrates this idea. Conditioning circuits and ADCs collect data from

upstream and downstream sensors (flow feedback). The pump driver controls the stepper motor

or servo in the pump.

Figure 3.9. Infusion pump design using GSC model fitting.

26

Chapter 4 - Pulse Oximeter Sensor Design

Health problems such as cardiovascular disease, hypertension, diabetes, and congestive

heart failure continue to plague society [46]. These conditions are primary drivers for the

development of wearable and mobile health monitoring technologies that offer the potential to

(a) increase the quality of life for individuals that already suffer from these health conditions and

(b) prevent or mitigate the onset of disease in those that are at risk to acquire these health issues

[47]. Of the array of medical devices that can be brought to bear for wearable/mobile

applications that address these diseases, pulse oximeters offer significant relative promise

because they provide two clinically relevant health parameters (heart rate (HR) and blood

oxygen saturation (SpO2)), they do not require electrical contact to tissue, and they can operate at

very low power [23], [48]. Additionally, the pulsatile plethysmographic data offered by this

light-based sensing technique (which are usually discarded by commercial pulse oximeters after

being used to calculate the parameters for the front panel display) can help to ascertain

hemodynamic information that is well-suited for the assessment of the disease states listed above

[15], [49-51]. This information includes blood pressure [52], [53], arterial compliance [49], [54],

[55], pulse wave velocity (PWV) [47], [56], stroke volume (and therefore cardiac output) [57],

and other vascular parameters [50], [51], [58], [59]. Other relevant quantities include respiration

rate [60], [61], patient motion [59], and even patient authentication [62-64].

However, low-cost pulse oximeter designs are unavailable that provide (a) quality,

unfiltered PPGs ideally suitable for research and education toward the realization of new PPG

diagnostics and (b) positional flexibility suitable for mobile and surface-based applications.

While PPGs are often accessible from commercial desktop units via serial ports, these data have

been filtered in proprietary ways to stabilize HR and SpO2 calculations. Further, due to their

clinical prevalence, pulse oximetry and PPG analysis deserve coverage in biomedical

instrumentation laboratories offered in secondary education curricula, yet low-cost pulse

oximeters that provide reasonable-quality PPGs are not a staple in off-the-shelf educational kits.

Regarding ambulatory pulse oximeters, it makes sense to consider reflectance-mode

layouts for broader use with wrist watches, head bands, socks, sensor ‘Band Aids’, and other

wearable platforms that are unobtrusive and well suited for mobility. This is especially true

27

when one contemplates the immense potential of surface biosensors (SBs). In this paradigm,

physiological sensors will be accessible and signals will be easy to obtain, as human factors

considerations for the overall product design will drive ease of use for the integrated biosensors.

Additionally, each SB will utilize its host device’s processor, memory, display, and wireless

communication resources to provide user services typically unavailable in wearable platforms

[65]. E.g., consider a reflectance pulse oximeter embedded on the back side of a cell phone

alongside a built-in camera. As the user holds their finger against the reflectance sensor, the data

will be processed by the microprocessor in the cell phone, and the LCD screen will display the

signals and parameters.

In summary, the desire to extract additional physiological information from PPGs

acquired with reflectance-mode sensors imposes design constraints with respect to signal quality.

This chapter presents the design of a low-cost, wireless, reflectance–mode pulse oximeter

suitable for these needs. It is initially housed on the surface of a printed circuit board but can be

easily migrated to other surface-based applications. A unique filter-free circuit (that digitally

extracts the PPG waveform) and a two-stage, feedback-loop-driven control system enable the

acquisition of unfiltered PPGs with 212 levels of precision from varied body locations. An

optimized LED/detector configuration promotes surface use, and the device signal quality and

cost enhance its potential for integration into SB-based consumer devices. This chapter presents

a design for a filter-free, reflectance pulse oximeter that combines many desirable features into a

single platform. A more detailed description of this design has been documented in the author’s

thesis [59].

 Requirements and Device Layout
The design requirements are outlined in Table 4.1. Signal requirements include quality,

unfiltered PPGs whose baselines are digitally removed, consistent with the prior discussion. The

high sampling rate ensures that (a) primary signal and noise components are adequately sampled

without aliasing and (b) secondary noise harmonics, e.g., 120 Hz up to several kHz from

fluorescent lighting, are not aliased on top of the signal components of interest.

28

Table 4.1. Wireless Reflectance Pulse Oximeter Design Requirements

Signal

Integrity Unfiltered data with an optimal SNR

Precision Thousands of peak-to-peak digitization levels

Sampling frequency ≥ 240 Hz to minimize PPG/noise aliasing

Baseline subtraction Digital and filter-free

Data availability Full access to all pulsatile/baseline data

Sensor

LED/detector geometry Radial arrangement, large area, and 3-5 mm

source/detector separation

Ambient light operation Adjustable gain and reference baseline

Functionality

Communication Wireless (10 m range) and USB

Local storage Onboard flash memory

Battery USB-rechargeable; Multi-day lifetime

Client Software Visualization and control panel

Application

Measurement sites Multiple body locations; Various vascular

profiles and perfusion levels

Wearability Low-profile reflectance layout adaptable for

wearable and SB applications

Cost Low (~$100)

Regarding sensor requirements, the photodetectors are ideally distributed radially around

the central excitation LEDs to maximize the number of photons collected. Further, an

LED/detector separation of 3 to 5 mm is appropriate at these wavelengths, as it maximizes the

AC/DC ratio for each sensor channel, as verified experimentally [18], [66] and with Monte Carlo

simulations [64]. In other words, reflectance photons that contain DC information from shallow,

poorly perfused epidermal layers reflect near the central excitation LEDs and are undetected.

Photons collected at greater radial distances are more likely to have traveled deeper into blood-

perfused tissue and contain a greater percentage of AC data. Given the increased sensing area in

29

a large-area detector, the control circuitry must easily compensate for baseline changes due to

ambient light, tissue perfusion, respiration depth, etc.

Figure 4.1 shows the block diagram for the pulse oximeter circuitry; a brief description

was also included in [67]. The LED, sensor array, and operational amplifier (OPA) circuitry are

coordinated by a Jennic JN5139 microcontroller. The intensity and timing of the bi-color LED

are controlled by a digital-to-analog converter (DAC) and digital input/output ports (DIOs),

respectively. A signal from the sensor array (four photodiodes surrounding the central bi-color

LED) is first buffered and then fed to a differential OPA circuit. The buffered signal, designated

here as the first-stage PPG signal (entire AC + DC contribution), is sampled by an analog-to-

digital converter (ADC). Another ADC collects the second-stage PPG signal (the AC portion

only) from the output of the differential OPA circuit that has a positive input from another

microcontroller DAC.

Figure 4.1. Circuit-level system layout. Coordinated by the microcontroller, signal

baselines are digitally extracted as an alternative to conventional filtering.

 No filters are used in the signal acquisition process, whose elements will be introduced

in the section Closed-Loop System later in this chapter. The battery (unstable power source) is

isolated from the PPG excitation and collection circuitry, since it is powered by the

30

microcontroller’s analog peripheral regulator (APR). Normally, the pulse oximeter uses a

wireless link to communicate with a receiver on a PC, and data are stored on the PC through a

MATLAB graphical user interface (GUI). A mini-USB connection can provide a wired interface

to the PC while the battery is recharged. If neither the wireless link nor the USB connection is

available, sampled data will be temporarily stored on the flash memory module (e.g., for store-

and-forward applications).

 AC Extraction and Drift Resistance
The first-stage PPG is characterized by a large DC portion and a small AC portion, as in

Figure 4.2. The goal is to extract the second-stage AC signal by eliminating the DC component.

(In many systems, a high pass filter extracts the AC signal.) If the DC portion instead remains,

then obtaining hundreds to thousands of digitization levels in the AC portion over its small

voltage range requires an ADC of very high precision (e.g., 16-bit), which is inappropriate for a

low-cost, low-power-consumption device. This extraction, or DC removal, process is executed

by the OPA unit. Its role is expressed as

)(12 SVGS ref −×= (1)

where S1 and S2 are the first-stage and second-stage signals, respectively, G is the gain of the

OPA, and Vref is a user-defined reference voltage that functionally equates to the DC signal level.

To show an upward-oriented PPG peak during systole as with a blood pressure curve, Vref is

connected to the positive pin of the OPA, effectively inverting the AC signal amplitude prior to

digitization.

S1 is naturally unstable, as both its AC and DC levels are influenced by changes in

intrinsic blood flow, extrinsic motion, respiration, background light, etc. These factors cause

drifting in S2. The input voltage range, or digitization range, of the 12-bit ADC is set to [0, 2.4]

V, so one digitization level is 2.4 V / 4095 levels = 0.586 mV. For example, given a gain G = 30

and a constant Vref, one digitization-level increment in the DC signal results in a decrement of 30

digitization levels in S2 according to (1). As in Figure 4.2, S2 may drift 0.3 V (512 digital levels)

in 10 seconds, which is unacceptable because the signal will eventually clip at the lower bound

of the sampling range, and clipped data mean signal corruption. To address this issue, (1) implies

that one can adjust one or more elements on the right side to adjust the value of S2 on the left. In

31

this effort, a Vref adjustment is employed to resist S2 drifting, since Vref is an output of the DAC

and can be easily updated. Vref is defined as

++= VtMAVref)((2)

where MA(t), the estimator of the DC component, VDC, is a W-point (e.g., W = 256) moving

average of the first-stage signal over the time interval that ends at t. V+ (the adjustable term) is

added to MA(t) to ensure that Vref makes S2 in (1) positive.

Figure 4.2. A differential amplifier with gain G compares the first-stage PPG (S1) to a DC

reference voltage to obtain the second-stage PPG (S2).

Vref usually varies slowly (several seconds per digitization level change, in an

environment with minimal motion and ambient noise), and the Vref adjustment leads to a

discontinuity in S2. Hence, the Vref data must also be transmitted or stored along with the

digitized second-stage data in order to restore the original PPGs, a process called

“compensation.”

Figure 4.3 shows a data set from the palm. Collected data are compensated to remove

discontinuities caused by Vref jumps, or immediate value changes, in the pulsatile waveform

using the following method. Inserting Vref from (2) into (1) and then rearranging the result

isolates the first-stage signal, S1:

32

G
SVtMAS 2

1)(−+= +
 (3)

Figure 4.3. Palm PPG data before (blue) and after (red) compensation.

The compensated second-stage signal, Ŝ2, can be represented as

)(ˆ
12 SVVGS DC −+×= +

 (4)

where V+ is added to VDC to ensure a positive Ŝ2. Substituting (3) into (4) yields

))((ˆ
22 DCVtMAGSS −×−= (5)

Typically, VDC is an unknown constant, but it is sensible to initially set VDC = MA(t0) at time t0

and define Vjump = MA(t) – MA(t0) at time t (t > t0) so that (5) becomes

jumpVGSS ×−= 22
ˆ (6)

With this method, each PPG can be restored as long as the second-stage signal is

unsaturated. The Vref adjustment effectively resists first-stage-signal drifting. For example, in

Figure 4.3, the compensated signal drifts below 0 V after 6 seconds. If no Vref adjustment occurs,

the subsequent signal is sampled as 0 V. To calculate blood oxygen saturation, Vref is usually

considered equal to VDC.

33

 Closed-Loop System
The Vref adjustment mechanism not only helps to realize the AC extraction task; it also

results in resilience in the PPG signal. In the control system, as illustrated in Figure 4.4, two

closed loops provide stability for the whole data acquisition process. The closed loop in the

lower left maintains the S1 value in a predetermined range, which is set by the Intensity

Regulator that controls the led intensity via a DAC. The physical function of this control loop is

to maintain the number of reflected photons at an optimal level within the active range of the

photodiode, independent of a subject’s vascular and perfusion profiles [67]. The closed loop in

the upper right prevents S2 from saturation, since the compensation method described in (6)

requires an unsaturated second-stage signal. Upon detecting saturation onset, the Saturation

Inhibitor adjusts the V+ component of Vref, which leads to a corresponding change in S2

according to (1).

Figure 4.4. Pulse oximeter control flow that illustrates how the first-stage PPG (S1) can be

used to create the second-stage PPG (S2), where both signals provide feedback to stabilize

the acquisition process.

To maintain signal quality, the Intensity Regulator sensitivity should be minimized.

When the regulator affects changes in LED excitation level, the influence on the first-stage

34

signal converted by the photodiode sensor array will be hard to predict because the blood-

perfused tissue between the LED and the sensor is an unknown system. Conversely, the

sensitivity of the Saturation Inhibitor should be set high to ensure a rapid response to signal drift.

Since this adjustment only influences Vref, the native PPG is uncontaminated, and the second-

stage signal can be compensated using (6).

In a controlled scenario, ambient noise variations can be ignored. If the desired signal

intensity increases as the LED intensity increases, the signal-to-noise ratio (SNR) will improve.

However, this implies a saturation risk due to a second-stage signal with too large of a magnitude

within a fixed digitization range, in spite of the aforementioned drift-resistant method.

Additionally, a more intense LED consumes more power. So, an optimized intensity level should

be empirically predetermined as the Intensity Regulator reference.

 Removable Noise
In the U.S.A, ambient light often includes a 60 Hz component and the associated

harmonic noise, e.g., 120 Hz flicker from full-wave-rectified fluorescent room lights plus higher-

frequency harmonics. Most physiological information in a PPG resides in the range of 0-20 Hz.

From the Nyquist-Shannon sampling theorem, the lowest sampling frequency, fs, should then be

40 Hz, but to prevent ambient noise aliasing, sampling frequencies of at least 240 Hz are needed.

Figure 4.5 depicts the magnitude spectrum of a PPG containing ambient noise. The heart

rate component is 1.329 Hz, and its harmonics dominate in the frequency band below 20 Hz. At

greater frequencies, noise is apparent at 60.02 Hz, 84.43 Hz (unclear source), and 119.9 Hz.

Most of this noise is removable by post-processing as long as the sampling frequency is high

enough that these noise components do not alias into the frequency range of the signal

components of interest. Note that the raw signal exhibits a low SNR compared to PPGs from

pulse oximeters that employ filters, but all signal components are intact and many can be

removed to create a high SNR (see Figure 4.15).

35

Figure 4.5. An example of removable noise: (a) compensated PPG corrupted by ambient

noise and (b) frequency spectrum of these data sampled at 240 Hz.

 Motion Artifact
Motion artifact is an issue for a pulse oximeter, especially in reflectance mode [15].

Existing literature focuses on signal processing to reduce motion artifact and restore PPGs [68].

Most methods assume that enough information exists in the corrupted signal for PPG recovery.

However, if motion is severe, saturation occurs frequently and lasts for some time, leading to

data loss. With this in mind, this development considered motion artifact to be a type of signal

drift that can be partially addressed with a drift-resistant method (Vref adjustment); the design

does not address motion extraction.

Motion artifact can be classified into two categories: slight and severe. Figure 4.6

demonstrates the severe condition characterized by three axes of hand motion, where the sensor

is taped to the finger. Movements are within a 10 cm range and occur at a rate of ~1 Hz. The

PPG is severely corrupted (the fundamental frequency is 1.028 Hz), and it is clipped at the upper

and lower bounds of the digitization range; many AC segments are lost and unrecoverable.

36

Figure 4.6. (a) PPG severely corrupted by hand motion along three axes. (b) Frequency

spectrum of the 28 seconds of data sampled at 100 Hz.

The slight condition refers to, e.g., slow body movements, where a PPG retains its

general shape but contains spurious components relative to a still condition. To counteract this

type of artifact, the shift-resistant method is promising and relies on the setting of an optimal

assignment rate and window width for Vref adjustment. The DAC assigns the Vref value to the

positive amplifier pin, and that voltage remains constant until the next Vref assignment to the

DAC. The window size of the moving average filter (the DC estimation time delay, or count) and

the rate of assigning Vref to the DAC (not the rate of Vref variation) influence the second-stage

signal. An extreme case occurs when the window size W = 1 data point and the rate of assigning

Vref to the DAC is A = fs: motion will never influence the signal since MA(t) ≡ S1 and

consequently S2 = G×V+ according to (1) and (2).

As an illustration of slight motion response, Figure 4.7 shows three experimental records

acquired under similar conditions (exaggerated deep respiration activity), where a different

moving-average window width, W, and Vref assignment rate, A, is employed in each case. Only

subplot (a) offers a reasonable representation of the PPG. A lower assignment rate (b) or wider

window (c) causes the signal to drift severely, and some segments are nearly saturated. The

empirical parameter pair (W = 256, A = fs) was adopted for Vref adjustment.

37

Figure 4.7. Three uncompensated PPGs acquired at fs = 240 Hz under similar slight-motion

conditions but with different parameter pairs (W, A).

 MATLAB Interface
A MATLAB GUI allows a user to set/view communication parameters, visualize PPGs,

process these data in real-time (e.g., digitally filter a signal with a linear-phase filter), and store

raw data to files, making it a helpful development tool (see [59] for a full description). Figure 4.8

illustrates an example data set obtained by this GUI, where acquisition options (e.g., Serial Port,

Sampling Rate, Signal Channel, and Signal Processing Type) are specified on the left control

panel. The upper axes display the raw PPG and baseline for the near-infrared channel, whereas

the lower axes show the real-time calibration coefficient, R, calculated from the magnitudes of

38

the fundamental red/infrared frequency components using a Fourier transform method [64]. R is

updated every 0.5 seconds using the previous 4 seconds of PPG data. An overall SpO2 value is

achieved by calculating the median or mean of 40 consecutive R values (in a 20-second segment)

and inserting the result into a pre-determined linear calibration equation.

Figure 4.8. Pulse oximeter MATLAB GUI. In this example, a series of calibration

coefficients (lower right) is extracted from the current data (upper right).

 Device Prototype
 Figures 4.9 and 4.10 contain top and bottom views of the pulse oximeter prototype,

which consists of four main modules: microcontroller module, excitation LED module, signal

sampling module, and power management module. The main printed circuit board is 41 mm by

36 mm, excluding the antenna board. This hardware combines functionality from the Jennic

JN5139-EK020 development kit with lessons learned from an earlier reflectance pulse oximeter

design [66].

39

Figure 4.9. Top view of the wireless reflectance pulse oximeter.

Figure 4.10. Bottom view of the wireless reflectance pulse oximeter.

A microcontroller module is the prototype kernel. The JN5139 wireless module, designed

for robust and secure low-power wireless applications, integrates a 32-bit RISC processor with a

40

2.4 GHz IEEE 802.15.4 (ZigBee) transceiver, 192 kB of ROM, 96 kB of RAM, a mix of analog

and digital peripherals (including four 12-bit ADCs and two 11-bit DACs), and up to 21 DIO

ports. The wireless link requires the most current, with a TX (transmitter) current draw of 38 mA

and an RX (receiver) current draw of 37 mA. The CPU consumes 7.75 mA at full speed, and the

current required by the peripherals (ADC, DAC, UART, Timer, etc.) is less than 1 mA in

aggregate. The JN5139 sleep current (with an active sleep timer) is only 2.6 µA.

The excitation LED module uses a low-cost Marubeni SMT660/910 bi-color LED with a

typical forward current of 20 mA and forward voltages of 1.9 V and 1.3 V for the 660 nm and

910 nm sources, respectively. The 11-bit DAC output (0-2.4 V) provides excitation signal

modulation by managing the power supply for the excitation LED module.

The signal sampling module consists of OPA circuitry connected to the sensor array.

Four API PDV-C173SM high-speed photodiodes are connected in parallel; their responsivity to

wavelengths above 650 nm is more than 0.3 A/W. The photodiodes are arranged radially around

the central LEDs and maintain a source/detector separation of 3-5 mm. The OPA chip contains

two amplifier units. The sensor array signal is buffered at the first unit and amplified by the

second unit.

The power management module includes two chips: (a) a Silicon Labs CP2102 USB-to-

UART bridge that powers the pulse oximeter when the USB connection is detected and bridges

data communication to the host and (b) an STMicroelectronics L6924D battery charger system

with an integrated power switch for lithium-ion batteries which charges the battery when the

USB connection is detected. An LIR2477 3.6 V lithium-ion rechargeable button cell with a

capacity of 180-200 mAh serves as the power source when the USB connection is absent.

Memory chips, indicators, and buttons are also housed on the board. Two Numonyx

M25PX64 64-Mbit flash memory chips with SPI bus interfaces provide storage space when the

pulse oximeter works in offline mode; each consumes 20 mA of current while being accessed.

 Measurement Data
The pulse oximeter prototypes were used to acquire hundreds of PPG records from 48

different subjects that are 20 to 64 years old. Experimental results in this section were acquired

in an indoor environment utilizing the prototype pulse oximeter. The results are categorized

according to conventional location (fingertip) versus other locations (wrist, earlobe, temple, etc.).

41

Figures 4.11 through 4.14 illustrate 25 seconds of representative fingertip data from a 24-

year-old subject. Both channels of PPG data, red and near-infrared, are uncompensated. The AC

values of the near-infrared channel (Figure 4.11) offer 1.2 V peak-to-peak (i.e., 2048 digitization

levels), and the AC values of the red channel (Figure 4.12) offer fewer digitization levels: about

half compared to the near-infrared channel. Even without the use of analog or digital filters, the

signal demonstrates distinguishable period and amplitude information useful for HR and SpO2

determination. The SNRs of the raw near-infrared and red PPGs are 8.0, and 3.0, respectively.

As shown in Figure 4.13 and Figure 4.14, up to seven harmonics reside in the spectrum of the

near-infrared data (the inset shows frequency components above 5 Hz), and six distinguishable

harmonics reside in the spectrum of the red data. Additionally, the PPG information and noise

components (e.g., 60 Hz and 120 Hz grid noise) are clearly separated in the frequency domain.

To further refine the signal, a properly designed digital band pass filter can be applied.

Figure 4.11. Fingertip results: 25 seconds of near-infrared PPG data.

42

Figure 4.12. Fingertip results: 25 seconds of red PPG data.

Figure 4.13. Fingertip results: 25 seconds of near-infrared magnitude spectra.

43

Figure 4.14. Fingertip results: 25 seconds of red magnitude spectra.

Figure 4.15 displays another short segment of an experimental fingertip data set, where

the raw near-infrared PPG is accompanied by its real-time filtered form within a MATLAB GUI.

The filter is a 200th–order low pass filter with a 10 Hz cut-off frequency realized by the

MATLAB function firls(): a linear-phase FIR filter that uses least-squares error

minimization. This high order filter causes a time delay of td = (n–1)/(2fs) = 0.414 seconds,

where n = 200 and fs = 240 Hz, where the time delay helps to visually separate the original and

filtered waveforms. Since the peak-to-peak noise of the filtered signal is too small to be

recognizable (< 1 digitization level) the SNR is assumed to be > 2048/1 if the signal amplitude is

1.2 V.

44

Figure 4.15. Fingertip signal processing and digital volume pulse (DVP) analysis.

