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Abstract 

The U.S. health care system is one of the most advanced and costly systems in the world. 

The health services supply/demand gap is being enlarged by the aging population coupled with 

shortages in the traditional health care workforce and new information technology workers. This 

will not change if the current medical system adheres to the traditional hospital-centered model. 

One promising solution is to incorporate patient-centered, point-of-care test systems that promote 

proactive and preventive care by utilizing technology advancements in sensors, devices, 

communication standards, engineering systems, and information infrastructures.  

Biomedical devices optimized for home and mobile health care environments will drive 

this transition. This dissertation documents research and development focused on biomedical 

device design for this purpose (including a wearable wireless pulse oximeter, motion sensor, and 

two-thumb electrocardiograph) and, more importantly, their interactions with other medical 

components, their supporting information infrastructures, and processing tools that illustrate the 

effectiveness of their data. The GumPack concept and prototype introduced in Chapter 2 

addresses these aspects, as it is a sensor-laden device, a host for a local body area network 

(BAN), a portal to external integration frameworks, and a data processing platform. GumPack 

sensor-component design (Chapters 3 and 4) is oriented toward surface applications (e.g., touch 

and measure), an everyday-carry form factor, and reconfigurability. Onboard tagging technology 

(Chapters 5 and 6) enhances sensor functionality by providing, e.g., a signal quality index and 

confidence coefficient for itself and/or next-tier medical components (e.g., a hub).  

Sensor interaction and integration work includes applications based on the GumPack 

design (Chapters 7 through 9) and the Medical Device Coordination Framework (Chapters 10 

through 12). A high-resolution, wireless BAN is presented in Chapter 8, followed by a new 

physiological use case for pulse wave velocity estimation in Chapter 9. The collaborative MDCF 

work is transitioned to a web-based Hospital Information Integration System (Chapter 11) by 

employing database, AJAX, and Java Servlet technology. Given the preceding sensor designs 

and the availability of information infrastructures like the MDCF, medical platform-oriented 

devices (Chapter 12) could be an innovative and efficient way to design medical devices for 

hospital and home health care applications.  
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Chapter 1 - Introduction 

The U.S. medical system offers many of the most advanced technologies, treatments, and 

therapies in the world. It is also one of the main cradles for innovation in health care, from 

biotechnology to medical devices and systems, under the supervision of the U.S. Food and Drug 

Administration (FDA). On the other hand, this system is one of the most costly health care 

systems in the world. The average annual premium for family medical coverage through an 

employer reached $15,073 in 2011, an increase of 9 percent relative to the prior year, according 

to a new study by the Kaiser Family Foundation [1]. The evolving aging population, driven by 

the wave of baby boomers that approach retirement [2], will impose significant pressure on a 

medical system with already crowded hospital rooms and long waiting lists for surgeries such as 

heart transplants. Increasing demands from more patients for more care services, coupled with 

shortages in the healthcare workforce, could eventually pose a crisis for current medical systems. 

Regarding physicians and nurses, the nation is looking at a future shortage of about 300,000 

nurses and 35,000 to 44,000 adult-care generalist physicians practicing family medicine and 

general internal medicine [3]. Health information technology (HIT) workers present the other 

significant shortage, as technology tools such as electronic health records (EHRs) and health 

information exchanges (HIEs) begin to be widely adopted in the health care industry [4]. An 

additional 35,000 HIT workers are needed by 2018, as reported by the Bureau of Labor 

Statistics.  

The healthcare system needs a transformation, given the long-unchanged and 

disappointing situation of rising medical care costs and rapidly increasing demands that exceed 

health care supplies. One feasible solution is to utilize technology advancements in sensors, 

devices, communication standards, engineering systems, information infrastructures, etc. and 

transit to bottom-to-top approaches that rely on the large consumer base. In order to realize a 

patient-centric, point-of-care system that focuses on proactive and preventive care, consumer 

medical devices should penetrate into the large user space, providing the infrastructure for a 

necessary healthcare transition.  

There will be a 'healthcare war' in the near future involving all of us. To win this war, the 

'technology weapons' need to be placed into the hands of the largest group affected by this war: 
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the patients and individuals who are concerned about their health and wellbeing. Hospitals 

should not be the only places where medical care is provided. Instead, the health care system 

should be distributed across homes or travel with individuals (i.e., mobile health care). 

Technology will help realize this transition by bringing medical devices and systems to the 

consumer and interconnecting them with the hospital information infrastructure. 

Smart phones, as consumer digital devices, have already been vastly integrated into 

people’s daily lives. Mobile health applications have begun to incorporate smart phone 

platforms, utilizing their increasing processing speed, friendly user interfaces, and 

communication capabilities. Efforts include (a) attaching biomedical sensors directly or 

indirectly to a smart phone to track a user’s physiological indices, (b) using the components 

already integrated inside the phone, such as accelerometers and cameras, for medical purposes, 

and (c) the creation of a variety of health-related APPs. AliveCor’s iPhone ECG case turns a 

phone into an ECG device by sliding a case with ECG electrodes onto the back of the phone [5]. 

Imec and Holst Centre, together with TASS, developed a wireless receiver on an Android phone 

to form a body area network (BAN) to monitor ECG, EEG, EMG, etc [6]. The integrated camera 

on the phone has been proven to obtain accurate heart rate measurements [7] and other 

physiological variables such as respiratory rate and oxygen saturation by analyzing PPG signals 

[8]. Thousands of APPs can be downloaded from APP stores in the categories of medicine, 

health, and fitness [9].  

 Custom Biomedical Sensors  
The creation of consumer medical devices (e.g., smart-phone-based medical devices) will 

serve as the foundation for this health care transition. From a system-level engineering 

perspective, consumer electronics are embedded systems, consisting of basic components such as 

processors, memory, and input/output interfaces. In the context of health monitoring, the 

development of biomedical sensors and/or actuators is a challenge of utmost importance. Custom 

biomedical sensors optimized for home and mobile health care environments will be pivotal 

factors in this transition.  

However, in this scenario, the user or operator of a medical device will not often be a 

trained caregiver, but rather a consumer who may have varied experience with consumer devices 

like smart phones and computers. Even with the availability of professional and technical 
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support, patients will be on their own in many circumstances, including times when they set up 

devices, acquire measurements, and read results. Hence, there are three basic requirements for 

the design of custom biomedical sensors in order to minimize usage complexity, ensure result 

reliability, and improve safety:  

1. Non-invasive measurements will be the foremost product of biomedical devices used 

outside of hospitals. For example, to measure blood glucose, most glucose meters acquire blood 

samples by skin punctures. Non-invasive glucose monitoring technology [10] will provide a 

much easier way for diabetics to manage their care, dramatically or completely reducing pain 

and the chance for infection. Several methods are described in [10] to non-invasively acquire 

glucose readings, such as near infrared spectroscopy and transdermal measurement. An approach 

to use tears instead of minimally invasive blood samples has also been investigated [11]. The 

primary challenge for the use of most non-invasive biomedical sensors as indirect methods is to 

improve performance and obtain reliable results given common issues like baseline wandering, 

the influence of sweat, and surface artifacts. Non-invasive techniques may also initially involve 

invasive procedures, such as implanting medical components.         

2. Continuous monitoring is important from the perspective of mobile applications. This 

does not always mean continuous data acquisition, but rather the capability to provide reliable 

performance during a change in measurement context (e.g., stepping outside of the house). The 

main idea is that wearing or using a biomedical sensor should minimally influence a user’s 

normal activities while maintaining the ability to acquire valid data. Since these devices will be 

used outside of relatively controlled hospital environments, biomedical sensors designed for 

consumers should consider the more severe conditions of daily life, such as movement, sweating, 

and exposure to sunlight. For example, motion artifact is a common issue in electrocardiograph 

and pulse oximeter design.  However, motion itself is a common parameter continuously 

recorded by motion sensors like accelerometers and gyroscopes, so this parameter can help a 

device to compensate for alterations in data due to real-world conditions. Identification of 

context change and accurate extraction of the target physiological parameters are of utmost 

importance.    

3. Surface biosensors, a concept described in [12], will be prolific in future care 

scenarios. For instance, several types of wearable designs for ambulatory pulse oximeters exist.  

Some of these use ring form factors, and others use finger clips. These designs use 
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predominantly transmission-mode sensors. For broader use with wrist watches, head bands, 

socks, sensor ‘Band Aids’, and other wearable platforms that are unobtrusive and well suited for 

mobility, it makes sense to consider reflectance-mode layouts.  This is especially true when one 

contemplates the immense potential of surface biosensors:  medical sensors embedded in the 

surface of everyday consumer electronics such as handheld personal device assistants (PDAs), 

cell phones, smart phones, tablet PCs, head-mounted displays, etc.   

More properties must be considered when designing custom biomedical sensors for home 

and mobile health care environments, including safety, durability, and reusability. There are 

generally two ways to categorized these devices: according to their functionality (i.e., the 

parameter(s) monitored) and their design principle (i.e., how each measurement is obtained). 

Functionality is the first item that draws a customer to a medical device. It covers the primary 

vital signs [13] (core body temperature, weight, pulse rate, blood pressure, and respiratory rate), 

other circulatory system parameters (e.g., blood oxygen saturation and blood glucose level), 

nerve system parameters (e.g., pain and mood), activity level (e.g., gait speed), and other 

parameters that help to predict and/or diagnose health conditions.  

The following sensing methods are apt to be employed: optical (e.g., light-based sensor 

or imaging system), acoustic (e.g., ultrasound), and electrode-based (e.g., ECG, EMG, EOG, or 

bioimpedance). There are many design variations in each category, including contact versus non-

contact. In this dissertation, several specific sensor designs are presented in Chapters 3 and 4. For 

example, in a reflectance pulse oximeter design, the sensor can employ a single small photodiode 

[14] as in most transmittance sensors. However, tissue is highly forward scattering, so the 

relative number of remitted photons detected in reflectance mode is low, yielding lower-quality 

PPGs [15]. Improved sensor configurations are therefore often adopted to better acquire the 

radial reflectance profile, including a ring-shaped photodiode design [16], [17], a photodiode 

array around the central LEDs [18], and conversely an LED array around a central photodiode 

[19]. These designs generally employ cascaded high pass and low pass filters to extract the PPGs 

[20]. Such analog filters inevitably alter and even distort the signals of interest.  These alterations 

are visibly obvious in some papers, and cycle-to-cycle inconsistencies can be significant.  For 

this reason, a filter-free design is desirable (see Chapter 4).  

Another special category of custom biomedical sensor is single-use and disposable. The 

obvious advantage of single-use solutions for certain monitoring situations is that no sensor 
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cleaning and sterilization is needed. This reduces the risk of infection, may provide more 

accurate results, and can be more cost effective than traditional technologies. For example, a 

single-use pressure sensor could be cheaper than a sanitary pressure transducer that requires 

autoclaving and recalibration after each use [21].  

 Wireless Body Area Networks  
Wireless body area networks have received significant attention in recent years due to 

their potential to enable patient-centered wellness monitoring, where the continuous acquisition 

of health indicators such as heart rate and activity level have garnered primary emphasis.  

Technical focus areas within this domain include sensor miniaturization [14], wearable sensors 

[22], ultra low-power circuits [23], communication protocols [24], and network topologies. 

General rules related to, e.g., low power and reliability, guide each WBAN development phase. 

The physical components in a WBAN fall into two categories depending on their roles in 

the network: sensor (transmitter) and coordinator/hub/base-station (receiver). Note that in many 

applications, sensor nodes also receive data  (e.g., commands) from coordinator nodes. This 

basic structure implies two fundamental roles of a WBAN: an integrated sensor collection and a 

health gateway (coordinator).     

Various sensor configurations can constitute a WBAN. Motion sensors are used in [25] 

for computer-assisted physical rehabilitation. An 8-channel EEG system based on a WBAN is 

described in [26]. Two wearable sensors (a pulse oximeter and a blood pressure monitor) and a 

GPS module are employed in a wireless system for patients in a disaster scene in [27]. A wireless 

body sensor network that provides a finger photoplethysmogram (PPG), an electrocardiogram 

(ECG), and continuous cuffless blood pressure via a 3D accelerometer patch is presented in [28]. 

A BAN in [24] contains two accelerometers, an ECG sensor, a blood pressure sensor, and a pulse 

oximeter; it detects context change and determines the state of each sensor (e.g., data rate).   

In these WBAN applications, the gateway role is primarily to coordinate sensor activities 

and stream data to a computer for storage, analysis, and display. Furthermore, these data could 

be forwarded to an external network such as a Medical Device Coordination Framework 

(MDCF) [29] introduced in the next section. In practice, the Internet would be a reasonable 

candidate for the 'external network.' Recently, eDevice announced the HealthGO platform which 

utilizes Freescale's Home Health Hub reference platform [30]. HealthGO was reported as the 
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first fully customizable data aggregation platform in industry, supporting remote patient 

monitoring. Its key tasks include universal connectivity for patients/devices and data delivery for 

remote device management through global communication network services (e.g., cellular and 

Ethernet). A similar technology from Qualcomm Life – 2net platform – provides a wireless 

health network that connects medical devices and a cloud-based system through a 2net Hub [31].    

WBAN protocols contain a common component and an application-specific component. 

Since early 2008, the IEEE 802.15 Task Group 6 has addressed WBAN communication 

standards, which are likely to be based on the medium access control (MAC) layer of the current 

IEEE 802.15.4 standard [32]. Such a communication protocol should ensure high network 

capacity, energy efficiency, and adequate quality of service [33]. The protocol defines what data 

are transmitted and received, as well as when and how this occurs.  To a large degree, these 

items determine the network performance, as they affect power consumption, data throughput, 

and packet loss rates. Data management techniques like adaptive duty cycles and message 

prioritization [24] can be considered if a monitoring scenario involves patient state/context 

changes and/or the coexistence of different types of sensor nodes. 

Diverse and creative application-layer schemes can be designed and evaluated for various 

WBAN scenarios. A new wireless body area network is introduced in Chapter 8, which presents 

a WBAN that emphasizes high-resolution raw data, real-time operation, and time 

synchronization of intra-sensor data and inter-sensor waveforms. Utilizing this WBAN, Chapter 

9 describes a new physiological use case for pulse wave velocity estimation.  

 Medical Device Integration Frameworks 
Many medical devices on the market support some form of connectivity through serial 

ports, Ethernet, 802.11b/g/n or Bluetooth wireless, etc.  Unfortunately, device interoperability is 

lacking due to the limited implementation of interfacing standards, and connectivity is usually 

only leveraged by Medical Device Data Systems (MDDSs) that uni-directionally transfer 

data/events from devices to composite monitors or EHRs.  In contrast, electronic devices in other 

domains have widely adopted interfacing standards that allow “plug-and-play” interoperability.  

Many of these devices can be connected to computing platforms with flexible software 

frameworks that enable developers to easily build complex monitoring and data sharing 

applications, some of which employ closed-loop control algorithms. The realization of medical 
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systems with these capabilities has been slow, partially because of the need for careful device 

regulation coupled with issues such as cost, liability, infrastructure availability, and the existence 

of a user community (both patients and providers) that is not always technology-savvy – similar 

barriers that adopters of telemedicine technology have faced since the early 1990s. As a result, 

medical devices are predominantly stand-alone or networked in pre-arranged collections, where 

the number of possible device configurations and the resulting interactions between these devices 

are limited to a carefully controlled subset of possible embodiments. Device implementations are 

therefore static by nature so as to streamline the device regulation process and limit liabilities 

incurred.  

In previous collaborative work with engineers from the U.S. Food and Drug 

Administration and researchers from the University of Pennsylvania [34], KSU researchers have 

implemented a medical computing and device integration platform called the Medical Device 

Coordination Framework (described in Chapter 10 and upgraded to a web-based Hospital 

Information Integration System in Chapter 11). The MDCF provides many of the capabilities 

called out in the Integrated Clinical Environment (ICE) platform [35] specified in the ASTM 

F2761-09 standard. An ICE-compliant implementation can be viewed as a computing platform 

(architecture, hardware, and software services) that allows heterogeneous medical devices to be 

integrated to create medical systems that support high-acuity patient care, similar in criticality 

and functionality to Integrated Modular Avionics. ICE provides services that expose data and 

control aspects of integrated devices to an ICE Supervisor Application. Individual medical 

devices that provide data and administer treatment are connected to a shared network substrate 

managed by the ICE Network Controller. This system can manage multiple devices simul-

taneously based on extensible clinical APPs. Each APP can combine input from multiple 

devices, synthesize it, display it, and possibly take action, instructing devices to alter their 

behavior based on feedback from other devices.  

At issue is the desire to move toward intelligent device collections that include 

operational attributes similar to devices in the evolving consumer electronics domain.   In that 

space, devices are fully networked and rely heavily on functional improvements through 

automated and user-initiated APP upgrades; updates that are currently manifested in software but 

can also be realized through hardware technologies such as FPGAs.  Architecturally, this design 

space can be approached two ways: 
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1. Complex highly-capable devices that incorporate reconfiguration and decision-

making capabilities onboard and then feed their data to the network with which they interact.  

2. Platform-oriented frameworks where simple data-acquisition devices upload their 

data to a computing platform capable of performing complicated data processing operations with 

reconfigurable APPs made up of components, or transformers.   

The first approach lends itself well to (a) some wireless scenarios where immediate 

assessments of data viability can avoid the needless transmission of data with limited diagnostic 

value, (b) applications where hardware optimizations for known scenarios would improve device 

operation, and/or (c) applications where the static nature of this functionality directly impacts the 

ability to regulate the associated devices. The onboard tagging technology (Chapter 5) falls into 

this category, and a feature detection application for a custom reflectance pulse oximeter is 

demonstrated in Chapter 6.  

The second approach is appropriate for applications where (a) more flexible (or more 

numerous) data analyses are desired, (b) access to a broader developer based is appealing, and/or 

(c) verification and validation approaches for reconfigurable devices can be put in place to 

protect patients and providers from developer oversights. The work in Chapter 12 explores this 

approach and aims to develop a vision of what can be called a "medical platform-aggregated 

device" (MPAD). An MPAD is a composite medical device whose functionality is achieved by 

aggregating (a) medical platform-oriented devices (MPODs) – hardware components –such as 

sensors and actuators that are designed to be integrated (either by wire or wirelessly) with a 

computing platform that supports safety and security guarantees appropriate for medical devices 

and (b) applications (APPs) hosted on the computing platform that interact with platform-

connected devices, implement data processing and control algorithms, and realize visual displays 

and control panels used by patients or caregivers.  
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Chapter 2 - GumPack Platform 

Wearable and everyday carry devices that integrate with regional or hospital information 

networks promise to increase the quality of care rendered to individuals that desire mobility yet 

require frequent or continuous health monitoring [36], [37].  The maturation of interoperability 

standards such as IEEE 11073 – Personal Health Data (11073 PHD) [38], coupled with the 

proliferation of wireless communication standards, plug-and-play wired technologies, small 

medical sensors, and low-power computation and visualization tools (that are in large part driven 

by the smart phone industry) offer promise for the creation of small, effective portable medical 

devices that can be customized to meet the needs of the individual user.  Sensor-laden devices 

that offer the connectivity of a cell phone and are small enough to attach to a keychain or be 

carried in a purse like lipstick, an inhaler, or a pocket knife are especially attractive, as such 

items would be culturally accepted, inconspicuous, and minimize the effects of the medical 

monitoring process on day-to-day existence.  

Cell phone centric development (see examples in Chapter 1) seems at first glance to be an 

effective match for everyday-carry medical devices that promote the transition to patient-

centered care. However, a smart phone is not natively designed to be a professional platform for 

medical applications. The physical interface to a phone is limited by its wired/wireless 

connections, each of which adds an additional communication layer and requires extra electronic 

parts, affecting the device cost, power consumption, and form factor.  Further, standardization at 

the hardware level can be difficult because manufacturers define different interfaces for each 

embedded element. This inaccessibility to embedded hardware resources within a smart phone 

further extends to its firmware, whose development is constrained to the software development 

kits (SDKs) provided by the respective manufacturers.  Finally, thread priorities in smart phones 

are optimized for voice communication rather than data gathering, which brings into question the 

reliability of physiological data that must acquired these external ports. In summary, a phone-

based platform and its supporting development kit is far from an open embedded environment 

that can provide the freedom to design an optimized consumer medical device. Moreover, the 

integration of a reliable and efficient information framework within the current operating 
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systems that facilitates device reconfigurability and interoperability will be impossible without 

strong technical support from phone manufacturers. 

This chapter addresses a new type of multi-sensor medical monitoring device (nickname:  

GumPack) whose functionality and architecture are notably different relative to current research 

and commercial devices.  The design attempts to optimize the low-power versus high-

performance tradeoff relevant to mobile embedded systems.  One trend in wearable medical 

device design is to form a body area network with wearable sensors that connect to a smart 

phone.  The phone then serves as a computation platform and information-forwarding hub, and 

the devices are assumed to be ‘dumb,’ computationally hobbled, and unable to coordinate with 

other nearby devices:  their only role is to acquire and forward data to the hub.  This wastes 

battery power and frustrates device creativity because hardware development kits for smart 

phones are generally unavailable, so the topology is fixed.  Third-party designers cannot create, 

e.g., reconfigurable surface-sensor collections on these phones.  The technology proposed here 

leapfrogs this design space by providing a small, reconfigurable, medical sensor platform that 

can be carried everyday and operate up to six hours on a single battery charge when transmitting 

device data continuously over a Wi-Fi connection.  It will offer a computer-grade signal 

processor, support security functionality (user identification, device authentication, and secure 

data access), and encourage real-time interoperability.   

 Goal and Objectives 
The overall goal of this GumPack effort is to prototype and evaluate a new type of multi-

sensor medical monitoring device that offers a small size, the processing capabilities of a 

computer, the ability to host multiple biomedical sensors that can be reconfigured based upon 

patient need, and communication and networking resources that allow the device to upload data 

to a patient’s electronic health record via the Internet. A GumPack provides a platform for the 

research content documented in this dissertation, including custom biomedical sensor design, 

sensor integration and interaction, and medical device integration frameworks. Five technical 

objectives support the overall goal mentioned above: 

 

1. Design a small medical system in the form of a cuboid, where each surface can host a 

different plug-and-play medical device, processing sub-system, or connectivity mechanism. 
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2. Overlay an information framework on the mobile system that promotes medical device 

reconfigurability and interaction with remote information frameworks. 

3. Demonstrate the sensibility of this approach with a collection of snap-on surface 

devices. 

4. Unveil the use of the GumPack as a body area network hub that can interface to 

wearable/nearby sensors (“Chiclets”) via ZigBee wireless telemetry. 

5. Illustrate the ability of the GumPack to perform advanced system and data processing 

tasks often reserved for personal computers and to interact with remote systems using Wi-Fi.  

 Technology Overview 
A GumPack is a new type of everyday-carry, multi-sensor medical monitoring device 

whose layout and functionality offer the potential to leapfrog the design space specified by 

mobile phones connected to dumb medical devices.  A rectangular cuboid prototype for this 

device is depicted in Figure 2.1. As the GumPack is rotated each quarter turn, the user is 

presented with a different face of the cuboid, where a new device resides.  These surface 

elements can be switched out in a plug-and-play manner to match a user’s specific care needs.   

 
Figure 2.1. A prototype GumPack design and demonstrative Web interface (closest 

surface:  single-lead electrocardiograph). 
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The everyday carry vital sign monitor is also intended to serve as a body area network 

hub to support additional wearable or nearby devices (Chiclets – described later in this 

dissertation).  The monitor is designed to be one component that operates within a ubiquitous 

home infrastructure yet also offers patient mobility outside of the home.  Operationally, it will 

supply continuous or processed data in real time or in store-and-forward mode.  On-board 

storage will allow a PHR to travel with the user, and advanced computation capabilities will 

promote onboard signal processing operations such as filtering, parameter extraction, and 

spectral analysis. 

From a connectivity viewpoint, the base platform will offer cell-phone, Wi-Fi, and lower-

power wireless (e.g., Bluetooth and ZigBee) support, depending on whether the unit 

communicates with a remote system or a local body area network.  USB serial communication 

and rechargeability are important features, as is Web interface support, which will allow nearby 

devices such as smart phones and tablets to view these sensor data, e.g., when a display 

component is absent on the GumPack. 

Note that this design’s resource collection makes it a good base platform for algorithms 

that address context/situation awareness, physiological models that assess patient health given 

multi-sensory inputs, intelligent agents, and on-board analyses for local decision making 

(including the ability to maximize battery life through onboard processing, minimizing the need 

for telemetry).  Role-based operation and device-level security (e.g., user identification, device 

authentication, and secure data access) are also sensible targets for this design, which seeks to 

optimize the low-power versus high-performance tradeoff relevant to all mobile embedded 

systems.   

At present, the GumPack does not provide a cell-phone-like user interface (e.g., touch 

screen). However, a user can alternatively utilize a phone, a tablet, Internet TV, or any device 

that supports Wi-Fi and Web browsing as an indirect access interface. While the data depicted on 

the iPad interface in Figure 2.1 are real measurement results collected from the GumPack and a 

network of Chiclet sub-sensors, they currently do not update in real-time, and the graphical 

interface itself is not needed for device operation. This demonstrative GumPack Web interface 

also provides early implementations of a health & wellness tracker, a device configuration panel, 

and file checkout using a registered GumPack account (see Chapter 7). 
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 GumPack Concept Model 
The rectangular cuboid object illustrated in Figure 2.2 is the initial GumPack concept 

model that consists of (a) up to four surface components, (b) four surface substrates, (c) a camera 

and a microphone, (d) wired connectors, and (e) a battery. Each surface component and substrate 

pair is connected by two 70-pin connectors. The Gumstix Overo board [39] (see Figure 3.1, left 

side) is a required surface component that supports core computing/control, component 

coordination, power management, and basic communication, while the configuration of the other 

surface components is flexible. A surface component can be a reflectance pulse oximeter, a two-

thumb ECG, a sensor conditioning board, an expansion board, or even another Overo board.  

