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Abstract 

The evolution of unique electrical, optical, thermal, mechanical, and chemical properties 

in two-dimensional (2D) nanomaterials due to the atomic confinement in the z-direction has 

ignited tremendous technology promises. With that promise comes a challenge of incorporating 

2D nanomaterials into practical applications, enabling their large-area growth and using covalent 

or van der Waal bonding to extent and control their properties in electronic applications. This PhD 

thesis establishes the following results: (a) successfully developing of scalable processes for direct 

growth of large-area graphene, h-BN, and MoS2-on-h-BN on SiO2/Si substrate, (b) demonstrating 

an electronic sensor for the defection of molecular motion by covalently interfacing 2D 

nanomaterials with photo-mechanical molecules, and (c) establishing the modulation of structural, 

electrical, thermal properties of 2D nanomaterials by covalently interfacing metal nanoparticles 

with 2D nanomaterials.  

A promising scalable route for large-area growth of 2D nanomaterial on a dielectric 

substrate is to perform chemical vapor deposition (CVD). Via two patented processes, we have 

synthesized graphene films directly on a SiO2 substrate via carbon-diffusion through copper grains, 

and h-BN film on SiO2 substrate via surface oxide assisted mechanism. The continuous graphene 

film grown with large coverage on SiO2 substrate possessed a crystalline sp2 domain size of 140 

nm with low defect density (as indicated by low Raman ID/IG~0.1). The sheet resistance of this 

turbostratic stacking graphene was ~4 k/sq, with a charge carrier mobility of ~250 cm2V-1s-1. 

Unprecedented, large coverage of directly grown h-BN film on SiO2 substrate was demonstrated. 

This h-BN film showed a 6-fold smoothness enhancement compared to that of SiO2 substrate. Such 

smoothness and the nature of free dangling bond of h-BN film reduced Coulombic long range 



 

 

scattering, leading to the 5-fold enhancement in the conductivity of the MoS2, which is directly 

grown on the underlying h-BN platform.    

The next-generation molecular electromechanical systems require controlled manipulation 

and detection of molecular motion to build systems which respond to molecular mechanics. To 

achieve this, we covalently interfaced photo-mechanical molecules (azobenzene) (density = 2.5 

nm-2) onto trilayer graphene (37.5% sp2 coverage), where high sensitivity of this trilayer graphene 

due to high quantum capacitance (6.3 F/cm2) and carrier confinement was leveraged. This 

enabled graphene to sensitively detect azobenzene isomerization, where one hundred molecules 

generated one charged carriers in the graphenic platform (2.44 x 1012 holes/cm2).   

As mentioned before, surface modification of 2D nanomaterials opens an avenue to 

incorporate them into rational applications. We demonstrated the ability to interface noble metal 

nanoparticles (gold, silver) selectively onto a MoS2 lattice (60o angular displacement) via both 

diffusion limited aggregation and instantaneous reaction arresting (using microwaves). Such gold 

nanoparticle interfaces allowed the modulation of electrical, and thermal properties, confirmed by 

Raman, electrical, and thermal studies. Consequently, a remarkably capacitive interaction between 

gold and thin MoS2 sheet showed a 9-fold increase of effective gate capacitance with low Schottky 

barrier (14.52 meV), and a 1.5-fold increase in thermal conductivity with a low carrier-transport 

thermal-barrier (44.18 meV).  

This long-term work has established the following points: 1) Scalable routes for the growth 

of 2D nanomaterials, which can be extended to synthesize complex hetero/lateral architectures for 

integrated thin film circuitries. Furthermore, 2) covalent functionalization of 2D nanomaterials 

with nanoparticles and molecular systems can futuristically develop rational interfaces with other 

2D heterostructures, and molecular machines.    
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Abstract 

The evolution of unique electrical, optical, thermal, mechanical, and chemical properties 

in two-dimensional (2D) nanomaterials due to the atomic confinement in the z-direction has 

ignited tremendous technology promises. With that promise comes a challenge of incorporating 

2D nanomaterials into practical applications, enabling their large-area growth and using covalent 

or van der Waal bonding to extent and control their properties in electronic applications. This PhD 

thesis establishes the following results: (a) successfully developing of scalable processes for direct 

growth of large-area graphene, h-BN, and MoS2-on-h-BN on SiO2/Si substrate, (b) demonstrating 

an electronic sensor for the defection of molecular motion by covalently interfacing 2D 

nanomaterials with photo-mechanical molecules, and (c) establishing the modulation of structural, 

electrical, thermal properties of 2D nanomaterials by covalently interfacing metal nanoparticles 

with 2D nanomaterials.  

A promising scalable route for large-area growth of 2D nanomaterial on a dielectric 

substrate is to perform chemical vapor deposition (CVD). Via two patented processes, we have 

synthesized graphene films directly on a SiO2 substrate via carbon-diffusion through copper grains, 

and h-BN film on SiO2 substrate via surface oxide assisted mechanism. The continuous graphene 

film grown with large coverage on SiO2 substrate possessed a crystalline sp2 domain size of 140 

nm with low defect density (as indicated by low Raman ID/IG~0.1). The sheet resistance of this 

turbostratic stacking graphene was ~4 k/sq, with a charge carrier mobility of ~250 cm2V-1s-1. 

Unprecedented, large coverage of directly grown h-BN film on SiO2 substrate was demonstrated. 

This h-BN film showed a 6-fold smoothness enhancement compared to that of SiO2 substrate. Such 

smoothness and the nature of free dangling bond of h-BN film reduced Coulombic long range 



 

 

scattering, leading to the 5-fold enhancement in the conductivity of the MoS2, which is directly 

grown on the underlying h-BN platform.    

The next-generation molecular electromechanical systems require controlled manipulation 

and detection of molecular motion to build systems which respond to molecular mechanics. To 

achieve this, we covalently interfaced photo-mechanical molecules (azobenzene) (density = 2.5 

nm-2) onto trilayer graphene (37.5% sp2 coverage), where high sensitivity of this trilayer graphene 

due to high quantum capacitance (6.3 F/cm2) and carrier confinement was leveraged. This 

enabled graphene to sensitively detect azobenzene isomerization, where one hundred molecules 

generated one charged carriers in the graphenic platform (2.44 x 1012 holes/cm2).   

As mentioned before, surface modification of 2D nanomaterials opens an avenue to 

incorporate them into rational applications. We demonstrated the ability to interface noble metal 

nanoparticles (gold, silver) selectively onto a MoS2 lattice (60o angular displacement) via both 

diffusion limited aggregation and instantaneous reaction arresting (using microwaves). Such gold 

nanoparticle interfaces allowed the modulation of electrical, and thermal properties, confirmed by 

Raman, electrical, and thermal studies. Consequently, a remarkably capacitive interaction between 

gold and thin MoS2 sheet showed a 9-fold increase of effective gate capacitance with low Schottky 

barrier (14.52 meV), and a 1.5-fold increase in thermal conductivity with a low carrier-transport 

thermal-barrier (44.18 meV).  

This long-term work has established the following points: 1) Scalable routes for the growth 

of 2D nanomaterials, which can be extended to synthesize complex hetero/lateral architectures for 

integrated thin film circuitries. Furthermore, 2) covalent functionalization of 2D nanomaterials 

with nanoparticles and molecular systems can futuristically develop rational interfaces with other 

2D heterostructures, and molecular machines.   
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Figure 2.13 a) the G band mapping of interface graphene (300 nm Cu film). b) The coverage of 

interface graphene grown via 300 nm Cu, and 150 nm Cu. c) The growth rate of the 

interface graphene on SiO2/Si<111> substrate and SiO2/Si<100> substrate. d) X-ray 

diffraction of post-CVD Cu crystal lattice on SiO2/Si<111> substrate and SiO2/Si<100> 

substrate. ............................................................................................................................... 44 
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Figure 2.16 a) Conductivity vs. carrier concentrations characteristics of the GFET at 10 K, inset: 

schematic of GFET (left) with the corresponding optical microscope image (right). b) 

Variation of field effect mobility with respect to carrier concentration for GFET at 10 K. c) 

The resistivity of GFET with respect to carrier concentration (10-140 K). d) The charge 

dependent mobility of hole with respect to temperature (10-140 K), inset: The charge 

dependent mobility of electron with respect to temperature (10-140 K). ............................. 49 

Figure 2.17 a) Normalized background conductivity vs. temperature. b) The band structure of 

thin graphene film, where the simple two band (STB) model of the grown graphene is 

suitable for energies near the Fermi level (EF), and as the energies is far from the EF, the 

dispersion curve behaves like a Dirac cone (DC) as for single-layer graphene. c) The STB 

model fit for background resistivity as respected to temperature of GFET (10-140K). d) 

Arrhenius model fit for GFET transport (40-160 K) with inset of variable range hopping 

(VHR) model fit for GFET transport (40-160 K). ................................................................ 52 

Figure 3.1 a) LPCVD set up for the growth of h-BN on SiO2/Si substrates, b) The processing 

conditions for the growth of h-BN. ....................................................................................... 64 
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Figure 3.6 Raman spectroscopic analysis of post h-BN growth Si surface. (a) Optical 

microscopic view of the Si surface and (b) Raman spectra corresponding to different regions 

marked blue, red and black color. ......................................................................................... 73 

Figure 3.7 a) The Raman spectra of E2g peak, inset: The optical microscopy image of h-BN film. 

b) Scanning Raman intensity mapping of E2g peak. c) Scanning Raman position mapping of 

E2g peak. The colored circles at different areas of a), b) and (c) correspond to the Raman 

spectrum in a). d) AFM topography and the corresponding line scan for thin h-BN film for 1 
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Figure 3.8 a) AFM measurement of surface of SiO2/Si before and after h-BN growth and (b) 

surface roughness histogram of the height distribution measured via AFM for SiO2/Si (blue 

diamonds) and h-BN (black circles) with Gaussian fit to the distribution (red solid lines). 75 

Figure 3.9 a) SAED of h-BN film transferred onto TEM grids. b) XRD analysis of h-BN film on 
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Figure 3.10 a) h-BN film grown on quartz substrate (2 cm x 1.5 cm area). b) Raman spectrum of 

the corresponding h-BN films on quartz substrate. c) UV-vis absorbance spectra (room 

temperature). d) Tauc plot corresponds to the optical band gap of 5.51 eV. ........................ 77 

Figure 3.11 MoS2:h-BN heterostructure: a) the Raman spectrum corresponds to E1
2g and A1g 

peaks the Raman E2g phonon mode of underneath h-BN. Inset: (left) Raman vibrational 

modes for MoS2 in-plane E1
2g and out-plane A1g modes, (right) Optical image of MoS2:h-

BN heterostructure. c-d) The Raman intensity mapping for (b) MoS2 (E’2g), (c) MoS2 (A1g)

 ............................................................................................................................................... 79 

Figure 3.12 XPS analysis of MoS2:h-BN heterostructure: a) Mo 3d and b) S 2p. ....................... 80 

Figure 3.13 a) PL spectrum of the direct grown MoS2 on SiO2 sample at room temperature. b) PL 

spectrum of the direct grown MoS2 on h-BN sample at room temperature. b) I-V 

characteristic of MoS2/h-BN vs. MoS2/SiO2 samples. .......................................................... 82 

Figure 4.1 Representative model showing azobenzene molecules covalently bonded on the sp3 

regime of functionalized graphene. The azobenzene-group changes its configuration on 

graphene (trilayer) when exposed to UV (cis) and blue light (trans). This mechanical motion 

of azobenzene modulates the density of holes in ATG. (Bottom-right) The optical image of 

ATG device between the gold electrodes 20 µm apart. The Raman spectrum of the ATG 

sheet shows the D and G peak representing the graphenic backbone. Since graphene is 
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functionalized, the Raman spectrum shows a D peak at 1350 cm-1. No appreciable 2D peak 

was observed. ........................................................................................................................ 91 

Figure 4.2 ATG device’s chemical construct ............................................................................... 92 

Figure 4.3 (a) AFM image (1.7 µm X 1 µm) of a typical ATG sheet shows a height of 3.6 nm 

high. Subtracting the height of the azobenezene and oxy groups, the underlying graphene is 

3 sheets (including the two oxidized sheets). (b) The XPS spectrum of the ATG sheet shows 

the presence of the azo-group. The peak at 400.5 eV corresponds -(C-N)- and (N=N) in 

azobenzene. (c) The XPS (N 1s) of the TLG sheet shows the presence of the peak for the 

amide linkage with silica appears at around 401.5 eV. (d) The XPS (the C 1s and N 1s) 

shows the position and the intensity of the nitrogen peak and carbon peak of ATG. The 

atomic ratio of these two peaks is found to be 1:16 (N: C) .................................................. 96 

Figure 4.4 a) The figure shows the response of the ATG device (under 19 psia pure He 

environment at room temperature) exposed to UV, Blue and Dark for 90 sec each at 100 

mV source-drain voltage. b) The same response (as (a)) is measured at 10 mV source-drain 

voltage. The current axis has been rescaled to better represent the change. Also, the 

azobenzene’s trans configuration can be achieved via blue light exposure and temperature. 