Digital Volume Pulse (DVP) Analysis. Cardiovascular parameters other than HR and

SpO2 can be accurately extracted [47], [56], [58] given the quality of this DVP waveform. For

example, the peak-to-peak time (PPT), as marked in Figure 4.15, can be used to calculate pulse

wave velocity, which correlates to arterial stiffness, and “a” and “b” are used to calculate the

reflectance index, which correlates to endothelial function. Additionally, as noted in the

Introduction, these unfiltered PPG waveforms could potentially lead to improved assessments of

blood pressure and stroke volume via light.

Figure 4.16 displays experimental data from the wrist at the three placement locations

depicted in Figure 4.17. The signal quality in location 2 is obviously lower relative to the SNR in

locations 1 and 3, but all three are suitable PPGs. At present, it is difficult to consistently obtain

high quality PPG data from the wrist; that often requires the application of pressure to bring the

optical sensor closer to the major arteries [64]. An operation to achieve the same effect (i.e.,

bending the wrist at about a 45° angle), was usually employed if the PPG had a low SNR. Since

subjects demonstrate a variety of different arterial locations and depths at the wrist, sensor

placement flexibility is essential to acquire commendable data sets at this body location, which

was also noted in [69].

45

Figure 4.16. Wrist PPGs corresponding to the placement locations in Figure 4.17.

Figure 4.17. Pulse oximeter measurement locations on the left wrist.

46

New Pulse Wave Velocity (PWV) Estimation Approach. Given the capability to

acquire quality PPG data from the wrist (where the SNR dramatically improves with post-

filtering), a new approach to estimate PWV has been evaluated by the authors [70]. This

approach compares near-infrared PPGs from two synchronized pulse oximeters placed at the

fingertip and wrist of the same hand. PWVs can be estimated from several time

differences/delays extracted from corresponding features on the two PPGs.

Figure 4.18 displays two channels of data acquired from the earlobe. The near-infrared

channel has an SNR of 5.7 and a peak-to-peak range of 1.0 V (1706 digital levels); the red

channel has a much lower SNR of 1.8 and a peak-to-peak range of 0.6 V (1024 digital levels).

Figure 4.18. Earlobe results: (a) near-infrared channel and (b) red channel.

Respiration Activity Analysis. Figure 4.19 (a) displays 120 seconds of experimental

data from the temple that include respiration activity and a swallowing motion. There are 33

respiration cycles present during the 120-second recording time (i.e., the respiration rate is 0.275

Hz). An FFT was applied to ascertain the visibility of these events in the magnitude spectrum, as

noted in Figure 4.19 (b). The peak at 1.679 Hz corresponds to the subject’s heart rate (100.7

bpm) and the 0.266 Hz frequency component is likely the respiration rate.

47

Figure 4.19. Temple results: (a) time-domain PPG with respiration and swallowing motion

and (b) the corresponding frequency-domain spectrum.

48

Chapter 5 - Onboard Tagging Technology

Medical devices can be categorized according to their ‘intelligence quotient.’ Most

medical devices are ‘dumb:’ they leave data interpretation to a clinician or host system, although

they may locally display these data and provide notifications that, e.g., indicate whether

parameters go out of range or whether measurements have been correctly acquired. These

devices are easier to regulate because their functional state spaces are limited and predictable.

Alternatively, a ‘smart’ device might make contextual decisions based upon acquired

data, including changes in how those data are processed or alterations to its operational state. A

smart device might also change its modes given remote commands. Such devices would be

clinically useful but difficult to verify and regulate since their operational state spaces would be

significantly larger and more complex. Devices that control other devices add a further layer of

complexity and are not a feature of most systems slated for FDA regulation. Note that devices

that simply offer more features are not necessarily ‘smart’ (though they may be marketed that

way) – contextual decisions must play a role.

To further the dialogue regarding how the medical community might move from dumb to

smart devices, it is valuable to specify basic issues that drive the use of dumb devices. These

include (a) hardware limitations (e.g., a low-power wearable device may host a microcontroller

but offer limited processing, storage, and communication resources), (b) software and algorithm

hurdles (e.g., besides the obvious resource limitations, a clinically-effective expert system on a

small medical device requires broad collaborations), and (c) the need for clinical verification and

validation, including FDA approval.

Efforts have been made to improve the intelligence level of some formerly dumb medical

devices. For instance, most commercial pulse oximeters can indicate the presence of motion

artifact through an alarm. In that case, front panel readouts for heart rate and blood oxygen

saturation will not update until valid data recommence. Various research efforts have focused on

the detection and reduction of motion artifact, primarily within the context of the viability of the

pulsatile photoplethysmogram (PPG) [68]. However, most of these algorithms are

computationally complex relative to the normal physiologic parameter extraction process and

would be a challenge to implement on a resource-limited device.

49

Even a standardized ‘motion detected’ indicator in a pulse oximeter data stream is a good

step forward towards a ‘smart’ pulse oximeter. While some manufacturers utilize this feature, it

is customized for their device and often used only internally in the machine. This kind of

indicator is referred to as a ‘tag’ in this dissertation, as tags have wide use in other daily contexts.

For example, a price tag describes a commodity’s price, manufacturer, category, etc. Blogging or

video blogging services such as YouTube use tags on entries to classify, search, and share

information.

The term ‘tag’ as defined here similarly provides concise but meaningful information to a

medical device as well as to other devices that receive its data. Any meaningful tag must be

sensible and keep the device’s original functionality and data intact. A tag should update with

newly acquired data, meaning it should only be valid for a specific data segment (see Figure 5.1).

Such properties help to ensure, within reason, that a new device which employs tags is

“substantially equivalent” to, e.g., a formerly approved device, allowing a 510(k) mechanism for

U.S. device approval [71].

This chapter discusses onboard tagging technology, which if standardized can improve

medical devices and the healthcare services they provide. For devices with limited hardware and

battery resources, onboard tagging promises advantages due to its light-weight computational

requirement and its potential to optimize transmission time as well as the data that are sent to a

host system.

 Technology Overview
This section addresses the need for onboard/real-time tags, the types of tags one might

employ, the information they can convey, and some suitable tag formats. The assumption is that

tags mark the original data stream provided by a medical device, as in Figure 5.1. Once data

frames accumulate to form a data segment with a predetermined length, a tag will be appended to

the end of the segment.

Figure 5.1. Tags embedded in an original data stream.

50

 Onboard and Real-Time Tags
An ‘onboard’ tag implies that the tagging procedure is performed on the device and does

not depend on external resources (human or machine) such as the receiver. Onboard tagging

should be emphasized for these reasons:

1. The receiver or host system cannot be guaranteed to be active, available, or capable

enough to provide assistance, especially in the case of mobile devices.

2. A device should know its data best, and a data point or segment is ideally processed

right after being sampled, e.g., even prior to being packed into a data frame.

3. A device is immediately improved if it can indicate characteristics of its current data

and/or make independent decisions based on these tags, e.g., automated sleep control.

4. For low-power, wearable/mobile devices, wireless data transmissions are the primary

consumers of battery power. Tags can help a device to (a) process its own data with a goal of

sending processed parameters instead of raw data over the telemetry link and/or (b) decide when

transmissions should be avoided, such as cases where invalid data are undesired and their

transmission would unnecessarily reduce battery life.

New tags can be created or updated as physiologic data are acquired and therefore should

be attached directly to these data streams by the medical devices that provide the real-time data

processing and transmission. This clearly requires that onboard tagging also be performed in real

time. The following are other reasons why onboard tagging can or should be accomplished in

real time:

Tags are a condensed information set. They require few processing and storage resources

compared to the routine tasks of a medical device.

1. Old tags become irrelevant when new data emerge.

2. Delayed tags offer limited correlation value when compared against current data

segments.

 Tag Type and Content
While medical devices may record numerous pieces of information in tag form, tags fall

into three broad categories (Table 5.1). Clearly, the stakeholders in column two may change

depending upon the care scenario and device type.

51

Table 5.1. Tag Types Used in Onboard Tagging Technology

Type Interested Group Primary Content of Interest

I Device Designer Hardware, algorithm, and data states

II Signal Analyzer Signal character and statistics

III End User Alerts, physiologic indices, & data quality

Type I tags indicate whether the device is functioning as designed. Such a tag could

describe an internal system error, a system variable, a data sampling state, a control flow state,

etc.; a role much like the information provided to a firmware developer when debugging a

prototype. System level tags within this group could serve multiple usage roles. For example, a

tag that represents a hardware failure state could also serve as a warning for an end user or

clinician.

Type II tags focus on the signals themselves. Devices such as 12-lead ECGs have

multiple signal channels, and each channel can have separate tags. Typical tags in this category

may mark easy-to-discern statistical features related to one data segment, e.g., extreme values

(valley and peak), amplitude (peak-to-valley excursion), number of cycles (amplitude swings),

rising time (a counter may increment by one when a current data point is larger than the previous

point), falling time (counterpart of rising time), etc. Looking at the extreme values as an

example, if a tag indicates a certain number of lower-bound and/or upper-bound values for the

given sampling range (e.g., a 10-bit ADC has the sampling range of [0, 1023] digitization levels),

then the tagged signal segment is saturated to some level.

Type III tags speak to clinical data viability and are a user friendly version of type I and

type II tags. For an end user that has little or no professional knowledge regarding device design

or signal interpretation, type III tags make it easy for them to understand what is happening to

the device and the measurement data. For example, if a power source voltage goes below a

threshold and generates a type I tag, then a second type III tag like “low battery” could be

created as an alert. In another instance, a type II cycle-count tag may change abruptly compared

to prior tags, presenting an apparent inconsistency, so a type III tag may be used to note that the

current value has low reliability, the current signal quality is poor, or a longer measurement time

is required.

52

A type III tag offers a higher level description of type I and II tags. It should arguably not

be directly attached to the original data stream since it carries indirect information. A digital

event log would be a more appropriate repository for these tags. As implied earlier, a

transformation mechanism on the device would be responsible for presenting Type III tags to a

common user. If the transformation process equates to a task such as the interpretation of raw

data to create a physiologic index, then a prudent verification and validation procedure should be

performed in advance.

 Tag Format and Indices
Since tags accompany the data stream, and new tags apply only to the current data

segment, it is sensible to look at the data frame structure first. To give this discussion context, the

custom pulse oximeter that employs serial communication is used as an example throughout this

section. For this device, a data frame that contains one data point for each of four channels is laid

out in Figure 5.2. The frame length is 18 bytes, with the first 8 bytes assigned to a unique MAC

address, the next 8 bytes assigned to the four signal channels, and the last two bytes appended for

frame integrity.

Figure 5.2. Data frame structure for a custom pulse oximeter that employs serial

communication (R: red channel; IR: near-infrared channel; AC & DC: pulsatile and

baseline samples).

A similar structure is adopted for a tag frame (see Figure 5.3). A tag frame header is an

eight-byte MAC address, except it is not the real device MAC address. A preset virtual MAC

53

(VMAC) is uniformly assigned to all tag frames. When the system detects a VMAC sequence, it

knows the frame is a tag frame that holds tags for the current data segment.

Figure 5.3. Tag frame structure for a custom pulse oximeter. The frame length is N bytes

containing K tags.

The tag frame length of N bytes is not fixed – it depends on how many tags the frame

conveys. If we use a uniform tag size of 2 bytes, a tag frame holding K tags has a length of

102 += KN (7)

bytes, where 2K bytes is the payload size and the remaining 10 bytes hold the header (8 bytes)

and the tail (2 bytes).

One issue regards the length of time a tag is active and the rate at which tags are

assigned. Two indices, tag active time and tag density are introduced here. Tag active time

denotes the duration for which a tag is active – usually one data segment. E.g., if a tag frame is

yielded after each three-second data segment, tag active time = 3 seconds and tag delay = 1.5 sec

(the average reporting delay over a three-second moving segment). Tag density is defined as

#FrameData
#FrameTagDensityTag = (8)

For example, if the data frame rate (sampling frequency) is 240 Hz and the tag active

time is 3 seconds, then the tag density = 1/720 = 0.14%. Tag density is important. A high tag

density can lead to over-reporting and unnecessarily high bandwidth requirements, whereas a

low tag density can increase the tag delay and make it more difficult for a system to respond to

data anomalies in ‘real time.’

54

Chapter 6 - Application A: Feature Detection on a Pulse Oximeter

 Wireless, wearable medical devices promise a new degree of independence to those who

need frequent health monitoring. The competent design of such devices can save resources and

increase the integrity of the electronic health records that they populate. For instance, when

corrupt data are locally processed and/or sent over a wireless link, computation cycles and

battery power are wasted because these data are minimally useful for clinical decision making,

with the caveat that corrupted data used for medical decision making can lead to high false-alarm

rates and other serious consequences.

Intelligent algorithms that run on devices and assess signal quality prior to wireless

transmission and storage can help to mitigate these issues at a time when wireless devices and

electronic patient records are proliferating. Such algorithms can (a) alert users/clinicians to the

presence of poor data so that device adjustments can be made or (b) better inform devices that

must autonomously determine follow-on tasks. Consistent with the prior chapter on tagging, this

chapter uses pulse oximeter PPGs as a context to illustrate how intelligent algorithms can be

implemented on a device intended for mobile applications.

The idea of intelligent pulse oximeter algorithms is not new; other efforts have focused,

e.g., on motion artifact detection and reduction using various methods [68], [72-75]. However,

the complexity of these algorithms (Fourier transform [72], independent component analysis

[68], [73], wavelet transform [74], and adaptive filtering [75]) makes them unwieldy for

microcontroller implementation (i.e., onboard application). Further, most of these approaches do

not deal with signal classification prior to motion removal, which is meaningless in, e.g., a

saturated PPG. This emphasis on motion artifact is sensible, as motion is the primary corruptor

of PPG data and offers a substantive signal processing challenge, since the desired PPG signal

and the undesirable motion artifact occupy the same frequency range and are not independent

[76]. A comprehensive approach to data quality assessment in wireless devices would address

motion specification, real-time processing, and information fidelity.

1. Motion Specification. Motion artifact is defined in a limited sense in the earlier

literature, where motion-corrupted PPGs often retain the basic information in a ‘clean’ PPG

waveform and are unsaturated. The term ‘severe’ used to describe motion in prior literature [68]

55

may not always refer to prominent motion, and PPGs designated as ‘clean’ [72] may carry mild

motion artifact due to, e.g., respiration and normal tremors. In a real application, the motion type

and degree should be considered prior to the use of processing algorithms, since different types

of motion influence PPG data in different ways. These motion types include user activities (e.g.,

sensor placement/adjustment, walking, task movements, gestures, and conversation) and

platform movement due to vehicle motion/vibration, furniture movement, and sensor/clothing

interaction.

2. Real-Time Processing. Onboard processing is needed on a wireless, wearable

medical device if the designer (a) does not wish to waste battery power by sending corrupt or

nonessential data and (b) hopes to preserve a complete record of the processed data when the

wireless receiver is unavailable. Further, processing must occur in real-time and not interfere

with the data acquisition process so as to avoid missing data, data backlogs, and reporting delays.

The notion of ‘real-time’ is context dependent, addressing the continuity of the signal processing

approach as well as reporting delays imposed by the algorithms. The code implementation

method and memory requirement also affect algorithm feasibility. Given a device that reports

only heart rate and blood oxygen saturation, an ever-present time delay of a few seconds satisfies

the notion of ‘real-time.’ Here, a 1.5-second delay (the average reporting delay over a 3-second

moving segment) is tolerated.

3. Information Fidelity. Motion data are typically discarded (e.g., filtered) by PPG

processing methods [74], [75], yet these data might help to track user activity types and levels if

properly isolated. Ambient noise is removed for granted, yet these data might help to estimate

the environment condition, e.g., room light intensity. The formerly annoying information could

be used as inputs to autonomous-device algorithms that control device functionality such as auto-

sleep and excitation LED intensity controls.

This chapter presents an onboard feature-extraction and decision-making algorithm for

PPGs acquired with a custom pulse oximeter sensor. This algorithm affirms the absence of

motion, the absence of signal saturation, and the presence of clean PPG data that remain. The

algorithm run time is evenly distributed across the firmware cycle and does not diminish the

functionality of the original pulse oximeter. Specifically, the algorithm first extracts four

waveform features from the latest 3-second data segment and analyzes those features within a

hierarchical decision tree that utilizes predetermined thresholds. The algorithm then calculates

56

physiological parameters from a “compact representation” structure. A MATLAB interface on a

personal computer helps to visualize the features extracted, the algorithm flow, and the decision

results, where all algorithm-related parameters and decisions are ascertained on the wireless unit

prior to transmission.

Most pulse oximeters use similar excitation/collection principles and ratiometric oxygen

saturation calculations [77], but implementation methods for circuitry, firmware, sampling, and

algorithms differ widely. Such variants of a base design imply algorithm transplantation issues

between devices. Therefore note that the algorithm presented here was initially implemented on

the pulse oximeter described in Chapter 4 – a nonconventional reflectance-mode device that

provides completely unfiltered PPGs. The following sections briefly describe this design to help

the reader better understand the new feature-extraction and decision-making algorithm.

 Algorithm Flow
Figure 6.1 depicts the feature detection algorithm flow. Four data channels that are

customary for pulse oximeter design are continuously sent to a MATLAB interface. The

algorithm on the wireless pulse oximeter first intercepts a 3-second segment of the latest four-

channel data set, where the PPG data are sampled at 240 Hz since these data may include 120 Hz

components from full-wave-rectified room lights. However, 240 Hz is overkill for the feature-

extraction process and slows it down, so the algorithm downsamples the signal at a decimation of

8, yielding PPGs sampled at 30 Hz, which still meets the Nyquist criterion for the fundamental

frequency and secondary harmonics expected in a quasi-periodic PPG [78].

57

Figure 6.1. Feature detection algorithm flow. The wireless reflectance pulse oximeter

appears on the left.

Once downsampled data are available, features are extracted at each sample time and

summarized at the end of each 3-second segment. Rule-based decision results [79] are sent to the

MATLAB interface. Decisions address (a) the degree of motion detected, (b) the signal

saturation status, and (c) PPG quality.

Finally, a “compact” signal representation is created, where the goal is to further simplify

each downsampled PPG to obtain the least number of samples that represent its period and

amplitude. This simplification is helpful if one wishes to implement such an algorithm on a

microprocessor with limited resources. The process starts with triangular structure identification

in the downsampled data set, where each set of three consecutive samples is evaluated to see if it

creates a triangle with the middle point as a peak or valley, as in Figure 6.2. If the PPG is

unsaturated, then two triangular structures are of primary interest as they are interlaced in the

“compact representation.” For the left (blue) triangle in Figure 6.2, the middle point is identified

as a local minimum, as it is less than the two points on either side of it. Analogously, for the right

(red) triangle, the middle point is identified as a local maximum.

58

Figure 6.2. Triangular structures identified for the “compact representation.”

If the decision based on the extracted features is favorable, i.e., a valid pulsatile signal

exists, then the physiological parameters of heart rate (HR) and blood oxygen saturation (SpO2)

calculated from the “compact representation” are also stored with the raw PPG data.

Additionally, they can be used as decision-making inputs, since calculated HR and SpO2 values

should be in a reasonable range.

Signal processing steps are distributed across each 3-second segment, yielding

“streaming signal processing.” This makes the best use of resources that remain after the data

acquisition, storage, and transmission functions are performed. The feature-extraction algorithm

is noted below in pseudo code.

59

While (New raw data point is sampled)

{

 *Update features with the new data point;

 Update downsampled data point to X;

 If (X is ready)

 {

 Update features with X;

 Detect triangular structure with new X;

 If (Triangle detected)

 {

 Add peak/valley to compact representation;

 }

 }

 If (Current segment is done)

 {

 Initialize for next segment;

 Notify main() function;

 }

}

*Feature 1 (baseline variation – introduced in the next section) is the only feature updated

each time a new raw data point is available.

This code segment is included in the timer interrupt routine of the microcontroller

firmware where the normal pulse oximeter control code resides. A “flag” is set at the end of each

3-second segment to be detected by the main() function, where the “compact representation”

code is implemented using the data stored in a CR[] array. The CR[] memory space should be

released prior to being accessed by the code in the timer interrupt routine. The pseudo code for

this part of the algorithm is described below.

60

While (Notified)

{

 Copy compact representation to a new array A;

 For (i = 1 to length of A)

 {

 If ((A(i)+Tolerance) < A(i+1))

 {

 Amplitude = A(i+1) – A(i);

 Cycle count ++;

 }

 }

 Repeat the code for the other channel;

 Calculate HR from cycle count;

 Calculate SpO2 from Amplitudes;

}

 Feature Selection
Features must be efficient and effective, but highly effective features, e.g., higher order

statistics and bi-spectrum analyses as in [80], can require complex calculations. This efficiency

versus effectiveness tradeoff challenges the feature selection process. After evaluating many

features in light of this tradeoff, four PPG features were selected: (a) baseline variation count, (b)

rising time, (c) falling time, and (d) saturation index.

To statistically validate these features, ‘clean’ PPGs were first collected from 20 subjects

of ages 20 to 64 years (signal quality like Figure 6.15). Each sequence was longer than 30

seconds to ensure the acquisition of at least 10 3-second segments, yielding 200 segments in

aggregate. Features were extracted from each segment, and the mean and standard deviation of

each feature were calculated for each person.

Regarding the extraction of Feature 1 (variation of baseline, Vref), one can note that Vref is

adjusted to prevent signal saturation and that motion is the predominant cause of saturation and

severe baseline fluctuations. Hence, frequent baseline value changes suggest that either motion is

present or the signal amplitude is too large, i.e., already saturated. The latter condition is usually

61

temporary and soon disappears via the LED intensity autoregulation mechanism. (The related

saturation index (Feature 4) will be introduced momentarily.)

Feature 1 is the only feature directly obtained from the 720 points in a raw data segment

(3 seconds of data sampled at 240 Hz). When the baseline value varies either up or down,

Feature 1 is incremented. Figure 6.3 illustrates the Feature 1 statistics from 20 subjects, where

the height of each bar is the average number of baseline fluctuations over 10 of each individual’s

3-second segments, and the line at the top of each bar is the corresponding standard deviation.

All bar heights are less than 120, and the mean of Feature 1 is 47.

A similar chart for motion-corrupted PPGs would be hard to create, as it would require a

clear method to quantify motion degree and a sensible means to identify the minimum degree of

acceptable motion; these issues commonly arise in the literature that addresses PPG motion

artifact. Here, we circumvent it by defining a motion degree index based on the assumption that

Feature 1 is proportional to motion severity.

Figure 6.3. Feature 1 (baseline variation count) statistics for 20 subjects.

Features 2, 3, and 4 are complementary, as they track signal trends in 90 points of

downsampled data in a 3-second segment at 30 Hz. This pseudo-code applies:

62

Copy 90 points of downsampled data to an Array D;

For (i = 1 to 89)

{

 If (D(i+1) > D(i))

 {

 Rising count ++;

 }

 If (D(i+1) < D(i))

 {

 Falling count ++;

 }

 If (Both D(i+1), D(i) == 0 or 4095)

 {

 Saturation index ++;

 }

}

Figures 6.4 through 6.6 depict feature statistics given the same data used for Figure 6.3.