One type of expansion board, e.g., a ZigBee coordinator, can create a local low-power wireless 

network, e.g., a body area network, using Chiclets: small, wearable, low-power wireless sensors 

(see Chapter 3 for a detailed description of each surface component).  

 

 
Figure 2.2. GumPack cuboid conceptual model.  

 

Figure 2.3 illustrates the GumPack communication flexibility in terms of wireless 

network functionality. The Wi-Fi module, in managed mode, enables the GumPack to potentially 

connect to a Hospital Information System via an access point. In ad-hoc mode, the GumPack is a 
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local data server for handheld devices to access.  For example, one could display processed PPG 

data on a nearby iPad. A local ZigBee network of Chiclets can coexist with a Wi-Fi mode.  For a 

use case of, e.g., ‘motion pattern recognition,’ Chiclets could be accelerometers that send data 

from different body locations to the GumPack while the GumPack simultaneously runs other 

medical device components.  

 

 
Figure 2.3. Wireless network architecture of a GumPack. 

 

From the perspective of standards and interoperability, the modularized, configurable, 

and expandable GumPack design will require specifications for ‘surface component’ design and 

medical data streaming. Such standards will be important for team collaboration, device 

upgrades, and integration with other information systems.  The ISO/IEEE 11073 standards 

(including the Personal Health Data subset) are being assessed as an interoperability complement 

to the transport standards (e.g., ZigBee, Wi-Fi, and USB) already supported by the GumPack 

hardware.  
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Chapter 3 - Surface Component Design 

The surface component (SC) and Chiclet concept provided by the GumPack platform 

serves two purposes: (a) traditional custom biomedical sensor design and (b) sensor integration 

and interaction based on the uniform interface provided on a GumPack, which functions as a 

medical components hub. The first item is addressed by four example SC designs and a generic 

SC template in this chapter, as well as a pulse oximeter Chiclet design in the next chapter. The 

second item unfolds in Chapters 7 through 9.   

A conventional way to upgrade a device typically involves redesigning the whole 

embedded system with new software support, such as utilizing a new CPU for a smart phone. 

With the GumPack platform, a more flexible and innovative approach is to plug in only the SCs 

that support the functionality a user really needs, such as a new biomedical sensor.  This is one 

major benefit of the GumPack design.  Four instantiations of GumPack SCs are described below. 

 Processor SC 
The primary SC hosts a processor and other system resources such as memory, a network 

interface, etc. The processor SC is a compulsory element in the GumPack design, whereas the 

other SCs are optional and depend on patient needs. A processor SC plugged into an SS form a 

minimum system.   

At present, this SC utilizes Texas Instruments’ OMAP3530 high-performance 

applications processor.  Several powerful subsystems housed in this chip include (a) an ARM 

Cortex-A8 microprocessor, (b) a TMS320DM64x+ digital signal processor, (c) an SGX graphics 

accelerator, and (d) a camera image signal processor.  It supports numerous HLOS and RTOS 

solutions, including Linux and Windows CE, providing maximum flexibility over a wide range 

of end applications.  More specifically, the Gumstix Overo board (see Figure 3.1 (left side)) is 

employed as a processor SC.  
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Figure 3.1. Gumstix Overo board (left) and custom wireless reflectance pulse oximeter 

(right). 

 

The Overo board size is 58 mm by 17 mm, which constrains the smallest GumPack size 

to 58 mm x 17 mm x 17 mm. This SC provides more signals than are defined on the 44-pin 

interconnection interface, e.g., camera signals, display signals, memory bus signals, JTAG 

signals, etc., many of which are directly derived from the OMAP3530 processor. Future use of 

these signals will depend on the GumPack applications employed.  

Other notable features of the Overo board include a Wi-Fi/Bluetooth module, which 

supports most GumPack wireless applications, and a Micro SD card module, which enables a 

fast switchover of the entire software system (even the boot loader), e.g., from onboard FLASH 

to the inserted Micro SD card. Current consumption is approximately 250 mA (500 mA with Wi-

Fi active). Actual power consumption will depend on the GumPack configuration and system 

resource usage (e.g., CPU usage, Wi-Fi active time, etc.).  
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 Motion Sensor SC 
Motion sensors have been widely embedded in consumer electronics, since they provide 

useful information about device attitude and user activity. Applications based on motion sensors, 

especially accelerometers, include screen auto rotation, game controllers, and system auto 

wakeup (using an inertial interrupt function). In the biomedical domain, motion sensors are used 

to monitor patients’ daily physical activity [40] or as a reference signal to reduce motion artifact 

in, e.g., ECGs [41] and PPGs [42].  

Given its ability to support generic applications, the GumPack design can be viewed as 

both a consumer electronics platform and a collection of medical devices (sensors). The first 

natively designed GumPack-ready SC is the motion sensor board in Figure 3.2 (top view) and 

Figure 3.3 (bottom view). The board size is 58 mm by 17.5 mm.  Two types of motion sensors 

are mounted on this SC board: one 3-axis accelerometer and two gyroscopes (1- and 2-axis). The 

relative x, y, and z directions are printed on the board (see the lower left corner in Figure 3.2). 

The accelerometer employs STMicroelectronics’s LIS33DE unit, an ultra compact low-power (< 

1 mW) three axis linear module. It sends the measured acceleration (including the direction of 

gravity) within the range of ±8 g through the I2C serial interface with an address of 0x1d. The 

gyroscopes are STMicroelectronics’s low-power LY510ALH (z-axis) and LPR410AL (x, y-axis) 

units. They provide angular rate data within the range of ±100 dps (degrees per second) through 

an analog output (connected to the ADC pins of the GumPack).  

A profile memory chip comes with all SCs and plays an important role in the GumPack 

Component Connection Framework (GCCF) introduced in Chapter 7. For the motion sensor SC, 

Microchip’s 24AA01, a low-power (< 1 mA) EEPROM, is adopted. A GumPack can access its 

1024 bits of memory space through the I2C serial interface with the address 0x50.  

On the bottom side of the motion sensor SC, one can find the two 70-pin connectors 

(header), as in Figure 3.3, that match the 70-pin connectors (receptacle) on the surface substrate. 

When the SC is plugged into the system, it is automatically identified (on the I2C bus) and 

authenticated (with information in EEPROM).  It can then begin to provide motion data, 

consistent with the functionality realized by the GCCF.   
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Figure 3.2. Motion sensor surface component (top view). 

 

 
Figure 3.3. Motion sensor surface component (bottom view) with two 70-pin connectors.  
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 Electrocardiograph SC 
An electrocardiograph (ECG) is a standard clinical device that is also popular in mobile 

health care environments.  It transduces tissue biopotential differences into millivolt-level 

electrical signals using differential electrode pairs. ECG variations are often distinguished by the 

number of leads employed (one ECG lead results from two electrodes), such as 3-, 5-, and 12-

lead configurations. In the context of a wearable medical device, a single lead ECG [43] can help 

to minimize device size and power consumption.  

An ECG SC is a single-lead ECG board natively designed for the GumPack, as in Figure 

3.4. The board size is 58 mm by 17.5 mm. Two electrodes are integrated into the top side of the 

board in the form of conductive solder pads. During the measurement, two digits (e.g., thumbs) 

from different hands need to be carefully placed on the two onboard electrodes and kept still 

without touching other electronic parts.  A single-lead ECG lacks a reference signal from a third 

electrode, which makes it different to manage relative to a regular 3-lead ECG system.  The ECG 

SC design is based on the Medical ECG Application Circuits described in Texas Instruments’ 

INA321 datasheet [44].  The TI INA321 is the instrumentation amplifier component, and the TI 

OPA2336 is the operational amplifier. 

 Two types of reference voltage schemes are available, as noted in Figure 3.4 (upper). 

The purpose of a reference voltage is to keep the ECG signal in the range of 0 to 3.3 V at all 

amplification stages, providing baseline wandering control. REF 1 is fixed at 1.65 V (or half of 

the power supply level). REF 2 is output by a digital-to-analog converter (DAC) from an Analog 

Devices AD5315 chip. The particular value of REF 2 is sent through the I2C serial interface at 

the address 0x0c. Given access to REF2, digital baseline control could lead to a full digital ECG 

circuit without an analog filter. Such a design could yield a high-fidelity, unfiltered (i.e., 

distortion-free) electrocardiogram.  A similar scheme was employed in the reflectance pulse 

oximeter mentioned in Chapter 4.  

 



20 

 

 
Figure 3.4. ECG surface component (top and bottom view). 

 

Figure 3.5 shows an alternative usage mode for the ECG SC. The electrodes (sensors) are 

transported separately from the board and plugged in when needed. Commercial electrodes offer 

hands-free measurement and higher signal quality. This is a typical example of using accessories 

to improve the functionality of a surface component while keeping the GumPack unit in a 

compact form factor. This use case also indicates that the sensors need not be housed on the 

same SC at all times, since the board acts only as a signal conditioning circuit and interface to 

the GumPack.  This concept will be elaborated upon in the section Generic Surface Component.  

Note that the jumper cap is also identified in Figure 3.5. In this case, REF 1 (half of the supply 

voltage) is selected.  

 



21 

 

 
Figure 3.5. ECG surface component with commercial electrodes. 

 

 ZigBee Coordinator SC 
The GumPack can host up to three biomedical devices or sensors in the form of SCs. To 

further extend its hosting capacity (e.g., to associate it with a body area network, where low-cost, 

low-power components are required), a ZigBee coordinator SC has been designed – see Figure 

3.6 and Figure 3.7. The board size is 58 mm by 24 mm.  

To simplify the design procedure, the same Jennic JN5139 wireless microcontroller is 

used in the ZigBee coordinator SC as was used in the wireless pulse oximeter in Figure 3.1 (right 

side). The JN5139 was designed for robust and secure low-power wireless applications.  It 

integrates a 32-bit RISC processor with a 2.4 GHz IEEE 802.15.4 (ZigBee) transceiver, 192 kB 

of ROM, 96 kB of RAM, and a mix of analog and digital peripherals. The wireless link requires 

the most current of all of the optional SCs, with a TX (transmitter) current draw of 38 mA and an 

RX (receiver) current draw of 37 mA. The CPU consumes 7.75 mA at full speed, and the current 

required by the peripherals (ADC, DAC, UART, Timer, etc.) is less than 1 mA in aggregate. The 

JN5139 sleep current (with an active sleep timer) is only 2.6 µA. When compared to the 250 mA 

current consumption of the Wi-Fi/Bluetooth module on the processor SC, the ZigBee coordinator 
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SC demonstrates its low-power advantage for a body area network (a 250 kbps data rate within a 

10 m range).  

 

 
Figure 3.6. ZigBee coordinator surface component (top view). 

 

 
Figure 3.7. ZigBee coordinator surface component (bottom view). 

 

Given the onboard USB bridge chip and mini-USB connector, the ZigBee coordinator SC 

can be programmed by and communicate with, e.g., a computer as a standalone device. These 

parts are needed because the firmware on the JN5139 module needs to be frequently updated in 

the development stage. Because of this feature, the GumPack could be the host to rewrite the 
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firmware on the JN5139 microcontroller. This is sensible, since a change in Chiclet functionality 

and topology warrants a corresponding change in the firmware of their coordinator SC (see 

Chapter 7).  

At present, data communication between a ZigBee coordinator SC and its GumPack host 

occurs only through either the UART or Intelligent Peripheral interface. A UART serial 

communication interface is a regular mechanism to communicate with other devices, while the 

JN5139 features a high-speed, low-processor-overhead Intelligent Peripheral interface that 

functions as an SPI slave. One significant advantage of using the Intelligent Peripheral interface 

is that transmitted and received data are held in a dedicated area of memory without CPU 

intervention.  

A surface component developer should note that the processor SC logic level is 1.8 V. 

Signals from other SCs need to be adjusted to match this level if they seek to communicate with 

one another. Since the JN5139 uses a 3.3 V power supply and its logic level is also 3.3 V, a 

voltage level translator is employed as shown in Figure 3.7. The TXB0106 is a 6-bit bidirectional 

voltage level translator from Texas Instruments. The 6 channels are used for SPI (4-bit) and 

UART (2-bit) data communication interfaces. 

 Generic Surface Component 
Three native GumPack-ready surface components have been introduced. Design patterns 

can be extracted from them as guidance for a broader category of surface component. Figure 3.8 

presents a generic surface component (GSC) model within the larger scope of the GumPack 

system.  The GumPack Component Connection Framework (GCCF) provides a software 

interface to SC interconnections – this framework is unfolded in Chapter 7. Here, the SC block 

diagram on the left of Figure 3.8 is the focus.  

The ‘Sensor’ block indicates a signal input module, including a sensor, conditioning 

circuit, and hardware interface. The ‘ID’ module is a memory chip storing SC identification and 

data communication information (e.g., data format). The ‘Actuator’ block is a module that 

receives information from the GumPack. It could be a real actuator, like a motor, or a feedback 

input on the sensor module.  
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Figure 3.8. Diagram of a generic surface component (GSC) and the interface to the 

GumPack Component Connection Framework (GCCF). 

 

The hardware interface to the GumPack core is both analog and digital.  The analog 

interface includes ADCs and DACs, which are unnecessary on the SC side, while the digital 

interface includes GPIOs and buses, which typically require corresponding bus controllers on the 

SC side. For the ID module, an I2C interface is required by the GCCF; the address should be in 

the range of 0x03 – 0x77 and different from other I2C addresses that have already been allocated.   

As noted for the ECG SC, neither the sensors nor the actuators are necessarily onboard. A 

system-level design of an infusion pump SC is introduced as an example to demonstrate how 

other medical devices could (partially) work within a GSC scheme. Information related to this 

discussion can be found in Texas Instruments’ Medical Application Guide – Diagnostic, Patient 

Monitoring and Therapy [45]. An infusion system often consists of (a) a fluid reservoir, (b) a 

catheter system, and (c) a device that combines electronics and mechanics to generate and 

regulate fluid flow. An infusion pump usually refers to the third element. Sensors (part of a 

sensor module), that monitor the flow passing through the catheter system, and a pump (part of 
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an actuator module) that drives the flow are both attached to the catheter system. Here, after a 

GumPack SC is connected to these two modules, an infusion system could be built to manage the 

process. Figure 3.9 illustrates this idea. Conditioning circuits and ADCs collect data from 

upstream and downstream sensors (flow feedback). The pump driver controls the stepper motor 

or servo in the pump. 

 

 
Figure 3.9. Infusion pump design using GSC model fitting. 
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Chapter 4 - Pulse Oximeter Sensor Design 

Health problems such as cardiovascular disease, hypertension, diabetes, and congestive 

heart failure continue to plague society [46].  These conditions are primary drivers for the 

development of wearable and mobile health monitoring technologies that offer the potential to 

(a) increase the quality of life for individuals that already suffer from these health conditions and 

(b) prevent or mitigate the onset of disease in those that are at risk to acquire these health issues 

[47].  Of the array of medical devices that can be brought to bear for wearable/mobile 

applications that address these diseases, pulse oximeters offer significant relative promise 

because they provide two clinically relevant health parameters (heart rate (HR) and blood 

oxygen saturation (SpO2)), they do not require electrical contact to tissue, and they can operate at 

very low power [23], [48]. Additionally, the pulsatile plethysmographic data offered by this 

light-based sensing technique (which are usually discarded by commercial pulse oximeters after 

being used to calculate the parameters for the front panel display) can help to ascertain 

hemodynamic information that is well-suited for the assessment of the disease states listed above 

[15], [49-51]. This information includes blood pressure [52], [53], arterial compliance [49], [54], 

[55], pulse wave velocity (PWV) [47], [56], stroke volume (and therefore cardiac output) [57], 

and other vascular parameters [50], [51], [58], [59].  Other relevant quantities include respiration 

rate [60], [61], patient motion [59], and even patient authentication [62-64].  

However, low-cost pulse oximeter designs are unavailable that provide (a) quality, 

unfiltered PPGs ideally suitable for research and education toward the realization of new PPG 

diagnostics and (b) positional flexibility suitable for mobile and surface-based applications.  

While PPGs are often accessible from commercial desktop units via serial ports, these data have 

been filtered in proprietary ways to stabilize HR and SpO2 calculations.  Further, due to their 

clinical prevalence, pulse oximetry and PPG analysis deserve coverage in biomedical 

instrumentation laboratories offered in secondary education curricula, yet low-cost pulse 

oximeters that provide reasonable-quality PPGs are not a staple in off-the-shelf educational kits.   

Regarding ambulatory pulse oximeters, it makes sense to consider reflectance-mode 

layouts for broader use with wrist watches, head bands, socks, sensor ‘Band Aids’, and other 

wearable platforms that are unobtrusive and well suited for mobility.  This is especially true 
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when one contemplates the immense potential of surface biosensors (SBs). In this paradigm, 

physiological sensors will be accessible and signals will be easy to obtain, as human factors 

considerations for the overall product design will drive ease of use for the integrated biosensors.  

Additionally, each SB will utilize its host device’s processor, memory, display, and wireless 

communication resources to provide user services typically unavailable in wearable platforms 

[65].  E.g., consider a reflectance pulse oximeter embedded on the back side of a cell phone 

alongside a built-in camera.  As the user holds their finger against the reflectance sensor, the data 

will be processed by the microprocessor in the cell phone, and the LCD screen will display the 

signals and parameters.  

In summary, the desire to extract additional physiological information from PPGs 

acquired with reflectance-mode sensors imposes design constraints with respect to signal quality.  

This chapter presents the design of a low-cost, wireless, reflectance–mode pulse oximeter 

suitable for these needs. It is initially housed on the surface of a printed circuit board but can be 

easily migrated to other surface-based applications.  A unique filter-free circuit (that digitally 

extracts the PPG waveform) and a two-stage, feedback-loop-driven control system enable the 

acquisition of unfiltered PPGs with 212 levels of precision from varied body locations. An 

optimized LED/detector configuration promotes surface use, and the device signal quality and 

cost enhance its potential for integration into SB-based consumer devices. This chapter presents 

a design for a filter-free, reflectance pulse oximeter that combines many desirable features into a 

single platform. A more detailed description of this design has been documented in the author’s 

thesis [59].  

 Requirements and Device Layout 
The design requirements are outlined in Table 4.1.  Signal requirements include quality, 

unfiltered PPGs whose baselines are digitally removed, consistent with the prior discussion. The 

high sampling rate ensures that (a) primary signal and noise components are adequately sampled 

without aliasing and (b) secondary noise harmonics, e.g., 120 Hz up to several kHz from 

fluorescent lighting, are not aliased on top of the signal components of interest. 
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Table 4.1. Wireless Reflectance Pulse Oximeter Design Requirements 

Signal 

Integrity Unfiltered data with an optimal SNR 

Precision Thousands of peak-to-peak digitization levels 

Sampling frequency ≥ 240 Hz to minimize PPG/noise aliasing 

Baseline subtraction Digital and filter-free 

Data availability  Full access to all pulsatile/baseline data  

Sensor 

LED/detector geometry Radial arrangement, large area, and 3-5 mm 

source/detector separation 

Ambient light operation Adjustable gain and reference baseline 

Functionality 

Communication  Wireless (10 m range) and USB 

Local storage Onboard flash memory 

Battery   USB-rechargeable; Multi-day lifetime 

Client Software  Visualization and control panel 

Application 

Measurement sites Multiple body locations; Various vascular 

profiles and perfusion levels 

Wearability Low-profile reflectance layout adaptable for 

wearable and SB applications 

Cost Low (~$100)  

 

Regarding sensor requirements, the photodetectors are ideally distributed radially around 

the central excitation LEDs to maximize the number of photons collected.  Further, an 

LED/detector separation of 3 to 5 mm is appropriate at these wavelengths, as it maximizes the 

AC/DC ratio for each sensor channel, as verified experimentally [18], [66] and with Monte Carlo 

simulations [64].  In other words, reflectance photons that contain DC information from shallow, 

poorly perfused epidermal layers reflect near the central excitation LEDs and are undetected.  

Photons collected at greater radial distances are more likely to have traveled deeper into blood-

perfused tissue and contain a greater percentage of AC data. Given the increased sensing area in 
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a large-area detector, the control circuitry must easily compensate for baseline changes due to 

ambient light, tissue perfusion, respiration depth, etc. 

Figure 4.1 shows the block diagram for the pulse oximeter circuitry; a brief description 

was also included in [67]. The LED, sensor array, and operational amplifier (OPA) circuitry are 

coordinated by a Jennic JN5139 microcontroller. The intensity and timing of the bi-color LED 

are controlled by a digital-to-analog converter (DAC) and digital input/output ports (DIOs), 

respectively. A signal from the sensor array (four photodiodes surrounding the central bi-color 

LED) is first buffered and then fed to a differential OPA circuit. The buffered signal, designated 

here as the first-stage PPG signal (entire AC + DC contribution), is sampled by an analog-to-

digital converter (ADC). Another ADC collects the second-stage PPG signal (the AC portion 

only) from the output of the differential OPA circuit that has a positive input from another 

microcontroller DAC.  

 

 

Figure 4.1. Circuit-level system layout. Coordinated by the microcontroller, signal 

baselines are digitally extracted as an alternative to conventional filtering. 

 

 No filters are used in the signal acquisition process, whose elements will be introduced 

in the section Closed-Loop System later in this chapter. The battery (unstable power source) is 

isolated from the PPG excitation and collection circuitry, since it is powered by the 
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microcontroller’s analog peripheral regulator (APR). Normally, the pulse oximeter uses a 

wireless link to communicate with a receiver on a PC, and data are stored on the PC through a 

MATLAB graphical user interface (GUI). A mini-USB connection can provide a wired interface 

to the PC while the battery is recharged. If neither the wireless link nor the USB connection is 

available, sampled data will be temporarily stored on the flash memory module (e.g., for store-

and-forward applications).  

 AC Extraction and Drift Resistance 
The first-stage PPG is characterized by a large DC portion and a small AC portion, as in 

Figure 4.2. The goal is to extract the second-stage AC signal by eliminating the DC component. 

(In many systems, a high pass filter extracts the AC signal.) If the DC portion instead remains, 

then obtaining hundreds to thousands of digitization levels in the AC portion over its small 

voltage range requires an ADC of very high precision (e.g., 16-bit), which is inappropriate for a 

low-cost, low-power-consumption device. This extraction, or DC removal, process is executed 

by the OPA unit. Its role is expressed as  

)( 12 SVGS ref −×=  (1) 

where S1 and S2 are the first-stage and second-stage signals, respectively, G is the gain of the 

OPA, and Vref is a user-defined reference voltage that functionally equates to the DC signal level. 

To show an upward-oriented PPG peak during systole as with a blood pressure curve, Vref is 

connected to the positive pin of the OPA, effectively inverting the AC signal amplitude prior to 

digitization. 

S1 is naturally unstable, as both its AC and DC levels are influenced by changes in 

intrinsic blood flow, extrinsic motion, respiration, background light, etc. These factors cause 

drifting in S2. The input voltage range, or digitization range, of the 12-bit ADC is set to [0, 2.4] 

V, so one digitization level is 2.4 V / 4095 levels = 0.586 mV. For example, given a gain G = 30 

and a constant Vref, one digitization-level increment in the DC signal results in a decrement of 30 

digitization levels in S2 according to (1). As in Figure 4.2, S2 may drift 0.3 V (512 digital levels) 

in 10 seconds, which is unacceptable because the signal will eventually clip at the lower bound 

of the sampling range, and clipped data mean signal corruption. To address this issue, (1) implies 

that one can adjust one or more elements on the right side to adjust the value of S2 on the left. In 
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this effort, a Vref adjustment is employed to resist S2 drifting, since Vref is an output of the DAC 

and can be easily updated. Vref is defined as 

++= VtMAVref )(  (2) 

where MA(t), the estimator of the DC component, VDC, is a W-point (e.g., W = 256) moving 

average of the first-stage signal over the time interval that ends at t. V+ (the adjustable term) is 

added to MA(t) to ensure that Vref makes S2 in (1) positive.  

 

Figure 4.2. A differential amplifier with gain G compares the first-stage PPG (S1) to a DC 

reference voltage to obtain the second-stage PPG (S2). 

 

Vref usually varies slowly (several seconds per digitization level change, in an 

environment with minimal motion and ambient noise), and the Vref adjustment leads to a 

discontinuity in S2. Hence, the Vref data must also be transmitted or stored along with the 

digitized second-stage data in order to restore the original PPGs, a process called 

“compensation.”   

Figure 4.3 shows a data set from the palm. Collected data are compensated to remove 

discontinuities caused by Vref jumps, or immediate value changes, in the pulsatile waveform 

using the following method. Inserting Vref from (2) into (1) and then rearranging the result 

isolates the first-stage signal, S1:    
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Figure 4.3. Palm PPG data before (blue) and after (red) compensation. 

 

The compensated second-stage signal, Ŝ2, can be represented as  

)(ˆ
12 SVVGS DC −+×= +

 (4) 

where V+ is added to VDC to ensure a positive Ŝ2. Substituting (3) into (4) yields  

))((ˆ
22 DCVtMAGSS −×−=  (5) 

Typically, VDC is an unknown constant, but it is sensible to initially set VDC = MA(t0) at time t0 

and define Vjump = MA(t) – MA(t0) at time t (t > t0) so that (5) becomes 

jumpVGSS ×−= 22
ˆ  (6) 

With this method, each PPG can be restored as long as the second-stage signal is 

unsaturated. The Vref adjustment effectively resists first-stage-signal drifting. For example, in 

Figure 4.3, the compensated signal drifts below 0 V after 6 seconds. If no Vref adjustment occurs, 

the subsequent signal is sampled as 0 V.  To calculate blood oxygen saturation, Vref is usually 

considered equal to VDC.  
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 Closed-Loop System  
The Vref adjustment mechanism not only helps to realize the AC extraction task; it also 

results in resilience in the PPG signal. In the control system, as illustrated in Figure 4.4, two 

closed loops provide stability for the whole data acquisition process. The closed loop in the 

lower left maintains the S1 value in a predetermined range, which is set by the Intensity 

Regulator that controls the led intensity via a DAC. The physical function of this control loop is 

to maintain the number of reflected photons at an optimal level within the active range of the 

photodiode, independent of a subject’s vascular and perfusion profiles [67]. The closed loop in 

the upper right prevents S2 from saturation, since the compensation method described in (6) 

requires an unsaturated second-stage signal. Upon detecting saturation onset, the Saturation 

Inhibitor adjusts the V+ component of Vref, which leads to a corresponding change in S2 

according to (1).  