Since, the rate of decrease of conductivity was not significantly more than that in dark 

environment; the room temperature is high enough to favor the trans state in the absence of 

UV. Further, it is known that the azobenzene could readily fluctuate between cis and trans 

configuration22, leading to fluctuation in current as observed in electrical measurements. c) 

The response in conductivity of the functionalized TLG (without azobenzene attachment) 

on 300 nm silica substrate exposed to UV and Dark for 100 sec each at 100 mV source-

drain voltage is shown as control sample. .......................................................................... 100 

Figure 4.5  a) A schematic of the back gating measurement setup on device consisting of an ATG 

sheet spanning gold electrodes spaced 20 µm apart. The silica substrate, 300 nm, acted as a 

gate oxide, and heavily doped silicon acts as gate electrode. b) The gating study, conducted 

at 10 mV drain voltage, showed that the ATG device is p-type with a hole mobility of 0.195 

cm2/V/s. The measurement was made for the cis-configuration of azobeneze in ATG. .... 102 

Figure 4.6 Graphical analysis of VG determination .................................................................... 104 

Figure 5.1 a) Schematic depicting the anchoring of gold nanoparticles on MoS2 via chemical 
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Au-MoS2 NP hybrid. d-f) Time-dependent images of the hybrid at different stages of 

functionalization.  d and e) FESEM images of the hybrid after 2 h and 24 h of reaction 

respectively. f) TEM image after 6 h of reaction. g and h) FESEM and TEM image of the 

nanoparticle formed on MoS2 sheet. ................................................................................... 115 

Figure 5.2 a) FESEM images of multilayered MoS2 preferentially functionalized at the edges 

during the initial phases of the chemical reduction reaction. b-d) FESEM images of Au-

MoS2 composite prepared using chemical reduction route done at different temperatures, b) 

4 oC, c) 25 oC and d) 60 oC. e) FESEM images of Ag-MoS2 composite prepared using 

chemical reduction route. .................................................................................................... 117 

Figure 5.3 EDS spectrum and elemental maps of Au-MoS2 hybrids produced by chemical 

reduction. The corresponding electron microscope image also can be seen. All scale bars are 

10 µm. ................................................................................................................................. 118 

Figure 5.4 a) Schematic depicting the anchoring of gold nanoparticles on MoS2 via MW 

irradiation. b) and c) large area and higher magnification FESEM image of Au-MoS2 NP 

hybrid. d-f) Time-dependent images of the hybrid at different stages of functionalization.  d) 

2 s, and e) 5 s and f) 10 s of MW irradiation. (g) FESEM images showing the preferential 

edge and/or defect functionalization of gold nanoparticles on turbostatic multilayer MoS2. A 

large number of gold nanoparticles formed in lines indicating the presence of edges or 

defects. Scale bar 30 m. .................................................................................................... 119 

Figure 5.5 FESEM images of multilayered MoS2 preferentially functionalized at the edges 

during the initial phases of microwave irradiation.............................................................. 120 

Figure 5.6 TEM images showing the high selectivity of Au NPs at the edge, and indicating the 

intimate contact between MoS2 and Au NPs. ..................................................................... 121 

Figure 5.7 Raman spectrum of Au-MoS2 hybrid prepared via (a) chemical reduction and (b) 

Microwave irradiation. The Raman spectra of the bulk MoS2 sheet showing the E1
2g (~385 

cm-1, in plane vibration) and A1g (~410 cm-1, out of plane vibration) peaks (a). The  

represents the difference between the Raman peak positions (i.e. A1g – E1
2g), and is used to 

determine the number of MoS2 layers. For  ~23 cm-1, the number of layers was estimated 

to be three. After gold deposition, the A1g and E1
2g peaks up-shift by ~ 1 cm-1 (in a), which 

implied p-doping. In the case of microwave irradiation (b) a downshift of features can be 

observed, implying n-doping. (c) Illustration of relevant modes of vibration in MoS2. ..... 122 
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Figure 5.8 a) MoS2 device, 25 nm thick, is extracted using scotch tape-base micromechanical 

cleavage. Inset shows the AFM imaging of MoS2. b) IDS-VDS curves recorded for MoS2 

device at various temperatures from 80 K to 180 K. It shows as source-drain bias voltage 

increases the hopping tendency is significantly increased in the reverse side than forward 

side. c) at 160 K a) logarithmic plot of total current I as a function of reverse bias VDS 

shows an estimation of Schottky barrier Eo = 14.80 eV and b) logarithmic plot of total 

current I as a function of forward bias VDS shows an estimation of Schottky barrier Eo = 

14.45 eV. ............................................................................................................................. 124 

Figure 5.9 a) At 80 K the conductivity of MoS2 device is increased 103 folds after gold 

functionalization (Au-MoS2). The inset shows an enlarged view of IDS versus VDS response 

for MoS2 at 80 K. b) Back-gating characteristics (160 K with VDS = 0.5 V) of MoS2 and Au-

MoS2 FETs are shown. The top inset shows capacitance circuitry of the Au-MoS2 device. 

Bottom-left inset shows the structure of MoS2 FET with electrical connections used to 

characterize the device. Au-MoS2 device shows ~9 fold increase in effective gate 

capacitance. Bottom-right inset shows an FESEM micrograph of gold nanoparticles on 

MoS2. (Bar = 10 m). c) Log scale of drain current versus back gate. Subthreshold-Swing 

measurement is made for currents increasing from 1 nA to 10 nA. The insets show the 

zoomed in graph for both MoS2 (black curve) and Au-functionalized MoS2 (red curve). The 

gate voltage increases from 2.7 to 3.725 V for MoS2 and from -11.375 to -7.375 V for Au-

MoS2. .................................................................................................................................. 126 

Figure 5.10 Back gating scans of MoS2 before and after 2 and 4 seconds Au/Pd 

sputtering. The mobility increases progressively from2.3 cm2V-1s-1 to 4.6, and11 

cm2V-1s-1. The inlet shows the back gating schematic of Au sputtered MoS2. ......... 128 

Figure 5.11 (Top panel) FESEM images of gold NPs with different loading densities deposited 

on MoS2 device.  At high loading, a percolating connection is formed between gold 

nanoparticles between electrodes. (Bottom panel) I-V respond of different Au NP loaded 

device (left) low loading non bridged gold channel, (middle) high loading non bridged gold 

channel, (right) bridged gold channel (short-circuit). ......................................................... 129 

Figure 5.12 Raman spectra of MoS2 before (black) and after (red) Au NP functionalization. a) 

MoS2 on SiO2, and b) MoS2 on gold electrodes. ................................................................ 131 
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Figure 5.13 a) Room-temperature current versus voltage (IV) curves (VG = 0V) for before and 

after MoS2 device in water for 24 hrs. b) Room-temperature gating scans (VDS = 1V) for 

before and after MoS2 device in water for 24 hrs The conductivity of the device decreases 

after water interaction. The mobility of the device decreases after water interaction ........ 132 

Figure 5.14 Room-temperature current versus voltage (IV) curves (VG = 0V) before and after 

MoS2 device in water exposed to microwave for 5 s. and (b) Room-temperature gating scans 

(VDS = 1V) before and after MoS2 device in water exposed to microwave for 5 s. ........... 133 

Figure 5.15 a) The gating characteristic (IDS versus VBG) for Au-MoS2 FET between 80 K 

and 180 K with 0.5 V applied bias voltage (VDS). b) The Arrhenius thermal activation fit 

for MoS2, and Au-MoS2. Inset: The Variable range hopping model fit for Au-MoS2 

device at the studied temperature range. ..................................................................... 134 

Figure 5.16 a) Schematic of thermal conductivity experiment showing the 532 nm laser focused 
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Figure 5.18  Raman spectra at different temperatures and the gradient of E1
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Figure 5.19 Raman spectra at different power and the gradient of E1
2g and A1g peaks positions 
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Chapter 1 - The two-dimensional (2D) nanomaterial 

 Introduction 

New materials with a collection of unique and extraordinary properties have led to great 

technological advances for humankind. The ability of manipulating matter at atomic/molecular 

level has facilitated discovery, control, and synthesis of these novel materials. Such ability, first 

envisioned by Dr. Richard P. Feynman in during his famous lecture “There’s Plenty of Room at 

the Bottom” in 1959, is the central heart of nanotechnology.  

Over the past thirty years, by practicing Feynman’s idea, material engineers, and scientists 

including physicists, chemists, and biologists have reached to a point in the development of state-

of-the-art techniques where we have instruments to tackle the challenges offered by  the emerging 

frontiers of nanotechnology. Since then, it has been conceivable to sculpt materials at their tiniest 

scale to a level at which, in essence, a complete miniaturized analytical laboratory can be realized 

on a single hand-held chip1. Furthermore, the discovery, and synthesis of low dimensional 

nanomaterials including quantum dots and nanoparticles (0-dimensional [0D] class)2–4, nanotubes 

and nanowires (1-dimensional [1D] class)5–7, and graphene and atomically thin materials (2-

dimensional [2D] class)8–10 have distinguished the development of nanotechnology.  

Over the past decade, the wondrous 2D class has grown extensively8,11–13 (Figure 1.1a). 

These 2D nanomaterials are covalently bonded atomic layers. Via  weak van der Waals force, these 

layers are appended to each other to generate their 3D bulk crystalline structures 12,13 (Figure 

1.1b). In contrast of their bulk layered counterpart, these 2D nanomaterials offer a set of novel 

physical-chemical-electrical properties, which enable to tremendous possibilities that will 

revolutionize several key applications, including miniaturization of semiconductors9,14, drug 
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delivery15–17, medical diagnosis18–20, eco-friendly chemical ingredients21,22, and clean energy 

generation23,24 and storage25–27.  

 

In order to enhance practices in applied researches and applications of 2D nanomaterials, 

the ability to facilely synthesize large-area, and high-quality 2D nanomaterials is essential. 

Furthermore, the incorporation of these 2D nanomaterials with other class of nanomaterials and 

molecules provides avenues to penetrate into the new world of nano-structure. This leads to the 

comprehension of the synergy between 2D nanomaterials with mechanical actuating molecules, 

and the control of their fundamental properties at the nanoscale. Thus, the grand purposes of this 

thesis are simplified as following: (a) To understand the science of the large-area growth of these 

2D nanomaterials via a readily available technology i.e. chemical vapor deposition technique. (b) 

 

Figure 1.1 a) Library of 2D nanomaterial discovered up-to-date [Figure adapted from 

Geim, A. K. et.al, “Van der Waals heterostructures.”, Nature, 499, 419–425 (2013).] b) 

Presentation of 3D crystal, which composes by stacking of layers. Each of these monolayer 

is separated by weak van der Waals forces. 

Bulk Material
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A demonstration of the covalent bonding between 2D nanomaterials with mechanical actuating 

molecules assists the study of robust detection of molecular motions on the surface of 2D 

nanomaterial platform. Furthermore, (c) novel developments in interfacing routes of 2D 

nanomaterials with other nano-systems aids in the modulation of the structural, electrical, and 

thermal properties of 2D nanomaterials.   

 Graphene: The 2D carbon crystal 

The first isolated 2D crystalline material, graphene, is a single-layer of sp2 bonded carbon 

atoms arranged in a hexagonal lattice. This material, a long-term “academic material” and 

previously theorized not to exist, was discovered by Konstantin Novoselov and Andre Geim in 

2004, which led them to win the Nobel Prize in 20108,28–30. Graphene is a fundamental building 

block for a range of well-known carbon materials such as 3D graphite (layer by layer stacking of 

graphene), 1D carbon nanotube (rolled up graphene), and (OD) fullerene (spherical wrap of 

graphene with additional pentagons for curvature defects)31 (Figure 1.2). Furthermore, graphene 

possesses a superior thermal conductivity (~5,000 W/mK)32 ,exceptional mechanical strength (a 

Young Modulus [stiffness] of 1 TPa)33, high optical transparency (2.3% white light absorption)34, 

high chemical and thermal stability (~500oC)35. Remarkably, graphene is an atomically thin semi 

metal exhibiting ballistic transport of its charge carriers at room temperature (200,000 cm2V-1s-

1)8,29,36, high quantum capacitance37, and carrier confinement. Owing to these properties, graphene 

is ultra-sensitive electronic platform for single-molecule detectors38,39 and electronic nano-

mechanical systems40,41. This will be further demonstrated in chapter 3, where graphene was 

utilized for the study of the robust detection of molecular motions on its surface. In addition, 

graphene can be applied in several unique electronic applications, including ultrafast 

nanoelectronic devices29,30, ultracapacitors42, and optoelectronics43. 
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Molybdenum disulfide (MoS2): Graphene’s cousin 

Monolayer MoS2 is a representative of the 2D transition-metal dichalcogenide (TMDs) 

class. As shown in Figure 1.3 It is a three-atom-thick layer, composed of a stratum of 

molybdenum atoms sandwiched between two layers of sulfur atoms in a trigonal prismatic lattice, 

referred to as 2H or semiconducting MoS2. On the other hand, Mo and S atoms are arranged in 

antiprismatic lattice and referred to as 1T or metallic MoS2
44. The relatively weak interlayer 

interaction between the MoS2 sheet allows their monolayer crystals (thickness 0.65 nm) to be 

cleaved mechanically and chemically45. Furthermore, MoS2 is mechanically flexible with a 

Young's modulus of 0.33 TPa46.  Interestingly, the electrical and optical properties of MoS2
 

changes dramatically with number of layers: bulk MoS2 exhibits an indirect band-gap of 1.2 eV, 

while monolayer MoS2 has a direct band-gap of ~1.8 eV47 with enhanced photoluminescence48. A 

single layer MoS2 field effect transistor (FET) exhibits an electron mobility of 0.5 – 15 cm2/(V.s) 

 

Figure 1.2 a) Top view of an artistic interpretation of monolayer graphene, b) Schematic 

diagram of graphene as a fundamental building block for 0D fullerenes, 1D nanotubes 

and 3D graphite [adapted from Geim, A.K., Novoselov, K.S. “The Rise of Graphene.” 