Feature 2 (rising count) has a mean of 28, Feature 3 (falling count) has a mean of 60, and Feature

4 (saturation index) has a mean less than 1. Count fluctuations are slight, as the standard

deviation for each is less than 4 for these subjects.

63

Figure 6.4. Feature 2 (rising count) statistics for 20 subjects.

Figure 6.5. Feature 3 (falling count) statistics for 20 subjects.

64

Figure 6.6. Feature 4 (saturation index) statistics for 20 subjects.

The Feature 3 to Feature 2 ratio in Figure 6.7 warrants attention. The mean of 2.2

sensibly represents the asymmetry in each PPG cycle (see Figure 6.15), which features a steep

rising slope and a mild falling slope. In other words, the diastolic interval is roughly two times

longer than the systolic interval. This special ratio is seldom created by normal motion and

ambient noise. For instance, when the pulse oximeter is removed from the patient and laid on a

desktop to merely receive ambient light, the resulting signal resembles a sinusoid with a

falling/rising ratio close to 1. If motion is simulated, it also usually creates a sinusoid-like signal;

periodic motion with a falling/rising ratio similar to that of a normal PPG is unnatural.

Data from this first group of 20 subjects were supplemented with data from 27 subjects to

complete model training and validation. In each session, an investigator handed a reflectance

pulse oximeter to a subject, who was instructed on how to place the device. Data were recorded

during the whole process (lasting for minutes), and these data typically consisted of a relatively

large portion of data corrupted with random motion/operation versus a relatively small portion of

valid PPG data (see Figure 6.16 for an illustrative data set).

65

Figure 6.7. Ratio of falling time to rising time statistics for 20 subjects.

 Observations and Hierarchical Decision-Making
The four selected features are represented by three observations for use with the decision-

making algorithm, as listed in Table 6.1. Inspired by the hierarchical clustering method

introduced in the statistical signal classification approach in [81], we use a three-step hierarchical

decision-making approach with these four features. The decision hierarchically walks through

the following assessments: (a) motion status, (b) saturation status, and (c) signal quality, as in

Figure 6.8.

Table 6.1. Observation Description Given the Original Four Features

Feature Observation

Feature 1: Baseline Variation Count Observation 1

Feature 4: Saturation Index Observation 2

Feature 2, 3: Ratio of Falling Count to Rising Count Observation 3

66

Figure 6.8. Three-step hierarchical decision-making approach.

In Step 1, the motion condition is detected based on a single input: Observation 1.

(Decision-rule details are laid out in the next section.) If a decision result indicates that no

motion is present, Observation 2 is used to decide the signal saturation status. The decision rule

in Step 2 couches the decision result in terms of whether the signal can pass through to the next

decision step. For example, a signal of pure ambient noise can easily walk through the first two

steps; however, the decision rule for Step 3 that concludes signal quality from Observation 3

(Feature 3 to Feature 2 ratio) will reject the noise signal and disqualify other non-PPG signals.

PPG data passing through the entire hierarchy are ‘free’ of motion, ‘free’ of saturation, and valid.

A binary Bayesian hypothesis testing method [79] is used to create the three decision

rules in Figure 6.8. Each hierarchical step contains two possible hypotheses, H0 (null hypothesis)

and H1 (alternative hypothesis), corresponding to two probability density functions, p0 and p1.

Taking Step 3 for example, H0 denotes a valid PPG, whereas H1 denotes an invalid PPG. Under

each hypothesis, an observation x is distributed as

67

11

00

~:
~:
pxH
pxH (9)

where pi is normally assumed to be a Gaussian distribution, consistent with the Figure 6.9 and

Figure 6.10 histograms. Note that 200 and 1148 segments were used for the histograms in Figure

6.9 and Figure 6.10, respectively.

Figure 6.9. Histograms of Observation 3 for valid PPG data.

68

Figure 6.10. Histograms of Observation 3 for invalid PPG data.

The Bayesian decision rule is given by

⎩
⎨
⎧

=
0
1

δ
if
if ()

() τ

τ

<

≥

xL
xL (10)

where the likelihood ratio, L(x), is defined as

() ()
()xp
xpxL

0

1= (11)

and the hypothesis threshold, τ, is defined as

()
()11011

00100

CC
CC

−

−
=
π
π

τ (12)

where, πi is the prior of the two hypotheses and Cij is the cost incurred by choosing Hi when Hj is

true. Although uniform costs and equal priors (τ = 1) are initially adopted here, these variables

can be further utilized in machine learning development. For example, the prior of H0 increases

if valid PPG data have been continuously acquired for a long time, and the cost of falsely

accepting corrupted data as valid PPG data can be considered higher than the cost of falsely

rejecting valid PPG data as corrupted.

69

To evaluate the performance of the hypothesis testing method, two indices, PD

(probability of detection) and PF (probability of a false alarm), are employed for each step, as in

Table 6.2. PD is probability of deciding H1 when H1 is true; PF is the probability of deciding H1

when H0 is true. 200 segments were used for each observation under each H0; 1148 segments

were used for each observation under each H1.

Table 6.2. Hypothesis Definition and Pd for Each Step

Step H0 PD

1 No Motion Motion correctly detected

2 No Saturation Saturation correctly detected

3 Valid PPG Invalid signal correctly detected

H1 is the opposite of H0.

Figure 6.11 depicts the occurrence of Observations 1 and 2 under H0. For example,

Figure 6.11 (a) plots the number of segments as a function of baseline variation with the goal to

set the threshold high enough to achieve a zero PF, where a signal with no motion will never be

tagged as motion corrupted, and a signal that is unsaturated will never be tagged as saturated.

An extra 891 segments from the 27 subjects (33 from each) were available for model

validation. If all of the data segments with valid PPG data that are embedded in a generally

corrupted data set could be accurately detected, then the validity of the feature detection

algorithm could be demonstrated. Note that model training and validation processes are

implemented on a PC; training results (hypothesis thresholds) are programmed into the pulse

oximeter module for onboard application.

70

Figure 6.11. Histograms of (a) Observation 1 for no motion and (b) Observation 2 for no

saturation.

71

 Communication Protocol and MATLAB Interface
Wireless communication (between the pulse oximeter and a receiver board on a PC) and

serial communication (between the receiver board and the MATLAB interface) utilize a frame

structure as illustrated in Figure 6.12 and Figure 6.13. The data frame (Figure 6.12) length is 18

bytes, with the first 8 bytes assigned to a unique MAC address, the next 8 bytes assigned to the

four channels of signal data, and the last two bytes appended to ensure frame integrity. At the

end of a 3-second segment (720 data frames), an extra tag frame (Figure 6.13) is transmitted or

received that contains extracted features and decision-making results. A tag frame begins with a

pre-specified universal virtual MAC address to be identified by the MATLAB interface. Its 8-

byte payload includes Feature 1 (2 bytes), Feature 2 (1 byte), Feature 3 (1 byte), Feature 4 (1

byte), three binary hierarchical decision results (1 byte), heart rate (1 byte), and SpO2 (1 byte).

Figure 6.14 illustrates the MATLAB visualization interface. Its purpose is to visualize the

algorithm implementation process and manually verify decision results. Note that no signal

processing algorithms are implemented on this interface; it merely displays signals, signal

features, decision results, and HR and SpO2 values transmitted by the pulse oximeter. The

interface also incorporates a control panel to assign communication parameters and control raw

data storage (Figure 6.14, upper left). The two small plots (Figure 6.14, lower left) display four

features that update at a 3-second interval. The plot on the upper right depicts the original PPG,

and the plot on the lower right depicts the “compact representation” for the latest 3-second

segment. An information bar between the upper and lower plots displays the decision result:

“Severe Motion Detected,” “Valid Pulse,” “Signal Saturated,” etc.

Figure 6.12. Data frame structure used in wireless and serial communication.

72

Figure 6.13. Tag frame structure used in wireless and serial communication.

Figure 6.14. MATLAB interface developed to visualize the feature detection algorithm

results. All algorithm-related parameters and decisions are ascertained on the wireless unit

prior to transmission.

 Downsampling and Compact Representation
Figure 6.15 illustrates an example of the downsampling and “compact representation”

process. The downsampled signal in Figure 6.15 (b) presents the basic shape/trends of the raw

signal in Figure 6.15 (a). The “compact representation” in Figure 6.15 (c) obtained from the

downsampled data also retains the basic period and amplitude characteristics of the raw signal

73

required for HR and SpO2 calculation, respectively. These three waveforms are time aligned,

presenting the same number of full waveform cycles and amplitudes; hence, the data reduction

process is an effective way to lessen the algorithm’s computational burden. Additionally, the

“compact representation” also attempts to keep the dicrotic notch on the down slope of each

cycle, which offers the opportunity to further extract physiological parameters such as

reflectance index [58] and stiffness index [47], [56].

Figure 6.15. Time-domain depiction of (a) an original PPG, (b) its downsampled

representation. and (c) its “compact representation.”

74

 Feature-Extraction and Decision-Making Performance
An excerpt collected from one of the 27 additional subjects is depicted in Figure 6.16.

The 99-second set consists of 33 3-second segments, notated as segment 1 to 33. The feature-

extraction algorithm yields four features for each of the 33 segments, as displayed in the bar

charts in Figure 6.17. The three hierarchical decision rules and their corresponding detection and

false-alarm probabilities are listed in Table 6.3.

Based on the features in the bar charts in Figure 6.17 and the thresholds in Table 6.3,

segments 1, 16-20, 24-26, and 30-33 in Figure 6.16 are tagged as “No Motion” (marked with the

symbol ■). Of these segments, segments 1, 17-19, 24-25, and 30-33 are tagged as “No

Saturation” (marked with the symbol ●) and are pushed to Step 3 in the decision hierarchy. After

Step 3, segments 17 and 30-32 are eventually tagged as “Valid PPG” (marked with the symbol

V).

Figure 6.16. A typical data set consisting of 33 three-second segments.

These results coincide perfectly with the classifications determined by manual waveform

observation. In a statistical validation experiment with 891 randomly selected segments, a

decision success level of 99% was achieved, where the remaining 1% of incorrect decisions

resulted primarily from the presence of a state transition segment such as segment 19 or 24 in

Figure 6.16. An additional feature to indicate the consistency between consecutive segments may

mitigate this type of error.

75

Figure 6.17. Four features extracted from the 33 segments.

Table 6.3. Hierarchical Decision Rule Results

Step Threshold PD PF

1 180 > 99.9% < 0.1%

2 10 > 99.9% < 0.1%

3 1.78 81.0% 21.5%

Note: A decision fusion [82] result is unavailable since each hierarchy is based on different

hypotheses.

76

Chapter 7 - Sensor Integration and Interaction

 The remaining chapters will focus on multiple biomedical sensors, medical devices, and

other medical components in small or large scale health care systems. This chapter addresses a

low level sensor integration and interaction framework based on the GumPack platform that

includes SCs and Chiclets.

 Surface Substrate and Interconnection Interface
The GumPack model is fundamentally composed of four surface substrates (SSs) and

four surface components (SCs). Each SS provides connection support for a SC that is snapped

on. Besides two 70-pin connectors between each paired SS and SC, the connection support

includes the interconnections between the four SS-SC pairs.

Figure 7.1 shows the surface substrate prototype. The board size is 84.4 mm by 32.8 mm.

A “Surface Component Place Here” region is marked on the SS in between two mounted 70-pin

connectors (the receptacle). The interconnection interface region is also denoted in Figure 7.1. It

consists of two rows of vias. The first row receives connections from the previous SS, and the

second row offers connections to the next SS.

Figure 7.1. Surface substrate circuit board (fully populated version).

A standard SS board with only the 70-pin connectors populated is intended for use with a

regular SC such as a biomedical sensor board. For a SC with a core processor, e.g., a Gumstix

Overo board, a fully populated version is required as in Figure 7.1. These extra parts include (a)

77

a 3.3 V voltage regulator, (b) a 1.8 V voltage regulator, (c) a USB bridge, (d) mini-USB

connectors, and (e) switches and LEDs. This SS provides power selection (USB or battery) and

supply, USB connection to other devices (e.g., a personal computer), and a GumPack reset.

Typically, the interconnection interface chain starts with a fully populated SS. The

interconnection interface is a subset of the 140 pins (2 x 70 pins) plus several power supply lines.

Each row on the interface has 44 vias, designated as pin 1 to pin 44 (left to right in Figure 7.1).

The pins apply to these functions:

• Power supply (3.3 V, 1.8 V, GND)

• GPIO (General Purpose Input/Output)

• 1-Wire bus

• I2C bus (address range 0x03 – 0x77)

• SPI bus (two chip selection)

• UART (Universal Asynchronous Receiver/Transmitter)

• PWM (Pulse Width Modulation)

• ADC (10-bit analog-to-digital converter).

A full pin assignment/definition is described in Appendix A – GumPack Hardware

Interconnection Interface. Note that a pin can be multiplexed, as most buses can be configured to

GPIO. For example, pin 3 (GPIO171_SPI1_CLK) can be used as either a GPIO or a clock signal

in SPI bus 1.

 Cuboid Assembly
The GumPack cuboid conceptual model was illustrated in Figure 2.2. The main parts

(surface substrates (SSs) and surface components (SCs)) were introduced in the previous text. A

solid cuboid structure is yet needed to support up to four SSs that allow four SCs to plug in.

Figure 7.2 illustrates the inner cuboid design created with SolidWorks CAD software. The

physical part (see Figure 7.3) was machined with the assistance of the KSU Department of

Mechanical & Nuclear Engineering. Its dimensions are 84.8 mm x 28.9 mm x 28.9 mm. This

inner cuboid shell provides a rigid structure for SS circuit boards and can hold a battery and two

antennas via two cylindrical voids.

78

Figure 7.2. SolidWorks design of the GumPack inner cuboid.

Figure 7.3. Machined GumPack inner cuboid.

A type 18650 3.7 V Li-ion rechargeable battery (size: 64.9 mm by 18.3 mm) powers the

GumPack. The UltraFire battery shown in Figure 7.3 has a capacity of 2400 mAh. UltraFire also

provides a 3600 mAh battery (the 18650), which could power a GumPack with a continuously

transmitting Wi-Fi connection up to 6 hours, assuming the current consumption is 600 mA on

79

average. When fully charged, the battery voltage is around 4.0 V, and the GumPack processor

SC works normally until the battery voltage drops below 3.2 V. A fully assembled GumPack

prototype will be presented in Figure 7.9 later.

 Software Architecture
The following sections addresses the software architecture and component framework

envisioned for the GumPack. Software supplements will focus on the following:

1. Field definition of the profile/memory chip on each surface component that is

consistent with hardware and software level standards.

2. Finite state machine for the interaction between surface components and the GumPack

core.

3. Implementation and evaluation of each state while considering efficiency (system

resource optimization) and security.

4. Automation and optimization of the processes of component connection and

disconnection (plug-and-play).

5. Application interface definition and integration of the GumPack app library for the

automation of app installation and execution.

From a software architecture perspective., the GumPack, through the OMAP3530

processor, supports several operating systems, including Android, Linux, and Windows CE. To

accelerate software development, Angstrom, a commonly used Linux distribution for a variety of

embedded devices, is employed as the software platform for the GumPack. Angstrom is also well

supported by the OpenEmbedded development environment. OpenEmbedded utilizes BitBake to

cross compile an embedded Linux. In the case of the GumPack, a personal computer with an

Ubuntu operating system and an OpenEmbedded build system is used to develop another

operating system Angstrom for the GumPack.

Figure 7.4 shows the enormous software architecture that is built upon the GumPack

hardware. It is by convention divided into (a) kernel space and (b) user space. In this section, a

brief description is provided for each block of the software architecture. The following sections

elaborate on some of the more important components.

The kernel space deals with the operating system kernel, driver, and boot loader. U-Boot

is used as the boot loader for the GumPack – the first piece of software that can be programmed.

80

Pin multiplexing is typically done by U-Boot. For example, pin 3 (GPIO171_SPI1_CLK) on the

SS board is defined as a clock signal in SPI bus 1 rather than a GPIO. To use pins in the user

space (e.g., switch an LED on via a GPIO), U-Boot should explicitly export them to the kernel,

where the kernel further exports them to the user space. A script can be created to do boot time

configuration of the board, do low-level testing, or set up the U-Boot environment. Linux kernel

(device driver) programming typically uses kernel modules for the GumPack, which allows a fast

installation of device drivers into the kernel without rebuilding the kernel.

Figure 7.4. GumPack software architecture.

81

A shell is a command line interpreter that is frequently used in the GumPack. It links the

kernel and user space for typical uses such as these:

1. System configuration (e.g., to set up the network interface in the file

/etc/network/interfaces)

2. Package installation (e.g., to install a Java Virtual Machine (JVM) using opkg

install cacao)

3. Implementation of all kinds of system commands and user applications (e.g., ./myApp)

The user space has a three-layer architecture (from bottom to top as in Figure 7.4):

Service, Framework, and User Interface. The Service layer provides three basic services. (a) The

Database Management System (DBMS) service records and manages all incoming user data,

e.g., aggregated sensor data. Data can be organized in the file system within hierarchical folders

or maintained by commercial DBMS software like MySQL. (b) The JVM service provides a

platform for Java applications (e.g., the MDCF client is fully implemented in a JVM). (c) The

Communication service controls wireless network access (as a client) or creation (as a host). An

example would be the creation of an ad-hoc network for other handheld devices to locally access

a GumPack web server. The Framework layer provides interconnection and interoperability

standards for surface components (e.g., GCCF and IEEE 11073) and the GumPack itself in a

large medical device cooperation environment (e.g., MDPnP, MDCF, or IEEE 11073). The User

Interface layer supports three means by which a user can access the GumPack. (a) A Secure

Shell (SSH), a remote shell, and (b) a Serial communication link are aimed at developers who

need real time access to the system. (c) A Web Server is a user-friendly channel to access the

PHR maintained by the GumPack.

A particular application (APP), e.g., for a motion sensor SC, links to all three layers. Its

position can be considered parallel to all three layers and on top of the kernel. A motion sensor

SC is ‘connected’ by the GCCF framework, its data are stored by the DBMS service, and a user

reads a motion waveform through the Web Server interface, which utilizes the Communication

service.

 GumPack Component Connection Framework
The GumPack design allows one to integrate biomedical components in an efficient and

flexible way. New device functionality is added to a GumPack by plugging in or switching in the

82

corresponding surface component. Such a means to design medical devices may attract

developers’ attention, resulting in a large collection of SCs available to GumPack users. This

section addresses the means to regulate these third-party components and automatically call the

corresponding APPs without user intervention.

The GumPack Component Connection Framework (GCCF) is a software interconnection

protocol based on the hardware interconnection interface on each surface substrate. Its primary

functions are (a) SC authentication and (b) SC APP automation, both realized by the GCCF and

a profile chip on a SC. The profile chip is a memory chip with an I2C interface, and the address

should be in the range of 0x03 – 0x77 and different from other I2C addresses that have already

been registered in the system. Chips with I2C interfaces usually have configurable I2C addresses.

It is recommended that SC designers leave such options to users (e.g., the LSB (least significant

bit) of the address can be selected by a switch).

The profile chip contents include its identification information (for an SC authentication

function) and interface and data format information (for an SC APP automation function). The

memory size is at least 1 kbit. Figure 7.5 shows a 128-bit x 8-row allocation structure for a

profile memory space. The first row is the 128-bit ID or Key field. This unique sequence is only

authorized for an SC that has already been verified by certain standards and regulations. The

authentication algorithm of the GCCF checks the SC ID and decides if further communication

will proceed. The second 128 bits are evenly divided into four fields of 32 bits each that contain

other SC ID related information: type, address (up to four different I2C addresses), option, and

checksum for the entire ID section. The interface and data format sections span from the third

row to the end. The Pin Request field designates which pins are used. E.g., the 1st bit in this field

corresponds to pin 1 (GND) on the hardware interconnection interface. It is set to 1 if pin 1 is

utilized on the SC board. The Interface 1 field occupies the first 64 bits of the fourth row. It

addresses the interface type (e.g., GPIO, ADC, or SPI), direction (input, output, or bidirectional),

data rate (e.g., 100 Hz), data width (8 bits), etc. Given this information, the GCCF calls the

corresponding APP from the APP library or online APP store.

83

Figure 7.5. Profile memory chip field definitions.

Figure 7.6 illustrates the GCCF finite state machine (FSM). The starting state is Bus

Scan. The GCCF periodically checks the I2C interface, which is designated for profile chip

communication, from address 0x03 to 0x77. If there is no response for a particular address, it

moves to the next address. A successful acknowledgement (ACK) triggers the GCCF to read the

SC ID (the first 16 bytes) via the bus. An authentication process is implemented based on the

128-bit ID. If a negative result occurs, the FSM goes back to the Bus Scan state. If a positive

result occurs, the GCCF reads interface information by accessing the same I2C address.

Retrieved data are from the 33rd byte up to the last interface field (see Figure 7.5). The interface

data are interpreted to check required resources (e.g., a bus driver), install the necessary APP

from the APP library, and eventually run the APP. If any error is encountered during the state

Read Interface up to the state App Serving, the GCCF returns the FSM to the Idle state. Potential

errors include (a) a resource request fail, e.g., a required GPIO is used by another APP, (b) an

interpretation error, e.g., a data format is undefined, (c) a profile chip communication error, and

(d) a data communication error.

84

Figure 7.6. GCCF finite state machine (FSM).

If the SC is designed using the GSC model, the GCCF could also automatically generate

APP code (via an APP template) for developers with the information that is to be written into the

profile chip. This approach can minimize, e.g., APP development time and data interpretation

errors.

 Chiclet Network and Device Interoperability Standards
Chiclets are an important GumPack supplement for applications that involve wearable

devices/sensors. They are off-board ‘surface components’ that wirelessly connect to the

GumPack rather than rely on the onboard 70-pin connectors. The communication protocol could

be Bluetooth, ZigBee, or other short distance but low-power solutions such as Ant. ZigBee is

preferred for the time being, since the first Chiclet design will be the wireless reflectance pulse

oximeter. Additionally, multiple network topologies are well supported in ZigBee. ZigBee

functionality is enabled by attaching the ZigBee Coordinator SC to a GumPack.

A Chiclet network is formed between one or more Chiclets and a GumPack. It is like a

private local network rather than a public network in the context of interoperability between

conventional medical devices. This relationship is illustrated in Figure 7.7. The lower left area

depicts a Chiclet network based on a ZigBee infrastructure. A tree topology is used to expand the

diameter of the network coverage as a flexible topology example. Using a tree topology, the end

85

nodes are usually the sensors, and the middle nodes (routers) are merely data transporters

between end nodes and the GumPack (ZigBee Coordinator SC). For a typical body-area-network

use case, a star topology would be preferable since the communication range is within 10 m. A

star topology also alleviates time synchronization issues for multiple Chiclets.