 

 
Figure 4.4. Pulse oximeter control flow that illustrates how the first-stage PPG (S1) can be 

used to create the second-stage PPG (S2), where both signals provide feedback to stabilize 

the acquisition process.  

 

To maintain signal quality, the Intensity Regulator sensitivity should be minimized. 

When the regulator affects changes in LED excitation level, the influence on the first-stage 
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signal converted by the photodiode sensor array will be hard to predict because the blood-

perfused tissue between the LED and the sensor is an unknown system. Conversely, the 

sensitivity of the Saturation Inhibitor should be set high to ensure a rapid response to signal drift. 

Since this adjustment only influences Vref, the native PPG is uncontaminated, and the second-

stage signal can be compensated using (6).  

In a controlled scenario, ambient noise variations can be ignored. If the desired signal 

intensity increases as the LED intensity increases, the signal-to-noise ratio (SNR) will improve.  

However, this implies a saturation risk due to a second-stage signal with too large of a magnitude 

within a fixed digitization range, in spite of the aforementioned drift-resistant method. 

Additionally, a more intense LED consumes more power. So, an optimized intensity level should 

be empirically predetermined as the Intensity Regulator reference.  

 Removable Noise  
In the U.S.A, ambient light often includes a 60 Hz component and the associated 

harmonic noise, e.g., 120 Hz flicker from full-wave-rectified fluorescent room lights plus higher-

frequency harmonics. Most physiological information in a PPG resides in the range of 0-20 Hz. 

From the Nyquist-Shannon sampling theorem, the lowest sampling frequency, fs, should then be 

40 Hz, but to prevent ambient noise aliasing, sampling frequencies of at least 240 Hz are needed.  

Figure 4.5 depicts the magnitude spectrum of a PPG containing ambient noise. The heart 

rate component is 1.329 Hz, and its harmonics dominate in the frequency band below 20 Hz. At 

greater frequencies, noise is apparent at 60.02 Hz, 84.43 Hz (unclear source), and 119.9 Hz. 

Most of this noise is removable by post-processing as long as the sampling frequency is high 

enough that these noise components do not alias into the frequency range of the signal 

components of interest. Note that the raw signal exhibits a low SNR compared to PPGs from 

pulse oximeters that employ filters, but all signal components are intact and many can be 

removed to create a high SNR (see Figure 4.15). 
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Figure 4.5. An example of removable noise: (a) compensated PPG corrupted by ambient 

noise and (b) frequency spectrum of these data sampled at 240 Hz.  

 

 Motion Artifact 
Motion artifact is an issue for a pulse oximeter, especially in reflectance mode [15]. 

Existing literature focuses on signal processing to reduce motion artifact and restore PPGs [68]. 

Most methods assume that enough information exists in the corrupted signal for PPG recovery. 

However, if motion is severe, saturation occurs frequently and lasts for some time, leading to 

data loss. With this in mind, this development considered motion artifact to be a type of signal 

drift that can be partially addressed with a drift-resistant method (Vref adjustment); the design 

does not address motion extraction.  

Motion artifact can be classified into two categories: slight and severe. Figure 4.6 

demonstrates the severe condition characterized by three axes of hand motion, where the sensor 

is taped to the finger.  Movements are within a 10 cm range and occur at a rate of ~1 Hz. The 

PPG is severely corrupted (the fundamental frequency is 1.028 Hz), and it is clipped at the upper 

and lower bounds of the digitization range; many AC segments are lost and unrecoverable. 
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Figure 4.6. (a) PPG severely corrupted by hand motion along three axes. (b) Frequency 

spectrum of the 28 seconds of data sampled at 100 Hz. 

 

The slight condition refers to, e.g., slow body movements, where a PPG retains its 

general shape but contains spurious components relative to a still condition. To counteract this 

type of artifact, the shift-resistant method is promising and relies on the setting of an optimal 

assignment rate and window width for Vref adjustment. The DAC assigns the Vref value to the 

positive amplifier pin, and that voltage remains constant until the next Vref assignment to the 

DAC. The window size of the moving average filter (the DC estimation time delay, or count) and 

the rate of assigning Vref to the DAC (not the rate of Vref variation) influence the second-stage 

signal. An extreme case occurs when the window size W = 1 data point and the rate of assigning 

Vref to the DAC is A = fs:  motion will never influence the signal since MA(t) ≡ S1 and 

consequently S2 = G×V+ according to (1) and (2).  

As an illustration of slight motion response, Figure 4.7 shows three experimental records 

acquired under similar conditions (exaggerated deep respiration activity), where a different 

moving-average window width, W, and Vref assignment rate, A, is employed in each case. Only 

subplot (a) offers a reasonable representation of the PPG. A lower assignment rate (b) or wider 

window (c) causes the signal to drift severely, and some segments are nearly saturated. The 

empirical parameter pair (W = 256, A = fs) was adopted for Vref adjustment.  
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Figure 4.7. Three uncompensated PPGs acquired at fs = 240 Hz under similar slight-motion 

conditions but with different parameter pairs (W, A).  

 

 MATLAB Interface  
A MATLAB GUI allows a user to set/view communication parameters, visualize PPGs, 

process these data in real-time (e.g., digitally filter a signal with a linear-phase filter), and store 

raw data to files, making it a helpful development tool (see [59] for a full description). Figure 4.8 

illustrates an example data set obtained by this GUI, where acquisition options (e.g., Serial Port, 

Sampling Rate, Signal Channel, and Signal Processing Type) are specified on the left control 

panel. The upper axes display the raw PPG and baseline for the near-infrared channel, whereas 

the lower axes show the real-time calibration coefficient, R, calculated from the magnitudes of 
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the fundamental red/infrared frequency components using a Fourier transform method [64]. R is 

updated every 0.5 seconds using the previous 4 seconds of PPG data. An overall SpO2 value is 

achieved by calculating the median or mean of 40 consecutive R values (in a 20-second segment) 

and inserting the result into a pre-determined linear calibration equation. 

 

 

Figure 4.8. Pulse oximeter MATLAB GUI. In this example, a series of calibration 

coefficients (lower right) is extracted from the current data (upper right). 

 

 Device Prototype  
 Figures 4.9 and 4.10 contain top and bottom views of the pulse oximeter prototype, 

which consists of four main modules: microcontroller module, excitation LED module, signal 

sampling module, and power management module. The main printed circuit board is 41 mm by 

36 mm, excluding the antenna board. This hardware combines functionality from the Jennic 

JN5139-EK020 development kit with lessons learned from an earlier reflectance pulse oximeter 

design [66]. 
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Figure 4.9. Top view of the wireless reflectance pulse oximeter. 
 

 

Figure 4.10. Bottom view of the wireless reflectance pulse oximeter. 

 

A microcontroller module is the prototype kernel. The JN5139 wireless module, designed 

for robust and secure low-power wireless applications, integrates a 32-bit RISC processor with a 
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2.4 GHz IEEE 802.15.4 (ZigBee) transceiver, 192 kB of ROM, 96 kB of RAM, a mix of analog 

and digital peripherals (including four 12-bit ADCs and two 11-bit DACs), and up to 21 DIO 

ports. The wireless link requires the most current, with a TX (transmitter) current draw of 38 mA 

and an RX (receiver) current draw of 37 mA. The CPU consumes 7.75 mA at full speed, and the 

current required by the peripherals (ADC, DAC, UART, Timer, etc.) is less than 1 mA in 

aggregate. The JN5139 sleep current (with an active sleep timer) is only 2.6 µA.   

The excitation LED module uses a low-cost Marubeni SMT660/910 bi-color LED with a 

typical forward current of 20 mA and forward voltages of 1.9 V and 1.3 V for the 660 nm and 

910 nm sources, respectively. The 11-bit DAC output (0-2.4 V) provides excitation signal 

modulation by managing the power supply for the excitation LED module.  

The signal sampling module consists of OPA circuitry connected to the sensor array. 

Four API PDV-C173SM high-speed photodiodes are connected in parallel; their responsivity to 

wavelengths above 650 nm is more than 0.3 A/W. The photodiodes are arranged radially around 

the central LEDs and maintain a source/detector separation of 3-5 mm. The OPA chip contains 

two amplifier units. The sensor array signal is buffered at the first unit and amplified by the 

second unit.  

The power management module includes two chips: (a) a Silicon Labs CP2102 USB-to-

UART bridge that powers the pulse oximeter when the USB connection is detected and bridges 

data communication to the host and (b) an STMicroelectronics L6924D battery charger system 

with an integrated power switch for lithium-ion batteries which charges the battery when the 

USB connection is detected. An LIR2477 3.6 V lithium-ion rechargeable button cell with a 

capacity of 180-200 mAh serves as the power source when the USB connection is absent.   

Memory chips, indicators, and buttons are also housed on the board. Two Numonyx 

M25PX64 64-Mbit flash memory chips with SPI bus interfaces provide storage space when the 

pulse oximeter works in offline mode; each consumes 20 mA of current while being accessed.  

 Measurement Data  
The pulse oximeter prototypes were used to acquire hundreds of PPG records from 48 

different subjects that are 20 to 64 years old. Experimental results in this section were acquired 

in an indoor environment utilizing the prototype pulse oximeter. The results are categorized 

according to conventional location (fingertip) versus other locations (wrist, earlobe, temple, etc.).  
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Figures 4.11 through 4.14 illustrate 25 seconds of representative fingertip data from a 24-

year-old subject.  Both channels of PPG data, red and near-infrared, are uncompensated. The AC 

values of the near-infrared channel (Figure 4.11) offer 1.2 V peak-to-peak (i.e., 2048 digitization 

levels), and the AC values of the red channel (Figure 4.12) offer fewer digitization levels: about 

half compared to the near-infrared channel. Even without the use of analog or digital filters, the 

signal demonstrates distinguishable period and amplitude information useful for HR and SpO2 

determination. The SNRs of the raw near-infrared and red PPGs are 8.0, and 3.0, respectively.  

As shown in Figure 4.13 and Figure 4.14, up to seven harmonics reside in the spectrum of the 

near-infrared data (the inset shows frequency components above 5 Hz), and six distinguishable 

harmonics reside in the spectrum of the red data. Additionally, the PPG information and noise 

components (e.g., 60 Hz and 120 Hz grid noise) are clearly separated in the frequency domain. 

To further refine the signal, a properly designed digital band pass filter can be applied.  

 
Figure 4.11. Fingertip results: 25 seconds of near-infrared PPG data. 
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Figure 4.12. Fingertip results: 25 seconds of red PPG data. 

 
Figure 4.13. Fingertip results: 25 seconds of near-infrared magnitude spectra. 
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Figure 4.14. Fingertip results: 25 seconds of red magnitude spectra. 

 

Figure 4.15 displays another short segment of an experimental fingertip data set, where 

the raw near-infrared PPG is accompanied by its real-time filtered form within a MATLAB GUI. 

The filter is a 200th–order low pass filter with a 10 Hz cut-off frequency realized by the 

MATLAB function firls():  a linear-phase FIR filter that uses least-squares error 

minimization. This high order filter causes a time delay of td = (n–1)/(2fs) = 0.414 seconds, 

where n = 200 and fs = 240 Hz, where the time delay helps to visually separate the original and 

filtered waveforms. Since the peak-to-peak noise of the filtered signal is too small to be 

recognizable (< 1 digitization level) the SNR is assumed to be > 2048/1 if the signal amplitude is 

1.2 V.  



44 

 

 
Figure 4.15. Fingertip signal processing and digital volume pulse (DVP) analysis. 

 

Digital Volume Pulse (DVP) Analysis.  Cardiovascular parameters other than HR and 

SpO2 can be accurately extracted [47], [56], [58] given the quality of this DVP waveform. For 

example, the peak-to-peak time (PPT), as marked in Figure 4.15, can be used to calculate pulse 

wave velocity, which correlates to arterial stiffness, and “a” and “b” are used to calculate the 

reflectance index, which correlates to endothelial function.  Additionally, as noted in the 

Introduction, these unfiltered PPG waveforms could potentially lead to improved assessments of 

blood pressure and stroke volume via light. 

Figure 4.16 displays experimental data from the wrist at the three placement locations 

depicted in Figure 4.17. The signal quality in location 2 is obviously lower relative to the SNR in 

locations 1 and 3, but all three are suitable PPGs. At present, it is difficult to consistently obtain 

high quality PPG data from the wrist; that often requires the application of pressure to bring the 

optical sensor closer to the major arteries [64]. An operation to achieve the same effect (i.e., 

bending the wrist at about a 45° angle), was usually employed if the PPG had a low SNR. Since 

subjects demonstrate a variety of different arterial locations and depths at the wrist, sensor 

placement flexibility is essential to acquire commendable data sets at this body location, which 

was also noted in [69]. 
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Figure 4.16. Wrist PPGs corresponding to the placement locations in Figure 4.17. 

 

 
Figure 4.17. Pulse oximeter measurement locations on the left wrist.   
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New Pulse Wave Velocity (PWV) Estimation Approach.  Given the capability to 

acquire quality PPG data from the wrist (where the SNR dramatically improves with post-

filtering), a new approach to estimate PWV has been evaluated by the authors [70]. This 

approach compares near-infrared PPGs from two synchronized pulse oximeters placed at the 

fingertip and wrist of the same hand. PWVs can be estimated from several time 

differences/delays extracted from corresponding features on the two PPGs.   

Figure 4.18 displays two channels of data acquired from the earlobe. The near-infrared 

channel has an SNR of 5.7 and a peak-to-peak range of 1.0 V (1706 digital levels); the red 

channel has a much lower SNR of 1.8 and a peak-to-peak range of 0.6 V (1024 digital levels). 

 
Figure 4.18. Earlobe results: (a) near-infrared channel and (b) red channel. 

 

Respiration Activity Analysis.  Figure 4.19 (a) displays 120 seconds of experimental 

data from the temple that include respiration activity and a swallowing motion. There are 33 

respiration cycles present during the 120-second recording time (i.e., the respiration rate is 0.275 

Hz). An FFT was applied to ascertain the visibility of these events in the magnitude spectrum, as 

noted in Figure 4.19 (b). The peak at 1.679 Hz corresponds to the subject’s heart rate (100.7 

bpm) and the 0.266 Hz frequency component is likely the respiration rate.  
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Figure 4.19. Temple results: (a) time-domain PPG with respiration and swallowing motion 

and (b) the corresponding frequency-domain spectrum. 
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Chapter 5 - Onboard Tagging Technology 

Medical devices can be categorized according to their ‘intelligence quotient.’ Most 

medical devices are ‘dumb:’ they leave data interpretation to a clinician or host system, although 

they may locally display these data and provide notifications that, e.g., indicate whether 

parameters go out of range or whether measurements have been correctly acquired.  These 

devices are easier to regulate because their functional state spaces are limited and predictable. 

Alternatively, a ‘smart’ device might make contextual decisions based upon acquired 

data, including changes in how those data are processed or alterations to its operational state.  A 

smart device might also change its modes given remote commands.  Such devices would be 

clinically useful but difficult to verify and regulate since their operational state spaces would be 

significantly larger and more complex.  Devices that control other devices add a further layer of 

complexity and are not a feature of most systems slated for FDA regulation.  Note that devices 

that simply offer more features are not necessarily ‘smart’ (though they may be marketed that 

way) – contextual decisions must play a role.   

To further the dialogue regarding how the medical community might move from dumb to 

smart devices, it is valuable to specify basic issues that drive the use of dumb devices.  These 

include (a) hardware limitations (e.g., a low-power wearable device may host a microcontroller 

but offer limited processing, storage, and communication resources), (b) software and algorithm 

hurdles (e.g., besides the obvious resource limitations, a clinically-effective expert system on a 

small medical device requires broad collaborations), and (c) the need for clinical verification and 

validation, including FDA approval. 

Efforts have been made to improve the intelligence level of some formerly dumb medical 

devices. For instance, most commercial pulse oximeters can indicate the presence of motion 

artifact through an alarm. In that case, front panel readouts for heart rate and blood oxygen 

saturation will not update until valid data recommence. Various research efforts have focused on 

the detection and reduction of motion artifact, primarily within the context of the viability of the 

pulsatile photoplethysmogram (PPG) [68].  However, most of these algorithms are 

computationally complex relative to the normal physiologic parameter extraction process and 

would be a challenge to implement on a resource-limited device. 
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Even a standardized ‘motion detected’ indicator in a pulse oximeter data stream is a good 

step forward towards a ‘smart’ pulse oximeter.  While some manufacturers utilize this feature, it 

is customized for their device and often used only internally in the machine. This kind of 

indicator is referred to as a ‘tag’ in this dissertation, as tags have wide use in other daily contexts. 

For example, a price tag describes a commodity’s price, manufacturer, category, etc. Blogging or 

video blogging services such as YouTube use tags on entries to classify, search, and share 

information.  

The term ‘tag’ as defined here similarly provides concise but meaningful information to a 

medical device as well as to other devices that receive its data.  Any meaningful tag must be 

sensible and keep the device’s original functionality and data intact. A tag should update with 

newly acquired data, meaning it should only be valid for a specific data segment (see Figure 5.1). 

Such properties help to ensure, within reason, that a new device which employs tags is 

“substantially equivalent” to, e.g., a formerly approved device, allowing a 510(k) mechanism for 

U.S. device approval [71].  

This chapter discusses onboard tagging technology, which if standardized can improve 

medical devices and the healthcare services they provide. For devices with limited hardware and 

battery resources, onboard tagging promises advantages due to its light-weight computational 

requirement and its potential to optimize transmission time as well as the data that are sent to a 

host system. 

 Technology Overview 
This section addresses the need for onboard/real-time tags, the types of tags one might 

employ, the information they can convey, and some suitable tag formats.  The assumption is that 

tags mark the original data stream provided by a medical device, as in Figure 5.1. Once data 

frames accumulate to form a data segment with a predetermined length, a tag will be appended to 

the end of the segment. 

 
Figure 5.1. Tags embedded in an original data stream.  
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 Onboard and Real-Time Tags 
An ‘onboard’ tag implies that the tagging procedure is performed on the device and does 

not depend on external resources (human or machine) such as the receiver. Onboard tagging 

should be emphasized for these reasons:  

1. The receiver or host system cannot be guaranteed to be active, available, or capable 

enough to provide assistance, especially in the case of mobile devices. 

2. A device should know its data best, and a data point or segment is ideally processed 

right after being sampled, e.g., even prior to being packed into a data frame.  

3. A device is immediately improved if it can indicate characteristics of its current data 

and/or make independent decisions based on these tags, e.g., automated sleep control.    

4. For low-power, wearable/mobile devices, wireless data transmissions are the primary 

consumers of battery power.  Tags can help a device to (a) process its own data with a goal of 

sending processed parameters instead of raw data over the telemetry link and/or (b) decide when 

transmissions should be avoided, such as cases where invalid data are undesired and their 

transmission would unnecessarily reduce battery life. 

New tags can be created or updated as physiologic data are acquired and therefore should 

be attached directly to these data streams by the medical devices that provide the real-time data 

processing and transmission. This clearly requires that onboard tagging also be performed in real 

time. The following are other reasons why onboard tagging can or should be accomplished in 

real time: 

Tags are a condensed information set. They require few processing and storage resources 

compared to the routine tasks of a medical device. 

1. Old tags become irrelevant when new data emerge.  

2. Delayed tags offer limited correlation value when compared against current data 

segments.  

 Tag Type and Content 
While medical devices may record numerous pieces of information in tag form, tags fall 

into three broad categories (Table 5.1). Clearly, the stakeholders in column two may change 

depending upon the care scenario and device type. 
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Table 5.1. Tag Types Used in Onboard Tagging Technology 

Type Interested Group Primary Content of Interest 

I Device Designer Hardware, algorithm, and data states 

II Signal Analyzer Signal character and statistics 

III End User Alerts, physiologic indices, & data quality 
 

Type I tags indicate whether the device is functioning as designed. Such a tag could 

describe an internal system error, a system variable, a data sampling state, a control flow state, 

etc.; a role much like the information provided to a firmware developer when debugging a 

prototype. System level tags within this group could serve multiple usage roles.  For example, a 

tag that represents a hardware failure state could also serve as a warning for an end user or 

clinician.  

Type II tags focus on the signals themselves. Devices such as 12-lead ECGs have 

multiple signal channels, and each channel can have separate tags. Typical tags in this category 

may mark easy-to-discern statistical features related to one data segment, e.g., extreme values 

(valley and peak), amplitude (peak-to-valley excursion), number of cycles (amplitude swings), 

rising time (a counter may increment by one when a current data point is larger than the previous 

point), falling time (counterpart of rising time), etc. Looking at the extreme values as an 

example, if a tag indicates a certain number of lower-bound and/or upper-bound values for the 

given sampling range (e.g., a 10-bit ADC has the sampling range of [0, 1023] digitization levels), 

then the tagged signal segment is saturated to some level.  

Type III tags speak to clinical data viability and are a user friendly version of type I and 

type II tags. For an end user that has little or no professional knowledge regarding device design 

or signal interpretation, type III tags make it easy for them to understand what is happening to 

the device and the measurement data. For example, if a power source voltage goes below a 

threshold and generates a type I tag, then a second type III tag like “low battery” could be 

created as an alert. In another instance, a type II cycle-count tag may change abruptly compared 

to prior tags, presenting an apparent inconsistency, so a type III tag may be used to note that the 

current value has low reliability, the current signal quality is poor, or a longer measurement time 

is required. 
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A type III tag offers a higher level description of type I and II tags. It should arguably not 

be directly attached to the original data stream since it carries indirect information. A digital 

event log would be a more appropriate repository for these tags. As implied earlier, a 

transformation mechanism on the device would be responsible for presenting Type III tags to a 

common user. If the transformation process equates to a task such as the interpretation of raw 

data to create a physiologic index, then a prudent verification and validation procedure should be 

performed in advance. 

 Tag Format and Indices 
Since tags accompany the data stream, and new tags apply only to the current data 

segment, it is sensible to look at the data frame structure first. To give this discussion context, the 

custom pulse oximeter that employs serial communication is used as an example throughout this 

section. For this device, a data frame that contains one data point for each of four channels is laid 

out in Figure 5.2. The frame length is 18 bytes, with the first 8 bytes assigned to a unique MAC 

address, the next 8 bytes assigned to the four signal channels, and the last two bytes appended for 

frame integrity.  

 

 
Figure 5.2. Data frame structure for a custom pulse oximeter that employs serial 

communication (R: red channel; IR: near-infrared channel; AC & DC: pulsatile and 

baseline samples).  

 

A similar structure is adopted for a tag frame (see Figure 5.3).  A tag frame header is an 

eight-byte MAC address, except it is not the real device MAC address. A preset virtual MAC 
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(VMAC) is uniformly assigned to all tag frames. When the system detects a VMAC sequence, it 

knows the frame is a tag frame that holds tags for the current data segment.  

 

 
Figure 5.3. Tag frame structure for a custom pulse oximeter. The frame length is N bytes 

containing K tags.  

 

The tag frame length of N bytes is not fixed – it depends on how many tags the frame 

conveys. If we use a uniform tag size of 2 bytes, a tag frame holding K tags has a length of 

102 += KN  (7) 

bytes, where 2K bytes is the payload size and the remaining 10 bytes hold the header (8 bytes) 

and the tail (2 bytes). 

One issue regards the length of time a tag is active and the rate at which tags are 

assigned. Two indices, tag active time and tag density are introduced here. Tag active time 

denotes the duration for which a tag is active – usually one data segment. E.g., if a tag frame is 

yielded after each three-second data segment, tag active time = 3 seconds and tag delay = 1.5 sec 

(the average reporting delay over a three-second moving segment). Tag density is defined as 

#FrameData
#FrameTagDensityTag =  (8) 

For example, if the data frame rate (sampling frequency) is 240 Hz and the tag active 

time is 3 seconds, then the tag density = 1/720 = 0.14%. Tag density is important. A high tag 

density can lead to over-reporting and unnecessarily high bandwidth requirements, whereas a 

low tag density can increase the tag delay and make it more difficult for a system to respond to 

data anomalies in ‘real time.’ 
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Chapter 6 - Application A: Feature Detection on a Pulse Oximeter 

 Wireless, wearable medical devices promise a new degree of independence to those who 

need frequent health monitoring. The competent design of such devices can save resources and 

increase the integrity of the electronic health records that they populate. For instance, when 

corrupt data are locally processed and/or sent over a wireless link, computation cycles and 

battery power are wasted because these data are minimally useful for clinical decision making, 

with the caveat that corrupted data used for medical decision making can lead to high false-alarm 

rates and other serious consequences. 

Intelligent algorithms that run on devices and assess signal quality prior to wireless 

transmission and storage can help to mitigate these issues at a time when wireless devices and 

electronic patient records are proliferating. Such algorithms can (a) alert users/clinicians to the 

presence of poor data so that device adjustments can be made or (b) better inform devices that 

must autonomously determine follow-on tasks.  Consistent with the prior chapter on tagging, this 

chapter uses pulse oximeter PPGs as a context to illustrate how intelligent algorithms can be 

implemented on a device intended for mobile applications. 

The idea of intelligent pulse oximeter algorithms is not new; other efforts have focused, 

e.g., on motion artifact detection and reduction using various methods [68], [72-75]. However, 

the complexity of these algorithms (Fourier transform [72], independent component analysis 

[68], [73], wavelet transform [74], and adaptive filtering [75]) makes them unwieldy for 

microcontroller implementation (i.e., onboard application). Further, most of these approaches do 

not deal with signal classification prior to motion removal, which is meaningless in, e.g., a 

saturated PPG. This emphasis on motion artifact is sensible, as motion is the primary corruptor 

of PPG data and offers a substantive signal processing challenge, since the desired PPG signal 

and the undesirable motion artifact occupy the same frequency range and are not independent 

[76]. A comprehensive approach to data quality assessment in wireless devices would address 

motion specification, real-time processing, and information fidelity.  