Nature Materials 6, 183-191 (2007)] 
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with a high on/off current ratio (103 to 108)9. Recent studies show that MoS2 can be applied 

effectively in sensing49,50, energy harvesting51, and photo-electronic applications52.  

 

 Due to its inert nature, it is challenging to broaden the applications of MoS2. Modifying 

the surface of MoS2 is critical to enable its incorporation into practical applications. In chapter 4, 

the successful leveraging of stable sulfur-metal binding to incorporate highly-capacitive metal 

nanoparticles onto MoS2 was described via two different methods: (1) the solution 

functionalization route and (2) the microwave assisted functionalization route. Such interfacing of 

nanostructures was extensively studied to comprehend the new enhanced structural, electrical, and 

thermal properties of the metal nanoparticle-MoS2 heterostructure.   

 

Figure 1.3 a) Top view (top) and top view (bottom) of an artistic interpretation of 

monolayer MoS2, b) Lattice interpretation of two polytypes of single layer MoS2: trigonal 

prismatic (1H) and octahedral (1T) [Figure adapted from G. Eda et al. 

“Photoluminescence from Chemically Exfoliated MoS2.” Nano Letters 11, 5111–5116 

(2011).] 
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 Hexagonal boron nitride (h-BN): Analog of graphene 

Hexagonal boron nitride (h-BN) is a single-atom-thick two-dimensional sheet of sp2 

hybridized alternating boron and nitrogen atoms in a honeycomb lattice. It is an electronic insulator 

with a large direct band gap (5.97 eV)53 and a low dielectric constant (~ 4)54 (Figure 1.4).  In 

contrast to graphene, due to the difference in electronegativity of B and N atoms, the B−N bonds 

in BN materials becomes partially ionic, leading to the “lip−lip” interactions between adjacent 

layers in BN nanostructures55,56. Consequently, h-BN possesses a uniform thickness and 

atomically flat surface free of dangling bonds, which effectively reduces electron and phonon 

scattering effects57–59 Furthermore, this material offers other superior properties: high thermal 

conductivity (2,000 W/mK)60, large mechanical strength61, high optical transparency62, high 

chemical/temperature stability (up to 1000 °C)63–65, deep ultraviolet emission53, and thinnest 

tunneling junction66. Owing to these properties, h-BN can be used as an ultra-smooth, and clean 

(no dangling bond) dielectric, which further enhances the electrical performance in graphene and 

other 2D semiconductor electronics12,59,67. This will be further discussed in chapter 5. In addition, 

 

Figure 1.4 a) Top view of an artistic interpretation of monolayer h-BN, b) Partially ionic 

due to the difference in electronegativity of B and N [Figure adapted from A. Pakdel et al. 

“Nonwetting “White Graphene” Films.” Acta Materialia 61, 1266–1273 (2013).] 

Nitrogen Boron

a) b)
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h-BN can be applied in a range of applications such as, a deep ultra-violet emission device53, the 

world’s thinnest tunneling junction66, a proton exchange membrane68, and a highly chemically 

tolerant film for protective coatings65.  

 The challenges in synthesizing and transferring of 2D nanomaterials into dielectric 

substrate for electronic applications  

Driven by their fascinating properties and promising applications, 2D nanomaterials have 

been explored extensively for their novel properties, function, and practical applications. Hence, 

it is crucial to develop a reliable, robust, facile methods to produce ultrathin 2D nanomaterials. To 

date, many reliable synthetic strategies have been proposed to produce high quality, large area, 

and ultrathin 2D nanomaterials: mechanical exfoliation, chemical top-down approach, and 

chemical vapor deposition.  

Mechanical exfoliation 

This method was first used to isolate graphene in 2004 by Novoselov and Geim (Figure 

1.5). In a typical process, the surface of the bulk 3D crystal is adhered onto one of a piece of Scotch 

tape, while the other surface is attached to another piece of Scotch-tape. Then the two pieces of 

Scotch-tape are separated to produce thin layer sheets. The process is repeated until thin flakes are 

produced, which are transferred onto a host substrate, typically silicon dioxide on silicon (SiO2/Si), 

by placing the Scotch-tape side with the adhered thin flakes. Finally, the Scotch tape is peeled off 

from the substrate. The single- or few-layer flakes are easily found on the substrate using either an 

optical microscope, atomic force microscope, or Raman spectroscopy. Via this described method, 

most of the 2D nanomaterials, shown in Figure 1.1,  have been exfoliated successfully to produce  

ultra-thin 2D flakes from their 3D counterpart, such as h-BN, MoS2, WS2, black phosphorus, 
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etc8,30,69,70. Since these thin 2D flakes are exfoliated by a mechanical process, they possess not only 

the pristine structure of their 3D layered structure, but also the highest crystal quality with few 

defects. Hence, the mechanical exfoliation technique is ideal for the fundamental study of 2D 

nanomaterials’ intrinsic properties. However, this process has extremely low-yield and produces 

2D materials of micro-scale dimensions, which demands precise handling.

 

 Chemical top-down approach 

This approach exfoliates the ultrathin 2D nano-sheets from their 3D source and stabilize 

them in solution45,71–76. Typically, this liquid exfoliation method exfoliates bulk layered crystals 

directly in solvents, such as N-methylpyrrolidone (NMP), via sonication for a long period of 

time45,76 (2 hours-24 hours). The main key for exfoliation via solvents is to match surface tension 

between the layered crystal and the solvent; this is the key factor in minimizing the energy and 

increasing the efficiency of exfoliation72.  In this process, sonication can separate the layers by 

breaking weak van der Waals interactions, but cannot break the in-plane covalent bonding. 

However, most of the efficient solvents are organic-based liquids, not water. The addition of 

surfactant solution or aqueous polymer is found to be effective in stabilizing the nano-sheets55.  

 

Figure 1.5 a) Optical image, and b) AFM scan of a mechanical exfoliated multi-layered 

graphene sheet (thickness ~ 3 nm. c) Schematic diagram of a Hall-bar graphene device 

[Figure adapted from Novoselov, K. S. et al, “Electric Field Effect in Atomically Thin 

Carbon Films.”, Science, 22, 666-669 (2004).] 

a) b) c)
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Another top down approach is exfoliation via ion-intercalation (Figure 1.6). This 

technique is dependent on the intercalation of ions (Li, K, Na) into the interlayer spacing of layered 

bulk crystals to weaken the van de Waals interlayer-interaction. Subsequently, the intercalated 3D 

crystal undergoes a shorter period of sonication to exfoliate ultrathin nanosheets in water, or 

ethanol 77–80. This method has an additional advantage in monitoring the phase transformation from 

semiconducting 2H phase to metallic 1T phase of TMDs77,80.   

 

 In addition to the above discussed liquid exfoliation, 2D nanomaterials, especially 

graphene, can be exfoliated in aqueous solution by introducing oxygen functional groups into the 

lattice, which provides repulsion force and expands the spacing of the interlayers81–85. The ultrathin 

graphene oxide (GO) nanosheets are then exfoliated from the expanded structures under 

sonication. The oxygen functional groups, such as carboxyl (-COOH), epoxy (-O-), and hydroxyl 

(-OH) groups, are at the edge, and the basal plane of GO82,85. These oxygen functional groups bind 

to sp3 islands on the sp2 graphenic structure ensue an overall negative charge on the sheets which 

aids in exfoliation and subsequent stabilization in solution. Furthermore, the GO sheets can easily 

 

Figure 1.6 a) Schematic diagram showing the application of intercalation ion (ICs) in 

producing a stable dispersion of pristine 2D nanomaterials. b) Dispersion of exfoliated 

layered compounds [Figure adapted from R. J. Smith et.al, “Large-Scale Exfoliation of 

Inorganic Layered Compounds in Aqueous Surfactant Solutions.”, Advanced Materials 23, 

3944 (2011).] 

b)
ICs

2D nanomaterial sheets

Stable dispersion of 2D 

nanomaterial sheets

a)
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be partially transformed into reduced graphene oxide (rGO) sheets by the reduction of most of the 

oxygen functional groups on their surface 82,86–88.  

These chemical top down aproaches provide high-yield mass-production (milliliters to 

hundreds of liters)75 of ultrathin 2D nanosheets in solution. However, the yield of single-layer 

sheets obtained is still quite low, and the lateral dimensions of the sheets are in micrometer size, 

which requires precise handling. Furthermore, the additional external moieties  (intercalated 

metals, and oxygen functional groups) degrade or alter the electrical performance of the exfoliated 

2D materials in comparison to those produced by mechanical exfoliation44,77,80,89–91.  

 Chemical vapor deposition (CVD) 

Large area and high quality with low structural defects of thin 2D nanomaterials are 

required for most practical applications conceived for 2D nanomaterials, including 

microelectronics, sensor, thermionic devices, flexible devices, and optoelectronics. Such quality 

of 2D nanomaterials cannot be met by mechanical exfoliation or the chemical top down approach, 

due to the small lateral size of the sheets, and the precise handling requirements. Another technique 

chemical vapor deposition (CVD) may solve these challenges92–96. 

 CVD of graphene or h-BN on metals 

Due to their high catalytic activity, high quality graphene has been grown on transitional 

metals such as nickel (Ni), copper (Cu), ruthenium (Ru), platinum (Pt), cobalt (Co), iridium (Ir), 

etc. Furthermore, Ni and Cu metals are currently the two major substrates to produce graphene 

with large grain, and high quality. The growth mechanisms of graphene on Ni (as well as on Co, 

Ru, Ir), and Cu are different, mainly due to the carbon solubility in the metals (Figure 1.7).  

In the case of high carbon solubility such as Ni, ~ 1.2 atomic % at 900 oC95, the growth 

includes two elementary steps: (1) carbon dissolution into the metal from hydrocarbon gas (CH4), 
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or solid at an elevated temperature, and (2) carbon precipitation to form graphene at the surface 

upon cooling.  Furthermore, the grown graphene depends on the kinetic parameters selected for 

the synthesis. Among all process parameters, a fast cooling rate seems to be a critical factor in 

suppressing the formation of multiple graphene layers95,97. 

On the other hand, in the case of metal with low carbon solubility in metal such as Cu (~0% 

at 1000oC)94, the growth of graphene is described in the following elementary steps: 1) 

hydrocarbon gas (CH4) and reducing gas (H2) transport through boundary layers, and adsorb on 

the surface. 2) Thermal catalytic decomposition of methane occurs on Cu to form carbon radicals, 

3) which diffuse on the surface catalyst. 5) At local supersaturation, these carbon radicals nucleate 

to form graphene nuclei, which further form graphene islands. Finally 6) if the carbon radical 

attachment rate is faster than the carbon radical removing rate, a full coverage graphene sheet is 

synthesized. Consequently, graphene grown over Cu substrate can be considered as self-limiting. 

This mechanism is similar to thermal catalytic CVD, in which the film grows over metal, and 

causes a reduction in catalytic activity due to catalyst poisoning. Depending on the process 

 

Figure 1.7 The growth kinetic of graphene via CVD in case of CH4, Cu, and Ni [Figure 

adapted from Muñoz, R. et al, “Review of CVD Synthesis of Graphene.”, Chemical Vapor 

Deposition 19, 297–3229 (2013).] 
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parameters (reaction temperature, flow rate, pressure), the growth could be either mass transport 

limited, or surface reaction limited98.  

Similar to graphene, large area, and high quality h-BN are also grown on transition metals 

such as Cu, Pt, Ni, etc10,53,99–101. Due to the solubility of B radical, and N radical in the metals, the 

growth mechanism of h-BN film can also be classified as either 1) surface-mediated growth, or 2) 

precipitation/segregation.  

 Even though the CVD technique provides large area, and high quality graphene, and h-BN 

film, the major challenges are in the additional transferring step of these 2D nanomaterials onto 

the desired substrate, typically (SiO2/Si) in order to utilize them in electronic applications. Such a 

wet/dry transfer method includes: 1) a 2D material on metal is supported by a sacrificial polymer 

layer, followed by metal etching step. 2) Subsequently, polymer/2D material transfer to the target 

substrates, followed by the removal of the polymer either by organic solvent, or by ultra-high 

vacuum annealing. Such additional transfer process plays a critical role in limiting the electrical 

performance of graphene applications, due to tears, folds, wrinkles, and external impurities102,103. 

Many studies have focused on improving the quality of graphene and h-BN on the substrate via 

transfer104–109. Recently, other groups have been developed alternative transfer-free methods for 

the growth of high quality graphene or h-BN film on the selected non catalyst substrate110–123. 

Hence, in accordance with the aim of enhancing the coverage and the quality of graphene and h-

BN films on dielectric substrates, this thesis offers two detailed studies on the direct growth of 

graphene (chapter 1), and of h-BN (chapter 2) on SiO2/Si substrate.  

 CVD of MoS2 on non-metallic substrate 

In contrast to the growth of graphene, and that of h-BN, high quality, and large area MoS2 

can be grown directly on dielectric substrate such as SiO2, Al2O3, etc124–131. Furthermore, the 
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precursors commonly used are molybdenum trioxide (MoO3), and sulfur (S) or hydrogen sulfide 

(H2S) gas. The growth of MoS2 can be classified as a catalyst free vapor solid growth mechanism. 