In the broader context of a medical device network (see Figure 7.7), a GumPack can be

seen as a single terminal on an enterprise service bus (ESB), though its role is not fixed (e.g., it

may be a vital signs monitor or a patient communicator), which makes the GumPack a

competitive candidate for KSU’s MDCF (Medical Device Coordination Framework) project.

MDCF clients were previously ‘mock’ devices: JVMs run on a computer or real devices with

JVM adapters, connecting to the MDCF bus maintained by the MDCF server (bus manager). The

GumPack is the first native MDCF-ready medical device that can successfully run the whole

MDCF client on itself with JVM service support (see Figure 7.4).

Figure 7.7. GumPack Chiclet network and medical device interoperability.

This MDCF scenario is an example of integrating the GumPack into a cooperative

medical device network. Other interoperability frameworks such as MDPnP will be evaluated in

86

the future. ISO/IEEE 11073 standards are also to be assessed for Chiclet network and GCCF

operation.

 Web Server and User Interface
At present, the GumPack does not provide a cell-phone-like user interface. However, a

user is able to utilize a phone, a tablet, Internet TV, or any device that supports Wi-Fi and web

browsing as an indirect access interface. This capability is realized by the web server maintained

on the GumPack.

Figure 7.8. GumPack web server login page.

A lightweight web server lighttpd is employed on the GumPack instead of the more

popular Apache. Lighttpd is a secure, fast, compliant, and flexible web server that has a small

memory footprint compared to other web servers and takes care of CPU load. CPU usage of

lighttpd is less than 1.0% for a single client. It is configured to run PHP modules. PHP provides

an ODBC (Open Database Connectivity) interface to database and file operation functions (e.g.,

to read and write a file on the GumPack file system). Hence, PHP is used to develop the

GumPack web site and web pages. Figure 7.8 shows the login page that requires an account

name and a password when a user accesses the GumPack server. The GumPack server supports

multiple user accounts, which can be configured after a user is logged in. Four categories of

information are accessible to logged-in users:

• Dashboard, e.g., for signal waveform display

• Trackers, e.g., for user input to a PHR

• Devices, e.g., for SC configuration

• File Repository, e.g., to check out files.

87

Demonstrative web pages are shown in Appendix C. They were captured by an iPad that

was connected to the same local wireless network as the GumPack.

 Prototype and Initial Results
Figure 7.9 shows the first version of the assembled GumPack prototype surrounded by

three Chiclets. The size of this prototype is 84.4 mm x 32.8 mm x 32.8 mm, constrained by the

size of each surface substrate board. The four mounted surface components are the

aforementioned processor SC, a motion sensor SC, an ECG SC, and a ZigBee coordinator SC

that coordinates the three Chiclets (reflectance pulse oximeters). A Wi-Fi antenna is placed

inside of the cuboid structure and connected to the processor SC board, which needs to be

redesigned to a better form factor that can be embedded inside the GumPack cuboid. The

interconnection wires are not fully populated at the current debugging stage; they are envisioned

to wrap around the four surfaces and go through the space between each SS-SC pair. A flexible

printed circuit board (cable) will likely replace the wrapping wires, or a new inner cuboid design

will provide interconnection sockets at each corner.

Figure 7.9. GumPack prototype and Chiclets.

88

As implied by the GumPack conceptual model in Figure 2.2, camera and audio support

will be integrated into the GumPack design in the future. For example, Figure 7.10 shows a

Caspa camera that was originally an open source design from Pixhauk and is now supported by

Gumstix’s Overo board. A Bluetooth headphone, keyboard, GPS, etc. are all on the waitlist.

Consistent with the “GumPack” theme, more customizable biomedical surface components are

also needed.

Figure 7.10. Caspa camera board alongside a motion sensor SC.

Although demonstrating the acquisition of a sensor signal is not the centerpiece of the

GumPack idea (for purposes of this chapter), the concept of obtaining an ‘unfiltered signal’ is

worth briefly noting. The Chapter 4 figures have already depicted the unfiltered PPGs that can be

obtained by a reflectance pulse oximeter Chiclet. Figure 7.11 displays an unfiltered single-lead

ECG obtained with careful baseline and amplification control. Such signals are usually

accompanied by different levels of 60 Hz grid noise (in the U.S.) and appear to be low quality.

However, they represent raw data with all signal details (e.g., frequency components) unaltered

and exposed. These data are therefore extremely useful for education and signal processing

comparison studies.

89

Figure 7.11. Unfiltered ECG sampled from an ECG SC.

Figure 7.12 presents the raw ECG’s magnitude spectrum from 0 – 15 Hz. The

fundamental frequency, 1.63 Hz, is the heart rate (97.8 bpm), and its nine harmonics are

distinguishable in the spectrum. A 0.2 Hz frequency component is also recognized, which is

likely the respiration rate. The 60 Hz noise component has a large magnitude, though it is not

shown here.

Signal quality (e.g., signal-to-noise ratio) is immediately improved by digital post-

processing, which can be efficiently realized in the GumPack due to its processing capability,

which will be further improved by exploiting the digital signal processor core. A filter toggle

button/option is provided on the web user interface, giving a user the view of both the ‘clean’

waveform and the raw waveform. The goal is to allow a user to click the waveform to see, e.g.,

extracted parameters, frequency spectra, and other analysis results.

90

Figure 7.12. Frequency spectrum of the unfiltered ECG.

91

Chapter 8 - High Resolution WBAN

Diverse and creative application-layer schemes can be designed and evaluated for various

WBAN scenarios. This chapter addresses a WBAN that emphasizes high-resolution raw data,

real-time operation, and time synchronization of intra-sensor data and inter-sensor waveforms.

The WBAN requires a high-speed wireless connection that is always alive over the desired data

acquisition period, as opposed to most WBAN applications, which allow periodic sleep modes.

This type of WBAN transfers large amounts of raw data to a base station, where heavy signal

processing is implemented.

 IEEE 802.15.4 MAC Layer
The carrier sense multiple access with collision avoidance (CSMA/CA) method is

adopted in the IEEE 802.15.4 MAC layer. The CSMA approach requires transmitting nodes to

first listen to a channel and then transmit only if the channel is idle; the collision avoidance

mechanism improves CSMA performance by dividing the communication channel equally

among all nodes in the collision domain. Utilizing this method in a WBAN with only one

channel ensures that each sensor node has an equal opportunity to upload data, and each

successfully transmitted data segment can be synchronized with the lost data segments from the

other nodes. Since ZigBee (the wireless standard utilized by the custom pulse oximeters) is based

on IEEE 802.15.4, this approach is employed here.

 Issue 1: Lost and Wandering Frames
Figure 8.1 illustrates a star-topology ZigBee network with two sensor nodes (S1 and S2)

and one receiver (Coordinator). Sensor-node frames are received by the Coordinator with equal

probability. Each sensor has a unique MAC address, which can be identified by the Coordinator,

so the frames sent by S1 and S2 are illustrated differently. Each frame is originally assigned a

sequence # to help address the issue of lost and wandering frames (see Figure 8.1). Lost frames

are unrecoverable because each sensor node only attempts to transmit a frame once to ensure

real-time operation. Wandering frames can be rearranged by a computer, which receives frames

from the Coordinator via a serial port.

92

Figure 8.1. An example star-topology network. Each frame sent by a sensor node carries a

sequence # to address the issue of lost and wandering frames.

 Issue 2: Timeline Distortion
The second issue is caused by the asynchronization of the frame sending and receiving

rates. For example, if S1 and S2 each competitively transmit 240 frames per second, the

Coordinator does not necessarily receive a sum of 240 frames in one second. Experiments

indicate that the number of received frames depends on the frame length.

To address this issue, the inner timers in the sensor nodes and the Coordinator are

identical. Such timers trigger events like transmitting a frame or generating a ticket, as shown in

Figure 8.2. A Ticket Counter inside the Coordinator increases by 1 when the Ticket Generator

produces a ticket and decreases by 1 when a received frame consumes a ticket. This Ticket

Counter number is appended to each frame to assist the follow-on timeline restoration process.

Continuing the thought, if the Ticket Counter value decreases by 10 in one second (the tickets

are over-consumed), the Coordinator has received an extra 10 frames in one second, which

means the timeline will be expanded given the assumption that 240 frames corresponds to one

second. A correction factor of 0.96, calculated from 240/(240+10), should then be applied to the

received-frame timeline.

93

Figure 8.2. Ticket production and consumption mechanism inside the Coordinator to

address the timeline distortion issue.

 Frame Field Definition
Frames are assembled on the application layer of the wireless communication protocol.

Figure 8.3 contains the frame field definitions for the sensor nodes (lower) and the Coordinator

(upper). Each sensor frame carries data for two samples: their AC values and the corresponding

DC value for the pair. The frame begins with the acknowledgement value returned from the

previous transmission function and ends with a checksum. When the Coordinator receives a

sensor frame, it adds an ID (mapped to the unique MAC address), a Ticket Count, and a new

checksum.

Figure 8.3. Frame field definitions for the Coordinator and sensor nodes on the application

layer of the custom communication protocol.

94

 Timeline Restoration in MATLAB
The frames finally stream to a MATLAB interface on a computer, where all the “heavy”

signal processing tasks are implemented. Task 1 is to arrange the frames from each sensor node

in ascending order and fill the gaps with ‘placeholder’ frames – the positions that correspond to

lost frames. Since a sequence # is defined to be one byte long (see Figure 8.3), the frame search

window is assumed to be within [-127, 128].

Figure 8.4 shows the frame sequence #s in the received order (blue crosses) and the time-

aligned sequence #s (red dots) for one sensor. The original sequence illustrates that frame

wandering occurs frequently. The number of placeholder frames (assigned with sequence # = -1)

between data segments is the length of data segments from other sensor nodes in the original

sequence, and it will be equal to the actual number of lost frames in the recovered sequence if the

frame search method did not miss any wandering frame.

Figure 8.4. Original data stream with sequence #s in the received order (blue crosses) and

the recovered time-aligned sequence (red dots). Placeholder frames are assigned negative

sequence #s.

95

In Figure 8.4, the recovered sequence has obviously deviated from the trend of the

original sequence at around the 1300th frame (placeholder frames are counted). This phenomenon

relates to timeline distortion. In other words, in this example, the timeline is expanded, or tickets

are over-consumed. One way to recover the timeline is to use the correction factor calculated

from the Ticket Count. Another method is to perform a linear regression on the delay relative to

the expected sequence #, as illustrated in Figure 8.5.

Figure 8.5. Linear regression – relative delay to recover the distorted timeline.

A reference frame has the expected sequence #; it could be a placeholder frame. The

expected sequence # increases by 1 for each time step, returning to 0 after reaching the

maximum. This approach estimates the relative delay of every frame, especially the reference

frame, which is used to adjust the synchronization of the frame streams from different sensor

nodes in a statistical manner.

96

Chapter 9 - Application B: Pulse Wave Velocity Estimation

Most pulse oximeters estimate arterial oxygen saturation using baseline-normalized

photoplethysmograms (PPGs) acquired with several wavelengths of excitation light [83]. The

periodicity in these pulsatile waveforms is intuitively related to heart rate since arterial blood

volume and flow (and therefore optical absorption due to hemoglobin) track the cardiac cycle.

Related research notes that physiologic parameters such as blood pressure, respiration rate, and

stroke volume can also be derived from PPGs [49], [51].

Pulse wave velocity (PWV) has attracted attention as an arterial elasticity indicator. PWV

methods that utilize PPGs include (a) pulse transit time (PTT) extracted from time-correlated

ECGs and PPGs [84], (b) transit time acquired from dual-channel (finger and toe) PPGs [85],

and (c) peak-to-peak time (PPT) from a single digital volume pulse (DVP) waveform [47] (also

tested in our early efforts [12], [86]). Other PWV estimation modalities include ultrasonic

Doppler [87].

A direct way to calculate average wave velocity is the distance between two locations

divided by the wave transit time. Obstacles for using this method to calculate PWV with PPGs

include:

1. At least one of the two locations on the same arterial segment makes PPG acquisition

difficult with a transmittance-mode sensor (e.g., one sensor on the fingertip and the other at the

wrist).

2. PWV is much faster than blood flow, requiring a pulse oximeter to sample at a high

rate to ascertain the transit time for a PPG waveform acquired at two locations separated by a

short distance.

3. The two pulse oximeters or PPG acquisition devices must be synchronized.

4. PPG signal must be high quality (e.g., thousands of digitization levels, high signal-to-

noise ratio, and undistorted), especially when considering that PWV varies as vessel walls dilate

and constrict during each heart cycle.

This chapter demonstrates an initial study on PWV estimation using a pair of low-cost,

custom wireless reflectance pulse oximeters at two measurement locations on the same hand.

While larger scale tests are pending and the results are not verified against commercial medical

97

equipment, this short investigation offers insight into the design issues related to an economical

single-hand approach, including changes to downstream versus upstream signal shape caused by

intra-cycle changes in arterial pressure.

 Study Description and Experimental Setup
PWV can be expressed as a function of arterial elasticity via the Moens-Korteweg

equation [55]:

ρr
hE

PWV inc

2
= (13)

where h is the arterial wall thickness, Einc is the incremental elastic modulus, r is the lumen

radius, and ρ is the blood density. When PWV is measured with one of the aforesaid methods,

arterial parameters such as arterial elasticity could be estimated by the reverse solution of (13).

For instance, a high relative PWV in the aorta may suggest a stiffer arterial wall in some

individuals. As implied in the beginning, PWV is not constant even in the same vessel segment.

Rather, it can be derived as a monotonically increasing function of pressure. I.e., PWV is

different when measured at different stages of the cardiac cycle [55].

Custom wireless reflectance pulse oximeters were employed to simultaneously acquire

PPGs from the wrist and fingertip (middle finger). Each pulse oximeter yields four PPG

channels: separate pulsatile (AC) and baseline (DC) sample sequences for the red and near-

infrared excitation wavelengths. The sampling frequency is fs = 240 Hz to avoid aliasing, e.g.,

120 Hz flicker from full-wave-rectified fluorescent room lights. Each channel is unfiltered and

has a precision of 4096 digitization levels that correspond to a (0, 2.4) V range.

Since (a) blood oxygen saturation is not the focus of this effort and (b) each near-infrared

channel exhibits better signal quality than its red counterpart, only the near-infrared AC and DC

channels of the two devices are utilized for PWV calculations. The DC signal (also referred to as

the ‘baseline’ in this dissertation) is not a constant in this model. It is controllable and may jump

(change value instantly) to resist saturation of AC signal; the influence of the jump on the AC

signal is removed later. More details are described in Chapter 4.

When synchronized PPG waveforms from two pulse oximeters placed at the wrist and the

fingertip (see Figure 9.1) are ready, time differences can be extracted from point pairs on the

corresponding curves. A typical PPG cycle has a steep rising slope and a mild falling slope

consistent with the systolic and diastolic durations in the cardiac cycle. For this study, three point

98

pairs were selected at different waveform features: (a) the valley (foot), (b) the inflection point

on the rising slope and (c) the time corresponding to the rising-slope peak. This offers the

opportunity to calculate and compare three PWV values at different intra-arterial pressure levels.

In other words, this work was initiated to see whether the estimated PWVs are consistent with

PWVs obtained using other methods, such as PPT from DVP, and whether PWV exhibits

measurable dependency on pressure.

Figure 9.1. Measurement setup with one pulse oximeter (sensor) at the wrist and the other

at the fingertip. The primary arterial tree of the hand is depicted to illustrate the pulse

travel path. This figure is adapted from [88].

 Basic Approach
Two approaches are explored in this chapter to retrieve synchronized PPG streams. The

first method was presented in [70]. The two pulse oximeter sensors talk to their respective

receivers, which are either two serial ports or ZigBee coordinators.

 Signal Synchronization
A MATLAB interface (Figure 9.2) collected, through serial communication, near-

infrared data acquired by two pulse oximeters. The respective communication parameters (serial

port, sample rate, signal channel, wireless channel, and refresh rate) can be set on the left panel.

Note that the displayed near-infrared waveforms in the two sub-windows on the right are

visualized in a ‘first ready, first displayed’ unsynchronized manner. However, the PPG signals

99

generated by the two pulse oximeters must be synchronized so as to accurately extract the

relative time delay on the waveform acquired from the distal sensor, where the sensor-to-sensor

distance is known. Hence, an interface feature was developed that ‘punches’ the data sets when

they are dumped from two separate serial buffers at the same time. This ‘punch’ method ensures

that the punched points on the two waveforms are time synchronized.

Figure 9.2. A MATLAB interface that simultaneously communicates with two pulse

oximeters on different serial ports.

Figure 9.3 illustrates two PPG waveforms that are synchronized by aligning the

corresponding punched points in their data sets. The punch dots on these AC channels have a

uniform value of 2048. The DC/baseline channels are also punched (not shown here) to further

confirm the punch dots.

100

Figure 9.3. Punched raw PPG waveforms that are aligned (synchronized).

 Signal Preprocessing

Removing the punched points from the synchronized signals yields raw PPGs (see Figure

9.4) for further processing. The second preprocessing step is to filter the raw PPGs. The filter is a

240th–order lowpass filter with a 5 Hz cutoff frequency realized with a MATLAB function

firls(), a linear-phase FIR filter that uses least-squares error minimization. This high-order

filter causes a time delay of td = (n–1)/(2fs) = 0.498 seconds, where n = 240 and fs = 240 Hz. The

group time delay equally pushes all cycles (including each of their individual frequency

components) to the right as seen in Figure 9.5 when compared to Figure 9.4 without phase

distortion. The cutoff frequency is set to the relatively low value of 5 Hz to ensure smooth

derivative curves (see Figure 9.6). A higher cutoff frequency would require a method such as

curve fitting to be employed when extracting the associated delays from these derivative data.

101

Figure 9.4. Synchronized raw PPG waveforms with the punch marks removed.

Figure 9.5. Filtered PPG waveforms. The channels are still synchronized due to the same

group delay imposed by the linear-phase lowpass filter.

102

Figure 9.6. First derivative (b) and second derivative (c) of a pair of filtered single-cycle

PPGs (a). Three delays, d1, d2, and d3, are extracted according the count differences

represented by the line at y = 0 in (b) and (c).

 Pulse Travel Time Extraction
The time difference between the two PPG waveforms becomes clearer after filtering.

Because of the discrete signal nature, the time axis is really a count axis. Figure 9.6 (a) depicts

this idea with a pair of filtered, single-cycle PPGs, each containing ~150 data points. The time

duration between consecutive samples is 1/fs = ~0.417 milliseconds, the best time resolution

available. To identify the corresponding PPG feet and peak locations, the first derivative was

103

employed (see Figure 9.6 (b)). The second derivative was used to locate inflection points on the

rising slope (see Figure 9.6 (c)). Count delays were subsequently extracted using the zero values

of the appropriate differentiated data, as illustrated in Figure 9.6.

 Count Differences
A ten-second pair of near-infrared PPG segments was chosen, where the selection

criterion was minimal variation in the baseline, which is preferred since severe baseline

fluctuations normally imply motion. Each segment contains 2400 (10 fs) data points and 15

whole PPG cycles (rising slopes), which means that 15 sets of time differences/PWVs can be

extracted and averaged for each waveform feature. The results are detailed in Table 9.1. Taking

the first cycle as an example, as in Figure 9.6, the foot indices for the wrist and fingertip PPGs

are 94 and 103, respectively, so the FTF (foot-to-foot) delay is 103 - 94 = 9 counts. Likewise,

the ITI (inflection-to-inflection) delay is 124 - 116 = 8 counts, and the PTP (peak-to-peak) delay

is 143 - 134 = 9 counts.

Averaging these values over 15 cycles yields FTF = 7.1 counts, ITI = 6.5 counts, and

PTP = 8.3 counts. The corresponding standard deviations are as high as 1.5 counts, which is

relatively large. Though the pulse oximeter has a 240 Hz sampling rate, only 6-to-8 counts exist

between similar features on the two waves: PWV is much faster than blood flow. Considering

that the red channel does not contribute to PWV calculation, we assume that the removal of those

code blocks from the firmware could improve the sampling frequency to 480 Hz.

 Pulse Wave Velocity Estimation
Count differences can be converted into time differences in seconds by dividing by fs. If

the pulse travel length (TL in Table 9.1) between the sensors is measured, the three variations on

PWV can be calculated from the time differences. The distance between two measurement

locations is 0.224 m; however, the arterial distance is slightly longer when one considers the

indirect paths in the arterial tree of the hand (see Figure 9.1.). A subjective factor of 1.25 was

therefore used to get TL = 0.224 * 1.25 = 0.280 m. The PWVs using this estimated TL are listed

in Table 9.1.

104

Table 9.1. PWV Results from a Ten-Second PPG Waveform Pair from One Subject
Cycle Wrist

Foot

Finger

Foot

Wrist

Peak

Finger

Peak

Wrist

Inflect.

Finger

Inflect.

FTF

(count)

ITI

(count)

PTP

(count)

TL (m) FTF

(m/s)

ITI

(m/s)

PTP

(m/s)

1 94 103 134 143 116 124 9 8 9

0.280

7.47 8.40 7.47

2 242 249 286 293 266 272 7 6 7 9.60 11.20 9.60

3 396 403 437 445 419 425 7 6 8 9.60 11.20 8.40

4 556 562 596 603 579 584 6 5 7 11.20 13.44 9.60

5 711 719 752 760 734 740 8 6 8 8.40 11.20 8.40

6 870 877 910 918 892 898 7 6 8 9.60 11.20 8.40

7 1037 1045 1077 1087 1059 1067 8 8 10 8.40 8.40 6.72

8 1205 1211 1244 1250 1226 1232 6 6 6 11.20 11.20 11.20

9 1365 1370 1406 1415 1388 1392 5 4 9 13.44 16.80 7.47

10 1527 1533 1566 1576 1548 1555 6 7 10 11.20 9.60 6.72

11 1690 1698 1731 1740 1712 1719 8 7 9 8.40 9.60 7.47

12 1847 1855 1888 1896 1870 1875 8 5 8 8.40 13.44 8.40

13 2000 2009 2042 2052 2024 2032 9 8 10 7.47 8.40 6.72

14 2156 2160 2197 2204 2178 2185 4 7 7 16.80 9.60 9.60

15 2311 2320 2353 2362 2334 2342 9 8 9 7.47 8.40 7.47

AVG = Average

STD = Standard Deviation

AVG 7.13 6.47 8.33 9.91 10.80 8.24

STD 1.50 1.24 1.23 2.57 2.36 1.30

FTF = foot-to-foot; ITI = inflection point to inflection point; PTP = peak-to-peak. TL = travel

length of pulse wave at the hand.