1. Motion Specification.  Motion artifact is defined in a limited sense in the earlier 

literature, where motion-corrupted PPGs often retain the basic information in a ‘clean’ PPG 

waveform and are unsaturated. The term ‘severe’ used to describe motion in prior literature [68] 
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may not always refer to prominent motion, and PPGs designated as ‘clean’ [72] may carry mild 

motion artifact due to, e.g., respiration and normal tremors. In a real application, the motion type 

and degree should be considered prior to the use of processing algorithms, since different types 

of motion influence PPG data in different ways.  These motion types include user activities (e.g., 

sensor placement/adjustment, walking, task movements, gestures, and conversation) and 

platform movement due to vehicle motion/vibration, furniture movement, and sensor/clothing 

interaction. 

2. Real-Time Processing.  Onboard processing is needed on a wireless, wearable 

medical device if the designer (a) does not wish to waste battery power by sending corrupt or 

nonessential data and (b) hopes to preserve a complete record of the processed data when the 

wireless receiver is unavailable.  Further, processing must occur in real-time and not interfere 

with the data acquisition process so as to avoid missing data, data backlogs, and reporting delays.  

The notion of ‘real-time’ is context dependent, addressing the continuity of the signal processing 

approach as well as reporting delays imposed by the algorithms.  The code implementation 

method and memory requirement also affect algorithm feasibility. Given a device that reports 

only heart rate and blood oxygen saturation, an ever-present time delay of a few seconds satisfies 

the notion of ‘real-time.’ Here, a 1.5-second delay (the average reporting delay over a 3-second 

moving segment) is tolerated.  

3. Information Fidelity.  Motion data are typically discarded (e.g., filtered) by PPG 

processing methods [74], [75], yet these data might help to track user activity types and levels if 

properly isolated.  Ambient noise is removed for granted, yet these data might help to estimate 

the environment condition, e.g., room light intensity.  The formerly annoying information could 

be used as inputs to autonomous-device algorithms that control device functionality such as auto-

sleep and excitation LED intensity controls.  

This chapter presents an onboard feature-extraction and decision-making algorithm for 

PPGs acquired with a custom pulse oximeter sensor.  This algorithm affirms the absence of 

motion, the absence of signal saturation, and the presence of clean PPG data that remain.  The 

algorithm run time is evenly distributed across the firmware cycle and does not diminish the 

functionality of the original pulse oximeter.  Specifically, the algorithm first extracts four 

waveform features from the latest 3-second data segment and analyzes those features within a 

hierarchical decision tree that utilizes predetermined thresholds. The algorithm then calculates 
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physiological parameters from a “compact representation” structure. A MATLAB interface on a 

personal computer helps to visualize the features extracted, the algorithm flow, and the decision 

results, where all algorithm-related parameters and decisions are ascertained on the wireless unit 

prior to transmission. 

Most pulse oximeters use similar excitation/collection principles and ratiometric oxygen 

saturation calculations [77], but implementation methods for circuitry, firmware, sampling, and 

algorithms differ widely. Such variants of a base design imply algorithm transplantation issues 

between devices. Therefore note that the algorithm presented here was initially implemented on 

the pulse oximeter described in Chapter 4 – a nonconventional reflectance-mode device that 

provides completely unfiltered PPGs. The following sections briefly describe this design to help 

the reader better understand the new feature-extraction and decision-making algorithm.  

 Algorithm Flow   
Figure 6.1 depicts the feature detection algorithm flow. Four data channels that are 

customary for pulse oximeter design are continuously sent to a MATLAB interface. The 

algorithm on the wireless pulse oximeter first intercepts a 3-second segment of the latest four-

channel data set, where the PPG data are sampled at 240 Hz since these data may include 120 Hz 

components from full-wave-rectified room lights.  However, 240 Hz is overkill for the feature-

extraction process and slows it down, so the algorithm downsamples the signal at a decimation of 

8, yielding PPGs sampled at 30 Hz, which still meets the Nyquist criterion for the fundamental 

frequency and secondary harmonics expected in a quasi-periodic PPG [78].  
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Figure 6.1. Feature detection algorithm flow. The wireless reflectance pulse oximeter 

appears on the left.   

 

Once downsampled data are available, features are extracted at each sample time and 

summarized at the end of each 3-second segment. Rule-based decision results [79] are sent to the 

MATLAB interface. Decisions address (a) the degree of motion detected, (b) the signal 

saturation status, and (c) PPG quality. 

Finally, a “compact” signal representation is created, where the goal is to further simplify 

each downsampled PPG to obtain the least number of samples that represent its period and 

amplitude. This simplification is helpful if one wishes to implement such an algorithm on a 

microprocessor with limited resources. The process starts with triangular structure identification 

in the downsampled data set, where each set of three consecutive samples is evaluated to see if it 

creates a triangle with the middle point as a peak or valley, as in Figure 6.2. If the PPG is 

unsaturated, then two triangular structures are of primary interest as they are interlaced in the 

“compact representation.” For the left (blue) triangle in Figure 6.2, the middle point is identified 

as a local minimum, as it is less than the two points on either side of it. Analogously, for the right 

(red) triangle, the middle point is identified as a local maximum. 
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Figure 6.2. Triangular structures identified for the “compact representation.”   

 

If the decision based on the extracted features is favorable, i.e., a valid pulsatile signal 

exists, then the physiological parameters of heart rate (HR) and blood oxygen saturation (SpO2) 

calculated from the “compact representation” are also stored with the raw PPG data. 

Additionally, they can be used as decision-making inputs, since calculated HR and SpO2 values 

should be in a reasonable range. 

Signal processing steps are distributed across each 3-second segment, yielding 

“streaming signal processing.” This makes the best use of resources that remain after the data 

acquisition, storage, and transmission functions are performed. The feature-extraction algorithm 

is noted below in pseudo code. 
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While (New raw data point is sampled) 

{ 

 *Update features with the new data point;  

 Update downsampled data point to X; 

 If (X is ready) 

 { 

  Update features with X; 

  Detect triangular structure with new X; 

  If (Triangle detected) 

  { 

   Add peak/valley to compact representation; 

  } 

 } 

 If (Current segment is done) 

 { 

  Initialize for next segment; 

  Notify main() function; 

 } 

} 

*Feature 1 (baseline variation – introduced in the next section) is the only feature updated 

each time a new raw data point is available. 
 

This code segment is included in the timer interrupt routine of the microcontroller 

firmware where the normal pulse oximeter control code resides. A “flag” is set at the end of each 

3-second segment to be detected by the main() function, where the “compact representation” 

code is implemented using the data stored in a CR[] array. The CR[] memory space should be 

released prior to being accessed by the code in the timer interrupt routine.  The pseudo code for 

this part of the algorithm is described below. 
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While (Notified) 

{ 

 Copy compact representation to a new array A;  

 For (i = 1 to length of A) 

 { 

  If ((A(i)+Tolerance) < A(i+1)) 

  { 

   Amplitude = A(i+1) – A(i);  

   Cycle count ++;  

  } 

 } 

 Repeat the code for the other channel;  

 Calculate HR from cycle count; 

 Calculate SpO2 from Amplitudes; 

} 

 Feature Selection  
Features must be efficient and effective, but highly effective features, e.g., higher order 

statistics and bi-spectrum analyses as in [80], can require complex calculations. This efficiency 

versus effectiveness tradeoff challenges the feature selection process. After evaluating many 

features in light of this tradeoff, four PPG features were selected: (a) baseline variation count, (b) 

rising time, (c) falling time, and (d) saturation index.  

To statistically validate these features, ‘clean’ PPGs were first collected from 20 subjects 

of ages 20 to 64 years (signal quality like Figure 6.15). Each sequence was longer than 30 

seconds to ensure the acquisition of at least 10 3-second segments, yielding 200 segments in 

aggregate. Features were extracted from each segment, and the mean and standard deviation of 

each feature were calculated for each person.  

Regarding the extraction of Feature 1 (variation of baseline, Vref), one can note that Vref is 

adjusted to prevent signal saturation and that motion is the predominant cause of saturation and 

severe baseline fluctuations. Hence, frequent baseline value changes suggest that either motion is 

present or the signal amplitude is too large, i.e., already saturated. The latter condition is usually 
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temporary and soon disappears via the LED intensity autoregulation mechanism. (The related 

saturation index (Feature 4) will be introduced momentarily.) 

Feature 1 is the only feature directly obtained from the 720 points in a raw data segment 

(3 seconds of data sampled at 240 Hz). When the baseline value varies either up or down, 

Feature 1 is incremented. Figure 6.3 illustrates the Feature 1 statistics from 20 subjects, where 

the height of each bar is the average number of baseline fluctuations over 10 of each individual’s 

3-second segments, and the line at the top of each bar is the corresponding standard deviation. 

All bar heights are less than 120, and the mean of Feature 1 is 47.  

A similar chart for motion-corrupted PPGs would be hard to create, as it would require a 

clear method to quantify motion degree and a sensible means to identify the minimum degree of 

acceptable motion; these issues commonly arise in the literature that addresses PPG motion 

artifact. Here, we circumvent it by defining a motion degree index based on the assumption that 

Feature 1 is proportional to motion severity. 

 

 
Figure 6.3. Feature 1 (baseline variation count) statistics for 20 subjects.  

 

Features 2, 3, and 4 are complementary, as they track signal trends in 90 points of 

downsampled data in a 3-second segment at 30 Hz. This pseudo-code applies: 
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Copy 90 points of downsampled data to an Array D; 

 

For (i = 1 to 89) 

{ 

 If (D(i+1) > D(i)) 

 { 

  Rising count ++;  

 } 

 If (D(i+1) < D(i)) 

 { 

  Falling count ++;  

 } 

 If (Both D(i+1), D(i) == 0 or 4095) 

 { 

  Saturation index ++;  

 } 

} 
 

Figures 6.4 through 6.6 depict feature statistics given the same data used for Figure 6.3. 

Feature 2 (rising count) has a mean of 28, Feature 3 (falling count) has a mean of 60, and Feature 

4 (saturation index) has a mean less than 1. Count fluctuations are slight, as the standard 

deviation for each is less than 4 for these subjects. 
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Figure 6.4. Feature 2 (rising count) statistics for 20 subjects.  

 

 
Figure 6.5. Feature 3 (falling count) statistics for 20 subjects. 
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Figure 6.6. Feature 4 (saturation index) statistics for 20 subjects. 

 

The Feature 3 to Feature 2 ratio in Figure 6.7 warrants attention. The mean of 2.2 

sensibly represents the asymmetry in each PPG cycle (see Figure 6.15), which features a steep 

rising slope and a mild falling slope. In other words, the diastolic interval is roughly two times 

longer than the systolic interval. This special ratio is seldom created by normal motion and 

ambient noise. For instance, when the pulse oximeter is removed from the patient and laid on a 

desktop to merely receive ambient light, the resulting signal resembles a sinusoid with a 

falling/rising ratio close to 1. If motion is simulated, it also usually creates a sinusoid-like signal; 

periodic motion with a falling/rising ratio similar to that of a normal PPG is unnatural. 

Data from this first group of 20 subjects were supplemented with data from 27 subjects to 

complete model training and validation. In each session, an investigator handed a reflectance 

pulse oximeter to a subject, who was instructed on how to place the device. Data were recorded 

during the whole process (lasting for minutes), and these data typically consisted of a relatively 

large portion of data corrupted with random motion/operation versus a relatively small portion of 

valid PPG data (see Figure 6.16 for an illustrative data set). 
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Figure 6.7. Ratio of falling time to rising time statistics for 20 subjects.  

 

 Observations and Hierarchical Decision-Making  
The four selected features are represented by three observations for use with the decision-

making algorithm, as listed in Table 6.1. Inspired by the hierarchical clustering method 

introduced in the statistical signal classification approach in [81], we use a three-step hierarchical 

decision-making approach with these four features. The decision hierarchically walks through 

the following assessments: (a) motion status, (b) saturation status, and (c) signal quality, as in 

Figure 6.8.  
 

Table 6.1. Observation Description Given the Original Four Features  

Feature Observation 

Feature 1: Baseline Variation Count Observation 1 

Feature 4: Saturation Index Observation 2 

Feature 2, 3: Ratio of Falling Count to Rising Count Observation 3 
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Figure 6.8. Three-step hierarchical decision-making approach.  

 

In Step 1, the motion condition is detected based on a single input: Observation 1.  

(Decision-rule details are laid out in the next section.)  If a decision result indicates that no 

motion is present, Observation 2 is used to decide the signal saturation status. The decision rule 

in Step 2 couches the decision result in terms of whether the signal can pass through to the next 

decision step. For example, a signal of pure ambient noise can easily walk through the first two 

steps; however, the decision rule for Step 3 that concludes signal quality from Observation 3 

(Feature 3 to Feature 2 ratio) will reject the noise signal and disqualify other non-PPG signals. 

PPG data passing through the entire hierarchy are ‘free’ of motion, ‘free’ of saturation, and valid. 

A binary Bayesian hypothesis testing method [79] is used to create the three decision 

rules in Figure 6.8. Each hierarchical step contains two possible hypotheses, H0 (null hypothesis) 

and H1 (alternative hypothesis), corresponding to two probability density functions, p0 and p1. 

Taking Step 3 for example, H0 denotes a valid PPG, whereas H1 denotes an invalid PPG. Under 

each hypothesis, an observation x is distributed as  
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where pi is normally assumed to be a Gaussian distribution, consistent with the Figure 6.9 and 

Figure 6.10 histograms. Note that 200 and 1148 segments were used for the histograms in Figure 

6.9 and Figure 6.10, respectively.  

 

 
Figure 6.9. Histograms of Observation 3 for valid PPG data.   
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Figure 6.10. Histograms of Observation 3 for invalid PPG data.   

 

The Bayesian decision rule is given by  
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where the likelihood ratio, L(x), is defined as  
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where, πi is the prior of the two hypotheses and Cij is the cost incurred by choosing Hi when Hj is 

true. Although uniform costs and equal priors (τ = 1) are initially adopted here, these variables 

can be further utilized in machine learning development. For example, the prior of H0 increases 

if valid PPG data have been continuously acquired for a long time, and the cost of falsely 

accepting corrupted data as valid PPG data can be considered higher than the cost of falsely 

rejecting valid PPG data as corrupted.  
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To evaluate the performance of the hypothesis testing method, two indices, PD 

(probability of detection) and PF (probability of a false alarm), are employed for each step, as in 

Table 6.2. PD is probability of deciding H1 when H1 is true; PF is the probability of deciding H1 

when H0 is true. 200 segments were used for each observation under each H0; 1148 segments 

were used for each observation under each H1.   
 

Table 6.2. Hypothesis Definition and Pd for Each Step 

Step H0 PD 

1 No Motion Motion correctly detected  

2 No Saturation Saturation correctly detected 

3 Valid PPG Invalid signal correctly detected 

H1 is the opposite of H0.  

 

Figure 6.11 depicts the occurrence of Observations 1 and 2 under H0. For example, 

Figure 6.11 (a) plots the number of segments as a function of baseline variation with the goal to 

set the threshold high enough to achieve a zero PF, where a signal with no motion will never be 

tagged as motion corrupted, and a signal that is unsaturated will never be tagged as saturated. 

An extra 891 segments from the 27 subjects (33 from each) were available for model 

validation. If all of the data segments with valid PPG data that are embedded in a generally 

corrupted data set could be accurately detected, then the validity of the feature detection 

algorithm could be demonstrated. Note that model training and validation processes are 

implemented on a PC; training results (hypothesis thresholds) are programmed into the pulse 

oximeter module for onboard application.  
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Figure 6.11. Histograms of (a) Observation 1 for no motion and (b) Observation 2 for no 

saturation. 
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 Communication Protocol and MATLAB Interface 
Wireless communication (between the pulse oximeter and a receiver board on a PC) and 

serial communication (between the receiver board and the MATLAB interface) utilize a frame 

structure as illustrated in Figure 6.12 and Figure 6.13. The data frame (Figure 6.12) length is 18 

bytes, with the first 8 bytes assigned to a unique MAC address, the next 8 bytes assigned to the 

four channels of signal data, and the last two bytes appended to ensure frame integrity. At the 

end of a 3-second segment (720 data frames), an extra tag frame (Figure 6.13) is transmitted or 

received that contains extracted features and decision-making results. A tag frame begins with a 

pre-specified universal virtual MAC address to be identified by the MATLAB interface. Its 8-

byte payload includes Feature 1 (2 bytes), Feature 2 (1 byte), Feature 3 (1 byte), Feature 4 (1 

byte), three binary hierarchical decision results (1 byte), heart rate (1 byte), and SpO2 (1 byte). 

Figure 6.14 illustrates the MATLAB visualization interface. Its purpose is to visualize the 

algorithm implementation process and manually verify decision results. Note that no signal 

processing algorithms are implemented on this interface; it merely displays signals, signal 

features, decision results, and HR and SpO2 values transmitted by the pulse oximeter. The 

interface also incorporates a control panel to assign communication parameters and control raw 

data storage (Figure 6.14, upper left). The two small plots (Figure 6.14, lower left) display four 

features that update at a 3-second interval. The plot on the upper right depicts the original PPG, 

and the plot on the lower right depicts the “compact representation” for the latest 3-second 

segment. An information bar between the upper and lower plots displays the decision result:  

“Severe Motion Detected,” “Valid Pulse,” “Signal Saturated,” etc. 

 

 
Figure 6.12. Data frame structure used in wireless and serial communication. 
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Figure 6.13. Tag frame structure used in wireless and serial communication.  

 

 
Figure 6.14. MATLAB interface developed to visualize the feature detection algorithm 

results. All algorithm-related parameters and decisions are ascertained on the wireless unit 

prior to transmission.  

 

 Downsampling and Compact Representation 
Figure 6.15 illustrates an example of the downsampling and “compact representation” 

process. The downsampled signal in Figure 6.15 (b) presents the basic shape/trends of the raw 

signal in Figure 6.15 (a). The “compact representation” in Figure 6.15 (c) obtained from the 

downsampled data also retains the basic period and amplitude characteristics of the raw signal 
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required for HR and SpO2 calculation, respectively. These three waveforms are time aligned, 

presenting the same number of full waveform cycles and amplitudes; hence, the data reduction 

process is an effective way to lessen the algorithm’s computational burden. Additionally, the 

“compact representation” also attempts to keep the dicrotic notch on the down slope of each 

cycle, which offers the opportunity to further extract physiological parameters such as 

reflectance index [58] and stiffness index [47], [56].  

 

 

Figure 6.15. Time-domain depiction of (a) an original PPG, (b) its downsampled 

representation. and (c) its “compact representation.”   
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 Feature-Extraction and Decision-Making Performance 
An excerpt collected from one of the 27 additional subjects is depicted in Figure 6.16.  

The 99-second set consists of 33 3-second segments, notated as segment 1 to 33. The feature-

extraction algorithm yields four features for each of the 33 segments, as displayed in the bar 

charts in Figure 6.17.  The three hierarchical decision rules and their corresponding detection and 

false-alarm probabilities are listed in Table 6.3.   

Based on the features in the bar charts in Figure 6.17 and the thresholds in Table 6.3, 

segments 1, 16-20, 24-26, and 30-33 in Figure 6.16 are tagged as “No Motion” (marked with the 

symbol ■). Of these segments, segments 1, 17-19, 24-25, and 30-33 are tagged as “No 

Saturation” (marked with the symbol ●) and are pushed to Step 3 in the decision hierarchy. After 

Step 3, segments 17 and 30-32 are eventually tagged as “Valid PPG” (marked with the symbol 

V).  

 

 
Figure 6.16. A typical data set consisting of 33 three-second segments.  

 

These results coincide perfectly with the classifications determined by manual waveform 

observation. In a statistical validation experiment with 891 randomly selected segments, a 

decision success level of 99% was achieved, where the remaining 1% of incorrect decisions 

resulted primarily from the presence of a state transition segment such as segment 19 or 24 in 

Figure 6.16. An additional feature to indicate the consistency between consecutive segments may 

mitigate this type of error. 
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Figure 6.17. Four features extracted from the 33 segments.   

 

Table 6.3. Hierarchical Decision Rule Results 

Step   Threshold  PD PF 

1 180 > 99.9% < 0.1% 

2 10 > 99.9% < 0.1% 

3  1.78 81.0% 21.5% 

Note: A decision fusion [82] result is unavailable since each hierarchy is based on different 

hypotheses. 
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Chapter 7 - Sensor Integration and Interaction 

 The remaining chapters will focus on multiple biomedical sensors, medical devices, and 

other medical components in small or large scale health care systems. This chapter addresses a 

low level sensor integration and interaction framework based on the GumPack platform that 

includes SCs and Chiclets.  

 Surface Substrate and Interconnection Interface 
The GumPack model is fundamentally composed of four surface substrates (SSs) and 

four surface components (SCs). Each SS provides connection support for a SC that is snapped 

on. Besides two 70-pin connectors between each paired SS and SC, the connection support 

includes the interconnections between the four SS-SC pairs.  

Figure 7.1 shows the surface substrate prototype. The board size is 84.4 mm by 32.8 mm. 

A “Surface Component Place Here” region is marked on the SS in between two mounted 70-pin 

connectors (the receptacle). The interconnection interface region is also denoted in Figure 7.1. It 

consists of two rows of vias. The first row receives connections from the previous SS, and the 

second row offers connections to the next SS.  

 

 
Figure 7.1. Surface substrate circuit board (fully populated version). 

 

A standard SS board with only the 70-pin connectors populated is intended for use with a 

regular SC such as a biomedical sensor board. For a SC with a core processor, e.g., a Gumstix 

Overo board, a fully populated version is required as in Figure 7.1. These extra parts include (a) 
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a 3.3 V voltage regulator, (b) a 1.8 V voltage regulator, (c) a USB bridge, (d) mini-USB 

connectors, and (e) switches and LEDs. This SS provides power selection (USB or battery) and 

supply, USB connection to other devices (e.g., a personal computer), and a GumPack reset. 

Typically, the interconnection interface chain starts with a fully populated SS.  The 

interconnection interface is a subset of the 140 pins (2 x 70 pins) plus several power supply lines. 

Each row on the interface has 44 vias, designated as pin 1 to pin 44 (left to right in Figure 7.1). 

The pins apply to these functions:  

• Power supply (3.3 V, 1.8 V, GND) 

• GPIO (General Purpose Input/Output) 

• 1-Wire bus 

• I2C bus (address range 0x03 – 0x77) 

• SPI bus (two chip selection) 

• UART (Universal Asynchronous Receiver/Transmitter) 

• PWM (Pulse Width Modulation) 

• ADC (10-bit analog-to-digital converter).  

A full pin assignment/definition is described in Appendix A – GumPack Hardware 

Interconnection Interface. Note that a pin can be multiplexed, as most buses can be configured to 

GPIO. For example, pin 3 (GPIO171_SPI1_CLK) can be used as either a GPIO or a clock signal 

in SPI bus 1. 

 Cuboid Assembly 
The GumPack cuboid conceptual model was illustrated in Figure 2.2. The main parts 

(surface substrates (SSs) and surface components (SCs)) were introduced in the previous text. A 

solid cuboid structure is yet needed to support up to four SSs that allow four SCs to plug in.  

Figure 7.2 illustrates the inner cuboid design created with SolidWorks CAD software. The 

physical part (see Figure 7.3) was machined with the assistance of the KSU Department of 

Mechanical & Nuclear Engineering. Its dimensions are 84.8 mm x 28.9 mm x 28.9 mm. This 

inner cuboid shell provides a rigid structure for SS circuit boards and can hold a battery and two 

antennas via two cylindrical voids.  
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Figure 7.2. SolidWorks design of the GumPack inner cuboid. 

 

 
Figure 7.3. Machined GumPack inner cuboid. 

 

A type 18650 3.7 V Li-ion rechargeable battery  (size:  64.9 mm by 18.3 mm) powers the 

GumPack. The UltraFire battery shown in Figure 7.3 has a capacity of 2400 mAh. UltraFire also 

provides a 3600 mAh battery (the 18650), which could power a GumPack with a continuously 

transmitting Wi-Fi connection up to 6 hours, assuming the current consumption is 600 mA on 
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average. When fully charged, the battery voltage is around 4.0 V, and the GumPack processor 

SC works normally until the battery voltage drops below 3.2 V.  A fully assembled GumPack 

prototype will be presented in Figure 7.9 later.  

 Software Architecture 
The following sections addresses the software architecture and component framework 

envisioned for the GumPack.  Software supplements will focus on the following:   

1. Field definition of the profile/memory chip on each surface component that is 

consistent with hardware and software level standards.  

2. Finite state machine for the interaction between surface components and the GumPack 

core. 

3. Implementation and evaluation of each state while considering efficiency (system 

resource optimization) and security.  

4. Automation and optimization of the processes of component connection and 

disconnection (plug-and-play). 

5. Application interface definition and integration of the GumPack app library for the 

automation of app installation and execution.  

From a software architecture perspective., the GumPack, through the OMAP3530 

processor, supports several operating systems, including Android, Linux, and Windows CE. To 

accelerate software development, Angstrom, a commonly used Linux distribution for a variety of 

embedded devices, is employed as the software platform for the GumPack. Angstrom is also well 

supported by the OpenEmbedded development environment. OpenEmbedded utilizes BitBake to 

cross compile an embedded Linux. In the case of the GumPack, a personal computer with an 

Ubuntu operating system and an OpenEmbedded build system is used to develop another 

operating system Angstrom for the GumPack.  

Figure 7.4 shows the enormous software architecture that is built upon the GumPack 

hardware. It is by convention divided into (a) kernel space and (b) user space. In this section, a 

brief description is provided for each block of the software architecture. The following sections 

elaborate on some of the more important components.  