1) At elevated temperature (~650oC), MoO3 is reduced by sulfur vapor to form volatile suboxide 

MoO3-x
124. 2) These volatile substances transport through the boundary layer, 3) get adsorbed to 

the substrate, and furthermore 4) get sulfonated by adsorbed S to form oxisulfides MoOS2, and 

nucleate into MoS2 islands. 5) Finally, these MoS2 islands expand, and connect to others to form 

a continuous sheet of MoS2 (Figure 1.8). In this growth mechanism, the limiting step is the 

diffusion of vapor phase MoO3-x
125. Even if the sulfur is depleted, the MoOS2 continues to grow 

into a uniform film of MoS2 film.  

 

 The challenge of utilizing CVD grown MoS2 in electronic applications depends on the 

quality of post-CVD underlying dielectric. Currently, SiO2/Si substrate, a common platform for 

MoS2 growth exhibits high surface roughness, high density of surface impurities, and surface 

electronic puddles. These lead in high Coulombic scattering, which limits the charge mobility in 

 

Figure 1.8 a) The optical image of MoS2 monolayer triangular grains grown by CVD on 

a 300 nm SiO2/Si substrate. The dimension from tip to tip is 123 m. b) The 

photoluminescence of monolayer and bilayer MoS2. [Figure adapted from van der Zande, 

A et al, “Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum 

Disulphide.”, Nature Materials 12, 554–561 (2013).] 

a) b)
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MoS2 sample. The heterostructure growth of MoS2 on smooth, and dangling bond free h-BN film 

with low surface impurity density These challenges are addressed in the electronic performance of 

direct grown MoS2 on h-BN film in chapter 2.  
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Chapter 2 - Direct growth of thin layer graphene on SiO2 via low 

pressure chemical vapor deposition (LPCVD) 

 Abstract 

This chapter presents a chemistry for the transfer-free growth of graphene via chemical 

vapor deposition. The process relies on diffusion of carbon radicals through copper (Cu) grain 

boundary and crystallization at copper and silicon based dielectrics. The graphene developed by 

this method exhibits low defect (La~140 nm) multilayer domains with turbostratic structure. The 

growth of graphene is two-fold faster at the interface between Cu and SiO2/Si<111> substrate than 

that of Cu and SiO2/<100> Si substrate. Furthermore, process parameters such as growth 

temperature, and gas composition (H2/CH4 flowrate ratio) play a critical role in formation of high 

quality graphene films. The low temperature back-gating transport measurements of the interfacial 

graphene show the carrier mobility (277 cm2V-1s-1, and 233 cm2V-1s-1 for holes and electrons 

respectively). Furthermore, the study of electronic transport at various temperature reveals a 

dominant Coulombic scattering, a thermal activation energy (2.0±0.2 meV), and 2-D hopping 

conduction in the thin graphene film-field effect transistor. A band overlapping energy (2.3±0.4 

meV) is also estimated by utilizing the simple two band model. 

 Introduction 

Graphene, conclusively isolated in 2004, is a monolayer (thinnest material ~ 0.34 nm) of 

sp2 bonded carbon atoms arranged in a two-dimensional (2D) honeycomb lattice and is the primary 

building block of all the carbonaceous materials of all other dimensions such as: graphite (3D), 

carbon nanotubes (1D) and fullerene (0D)1. Graphene possesses a plethora of extraordinary 

properties, such as ballistic electronic transport over 0.4 µm with high charge carrier mobility 
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(2,00,000 cm2/Vs at 300 K)2, superior thermal conductivity (5,000 W/mK)3, room temperature 

quantum Hall effect4, a chemically5,6 and geometrically7 controllable band gap and megahertz 

characteristic frequency8. According to the International Technology Roadmap for 

Semiconductors (ITRS)9,10, due to graphene’s exceptional electronic and thermal properties, it is 

being considered for post-silicon (Si) electronics. Furthermore, graphene’s strong interaction with 

photons and high electrochemical stability could enumerate advanced functions to Si-based CMOS 

devices, such as radio-frequency switches and photonic modulators. 

Recently, high-quality and large-area graphene has been successfully produced on various 

metal catalytic substrates via chemical vapor deposition (CVD)11–19. In order to characterize 

graphene, it is essential to transfer the as-grown graphene onto selected dielectric surfaces. 

However, in such wet/dry transfer process, graphene is supported by a sacrificial polymer layer 

followed by etching of metal layer. Subsequently, the polymer/graphene is transferred to a desired 

substrate, and the supporting polymer is either etched by dissolving in acetone or released by 

thermal treatment. In addition, this added step consistently degrades graphene’s electronic 

properties due to tear, fold, wrinkles, and external impurities. Graphene produced via these transfer 

steps is unfavorable for industrial applications as the produced graphene film still contains 

polymeric and metallic impurities further deteriorating the intrinsic properties.  

To date, the growth of graphene via catalyst-free CVD methods have been developed on 

various substrates such as Si-based dielectric substrate20–25, Al2O3
26,27, SrTiO3

28, and h-BN29–32. 

Such techniques require high growth temperature, longer growth time, or additional modification 

of CVD setup. Incorporating thin catalytic transition metal films (copper (Cu), and nickel (Ni)) 

onto desired dielectric substrates helps in reduction in the growth temperature, reaction time, and 

defects enabling synthesis of high quality graphene films. In case of Ni, the formation of graphene 
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at the interface of substrate and catalytic film is due to segregation of carbon atoms from the Ni 

layer (carbon solubility in Ni is ~ 1.2 atomic % at 900 oC)15. Owing this non-equilibrium process, 

the production of uniform, and low-defect density of graphene films requires a precise control of 

the cooling rates. In contrast,  Cu catalyzes low-defect density graphene films due to surface 

adsorption mechanism33,34. Yet, the formation of graphene at the interface of Cu and SiO2 substrate 

is not well understood. Furthermore, Ismach et al. showed that a continuous graphene can be 

directly transferred on SiO2 substrate during the growth by evaporating sacrificial Cu film with an 

extended period of thermal treatment35. This transfer technique may result in unwanted Cu 

particles trap between continuous graphene film and SiO2 dielectric substrate.  

Herein, the process of direct formation of thin film graphene directly on SiO2/Si substrates 

was described. Furthermore, this chapter shows a complete mechanism of directly grown graphene 

at the interface of SiO2 and Cu, where Cu was used as a catalyst. In addition to the detailed 

structural characteristics including Raman spectroscopy and selective area electron diffraction 

(SAED) pattern analysis, low-temperature electrical transport properties of the interfacial graphene 

layer were measured. This work may stimulate further developments in utilizing direct graphene 

developed here for silicon-wafer compatible industrial productions. 

 Experimental Section 

 Procedure of multilayer graphene growth on SiO2/Si substrate via LPCVD 

A thin film of Cu (~150 nm) was thermally evaporated from Cu pellets (99.999% purity, 

Kurt.J.Lesker) on selected substrates such as: SiO2/ <100> Si, and SiO2/ <111> Si (Figure 2.1b).  

The substrate was then placed in the center heating zone of a quartz tube (=1”), which is in a split 

MTI-OTF-1200X furnace designed low pressure CVD system (LPCVD) as shown in Figure 

2.1a. Methane, CH4 (99.999% purity, Praxair) was the precursor gas, and hydrogen, H2 
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(99.9999%, Praxair) was the reducing gas were used. The oxidizing impurities in these gases are 

shown in the Table 2.1. 

 

 To synthesize a thin film of graphene directly on these substrates, the growth was typically 

conducted via following steps: (1) thermal annealing at 750 oC with 15 sccm of H2 (PTot = 80 

mTorr, taneal= 25 minutes), (2) growth of graphene in the temperature range 750 oC-900 oC with 

different ratio of CH4:H2 (PTot = 2 Torr), and (3) cooing the slowly (20 oC/min) to 700 oC, and then 

cooling it by simply opening the furnace lid. After the synthesis process, graphene was formed on 

both sides of the copper layer (top graphene, and interfaced graphene). The top graphene film and 

the copper layer were subsequently removed via oxygen plasma etching, and wet-chemical etching 

 

Figure 2.1a) LPCVD set up for the growth of graphene on SiO2/Si substrates, b) Graphene 

film on SiO2/Si<111>. 

Top 
Graphene
Interfaced 
Graphene

a) b)

 CH4 (99.999% purity, Praxair) H2 (99.9999%, Praxair) 

O2 < 1 ppm < 0.2 ppm 

H2O < 1 ppm < 0.2 ppm 

CO2 < 3 ppm < 0.1 ppm 

CO < 1 ppm < 0.1 ppm 

Table 2.1: The oxidizing impurities are associated with CH4 and H2 in our study.  
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with Fe(NO3)3 solution (0.6 mg/mL), respectively. Figure 2.2 shows the overall process of 

graphene synthesis on SiO2/Si substrate.  

 

Procedure to transfer graphene to SiO2 for field effect transistor fabrication, and to 

TEM grid for selected area electron diffraction (SAED) characterization 

 Since graphene, and underlying substrate went through high temperature process, the 

interfaced graphene could be further doped by the substrate (as shown in the later discussion). This 

could lead to the non-ambipolar behavior in the graphene transistor, which provided challenges in 

determine the correct electronic performance of the graphene transistor. Hence, as shown in 

Figure 2.3, graphene grown on SiO2/Si substrate was required to transferred to 300 nm SiO2/n
++Si 

substrate or TEM grid by the following steps: First, 25 mg/mL of poly(methyl methacrylate) 

(PMMA) (MW 996,000, Sigma Aldrich) in anisole (99% purity, Acros Organics) was spin-coated 

onto graphene/ SiO2/Si substrate at (i) pre-spin: at 500 RPM for 5 sec (500 RPM/sec ramp rate) 

 

Figure 2.2 The process of graphene synthesis on SiO2/Si substrate 

Thermal Evaporation
150 nm Cu

LPCVD 

Removal of Copper and 
Multilayer Graphene 

on Top Copper Surface
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and (ii) full-spin: at 4,000 RPM for 30 sec (1,000 RPM/sec ramp rate). The PMMA-coated 

graphene/SiO2/Si sample was then air dried for 5 minutes, followed by etching the SiO2/Si 

substrate with 1% of HF for 8 h at room temperature. The floating PMMA/graphene sample was 

picked up by submerging a clean metal spoon into the solution, and lifting up at 40o angle to the 

surface of etchant solution. Immediately, it was transferred onto DI water at the same manner as 

previous picking up step (repeated three times). Similarly, the subsequent substrates (300 nm 

SiO2/n
++Si) or TEM grid (Formvar on 300 mesh copper grid) were then used to pick up the 

PMMA/graphene samples and then dried overnight in the air. To remove the PMMA, these 

samples were submerged into acetone for 5 min at room temperature, followed by washing with 

copious amount of acetone and IPA, and water (in the sequential order) and dried with purified air 

flow for 2 min.  

 

Figure 2.3: The transferring process of graphene to TEM grid. 

TEM Grid
Pick Up

and 
PMMA Removal

TEM Grid

Spin Coating
Of PMMA

1% HF
8 h

25oC
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 Procedure to transfer graphene on top of Cu surface to SiO2 for Raman 

characterization 

 The graphene grown on top copper surface was transferred to 300 nm SiO2/n++Si by the 

following steps (Figure 2.5): First, 25 mg/mL of poly(methyl methacrylate) (PMMA) (MW 

996,000,  Sigma Aldrich) in anisole (99% purity, Acros Organics) was spin-coated onto the 

graphene/ SiO2/Si substrate at (i) pre-spin: at 500 RPM for 5 sec (500 RPM/sec ramp rate) and (ii) 

full-spin: at 4,000 RPM for 30 sec (1,000 RPM/sec ramp rate). The PMMA-coated graphene/Cu 

foil was then air dried for 5 minutes, followed by etching the SiO2/Si substrate with 30% of KOH 

for 8 h. The floating PMMA/graphene sample was picked up by submerging a clean metal spoon 

into the solution, and lifting up at 40o angle to the surface of etchant solution. Immediately, it was 

transferred onto DI water at the same manner as previous picking up step (repeated three times). 

Similarly, the subsequent substrates (300 nm SiO2/n++Si) were then used to pick up the 

 

Figure 2.4: The transferring process of graphene on top Cu surface to SiO2/Si substrate. 

Spin Coating
Of PMMA

30% KOH
8h
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Pick Up

and 
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PMMA/graphene samples and then dried overnight in the air. To remove the PMMA, these 

samples were submerged into acetone for 5 min at room temperature, followed by washing with 

copious amount of acetone and IPA, and water (in the sequential order) and dried with purified air 

flow for 2 min. 

 Procedure of the thin graphene field effect transistor fabrication 

We used etching procedure to fabricate the graphene field effect transistor (GFET). This 

procedure includes two major steps: 1) defining the geometry of metal contact (Figure 2.5), and 

2) defining the geometry of transistor (Figure 2.6). 

 

 First, graphene transferred on SiO2/Si were deposited with Cr/Au (15 nm/95 nm) layers. A 

positive photoresist (AZ 1518) was spin-coated onto the samples at 4000 RPM for 45 sec. The 

samples were then baked on the hot plate at 110 oC for 1 min. Subsequently, a dose of UV light 

(365 nm and lamp power of 900 W) was introduced into the samples with aligned mask for 12 sec 

 

Figure 2.5: The process of defining the geometry of the metal contact.  