 As noted in the previous section, PWV should increase as pressure increases, which

occurs along the rising slope of a PPG. Hence, PWVs calculated from the feet, inflection points,

and peaks of the rising slopes should be ordered from least to greatest. These early results do

indicate an increase in average PWV from the foot (9.9 m/s) to the inflection point (10.8 m/s) but

a decrease at the peak (8.2 m/s). The next two paragraphs contain thoughts in that regard.

First, a PPG as in Figure 9.6 is composed of two waveforms that correspond to different

time delays: (a) the systolic (or direct) component that results from the direct transmission of the

systolic pressure wave from the aorta to the arm and (b) the diastolic (or reflected) component

that results from the reflection of the pressure wave from the peripheral arteries to the aorta and

then back to the arm [55], [86]. The peak of the rising slope therefore experiences dispersion

caused by these wave reflections, which also result in minor peaks that appear on the falling PPG

slope. Effects of reflections on PWV values are also noted in [55].

Second, two small arteries converge in the fingertip: one from the superficial palmar

arch and the other from the deep palmar arch. These arches bridge the radial artery (where the

105

other device is placed) and the ulnar artery. This structure makes the fingertip pulse waveform

more complex than the waveform one would model for a simple vessel segment.

 WBAN Approach
The second approach utilized the high resolution WBAN introduced in Chapter 8. The

WBAN method [89] is similar to the previous study but improves on the approach by

1. Forming a star-topology WBAN with a single receiver and a single communication

channel,

2. Doubling the sensor sampling frequency to 480 Hz, theoretically doubling the resultant

resolution, and

3. Using a curve fitting method over several cardiac cycles to build a more representative

PPG segment, since PPG behavior statistically repeats over time.

The pulse oximeter sensor nodes transmit their own samples continuously (in real time),

letting the CSMA/CA algorithm decide which sensor communicates to the receiver during a

certain time slot. Data streams received from pulse oximeter sensor nodes are therefore

fragmented, but these fragmented data segments are ‘geared’ together in a real-time manner.

Note that since this approach aims to extract features from pulsatile high-resolution signals, the

missed segments can be rebuilt afterwards.

 Decomposition of the Sensor Data Streams

The PWV application involves two sensor nodes placed at the wrist (node 1) and the

corresponding fingertip (node 2). PWVs are calculated from the time differences between these

two PPGs. The first step is to separate the two sensor data streams based on their IDs. Figure 9.7

plots two example waveforms in their received order; the data points with negative values

represent placeholder frames.

106

Figure 9.7. The original frame sequence decomposed into two PPGs. Each frame carries

two AC values, but only one is plotted here.

 Timeline-Recovered Waveforms

Sequence #s are utilized to time-align data points for each sensor node. The rearranged

results are depicted in Figure 9.8. This time, data points with negative values are from

placeholders corresponding to lost frames. Here, synchronization has not been addressed yet.

 Defragmentation and Curve Fitting
Although the PPG data points for node 1 (blue dots) are connected with lines in Figure

9.8, they are actually fragmented or composed of small data segments. I.e., the sequence # is not

continuous, which is also indicated by the points with negative values. To eliminate the

discontinuities, a peak detection algorithm is employed to identify individual PPG cycles, and

these cycles are then ‘stacked’ together; cycles are aligned at the systolic peak position. Figure

9.9 shows a representative PPG (blue circles, including at least one whole cycle) averaged from

eight cycles worth of discrete, discontinuous data. Note that the x-axis is changed to Count, since

each frame contains two data points. The sampling frequency = 480 Hz. A 10th-order polynomial

curve was fitted to these data to estimate the continuous PPG.

107

Figure 9.8. Two PPGs with data points time-aligned.

Figure 9.9. Representative waveform for eight PPG cycles worth of discontinuous, discrete

data.

108

 Synchronization and Feature Extraction
After the polynomial curves for both nodes are calculated, they need to be placed

appropriately, or synchronized, relative to one another, in order to complete the PWV

calculation. The positioning process depends on two factors related to both nodes: (a) the

corresponding peak position (the first peak of the eight cycles) in the time aligned sequence and

(b) the delay relative to the expected sequence # based on the results of the linear regression

method in Chapter 9. Figure 9.10 shows the relative position of two polynomial curves after

statistical synchronization.

Figure 9.10. Statistically synchronized, continuous PPGs from two sensor nodes.

To calculate PWV, corresponding features on the rising slope of the two waveforms

could be identified toward the use of the time difference extraction approaches used in [70],

which involve taking derivatives of the PPGs. For example, the foot-to-foot and peak-to-peak

differences are determined by first finding the roots of the first derivatives and then performing a

subtraction (see Figure 9.10). In this example, three PWV values are estimated as 5.12 m/s at the

foot, 5.51 m/s at the inflection point, and 9.47 m/s at the peak.

109

Chapter 10 - Medical Device Coordination Framework

The MDCF is an open-source project with a goal of exploring means to design,

implement, verify, and certify systems of medical devices [34], [90]. Existing MDDS systems

are constrained by FDA regulations to only forward data from devices to remote displays or

hospital information systems without transforming those data. The MDCF effort was initiated

by the U.S. Food and Drug Administration in partnership with Kansas State University, then

funded by the National Science Foundation, as an open test bed to allow academics, industry,

and government regulators to explore engineering and safety issues involved in removing MDDS

restrictions to allow multiple devices to be integrated as a system, where the behavior of the

system is determined by the execution of one or more APPs that can combine/transform device

data and control the actions of devices. This work is informed by related efforts pursued by the

Medical Device “Plug-and-Play” Interoperability Program (MDPnP) [91], which is developing

standards and prototypes for systems of cooperating devices. MDPnP has demonstrated a

number of interesting applications of this concept, including (a) implementations of more

effective safety interlocks and smart alarms that span multiple devices and (b) automated clinical

workflows that previously proved problematic due to manual errors [92].

 JMS and MDCF Architecture
The message-oriented middleware (MOM) architecture of MDCF is implemented based

on Java Message Service (JMS). The features JMS provides to MDCF include a) flexible and

dynamic information flow, b) many message providers and consumers (e.g., fan-in and fan-out

structure), and c) time-critical and scalable performance [34]. OpenJMS is an open source

implementation of JMS API 1.1 specification [93]. It provides five steps to set up a JMS and

send and receive messages over JMS.

1. Creating a connection factory from a JNDI (Java Naming and Directory Interface)

IntialContext object which specifies where the data sore is (e.g., tcp://localhost:61616, analogous

to the root of a directory tree for a file system).

2. Creating a connection from the connection factory.

110

3. Creating a session from the connection.

4. Retrieving a destination from a session. A destination can be topic or queue.

5. Sending messages to or receiving messages from the destination.

In MDCF, these five steps are repacked into three steps (one line of code for each step)

when set up a JMS communication in a component. Taking sending messages for example, two

classes SenderFactory and IMDCFSender are utilized from MDCF core package.

1. Creating a IMDCFSender object for the SenderFactory

2. Connecting the IMDCFSender object with a topic.

3. Sending messages from the IMDCFSender object.

Figure 10.1 depicts the general structure of the MDCF in two principle parts: an MDCF

server and an MDCF client. The MDCF Core is the fundamental layer of this framework; it

provides a message-oriented-middleware bus (which can be instantiated as an implementation of

the Java Message Service (JMS) [34] or a light-weight TCP socket service) that supports a

publish-subscribe communication paradigm. Message senders and receivers can connect to a

particular MDCF channel (similar to a JMS topic), and senders can publish messages to a

channel that are delivered asynchronously to all receivers connected to that channel. Medical

devices and hospital information systems such as an EHR are MDCF clients and communicate

with the MDCF using channels. For example, heart rate and blood oxygen saturation data

streams from a conventional pulse oximeter would be communicated to the MDCF from the

device using a separate outgoing channel for each data stream (the device acts as the sender). An

MDCF client device typically will also have an incoming channel that carries commands to

which it responds. Channel connections on the client side are realized using a lightweight

communications library that can either be incorporated into the software/firmware of the medical

device (an approach taken with other experimental devices on which we are working that include

the ability to run embedded Linux) or implemented in a dongle/adapter that converts signals on

the device’s native interface to MDCF-compliant messages (a strategy similar to the approach

taken in many MDDS systems, and the approach taken with the pulse oximeter discussed later in

this chapter).

111

The MDCF server contains several essential manager and console modules that allow

clinicians and hospital IT staff to maintain and supervise MDCF operation. For example, the

Device Manager takes care of device authentication and registration when a new device is

plugged into the MDCF and assigns topics/channels to the device for data streaming based on its

declared MDCF interface.

Figure 10.1. MDCF architecture and example APP virtual machine (lower right).

A key module of the MDCF server is the APP virtual machine that executes APPs built

from libraries of reusable components with message ports for channel-based communication. An

APP is assembled in the MDCF APP development environment by wiring together the message

ports of component instances. Three primary component types exist: device (data input),

transformer (data processing), and display (data output). Typically, a collection of at least three

components forms an MDCF APP.

 Scenario Creation and Installation
The previous section addressed high-level descriptions of medical devices employed in

the MDCF. In the following sections, a walkthrough of building an APP in the MDCF presents a

step-by-step tutorial for building such a medical device from scratch using the custom MPOD

pulse oximeter and the tools provided by the MDCF.

112

A clinical scenario typically involves several medical devices or APPs. For example, in

an MDCF APP for closed-loop control of a patient-controlled analgesia (PCA) pump [90], the

APP includes components to control the PCA pump and other vital sign monitors such as a pulse

oximeter and a respiration rate monitor. The APP controls the PCA pump according to the

physiologic indices received. Since the focus of this section is to demonstrate the feasibility of

reconfigurable APPs for a single device as applied to, e.g., PPG processing (within the context of

the MDCF), rather than create a multiple-device-coordination example, we illustrate our

approach with a forward structure APP in Figure 10.2.

Figure 10.2. MDCF Development Environment (upper left), auto-generated files (upper

right), and MDCF Administrative Console (lower right).

The specification of each APP component, as well as the assembly of the APP itself, is

created in the MDCF Development Environment as illustrated in Figure 10.2 (upper left). First,

each component interface is defined in terms of its input/output channel ports. Then, MDCF

code-generation facilities generate most of the component implementation, leaving the developer

to only fill in the business logic (e.g., specific transformation algorithm) for each component.

113

Components are then wired together into an assembly as illustrated in Figure 10.2. MDCF code-

generation facilities generate executable APP code to be installed and executed in the MDCF

APP virtual machine.

 Medical Device Class
Most of the Java code for a Medical Device (MD) class is auto-generated by the MDCF

Development Environment during the scenario creation session (see the class created for the

pulse oximeter in Figure 10.3). This code addresses: (a) topic assignment/naming, (b) channel

establishment, (c) initial communication with the bus manager, (d) implementation of the

interactions with the middleware for message passing, etc. The major part of the code that

requires supplemental attention is the definition of the data to send and the method to pack the

data into a particular type of message.

Figure 10.3. Snapshot of a Java code segment for the MD class in a pulse oximeter scenario.

A Medical Device Port (MDP) class will be required to nest inside the MD class, as it

talks to the real pulse oximeter device. Since the custom pulse oximeter uses serial

communication, RXTX [94], an MDP object was built using a native library that provides serial

and parallel communication for the Java Development Toolkit (JDK) (see another code segment

in Figure 10.4). The MDP class typically extends the Java Thread class, so the lower level

communication is not blocked by, e.g., the malfunction of the MD class. Consistent with the

114

object-oriented model, the received data from the MDP are packed into a standard message class

for transmission. A GenericDeviceMessage is currently used for this purpose. Figure 10.4 also

illustrates that the medical data and other device related information (e.g., the sampling

fequency) are packed into the message object using its own methods. This message is converted

from a Java object to text/XML via the XStream library [95].

Figure 10.4. Snapshot of a Java code segment for the MD class with a nested MDP class.

 Transformer Class
In the MDCF autogenerated transformer template, the major section that needs to be

filled out by the developer addresses the processing of the received message

(GenericDeviceMessage) and the repacking of the results into a new message type for the next

component. Figure 10.5 displays a small fragment of the Java source code that defines the

classes GenericDeviceMessage and GUIMessage (e.g., required by the following display class).

Both Java classes contain the ‘get’ and ‘set’ methods for all of the data fields. For example, when

a transformer receives a GenericDeviceMessage in text/XML format, it uses the XStream library

to transform it into a GenericDeviceMessage object, where ‘get’ methods are used to extract the

raw data loaded by the device component. After the signal processing procedure is complete, the

results are ‘put’ into a new GUIMessage object, and the message to send is again transformed to

text/XML format by the XStream library.

115

Figure 10.5. Java classes GenericDeviceMessage (left) and GUIMessage (right).

This process is also described by the code segment in Figure 10.6. A method, e.g.,

dataTransform, typically represents the functionality of a transformer and needs to be added into

the template.

Figure 10.6. The Java code segment for the Transformer class that describes the main

transformation procedure.

The waveform transformer is designed to generate a PPG signal suitable for display. A

number of possible instantiations could be used here, including various forms of waveform

smoothing. In this case, the goal is to view the raw PPG, so the transformation implemented is

116

essentially an “identity” transformation. The transformer ‘gets’ channel data from the

GenericDeviceMessage object and ‘puts’ them into the waveform field of a GUIMessage object,

functioning as an MDDS. Four channels of raw PPG data are visualized with the display

component.

Fourier transformation, which maps a time-domain signal into a complex frequency-

domain spectrum, has been used widely for biomedical signal processing. Thus, a real-time fast

Fourier transform (FFT) implementation provides a good means to evaluate the signal processing

performance of the MDCF transformer component. It also provides useful information about

primary signal frequencies (e.g., heart rate and respiration rate as frequencies that correspond to

fundamental harmonics) and magnitudes (e.g., the amplitude of a pulsatile PPG). An FFT

transformer is a classic example of a deterministic signal processing unit.

In the Feature Detection transformer, a statistical approach is adopted for a decision-

making application. It can identify three items: (a) PPGs corrupted by motion artifact, (b) data

affected by signal saturation, and (c) clean, usable PPGs versus non-saturated data that do not

exhibit meaningful pulsatile wave shapes [67]. Such results promote data quality (e.g., by

maximizing the integrity and usability of the associated electronic health records) and system

performance (e.g., by releasing system resources when selectively pausing some transformers).

These decisions are made based on four features extracted from the PPGs, as listed in Table 10.1.

The feature extraction method was designed for onboard application (on a microcontroller), so it

requires minimal MDCF system resources.

Table 10.1. Features Extracted from PPGs

Feature Content Relation

1 Baseline (*DC channel) variation count Motion

2 PPG extreme value count Saturation

3 PPG rising time count Shape

4 PPG falling time count Shape

The DC level is assumed to be constant in some pulse oximeter designs or adjustable according

to the subject’s vascular profile and perfusion level, as in the custom pulse oximeter employed

here.

117

 Display Class
The Display class is a visualization interface for transformer results that may be merged

with a user interface (e.g., to set HR and SpO2 alarm thresholds; alarm signals would be

generated by adding additional transformer components to assess the range of the Level 2

transformer outputs). Alternatively, the output data streams can be captured and stored for off-

line processing. Here we simply implemented Display instances to visualize the data streams

from the aforementioned transformers.

Figure 10.7 and Figure 10.8 illustrate the visualization of waveform and numeric data,

respectively. These depictions are implemented by the nested classes Waveform and Numeric in

the Display class and can have customized appearance and behavior (e.g., timeline length and

refresh rate).

Figure 10.7. PPG waveform visualized in a Display class.

118

Figure 10.8. Numeric physiological values.

Figure 10.9 shows the two message types printed in their original XML format. The

GenericDeviceMessage is packed and transmitted by the device/source component, which

consists of a DeviceInfo segment and a DevicePayload segment. Some basic information about

the pulse oximeter’s manufacturer, MAC address, etc. could be added under the DeviceInfo tag.

Four channels of data are loaded under the DevicePayload tag; each channel has (equally) ~48

data points (48 is the retrieval threshold for the serial buffer). The blue box marked in Figure

10.9 (left) is part of the DC data for the infrared channel.

Figure 10.9. Instantiation of a GenericDeviceMessage (left, partial content) and its

corresponding GUIMessage (right, full content) processed by the Feature Detection

transformer.

119

The GUIMessage shown in Figure 10.9 (right side) is generated by the Feature Detection

transformer, where four features (name-key pairs) are loaded under the Numerics tag. The

message updates every ~0.2 sec (48/240) and represents the most recent three seconds of PPG

data; it locally maintains a three-second data buffer. Using the same training thresholds from the

Bayesian hypothesis testing in [67], this particular GUIMessage indicates that the most recent 3

seconds of data incorporate (a) no motion, (b) no saturation, and (c) a valid PPG signal. The

feature values can also be easily visualized with the numeric components of the Display class

(see Figure 10.10).

Figure 10.10. Numeric features visualized in a Display class.

Feature detection results (e.g., Motion, Saturation, and Validity) could be used for

decision-making applications, such as mapping warnings to physiological parameter thresholds

(see Figure 10.11). Such information could also be useful for other transformers. For example,

the HR updating algorithm uses HRreport = (1-a)×HRold + a×HRnew. A relatively large weight, a,

is used for the HRnew calculated from the message that is identified to carry a high quality signal.

Figure 10.11. Physiological values influenced by feature detection results.

120

Chapter 11 - Application C: HIIS

 HIIS stands for Hospital Information Integration System. It was inspired by the earlier

medical device coordination framework concept. The new system is an extension or upgrade of

the original MDCF that employs new technologies including a database, AJAX (Asynchronous

JavaScript and XML) [96], and Java Servlets [97]. Besides the original message-oriented

middleware (MOM) architecture, HIIS internally incorporates database functionality to store,

e.g., patient and device information, and externally provides a standard web-based user interface.

 From MDCF to HIIS
Figure 11.1 depicts the original MDCF system diagram. All of the components are

written in Java and run in a Java runtime environment (JRE). The three basic components –

Medical Devices, Transformers, and Displaying Devices – form a basic scenario APP which is

managed by the Scenario Console. There are also other managers, and the console coordinates

the active components within the framework. JMS provides MOM functionality in this case.

Figure 11.1. MDCF architecture based on the MOM model and the publish-subscribe

mechanism.

121

HIIS primarily extends the MDCF architecture in two ways by (a) expanding the JMS

message bus outside of the JRE and (b) integrating database features into the architecture core.

Figure 11.2 depicts the new expanded framework, using a pulse oximeter as an example device.

The former Display component becomes a web client in the HIIS but is still able to send and

receive messages over JMS. The technical tools and details, including ActiveMQ and AJAX, that

realize these functions will be introduced in the next section.

Figure 11.2. HIIS architecture utilizing ActiveMQ and AJAX.

In Figure 11.2, the server or servlet plays the role of a Transformer in the MDCF and

communicates with the database component via a topic. An improved HIIS architecture has been

designed as shown in Figure 11.3. The server automatically creates the Transformer for the

corresponding Device and Display in a particular APP and has direct access to the database,

increasing the efficiency and performance of the entire framework. The APP specification,

including its transformer code, could be submitted through a web application or manually

installed by a server administrator. Since the web client is based on a web browser, it also

incorporates an interface for a mobile device such as an iPhone.

122

Figure 11.3. HIIS architecture improved by automatic transformer assignment and a

mobile device interface.

 ActiveMQ, AJAX, and MySQL Database
Apache ActiveMQ is open source software that provides messaging and integration

patterns services [98]. The main features utilized by the HIIS are JMS and AJAX support. AJAX

supports web streaming, allowing web applications to be a part of the messaging fabric. Instead

of using the Java Servlet Jetty included in ActiveMQ, Apache Tomcat is employed, which is an

open source software implementation of Java Servlet and JavaPages Server technologies [99].

AJAX makes it possible for a real-time web application to take full advantage of the JMS

publish-subscribe mechanism inside ActiveMQ. The realization of this capability is

accomplished in two steps. First, one can build Java Servlets that run in the JRE where JMS

resides. On the other side, Web Applications, one can then configure Servlets in Tomcat and use

the JavaScript API amq.js in the web pages that send and/or receive messages over JMS. To send

a JMS message from JavaScript, the following method is called:

123

amq.sendMessage("topic://MCDL.PULSE", mymsg);

Here, "topic://MCDL.PULSE" is the topic name, and mymsg is a message in string

format. To receive JMS messages, a listener is defined in terms of a topic name and a message

handler.
amq.addListener('PULSE', 'topic://MCDL.PULSE', rcvMessage);

var rcvMessage = function(message) {

 if (message != null) {

 }

};

Here, 'PULSE' is a string identifier that can be used for a later call to remove the listener:
amq.remove('PULSE', 'topic://MCDL.PULSE');

All of the message streaming between a web application and the JRE occurs through

portals that are Servlets. The following are the Servlets configured in the Tomcat file WEB-

INF/web.xml and correspond to services in the HIIS.

• AjaxServlet: The required ActiveMQ AJAX Servlet to support JMS over AJAX.

• TabContent: Refreshes the list for patient, device, scenario, etc. by retrieving

information from the corresponding database.

• AjaxSigninServlet: Manages an HIIS user account (administrator).

• PatientsServlet: Provides access to patient data.

• ScenarioServlet: Provides access to scenario data.

• DeviceServlet: Provides access to device data.

• JMSServlet: Enables the addition of a new topic or the decoupling of an existing topic

in the TOPICREG database.

The Servlets interact heavily with the database that holds the information for the patients,

devices, scenarios, JMS topics, and their relationships. In the HIIS, the open source database

MySQL is utilized and is connected to the JRE via the JDBC driver "com.mysql.jdbc.Driver" on

the connection "jdbc:mysql:///AJAX?user=ajax&password=ksuecehiis." The following are the

SQL commands to create a database and two tables in the HIIS.

124

CREATE DATABASE AJAX;

USE AJAX;

CREATE TABLE PATIENTS(

 ID VARCHAR(32) PRIMARY KEY,

 AVATAR VARCHAR(32),

 FIRST_NAME VARCHAR(32),

 LAST_NAME VARCHAR(32),

 GENDER VARCHAR(32),

 BIRTH DATE,

 ROOM VARCHAR(32),

 JOINED_DATE DATE,

 JOINED_TIME TIME,

 LAST_CHECK TIME,

 DESCRIPTION VARCHAR(128),

 NEXT_CHECK TIME,

 DOCTOR VARCHAR(32),

 TEL VARCHAR(32),

 EMAIL VARCHAR(32),

 ADDRESS VARCHAR(32),

 CITY VARCHAR(32),

 STATE VARCHAR(2),

 ZIPCODE VARCHAR(5),

 DEVICES VARCHAR(256),

 TOPICS VARCHAR(1024),

 MTOPICS VARCHAR(1024));

CREATE TABLE TOPICREG(

 NAME VARCHAR(32) PRIMARY KEY,

 PATIENT VARCHAR(32),

 DEVICE VARCHAR(32),

125

 JOINED_DATE DATE,

 JOINED_TIME TIME,

 COUPLE VARCHAR(32));

The TOPICREG table is accessed when a new device is connected to the system, where

the device is typically associated with a patient ID. The new device will register the topic name

that receives messages from consoles or other components in the JMS. Meanwhile, the new

TOPICREG record will contain the patient ID associated with the device, which is indicated by a

COUPLE flag. When a device is connected to the system, it is not yet coupled with its specified

patient, although it has submitted its topic registration information. A nurse or a physician would

see a device list associated with a particular patient in a patient console by accessing the

PATIENTS table. When a heart beat message is sent from the patient console to the associated

device with a registered topic, the status of that device becomes coupled. If there is no response

from the device, that associated device will be removed from the device list in the corresponding

record in the PATIENTS table.