The kernel space deals with the operating system kernel, driver, and boot loader. U-Boot 

is used as the boot loader for the GumPack – the first piece of software that can be programmed. 
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Pin multiplexing is typically done by U-Boot.  For example, pin 3 (GPIO171_SPI1_CLK) on the 

SS board is defined as a clock signal in SPI bus 1 rather than a GPIO. To use pins in the user 

space (e.g., switch an LED on via a GPIO), U-Boot should explicitly export them to the kernel, 

where the kernel further exports them to the user space. A script can be created to do boot time 

configuration of the board, do low-level testing, or set up the U-Boot environment. Linux kernel 

(device driver) programming typically uses kernel modules for the GumPack, which allows a fast 

installation of device drivers into the kernel without rebuilding the kernel.  

 

 
Figure 7.4. GumPack software architecture. 
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A shell is a command line interpreter that is frequently used in the GumPack. It links the 

kernel and user space for typical uses such as these:  

1. System configuration (e.g., to set up the network interface in the file 

/etc/network/interfaces) 

2. Package installation (e.g., to install a Java Virtual Machine (JVM) using opkg 

install cacao) 

3. Implementation of all kinds of system commands and user applications (e.g., ./myApp) 

The user space has a three-layer architecture (from bottom to top as in Figure 7.4): 

Service, Framework, and User Interface. The Service layer provides three basic services. (a) The 

Database Management System (DBMS) service records and manages all incoming user data, 

e.g., aggregated sensor data. Data can be organized in the file system within hierarchical folders 

or maintained by commercial DBMS software like MySQL. (b) The JVM service provides a 

platform for Java applications (e.g., the MDCF client is fully implemented in a JVM). (c) The 

Communication service controls wireless network access (as a client) or creation (as a host).  An 

example would be the creation of an ad-hoc network for other handheld devices to locally access 

a GumPack web server. The Framework layer provides interconnection and interoperability 

standards for surface components (e.g., GCCF and IEEE 11073) and the GumPack itself in a 

large medical device cooperation environment (e.g., MDPnP, MDCF, or IEEE 11073). The User 

Interface layer supports three means by which a user can access the GumPack. (a) A Secure 

Shell (SSH), a remote shell, and (b) a Serial communication link are aimed at developers who 

need real time access to the system. (c) A Web Server is a user-friendly channel to access the 

PHR maintained by the GumPack.  

A particular application (APP), e.g., for a motion sensor SC, links to all three layers. Its 

position can be considered parallel to all three layers and on top of the kernel.  A motion sensor 

SC is ‘connected’ by the GCCF framework, its data are stored by the DBMS service, and a user 

reads a motion waveform through the Web Server interface, which utilizes the Communication 

service.   

 GumPack Component Connection Framework 
The GumPack design allows one to integrate biomedical components in an efficient and 

flexible way. New device functionality is added to a GumPack by plugging in or switching in the 
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corresponding surface component. Such a means to design medical devices may attract 

developers’ attention, resulting in a large collection of SCs available to GumPack users.  This 

section addresses the means to regulate these third-party components and automatically call the 

corresponding APPs without user intervention.  

The GumPack Component Connection Framework (GCCF) is a software interconnection 

protocol based on the hardware interconnection interface on each surface substrate. Its primary 

functions are (a) SC authentication and (b) SC APP automation, both realized by the GCCF and 

a profile chip on a SC. The profile chip is a memory chip with an I2C interface, and the address 

should be in the range of 0x03 – 0x77 and different from other I2C addresses that have already 

been registered in the system. Chips with I2C interfaces usually have configurable I2C addresses. 

It is recommended that SC designers leave such options to users (e.g., the LSB (least significant 

bit) of the address can be selected by a switch).  

The profile chip contents include its identification information (for an SC authentication 

function) and interface and data format information (for an SC APP automation function). The 

memory size is at least 1 kbit. Figure 7.5 shows a 128-bit x 8-row allocation structure for a 

profile memory space. The first row is the 128-bit ID or Key field. This unique sequence is only 

authorized for an SC that has already been verified by certain standards and regulations. The 

authentication algorithm of the GCCF checks the SC ID and decides if further communication 

will proceed. The second 128 bits are evenly divided into four fields of 32 bits each that contain 

other SC ID related information: type, address (up to four different I2C addresses), option, and 

checksum for the entire ID section.  The interface and data format sections span from the third 

row to the end. The Pin Request field designates which pins are used. E.g., the 1st bit in this field 

corresponds to pin 1 (GND) on the hardware interconnection interface.  It is set to 1 if pin 1 is 

utilized on the SC board. The Interface 1 field occupies the first 64 bits of the fourth row. It 

addresses the interface type (e.g., GPIO, ADC, or SPI), direction (input, output, or bidirectional), 

data rate (e.g., 100 Hz), data width (8 bits), etc. Given this information, the GCCF calls the 

corresponding APP from the APP library or online APP store.   
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Figure 7.5. Profile memory chip field definitions. 

 

Figure 7.6 illustrates the GCCF finite state machine (FSM). The starting state is Bus 

Scan. The GCCF periodically checks the I2C interface, which is designated for profile chip 

communication, from address 0x03 to 0x77. If there is no response for a particular address, it 

moves to the next address. A successful acknowledgement (ACK) triggers the GCCF to read the 

SC ID (the first 16 bytes) via the bus. An authentication process is implemented based on the 

128-bit ID. If a negative result occurs, the FSM goes back to the Bus Scan state. If a positive 

result occurs, the GCCF reads interface information by accessing the same I2C address. 

Retrieved data are from the 33rd byte up to the last interface field (see Figure 7.5). The interface 

data are interpreted to check required resources (e.g., a bus driver), install the necessary APP 

from the APP library, and eventually run the APP. If any error is encountered during the state 

Read Interface up to the state App Serving, the GCCF returns the FSM to the Idle state. Potential 

errors include (a) a resource request fail, e.g., a required GPIO is used by another APP, (b) an 

interpretation error, e.g., a data format is undefined, (c) a profile chip communication error, and 

(d) a data communication error.  
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Figure 7.6. GCCF finite state machine (FSM). 

 

If the SC is designed using the GSC model, the GCCF could also automatically generate 

APP code (via an APP template) for developers with the information that is to be written into the 

profile chip. This approach can minimize, e.g., APP development time and data interpretation 

errors.  

 Chiclet Network and Device Interoperability Standards  
Chiclets are an important GumPack supplement for applications that involve wearable 

devices/sensors. They are off-board ‘surface components’ that wirelessly connect to the 

GumPack rather than rely on the onboard 70-pin connectors. The communication protocol could 

be Bluetooth, ZigBee, or other short distance but low-power solutions such as Ant. ZigBee is 

preferred for the time being, since the first Chiclet design will be the wireless reflectance pulse 

oximeter.  Additionally, multiple network topologies are well supported in ZigBee. ZigBee 

functionality is enabled by attaching the ZigBee Coordinator SC to a GumPack.  

A Chiclet network is formed between one or more Chiclets and a GumPack. It is like a 

private local network rather than a public network in the context of interoperability between 

conventional medical devices. This relationship is illustrated in Figure 7.7. The lower left area 

depicts a Chiclet network based on a ZigBee infrastructure. A tree topology is used to expand the 

diameter of the network coverage as a flexible topology example. Using a tree topology, the end 



85 

 

nodes are usually the sensors, and the middle nodes (routers) are merely data transporters 

between end nodes and the GumPack (ZigBee Coordinator SC). For a typical body-area-network 

use case, a star topology would be preferable since the communication range is within 10 m.  A 

star topology also alleviates time synchronization issues for multiple Chiclets.  

In the broader context of a medical device network (see Figure 7.7), a GumPack can be 

seen as a single terminal on an enterprise service bus (ESB), though its role is not fixed (e.g., it 

may be a vital signs monitor or a patient communicator), which makes the GumPack a 

competitive candidate for KSU’s MDCF (Medical Device Coordination Framework) project. 

MDCF clients were previously ‘mock’ devices: JVMs run on a computer or real devices with 

JVM adapters, connecting to the MDCF bus maintained by the MDCF server (bus manager). The 

GumPack is the first native MDCF-ready medical device that can successfully run the whole 

MDCF client on itself with JVM service support (see Figure 7.4).  

 

 
Figure 7.7. GumPack Chiclet network and medical device interoperability. 

 

This MDCF scenario is an example of integrating the GumPack into a cooperative 

medical device network. Other interoperability frameworks such as MDPnP will be evaluated in 
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the future. ISO/IEEE 11073 standards are also to be assessed for Chiclet network and GCCF 

operation.  

 Web Server and User Interface 
At present, the GumPack does not provide a cell-phone-like user interface. However, a 

user is able to utilize a phone, a tablet, Internet TV, or any device that supports Wi-Fi and web 

browsing as an indirect access interface.  This capability is realized by the web server maintained 

on the GumPack.  

 

 
Figure 7.8. GumPack web server login page. 

 

A lightweight web server lighttpd is employed on the GumPack instead of the more 

popular Apache. Lighttpd is a secure, fast, compliant, and flexible web server that has a small 

memory footprint compared to other web servers and takes care of CPU load. CPU usage of 

lighttpd is less than 1.0% for a single client. It is configured to run PHP modules. PHP provides 

an ODBC (Open Database Connectivity) interface to database and file operation functions (e.g., 

to read and write a file on the GumPack file system). Hence, PHP is used to develop the 

GumPack web site and web pages. Figure 7.8 shows the login page that requires an account 

name and a password when a user accesses the GumPack server.  The GumPack server supports 

multiple user accounts, which can be configured after a user is logged in. Four categories of 

information are accessible to logged-in users:  

• Dashboard, e.g., for signal waveform display 

• Trackers, e.g., for user input to a PHR  

• Devices, e.g., for SC configuration 

• File Repository, e.g., to check out files. 
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Demonstrative web pages are shown in Appendix C. They were captured by an iPad that 

was connected to the same local wireless network as the GumPack. 

 Prototype and Initial Results 
Figure 7.9 shows the first version of the assembled GumPack prototype surrounded by 

three Chiclets. The size of this prototype is 84.4 mm x 32.8 mm x 32.8 mm, constrained by the 

size of each surface substrate board. The four mounted surface components are the 

aforementioned processor SC, a motion sensor SC, an ECG SC, and a ZigBee coordinator SC 

that coordinates the three Chiclets (reflectance pulse oximeters). A Wi-Fi antenna is placed 

inside of the cuboid structure and connected to the processor SC board, which needs to be 

redesigned to a better form factor that can be embedded inside the GumPack cuboid. The 

interconnection wires are not fully populated at the current debugging stage; they are envisioned 

to wrap around the four surfaces and go through the space between each SS-SC pair. A flexible 

printed circuit board (cable) will likely replace the wrapping wires, or a new inner cuboid design 

will provide interconnection sockets at each corner.  

 

 
Figure 7.9. GumPack prototype and Chiclets. 
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As implied by the GumPack conceptual model in Figure 2.2, camera and audio support 

will be integrated into the GumPack design in the future. For example, Figure 7.10 shows a 

Caspa camera that was originally an open source design from Pixhauk and is now supported by 

Gumstix’s Overo board. A Bluetooth headphone, keyboard, GPS, etc. are all on the waitlist. 

Consistent with the “GumPack” theme, more customizable biomedical surface components are 

also needed.  

 

 
Figure 7.10. Caspa camera board alongside a motion sensor SC. 

 

Although demonstrating the acquisition of a sensor signal is not the centerpiece of the 

GumPack idea (for purposes of this chapter), the concept of obtaining an ‘unfiltered signal’ is 

worth briefly noting. The Chapter 4 figures have already depicted the unfiltered PPGs that can be 

obtained by a reflectance pulse oximeter Chiclet. Figure 7.11 displays an unfiltered single-lead 

ECG obtained with careful baseline and amplification control. Such signals are usually 

accompanied by different levels of 60 Hz grid noise (in the U.S.) and appear to be low quality. 

However, they represent raw data with all signal details (e.g., frequency components) unaltered 

and exposed.  These data are therefore extremely useful for education and signal processing 

comparison studies.  
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Figure 7.11. Unfiltered ECG sampled from an ECG SC. 

 

Figure 7.12 presents the raw ECG’s magnitude spectrum from 0 – 15 Hz. The 

fundamental frequency, 1.63 Hz, is the heart rate (97.8 bpm), and its nine harmonics are 

distinguishable in the spectrum. A 0.2 Hz frequency component is also recognized, which is 

likely the respiration rate. The 60 Hz noise component has a large magnitude, though it is not 

shown here.  

Signal quality (e.g., signal-to-noise ratio) is immediately improved by digital post-

processing, which can be efficiently realized in the GumPack due to its processing capability, 

which will be further improved by exploiting the digital signal processor core. A filter toggle 

button/option is provided on the web user interface, giving a user the view of both the ‘clean’ 

waveform and the raw waveform.  The goal is to allow a user to click the waveform to see, e.g., 

extracted parameters, frequency spectra, and other analysis results.  
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Figure 7.12. Frequency spectrum of the unfiltered ECG. 
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Chapter 8 - High Resolution WBAN 

Diverse and creative application-layer schemes can be designed and evaluated for various 

WBAN scenarios. This chapter addresses a WBAN that emphasizes high-resolution raw data, 

real-time operation, and time synchronization of intra-sensor data and inter-sensor waveforms. 

The WBAN requires a high-speed wireless connection that is always alive over the desired data 

acquisition period, as opposed to most WBAN applications, which allow periodic sleep modes. 

This type of WBAN transfers large amounts of raw data to a base station, where heavy signal 

processing is implemented.  

 IEEE 802.15.4 MAC Layer 
The carrier sense multiple access with collision avoidance (CSMA/CA) method is 

adopted in the IEEE 802.15.4 MAC layer. The CSMA approach requires transmitting nodes to 

first listen to a channel and then transmit only if the channel is idle; the collision avoidance 

mechanism improves CSMA performance by dividing the communication channel equally 

among all nodes in the collision domain. Utilizing this method in a WBAN with only one 

channel ensures that each sensor node has an equal opportunity to upload data, and each 

successfully transmitted data segment can be synchronized with the lost data segments from the 

other nodes. Since ZigBee (the wireless standard utilized by the custom pulse oximeters) is based 

on IEEE 802.15.4, this approach is employed here.   

 Issue 1: Lost and Wandering Frames 
Figure 8.1 illustrates a star-topology ZigBee network with two sensor nodes (S1 and S2) 

and one receiver (Coordinator). Sensor-node frames are received by the Coordinator with equal 

probability. Each sensor has a unique MAC address, which can be identified by the Coordinator, 

so the frames sent by S1 and S2 are illustrated differently. Each frame is originally assigned a 

sequence # to help address the issue of lost and wandering frames (see Figure 8.1). Lost frames 

are unrecoverable because each sensor node only attempts to transmit a frame once to ensure 

real-time operation. Wandering frames can be rearranged by a computer, which receives frames 

from the Coordinator via a serial port.  
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Figure 8.1. An example star-topology network. Each frame sent by a sensor node carries a 

sequence # to address the issue of lost and wandering frames. 

 

 Issue 2: Timeline Distortion  
The second issue is caused by the asynchronization of the frame sending and receiving 

rates. For example, if S1 and S2 each competitively transmit 240 frames per second, the 

Coordinator does not necessarily receive a sum of 240 frames in one second. Experiments 

indicate that the number of received frames depends on the frame length.   

To address this issue, the inner timers in the sensor nodes and the Coordinator are 

identical.  Such timers trigger events like transmitting a frame or generating a ticket, as shown in 

Figure 8.2. A Ticket Counter inside the Coordinator increases by 1 when the Ticket Generator 

produces a ticket and decreases by 1 when a received frame consumes a ticket. This Ticket 

Counter number is appended to each frame to assist the follow-on timeline restoration process. 

Continuing the thought, if the Ticket Counter value decreases by 10 in one second (the tickets 

are over-consumed), the Coordinator has received an extra 10 frames in one second, which 

means the timeline will be expanded given the assumption that 240 frames corresponds to one 

second. A correction factor of 0.96, calculated from 240/(240+10), should then be applied to the 

received-frame timeline.   
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Figure 8.2. Ticket production and consumption mechanism inside the Coordinator to 

address the timeline distortion issue. 

 Frame Field Definition 
Frames are assembled on the application layer of the wireless communication protocol. 

Figure 8.3 contains the frame field definitions for the sensor nodes (lower) and the Coordinator 

(upper). Each sensor frame carries data for two samples: their AC values and the corresponding 

DC value for the pair.  The frame begins with the acknowledgement value returned from the 

previous transmission function and ends with a checksum. When the Coordinator receives a 

sensor frame, it adds an ID (mapped to the unique MAC address), a Ticket Count, and a new 

checksum.   

 
Figure 8.3. Frame field definitions for the Coordinator and sensor nodes on the application 

layer of the custom communication protocol. 
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 Timeline Restoration in MATLAB 
The frames finally stream to a MATLAB interface on a computer, where all the “heavy” 

signal processing tasks are implemented. Task 1 is to arrange the frames from each sensor node 

in ascending order and fill the gaps with ‘placeholder’ frames – the positions that correspond to 

lost frames. Since a sequence # is defined to be one byte long (see Figure 8.3), the frame search 

window is assumed to be within [-127, 128].  

Figure 8.4 shows the frame sequence #s in the received order (blue crosses) and the time-

aligned sequence #s (red dots) for one sensor. The original sequence illustrates that frame 

wandering occurs frequently. The number of placeholder frames (assigned with sequence # = -1) 

between data segments is the length of data segments from other sensor nodes in the original 

sequence, and it will be equal to the actual number of lost frames in the recovered sequence if the 

frame search method did not miss any wandering frame.  

 

 
Figure 8.4. Original data stream with sequence #s in the received order (blue crosses) and 

the recovered time-aligned sequence (red dots). Placeholder frames are assigned negative 

sequence #s.  
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In Figure 8.4, the recovered sequence has obviously deviated from the trend of the 

original sequence at around the 1300th frame (placeholder frames are counted). This phenomenon 

relates to timeline distortion. In other words, in this example, the timeline is expanded, or tickets 

are over-consumed. One way to recover the timeline is to use the correction factor calculated 

from the Ticket Count. Another method is to perform a linear regression on the delay relative to 

the expected sequence #, as illustrated in Figure 8.5.  

 

 
Figure 8.5. Linear regression – relative delay to recover the distorted timeline. 

 

A reference frame has the expected sequence #; it could be a placeholder frame. The 

expected sequence # increases by 1 for each time step, returning to 0 after reaching the 

maximum. This approach estimates the relative delay of every frame, especially the reference 

frame, which is used to adjust the synchronization of the frame streams from different sensor 

nodes in a statistical manner.  
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Chapter 9 - Application B: Pulse Wave Velocity Estimation 

Most pulse oximeters estimate arterial oxygen saturation using baseline-normalized 

photoplethysmograms (PPGs) acquired with several wavelengths of excitation light [83]. The 

periodicity in these pulsatile waveforms is intuitively related to heart rate since arterial blood 

volume and flow (and therefore optical absorption due to hemoglobin) track the cardiac cycle. 

Related research notes that physiologic parameters such as blood pressure, respiration rate, and 

stroke volume can also be derived from PPGs [49], [51].  

Pulse wave velocity (PWV) has attracted attention as an arterial elasticity indicator. PWV 

methods that utilize PPGs include (a) pulse transit time (PTT) extracted from time-correlated 

ECGs and PPGs [84], (b) transit time acquired from dual-channel (finger and toe) PPGs [85], 

and (c) peak-to-peak time (PPT) from a single digital volume pulse (DVP) waveform [47] (also 

tested in our early efforts [12], [86]). Other PWV estimation modalities include ultrasonic 

Doppler [87]. 

A direct way to calculate average wave velocity is the distance between two locations 

divided by the wave transit time. Obstacles for using this method to calculate PWV with PPGs 

include:  

1.  At least one of the two locations on the same arterial segment makes PPG acquisition 

difficult with a transmittance-mode sensor (e.g., one sensor on the fingertip and the other at the 

wrist).   

2. PWV is much faster than blood flow, requiring a pulse oximeter to sample at a high 

rate to ascertain the transit time for a PPG waveform acquired at two locations separated by a 

short distance.   

3. The two pulse oximeters or PPG acquisition devices must be synchronized.  

4. PPG signal must be high quality (e.g., thousands of digitization levels, high signal-to-

noise ratio, and undistorted), especially when considering that PWV varies as vessel walls dilate 

and constrict during each heart cycle. 

This chapter demonstrates an initial study on PWV estimation using a pair of low-cost, 

custom wireless reflectance pulse oximeters at two measurement locations on the same hand. 

While larger scale tests are pending and the results are not verified against commercial medical 
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equipment, this short investigation offers insight into the design issues related to an economical 

single-hand approach, including changes to downstream versus upstream signal shape caused by 

intra-cycle changes in arterial pressure.  

 Study Description and Experimental Setup  
PWV can be expressed as a function of arterial elasticity via the Moens-Korteweg 

equation [55]: 

ρr
hE

PWV inc

2
=  (13) 

where h is the arterial wall thickness, Einc is the incremental elastic modulus, r is the lumen 

radius, and ρ is the blood density.  When PWV is measured with one of the aforesaid methods, 

arterial parameters such as arterial elasticity could be estimated by the reverse solution of (13). 

For instance, a high relative PWV in the aorta may suggest a stiffer arterial wall in some 

individuals. As implied in the beginning, PWV is not constant even in the same vessel segment. 

Rather, it can be derived as a monotonically increasing function of pressure. I.e., PWV is 

different when measured at different stages of the cardiac cycle [55].  

Custom wireless reflectance pulse oximeters were employed to simultaneously acquire 

PPGs from the wrist and fingertip (middle finger). Each pulse oximeter yields four PPG 

channels:  separate pulsatile (AC) and baseline (DC) sample sequences for the red and near-

infrared excitation wavelengths.  The sampling frequency is fs = 240 Hz to avoid aliasing, e.g., 

120 Hz flicker from full-wave-rectified fluorescent room lights. Each channel is unfiltered and 

has a precision of 4096 digitization levels that correspond to a (0, 2.4) V range.  

Since (a) blood oxygen saturation is not the focus of this effort and (b) each near-infrared 

channel exhibits better signal quality than its red counterpart, only the near-infrared AC and DC 

channels of the two devices are utilized for PWV calculations. The DC signal (also referred to as 

the ‘baseline’ in this dissertation) is not a constant in this model. It is controllable and may jump 

(change value instantly) to resist saturation of AC signal; the influence of the jump on the AC 

signal is removed later. More details are described in Chapter 4. 

When synchronized PPG waveforms from two pulse oximeters placed at the wrist and the 

fingertip (see Figure 9.1) are ready, time differences can be extracted from point pairs on the 

corresponding curves. A typical PPG cycle has a steep rising slope and a mild falling slope 

consistent with the systolic and diastolic durations in the cardiac cycle. For this study, three point 
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pairs were selected at different waveform features:  (a) the valley (foot), (b) the inflection point 

on the rising slope and (c) the time corresponding to the rising-slope peak. This offers the 

opportunity to calculate and compare three PWV values at different intra-arterial pressure levels. 

In other words, this work was initiated to see whether the estimated PWVs are consistent with 

PWVs obtained using other methods, such as PPT from DVP, and whether PWV exhibits 

measurable dependency on pressure.   
 

 
Figure 9.1. Measurement setup with one pulse oximeter (sensor) at the wrist and the other 

at the fingertip. The primary arterial tree of the hand is depicted to illustrate the pulse 

travel path. This figure is adapted from [88].  

 

 Basic Approach 
Two approaches are explored in this chapter to retrieve synchronized PPG streams. The 

first method was presented in [70]. The two pulse oximeter sensors talk to their respective 

receivers, which are either two serial ports or ZigBee coordinators.  

 Signal Synchronization 
A MATLAB interface (Figure 9.2) collected, through serial communication, near-

infrared data acquired by two pulse oximeters. The respective communication parameters (serial 

port, sample rate, signal channel, wireless channel, and refresh rate) can be set on the left panel. 

Note that the displayed near-infrared waveforms in the two sub-windows on the right are 

visualized in a ‘first ready, first displayed’ unsynchronized manner.  However, the PPG signals 
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generated by the two pulse oximeters must be synchronized so as to accurately extract the 

relative time delay on the waveform acquired from the distal sensor, where the sensor-to-sensor 

distance is known. Hence, an interface feature was developed that ‘punches’ the data sets when 

they are dumped from two separate serial buffers at the same time. This ‘punch’ method ensures 

that the punched points on the two waveforms are time synchronized. 

  

 

Figure 9.2. A MATLAB interface that simultaneously communicates with two pulse 

oximeters on different serial ports.  

 

Figure 9.3 illustrates two PPG waveforms that are synchronized by aligning the 

corresponding punched points in their data sets. The punch dots on these AC channels have a 

uniform value of 2048. The DC/baseline channels are also punched (not shown here) to further 

confirm the punch dots.  
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Figure 9.3. Punched raw PPG waveforms that are aligned (synchronized). 

 

 Signal Preprocessing  

Removing the punched points from the synchronized signals yields raw PPGs (see Figure 

9.4) for further processing. The second preprocessing step is to filter the raw PPGs. The filter is a 

240th–order lowpass filter with a 5 Hz cutoff frequency realized with a MATLAB function 

firls(), a linear-phase FIR filter that uses least-squares error minimization. This high-order 

filter causes a time delay of td = (n–1)/(2fs) = 0.498 seconds, where n = 240 and fs = 240 Hz.  The 

group time delay equally pushes all cycles (including each of their individual frequency 

components) to the right as seen in Figure 9.5 when compared to Figure 9.4 without phase 

distortion. The cutoff frequency is set to the relatively low value of 5 Hz to ensure smooth 

derivative curves (see Figure 9.6).  A higher cutoff frequency would require a method such as 

curve fitting to be employed when extracting the associated delays from these derivative data. 
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Figure 9.4. Synchronized raw PPG waveforms with the punch marks removed. 