Metallization

Photoresist
Deposition

1. Photoresist Developing
2. Metal Etching
3. Photoresist Removal

15 nm Cr
95 nm Au

15 nm Cr
95 nm Au
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using Karl Suss MA6 mask aligner. Then samples were developed in a solution of 3:1 (DI water: 

AZ 340) for 18 sec to form the pattern of the source-drain contact. The un-protected Cr/Au area 

was etched by Au etchant (36 seconds, room temperature), submerged in the flowing water (2 

min), and etched by Cr etchant (12 seconds, room temperature), submerged in the flowing water 

(2 min). The electrode contacts were then revealed. Subsequently, in order to remove the remaining 

photoresist, the sample was washed with copious amount of acetone and IPA, and water (in the 

sequential order) and dried with purified air flow for 2 min.  

 

 After defining the metal contacts, the bar structure with a channel length of 25 µm and 

channel width of 12.5 µm was fabricated by repeating previous steps with another layer of positive 

photoresist with similar procedure (described above). After developing to form a protected pattern 

of graphene bar, the un-wanted graphene region was etch via Oxford reactive ion etching oxygen 

plasma (10 W power, 45 sec exposure, 535-550 V peak to peak voltage, and 260 V bias voltage). 

Subsequently, the photoresists were stripped off by submerging the sample into two consecutive 

 

Figure 2.6: The process of defining the geometry of multilayer graphene.  
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baths of AZ 351 solution (5 min, then 3 min), and into IPA solution for 5 min. Finally, the sample 

was washed with copious amount of acetone and IPA (in the sequential order), and dried with 

purified air flow for 2 min. 

 Pre-treatment of GFET for electrical measurements 

Prior to electrical transport measurements, the sample was placed into a clean 4” quartz 

tube in a split furnace. The chamber was evacuated to ~10-6 Torr in 20 min by roughing pump, and 

turbo-molecular pump. The system was stabilized for an addition 10 min. The furnace temperature 

was increased to 200 oC in 20 min, and annealed for 2 hours to remove absorbed impurities such 

as water, photoresists. After cooling down to room temperature, the samples were immediately 

placed inside the ARS cryostat system for electrical transport characterization.  

 Instrumentations for chemical, physical and electrical characterization 

 Confocal Raman spectroscopy system 

The data for Raman spectroscopy was obtained using WITEC Confocal Raman Alpha 300-

RA system, with a laser excitation wavelength of 532 nm (power of 17 mW). A thermoelectrically 

cooled CCD Camera (ANDOR iDUS DV401A-BV-352) (-65oC) was used to detect Raman signal. 

The focal length of UHTS 300 VIS spectrometer is 300 mm. The pinhole size (100 m) is the core 

diameter of the multi-mode fiber for the highest detection signal. The 100X objective, and 600 

l/mm grating were used to examine all the graphene samples. The laser spot size (360 nm) was 

determined using the equation: 

𝑆𝑝𝑜𝑡 𝑠𝑖𝑧𝑒 =
0.61𝜆

𝑁𝐴
 

where  (532 nm) is the wavelength of the laser and NA (0.9) is the numerical aperture. The 

SiO2/Si substrate (~520 cm-1) was used as a reference to calibrate the Raman instrument. The 
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intensity mapping was collected with the resolution of 512x512 (pixel x pixel), and the integration 

time of 0.5 s/pixel.  

 Field emission scanning electron microscope (FESEM) 

The FESEM image was collected using FEI Company Nova NanoSEM 430. The acceleration 

voltage was used as 5 kV with vCD detector, and spot size of 3.  

 Selected area electron diffraction (SAED) measurement via transmission electron 

microscope (TEM) 

The SAED pattern was collected using FEI-CM100 TEM. The acceleration voltage (100 kV) 

was used with camera length of 25 cm. 

 X-ray photoelectron spectroscopy (XPS) system 

XPS data were recorded with a Kratos AXIS-165 spectrometer using acrochromatic Al Kα 

radiation (1486.6 eV). Analysis was carried out under a vacuum less than 5 × 10−10 Torr.  The XPS 

binding energies were measured with a precision of 0.1 eV. The analyzer pass energy was set to 

80 eV. The contact time was 500 ms, and the area scanned was 5 mm2.  Spectra were referenced 

to C1s peak at 284.5 eV.   

 Cryostat electrical system 

The electrical measurements of multilayer graphene samples were carried out in ARS 

closed cycle cryogenic probe station, connecting to Edwards E2M5 rotary vane pump to provide 

high vacuum (<5 × 10−6 Torr). Lakeshore temperature controller (model 336) control the 

temperature of the samples.  

Figure 2.7 shows the set-up for the back gating measurement, which was performed by 

keeping the source-drain voltage constant and measuring the change in conductivity with the gate 
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voltage, which was applied to the heavy-doped silicon. The Keithley 2612 dual-channel system 

source meter connected to a computer via a GPIB/IEEE-488 interface card.  

 

 Results and Discussion 

 Physical characterization of thin graphene film 

Raman spectroscopy is a versatile vibrational technique, and can be employed to qualify 

the doping, strain, stress, and defects in the lattice of two-dimensional nanomaterials including 

graphene36–39. As shown in Figure 2.8a, a typical Raman spectra of the grown thin graphene film 

consists of the following prominent features: D band (~1350 cm−1), G band (~1580 cm-1), and 2D 

band (~2700 cm-1). The Raman spectral intensity mapping of G band, ID/IG ratio, and I2D/IG ratio 

presented in Figure 2.8b with the regions marked blue, red and black circle corresponds to Raman 

 

Figure 2.7 : The set-up of back-gating measurement  
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spectra in Figure 2.8a show high coverage of graphene film (>90%). The inhomogeneous 

contrast of the G mapping indicates the non-uniformity of graphene film. The relative intensity of 

D band over G band (ID/IG) can be used to probe the defects in the film, which is in the range of 

0.1-0.4 as shown in Figure 2.8c indicating a relatively low defect polycrystalline graphene.  

Furthermore, the relative intensity of 2D band over G band (I2D/IG) suggests a relatively high 

doping in graphene36 (which will be further confirmed in a later section).  

 

Surface of continuous thin graphene film is non uniform, which consists multilayer 

domains as shown in field emission scanning electron microscope (FESEM) image in Figure 

 

Figure 2.8 Raman spectroscopy analysis of the grown graphene at the metal-oxide 

interface. Graphene shown here was synthesized with the following conditions: T = 900oC, 

FH2/FCH4=1/5, and PTot= 2 Torr). a) the Raman spectra of multiple area corresponding to 

the optical image (inset), b-d) Raman mapping of G band, ID/IG ratio, and I2D/IG. The red, 

blue, and black circles correspond to the Raman spectra shown in a)  

a) b)

c) d)
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2.9a. Despite the growth under low pressure condition, this evidence implies that the interfaced 

graphene growth is not controlled by surface reaction step40. The details of the growth mechanism 

and consequences are discussed in the latter sections. In addition, the quality of graphene film is 

analyzed by X-ray photoelectron spectroscopy (XPS, Kratos AXIS-165). Figure 2.9b-c show no 

presence of metallic elements, arising from the Cu catalyst and Fe(NO3) etchant, which have 

binding energy of Cu 2p3/2 at 933 eV, and that of Fe 2p3/2 at 710 eV.  

 

 In addition, the presence of graphene is confirmed by the characteristic sp2 C=C peak at 

284.5 eV as shown in Figure 2.9d. Furthermore, the deconvolution of the C 1s peak shows the 

 

Figure 2.9 a) FESEM image of the grown graphene. b) The survey XPS scan of thin 

graphene. c) The high-resolution XPS spectrum of Cu 2p3/2. d) The high-resolution XPS 

spectrum of C 1s at high resolution and at room temperature.  
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presence of defects in graphene domain, which are from sp3 carbon components, C-O, and O-C=O 

peaks at 286.1 eV and 289.4 eV, respectively41,42. The sp3 carbon components may originate from 

two sources: (1) adventitious carbon in the XPS instrument, and (2) defects in the synthesized thin 

graphene domains, which is confirmed through the Raman data presented in following sections.  

Furthermore, the shape of 2D band is important to identify the stacking order of the 

multilayer graphene43–45. The obtained 2D bands of multiple graphene areas are symmetric. A 

representative fitting of the 2D Raman spectrum is shown on the Figure 2.10a, showing a single 

Lorentzian fit, with an average FWHM (~40 cm-1). These findings suggest a dominant misoriented 

stacking in our grown graphene44–48, which is further confirmed in SAED measurement.  

The selective area electron diffraction (SAED) is employed to observe the interfaced 

graphene’s crystalline structure, and its rotation angle. As suggested above, a mixture of A-B 

stacked layers and turbostratic arranged layers were observed in the synthesized graphene film. 

The six-fold hexagonal symmetry is clearly found in Figure 2.10b-c, indicating crystalline nature 

of the domain, and the Bravais-Miller (hkil) indices were used to label the diffraction peaks as 

shown in right side of Figure 2.10c. The lattice spacing has been calculated as 2.4 Å, which 

further confirms the graphenic structure49,50. Furthermore, the intensity of the inner peaks from the 

equivalent planes {1100} are always lower than the outer peaks from {2100}. The intensity ratio 

of I-1-120/I-1010 and I1-210/I-1100 are greater than 2, and 3 respectively, as shown in the Figure 2.10d, 

indicating the non-twisted A-B stacking structure (0o rotation) of the interfaced graphene in an 

average29-31.   In the other hand, turbostatic graphene region is confirmed by the presence of 12 

diffraction spots. The rotation between layers are estimated to be 25o, suggesting non A-A stack 

or A-B stacked thin layer graphene. The observed results agree well with the results of graphene 

produced via CVD method46,51. 
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 The growth mechanism of graphene at the interface 

The main objective of this work is to provide the growth mechanism of the interfaced 

graphene, which are described in the following elementary steps as shown in Figure 2.11a. (1) 

The precursors, CH4 and H2 transport through the bulk boundary layer, and absorb on the surface 

of Cu. (2) Furthermore, the catalytic decomposition of CH4 precursor by Cu generate mobile 

 

Figure 2.10 a) A representative fit of the Raman 2D band. b) SAED of the majority region 

of the grown graphene. c) SAED of the A-B stacking region, and d) its line intensity 

profile. 
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intermediate carbon radicals CxHy (e.g., CH3, CH2, CH, C*, C2Hy, etc, ) which are growth 

precursors for the multilayer graphene in our study52,53. Furthermore, the exothermic reaction of 

the carbon dimerization 2C*(s)C2 is spontaneous on the surface of Cu54–56. Hence, the major 

constituent of the carbon radicals is expected to be dimer and monomer species57.   

 

Subsequently, (3) the carbon radical further mobilized on the surface of Cu, transported 

through copper grain boundary to the interface of Cu and SiO2/Si33,58. (4) The G band mapping 

shown Figure 2.11b indicates the formation of graphene at the interface with respected to the 

reaction time at 850oC. Since carbon concentration reaches a critical value59, a series of multilayer 

 

Figure 2.11 a) Process involved during the synthesis of graphene at the interface of SiO2 

dielectric and Cu. b) The formation of the interface graphene at the edge of the grain 

boundaries, and the corresponding Raman G-band mapping (scale bar: 4 m [red], and 

10 m [white]). c) G band mapping of an interface graphene island. d) the corresponding 

Raman spectra of circle and blue areas. 
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graphene islands, 400 nm in diameter are nucleated and connect to each other to form strings of 

graphene in the spider-web fashion as confirmed by Raman mapping of G band, and the 

representative Raman spectra as shown in Figure 2.11b-d and Figure 2.12a. (5) Subsequently, 

as the carbon radical continues to replenish, these graphene strings continues to expand inside the 

interface, and form a continuous film.  

The growth formation here is in contrast to that of graphene on the top surface of Cu film. 

Here, the intensity mapping of Raman G band was utilized for the analysis of graphene formation 

at the interface, and that on the top surface of Cu film, which was transferred to SiO2 substrate. 

The green and red circle represents graphene area, and non-graphene area respectively. As shown 

in Figure 2.12 a-d, the darker regions of the Raman G mapping represent the non-graphene area 

at the interface, while the its brighter regions show the presence of interface graphene. The color 

 

Figure 2.12 a) Raman G band mapping of the interface graphene, b) the corresponding 

Raman spectra to the red and black circle area on a). c) Raman G band mapping 

(Inverted color) of the interface graphene, d) the corresponding Raman spectra to the red 

and black circle area on c). 
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contrast of the Raman G mapping of the interface graphene is, in fact, similar to one of the inverted 

color of one of graphene grown on top Cu as shown in Figure 2.12 c-d. This indicates that on 

top surface of copper film, graphene islands nucleate, and expand outward (in every direction). 

Furthermore, the ImageJ color contrast analysis suggests that the coverage rate of graphene on top 

copper surface is slower than that at the interface.  

The next interesting question is which step is the limiting step in our proposed growth 

mechanism. In case of the growth mechanism of graphene on Cu via LPCVD, the limiting step is 

the surface reaction or surface adsorption40,60, in which the surface morphology of graphene is 

uniform, which is different in the observed surface of graphene thin film. Furthermore, the mobility 

of the carbon radical on copper surface is relatively fast61. These evidences suggest that the limiting 

step should be the grain boundary diffusion of carbon radicals. Since the diffusion rate depends on 

the thickness of the deposited Cu, a control experiment of graphene growth is carried out with 300 

nm Cu on SiO2/Si<100> (sample A), and 150 nm Cu on SiO2/Si<100> (sample B).  Figure 2.13a 

shows the G mapping of the interface graphene of the sample A. Both sample A, and sample B 

were placed side by side in the CVD furnace, and underwent 90 second growth. The interfaced 

coverage, obtained via the imageJ color contrast analysis, shows a much lower interface 

graphene’s coverage (70%) in sample A than one in sample B (90%) (Figure 2.13b). This result 

supports our confirmation of the limiting step, grain boundary diffusion.  