In conclusion, the HIIS is built upon ActiveMQ (JMS, AJAX), Tomcat (Java Servlet and

web server), and MySQL (database). These tools should be appropriately configured and started

up prior to HIIS system initialization. For example, Figure 11.4 shows the startup screen of

ActiveMQ version 5.3.2. The JRE version is 1.6.0, and the JMS message broker has been started

successfully. The transport connection URL is tcp://localhost:61616, and the ActiveMQ Console

can be accessed at http://localhost:8161/admin.

126

Figure 11.4. ActiveMQ startup information.

The ActiveMQ console is a useful tool to observe and manage the topics or the queues in

the JMS. For example, assume an infusion pump is registered in the database and adds a listener

to its registered topic MCDL.INFUSION.1282681389904. That topic also shows up in the

ActiveMQ console as in Figure 11.5. The console shows how many messages are consumed by,

and queued in, that topic, and the console can be used to send a new message directly to that

topic for debugging purposes.

127

Figure 11.5. ActiveMQ WebConsole with topic information.

 HIIS Interface and Consoles
The HIIS user interface is a set of web applications. From the perspective of an HIIS

user, it is a web server connected to hospital information databases (e.g., EHRs), physical

medical devices, and medical supplies. Figure 11.6 illustrates the homepage after a user logs in

with an administrator account. Different types of accounts are granted different levels of

accessibility. An administrator has full access and control at present, including the ability to

retrieve information from the database and utilize all types of consoles to manage, e.g., patient,

device, and scenario records. The homepage shows the patients tab that lists all of the current

patients in the hospital; each entry contains a unique patient ID, patient name, room number,

time to be checked, alert status, and brief symptom description. A user can click on a patient

entry to open that patient’s console, as introduced in the next section.

The basic function of the HIIS interface is to list records of patients, devices, and clinical

scenarios. For example, a nurse or a doctor could look at each patient’s personal and medical

information, the room where they are located, and whether an alarm is triggered or attention is

needed. Device information can be viewed in the same way under the Medical Devices tab (see

Figure11.7). Each entry is a specific device with device name, manufacturer, device type,

function, and inventory status.

128

Figure 11.6. HIIS homepage with patient information, user identity, and administration

tools.

Figure 11.7. HIIS homepage with medical device information.

129

The clinical scenarios currently used in the hospital are listed under the Scenarios tab, as

illustrated in Figure 11.8. Each scenario entry contains the scenario name, a scenario description,

and its active/inactive status. Only an active scenario can be applied to patients. The operations

of adding a new scenario or altering the active status are managed in their corresponding

consoles, which typically requires greater authentication privileges in the HIIS account.

Figure 11.8. HIIS homepage with clinical scenario information.

For each database (e.g., patient, device, and scenario), the HIIS web interface provides a

corresponding console to manage the records. To illustrate this concept, Figure 11.9 displays the

patient record management console, where a new patient record can be added and an existing

record can be modified by a user with proper permissions. Other convenient functions are to

clear the patient alarm and update the check time. A similar record management console exists

for medical devices. New devices can be added into the system, the information regarding

current devices can be updated, or obsolete devices can be removed or deactivated in the hospital

database.

Scenario management is more complicated, since scenarios can be created on the HIIS

interface. (An example is presented in the next section.) Moreover, this type of feature represents

an important functional deviation from traditional hospital information infrastructures. Scenario

APP concepts highlight medical device integration and medical component interoperability. In

130

the HIIS, scenario management falls into two categories: scenario creation and scenario control.

Figure 11.10 shows the console to toggle a scenario's active status.

Figure 11.9. Patient record management console in the HIIS.

Figure 11.10. Scenario management console in the HIIS.

Scenario creation was implemented in the MDCF Development Environment as

introduced in the previous chapter. In the HIIS, the same thing can be done through the Scenario

131

Creation Console web application. Figure 11.11 illustrates the original web page showing the

available devices/medical components and step-by-step procedures.

Figure 11.11. Scenario creation console in the HIIS.

 Scenario Creation in the HIIS
Three steps are required to create a scenario APP in the HIIS. First, the medical devices

or components that are involved in the scenario must be chosen from the Device List and

dragged onto the Device Cart, as depicted in Figure 11.12. A good example is the creation of a

button-controlled infusion pump. Each device has its own data visualization window. The four

components (Button, IV-Infusion-Pump, and two GUIs) are dragged onto the scenario cart. Each

132

component has input and output ports. These ports should be properly configured under the

Interface/Port Type column by specifying the corresponding component’s Node ID. The check

button can be used to clear basic logic errors.

Figure 11.12. Creation of an example scenario in the HIIS Scenario Creation Console.

The next step of the Scenario Factory requires the selection of the connection pattern and

a click on the “make” button. If the connection is sensible (e.g., a connection to only one

component), the build results are printed as in Figure 11.13. The display lists each connection

between two components and automatically assigns a Transformer in between those components.

Figure 11.13. Automatically created scenario script and Java code templates in the HIIS

Scenarion Creation Console.

133

A Java template file can be downloaded from the server using each blue, underlined link

in the Scenario Factory. The Java codes for the existing medical devices have already been

stored in the HIIS. Hence, in most cases, the only files that need to be uploaded to the server are

Transformers, along with appropriate scenario names and descriptions (see Figure 11.14). A

Transformer typically receives one type of message, interprets its content, transforms it to a

different kind of information, and repacks the results to another type of message that is

compatible with the next component. These message specification files are also provided in the

Scenario Factory.

Figure 11.14. Upload of a new scenario to the server in the HIIS Scenario Creation

Console.

 Scenario APP Configuration and Execution in the HIIS
After a new scenario is uploaded to the HIIS server and approved by an administrator, it

appears in the scenario management console (see Figure 11.10). The new scenario APP can be

used for a patient once its status is active and it is selected in that patient's console. Figure 11.15

illustrates a patient console obtained by clicking an entry in the Patient tab in Figure 11.6. The

patient console displays detailed patient information (e.g., connected with an EHR), connected

devices, and currently active scenarios.

The connected devices that are listed are associated with the Device List field of the

patient's record in the database. One or more of them might not be physically connected or may

have connection trouble after the relationship between the patient and the device is established.

To address this issue, the care provider could open the Patient Device Setup page to check the

connectivity of each listed device or simply click Reload.

134

In the Activated Scenarios segment, the device component placeholders need to be filled

up before a scenario can be initiated. When the cursor is moved over the placeholder, it displays

the required device name and ID. When the cursor is moved over the device icon in the

Connected Device segment, it also displays its ID. A matched ID is required before a device icon

can be dragged onto the placeholder in an activated scenario.

Figure 11.15. Example patient console in the HIIS that displays patient information,

connected medical devices, and active scenarios.

Two virtual devices for an infusion pump and a button can be designed in Java to

illustrate how to execute the button-controlled infusion pump APP. The button is clicked at a

random time, and the resulting event is transmitted as a JMS message. The infusion pump stops

for several minutes after receiving the command. In this example, the role of the transformer is

simply to convert a click message to a stop-command message.

135

As a continuation of this example, the infusion pump and the button are associated with

patient ID 001234 after they are started. If the Patient Device Setup page of that patient is

opened, those two devices are listed with their unique topic names as shown in Figure 11.16.

Clicking the check button sends out a heart beat message to the device. If the device responds

successfully, the couple status changes to positive in the aforementioned TOPICREG table in the

database. Other medical components can also be added, such as the GUI web component to

visualize the infusion pump and the button data. The manually-added components will also be

assigned unique topic names after submission; these topics names are appended with a symbol

"V" to distinguish them from regular topic names.

Figure 11.16. Selection and assignment of medical devices and components in the patient

console.

136

At this point, the user can return to the patient console and add the connected device

icons to the corresponding places in the active scenario, as illustrated in Figure 11.17. The

scenario name can be clicked to launch the APP.

Figure 11.17. Sequence to configure and start a scenario for a patient in the patient console.

The scenario APP display is shown in Figure 11.18. The top segment includes the patient

and scenario information along with a simple command-input area where commands can be

directly send to a device from the drop-down list box. Below that segment are the web GUI

gadgets for the button device and the infusion pump. Each GUI gadget contains the device icon,

ID, current numerical value, and waveform plot. The simulated button was clicked around time

60, and the infusion pump stopped for a while right after receiving the button's message.

137

Figure 11.18. APP display for the button and infusion pump scenario in the HIIS.

 Running the HIIS on a Mobile Platform
The aforementioned HIIS interface and consoles, including the scenario creation and

execution web applications, are all accessible by a regular web browser with JavaScript support,

which makes it possible to use HIIS on a mobile platform. For example, a mobile phone user

could be granted permission to log into the HIIS system with the same account used on a

computer, as shown in Figure 11.19. The interface can also stream vital sign data over the

Internet in real time from any device connected to the HIIS message bus. Figure 11.20 illustrates

a mobile phone receiving real-time PPGs from a patient who is wearing a pulse oximeter that

feeds data to the HIIS. Since waveform drawing is a relatively challenging operation in a web

138

browser, the mobile platform offers great potential for the development of more features to

extend the HIIS infrastructure.

Figure 11.19. Access to the HIIS with a mobile device.

Figure 11.20. Patient scenario display on a mobile device.

139

Chapter 12 - Medical Platform-Oriented Device

This chapter illustrates the nature and benefits of the platform-oriented device concept by

demonstrating how the MDCF can be used to realize a highly leverageable framework for

Medical Platform-Oriented Devices (MPODs) [100] such as pulse oximeters that utilize

photoplethysmograms (PPGs). Specifically, PPGs acquired by a wireless reflectance pulse

oximeter are processed by a reconfigurable set of MDCF-based software components. In

aggregate, these components support the construction of a flexible set of PPG post-processing

applications that can extract a variety of meaningful clinical parameters and assess the viability

of the PPGs for the intended applications. Using software engineering terminology, this work

provides the foundation for a product family or software product line of MPOD pulse oximeters

and other PPG-based devices, where product instances are configured according to desired

features (e.g., clinical parameters and waveform processing tasks). These device instances can be

used in isolation or in the context of larger multi-device APPs. As noted earlier, one benefit of

this approach is that it opens up the data post-processing dimension to enable numerous

instantiations that can be tailored to particular care delivery scenarios or APP contexts.

Sub-topics addressed here include the hardware features of the MPOD devices,

components, and APP design in support of the desired application scenarios, and experimental

results that speak to the viability of this platform-oriented approach to medical device design.

Although this chapter does not address verification & validation (V&V) or regulatory issues, the

work in this chapter feeds into a broader effort [101] to design V&V, third-party certification,

and regulatory concepts suitable for assuring the safe and effective use of platform-oriented

medical devices.

 Moving from Conventional Medical Devices to MPODs
Before focusing on the instantiation of medical platform-oriented devices (MPODs)

natively designed for the MDCF environment, it is helpful to first address the idea of converting

a conventional medical device to an MPOD profile. As an illustration, the diagram in Figure 12.1

depicts typical elements of a stand-alone medical device (e.g., a bench top pulse oximeter). With

the exception of the sensor and its support hardware (e.g., battery, control hardware, case, etc.)

140

(and likewise an actuator for a device such as an infusion pump), many of the functional and

user-interface elements could be potentially mapped to the MDCF infrastructure, allowing for

flexible APP configurations/updates and remote device control. The advantages of such an

approach are clear; some of these are explained in more detail in the rest of the chapter, where

pulse oximeter applications focus the discussion.

Figure 12.1. Elements of a conventional medical device.

Most commercial pulse oximeters are configured to be stand-alone devices. A typical

hospital-grade pulse oximeter is comprised of a swappable sensor, an LCD screen, user interface

buttons, a motherboard, etc. and is designed to report heart rate (HR) and blood oxygen

saturation (SpO2) as determined by embedded firmware. When compared to sophisticated but

streamlined pulse oximeters supported by distributed frameworks or platforms that host

additional processing and display elements, commercial-module limitations are clear:

1. Commercial stand-alone pulse oximeters are generally large and expensive, although

some multi-parameter vital signs monitors have been designed to reduce the size and cost of

device collections that incorporate pulse oximeters.

2. Pulse oximeter sensors (e.g., finger or ear clips) must support various proprietary

interfaces/connectors to the host.

141

3. Most pulse oximeters employ circuitry and algorithms that process PPG data in

unknown ways prior to parameter display.

4. On-board algorithms and firmware are relatively fixed; sometimes upgradable but not

reconfigurable.

5. Internal raw sensor data are typically not exported, and exported PPGs are filtered in

unknown ways. PPG waveforms are primarily used for display purposes only – not diagnostics.

In contrast, an MPOD as envisioned here emphasizes the delivery of high-quality raw

data, where waveform processing, extraction of clinically meaningful parameters, and many

other algorithms (e.g., for user identification) are implemented ‘off-device:’ on the computing

platform. Such devices may be ‘headless’ (i.e., not include a full clinical display), because the

display (e.g., customizable dashboard) is realized through the interoperability platform. Because

displays and control panels may be removed from such a device, an MPOD can potentially offer

a much smaller form factor, which in many cases may allow more flexible deployment of the

device (e.g., a wearable device).

A physical pulse oximeter MPOD has already proved helpful when designing and

evaluating the MPOD concept as well as the associated computing framework that supports

reconfigurable APPs. This type of device is not an entire pulse oximeter when compared to a

conventional product. Rather, it might gather data but be unable to provide clinically useful

information when disconnected from the framework. The main parts of an MPOD would

typically be a sensor, a signal conditioning and/or control module, a communication module, a

case, simple user controls, and possibly a battery. The sensor would acquire raw data under the

control of the conditioning module, and then the data would eventually be streamed to the server,

either in real time or in store-and-forward mode (assuming onboard storage is available). Ideally,

all sensor parts would be designed to fit within the conventional sensor form factor, e.g., a finger

clip.

In the previous work, the custom reflectance pulse oximeter (see Figure 12.2 or Chapter

4) has the flavor of an MPOD. The device is lightweight, low cost, and most importantly

streams four channels of raw PPG data to the receiver/host. Figure 12.2 depicts example high-

quality infrared PPGs obtained at the finger and wrist (PPG data are also available at other body

locations such as the palm and forehead, due to its reflectance-mode operation). These signals

are acquired using a digital baseline-subtraction process that results in unfiltered, distortion-free

142

PPGs that offer thousands of peak-to-peak digitization levels and are sampled at 240 Hz to avoid

aliasing of signal and noise components. In short, the data streamed to the MDCF are signals

without circuit- and algorithm-level filtering. Hence, a variety of other information in addition to

HR and SpO2, such as motion and ambient light intensity, will also be available in these PPGs,

potentially encouraging a large collection of MPOD pulse oximeter APPs.

Figure 12.2. A custom reflectance pulse oximeter (left) and two representative PPGs

acquired with the device (right).

Similar benefits of leveraging raw data streams could be obtained with conventional

pulse oximeters if manufacturers could be persuaded to expose raw PPGs on their connectivity

interfaces. Interestingly, previous MDPnP device coordination demonstrations based on the ICE

encouraged ventilator vendors to add interface command functionality to make their devices

more amenable to medical interoperability platform APPs [92].

 Object-Oriented Model
When connected to the MDCF infrastructure, an MPOD pulse oximeter will stream

measurement data through either a wired USB or wireless ZigBee connection. From the

perspective of the OSI model, medical devices utilize different protocols on the transport layer,

including serial, Bluetooth, Wi-Fi, and ZigBee protocols. An object called a Medical Device Port

(MDP) serves as a terminal at the application layer whose subclasses correspond to the different

types of communication protocols.

143

An MDP is an essential component in the MDCF – it represents a physical medical

device. As an object class, it offers methods and properties. The methods include configure, get,

set, start, pause, and stop; the properties include name, protocol type, port or channel number,

buffer size, and last active time. From the perspective of the operating system, each MDP class

includes device drivers for a specific communication protocol that depends on the operation

system). Other MDCF objects that contribute to a medical device application are typically

platform-agnostic, considering the MDCF project is written in Java. The object-oriented model

in Figure 12.3 depicts the classes needed to build a medical device (application) in the MDCF.

Figure 12.3. Object-oriented model for device-related MDCF components.

A Medical Device (MD) class serves as a logic device component that represents an

abstract medical device in the MDCF. It could be (a) a logic wrapper around an MDP class that

allows it to communicate with a real medical device or (b) just a mock device without MDP

support. An MD class also offers methods and properties such as a Universally Unique Identifier

(UUID) and a device type. An important idea is that methods and properties are associated with

channels, as introduced earlier in Chapter 10. When an MD object is instantiated, it notifies the

MDCF Device Manager via the admin channel, which is public to all newly created MDs.

144

Device authentication, registration, association, etc. are completed through the admin channel. A

data channel is then created under the supervision of the Device Manager that allows

communication with other components introduced thereafter. The information streamed over the

data channel is typically raw data from the physical medical device.

The MD data sent over a data channel are first fed into an MDCF component called a

Transformer class. In the context of the MDCF, a transformer is synonymous with a processor or

neuron, where information is processed and repacked. For example, HR and SpO2 parameters are

extracted from the PPG data streamed from a pulse oximeter and then packed into a new packet

in a transformer class. Each transformer has a specific processing capability given a particular

type of input data. From a signals and systems perspective, a transform is functionally

represented by a system, where input data in a pre-specified format are transformed into the

desired output data. A collection of functions that can be applied to medical data are therefore

mapped to a corresponding number of transformer classes, some of which (e.g., most

mathematical functions) are useful for various types of medical data. This concept will be

elaborated in the next section.

The medical data and/or transformed results are finally visualized by users (e.g., an ECG

waveform displayed on the front screen of a conventional vital signs monitor). This functionality

is realized by the MDCF Display class. Properties like a UUID or a device name are important

when identifying a display for a particular application or data source. The Display class can be

utilized to provide a uniform interface and data visualization approach for all medical devices

integrated into the MDCF. For example, the nested classes Numeric and Waveform are two

window/frame components designed to respectively display a numeric value (e.g., one HR

number) and an array (a PPG waveform segment).

The final element in Figure 12.3 is the Message class, which streams data between two

components, e.g., an MD and a transformer, using a standardized protocol and format. A generic

Message class is defined as a superclass with properties like a timestamp (when the message was

created), a message ID, a nested Numeric class, a nested Waveform class, etc. From the

perspective of medical device specifications, a Message subclass could be specified for a

particular medical device.

The object-oriented model brings the components of a conventional medical device to an

abstract layer in the MDCF. More classes could be potentially integrated depending on the

145

desired functionality of the medical device components and the infrastructure that these medical

devices require. E.g., a Database class would represent a storage role on either a device or an

EHR in a hospital system.

 APP Logic Pool
The MDCF ‘transformer’ concept is similar to the ‘function’ concept in most

programming languages (e.g., C):

1. A function defines its input and output parameters and implements the transitional

logic.

2. A collection of functions with related purposes forms a library, such as a math library,

which contains commonly used math functions.

3. One function can be called from within another function.

In this chapter, a pulse oximeter is selected as the type of object to explain the concept of

an APP logic pool (a collection of transformers) and an APP library – see the next section. PPGs

acquired by the light-based sensor of a pulse oximeter potentially offer many other clinical

parameters in addition to the HR and SpO2 values reported by a conventional pulse oximeter:

• Additional cardiopulmonary and cardiovascular parameters:

• Systolic, diastolic, and mean blood pressure (BP)

• Stroke volume (SV)

• Cardiac output (CO)

• Respiration rate (RR)

• Peak-to-peak time (PPT)

• Pulse wave velocity (PWV)

• Arterial elasticity (AE)

• Stiffness index (SI)

• Reflection index (RI)

• Perfusion index (PI)

• Other parameters:

• Patient activity/motion

• Patient identity

• Ambient light information

146

Given the same PPG data, different parameters could be obtained by applying alternative

algorithms/methods (see the colored bubbles in Figure 12.4), where each method corresponds to

the functionality of a transformer. A transformer collection could form a pulse oximeter APP

logic pool. Using the similar idea of “function,” several transformers might be combined in a

serial cascade to form a single upper-level transformer that fits into a general device-transformer-

display topology, which is called an APP (see the next section). On the other hand, a single

bubble, e.g., Waveform Smoothing in Figure 12.4, could be realized in a variety of ways,

including calls to other transformers that implement lower-level filtering functionality.

One potential opportunity relates to an enhanced pulse oximeter that can replace other

medical devices that report physiological indices, such as a PPG-based indicator for continuous

BP that provides an alternative to an unwieldy cuff-based device. These types of device

substitutions could contribute to the decreased cost of medical monitoring equipment and the

associated infrastructures. However, confidence in PPG-acquired parameters is still relatively

low when compared to conventional methods to ascertain those parameters. Most of these PPG-

based parameter extraction algorithms are still being developed and tested in laboratory settings

and therefore presented as research papers; clinical validation will be required prior to broad use.

A lower risk approach is to use these parameters as estimators or references for parameters

acquired from dedicated medical devices. For example, when an inconsistency occurs between

the BP values reported by a pulse oximeter and a BP monitor, a care provider would arrive to

ensure that the BP cuff is appropriately placed, especially when the BP waveform displayed on

the monitor becomes unstable or irregular. Other usage contexts include third-world areas that

experience limited device availability. In such situations, and MPAD device collection built on a

laptop with an accompanying MPOD PPG generator could yield a variety of useful parameters.

Parameters that are not usually reported by standard medical equipment, such as patient

motion and identity, will lead to new medical device applications. For example, a pulse oximeter

with user authentication functionality can help to prevent the situation where one patient’s

medical data are mistakenly streamed to another patient’s record. Extra information extracted

from PPG data is primarily assistive at the present time, since critical medical decisions require

robust V&V.

147

 APP Library
A collection of transformer components relevant to PPG-based APPs was illustrated in

Figure 12.4, where the devices on the left provide the raw PPGs and the display on the right

presents these data to the patient or clinician. In the current pulse oximeter APP library, the

parameter extraction process is usually accomplished with two serialized (cascaded)

transformers: (a) a PPG-processing algorithm to extract certain parameters (e.g., PI, SpO2

Algorithm bubble in Figure 12.4) followed by (b) a parameter reporting algorithm such as a

moving average computation (e.g., the SpO2 bubble). Typically, a variety of options exists for

the parameter extraction algorithm (the first transformer). Taking SpO2 as an example, the

existing methods to determine a coefficient linearly related to SpO2 include

1. signal amplitude (valley-to-peak & baseline) extraction from the PPGs followed by a

ratiometric calculation based on the results,

2. Fourier transformation of the PPGs to extract the peak of each fundamental harmonic

[64], which provides equivalent amplitude information as in item 1 that can then be used in a

ratiometric calculation, and

3. independent component analysis (ICA) to extract a peak-to-valley ratio directly [102],

e.g., the Discrete Saturation Transform used by Masimo Corporation [103].