 

 
Figure 9.5. Filtered PPG waveforms. The channels are still synchronized due to the same 

group delay imposed by the linear-phase lowpass filter.  
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Figure 9.6. First derivative (b) and second derivative (c) of a pair of filtered single-cycle 

PPGs (a). Three delays, d1, d2, and d3, are extracted according the count differences 

represented by the line at y = 0 in (b) and (c).   

 

 Pulse Travel Time Extraction 
The time difference between the two PPG waveforms becomes clearer after filtering. 

Because of the discrete signal nature, the time axis is really a count axis.  Figure 9.6 (a) depicts 

this idea with a pair of filtered, single-cycle PPGs, each containing ~150 data points. The time 

duration between consecutive samples is 1/fs = ~0.417 milliseconds, the best time resolution 

available. To identify the corresponding PPG feet and peak locations, the first derivative was 
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employed (see Figure 9.6 (b)).  The second derivative was used to locate inflection points on the 

rising slope (see Figure 9.6 (c)). Count delays were subsequently extracted using the zero values 

of the appropriate differentiated data, as illustrated in Figure 9.6.  

 Count Differences 
A ten-second pair of near-infrared PPG segments was chosen, where the selection 

criterion was minimal variation in the baseline, which is preferred since severe baseline 

fluctuations normally imply motion. Each segment contains 2400 (10 fs) data points and 15 

whole PPG cycles (rising slopes), which means that 15 sets of time differences/PWVs can be 

extracted and averaged for each waveform feature. The results are detailed in Table 9.1.  Taking 

the first cycle as an example, as in Figure 9.6, the foot indices for the wrist and fingertip PPGs 

are 94 and 103, respectively, so the FTF (foot-to-foot) delay is 103 - 94 = 9 counts.  Likewise, 

the ITI (inflection-to-inflection) delay is 124 - 116 = 8 counts, and the PTP (peak-to-peak) delay 

is 143 - 134 = 9 counts.  

Averaging these values over 15 cycles yields FTF = 7.1 counts, ITI = 6.5 counts, and 

PTP = 8.3 counts. The corresponding standard deviations are as high as 1.5 counts, which is 

relatively large. Though the pulse oximeter has a 240 Hz sampling rate, only 6-to-8 counts exist 

between similar features on the two waves:  PWV is much faster than blood flow. Considering 

that the red channel does not contribute to PWV calculation, we assume that the removal of those 

code blocks from the firmware could improve the sampling frequency to 480 Hz.  

 Pulse Wave Velocity Estimation 
Count differences can be converted into time differences in seconds by dividing by fs. If 

the pulse travel length (TL in Table 9.1) between the sensors is measured, the three variations on 

PWV can be calculated from the time differences. The distance between two measurement 

locations is 0.224 m; however, the arterial distance is slightly longer when one considers the 

indirect paths in the arterial tree of the hand (see Figure 9.1.). A subjective factor of 1.25 was 

therefore used to get TL = 0.224 * 1.25 = 0.280 m. The PWVs using this estimated TL are listed 

in Table 9.1.  
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Table 9.1. PWV Results from a Ten-Second PPG Waveform Pair from One Subject 
Cycle Wrist 

Foot 

Finger 

Foot 

Wrist 

Peak 

Finger  

Peak 

Wrist 

Inflect. 

Finger 

Inflect. 

FTF 

(count) 

ITI 

(count) 

PTP 

(count) 

TL (m) FTF 

(m/s) 

ITI 

(m/s) 

PTP 

(m/s) 

1 94 103 134 143 116 124 9 8 9 

0.280 

7.47 8.40 7.47 

2 242 249 286 293 266 272 7 6 7 9.60 11.20 9.60 

3 396 403 437 445 419 425 7 6 8 9.60 11.20 8.40 

4 556 562 596 603 579 584 6 5 7 11.20 13.44 9.60 

5 711 719 752 760 734 740 8 6 8 8.40 11.20 8.40 

6 870 877 910 918 892 898 7 6 8 9.60 11.20 8.40 

7 1037 1045 1077 1087 1059 1067 8 8 10 8.40 8.40 6.72 

8 1205 1211 1244 1250 1226 1232 6 6 6 11.20 11.20 11.20 

9 1365 1370 1406 1415 1388 1392 5 4 9 13.44 16.80 7.47 

10 1527 1533 1566 1576 1548 1555 6 7 10 11.20 9.60 6.72 

11 1690 1698 1731 1740 1712 1719 8 7 9 8.40 9.60 7.47 

12 1847 1855 1888 1896 1870 1875 8 5 8 8.40 13.44 8.40 

13 2000 2009 2042 2052 2024 2032 9 8 10 7.47 8.40 6.72 

14 2156 2160 2197 2204 2178 2185 4 7 7 16.80 9.60 9.60 

15 2311 2320 2353 2362 2334 2342 9 8 9 7.47 8.40 7.47 

AVG = Average 

STD = Standard  Deviation 

AVG 7.13 6.47 8.33  9.91 10.80 8.24 

STD 1.50 1.24 1.23 2.57 2.36 1.30 

FTF = foot-to-foot; ITI = inflection point to inflection point; PTP = peak-to-peak. TL = travel 

length of pulse wave at the hand.  

 

 As noted in the previous section, PWV should increase as pressure increases, which 

occurs along the rising slope of a PPG. Hence, PWVs calculated from the feet, inflection points, 

and peaks of the rising slopes should be ordered from least to greatest. These early results do 

indicate an increase in average PWV from the foot (9.9 m/s) to the inflection point (10.8 m/s) but 

a decrease at the peak (8.2 m/s). The next two paragraphs contain thoughts in that regard. 

First, a PPG as in Figure 9.6 is composed of two waveforms that correspond to different 

time delays: (a) the systolic (or direct) component that results from the direct transmission of the 

systolic pressure wave from the aorta to the arm and (b) the diastolic (or reflected) component 

that results from the reflection of the pressure wave from the peripheral arteries to the aorta and 

then back to the arm [55], [86]. The peak of the rising slope therefore experiences dispersion 

caused by these wave reflections, which also result in minor peaks that appear on the falling PPG 

slope.  Effects of reflections on PWV values are also noted in [55].  

Second, two small arteries converge in the fingertip:  one from the superficial palmar 

arch and the other from the deep palmar arch. These arches bridge the radial artery (where the 
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other device is placed) and the ulnar artery. This structure makes the fingertip pulse waveform 

more complex than the waveform one would model for a simple vessel segment. 

 WBAN Approach 
The second approach utilized the high resolution WBAN introduced in Chapter 8. The 

WBAN method [89] is similar to the previous study but improves on the approach by 

1. Forming a star-topology WBAN with a single receiver and a single communication 

channel, 

2. Doubling the sensor sampling frequency to 480 Hz, theoretically doubling the resultant 

resolution, and  

3. Using a curve fitting method over several cardiac cycles to build a more representative 

PPG segment, since PPG behavior statistically repeats over time.  

The pulse oximeter sensor nodes transmit their own samples continuously (in real time), 

letting the CSMA/CA algorithm decide which sensor communicates to the receiver during a 

certain time slot. Data streams received from pulse oximeter sensor nodes are therefore 

fragmented, but these fragmented data segments are ‘geared’ together in a real-time manner. 

Note that since this approach aims to extract features from pulsatile high-resolution signals, the 

missed segments can be rebuilt afterwards.   

 Decomposition of the Sensor Data Streams    

The PWV application involves two sensor nodes placed at the wrist (node 1) and the 

corresponding fingertip (node 2). PWVs are calculated from the time differences between these 

two PPGs. The first step is to separate the two sensor data streams based on their IDs. Figure 9.7 

plots two example waveforms in their received order; the data points with negative values 

represent placeholder frames.   
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Figure 9.7. The original frame sequence decomposed into two PPGs. Each frame carries 

two AC values, but only one is plotted here.  

 

 Timeline-Recovered Waveforms    

Sequence #s are utilized to time-align data points for each sensor node. The rearranged 

results are depicted in Figure 9.8. This time, data points with negative values are from 

placeholders corresponding to lost frames. Here, synchronization has not been addressed yet.    

 Defragmentation and Curve Fitting  
Although the PPG data points for node 1 (blue dots) are connected with lines in Figure 

9.8, they are actually fragmented or composed of small data segments. I.e., the sequence # is not 

continuous, which is also indicated by the points with negative values. To eliminate the 

discontinuities, a peak detection algorithm is employed to identify individual PPG cycles, and 

these cycles are then ‘stacked’ together; cycles are aligned at the systolic peak position. Figure 

9.9 shows a representative PPG (blue circles, including at least one whole cycle) averaged from 

eight cycles worth of discrete, discontinuous data. Note that the x-axis is changed to Count, since 

each frame contains two data points. The sampling frequency = 480 Hz. A 10th-order polynomial 

curve was fitted to these data to estimate the continuous PPG.  
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Figure 9.8. Two PPGs with data points time-aligned. 

 

 
Figure 9.9. Representative waveform for eight PPG cycles worth of discontinuous, discrete 

data.  
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 Synchronization and Feature Extraction  
After the polynomial curves for both nodes are calculated, they need to be placed 

appropriately, or synchronized, relative to one another, in order to complete the PWV 

calculation. The positioning process depends on two factors related to both nodes: (a) the 

corresponding peak position (the first peak of the eight cycles) in the time aligned sequence and 

(b) the delay relative to the expected sequence # based on the results of the linear regression 

method in Chapter 9. Figure 9.10 shows the relative position of two polynomial curves after 

statistical synchronization.  

 

 
Figure 9.10. Statistically synchronized, continuous PPGs from two sensor nodes. 

 

To calculate PWV, corresponding features on the rising slope of the two waveforms 

could be identified toward the use of the time difference extraction approaches used in [70], 

which involve taking derivatives of the PPGs. For example, the foot-to-foot and peak-to-peak 

differences are determined by first finding the roots of the first derivatives and then performing a 

subtraction (see Figure 9.10). In this example, three PWV values are estimated as 5.12 m/s at the 

foot, 5.51 m/s at the inflection point, and 9.47 m/s at the peak.  
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Chapter 10 - Medical Device Coordination Framework 

The MDCF is an open-source project with a goal of exploring means to design, 

implement, verify, and certify systems of medical devices [34], [90]. Existing MDDS systems 

are constrained by FDA regulations to only forward data from devices to remote displays or 

hospital information systems without transforming those data.   The MDCF effort was initiated 

by the U.S. Food and Drug Administration in partnership with Kansas State University, then 

funded by the National Science Foundation, as an open test bed to allow academics, industry, 

and government regulators to explore engineering and safety issues involved in removing MDDS 

restrictions to allow multiple devices to be integrated as a system, where the behavior of the 

system is determined by the execution of one or more APPs that can combine/transform device 

data and control the actions of devices.   This work is informed by related efforts pursued by the 

Medical Device “Plug-and-Play” Interoperability Program (MDPnP) [91], which is developing 

standards and prototypes for systems of cooperating devices.  MDPnP has demonstrated a 

number of interesting applications of this concept, including (a) implementations of more 

effective safety interlocks and smart alarms that span multiple devices and (b) automated clinical 

workflows that previously proved problematic due to manual errors [92].  

 JMS and MDCF Architecture 
The message-oriented middleware (MOM) architecture of MDCF is implemented based 

on Java Message Service (JMS). The features JMS provides to MDCF include a) flexible  and 

dynamic information flow, b) many message providers and consumers (e.g., fan-in and fan-out 

structure), and c) time-critical and scalable performance [34]. OpenJMS is an open source 

implementation of JMS API 1.1 specification [93]. It provides five steps to set up a JMS and 

send and receive messages over JMS.  

 

1. Creating a connection factory from a JNDI (Java Naming and Directory Interface) 

IntialContext object which specifies where the data sore is (e.g., tcp://localhost:61616, analogous 

to the root of a directory tree for a file system).  

2. Creating a connection from the connection factory.  
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3. Creating a session from the connection.  

4. Retrieving a destination from a session. A destination can be topic or queue.  

5. Sending messages to or receiving messages from the destination.  

 

In MDCF, these five steps are repacked into three steps (one line of code for each step) 

when set up a JMS communication in a component. Taking sending messages for example, two 

classes SenderFactory and IMDCFSender are utilized from MDCF core package.  

 

1. Creating a IMDCFSender object for the SenderFactory 

2. Connecting the IMDCFSender object with a topic.  

3. Sending messages from the IMDCFSender object.  

 

Figure 10.1 depicts the general structure of the MDCF in two principle parts: an MDCF 

server and an MDCF client.  The MDCF Core is the fundamental layer of this framework; it 

provides a message-oriented-middleware bus (which can be instantiated as an implementation of 

the Java Message Service (JMS) [34] or a light-weight TCP socket service) that supports a 

publish-subscribe communication paradigm. Message senders and receivers can connect to a 

particular MDCF channel (similar to a JMS topic), and senders can publish messages to a 

channel that are delivered asynchronously to all receivers connected to that channel.  Medical 

devices and hospital information systems such as an EHR are MDCF clients and communicate 

with the MDCF using channels.  For example, heart rate and blood oxygen saturation data 

streams from a conventional pulse oximeter would be communicated to the MDCF from the 

device using a separate outgoing channel for each data stream (the device acts as the sender).  An 

MDCF client device typically will also have an incoming channel that carries commands to 

which it responds.   Channel connections on the client side are realized using a lightweight 

communications library that can either be incorporated into the software/firmware of the medical 

device (an approach taken with other experimental devices on which we are working that include 

the ability to run embedded Linux) or implemented in a dongle/adapter that converts signals on 

the device’s native interface to MDCF-compliant messages (a strategy similar to the approach 

taken in many MDDS systems, and the approach taken with the pulse oximeter discussed later in 

this chapter). 
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The MDCF server contains several essential manager and console modules that allow 

clinicians and hospital IT staff to maintain and supervise MDCF operation. For example, the 

Device Manager takes care of device authentication and registration when a new device is 

plugged into the MDCF and assigns topics/channels to the device for data streaming based on its 

declared MDCF interface. 

 

 
Figure 10.1. MDCF architecture and example APP virtual machine (lower right). 

 

A key module of the MDCF server is the APP virtual machine that executes APPs built 

from libraries of reusable components with message ports for channel-based communication. An 

APP is assembled in the MDCF APP development environment by wiring together the message 

ports of component instances. Three primary component types exist: device (data input), 

transformer (data processing), and display (data output). Typically, a collection of at least three 

components forms an MDCF APP. 

 Scenario Creation and Installation 
The previous section addressed high-level descriptions of medical devices employed in 

the MDCF. In the following sections, a walkthrough of building an APP in the MDCF presents a 

step-by-step tutorial for building such a medical device from scratch using the custom MPOD 

pulse oximeter and the tools provided by the MDCF.  
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A clinical scenario typically involves several medical devices or APPs. For example, in 

an MDCF APP for closed-loop control of a patient-controlled analgesia (PCA) pump [90], the 

APP includes components to control the PCA pump and other vital sign monitors such as a pulse 

oximeter and a respiration rate monitor. The APP controls the PCA pump according to the 

physiologic indices received. Since the focus of this section is to demonstrate the feasibility of 

reconfigurable APPs for a single device as applied to, e.g., PPG processing (within the context of 

the MDCF), rather than create a multiple-device-coordination example, we illustrate our 

approach with a forward structure APP in Figure 10.2.  

 

 
Figure 10.2. MDCF Development Environment (upper left), auto-generated files (upper 

right), and MDCF Administrative Console (lower right). 

 

The specification of each APP component, as well as the assembly of the APP itself, is 

created in the MDCF Development Environment as illustrated in Figure 10.2 (upper left).  First, 

each component interface is defined in terms of its input/output channel ports.  Then, MDCF 

code-generation facilities generate most of the component implementation, leaving the developer 

to only fill in the business logic (e.g., specific transformation algorithm) for each component.  



113 

 

Components are then wired together into an assembly as illustrated in Figure 10.2.  MDCF code-

generation facilities generate executable APP code to be installed and executed in the MDCF 

APP virtual machine.  

 Medical Device Class 
Most of the Java code for a Medical Device (MD) class is auto-generated by the MDCF 

Development Environment during the scenario creation session (see the class created for the 

pulse oximeter in Figure 10.3). This code addresses:  (a) topic assignment/naming, (b) channel 

establishment, (c) initial communication with the bus manager, (d) implementation of the 

interactions with the middleware for message passing, etc. The major part of the code that 

requires supplemental attention is the definition of the data to send and the method to pack the 

data into a particular type of message.  

 

 
Figure 10.3. Snapshot of a Java code segment for the MD class in a pulse oximeter scenario. 

 

A Medical Device Port (MDP) class will be required to nest inside the MD class, as it 

talks to the real pulse oximeter device. Since the custom pulse oximeter uses serial 

communication, RXTX [94], an MDP object was built using a native library that provides serial 

and parallel communication for the Java Development Toolkit (JDK) (see another code segment 

in Figure 10.4). The MDP class typically extends the Java Thread class, so the lower level 

communication is not blocked by, e.g., the malfunction of the MD class. Consistent with the 
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object-oriented model, the received data from the MDP are packed into a standard message class 

for transmission. A GenericDeviceMessage is currently used for this purpose. Figure 10.4 also 

illustrates that the medical data and other device related information (e.g., the sampling 

fequency) are packed into the message object using its own methods. This message is converted 

from a Java object to text/XML via the XStream library [95].  

 

 
Figure 10.4. Snapshot of a Java code segment for the MD class with a nested MDP class. 

 

 Transformer Class 
In the MDCF autogenerated transformer template, the major section that needs to be 

filled out by the developer addresses the processing of the received message 

(GenericDeviceMessage) and the repacking of the results into a new message type for the next 

component. Figure 10.5 displays a small fragment of the Java source code that defines the 

classes GenericDeviceMessage and GUIMessage (e.g., required by the following display class). 

Both Java classes contain the ‘get’ and ‘set’ methods for all of the data fields. For example, when 

a transformer receives a GenericDeviceMessage in text/XML format, it uses the XStream library 

to transform it into a GenericDeviceMessage object, where ‘get’ methods are used to extract the 

raw data loaded by the device component. After the signal processing procedure is complete, the 

results are ‘put’ into a new GUIMessage object, and the message to send is again transformed to 

text/XML format by the XStream library.  
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Figure 10.5. Java classes GenericDeviceMessage (left) and GUIMessage (right). 

 

This process is also described by the code segment in Figure 10.6. A method, e.g., 

dataTransform, typically represents the functionality of a transformer and needs to be added into 

the template. 

 

 
Figure 10.6. The Java code segment for the Transformer class that describes the main 

transformation procedure. 

 

The waveform transformer is designed to generate a PPG signal suitable for display.  A 

number of possible instantiations could be used here, including various forms of waveform 

smoothing.  In this case, the goal is to view the raw PPG, so the transformation implemented is 
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essentially an “identity” transformation. The transformer ‘gets’ channel data from the 

GenericDeviceMessage object and ‘puts’ them into the waveform field of a GUIMessage object, 

functioning as an MDDS. Four channels of raw PPG data are visualized with the display 

component.  

Fourier transformation, which maps a time-domain signal into a complex frequency-

domain spectrum, has been used widely for biomedical signal processing. Thus, a real-time fast 

Fourier transform (FFT) implementation provides a good means to evaluate the signal processing 

performance of the MDCF transformer component. It also provides useful information about 

primary signal frequencies (e.g., heart rate and respiration rate as frequencies that correspond to 

fundamental harmonics) and magnitudes (e.g., the amplitude of a pulsatile PPG).  An FFT 

transformer is a classic example of a deterministic signal processing unit. 

In the Feature Detection transformer, a statistical approach is adopted for a decision-

making application. It can identify three items: (a) PPGs corrupted by motion artifact, (b) data 

affected by signal saturation, and (c) clean, usable PPGs versus non-saturated data that do not 

exhibit meaningful pulsatile wave shapes [67]. Such results promote data quality (e.g., by 

maximizing the integrity and usability of the associated electronic health records) and system 

performance (e.g., by releasing system resources when selectively pausing some transformers).  

These decisions are made based on four features extracted from the PPGs, as listed in Table 10.1. 

The feature extraction method was designed for onboard application (on a microcontroller), so it 

requires minimal MDCF system resources.  

 

Table 10.1. Features Extracted from PPGs 

Feature Content Relation 

1 Baseline (*DC channel) variation count Motion 

2 PPG extreme value count Saturation 

3 PPG rising time count Shape 

4 PPG falling time count Shape 

The DC level is assumed to be constant in some pulse oximeter designs or adjustable according 

to the subject’s vascular profile and perfusion level, as in the custom pulse oximeter employed 

here. 
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 Display Class 
The Display class is a visualization interface for transformer results that may be merged 

with a user interface (e.g., to set HR and SpO2 alarm thresholds; alarm signals would be 

generated by adding additional transformer components to assess the range of the Level 2 

transformer outputs). Alternatively, the output data streams can be captured and stored for off-

line processing. Here we simply implemented Display instances to visualize the data streams 

from the aforementioned transformers.  

Figure 10.7 and Figure 10.8 illustrate the visualization of waveform and numeric data, 

respectively. These depictions are implemented by the nested classes Waveform and Numeric in 

the Display class and can have customized appearance and behavior (e.g., timeline length and 

refresh rate).  

 

 
Figure 10.7. PPG waveform visualized in a Display class.  
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Figure 10.8. Numeric physiological values. 

 

Figure 10.9 shows the two message types printed in their original XML format. The 

GenericDeviceMessage is packed and transmitted by the device/source component, which 

consists of a DeviceInfo segment and a DevicePayload segment. Some basic information about 

the pulse oximeter’s manufacturer, MAC address, etc. could be added under the DeviceInfo tag. 

Four channels of data are loaded under the DevicePayload tag; each channel has (equally) ~48 

data points (48 is the retrieval threshold for the serial buffer). The blue box marked in Figure 

10.9 (left) is part of the DC data for the infrared channel.  

 

 
Figure 10.9. Instantiation of a GenericDeviceMessage (left, partial content) and its 

corresponding GUIMessage (right, full content) processed by the Feature Detection 

transformer. 
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The GUIMessage shown in Figure 10.9 (right side) is generated by the Feature Detection 

transformer, where four features (name-key pairs) are loaded under the Numerics tag. The 

message updates every ~0.2 sec (48/240) and represents the most recent three seconds of PPG 

data; it locally maintains a three-second data buffer. Using the same training thresholds from the 

Bayesian hypothesis testing in [67], this particular GUIMessage indicates that the most recent 3 

seconds of data incorporate (a) no motion, (b) no saturation, and (c) a valid PPG signal. The 

feature values can also be easily visualized with the numeric components of the Display class 

(see Figure 10.10).  

 

 
Figure 10.10. Numeric features visualized in a Display class. 

 

Feature detection results (e.g., Motion, Saturation, and Validity) could be used for 

decision-making applications, such as mapping warnings to physiological parameter thresholds 

(see Figure 10.11). Such information could also be useful for other transformers. For example, 

the HR updating algorithm uses HRreport = (1-a)×HRold + a×HRnew. A relatively large weight, a, 

is used for the HRnew calculated from the message that is identified to carry a high quality signal. 

 

 
Figure 10.11. Physiological values influenced by feature detection results. 
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Chapter 11 - Application C: HIIS 

 HIIS stands for Hospital Information Integration System. It was inspired by the earlier 

medical device coordination framework concept. The new system is an extension or upgrade of 

the original MDCF that employs new technologies including a database, AJAX (Asynchronous 

JavaScript and XML) [96], and Java Servlets [97]. Besides the original message-oriented 

middleware (MOM) architecture, HIIS internally incorporates database functionality to store, 

e.g., patient and device information, and externally provides a standard web-based user interface.  

 From MDCF to HIIS  
Figure 11.1 depicts the original MDCF system diagram. All of the components are 

written in Java and run in a Java runtime environment (JRE). The three basic components – 

Medical Devices, Transformers, and Displaying Devices – form a basic scenario APP which is 

managed by the Scenario Console. There are also other managers, and the console coordinates 

the active components within the framework. JMS provides MOM functionality in this case.  

 
Figure 11.1. MDCF architecture based on the MOM model and the publish-subscribe 

mechanism.  
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HIIS primarily extends the MDCF architecture in two ways by (a) expanding the JMS 

message bus outside of the JRE and (b) integrating database features into the architecture core. 

Figure 11.2 depicts the new expanded framework, using a pulse oximeter as an example device. 

The former Display component becomes a web client in the HIIS but is still able to send and 

receive messages over JMS. The technical tools and details, including ActiveMQ and AJAX, that 

realize these functions will be introduced in the next section.  

 

 
Figure 11.2. HIIS architecture utilizing ActiveMQ and AJAX.  

 

In Figure 11.2, the server or servlet plays the role of a Transformer in the MDCF and 

communicates with the database component via a topic. An improved HIIS architecture has been 

designed as shown in Figure 11.3. The server automatically creates the Transformer for the 

corresponding Device and Display in a particular APP and has direct access to the database, 

increasing the efficiency and performance of the entire framework. The APP specification, 

including its transformer code, could be submitted through a web application or manually 

installed by a server administrator. Since the web client is based on a web browser, it also 

incorporates an interface for a mobile device such as an iPhone.  
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Figure 11.3. HIIS architecture improved by automatic transformer assignment and a 

mobile device interface.  

 

 ActiveMQ, AJAX, and MySQL Database  
Apache ActiveMQ is open source software that provides messaging and integration 

patterns services [98]. The main features utilized by the HIIS are JMS and AJAX support. AJAX 

supports web streaming, allowing web applications to be a part of the messaging fabric. Instead 

of using the Java Servlet Jetty included in ActiveMQ, Apache Tomcat is employed, which is an 

open source software implementation of Java Servlet and JavaPages Server technologies [99].  