Figure 2.13c shows the growth rate of the interface graphene on SiO2/Si<100> and 

SiO2/Si<111> surfaces. Initially during growth, the carbon radical’s concentration has to reach the 

critical values in order to compete with desorption, hence there is a delay time in the growth data. 

Furthermore, we have also observed that the growth of graphene at the interface of SiO2/Si<111> 

takes places 2 fold faster than that of graphene at the interface of SiO2/Si<100>. This phenomenon 
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was investigated further by obtaining the XRD pattern of Cu on SiO2/Si<111>, and of Cu on 

SiO2/Si<100> as shown in Figure 2.13d, which exhibits a dominant Cu<111> over Cu<100> in 

both the samples. Furthermore, the intensity of both Cu <111> and Cu<100> are higher in 

SiO2/Si<111> substrate than in SiO2/Si<100>, which indicates a higher density of both Cu 

crystalline in SiO2/Si<111>. Furthermore, the growth of multilayer graphene is favored to growth 

on Cu<111> compared to Cu<100> due to its lower adsorption energy, and lower diffusion 

energy48,62,63. In addition, the growth of interface graphene is facilitated by the close lattice match 

between hexagonal graphene (lattice constant 0.246 nm) and hexagonal Cu <111> (lattice constant 

0.256 nm)60,64,65. 

 

Figure 2.13 a) the G band mapping of interface graphene (300 nm Cu film). b) The 

coverage of interface graphene grown via 300 nm Cu, and 150 nm Cu. c) The growth rate 

of the interface graphene on SiO2/Si<111> substrate and SiO2/Si<100> substrate. d) X-

ray diffraction of post-CVD Cu crystal lattice on SiO2/Si<111> substrate and 

SiO2/Si<100> substrate. 
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 The influence of growth parameters on graphene quality 

During the graphene CVD process, the oxidizing impurities-which arise from gas feed 

stock, air leakage, and copper substrate66-can significantly impact the growth conditions by 

altering the balance between etching, and growth67,68. The solution to this challenge is to vary the 

flowrate ratio of H2 and CH4 (FH2/FCH4), which can compensate these impurities (O2, H2O, CO, 

and CO2 in our study as shown in Table 2.1), hence enhances the graphene quality69–71. In the 

absence of hydrogen (FH2/FCH4 = 0), due to high oxidizing impurities in CH4, and air-leakage, the 

thin graphene film can be etched or converted into oxidized graphene (sp3 carbon)67,68,72,73 which 

leads to the formation of multilayer graphene patches as shown in shown in the Raman intensity 

ID/IG ratio mapping of Figure and to poor graphene crystallization (presence of D’ peak [~1626 

cm-1]) as shown in Figure 2.14b. This evidence suggests the introduction of hydrogen would 

benefit the formation of graphene. On the other hand, if hydrogen exceeds the desired value, it 

inhibits the adsorption of CH4, which reduces the rate of the dehydrogenation of CH4, and affects 

the crystallization of the graphene60. Furthermore, hydrogen can create point defects, which consist 

of hybridized sp3 C-H bonds74, which leads to the increase in the Raman intensity ID/IG, and the 

presence of D’ band (FH2/FCH4 = 2/1) as shown in Figure 2.14a-b. The optimal FH2/FCH4 can be 

determined via Tuinstra and Koenig relationship75:  

 𝑳𝒂 (𝒏𝒎) = ( . 𝟒 ×   
   )𝝀𝟒 (

𝑰𝑫

𝑰𝑮
)
  

Equation 2.1 

where, 𝜆 (nm) is the laser wavelength, La (nm) in-plane crystallite size, and ID/IG is the intensity 

ratio of D band and G band. Hence, the optimized ratio FH2/FCH4 (1/5) corresponds to the highest 

La value (~90 nm) in our case as shown in Figure 2.14c.  
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Since temperature plays an important role in graphene synthesis, Figure 2.15a shows the 

Raman ID/IG mapping of the grown graphene at various temperature (750oC -900oC). At low 

temperature such as 750oC, a high D band intensity and the presence of D’ band (~1626 cm-1) 

indicates a poor graphitization76,77 as shown in Figure 2.15b, and the presence of high density of 

sp3 carbon. Due to endothermic dehydrogenation of CH4 reaction, as the temperature increases, 

the G peak becomes sharper (FWHMG =10 cm-1) with the disappearing of D’ peak, indicating an 

increase in the crystallization of graphene film. Figure 2.15c shows the in-plane crystallite size 

(La) and the ID/IG ratio as respect with reaction temperature. The estimated La (nm) is 140 nm, 

which further illustrates that 900oC is the optimized reaction temperature in our CVD setup. At 

 

Figure 2.14 a) Raman mapping of ID/IG of interfaced graphene at different flow rate ratios 

(H2/CH4), and the corresponding average Raman spectra. c) Domain size (La) and ID/IG 

ratio with respected to flow rate ratio (H2/CH4).  
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950oC, copper starts to evaporate strongly, which leads to non-continuous and high defect 

graphene.  

 

 Furthermore, the G band downshifts (~8 cm-1) as the reaction temperature increases from 

800oC to 900oC, which is attributed notably to a reduction of thermal induced hole doping78. Due 

to a reduction of the ID/IG ratio, the defect density also decreases, leading to the reduction of oxygen 

adsorption (p-doping) on graphene surface after removing from the furnace78,79.  After CVD 

process, the N2 gas in the atmosphere shows no influence on the position of G peak78.  

The electronic characterization of the thin graphene film 

It is important to understand the electronic properties of the grown thin graphene film, 

which was transferred to a clean substrate of 300 nm SiO2 on n++ Si. The optical image of typical 

 

Figure 2.15 a) Raman mapping of ID/IG of interfaced graphene (750-900oC), b) and the 

corresponding average Raman spectra. c) Domain size (La) and ID/IG ratio with respected 

to reaction temperature.  
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back-gate GFET is shown in the right inset of Figure 2.16a with the dimensions (12.5 µm x 25 

µm, L/W ~ 2). The GFET uses Cr/Au film (15/95 nm) as the source and drain contacts, and n++ Si 

as the gate source (as shown in left inset of Figure 2.16a). In order to minimize the external 

doping, all the measurements were carried out under high vacuum conditions (<1 x 10-7 Torr) in a 

ARS cryostat.  

 The field effect analysis of the thin graphene film 

Figure 2.16a shows that the conductivity as a function of carrier density, at which the 

resistivity transform from sublinear behavior into linear behavior as carrier concentration is away 

from the charge neutrality point (CNP). This indicates a transition from low carrier densities, 

where charge transport is dominated by Coulombic impurities, to large carrier densities, where 

short-range scatterers dominate80. Furthermore, the Ion/Ioff ratio for the GFET is ~ 1.7. Because the 

length of the fabricated transistor is much larger the mean free path of graphene (L>>), an 

equation for the diffusive transport should be acquired in order to fit the experimental data.   

 (𝝈)  = (𝒏𝒆𝝁 + 𝝈𝑮)
  + 𝝆𝑺 Equation 2.2 

where 𝜎 is the measured conductivity,  μC is density-independent mobility due to charged-impurity 

Coulomb (long-range) scatteringρS  is the contribution to resistivity from short-range scattering, 

and σG is the background conductivity at the charge neutrality point81–83. Consequently, the 

equation yields μC of 277 cm2V-1s-1, and 233 cm2V-1s-1 for p-type and n-type conduction 

respectively. The μC is limited due to two possible mechanisms: (1) Coulomb scattering near CNP, 

and (2) electron-phonon scattering at high carrier density. In the first mechanism, the long ranged 

charge scatterers arise from the charge impurities from the surface of SiO2 i.e. electron-hole 

puddles84–86. In the latter mechanism, the short range resistivity (𝜌𝑆), which is estimated to be ~3.8 
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k/sq, can help explain the low value of μC in the GFET transistor. Despite being debated, the 

origin of short range resistivity can be attributed to (1) the flexural (out of plane) phonons that are 

excited inside the ripples of graphene87,88, (2) the surface polar optical phonon of underlying 

substrates89–91, (3) lattice defects or point defects on graphene film92, and (4) contact resistance93. 

In the first two phenomena, phonon scatterers are screened from the outer few layers of graphene 

thin film, suggesting the negligible effect of electron-phonon scattering mechanism in our GFET. 

In addition, typical values for the resistivity of SiO2 surface polar optical were low as shown in 

 

Figure 2.16 a) Conductivity vs. carrier concentrations characteristics of the GFET at 10 

K, inset: schematic of GFET (left) with the corresponding optical microscope image 

(right). b) Variation of field effect mobility with respect to carrier concentration for GFET 

at 10 K. c) The resistivity of GFET with respect to carrier concentration (10-140 K). d) 

The charge dependent mobility of hole with respect to temperature (10-140 K), inset: The 

charge dependent mobility of electron with respect to temperature (10-140 K). 

0 40 80 120
100

200

300

400

C
h

a
rg

e
 I

n
d

e
p

e
n

d
e

n
t 

M
o

b
il

it
y

 (
c
m

2
V

-1
s

-1
)  Electron

Temperature (K)

-4 -3 -2 -1 0 1 2 3 4
1.5

2.0

2.5

3.0

3.5

C
o

n
d

u
ta

n
c

e
 (

e
2
/h

)

n (x10
12

 cm
-2
)

-2 -1 0 1 2

8

10

12

14
   10 K

   40 K

   60 K

 100 K

 140 K

S
h

e
e
t 

R
e
s
is

ta
n

c
e
 (

k


/s
q

)

n (10
12

 cm
-2
)

T= 10 K

0 40 80 120
100

200

300

400

C
h

a
rg

e
 I

n
d

e
p

e
n

d
e

n
t 

M
o

b
il

it
y

 (
c
m

2
V

-1
s

-1
)

 Hole

Temperature (K)

a) b)

-2 0 2

0

50

100

150

200

F
ie

ld
 E

ff
e
c
t 

M
o

b
il
it

y
 (

c
m

2
V

-1
s

-1
)

n
e
 (10

12
 cm

-2
)

c) d)



49 

previous report (30-500 )89. The minor role of phonon scattering on the mobility of the thin film 

graphene is further confirmed later.  On the other hand, as shown in our above Raman data, the 

ID/IG ratio is noticeable, indicating a smaller the crystalline graphene domain size than the channel 

length of the fabricated transistor. Consequently, the high density of defects in graphene grain 

boundaries contribute largely in short range scattering transport92. Furthermore, in contrast of the 

contact resistance of graphene monolayer, the one of graphene thin film is independent of carrier 

concentration due to the lack of charge depletion region near the contact83,94. The magnitude of the 

contact resistance is highly dependent in fabrication techniques. Therefore, it leads to a 

confirmation that the majority of the short range scattering in our GFET are lattice or point defects, 

and contact resistance. Furthermore, in the literature, the field effect mobility ( 𝜇𝐹𝐸) is defined as 

the derivative of the Drude formula, 𝜇𝐹𝐸 = (
1

𝐶
)(

𝑑𝜎

𝑑𝑉𝐵𝐺
), which evaluates the  𝜇𝐹𝐸 varies from ~75 

cm2V-1s-1 at high carrier density, to ~175 cm2V-1s-1 near the CNP (as shown in Figure 2.16b).  

The temperature dependence of the GFET’s sheet resistivity as a function of carrier density is 

shown in Figure 2.16c. The GFET exhibits ambipolar conductivity over the entire temperature 

range (10 K-140 K). In the absence of back gate voltage, the transport in the GFET is hole 

dominant. As the temperature increases, in all high/low density regime, the GFET has 

pronouncedly non-metallic behavior (dρ/dT<0). This is an important difference between 

monolayer graphene FET and other exfoliated bilayer graphene FET 88,95,96, which possesses the 

consistence of the resistivity away from the charge neutrality point as the temperature changes. In 

addition, the equation (1) is used to evaluate the density-independent mobility (μC) (hole) with 

respect to temperature, which is shown in Figure 2.16d. The density-independent mobility for 

electrons with respect to temperature is shown in the inset of Figure 2.16d. The slow decrease of 

μC with decreasing the temperature indicates the Coulomb scattering transport in our thin film 
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GFET is dominant97 over electron-phonon scattering. Furthermore, since the magnitude of the 

electron-phonon scattering mobility is much greater than Coulomb scattering mobility and short-

range scattering mobility, it is neglected in our thin GFET transport91,98.  

 Charge transport mechanism of the thin graphene film 

Figure 2.17a shows the increase of background conductivity with respect to temperature. 

This semiconductor-like behavior can be explained by simple two band (STB) model83,99–101. In 

contrast to Dirac cone linear dispersion in graphene monolayer, the interaction between layers in 

graphite results in the parabolic dispersion relation. Since our thin graphene film is few layer 

thickness, the band structure behaves in a way that the parabolic dispersion relationship occurs at 

the energies near Fermi level (EF), and the linear dispersion, occurs at higher energy range. 

Furthermore, the valence and the conduction bands overlap with an energy =2Eo as shown in 

inset of Figure 2.17b. The temperature behavior of the GFET is evaluated through the resistivity 

at the CNP with the following expression.  