In commercial products, the actual implementations of these transformers are proprietary

and vary across manufacturers. In our APP architecture, the first transformer could be

instantiated to address a number of different methods, each of which receives PPG data and

generates parameters. The second general-purpose transformer would then receive these newly

calculated parameters and report a parameter that is likely further refined, e.g., with a moving

average filter.

148

Figure 12.4. An example component pool for PPG-oriented APPs. Transformer

components are depicted as colored bubbles in the middle area (interconnections will be

configured for specific clinical scenarios).

Note that flavors of transformers will vary widely within such a framework. While some

will, as in the prior examples, relate directly to physiological parameter extraction/processing

(e.g., a motion artifact reduction transformer for a PPG signal), others will be more generic (e.g.,

a frequency spectrum analysis tool) and also be useful in, e.g., an ECG-based APP library.

Further, transformers can exist at different levels of scope so as to allow transformers within

transformers as in typical component- or object-based frameworks.

The beauty of this approach is that a considerable APP logic pool and a corresponding

pool of higher-level, PPG-based APPs can be developed by a large developer community as long

as the general topology of the APPs is well-defined. We are currently exploring the extent to

which a rigorous architecture may allow APPs to be configured in a semi-automated manner

when tied to feature models [104] that explicitly highlight the product-line nature of the APP

library in terms of variability points. Correct composition of components into APPs is facilitated

by defining a pool of message types that the transformer- and display-component inputs must

support. For example, a transformer can only be allowed to interpret a particular type of message

149

sent from the previous component and repack the processed result into a message type required

by the next component.

The following three sections present APP design examples that illustrate the

reconfigurability of PPG-based APPs that employ a flexible set of data transformers.

 Case 1: Parallel Processing
Figure 12.5 lays out the system-level diagram for the first PPG-based APP: a wireless

reflectance pulse oximeter whose original embodiment is described in Chapter 4. Here, the

physical MPOD device in Figure 12.2 performs a subset of its original operations by providing

raw PPGs as input signals to the APP. As a demonstration of the feasibility of this APP-driven

framework, the transformers within the APP then implement the remainder of the device

functionality (processing and parameter extraction) that was formerly implemented in the device

firmware.

Figure 12.5. System-level diagram for a pulse oximeter APP that employs parallel

transformers.

The Device block in Figure 12.5 is realized as an MDCF client running on a separate off-

device computer. The client wraps a driver, where the driver links the operating-system-level

driver to the physical device. Six transformers picked from the APP logic pool in Figure 12.4

are assigned at two levels. The three Level 1 transformers parallel-process the PPG waveform

150

data sent from the device – see Chapter 10 for more detailed descriptions of their individual

functionality and realizations. The three Level 2 transformers report the physiological parameters

of respiration rate, heart rate, and SpO2 after performing, e.g., a moving average calculation on

the corresponding messages from the Fourier Transform transformer. All results (signal

waveforms, physiological parameters, and feature tags) are streamed to the Display (see Chapter

10).

 Case 2: Multiple Devices

The second example focuses on a situation where multiple devices provide raw PPGs as

APP inputs. Figure 12.6 lays out the system-level diagram for an application that extracts pulse

wave velocity (PWV) given near-infrared PPGs provided by two reflectance sensors placed at

the wrist and finger of the same hand [70]. Three transformers are connected in serial (cascade)

to provide the PWV result. The Waveform Synchronization transformer aligns the PPGs

received from the two devices using timestamps in the messages. The synchronized waveforms

are then streamed to the central PWV Algorithm transformer, which internally employs a linear-

phase lowpass filter and signal differentiation method as in [70]. The PWV transformer reports

the final PWV value, e.g., after applying a moving average filter.

Figure 12.6. System-level diagram for a pulse wave velocity APP that employs multiple

pulse oximeters (devices).

151

 Case 3: Closed-Loop Behavior
The third example presents closed-loop APP behavior, as in Figure 12.7, where feedback

channels are depicted as dashed lines. Except for the Feature Detection transformer, the other

four transformers either extract or report one of two physiological parameters: BP and SV. In

practice, the raw PPG data provided by the device are not always quality signals; they exhibit

different levels of motion artifact and ambient noise. The resulting corrupted source data could

lead to BP and SV values with little meaning, trigger nuisance alarms, and/or waste system

resources. The Feature Detection transformer indicates the viability of these PPG data to the

other transformers. For example, when a BP Algorithm transformer receives the detection result

of “invalid PPG,” it will pause waveform processing until a valid signal appears. During the

interval of the invalid signal, special-purpose error records can be forwarded to the display.

Figure 12.7. System-level diagram for a cardiovascular parameter extraction APP that

exhibits closed-loop behavior.

152

Chapter 13 - Conclusion

This dissertation investigated three aspects of consumer biomedical devices that will be

pivotal for medical systems’ transitions to patient-centered architectures: (a) custom biomedical

sensor designs that are optimized for home and mobile health care contexts, (b) sensor

integration based on patient needs or in the home environment, and (c) medical device

integration and interaction with hospital infrastructures or medical systems at different scales.

The GumPack concept introduced in Chapter 2 provides an innovative hardware and software

platform for research work addressing those fields. Three application chapters presented the

potential use of the research results in the real world.

The concept design for a GumPack is described as a new type of everyday-carry, multi-

sensor medical monitoring device that offers computer-grade processing, the ability to host

multiple biomedical sensors that can be reconfigured in a plug-and-play manner based upon

patient need, the means to serve as a host for wearable/nearby medical components, and

integration into hospital-level medical device connectivity and coordination frameworks. The

physical form factor is an innovative 3D hardware layout that does not stack circuit boards in

layers like some ‘adaptable’ tools. Rather, its cuboid form factor provides a housing for multiple

customizable surface components while still maintaining a small everyday carriable size. In its

current structure, a GumPack supports four reconfigurable surfaces, where GCCF-compatible

SCs can be easily added or removed. More than a sensor-laden device, a GumPack provides the

computational capability and connectivity of a contemporary smart phone. The GumPack

concept leapfrogs cell-phone-centered medical sensor systems that employ dumb devices and are

targeted for ambulatory or wearable applications, including those intended for ubiquitous home

care environments. The design not only provides a new topology between a sensor and a hub

(e.g., for data aggregation, processing, and communicaton), but the GumPack offers a fully open

development platform for hardware and software developers. Interoperability is considered and

tested for the GumPack as a single conventional medical device. Since it is also a collection of

local SCs and/or Chiclets as a independent system, the GCCF offers component identification,

authentication, interface interpretation, and APP automation.

153

A high-performance wireless reflectance pulse oximeter was designed as an instantiation

of the Chiclet concept for the GumPack platform, which included (a) functional features desired

for research and education that are either unavailable or hard to find on commercial units and (b)

design optimizations based on lessons learned from previous work or published in the pulse

oximetry literature. These primary features include

• A unique filter-free circuit design,

• Full access to unfiltered PPG data,

• Many digitization levels in the pulsatile PPG signals that demonstrate a sampling

frequency up to 240 Hz,

• A feedback mechanism to allow sensor operation in normal ambient room light,

• A large-area reflectance sensor that speaks to the promise of surface-infused

biosensors and enables sensor placement at many body locations while optimizing the

resistance of the sensor to stray photons and motion artifact,

• Onboard flash memory,

• ZigBee wireless support, and

• Mini-USB connectivity for data transfers and battery recharging.

The associated MATLAB GUI makes signal acquisition, visualization, restoration, and post-

processing convenient. High-integrity PPGs acquired from 48 human subjects over a wide range

of ages (20 to 64 years old) indicate the device’s potential as a research and teaching platform in

support of the extraction of new physiological parameters from time-domain PPGs. Finally, the

size, cost, layout, and design of the sensing platform speak to its suitability for wearable

applications and scenarios where medical sensors are connected to or embedded in consumer

electronics such as smart phones and tablet PCs.

Onboard tagging technology was presented as a means to improve sensor intelligence by

embedding information about medical device hardware (type I tag), signal samples (type II tag),

and signal viability (type III tag) in the data stream itself. A use case addressing a custom pulse

oximeter demonstrated that type II tags can be embedded in a data stream and then be used to

calculate type III tags that are also embedded in the data stream. Further, these tags can be

inserted seamlessly in the firmware flow without incurring a computation load that affects device

performance. Application A addressed a means for classifying, or tagging, segments of PPG data

acquired with a wireless reflectance pulse oximeter, where the presence of motion, saturation,

154

invalid data, or a valid PPG were of interest. To that end, a set of decision rules was established

that evaluated four features related to signal behavior: baseline variation, rising count, falling

count, and saturation index. The algorithm was then implemented on the portable, embedded

device in a way that kept the normal pulse oximeter functionality and PPG data intact,

illustrating the idea that smart tagging algorithms can be implemented onboard as feature-

extraction and decision-making techniques that can improve the viability of data forwarded to

electronic patient records while at the same time reducing the power needs of the portable

devices. In early validation assessments, hierarchical decision rules based on training data from

47 subjects were able to achieve a decision success level of 99%.

To illustrate a sensor integration and interaction network, Chapter 8 presented an

application layer scheme for WBANs with sensor nodes that compete for high-speed, real-time

communication with the receiver. The lost and wandering frame issue was addressed by

assigning a sequence # to each frame and a time-alignment process. The timeline distortion

phenomenon was addressed by a ticket generation and consumption mechanism. A linear

regression method provided the relative delay when rearranging the frames that provided

information for the statistical synchronization of each sensor. As a demonstrative application for

such a WBAN, PWVs were successfully extracted from the received frames. Application B

presented a method to determine PWV in the hand using two reflectance-mode, wireless pulse

oximeters placed at the wrist and fingertip. PWV values obtained at different features of the

corresponding PPGs (foot, inflection point, and rising-slope peak) support the assertion that

PWV depends on arterial pressure. PPG foot and inflection-point calculations show an increase

in PWV as arterial pressure increases, but peak-based calculations are inconsistent with

expectations, primarily because the effects of wave reflections on PPG shape are not well

modeled and warrant further investigation. Nonetheless, the two-oximeter approach was shown

to be feasible, so the next logical step is to compare these PWVs with values obtained from

commercial devices employing other modalities. In other research areas such as digital volume

pulse (DVP) analysis [47], the estimated PPGs would help to improve precision, especially in a

WBAN scenario.

This dissertation also illustrated how medical device integration platforms such as the

MDCF and the HIIS can allow developers to build new “platform-based” medical devices that

are customized to different usage contexts. The growing trend toward networked clinical

155

systems (evidenced by the increased use of MDDSs and integrated EHRs) suggests a possible

evolution of medical devices toward the MPOD concept – devices that are oriented towards

being used primarily with an integration platform. The APP component library concept and

lightweight MPOD for PPG processing has significant utility in its own right. We are working to

build out the component library to support additional PPG examples. For the future integration

of additional medical devices that require signal processing, the evaluation of a large pool of

published signal processing modules would be worthwhile, as they would serve as a general

transformer development library. A significant challenge is developing V&V and regulatory

guidelines that will allow these types of frameworks to be brought to market. To this end, local

team members are involved in collaborative work with MDPnP, several other universities, device

and clinical information system manufacturers, certification labs, and government agencies such

as the FDA and NIST. A preliminary vision for a component-based certification approach is

presented in [101], and the examples and broader APP framework described in this dissertation

will provide additional challenge problems to drive that effort.

156

References

[1] R. Abelson, "Study Shows Health Insurance Costs Rising Sharply This Year," The New
York Times, Sept. 27, 2011.

[2] AFP, "U.S. Braces for Baby Boom Retirement Wave," Dec. 24, 2007,
http://afp.google.com/article/ALeqM5g-W4yeMsbNpknzofffLTFxOgKI2A.

[3] Chris Fleming, "Health Care Workforce: Nurse And Physician Shortages, Health Affairs
Blog," June 14th, 2010, http://healthaffairs.org/blog/2010/06/14/health-care-workforce-
nurse-and-physician-shortages/.

[4] Walt Zywiak, "U.S. Health Care Workforce Shortages: HIT Staff," 2011,
http://www.himss.org/Content/Files/CSC_US_Healthcare_Workforce_Shortages_HIT.pd
f.

[5] AliveCor, "AliveCor iPhone ECG," 2012, http://alivecor.com/.

[6] Imec, "Monitoring Your Health with Your Mobile Phone," 2010, http://www2.imec.be/.

[7] E. Jonathan and M. J. Leahy, "Cellular Phone-Based Photoplethysmographic Imaging,"
Journal of Biophotonics, vol. 4, pp. 293-296, May 2011.

[8] C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and
K. H. Chon, "Physiological Parameter Monitoring from Optical Recordings With a
Mobile Phone," IEEE Transactions on Biomedical Engineering, vol. 59, pp. 303-306,
Feb. 2012.

[9] Apple Inc., "App Store," 2012, http://itunes.apple.com/.

[10] John L. Smith, "The Pursuit of Noninvasive Glucose," 2011,
http://www.mendosa.com/noninvasive_glucose.pdf.

[11] Christian Nordqvist, "Using Tears To Monitor Diabetes Blood Sugar Levels," Nov 12,
2011, http://www.medicalnewstoday.com/articles/237537.php.

[12] K. Li and S. Warren, "A Wireless Reflectance Pulse Oximeter with Digital Baseline
Control for Unfiltered Photoplethysmograms," IEEE Transactions on Biomedical
Circuits and Systems, vol. 6, pp. 269-278, June 2012.

[13] Wikipedia, "Vital Signs," 2012, http://en.wikipedia.org/wiki/Vital_signs.

[14] S. Rhee, B. H. Yang, and H. Asada, "Artifact-Resistant, Power-Efficient Design of
Finger-Ring Plethysmographic Sensors," IEEE Transactions on Biomedical Engineering,
vol. 48, pp. 795-805, July 2001.

157

[15] H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. Hutchinson, "Mobile Monitoring with
Wearable Photoplethysmographic Biosensors," IEEE Engineering in Medicine and
Biology Magazine, vol. 22, pp. 28-40, 2003.

[16] S. B. Duun, R. G. Haahr, K. Birkelund, and E. V. Thomsen, "A Ring-Shaped Photodiode
Designed for Use in a Reflectance Pulse Oximetry Sensor in Wireless Health Monitoring
Applications," IEEE Sensors Journal, vol. 10, pp. 261-268, 2010.

[17] P. Branche and Y. Mendelson, "Signal Quality and Power Consumption of a New
Prototype Reflectance Pulse Oximeter Sensor," 31st Annual Northeast Conference of the
IEEE Bioengineering, 2-3 April 2005, 2005, pp. 42-43.

[18] Y. Mendelson and C. Pujary, "Measurement Site and Photodetector Size Considerations
in Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter," 25th
Annual Conference of the IEEE EMBS, 2003, pp. 3016-3019.

[19] M. Nogawa, T. Kaiwa, and S. Takatani, "A Novel Hybrid Reflectance Pulse Oximeter
Sensor with Improved Linearity and General Applicability to Various Portions of the
Body," 20th Annual International Conference of the IEEE EMBS, 29 Oct-1 Nov, 1998,
pp. 1858-1861.

[20] D. Guowei, T. Xiaoying, and L. Weifeng, "A Reflectance Pulse Oximeter Design Using
the MSP430F149," 2007 IEEE International Conference on Complex Medical
Engineering, 23-27 May, 2007, pp. 1081-1084.

[21] J. Furey, "Single-Use Noninvasive Sensing Technology," Genetic Engineering and
Biotechnology News, vol. 29, Aug. 1 2009.

[22] R. G. Haahr, S. B. Duun, M. H. Toft, B. Belhage, J. Larsen, K. Birkelund, and E. V.
Thomsen, "An Electronic Patch for Wearable Health Monitoring by Reflectance Pulse
Oximetry," IEEE Transactions on Biomedical Circuits and Systems, vol. 6, pp. 45-53,
2012.

[23] M. Tavakoli, L. Turicchia, and R. Sarpeshkar, "An Ultra-Low-Power Pulse Oximeter
Implemented With an Energy-Efficient Transimpedance Amplifier," IEEE Transactions
on Biomedical Circuits and Systems, vol. 4, pp. 27-38, 2010.

[24] T. O'Donovan, J. O'Donoghue, C. Sreenan, D. Sammon, P. O'Reilly, and K. A. O'Connor,
"A Context Aware Wireless Body Area Network (BAN)," 3rd International Conference
on Pervasive Computing Technologies for Healthcare, London, April 1-3, 2009, pp. 1-8.

[25] E. Jovanov, A. Milenkovic, C. Otto, and P. Groen, "A Wireless Body Area Network of
Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation," Journal of
Neuro Engineering and Rehabilitation, vol. 2, 2005.

[26] H. Chen, W. Wu, and J. Lee, "A WBAN-Based Real-Time Electroencephalogram
Monitoring System: Design and Implementation," Journal of Medical Systems, March
2009.

158

[27] T. Gao, D. Greenspan, M. Welsh, and R. R. Juang, "Vital Signs Monitoring and Patient
Tracking over a Wireless Network," 27th Annual International Conference of the
Engineering in Medicine and Biology, September, 2005, pp. 102-105.

[28] J. Espina, T. Falck, J. Muehlsteff, Y. Jin, M. A. Adán, and X. Aubert, "Wearable Body
Sensor Network towards Continuous Cuff-less Blood Pressure Monitoring," 5th
International Workshop on Wearable and Implantable Body Sensor Networks, June,
2008, pp. 28-32.

[29] Kansas State University, "Medical Device Coordination Framework (MDCF)," 2012,
http://mdcf.santos.cis.ksu.edu.

[30] Steven Dean, "eDevice HealthGO Platform Gets Integrated Connectivity with Freescale
Home Health Hub Reference Platform," 2012,
http://blogs.freescale.com/2012/05/07/edevice-healthgo-platform-integrated-connectivity-
freescale-home-health-hub-reference-platform/.

[31] Qualcomm Life, "Introducing the 2net™ Platform," 2012,
http://www.qualcommlife.com/wireless-health.

[32] "IEEE 802.15 WPAN Task Group 6 Body Area Networks," 2012,
http://www.ieee802.org/15/pub/TG6.html.

[33] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. M. Leung, "Body Area
Networks: A Survey," Mobile Networks and Applications, vol. 16, pp. 171-193, 2010.

[34] A. King, S. Proctor, D. Andresen, J. Hatcliff, S. Warren, W. Spees, R. Jetley, P. Jones,
and S. Weininger, "An Open Test Bed for Medical Device Integration and Coordination,"
ICSE, Vancouver, Canada, May 16-24, 2009.

[35] "Essential Safety Requirements for Equipment Comprising the Patient-Centric Integrated
Clinical Environment (ICE) – Part 1: General Requirements and Conceptual Model "
2009, http://mdpnp.org/ICE.html.

[36] S. Warren and B. Natarajan, "Wireless Communication Technologies for Wearable
Systems," in Wearable Monitoring Systems, 1st ed, A. Bonfiglio and D. D. Rossi, Eds.
New York: Springer, 2010, pp. 51-80.

[37] J. Yao, R. Schmitz, and S. Warren, "A Wearable Point-of-Care System for Home Use
that Incorporates Plug-and-Play and Wireless Standards," IEEE Transactions on
Information Technology in Biomedicine, vol. 9, pp. 363-371, Sept. 2005.

[38] "ISO/IEEE 11073 Personal Health Data (PHD) Standards," 2011, http://www.11073.org/.

[39] Gumstix, "Gumstix Overo Fire COM," 2012, http://www.gumstix.com/.

[40] C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, "A
Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily

159

Physical activity," IEEE Transactions on Biomedical Engineering, vol. 44, pp. 136-147,
1997.

[41] D. A. Tong, K. A. Bartels, and K. S. Honeyager, "Adaptive Reduction of Motion Artifact
in the Electrocardiogram," 24th Annual Conference of the IEEE EMBS, Houston, TX,
Oct. 23-25, 2002, pp. 1403-1404.

[42] H. Han, M.-J. Kim, and J. Kim, "Development of Real-Time Motion Artifact Reduction
Algorithm for a Wearable Photoplethysmography," 29th Annual Conference of the IEEE
EMBS, 2007, pp. 1538-1541.

[43] "IEEE Draft Standard for Health informatics - Personal health device communication -
Device specialization - Basic Electrocardiograph (ECG) (1 to 3-lead ECG)," IEEE
P11073-10406/D07, February 2011, pp. 1-69, 2011.

[44] Texas Instruments, "INA321 Datasheet," 2011,
http://focus.ti.com/lit/ds/symlink/ina321.pdf.

[45] Texas Instruments, "Medical Application Guide," 2011, http://focus.ti.com/.

[46] American Heart Association, "Heart Disease and Stroke Statistics - 2009 Update At-a-
Glance," 2009, http://www.americanheart.org/.

[47] S. R. Alty, N. Angarita-Jaimes, S. C. Millasseau, and P. J. Chowienczyk, "Predicting
Arterial Stiffness From the Digital Volume Pulse Waveform," IEEE Transactions on
Biomedical Engineering, vol. 54, pp. 2268-2275, Dec. 2007.

[48] K. N. Glaros and E. M. Drakakis, "Trade-offs for Low Power Integrated Pulse
Oximeters," IEEE Biomedical Circuits and Systems Conference, Nov. 26-28, 2009, pp.
245-248.

[49] A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, "Utility of the
Photoplethysmogram in Circulatory Monitoring," Anesthesiology, vol. 108, pp. 950-958,
May 2008.

[50] W. B. Murray and P. A. Foster, "The Peripheral Pulse Wave: Information Overlooked,"
Journal of Clinical Monitoring, vol. 12, pp. 365-377, Sept. 1996.

[51] K. H. Shelley, "Photoplethysmography: Beyond the Calculation of Arterial Oxygen
Saturation and Heart Rate," Anesthesia & Analgesia, vol. 105, pp. S31-S36, Dec. 2007.

[52] S. C. Millasseau, F. G. Guigui, R. P. Kelly, K. Prasad, J. R. Cockcroft, J. M. Ritter, and
P. J. Chowienczyk, "Noninvasive Assessment of the Digital Volume Pulse : Comparison
with the Peripheral Pressure Pulse," Hypertension, vol. 36, pp. 952-956, 2000.

[53] J. Allen and A. Murray, "Modelling the Relationship Between Peripheral Blood Pressure
and Blood Volume Pulses Using Linear and Neural Network System Identification
Techniques," Physiological Measurement, vol. 20, pp. 287–301, 1999.