AJAX makes it possible for a real-time web application to take full advantage of the JMS 

publish-subscribe mechanism inside ActiveMQ. The realization of this capability is 

accomplished in two steps. First, one can build Java Servlets that run in the JRE where JMS 

resides. On the other side, Web Applications, one can then configure Servlets in Tomcat and use 

the JavaScript API amq.js in the web pages that send and/or receive messages over JMS. To send 

a JMS message from JavaScript, the following method is called:  
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amq.sendMessage("topic://MCDL.PULSE", mymsg); 

Here, "topic://MCDL.PULSE" is the topic name, and mymsg is a message in string 

format. To receive JMS messages, a listener is defined in terms of a topic name and a message 

handler.  
amq.addListener('PULSE', 'topic://MCDL.PULSE', rcvMessage); 

var rcvMessage = function(message) {  

  if (message != null) {  

  } 

}; 

Here, 'PULSE' is a string identifier that can be used for a later call to remove the listener: 
amq.remove('PULSE', 'topic://MCDL.PULSE'); 

  

All of the message streaming between a web application and the JRE occurs through 

portals that are Servlets. The following are the Servlets configured in the Tomcat file WEB-

INF/web.xml and correspond to services in the HIIS.  

• AjaxServlet: The required ActiveMQ AJAX Servlet to support JMS over AJAX.  

• TabContent: Refreshes the list for patient, device, scenario, etc. by retrieving 

information from the corresponding database.  

• AjaxSigninServlet: Manages an HIIS user account (administrator). 

• PatientsServlet: Provides access to patient data.  

• ScenarioServlet: Provides access to scenario data. 

• DeviceServlet: Provides access to device data. 

• JMSServlet: Enables the addition of a new topic or the decoupling of an existing topic 

in the TOPICREG database.  

 

The Servlets interact heavily with the database that holds the information for the patients, 

devices, scenarios, JMS topics, and their relationships. In the HIIS, the open source database 

MySQL is utilized and is connected to the JRE via the JDBC driver "com.mysql.jdbc.Driver" on 

the connection "jdbc:mysql:///AJAX?user=ajax&password=ksuecehiis." The following are the 

SQL commands to create a database and two tables in the HIIS.  
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CREATE DATABASE AJAX; 

USE AJAX; 

 

CREATE TABLE PATIENTS( 

 ID VARCHAR(32) PRIMARY KEY, 

 AVATAR VARCHAR(32),  

 FIRST_NAME VARCHAR(32),  

 LAST_NAME VARCHAR(32),  

 GENDER VARCHAR(32), 

 BIRTH DATE, 

 ROOM VARCHAR(32),  

 JOINED_DATE DATE, 

 JOINED_TIME TIME, 

 LAST_CHECK TIME, 

 DESCRIPTION VARCHAR(128), 

 NEXT_CHECK TIME,  

 DOCTOR VARCHAR(32), 

 TEL VARCHAR(32), 

 EMAIL VARCHAR(32),   

 ADDRESS VARCHAR(32), 

 CITY VARCHAR(32), 

 STATE VARCHAR(2), 

 ZIPCODE VARCHAR(5),  

 DEVICES VARCHAR(256),  

 TOPICS VARCHAR(1024),  

 MTOPICS VARCHAR(1024)); 

 

CREATE TABLE TOPICREG(  

 NAME VARCHAR(32) PRIMARY KEY,   

 PATIENT VARCHAR(32),  

 DEVICE VARCHAR(32), 
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 JOINED_DATE DATE, 

 JOINED_TIME TIME,  

 COUPLE VARCHAR(32)); 

 

The TOPICREG table is accessed when a new device is connected to the system, where 

the device is typically associated with a patient ID. The new device will register the topic name 

that receives messages from consoles or other components in the JMS. Meanwhile, the new 

TOPICREG record will contain the patient ID associated with the device, which is indicated by a 

COUPLE flag. When a device is connected to the system, it is not yet coupled with its specified 

patient, although it has submitted its topic registration information. A nurse or a physician would 

see a device list associated with a particular patient in a patient console by accessing the 

PATIENTS table. When a heart beat message is sent from the patient console to the associated 

device with a registered topic, the status of that device becomes coupled. If there is no response 

from the device, that associated device will be removed from the device list in the corresponding 

record in the PATIENTS table.  

In conclusion, the HIIS is built upon ActiveMQ (JMS, AJAX), Tomcat (Java Servlet and 

web server), and MySQL (database). These tools should be appropriately configured and started 

up prior to HIIS system initialization. For example, Figure 11.4 shows the startup screen of 

ActiveMQ version 5.3.2. The JRE version is 1.6.0, and the JMS message broker has been started 

successfully. The transport connection URL is tcp://localhost:61616, and the ActiveMQ Console 

can be accessed at http://localhost:8161/admin.  
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Figure 11.4. ActiveMQ startup information.  

 

The ActiveMQ console is a useful tool to observe and manage the topics or the queues in 

the JMS. For example, assume an infusion pump is registered in the database and adds a listener 

to its registered topic MCDL.INFUSION.1282681389904. That topic also shows up in the 

ActiveMQ console as in Figure 11.5. The console shows how many messages are consumed by, 

and queued in, that topic, and the console can be used to send a new message directly to that 

topic for debugging purposes. 
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Figure 11.5. ActiveMQ WebConsole with topic information.  

 

 HIIS Interface and Consoles 
The HIIS user interface is a set of web applications. From the perspective of an HIIS 

user, it is a web server connected to hospital information databases (e.g., EHRs), physical 

medical devices, and medical supplies. Figure 11.6 illustrates the homepage after a user logs in 

with an administrator account. Different types of accounts are granted different levels of 

accessibility. An administrator has full access and control at present, including the ability to 

retrieve information from the database and utilize all types of consoles to manage, e.g., patient, 

device, and scenario records. The homepage shows the patients tab that lists all of the current 

patients in the hospital; each entry contains a unique patient ID, patient name, room number, 

time to be checked, alert status, and brief symptom description. A user can click on a patient 

entry to open that patient’s console, as introduced in the next section.  

The basic function of the HIIS interface is to list records of patients, devices, and clinical 

scenarios. For example, a nurse or a doctor could look at each patient’s personal and medical 

information, the room where they are located, and whether an alarm is triggered or attention is 

needed. Device information can be viewed in the same way under the Medical Devices tab (see 

Figure11.7). Each entry is a specific device with device name, manufacturer, device type, 

function, and inventory status.    
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Figure 11.6. HIIS homepage with patient information, user identity, and administration 

tools.  

 

 
Figure 11.7. HIIS homepage with medical device information. 
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The clinical scenarios currently used in the hospital are listed under the Scenarios tab, as 

illustrated in Figure 11.8. Each scenario entry contains the scenario name, a scenario description, 

and its active/inactive status. Only an active scenario can be applied to patients. The operations 

of adding a new scenario or altering the active status are managed in their corresponding 

consoles, which typically requires greater authentication privileges in the HIIS account.   

 

 
Figure 11.8. HIIS homepage with clinical scenario information.  

 

For each database (e.g., patient, device, and scenario), the HIIS web interface provides a 

corresponding console to manage the records. To illustrate this concept, Figure 11.9 displays the 

patient record management console, where a new patient record can be added and an existing 

record can be modified by a user with proper permissions. Other convenient functions are to 

clear the patient alarm and update the check time. A similar record management console exists 

for medical devices. New devices can be added into the system, the information regarding 

current devices can be updated, or obsolete devices can be removed or deactivated in the hospital 

database.  

Scenario management is more complicated, since scenarios can be created on the HIIS 

interface. (An example is presented in the next section.) Moreover, this type of feature represents 

an important functional deviation from traditional hospital information infrastructures. Scenario 

APP concepts highlight medical device integration and medical component interoperability. In 
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the HIIS, scenario management falls into two categories: scenario creation and scenario control. 

Figure 11.10 shows the console to toggle a scenario's active status.   

 

 
Figure 11.9. Patient record management console in the HIIS.  

 

 
Figure 11.10. Scenario management console in the HIIS.  

 

Scenario creation was implemented in the MDCF Development Environment as 

introduced in the previous chapter. In the HIIS, the same thing can be done through the Scenario 
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Creation Console web application. Figure 11.11 illustrates the original web page showing the 

available devices/medical components and step-by-step procedures.    

 
Figure 11.11. Scenario creation console in the HIIS.  

 

 Scenario Creation in the HIIS  
Three steps are required to create a scenario APP in the HIIS. First, the medical devices 

or components that are involved in the scenario must be chosen from the Device List and 

dragged onto the Device Cart, as depicted in Figure 11.12. A good example is the creation of a 

button-controlled infusion pump.  Each device has its own data visualization window. The four 

components (Button, IV-Infusion-Pump, and two GUIs) are dragged onto the scenario cart. Each 
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component has input and output ports. These ports should be properly configured under the 

Interface/Port Type column by specifying the corresponding component’s Node ID. The check 

button can be used to clear basic logic errors.  

   

 
Figure 11.12. Creation of an example scenario in the HIIS Scenario Creation Console.  

 

The next step of the Scenario Factory requires the selection of the connection pattern and 

a click on the “make” button. If the connection is sensible (e.g., a connection to only one 

component), the build results are printed as in Figure 11.13. The display lists each connection 

between two components and automatically assigns a Transformer in between those components.    

 
Figure 11.13. Automatically created scenario script and Java code templates in the HIIS 

Scenarion Creation Console.  
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A Java template file can be downloaded from the server using each blue, underlined link 

in the Scenario Factory. The Java codes for the existing medical devices have already been 

stored in the HIIS. Hence, in most cases, the only files that need to be uploaded to the server are 

Transformers, along with appropriate scenario names and descriptions (see Figure 11.14). A 

Transformer typically receives one type of message, interprets its content, transforms it to a 

different kind of information, and repacks the results to another type of message that is 

compatible with the next component. These message specification files are also provided in the 

Scenario Factory.  

 

 
Figure 11.14. Upload of a new scenario to the server in the HIIS Scenario Creation 

Console.  

 

 Scenario APP Configuration and Execution in the HIIS  
After a new scenario is uploaded to the HIIS server and approved by an administrator, it 

appears in the scenario management console (see Figure 11.10). The new scenario APP can be 

used for a patient once its status is active and it is selected in that patient's console. Figure 11.15 

illustrates a patient console obtained by clicking an entry in the Patient tab in Figure 11.6. The 

patient console displays detailed patient information (e.g., connected with an EHR), connected 

devices, and currently active scenarios.  

The connected devices that are listed are associated with the Device List field of the 

patient's record in the database. One or more of them might not be physically connected or may 

have connection trouble after the relationship between the patient and the device is established. 

To address this issue, the care provider could open the Patient Device Setup page to check the 

connectivity of each listed device or simply click Reload.  
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In the Activated Scenarios segment, the device component placeholders need to be filled 

up before a scenario can be initiated. When the cursor is moved over the placeholder, it displays 

the required device name and ID. When the cursor is moved over the device icon in the 

Connected Device segment, it also displays its ID. A matched ID is required before a device icon 

can be dragged onto the placeholder in an activated scenario.        

 

 
Figure 11.15. Example patient console in the HIIS that displays patient information, 

connected medical devices, and active scenarios.  

 

Two virtual devices for an infusion pump and a button can be designed in Java to 

illustrate how to execute the button-controlled infusion pump APP. The button is clicked at a 

random time, and the resulting event is transmitted as a JMS message. The infusion pump stops 

for several minutes after receiving the command. In this example, the role of the transformer is 

simply to convert a click message to a stop-command message.  
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As a continuation of this example, the infusion pump and the button are associated with 

patient ID 001234 after they are started. If the Patient Device Setup page of that patient is 

opened, those two devices are listed with their unique topic names as shown in Figure 11.16. 

Clicking the check button sends out a heart beat message to the device. If the device responds 

successfully, the couple status changes to positive in the aforementioned TOPICREG table in the 

database. Other medical components can also be added, such as the GUI web component to 

visualize the infusion pump and the button data. The manually-added components will also be 

assigned unique topic names after submission; these topics names are appended with a symbol 

"V" to distinguish them from regular topic names.    

 

 
Figure 11.16. Selection and assignment of medical devices and components in the patient 

console.  
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At this point, the user can return to the patient console and add the connected device 

icons to the corresponding places in the active scenario, as illustrated in Figure 11.17. The 

scenario name can be clicked to launch the APP.  

 

 
Figure 11.17. Sequence to configure and start a scenario for a patient in the patient console.  

 

The scenario APP display is shown in Figure 11.18. The top segment includes the patient 

and scenario information along with a simple command-input area where commands can be 

directly send to a device from the drop-down list box. Below that segment are the web GUI 

gadgets for the button device and the infusion pump. Each GUI gadget contains the device icon, 

ID, current numerical value, and waveform plot. The simulated button was clicked around time 

60, and the infusion pump stopped for a while right after receiving the button's message.  
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Figure 11.18. APP display for the button and infusion pump scenario in the HIIS.  

 

 Running the HIIS on a Mobile Platform  
The aforementioned HIIS interface and consoles, including the scenario creation and 

execution web applications, are all accessible by a regular web browser with JavaScript support, 

which makes it possible to use HIIS on a mobile platform. For example, a mobile phone user 

could be granted permission to log into the HIIS system with the same account used on a 

computer, as shown in Figure 11.19. The interface can also stream vital sign data over the 

Internet in real time from any device connected to the HIIS message bus. Figure 11.20 illustrates 

a mobile phone receiving real-time PPGs from a patient who is wearing a pulse oximeter that 

feeds data to the HIIS. Since waveform drawing is a relatively challenging operation in a web 
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browser, the mobile platform offers great potential for the development of more features to 

extend the HIIS infrastructure.  

 

 
Figure 11.19. Access to the HIIS with a mobile device.  

 

 
Figure 11.20. Patient scenario display on a mobile device.  
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Chapter 12 - Medical Platform-Oriented Device 

This chapter illustrates the nature and benefits of the platform-oriented device concept by 

demonstrating how the MDCF can be used to realize a highly leverageable framework for 

Medical Platform-Oriented Devices (MPODs) [100] such as pulse oximeters that utilize 

photoplethysmograms (PPGs). Specifically, PPGs acquired by a wireless reflectance pulse 

oximeter are processed by a reconfigurable set of MDCF-based software components. In 

aggregate, these components support the construction of a flexible set of PPG post-processing 

applications that can extract a variety of meaningful clinical parameters and assess the viability 

of the PPGs for the intended applications. Using software engineering terminology, this work 

provides the foundation for a product family or software product line of MPOD pulse oximeters 

and other PPG-based devices, where product instances are configured according to desired 

features (e.g., clinical parameters and waveform processing tasks). These device instances can be 

used in isolation or in the context of larger multi-device APPs.  As noted earlier, one benefit of 

this approach is that it opens up the data post-processing dimension to enable numerous 

instantiations that can be tailored to particular care delivery scenarios or APP contexts. 

Sub-topics addressed here include the hardware features of the MPOD devices, 

components, and APP design in support of the desired application scenarios, and experimental 

results that speak to the viability of this platform-oriented approach to medical device design. 

Although this chapter does not address verification & validation (V&V) or regulatory issues, the 

work in this chapter feeds into a broader effort [101] to design V&V, third-party certification, 

and regulatory concepts suitable for assuring the safe and effective use of platform-oriented 

medical devices. 

 Moving from Conventional Medical Devices to MPODs  
Before focusing on the instantiation of medical platform-oriented devices (MPODs) 

natively designed for the MDCF environment, it is helpful to first address the idea of converting 

a conventional medical device to an MPOD profile. As an illustration, the diagram in Figure 12.1 

depicts typical elements of a stand-alone medical device (e.g., a bench top pulse oximeter). With 

the exception of the sensor and its support hardware (e.g., battery, control hardware, case, etc.) 
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(and likewise an actuator for a device such as an infusion pump), many of the functional and 

user-interface elements could be potentially mapped to the MDCF infrastructure, allowing for 

flexible APP configurations/updates and remote device control. The advantages of such an 

approach are clear; some of these are explained in more detail in the rest of the chapter, where 

pulse oximeter applications focus the discussion.  

 

 
Figure 12.1. Elements of a conventional medical device. 

 

Most commercial pulse oximeters are configured to be stand-alone devices. A typical 

hospital-grade pulse oximeter is comprised of a swappable sensor, an LCD screen, user interface 

buttons, a motherboard, etc. and is designed to report heart rate (HR) and blood oxygen 

saturation (SpO2) as determined by embedded firmware. When compared to sophisticated but 

streamlined pulse oximeters supported by distributed frameworks or platforms that host 

additional processing and display elements, commercial-module limitations are clear:  

1. Commercial stand-alone pulse oximeters are generally large and expensive, although 

some multi-parameter vital signs monitors have been designed to reduce the size and cost of 

device collections that incorporate pulse oximeters. 

2. Pulse oximeter sensors (e.g., finger or ear clips) must support various proprietary 

interfaces/connectors to the host.  
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3. Most pulse oximeters employ circuitry and algorithms that process PPG data in 

unknown ways prior to parameter display. 

4. On-board algorithms and firmware are relatively fixed; sometimes upgradable but not 

reconfigurable. 

5. Internal raw sensor data are typically not exported, and exported PPGs are filtered in 

unknown ways. PPG waveforms are primarily used for display purposes only – not diagnostics. 

In contrast, an MPOD as envisioned here emphasizes the delivery of high-quality raw 

data, where waveform processing, extraction of clinically meaningful parameters, and many 

other algorithms (e.g., for user identification) are implemented ‘off-device:’ on the computing 

platform. Such devices may be ‘headless’ (i.e., not include a full clinical display), because the 

display (e.g., customizable dashboard) is realized through the interoperability platform. Because 

displays and control panels may be removed from such a device, an MPOD can potentially offer 

a much smaller form factor, which in many cases may allow more flexible deployment of the 

device (e.g., a wearable device).  

A physical pulse oximeter MPOD has already proved helpful when designing and 

evaluating the MPOD concept as well as the associated computing framework that supports 

reconfigurable APPs. This type of device is not an entire pulse oximeter when compared to a 

conventional product.  Rather, it might gather data but be unable to provide clinically useful 

information when disconnected from the framework. The main parts of an MPOD would 

typically be a sensor, a signal conditioning and/or control module, a communication module, a 

case, simple user controls, and possibly a battery. The sensor would acquire raw data under the 

control of the conditioning module, and then the data would eventually be streamed to the server, 

either in real time or in store-and-forward mode (assuming onboard storage is available). Ideally, 

all sensor parts would be designed to fit within the conventional sensor form factor, e.g., a finger 

clip. 

In the previous work, the custom reflectance pulse oximeter (see Figure 12.2 or Chapter 

4) has the flavor of an MPOD.  The device is lightweight, low cost, and most importantly 

streams four channels of raw PPG data to the receiver/host. Figure 12.2 depicts example high-

quality infrared PPGs obtained at the finger and wrist (PPG data are also available at other body 

locations such as the palm and forehead, due to its reflectance-mode operation). These signals 

are acquired using a digital baseline-subtraction process that results in unfiltered, distortion-free 
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PPGs that offer thousands of peak-to-peak digitization levels and are sampled at 240 Hz to avoid 

aliasing of signal and noise components. In short, the data streamed to the MDCF are signals 

without circuit- and algorithm-level filtering. Hence, a variety of other information in addition to 

HR and SpO2, such as motion and ambient light intensity, will also be available in these PPGs, 

potentially encouraging a large collection of MPOD pulse oximeter APPs. 

 

 
Figure 12.2. A custom reflectance pulse oximeter (left) and two representative PPGs 

acquired with the device (right). 

 

Similar benefits of leveraging raw data streams could be obtained with conventional 

pulse oximeters if manufacturers could be persuaded to expose raw PPGs on their connectivity 

interfaces. Interestingly, previous MDPnP device coordination demonstrations based on the ICE 

encouraged ventilator vendors to add interface command functionality to make their devices 

more amenable to medical interoperability platform APPs [92].   

 Object-Oriented Model 
When connected to the MDCF infrastructure, an MPOD pulse oximeter will stream 

measurement data through either a wired USB or wireless ZigBee connection. From the 

perspective of the OSI model, medical devices utilize different protocols on the transport layer, 

including serial, Bluetooth, Wi-Fi, and ZigBee protocols. An object called a Medical Device Port 

(MDP) serves as a terminal at the application layer whose subclasses correspond to the different 

types of communication protocols. 
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An MDP is an essential component in the MDCF – it represents a physical medical 

device. As an object class, it offers methods and properties. The methods include configure, get, 

set, start, pause, and stop; the properties include name, protocol type, port or channel number, 

buffer size, and last active time. From the perspective of the operating system, each MDP class 

includes device drivers for a specific communication protocol that depends on the operation 

system). Other MDCF objects that contribute to a medical device application are typically 

platform-agnostic, considering the MDCF project is written in Java. The object-oriented model 

in Figure 12.3 depicts the classes needed to build a medical device (application) in the MDCF.  

  

 
Figure 12.3. Object-oriented model for device-related MDCF components. 

 

A Medical Device (MD) class serves as a logic device component that represents an 

abstract medical device in the MDCF. It could be (a) a logic wrapper around an MDP class that 

allows it to communicate with a real medical device or (b) just a mock device without MDP 

support. An MD class also offers methods and properties such as a Universally Unique Identifier 

(UUID) and a device type. An important idea is that methods and properties are associated with 

channels, as introduced earlier in Chapter 10. When an MD object is instantiated, it notifies the 

MDCF Device Manager via the admin channel, which is public to all newly created MDs. 
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Device authentication, registration, association, etc. are completed through the admin channel. A 

data channel is then created under the supervision of the Device Manager that allows 

communication with other components introduced thereafter. The information streamed over the 

data channel is typically raw data from the physical medical device.  

The MD data sent over a data channel are first fed into an MDCF component called a 

Transformer class. In the context of the MDCF, a transformer is synonymous with a processor or 

neuron, where information is processed and repacked. For example, HR and SpO2 parameters are 

extracted from the PPG data streamed from a pulse oximeter and then packed into a new packet 

in a transformer class. Each transformer has a specific processing capability given a particular 

type of input data. From a signals and systems perspective, a transform is functionally 

represented by a system, where input data in a pre-specified format are transformed into the 

desired output data. A collection of functions that can be applied to medical data are therefore 

mapped to a corresponding number of transformer classes, some of which (e.g., most 

mathematical functions) are useful for various types of medical data. This concept will be 

elaborated in the next section.  

The medical data and/or transformed results are finally visualized by users (e.g., an ECG 

waveform displayed on the front screen of a conventional vital signs monitor). This functionality 

is realized by the MDCF Display class. Properties like a UUID or a device name are important 

when identifying a display for a particular application or data source. The Display class can be 

utilized to provide a uniform interface and data visualization approach for all medical devices 

integrated into the MDCF. For example, the nested classes Numeric and Waveform are two 

window/frame components designed to respectively display a numeric value (e.g., one HR 

number) and an array (a PPG waveform segment).    

The final element in Figure 12.3 is the Message class, which streams data between two 

components, e.g., an MD and a transformer, using a standardized protocol and format. A generic 

Message class is defined as a superclass with properties like a timestamp (when the message was 

created), a message ID, a nested Numeric class, a nested Waveform class, etc. From the 

perspective of medical device specifications, a Message subclass could be specified for a 

particular medical device.  

The object-oriented model brings the components of a conventional medical device to an 

abstract layer in the MDCF. More classes could be potentially integrated depending on the 
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desired functionality of the medical device components and the infrastructure that these medical 

devices require. E.g., a Database class would represent a storage role on either a device or an 

EHR in a hospital system.  

 APP Logic Pool 
The MDCF ‘transformer’ concept is similar to the ‘function’ concept in most 

programming languages (e.g., C):  

1. A function defines its input and output parameters and implements the transitional 

logic.  

2. A collection of functions with related purposes forms a library, such as a math library, 

which contains commonly used math functions.  

3. One function can be called from within another function.  

In this chapter, a pulse oximeter is selected as the type of object to explain the concept of 

an APP logic pool (a collection of transformers) and an APP library – see the next section. PPGs 

acquired by the light-based sensor of a pulse oximeter potentially offer many other clinical 

parameters in addition to the HR and SpO2 values reported by a conventional pulse oximeter:  

• Additional cardiopulmonary and cardiovascular parameters: 

• Systolic, diastolic, and mean blood pressure (BP) 

• Stroke volume (SV) 

• Cardiac output (CO) 

• Respiration rate (RR)  

• Peak-to-peak time (PPT) 

• Pulse wave velocity (PWV) 

• Arterial elasticity (AE) 

• Stiffness index (SI) 

• Reflection index (RI) 

• Perfusion index (PI) 

• Other parameters: 

• Patient activity/motion 

• Patient identity 

• Ambient light information 
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Given the same PPG data, different parameters could be obtained by applying alternative 

algorithms/methods (see the colored bubbles in Figure 12.4), where each method corresponds to 

the functionality of a transformer. A transformer collection could form a pulse oximeter APP 

logic pool. Using the similar idea of “function,” several transformers might be combined in a 

serial cascade to form a single upper-level transformer that fits into a general device-transformer-

display topology, which is called an APP (see the next section). On the other hand, a single 

bubble, e.g., Waveform Smoothing in Figure 12.4, could be realized in a variety of ways, 

including calls to other transformers that implement lower-level filtering functionality.  

One potential opportunity relates to an enhanced pulse oximeter that can replace other 

medical devices that report physiological indices, such as a PPG-based indicator for continuous 

BP that provides an alternative to an unwieldy cuff-based device.  These types of device 

substitutions could contribute to the decreased cost of medical monitoring equipment and the 

associated infrastructures. However, confidence in PPG-acquired parameters is still relatively 

low when compared to conventional methods to ascertain those parameters. Most of these PPG-

based parameter extraction algorithms are still being developed and tested in laboratory settings 

and therefore presented as research papers; clinical validation will be required prior to broad use. 

A lower risk approach is to use these parameters as estimators or references for parameters 

acquired from dedicated medical devices. For example, when an inconsistency occurs between 

the BP values reported by a pulse oximeter and a BP monitor, a care provider would arrive to 

ensure that the BP cuff is appropriately placed, especially when the BP waveform displayed on 

the monitor becomes unstable or irregular.  Other usage contexts include third-world areas that 

experience limited device availability. In such situations, and MPAD device collection built on a 

laptop with an accompanying MPOD PPG generator could yield a variety of useful parameters. 