(𝜎𝐺)
 1 =

1

𝑒𝜇(𝑇)𝑛(𝑇)
  = (

1

𝑒
) (

1

𝜇𝐶
+ 𝐴𝑜𝑇) (2𝐶𝑜𝑘𝐵𝑇𝑙𝑛 [1 + 𝑒

{
𝐸𝑜

𝑘𝐵𝑇
⁄ }

])
 1

Equation 2.3 

where μC is density-independent mobility due to charged-impurity Coulomb (long-range) 

scattering, σG is the background conductivity at the charge neutrality point, 𝑘𝐵 is Boltzmann 

constant, 𝐴𝑜 is constant dependent on electron-phonon scattering in GFET, 𝐶𝑜is constant 

dependent on effective mass of the charge carriers, T is temperature, and 𝐸𝑜 is the half band 

overlap. The back ground resistivity is fitted to equation 4.2 with free parameter of μC𝐴𝑜, μC𝐶𝑜, 

and  𝐸𝑜 as shown in Figure 2.17c. The overlapping band is estimated to be 2.3±0.4 meV, which 

is expected to thin graphene film.  
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As shown in Figure 2.17d, the magnitude of the decrease in GFET’s resistivity (dρ/dT) 

is not the same in the range (T>40 K), which suggests an activation energy over energy gap (EA) 

of charge transport. To further understand this transport mechanism of GFET in the absence of 

back gate voltage (VBG= 0 V), a series of I-V measurements were carried out in the temperature 

range (40-160 K). The transport can be elucidated by two common mechanisms: 1) Arrhenius 

thermal activation model as shown (
𝐼

𝑉
) ∝ exp [

−𝐸𝐴
2𝑘𝐵𝑇
⁄ ] (Equation 2.4), and 2) the variable 

 

Figure 2.17 a) Normalized background conductivity vs. temperature. b) The band 

structure of thin graphene film, where the simple two band (STB) model of the grown 

graphene is suitable for energies near the Fermi level (EF), and as the energies is far from 

the EF, the dispersion curve behaves like a Dirac cone (DC) as for single-layer graphene. 

c) The STB model fit for background resistivity as respected to temperature of GFET (10-

140K). d) Arrhenius model fit for GFET transport (40-160 K) with inset of variable range 

hopping (VHR) model fit for GFET transport (40-160 K).   
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range hopping (VHR) model102,103 as shown: (
𝐼

𝑉
) ∝ exp [− (

𝑇𝑜
𝑇⁄ )

𝛼

] (Equation 2.5). The two 

equations (3) and (4) yield the thermal energy barrier of 2.0±0.2 meV (from equation 2.4), and 

𝛼~1/3 (from equation 2.5), which suggests the hopping in 2 dimensions, in-plane and through 

multiple layers of GFET. 

 Conclusion 

In summary, this chapter demonstrated the mechanism of thin graphene film on the 

interface of SiO2/Si substrate and thin copper film (~150 nm) via LPCVD. Graphene nucleates at 

the grain boundaries at the interface of Cu and SiO2/Si. The growth is grain boundary diffusion 

limited. Excitingly, SiO2/Si<111> substrate enhances the crystallization of Cu<111> and 

Cu<100>. Furthermore, the optimized growth parameters such as temperature, and flow rate ratio 

of methane gas and hydrogen gas, were found as 900oC, and FH2/FCH4~1/5. The turbostratic 

stacking thin graphene film is found to be low defect (La~140 nm), with field effect mobility of 

277 cm2V-1s-1, and 233 cm2V-1s-1 for hole and electron respectively. In addition, the various 

temperature electronic transport studies reveal that the thin graphene film exhibits a dominant 

Coulombic scattering, an overlapping band of 2.3±0.4 meV, a thermal activation energy of 2.0±0.2 

meV, and 2-D hopping conduction. We envisioned that our work will generate interest in scalable 

direct growth of large-area, contamination free, transfer/unloading free thin layer graphene, which 

is vital for graphene electronics, and graphene-platform 2D heterostructures applications ranging 

from nano-scale electronics to energy conversion and optoelectronics. 
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Chapter 3 - Direct growth of hexagonal boron nitride on SiO2 via 

low pressure chemical vapor deposition (LPCVD) 

 Abstract 

Here, this chapter shows high quality, wafer-scale and uniform thin h-BN film synthesized 

directly on oxidized substrates via a novel boron-oxygen chemistry route for oxide-assisted 

nucleation (B/N atomic ratio = 1:1.16±0.03 and optical band gap = 5.51 eV). Due to low pressure 

(10 Torr), and high elevated temperature (1100oC), the h-BN growth is surface reaction limited, 

leading to the increase in ~6-fold smoothness in SiO2/Si substrate, which underwent the same CVD 

condition. This study provides a route to realize van der Waals heterostructures based on h-BN 

dielectrics and their fundamental investigations. The heterostructures are devoid of wrinkles and 

adsorbates, which is critical for 2D nanoelectronics, as verified by the increase in electrical 

conductivity (5 times for MoS2/h-BN). This versatile process provides an avenue to a variety of 

heterostructures with complex sandwiched 2D electronic circuitry. 

 Introduction 

To enhance the intrinsic characteristics of van der Waals heterostructures for 2D 

nanoelectronics and thermionics, large-area, planar, dielectric substrate with ultra-flat, smooth 

surface, lateral continuity, and a structure free of dangling bonds and surface traps1–3 are required. 

The ideal candidate, the hexagonal boron nitride (h-BN), possesses not only these properties, but 

also other superior properties: high thermal conductivity (2,000 W/mK)4, large mechanical 

strength5, high optical transparency6, high chemical/temperature stability (up to 1000 °C)7–9, deep 

ultraviolet emission10, and thinnest tunneling junction11. H-BN, which is a single-atom-thick two-

dimensional sheet of sp2 hybridized boron and nitrogen atoms with a honeycomb lattice, is an 
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electronic insulator with large direct band gap (5.97 eV)10 and a low dielectric constant (~ 4)12. A 

vast study has been made to synthesize h-BN on various metal catalytic surfaces (Cu13, Ni14, Co15, 

Pt16 and Cu-Ni alloy17) via chemical vapor deposition (CVD). However, these techniques require 

substrate unloading and additional wet/dry transfer processes; for example, a sacrificial polymer 

layer supports the h-BN film on metal, followed by metal etching and polymer/h-BN transfer to 

arbitrarily substrates. Due to the  formation of tears, folds, wrinkles, and adsorption of polymeric 

impurities18 , such transfer process is neither robust, nor reliable, and consistently degrades h-BN’s 

structural properties 

 Here, we introduce a novel technique, which is an oxide-assisted growth of direct formation 

of large-area, continuous thin films of h-BN on Si-based dielectric (SiO2 and Quartz) substrates 

via leveraging the boron/oxygen bond. This eliminates the need for a metal catalyst, substrate 

unloading from CVD, post-synthesis transfer steps, and the resultant polymer contamination. 

Furthermore, the grown h-BN substrates can be directly applied for realizing van der Waals 

heterostructures with transition metal dichalcogenides (TMDs), especially MoS2. This intimately 

interfaced, van der Waal heterostructures (MoS2/h-BN) fabricated through an all-CVD growth 

process benefits from: 1) ~6-fold reduction in roughness of h-BN film in comparison to SiO2 

substrate, 2) the absence of the external adsorbates at the surface and at the interface. Subsequently, 

these will lead to reduction in surface roughness scattering and charged impurity scattering, 

enhancing of intrinsic charge carrier mobility for MoS2-hBN heterostructures, which is also critical 

for other 2D nanoelectronics, thermionics, and photonic applications. Therefore, the proposed 

versatile process can potentially be extrapolated to realize a variety of heterostructures with well-

defined stacking for complex sandwiched 2D electronic circuitry. 
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 Experimental Section 

 Procedure of h-BN growth on SiO2/Si substrate via LPCVD 

A low-pressure CVD (LPCVD) system was modified to adapt the solid vapor growth. Here 

the substrate was placed in a fused quartz tube (outside diameter of 1 inch), which is placed inside 

a split tube furnace. A separate heated chamber was connected to the inlet of the LPCVD, and 

employed for h-BN precursors: solid ammonia-borane (AB) (NH3-BH3) complex (Figure 3.1a). 

The substrates (SiO2/Si and quartz) were cleaned using piranha solution for 2 hours (a volumetric 

mixture of 3:1 of 98% H2SO4 to 35% H2O2). After the piranha treatment, as shown in Figure 3.1b 

the treated substrates were directly placed in the center of quartz tube’s heating zone and ramped 

to 1100 oC in 10 sccm H2 (PTot=200 mtorr) to restrict further oxidation. After reaching 1100oC, the 

chamber containing AB was heated at ~ 100 oC to thermally decompose into H2 gas, monomeric 

aminoborane (BH2NH2) and borazine ((HBNH)3).
13 The gas mixture was transported to the 

chamber containing the substrate via supplied H2 carrier gas. The h-BN synthesis takes place at a 

 

Figure 3.1 a) LPCVD set up for the growth of h-BN on SiO2/Si substrates, b) The 

processing conditions for the growth of h-BN. 
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pressure of 10 Torr and the reaction time was varied from 10 sec to 60 min followed by fast cooling 

(opening the furnace, ≈ 100 0C/min). Finally, the h-BN film is ready for further characterization.  

 Procedure of MoS2 growth on h-BN via LPCVD 

The split-tube 3-zone CVD furnace (MTI Corporation) was used for the synthesis of h-BN 

and large-area heterostructured films with MoS2. The carrier gas is H2 or Ar, or a combination of 

both. As shown in Figure 3.2 the substrate (i.e. h-BN/SiO2/Si and SiO2/Si) is placed in the 3rd zone 

near the molybdenum oxide (MoO3) powder. During the sulfurization process, samples were kept 

at 800 oC for 30 - 60 min under argon and/or hydrogen flow and maintaining a vacuum of 10 Torr. 

Sulfur (S) vapors were generated from S powders placed up-stream in a lower temperature region   

(250 oC) (the 1st zone). Finally, the MoS2 film on hBN is ready for characterization.  

 

Figure 3.2 The LPCVD set-up for direct growth of MoS2 on h-BN/SiO2/Si substrates. 
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 Procedure for the fabrication of MoS2/h-BN sample for I-V measurement 

Similar to the fabrication of graphene field effect transistor described in chapter 2 

(experimental section), the fabrication process is simplified as follows: After the synthesis of MoS2 

on SiO2/Si or quartz substrates with and without h-BN, metal contact electrodes (Cr (15 nm)/Au 

(95 nm)) were deposited using e-beam evaporator. Then positive photoresist was spun onto the 

film, and developed.  A metal etching procedure was performed to create the pattern. 

Procedure to transfer hBN to TEM grid for selected area electron diffraction 

(SAED) characterization 

 The procedure here is similar to the transfer procedure described in chapter 2 (experimental 

section), which can be simplified as followed: After the synthesis of h-BN film on SiO2/Si 

substrate, a layer of PMMA was spun onto the film via spin-coating. The underlying SiO2/Si 

substrate can be etched either by 1% HF or 30% KOH for 8 h at room temperature. The PMMA/h-

BN was picked up by the TEM grid from the water solution. After being dried overnight, the 

sample was drop-casted acetone, IPA for serval times to remove PMMA layers.  

 Instrumentations for chemical, physical and electrical characterization 

 Confocal Raman spectroscopy system 

The data for Raman spectroscopy was obtained using WITEC Confocal Raman Alpha 300-

RA, with a laser excitation wavelength of 532 nm (power of 17 mW), a laser spot size of 360 nm, 

and a pinhole of 100 m. A thermoelectrically cooled CCD Camera (ANDOR iDUS DV401A-

BV-352) (-65oC) was used to detect Raman signal. The focal length of UHTS 300 VIS 

spectrometer is 300 mm. The 100X objective (NA =0.9), and 600 l/mm grating were used to 

examine all h-BN and MoS2 samples. The SiO2/Si substrate (~520 cm-1) was used as a reference 
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to calibrate the Raman instrument. The intensity mapping was collected with the resolution of 

512x512 (pixel x pixel), and the integration time of 0.5 s/pixel.  

 Selected area electron diffraction (SAED) measurement via transmission electron 

microscope (TEM) 

The SAED pattern was collected using JEOL JEM-3010 TEM. The acceleration voltage (300 

kV) was generated from LaB6 electron source. Images were collected using a Gatan Orius SC200 

CCD camera, which is connected to a computer running Digital Micrograph software. 

 X-ray photoelectron spectroscopy (XPS) system 

XPS data were recorded with a Kratos AXIS-165 spectrometer using acrochromatic Al Kα 

radiation (1486.6 eV). Analysis was carried out under a vacuum less than 5 × 10−10 Torr. The XPS 

binding energies were measured with a precision of 0.1 eV. The analyzer pass energy was set to 

80 eV. Furthermore the contact time was 500 ms, and the area scanned was 5 mm2.  Spectra were 

referenced to C1s peak at 284.5 eV.   

 X-ray powder diffraction (XRD) system 

The h-BN/SiO2 sample was placed on standard holder inside Siemens / Bruker D5000 

powder diffractometer, which is a wild angle XRD (20o-90o). The X-ray source is Cu K-alpha 

(=0.154 nm).  