160

[54] K. H. Shelley, W. B. Murray, and D. Chang, "Arterial-Pulse Oximetry Loops: A New
Method of Monitoring Vascular Tone," Journal of Clinical Monitoring, vol. 13, pp. 223-
228, 1997.

[55] N. Westerhof, N. Stergiopulos, and M. I. M. Noble, Snapshots of Hemodynamics, 1st ed.
Boston: Springer, 2004.

[56] S. C. Millasseau, R. P. Kelly, J. M. Ritter, and P. J. Chowienczyk, "Determination of
Age-Related Increases in Large Artery Stiffness by Digital Pulse Contour Analysis,"
Clinical Science (London), vol. 103, pp. 371–377, Oct. 2002.

[57] J. Li, L. Yang, S. Zhang, and Y. Yang, "Computation of Cardiac Output by Pulse Wave
Contour," 1st International Conference on Bioinformatics and Biomedical Engineering,
Wuhan, 2007, pp. 1088-1090.

[58] P. J. Chowienczyk, R. P. Kelly, H. MacCallum, S. C. Millasseau, T. L. G. Andersson, R.
G. Gosling, J. M. Ritter, and E. E. Änggård, "Photoplethysmographic Assessment of
Pulse Wave Reflection: Blunted Response to Endothelium-Dependent Beta2-Adrenergic
Vasodilation in Type II Diabetes Mellitus," Journal of the American College of
Cardiology, vol. 34, pp. 2007–2014, 1999.

[59] K. Li, "Wireless Reflectance Pulse Oximeter Design and Photoplethysmographic Signal
Processing," M.S. Thesis, Kansas State University, Manhattan, KS, 2010.

[60] K. Nakajima, T. Tamura, and H. Miike, "Monitoring of Heart and Respiratory Rates by
Photoplethysmography Using a Digital Filtering Technique," Medical Engineering &
Physics, vol. 18, pp. 365-372, July 1996.

[61] P. A. Leonard, J. G. Douglas, N. R. Grubb, D. Clifton, P. S. Addison, and J. N. Watson,
"A Fully Automated Algorithm for the Determination of Respiratory Rate from the
Photoplethysmogram," Journal of Clinical Monitoring and Computing, vol. 20, pp. 33-
36, 2006.

[62] L. C. Ludeman and M. I. Chacon, "Use of Blood Pulse Signature for Identity
Verification," 7th International Conference on Signal Processing Applications and
Technology, Boston, Massachusetts, October 7-10, 1996, pp. 1608-1612.

[63] L. C. Ludeman and M. I. Chacon, "Evaluation of Blood Pulse Signature for Potential
Application in a Multisensor Biometric Identity Verification System," New Mexico State
University, Final report to Sandia National Laboratories under contract AM-5506, Sept.
1995.

[64] J. T. Love, S. Warren, G. R. Laguna, and T. J. Miller, "Personal Status Monitor," Sandia
National Laboratories SAND97-0418, UC-706, unlimited release, Feb. 1997.

[65] M. Locke, "Android and RTOS Together: The Dynamic Duo for Today’s Medical
Devices," Embedded Computing Design, pp. 36-38, April 2010.

161

[66] D. Thompson and S. Warren, "A Small, High-Fidelity Reflectance Pulse Oximeter," 2007
Annual Conference and Exposition of the ASEE, Honolulu, HI, June 24-27, 2007.

[67] K. Li, S. Warren, and B. Natarajan, "Onboard Tagging for Real-Time Quality
Assessment of Photoplethysmograms Acquired by a Wireless Reflectance Pulse
Oximeter," IEEE Transactions on Biomedical Circuits and Systems, vol. 6, pp. 54-63,
February 2012.

[68] R. Krishnan, B. Natarajan, and S. Warren, "Two-Stage Approach for Detection and
Reduction of Motion Artifacts in Photoplethysmographic Data," IEEE Transactions on
Biomedical Engineering, vol. 57, pp. 1867-1876, 2010.

[69] E. Geun, H. Heo, K. C. Nam, and Y. Huh, "Measurement Site and Applied Pressure
Consideration in Wrist Photoplethysmography," 23rd ITC-CSCC, 2008, pp. 1129-1132.

[70] K. Li and S. Warren, "Initial Study on Pulse Wave Velocity Acquired from One Hand
Using Two Synchronized Wireless Reflectance Pulse Oximeters," 33rd Annual
International Conference of the IEEE EMBS, Boston, MA, Aug. 30-Sept. 3, 2011, pp.
6907-6910.

[71] U.S. Food and Drug Administration (FDA), "Premarket Notification (510k)," 2011,
http://www.fda.gov/MedicalDevices.

[72] K. A. Reddy, B. George, and V. J. Kumar, "Use of Fourier Series Analysis for Motion
Artifact Reduction and Data Compression of Photoplethysmographic Signals," IEEE
Transactions on Instrumentation and Measurement, vol. 58, pp. 1706-1711, May 2009.

[73] B. S. Kim and S. K. Yoo, "Motion Artifact Reduction in Photoplethysmography Using
Independent Component Analysis," IEEE Transactions on Biomedical Engineering, vol.
53, pp. 566-568, March 2006.

[74] J. Y. A. Foo, "Comparison of Wavelet Transformation and Adaptive Filtering in
Restoring Artefact-Induced Time-Related Measurement," Biomedical Signal Processing
and Control, vol. 1, pp. 93-98, Jan. 2006.

[75] K. W. Chan and Y. T. Zhang, "Adaptive Reduction of Motion Artifact from
Photoplethysmographic Recordings Using a Variable Step-Size LMS Filter," 2002 IEEE
Proceedings on Sensors, 2002, pp. 1343-1346.

[76] J. Yao and S. Warren, "A Short Study to Assess the Potential of Independent Component
Analysis for Motion Artifact Separation in Wearable Pulse Oximeter Signals," 27th
Annual Conference of the IEEE EMBS, 2005, pp. 3585-3588.

[77] J. G. Webster, Design of Pulse Oximeters, 1st ed. New York: Taylor & Francis, 1997.

[78] H. W. Lee, J. W. Lee, W. G. Jung, and G. K. Lee, "The Periodic Moving Average Filter
for Removing Motion Artifacts from PPG Signals," International Journal of Control,
Automation, and Systems, vol. 5, pp. 701-706, Dec. 2007.

162

[79] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed. New York:
Springer-Verlag, 1994.

[80] R. Krishnan, B. Natarajan, and S. Warren, "Analysis and Detection of Motion Artifact in
Photoplethysmographic Data Using Higher Order Statistics," 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, Nevada,
March 31-April 4, 2008, pp. 613-616.

[81] G. J. Miao and M. A. Clements, Digital Signal Processing and Statistical Classification,
1st ed. Norwood: Artech House, 2002.

[82] C. C. Lee and J. J. Chao, "Optimum Local Decision Space Partitioning for Distributed
Detection," IEEE Transactions on Aerospace and Electronic Systems, vol. 25, pp. 536-
544, 1989.

[83] K. K. Tremper, "Pulse Oximetry," Chest, vol. 95, pp. 713-715, April 1989.

[84] J. Sol`a, O. Ch´etelat, C. Sartori, Y. Allemann, and S. F. Rimoldi, "Chest Pulse-Wave
Velocity: A Novel Approach to Assess Arterial Stiffness," IEEE Transactions on
Biomedical Engineering, vol. 58, Jan. 2011.

[85] H.-T. Wu, C.-S. Ho, J.-S. Weng, W.-C. Tsai, and M.-C. Wang, "A Novel Method for
Measurement of Pulse Wave Velocity by Dual-Channel Photoplethysmography," 2004
IEEE International Workshop on Biomedical Circuits & Systems, 2004, pp. S2/6-8-10.

[86] K. Li and S. Warren, "A High-Performance Wireless Reflectance Pulse Oximeter for
Photo-Plethysmogram Acquisition and Analysis in the Classroom," 2010 Annual
Conference and Exposition of the ASEE, Louisville, KY, June 20-23, 2010.

[87] N. Chubachit, H. Kanait, R. Muratat, and Y. Koiwa, "Measurement of Local Pulse Wave
Velocity in Arteriosclerosis by Ultrasonic Doppler Method," 1994 IEEE Proceedings on
Ultrasonics Symposium, Cannes , France, Nov. 1-4, 1994, pp. 1747-1750.

[88] A. P. Spence, Basic Human Anatomy, 1st ed. Menlo Park: The Benjamin/Cummings
Publishing Company, Inc., 1982.

[89] K. Li and S. Warren, "High Resolution Wireless Body Area Network with Statistically
Synchronized Sensor Data for Tracking Pulse Wave Velocity," 34th Annual International
Conference of the IEEE EMBS, San Diego, CA, Aug. 28-Sept. 1, 2012, 2012.

[90] A. King, D. Arney, I. Lee, O. Sokolsky, J. Hatcliff, and S. Procter, "Prototyping Closed
Loop Physiologic Control with the Medical Device Coordination Framework," SEHC,
Cape Town, South Africa, May 3-4, 2010.

[91] "Medical Device 'Plug-and-Play' Interoperability Program," 2012, http://mdpnp.org/.

163

[92] D. Arney, S. Fischmeister, J. M. Goldman, I. Lee, and R. Trausmuth, "Plug-and-Play for
Medical Devices: Experiences from a Case Study," Biomedical Instrumentation &
Technology, vol. 43, pp. 313-317, July-August 2009.

[93] OpenJMS, "Java Message Service API 1.1 Specification," 2012,
http://openjms.sourceforge.net/.

[94] "RXTX Library," 2011, http://rxtx.qbang.org/.

[95] "XStream Library," 2011, http://xstream.codehaus.org/.

[96] Wikipedia, "AJAX (Programming)," 2012, http://en.wikipedia.org/wiki/AJAX.

[97] Wikipedia, "Java Servlet," 2012, http://en.wikipedia.org/wiki/Java_Servlet.

[98] Apache, "ActiveMQ," 2012, http://activemq.apache.org/.

[99] Apache, "Tomcat," 2012, http://tomcat.apache.org/.

[100] K. Li, S. Warren, and J. Hatcliff, "Component-Based App Design for Platform-Oriented
Devices in a Medical Device Coordination Framework," 2nd ACM SIGHT IHI
Symposium, Miami, FL, Jan. 28-30, 2012, pp. 343-352.

[101] J. Hatcliff, E. Vasserman, S. Weinenger, and J. Goldman, "An Overview of Regulatory
and Trust Issues for the Integrated Clinical Environment," Proceedings of the 2011 High-
confidence Medical Device Systems and Software Workshop, Chicago, IL, April, 2011.

[102] T. Jensen, S. Duun, J. Larsen, R. G. Haahr, M. H. Toft, B. Belhage, and E. V. Thomsen,
"Independent Component Analysis Applied to Pulse Oximetry in the Estimation of the
Arterial Oxygen Saturation (SpO2) - a Comparative Study," 31st Annual International
Conference of the IEEE EMBS, Minneapolis, Minnesota, Sept. 2-6, 2009, pp. 4039-4044.

[103] J. M. Goldman, M. T. Petterson, R. J. Kopotic, and S. J. Barker, "Masimo Signal
Extraction Pulse Oximetry," Journal of Clinical Monitoring and Computing, vol. 16, pp.
475-483, 2000.

[104] K. Czarnecki, S. Helson, and U. Eisenecker, "Formalizing Cardinality-Based Feature
Models and Their Specialization," Software Process : Improvement and Practice, vol. 10,
pp. 7-29, 2005.

[105] Gumstix, "Setting up a Serial Connection," 2012, http://gumstix.org/connect-to-my-
gumstix-system.html.

164

Appendix A – GumPack Hardware Interconnection Interface

Table A.1. GumPack Hardware Interface Pin Definition

Pin	
 #	
 Function	
 Motion	
 Sensor	
 ECG	
 	
 ZigBee	
 Coord.	

1	
 GND	
 	
 	
 	
 	
 	
 	

2	
 VCC3.3	
 	
 	
 	
 	
 	
 	

3	
 GPIO171_SPI1_CLK	
 	
 	
 	
 	
 	
 	

4	
 GPIO114_SPI1_NIRQ	
 	
 	
 	
 	
 	
 	

5	
 GPIO172_SPI1_MOSI	
 	
 	
 	
 	
 	
 	

6	
 GPIO174_SPI1_CS0	
 	
 	
 	
 	
 	
 	

7	
 GPIO173_SPI1_MISO	
 	
 	
 	
 	
 	
 	

8	
 GPIO175_SPI1_CS1	
 	
 	
 	
 	
 	
 	

9	
 GPIO151_RXD1	
 	
 	
 	
 	
 	
 	

10	
 GPIO148_TXD1	
 	
 	
 	
 	
 	
 	

11	
 GPIO22	
 	
 	
 	
 	
 	
 	

12	
 GPIO23	
 	
 	
 	
 	
 	
 	

13	
 GPIO21	
 	
 	
 	
 	
 	
 	

14	
 GPIO14	
 	
 	
 	
 	
 	
 	

15	
 SYSEN	
 	
 	
 	
 	
 	
 	

16	
 VBACKUP	
 	
 	
 	
 	
 	
 	

17	
 GPIO31_WAKEUP	
 	
 	
 	
 	
 	
 	

18	
 POWERON	
 	
 	
 	
 	
 	
 	

19	
 GND	
 	
 	
 	
 	
 	
 	

20	
 VCC1.8	
 	
 	
 	
 	
 	
 	

21	
 GPIO186_GPS_PPS	
 	
 	
 	
 	
 	
 	

22	
 GPIO10_TS_IRQ	
 	
 	
 	
 	
 	
 	

23	
 GPIO170_HDQ_1WIRE	
 	
 	
 	
 	
 	
 	

24	
 GPIO163_IR_CTS3	
 	
 	
 	
 	
 	
 	

25	
 GPIO165_IR_RXD3	
 	
 	
 	
 	
 	
 	

26	
 GPIO166_IR_TXD3	
 	
 	
 	
 	
 	
 	

165

Pin	
 #	
 Function	
 Motion	
 Sensor	
 ECG	
 	
 ZigBee	
 Coord.	

27	
 GPIO184_I2C3_SCL	
 	
 	
 	
 	
 	
 	

28	
 GPIO185_I2C3_SDA	
 	
 	
 	
 	
 	
 	

29	
 GND	
 	
 	
 	
 	
 	
 	

30	
 VCC1.8	
 	
 	
 	
 	
 	
 	

31	
 GPIO146_PWM11	
 	
 	
 	
 	
 	
 	

32	
 GPIO145_PWM10	
 	
 	
 	
 	
 	
 	

33	
 GPIO147_PWM8	
 	
 	
 	
 	
 	
 	

34	
 GPIO144_PWM9	
 	
 	
 	
 	
 	
 	

35	
 PWM0	
 	
 	
 	
 	
 	
 	

36	
 PWM1	
 	
 	
 	
 	
 	
 	

37	
 ADCIN7	
 	
 	
 	
 	
 	
 	

38	
 ADCIN2	
 	
 	
 	
 	
 	
 	

39	
 ADCIN6	
 	
 	
 	
 	
 	
 	

40	
 ADCIN5	
 	
 	
 	
 	
 	
 	

41	
 GND	
 	
 	
 	
 	
 	
 	

42	
 ADCIN3	
 	
 	
 	
 	
 	
 	

43	
 ADCIN4	
 	
 	
 	
 	
 	
 	

44	
 NC	
 	
 	
 	
 	
 	
 	

Pin utilization for the three example SC boards is indicated by color-filled cells.

166

Appendix B – GumPack Hardware Schematics and PCB Layouts

 GumPack Surface Substrate

167

 GumPack Surface Component: Motion Sensor

168

 GumPack Surface Component: ECG

169

 GumPack Surface Component: ZigBee Coordinator

170

171

Appendix C – Screenshots of the GumPack Web Interface

Figure C.1. GumPack web interface - Dashboard tag. Data acquired from an

accelerometer, gyroscope, pulse oximeter, and ECG sensor.

172

Figure C.2. GumPack web interface - Devices tag. Data selection and analysis for a pulse

oximeter.

173

Figure C.3. GumPack web interface - Trackers tag.

174

Figure C.4. GumPack web interface - File Repository page.

175

Figure C.5 notes the CPU usage on the GumPack when an iPad accesses the web server

(lighttpd). Its peak CPU usage is typically < 1.0%.

Figure C.5. GumPack system resources allocated for the web server lighttpd.

176

Appendix D – Instructions to Install the JRE on the GumPack

Software development on the GumPack is largely based on the Java language, including

the MDCF-related work. Appendix D addresses how to install a GumPack-supported JRE, from

connecting the device to a computer to running a Java program on the GumPack.

First, a serial connection is required to access the GumPack console – a native user

interface to the processor SC (Gumstix Overo board). The USB console port on the GumPack

must be connected to a USB port on a computer. Serial communication tools used on computers

vary among the different operating systems. The Mac OS X (Terminal) was used for this tutorial.

As to other solutions such as Kermit on Linux and Putty on Windows, more information is

available in [105].

For a first-time connection, install the FTDI chip driver that can be downloaded from

their website. Open the Terminal program and use the following commands to establish a

connection.
$ screen /dev/tty.usbserial-A8005CU9 115200 8N1

Here, screen is the name of the screen program and /dev/ tty.usbserial-A8005CU9

is the name of the connection controller on the GumPack under the directory /dev. The token

115200 specifies that the connection rate is 115200 bps, and the token 8N1 specifies the use of

8 data bits, no flow control, and 1 stop bit,
$ screen -r

The token –r identifies the need to reattach to the communication console, e.g., after the

Terminal program is closed.

Power on the GumPack; its boot-up information will be shown in the screen program.

Log in with an administrator account, such as the default account “root.” Since the current

console connection is not configured to transfer files/packages to the GumPack system, there are

two options to do so: SD card (off-line) or Wi-Fi (on-line). Here the Wi-Fi method is introduced,

which requires an extra step to configure Wi-Fi on the GumPack.

Execute the commands in Figure D.1, or write an executable script to connect to a Wi-Fi

access point with the name of TP-LINK_DE455E. In the example, the WEP password is

“1234567890,” the gateway is 192.168.1.1, and the IP address that the GumPack requires is

192.168.1.101.

177

Figure D.1 Configuration file for Wi-Fi access.

If the operation succeeds, the wlan1 configuration in the GumPack should look like the

listing in Figure D.2. Ping the gateway to ensure the Wi-Fi connection is alive:
$ ping -c3 192.168.1.1

Figure D.2. Wireless interface configuration after connecting to the access point

successfully.

Note that using Wi-Fi and/or Bluetooth double the power consumption of the GumPack

and significantly increase the system temperature. Write the following script into the file

/etc/profile to control the switch:

178

disable wifi

echo 0 > /sys/class/gpio/gpio16/value

disable bt

echo 0 > /sys/class/gpio/gpio164/value

If Internet access is available, the latest versions of the JRE-related packages can be

directly downloaded from the repository. First, add the angstrom repository using the following

command:
$ echo 'src/gz angstrom-base

http://www.angstrom-distribution.org/feeds/unstable/ipk/gli

bc/armv7a/base' > /etc/opkg/angstrom-base.conf

Install the latest version of the JRE on the GumPack. Choose either JamVM or Cacao.
$ opkg update

$ opkg install cacao

If you need graphical class support, install the GTK package.
$ opkg install classpath-gtk

Check the Java version, and execute a Java program.
$ java -version

$ java -jar archive_name.jar

179

Appendix E – Exporting the MDCF to the GumPack

In Appendix D, the JRE was set up on the GumPack. Appendix E addresses how to

export the Java code in the original MDCF code base to the GumPack and establish a wireless

connection between a GumPack and other MDCF components, e.g., an MDCF server on a

computer.

The first step is to set up the address of the MDCF message bus. In this example, the

server on a computer is designated the IP address of 192.168.100. Locate the classes

TCPRecvrClient and TCPSndrClient in the package mdcf.messagebus.transport.tcp of the

MDCF code base and modify the following code.
private String hostname = "192.168.1.100";

Figure E.1 illustrates an example scenario where an MDCF client is exported to a

GumPack. Two clients are used: one to publish a message (source), and the other to receive a

message from a console running on the MDCF host (sink).

Figure E.1. Example scenario with an MDCF client running on the GumPack.

180

In Eclipse, choose File -> Export, as shown in Figure E.2. Select Runnable JAR file and

click Next.

Figure E.2. Exporting resources to a JAR file in Eclipse.

Select the correct launch configuration that has been run on the server side at least once,

although it will be exported to the GumPack side. Specify the export destination where a JAR

archive is to be created. Note that one must also extract the required libraries into a generated

JAR since those libraries are currently unavailable in the JRE of the GumPack.

Figure E.3 illustrates the final step to create the target JAR file. Upload this file to the

GumPack either via an SD card or Wi-Fi. Make sure the GumPack is in the same wireless

domain as the MDCF server, e.g., by connecting to the same wireless router. Execute the MDCF

client on the GumPack after the message bus is established on the server side as a regular

routine.

181

Figure E.3. Choosing the launch configuration and file properties in the last step of a

runnable JAR file export.

One significant difference in the Java code for the GumPack is that its JRE currently does

not support the XStream library which transform a Java object to/from XML. The SAX XML

parser is adopted to address this issue. Import the following libraries to replace XStream and

replace the original codes with new codes using the new libraries (see Figures E.4 through E.7).
import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

182

Figure E.4. Original code in the MDCF when receiving a message regarding a publish

topic.

Figure E.5. Modified code in the GumPack when receiving a message regarding a publish

topic.

183

Figure E.6. Original code in the MDCF when receiving a message regarding a subscribe

topic.

Figure E.7. Modified code on the GumPack when receiving a message regarding a

subscribe topic.

184

Appendix F – Acronyms and Abbreviations

A list of commonly-used acronyms and abbreviations in the dissertation follows.

Table F.1. Acronyms and Abbreviation

Acronym/Abbr. Name

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

APP Application

BAN Body Area Network

DOM Document Object Model

DVP Digital Volume Pulse

ECG Electrocardiogram

EEG Electroencephalogram

EHR Electronic Health Record

EKG Electrocardiogram

EMG Electromyogram

EMR Electronic Medical Record

EOG Electrooculogram

GCCF GumPack Component Coordination Framework

GUI Graphical User Interface

HIIS Hospital Information Integration System

ICE Integrated Clinical Environment

JDBC Java Database Connectivity

JMS Java Message Service

JNDI Java Naming and Directory Interface

JNI Java Native Interface

JRE Java Runtime Environment

MDCF Medical Device Coordination Framework

MDDS Medical Device Data System

185

MDPnP Medical Device Plug and Play

MPAD Medical Platform-Aggregated Device

MPOD Medical Platform-Oriented Device

MOM Message-Oriented Middleware

PHR Personal Health Record

PPG Photoplethysmogram

PWV Pulse Wave Velocity

SB Surface Biosensor

SC Surface Component

SDK Software Development Kit

SS Surface Substrate

WBAN Wireless Body Area Network