Parameters that are not usually reported by standard medical equipment, such as patient 

motion and identity, will lead to new medical device applications.  For example, a pulse oximeter 

with user authentication functionality can help to prevent the situation where one patient’s 

medical data are mistakenly streamed to another patient’s record. Extra information extracted 

from PPG data is primarily assistive at the present time, since critical medical decisions require 

robust V&V.  
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 APP Library 
A collection of transformer components relevant to PPG-based APPs was illustrated in 

Figure 12.4, where the devices on the left provide the raw PPGs and the display on the right 

presents these data to the patient or clinician. In the current pulse oximeter APP library, the 

parameter extraction process is usually accomplished with two serialized (cascaded) 

transformers: (a) a PPG-processing algorithm to extract certain parameters (e.g., PI, SpO2 

Algorithm bubble in Figure 12.4) followed by (b) a parameter reporting algorithm such as a 

moving average computation (e.g., the SpO2 bubble). Typically, a variety of options exists for 

the parameter extraction algorithm (the first transformer). Taking SpO2 as an example, the 

existing methods to determine a coefficient linearly related to SpO2 include  

1. signal amplitude (valley-to-peak & baseline) extraction from the PPGs followed by a 

ratiometric calculation based on the results,  

2. Fourier transformation of the PPGs to extract the peak of each fundamental harmonic 

[64], which provides equivalent amplitude information as in item 1 that can then be used in a 

ratiometric calculation, and  

3. independent component analysis (ICA) to extract a peak-to-valley ratio directly [102], 

e.g., the Discrete Saturation Transform used by Masimo Corporation [103].  

In commercial products, the actual implementations of these transformers are proprietary 

and vary across manufacturers.  In our APP architecture, the first transformer could be 

instantiated to address a number of different methods, each of which receives PPG data and 

generates parameters. The second general-purpose transformer would then receive these newly 

calculated parameters and report a parameter that is likely further refined, e.g., with a moving 

average filter.  
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Figure 12.4. An example component pool for PPG-oriented APPs. Transformer 

components are depicted as colored bubbles in the middle area (interconnections will be 

configured for specific clinical scenarios).  

 

Note that flavors of transformers will vary widely within such a framework.  While some 

will, as in the prior examples, relate directly to physiological parameter extraction/processing 

(e.g., a motion artifact reduction transformer for a PPG signal), others will be more generic (e.g., 

a frequency spectrum analysis tool) and also be useful in, e.g., an ECG-based APP library. 

Further, transformers can exist at different levels of scope so as to allow transformers within 

transformers as in typical component- or object-based frameworks.  

The beauty of this approach is that a considerable APP logic pool and a corresponding 

pool of higher-level, PPG-based APPs can be developed by a large developer community as long 

as the general topology of the APPs is well-defined. We are currently exploring the extent to 

which a rigorous architecture may allow APPs to be configured in a semi-automated manner 

when tied to feature models [104] that explicitly highlight the product-line nature of the APP 

library in terms of variability points. Correct composition of components into APPs is facilitated 

by defining a pool of message types that the transformer- and display-component inputs must 

support. For example, a transformer can only be allowed to interpret a particular type of message 
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sent from the previous component and repack the processed result into a message type required 

by the next component.  

The following three sections present APP design examples that illustrate the 

reconfigurability of PPG-based APPs that employ a flexible set of data transformers.  

 Case 1: Parallel Processing 
Figure 12.5 lays out the system-level diagram for the first PPG-based APP: a wireless 

reflectance pulse oximeter whose original embodiment is described in Chapter 4.  Here, the 

physical MPOD device in Figure 12.2 performs a subset of its original operations by providing 

raw PPGs as input signals to the APP.  As a demonstration of the feasibility of this APP-driven 

framework, the transformers within the APP then implement the remainder of the device 

functionality (processing and parameter extraction) that was formerly implemented in the device 

firmware.  

 

 
Figure 12.5. System-level diagram for a pulse oximeter APP that employs parallel 

transformers. 

 

The Device block in Figure 12.5 is realized as an MDCF client running on a separate off-

device computer.  The client wraps a driver, where the driver links the operating-system-level 

driver to the physical device.  Six transformers picked from the APP logic pool in Figure 12.4 

are assigned at two levels. The three Level 1 transformers parallel-process the PPG waveform 
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data sent from the device – see Chapter 10 for more detailed descriptions of their individual 

functionality and realizations. The three Level 2 transformers report the physiological parameters 

of respiration rate, heart rate, and SpO2 after performing, e.g., a moving average calculation on 

the corresponding messages from the Fourier Transform transformer. All results (signal 

waveforms, physiological parameters, and feature tags) are streamed to the Display (see Chapter 

10).  

 Case 2: Multiple Devices 

The second example focuses on a situation where multiple devices provide raw PPGs as 

APP inputs. Figure 12.6 lays out the system-level diagram for an application that extracts pulse 

wave velocity (PWV) given near-infrared PPGs provided by two reflectance sensors placed at 

the wrist and finger of the same hand [70]. Three transformers are connected in serial (cascade) 

to provide the PWV result. The Waveform Synchronization transformer aligns the PPGs 

received from the two devices using timestamps in the messages. The synchronized waveforms 

are then streamed to the central PWV Algorithm transformer, which internally employs a linear-

phase lowpass filter and signal differentiation method as in [70]. The PWV transformer reports 

the final PWV value, e.g., after applying a moving average filter.  

  

 
Figure 12.6. System-level diagram for a pulse wave velocity APP that employs multiple 

pulse oximeters (devices). 
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 Case 3: Closed-Loop Behavior 
The third example presents closed-loop APP behavior, as in Figure 12.7, where feedback 

channels are depicted as dashed lines. Except for the Feature Detection transformer, the other 

four transformers either extract or report one of two physiological parameters: BP and SV. In 

practice, the raw PPG data provided by the device are not always quality signals; they exhibit 

different levels of motion artifact and ambient noise. The resulting corrupted source data could 

lead to BP and SV values with little meaning, trigger nuisance alarms, and/or waste system 

resources. The Feature Detection transformer indicates the viability of these PPG data to the 

other transformers. For example, when a BP Algorithm transformer receives the detection result 

of “invalid PPG,” it will pause waveform processing until a valid signal appears. During the 

interval of the invalid signal, special-purpose error records can be forwarded to the display. 

 

 
Figure 12.7. System-level diagram for a cardiovascular parameter extraction APP that 

exhibits closed-loop behavior. 
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Chapter 13 - Conclusion 

This dissertation investigated three aspects of consumer biomedical devices that will be 

pivotal for medical systems’ transitions to patient-centered architectures: (a) custom biomedical 

sensor designs that are optimized for home and mobile health care contexts, (b) sensor 

integration based on patient needs or in the home environment, and (c) medical device 

integration and interaction with hospital infrastructures or medical systems at different scales. 

The GumPack concept introduced in Chapter 2 provides an innovative hardware and software 

platform for research work addressing those fields. Three application chapters presented the 

potential use of the research results in the real world.  

The concept design for a GumPack is described as a new type of everyday-carry, multi-

sensor medical monitoring device that offers computer-grade processing, the ability to host 

multiple biomedical sensors that can be reconfigured in a plug-and-play manner based upon 

patient need, the means to serve as a host for wearable/nearby medical components, and 

integration into hospital-level medical device connectivity and coordination frameworks. The 

physical form factor is an innovative 3D hardware layout that does not stack circuit boards in 

layers like some ‘adaptable’ tools.  Rather, its cuboid form factor provides a housing for multiple 

customizable surface components while still maintaining a small everyday carriable size. In its 

current structure, a GumPack supports four reconfigurable surfaces, where GCCF-compatible 

SCs can be easily added or removed. More than a sensor-laden device, a GumPack provides the 

computational capability and connectivity of a contemporary smart phone. The GumPack 

concept leapfrogs cell-phone-centered medical sensor systems that employ dumb devices and are 

targeted for ambulatory or wearable applications, including those intended for ubiquitous home 

care environments. The design not only provides a new topology between a sensor and a hub 

(e.g., for data aggregation, processing, and communicaton), but the GumPack offers a fully open 

development platform for hardware and software developers. Interoperability is considered and 

tested for the GumPack as a single conventional medical device. Since it is also a collection of 

local SCs and/or Chiclets as a independent system, the GCCF offers component identification, 

authentication, interface interpretation, and APP automation.  
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A high-performance wireless reflectance pulse oximeter was designed as an instantiation 

of the Chiclet concept for the GumPack platform, which included (a) functional features desired 

for research and education that are either unavailable or hard to find on commercial units and (b) 

design optimizations based on lessons learned from previous work or published in the pulse 

oximetry literature.  These primary features include  

• A unique filter-free circuit design,  

• Full access to unfiltered PPG data,  

• Many digitization levels in the pulsatile PPG signals that demonstrate a sampling 

frequency up to 240 Hz, 

• A feedback mechanism to allow sensor operation in normal ambient room light,  

• A large-area reflectance sensor that speaks to the promise of surface-infused 

biosensors and enables sensor placement at many body locations while optimizing the 

resistance of the sensor to stray photons and motion artifact,  

• Onboard flash memory, 

• ZigBee wireless support, and  

• Mini-USB connectivity for data transfers and battery recharging.  

The associated MATLAB GUI makes signal acquisition, visualization, restoration, and post-

processing convenient. High-integrity PPGs acquired from 48 human subjects over a wide range 

of ages (20 to 64 years old) indicate the device’s potential as a research and teaching platform in 

support of the extraction of new physiological parameters from time-domain PPGs.  Finally, the 

size, cost, layout, and design of the sensing platform speak to its suitability for wearable 

applications and scenarios where medical sensors are connected to or embedded in consumer 

electronics such as smart phones and tablet PCs. 

Onboard tagging technology was presented as a means to improve sensor intelligence by 

embedding information about medical device hardware (type I tag), signal samples (type II tag), 

and signal viability (type III tag) in the data stream itself.  A use case addressing a custom pulse 

oximeter demonstrated that type II tags can be embedded in a data stream and then be used to 

calculate type III tags that are also embedded in the data stream.  Further, these tags can be 

inserted seamlessly in the firmware flow without incurring a computation load that affects device 

performance. Application A addressed a means for classifying, or tagging, segments of PPG data 

acquired with a wireless reflectance pulse oximeter, where the presence of motion, saturation, 
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invalid data, or a valid PPG were of interest.  To that end, a set of decision rules was established 

that evaluated four features related to signal behavior: baseline variation, rising count, falling 

count, and saturation index.  The algorithm was then implemented on the portable, embedded 

device in a way that kept the normal pulse oximeter functionality and PPG data intact, 

illustrating the idea that smart tagging algorithms can be implemented onboard as feature-

extraction and decision-making techniques that can improve the viability of data forwarded to 

electronic patient records while at the same time reducing the power needs of the portable 

devices.  In early validation assessments, hierarchical decision rules based on training data from 

47 subjects were able to achieve a decision success level of 99%. 

To illustrate a sensor integration and interaction network, Chapter 8 presented an 

application layer scheme for WBANs with sensor nodes that compete for high-speed, real-time 

communication with the receiver. The lost and wandering frame issue was addressed by 

assigning a sequence # to each frame and a time-alignment process. The timeline distortion 

phenomenon was addressed by a ticket generation and consumption mechanism. A linear 

regression method provided the relative delay when rearranging the frames that provided 

information for the statistical synchronization of each sensor. As a demonstrative application for 

such a WBAN, PWVs were successfully extracted from the received frames. Application B 

presented a method to determine PWV in the hand using two reflectance-mode, wireless pulse 

oximeters placed at the wrist and fingertip.  PWV values obtained at different features of the 

corresponding PPGs (foot, inflection point, and rising-slope peak) support the assertion that 

PWV depends on arterial pressure. PPG foot and inflection-point calculations show an increase 

in PWV as arterial pressure increases, but peak-based calculations are inconsistent with 

expectations, primarily because the effects of wave reflections on PPG shape are not well 

modeled and warrant further investigation. Nonetheless, the two-oximeter approach was shown 

to be feasible, so the next logical step is to compare these PWVs with values obtained from 

commercial devices employing other modalities. In other research areas such as digital volume 

pulse (DVP) analysis [47], the estimated PPGs would help to improve precision, especially in a 

WBAN scenario.  

This dissertation also illustrated how medical device integration platforms such as the 

MDCF and the HIIS can allow developers to build new “platform-based” medical devices that 

are customized to different usage contexts.  The growing trend toward networked clinical 
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systems (evidenced by the increased use of MDDSs and integrated EHRs) suggests a possible 

evolution of medical devices toward the MPOD concept – devices that are oriented towards 

being used primarily with an integration platform.  The APP component library concept and 

lightweight MPOD for PPG processing has significant utility in its own right. We are working to 

build out the component library to support additional PPG examples.  For the future integration 

of additional medical devices that require signal processing, the evaluation of a large pool of 

published signal processing modules would be worthwhile, as they would serve as a general 

transformer development library. A significant challenge is developing V&V and regulatory 

guidelines that will allow these types of frameworks to be brought to market.  To this end, local 

team members are involved in collaborative work with MDPnP, several other universities, device 

and clinical information system manufacturers, certification labs, and government agencies such 

as the FDA and NIST.  A preliminary vision for a component-based certification approach is 

presented in [101], and the examples and broader APP framework described in this dissertation 

will provide additional challenge problems to drive that effort.  
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Appendix A – GumPack Hardware Interconnection Interface 

Table A.1. GumPack Hardware Interface Pin Definition 

Pin	
  #	
   Function	
   Motion	
  Sensor	
   ECG	
  	
   ZigBee	
  Coord.	
  

1	
   GND	
   	
  	
   	
  	
   	
  	
  

2	
   VCC3.3	
   	
  	
   	
  	
   	
  	
  

3	
   GPIO171_SPI1_CLK	
   	
  	
   	
  	
   	
  	
  

4	
   GPIO114_SPI1_NIRQ	
   	
  	
   	
  	
   	
  	
  

5	
   GPIO172_SPI1_MOSI	
   	
  	
   	
  	
   	
  	
  

6	
   GPIO174_SPI1_CS0	
   	
  	
   	
  	
   	
  	
  

7	
   GPIO173_SPI1_MISO	
   	
  	
   	
  	
   	
  	
  

8	
   GPIO175_SPI1_CS1	
   	
  	
   	
  	
   	
  	
  

9	
   GPIO151_RXD1	
   	
  	
   	
  	
   	
  	
  

10	
   GPIO148_TXD1	
   	
  	
   	
  	
   	
  	
  

11	
   GPIO22	
   	
  	
   	
  	
   	
  	
  

12	
   GPIO23	
   	
  	
   	
  	
   	
  	
  

13	
   GPIO21	
   	
  	
   	
  	
   	
  	
  

14	
   GPIO14	
   	
  	
   	
  	
   	
  	
  

15	
   SYSEN	
   	
  	
   	
  	
   	
  	
  

16	
   VBACKUP	
   	
  	
   	
  	
   	
  	
  

17	
   GPIO31_WAKEUP	
   	
  	
   	
  	
   	
  	
  

18	
   POWERON	
   	
  	
   	
  	
   	
  	
  

19	
   GND	
   	
  	
   	
  	
   	
  	
  

20	
   VCC1.8	
   	
  	
   	
  	
   	
  	
  

21	
   GPIO186_GPS_PPS	
   	
  	
   	
  	
   	
  	
  

22	
   GPIO10_TS_IRQ	
   	
  	
   	
  	
   	
  	
  

23	
   GPIO170_HDQ_1WIRE	
   	
  	
   	
  	
   	
  	
  

24	
   GPIO163_IR_CTS3	
   	
  	
   	
  	
   	
  	
  

25	
   GPIO165_IR_RXD3	
   	
  	
   	
  	
   	
  	
  

26	
   GPIO166_IR_TXD3	
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Pin	
  #	
   Function	
   Motion	
  Sensor	
   ECG	
  	
   ZigBee	
  Coord.	
  

27	
   GPIO184_I2C3_SCL	
   	
  	
   	
  	
   	
  	
  

28	
   GPIO185_I2C3_SDA	
   	
  	
   	
  	
   	
  	
  

29	
   GND	
   	
  	
   	
  	
   	
  	
  

30	
   VCC1.8	
   	
  	
   	
  	
   	
  	
  

31	
   GPIO146_PWM11	
   	
  	
   	
  	
   	
  	
  

32	
   GPIO145_PWM10	
   	
  	
   	
  	
   	
  	
  

33	
   GPIO147_PWM8	
   	
  	
   	
  	
   	
  	
  

34	
   GPIO144_PWM9	
   	
  	
   	
  	
   	
  	
  

35	
   PWM0	
   	
  	
   	
  	
   	
  	
  

36	
   PWM1	
   	
  	
   	
  	
   	
  	
  

37	
   ADCIN7	
   	
  	
   	
  	
   	
  	
  

38	
   ADCIN2	
   	
  	
   	
  	
   	
  	
  

39	
   ADCIN6	
   	
  	
   	
  	
   	
  	
  

40	
   ADCIN5	
   	
  	
   	
  	
   	
  	
  

41	
   GND	
   	
  	
   	
  	
   	
  	
  

42	
   ADCIN3	
   	
  	
   	
  	
   	
  	
  

43	
   ADCIN4	
   	
  	
   	
  	
   	
  	
  

44	
   NC	
   	
  	
   	
  	
   	
  	
  

 

Pin utilization for the three example SC boards is indicated by color-filled cells.  
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Appendix B – GumPack Hardware Schematics and PCB Layouts 

 GumPack Surface Substrate 
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 GumPack Surface Component: Motion Sensor 
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 GumPack Surface Component: ECG 
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 GumPack Surface Component: ZigBee Coordinator 
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Appendix C – Screenshots of the GumPack Web Interface 

 
Figure C.1. GumPack web interface - Dashboard tag. Data acquired from an 

accelerometer, gyroscope, pulse oximeter, and ECG sensor.  
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Figure C.2. GumPack web interface - Devices tag. Data selection and analysis for a pulse 

oximeter.  
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Figure C.3. GumPack web interface - Trackers tag. 
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Figure C.4. GumPack web interface - File Repository page. 
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Figure C.5 notes the CPU usage on the GumPack when an iPad accesses the web server 

(lighttpd). Its peak CPU usage is typically < 1.0%. 

 

 
Figure C.5. GumPack system resources allocated for the web server lighttpd.  

 

  



176 

 

Appendix D – Instructions to Install the JRE on the GumPack 

Software development on the GumPack is largely based on the Java language, including 

the MDCF-related work. Appendix D addresses how to install a GumPack-supported JRE, from 

connecting the device to a computer to running a Java program on the GumPack.  

First, a serial connection is required to access the GumPack console – a native user 

interface to the processor SC (Gumstix Overo board). The USB console port on the GumPack 

must be connected to a USB port on a computer. Serial communication tools used on computers 

vary among the different operating systems. The Mac OS X (Terminal) was used for this tutorial. 

As to other solutions such as Kermit on Linux and Putty on Windows, more information is 

available in [105].  

For a first-time connection, install the FTDI chip driver that can be downloaded from 

their website. Open the Terminal program and use the following commands to establish a 

connection.  
$ screen /dev/tty.usbserial-A8005CU9 115200 8N1 

Here, screen is the name of the screen program and /dev/ tty.usbserial-A8005CU9 

is the name of the connection controller on the GumPack under the directory /dev. The token 

115200 specifies that the connection rate is 115200 bps, and the token 8N1 specifies the use of 

8 data bits, no flow control, and 1 stop bit, 
$ screen -r 

The token –r identifies the need to reattach to the communication console, e.g., after the 

Terminal program is closed.  

Power on the GumPack; its boot-up information will be shown in the screen program. 

Log in with an administrator account, such as the default account “root.” Since the current 

console connection is not configured to transfer files/packages to the GumPack system, there are 

two options to do so: SD card (off-line) or Wi-Fi (on-line). Here the Wi-Fi method is introduced, 

which requires an extra step to configure Wi-Fi on the GumPack.  

Execute the commands in Figure D.1, or write an executable script to connect to a Wi-Fi 

access point with the name of TP-LINK_DE455E. In the example, the WEP password is 

“1234567890,” the gateway is 192.168.1.1, and the IP address that the GumPack requires is 

192.168.1.101.  
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Figure D.1 Configuration file for Wi-Fi access. 

 

If the operation succeeds, the wlan1 configuration in the GumPack should look like the 

listing in Figure D.2. Ping the gateway to ensure the Wi-Fi connection is alive: 
$ ping -c3 192.168.1.1 

 

 
Figure D.2. Wireless interface configuration after connecting to the access point 

successfully. 

 

Note that using Wi-Fi and/or Bluetooth double the power consumption of the GumPack 

and significantly increase the system temperature. Write the following script into the file 

/etc/profile to control the switch: 
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# disable wifi 

echo 0 > /sys/class/gpio/gpio16/value 

# disable bt 

echo 0 > /sys/class/gpio/gpio164/value 

 

If Internet access is available, the latest versions of the JRE-related packages can be 

directly downloaded from the repository. First, add the angstrom repository using the following 

command: 
$ echo 'src/gz angstrom-base 

http://www.angstrom-distribution.org/feeds/unstable/ipk/gli

bc/armv7a/base' > /etc/opkg/angstrom-base.conf 

Install the latest version of the JRE on the GumPack. Choose either JamVM or Cacao.   
$ opkg update 

$ opkg install cacao 

If you need graphical class support, install the GTK package.  
$ opkg install classpath-gtk 

Check the Java version, and execute a Java program.  
$ java -version 

$ java -jar archive_name.jar 
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Appendix E – Exporting the MDCF to the GumPack 

In Appendix D, the JRE was set up on the GumPack. Appendix E addresses how to 

export the Java code in the original MDCF code base to the GumPack and establish a wireless 

connection between a GumPack and other MDCF components, e.g., an MDCF server on a 

computer.  

The first step is to set up the address of the MDCF message bus. In this example, the 

server on a computer is designated the IP address of 192.168.100. Locate the classes 

TCPRecvrClient and TCPSndrClient in the package mdcf.messagebus.transport.tcp of the 

MDCF code base and modify the following code.  
private String hostname = "192.168.1.100"; 

Figure E.1 illustrates an example scenario where an MDCF client is exported to a  

GumPack. Two clients are used: one to publish a message (source), and the other to receive a  

message from a console running on the MDCF host (sink).  

 

 
Figure E.1. Example scenario with an MDCF client running on the GumPack. 
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In Eclipse, choose File -> Export, as shown in Figure E.2. Select Runnable JAR file and 

click Next. 

 

 
Figure E.2. Exporting resources to a JAR file in Eclipse. 

 

Select the correct launch configuration that has been run on the server side at least once, 

although it will be exported to the GumPack side. Specify the export destination where a JAR 

archive is to be created. Note that one must also extract the required libraries into a generated 

JAR since those libraries are currently unavailable in the JRE of the GumPack.  

Figure E.3 illustrates the final step to create the target JAR file. Upload this file to the 

GumPack either via an SD card or Wi-Fi. Make sure the GumPack is in the same wireless 

domain as the MDCF server, e.g., by connecting to the same wireless router. Execute the MDCF 

client on the GumPack after the message bus is established on the server side as a regular 

routine.  
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Figure E.3. Choosing the launch configuration and file properties in the last step of a 

runnable JAR file export. 

One significant difference in the Java code for the GumPack is that its JRE currently does 

not support the XStream library which transform a Java object to/from XML. The SAX XML 

parser is adopted to address this issue. Import the following libraries to replace XStream and 

replace the original codes with new codes using the new libraries (see Figures E.4 through E.7).  
import javax.xml.parsers.DocumentBuilder; 

import javax.xml.parsers.DocumentBuilderFactory; 

import javax.xml.parsers.ParserConfigurationException; 

import org.w3c.dom.Document; 

import org.w3c.dom.Element; 

import org.w3c.dom.NodeList; 

import org.xml.sax.InputSource; 

import org.xml.sax.SAXException; 
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Figure E.4. Original code in the MDCF when receiving a message regarding a publish 

topic. 

 

 
Figure E.5. Modified code in the GumPack when receiving a message regarding a publish 

topic. 
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Figure E.6. Original code in the MDCF when receiving a message regarding a subscribe 

topic. 

 

 
Figure E.7. Modified code on the GumPack when receiving a message regarding a 

subscribe topic. 
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Appendix F – Acronyms and Abbreviations 

A list of commonly-used acronyms and abbreviations in the dissertation follows. 

 

Table F.1. Acronyms and Abbreviation 

Acronym/Abbr. Name 

AJAX Asynchronous JavaScript and XML 

API Application Programming Interface 

APP Application 

BAN Body Area Network 

DOM Document Object Model 

DVP Digital Volume Pulse 

ECG Electrocardiogram 

EEG Electroencephalogram 

EHR Electronic Health Record 

EKG Electrocardiogram 

EMG Electromyogram 

EMR Electronic Medical Record 

EOG Electrooculogram 

GCCF GumPack Component Coordination Framework 

GUI Graphical User Interface 

HIIS Hospital Information Integration System 

ICE Integrated Clinical Environment 

JDBC Java Database Connectivity 

JMS Java Message Service 

JNDI Java Naming and Directory Interface 

JNI Java Native Interface 

JRE Java Runtime Environment 

MDCF Medical Device Coordination Framework 

MDDS Medical Device Data System 
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MDPnP Medical Device Plug and Play 

MPAD Medical Platform-Aggregated Device 

MPOD Medical Platform-Oriented Device 

MOM Message-Oriented Middleware 

PHR Personal Health Record 

PPG Photoplethysmogram 

PWV Pulse Wave Velocity 

SB Surface Biosensor 

SC Surface Component 

SDK Software Development Kit 

SS Surface Substrate 

WBAN Wireless Body Area Network 

 

 