 UV-Vis system for optical band-gap characterization 

The h-BN/quartz sample was placed on the sample holder as shown in Figure 3.3. The 

absorbance data was recorded using Newport 818-UV calibrated photodiode sensor (range of 

detection is 200 nm to 300 nm), which was connected to Keithley 2612 dual-channel system. A 

monochromator (Oriel Cornerstone 130 1/8 m) and Keithley 26112 dual-channel system were 
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connected to computer via a GPIB/IEEE-488 interface card. The absorbance (𝛼) was calculated 

using the following expression: 

𝜶 = |
𝑰𝒉−𝑩𝑵 𝑰𝒒𝒖𝒂𝒓𝒕𝒛

𝑰𝒒𝒖𝒂𝒓𝒕𝒛
| Equation 3.1 

where Ih-BN is the measured current of h-BN/quartz sample and I quartz is the measured current of 

reference sample, i.e. quartz substrate.  

 

 Cryostat electrical system 

The electrical measurements of MoS2/h-BN and MoS2/SiO2 samples were carried out in 

ARS closed cycle cryogenic probe station, which can provide high vacuum (<5 × 10−6 Torr). 

Lakeshore temperature controller (model 336) control the temperature of the samples. The I-V 

measurement was performed by varying the voltage source and measuring the change in 

 

Figure 3.3 The schematic for a home-built UV-Vis system 
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conductivity. The Keithley 2612 dual-channel system source meter connected to a computer via a 

GPIB/IEEE-488 interface card.  

 Results and Discussion 

 H-BN growth mechanism  

As shown in Figure 3.4, the growth of h-BN can be described by following seven elementary 

steps: (1) At 100 oC, the solid AB complex is sublimed into gaseous phase and carried into reaction 

zone by H2 gas. (2) Before reaching the 1100 oC zone, the AB complex is thermally decomposed 

into H2, aminoborane (BH2NH2) and borazine (B3H6N3)
19,20.(3) At a temperature of 1100 °C, 

(B3H6N3) and (BH2NH2) molecules further dissociate into (BN)xHy radicals, which (4) adsorb and 

diffuse along the SiO2 surface). (5) The (BN)xHy starts the nucleation of h-BN domain by binding 

at the oxygen dangling bond of SiO2. (6) If the rate of attachment of (BN)xHy radicals at the edge 

of h-BN domain is higher than the rate of their detachments, then the h-BN domains start to expand 

into continuous h-BN sheet. (7) The byproduct H2 is desorbed from the surface of h-BN, and 

transported to the bulk gas.  

The formation mechanism of the h-BN films on SiO2/Si substrates can be understood via 

vapor-solid-solid growth mechanism21,22. Furthermore, CVD growth of h-BN is influenced by the 

role of kinetic factors i.e. the relative magnitude of the mass transport coefficients (hg) and surface 

reaction constants (Ks)
22,23. Hence the process can be classified into two regimes: mass transport 

region, which involves diffusion through boundary layers, and surface reaction step. These two 

types of fluxes co-exist in series:  

(1) Flux of the radicals through boundary layer,  

Fmass transport= hg (Cg - CS) Equation 3.2 
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where hg is mass transfer coefficient, Cg is the concentration of gas in the bulk, and CS is the 

concentration of the radicals at the surface.   

(2) Flux of consuming radicals at the surface.   

FSurface reaction= KS CS
n Equation 3.3 

where KS  is surface reaction constant and n is the order of reaction (assuming to be 1). The slower 

flux will be considered as rate limiting step. At steady state, the total flux FTotal equals to Fmass 

transport , and also equals to FSurface reaction. The growth of h-BN film with a uniform thickness occurs 

when hg >> Ks (surface reaction controlled region), while the growth of thickness non-uniform 

thick film occurs when hg << Ks (mass transport limited region).  

 

In our proposed growth, the rate limiting step is the surface reaction step, due to these 

following evidence. (1) The grown h-BN film is uniform and smooth (as shown later in Figure 

3.8). (2) Surface oxygen in Cu favors the h-BN growth as it facilitates dissociation of the precursor 

 

Figure 3.4 Processes involved during h-BN synthesis on SiO2/Si substrates using LPCVD 
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gas and enhances the dehydrogenation process along the edges of the h-BN domains24. (3) 

Furthermore, for carbon nanotube and graphene synthesis the oxygen-aided growth is a surface 

deposition process with a low reaction rate21,22. (4) The SiO2/Si surface is suspected to possess 

relatively low value of Ks
22 which may enable large-area uniform growth of h-BN sheet.  (5)  In 

addition, the flux of the radicals through boundary layer can be described by Fick’s first law of 

diffusion as shown: 

Fmass transport = hg (Cg - CS)= -Dg ∇C = Dg (Cg - CS)/ δ  

 hg = Dg/ δ Equation 3.4 
where Dg is diffusivity factor, and δ is the boundary layer thickness. Hence, the mass transport 

coefficient (hg) can be further defined by the ratio of diffusivity factor (Dg) and thickness of 

boundary layer (δ). At low pressure operation, the collision of the active precursors is less, leading 

to a higher diffusivity factor (Dg  1/(total pressure)). In spite of the increase in the thickness of 

boundary layer at low pressure, the increase of Dg is much higher. Consequently, mass transport 

coefficient, hg is high at low pressure, leading to enhance diffusion of the precursors through the 

boundary, making surface reaction the rate limiting step (as shown in equation 3.3). The oxygen-

assisted nucleation of h-BN film is also apparent from the XPS spectra for B 1s, which is described 

next. The edge-attachment and lattice integration involves dehydrogenation at domain edges, the 

edge-attachment barrier is effectively reduced due to the strong binding energy between B and O. 

The growth mechanism further is analyzed via the bonding state and the elemental 

composition of boron (B), oxygen (O), and nitrogen (N), which is obtained from XPS. The 

spectrum of each element is fit with Gaussian curve. As shown in Figure 3.5a, the B 1s spectrum 

is composed of two peaks at binding energy (BE) ~ 190.53 eV and ~ 191.59 eV, which are 

corresponding to B-N25,26 and O-B-N27,28 bonding, respectively. Furthermore, the convoluted 

peaks of the O 1s spectrum at 532.39 eV which is due to Si-O-Si binding and at 533.34 eV which 
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is to O-B-N binding29. In addition, another minor peak appears at 530.08 eV, which can be 

attributed to the adsorbed oxygen from the atmosphere. On the other hand, the spectrum of N 1s 

peak can be fit with only one Gaussian curve (centered at BE ~ 398.13 eV), which represents the 

N-B bonding25,26 (Figure 3.5c). These evidences propose that the O of SiO2 substrate act as 

nucleation sites for B of (BN)xHy radical, which continues to connect to the adjacent of (BN)xHy 

radical to form a uniform, and continuous h-BN film. Furthermore, as shown in Figure 3.5b the 

B-O peaks imply the presence of boron terminated edge of hBN film binding to SiO2/Si substrate, 

where B is bound to O and possibly two Ns. The elemental stoichiometric analysis confirms the 

chemical composition of h-BN with an almost equal composition of B and N elements: B/N ratio 

= 1:1.16±0.03.  

 

 Growth of the h-BN film on Si (the control experiment) 

In order to confirm the importance of the oxide group on the surface, a silicon (Si) was placed 

inside the LPCVD, and underwent the same condition. The Raman spectrum and optical 

microscopic image for the post h-BN growth Si surface are shown in Figure 3.6a-b. As expected, 

there is no Raman signature of h-BN film or island on the surface of Si substrate.  

 

Figure 3.5 XPS spectroscopic analysis. (a) B 1s, O 1s, and (c) N 1s 

a) b) c)



72 

 

 Structural characterization of the h-BN film 

The quality and uniformity of the grown h-BN film formed on SiO2/Si substrates is 

characterized by Raman spectroscopy. The h-BN Raman signature peaks occurs at ≈ 1368 - 1370 

cm-1 corresponding to E2g phonon vibration represented in Figure 3.7a. The Raman spectral 

position mapping is presented in Figure 3.7b with the regions marked blue, red and black circle 

corresponds to Raman spectra in Figure 3.7c, and to the areas of optical image in inset of Figure 

3.7a. The homogeneous color contrast of the optical image, and the Raman position mapping of 

E2g peak, and the Raman intensity mapping of E2g peak clearly show a continuous, and uniform h-

BN film formation on SiO2/Si substrate. In 1-minute growth, the-BN thickness is 7 nm as shown 

in Figure 3.7d. In our study, the Raman E2g peak position shifts to higher frequency which could 

be attributed to 1) the formation of surface induced stress in the h-BN films3031and 2) the 

adsorption/ binding of oxygen impurities in the grain boundaries (B dangling bond) of h-BN film 

 

Figure 3.6 Raman spectroscopic analysis of post h-BN growth Si surface. (a) Optical 

microscopic view of the Si surface and (b) Raman spectra corresponding to different 

regions marked blue, red and black color. 
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during the CVD growth, which is also suggested by XPS data (discussed above). Furthermore the 

average FWHM (~65 cm-1) of the E2g peak corresponds to crystal domain size (La) of ~2.5 nm 

through the following relationship32:  

𝑳𝒂(Å) =
 𝟒 𝟕

( 𝑾 𝑴− 𝟖. 𝟕)⁄ Equation 3.5 

  

Due to a planar sp2 hybridized bonds and weak out-of-plane van der Waals bonds, the h-BN 

possesses to a smooth surface, and a decreased density of absorbed impurities. Figure 3.8a 

presents the surface morphology for SiO2/Si substrate and h-BN thin film grown on SiO2/Si. Both 

 

Figure 3.7 a) The Raman spectra of E2g peak, inset: The optical microscopy image of h-

BN film. b) Scanning Raman intensity mapping of E2g peak. c) Scanning Raman position 

mapping of E2g peak. The colored circles at different areas of a), b) and (c) correspond to 

the Raman spectrum in a). d) AFM topography and the corresponding line scan for thin 

h-BN film for 1 min growth. 
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samples went under the same CVD process, consisting low pressure (10 Torr) and thermal 

treatment (1100oC). The smoothness is depicted by the roughness histograms fitted by Gaussian 

distributions with roughness of 1.37 nm for the h-BN modified SiO2/Si surface and 8.59 nm for 

the SiO2/Si surface (~6-fold increase) as shown in Figure 3.8b. Furthermore, it is noted that 

wrinkle 

like formation could not be found in our sample.  In addition, because of its high energy surface 

optical phonon modes, the h-BN film reduces electronic scattering from electron–phonon 

interactions, which makes it an ideal substrate for thin 2D nanomaterials in electronic, and 

photonic applications3.  

Selective area electron diffraction (SAED) is employed to obtain the h-BN film’s crystalline 

structure (as shown in Figure 3.9a). The six-fold symmetry is clearly found, indicating crystalline 

nature, and the hexagonal structure characteristic of the grown film. Due to lip-lip interaction 

between neighboring hBN layers33, the h-BN layers are stacking in A-A structure. In addition, X-

 

Figure 3.8 a) AFM measurement of surface of SiO2/Si before and after h-BN growth and 

(b) surface roughness histogram of the height distribution measured via AFM for SiO2/Si 

(blue diamonds) and h-BN (black circles) with Gaussian fit to the distribution (red solid 

lines). 
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ray diffraction (XRD) of h-BN film on SiO2/Si substrate is displayed in Figure 3.9b, which 

clearly indicates the majority of crystal orientation are in the direction of (002) centered at 

224o34. According to Bragg’s law, the estimated interlayer spacing (2dsin (=n is 0.37 nm 

for h-BN, which is closed to other studies35,36.  

 

 Optical band gap analysis of the h-BN film 

A large-area h-BN film was synthesized directly onto a quartz slide (2 cm x 1.5 cm area) via 

the same CVD process as performed for SiO2/Si substrates (Figure 3.10a). The corresponding 

Raman peak of the grown h-BN is centered at ~1371 cm-1, indicating the multi-layer structure as 

shown in Figure 3.10b. Furthermore, the UV-visible absorption spectrum of the h-BN/quartz film 

 

Figure 3.9 a) SAED of h-BN film transferred onto TEM grids. b) XRD analysis of h-BN 

film on SiO2/Si surfaces.   

a) b)
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was obtained in order to evaluate the h-BN’s optical energy gap based on its optically induced 

band transition. Despite being debated, our grown h-BN film is assumed to have indirect bandgap. 

Hence, the following Tauc’s equation was used to determine the optical band gap Eg
37,  

𝜶𝒉𝝂 = 𝑨(𝐡𝛎 − 𝐄𝒈)
 
  Equation 3.6 

where α is the optical absorbance obtained in 200 nm to 350 nm range, hν is the energy of incident 

photon, A is the proportionality constant and Eg is the optical energy band gap. The quartz 

background was subtracted using a blank quartz as the h-BN film is directly on the quartz surface. 

 

Figure 3.10 a) h-BN film grown on quartz substrate (2 cm x 1.5 cm area). b) Raman 

spectrum of the corresponding h-BN films on quartz substrate. c) UV-vis absorbance 

spectra (room temperature). d) Tauc plot corresponds to the optical band gap of 5.51 

eV. 
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Figure 3.10c shows the absorption spectrum of h-BN film on quartz substrate. On the basis of 

Tauc’s formulation in equation 3.4, the linear relationship of (αhν)2 and hν should be a straight 

line at the absorption range, and the intersection point with the hν-axis is the optical energy band 

gap, Eg as shown in Figure 3.10d. The estimated optical band gap is 5.51 eV, matching with 

previous report26. The theoretical calculations predict the energy band gap for single layer h-BN 

film to be 6 eV38,39 because the equivalent bands do not cross each other. Furthermore, direct 

bandgap of h-BN crystal was reported with the band energy of ~5.9 eV40–43. The low optical band 

gap energy could be explained due to defects44–46 causing by oxygen impurities in our grown h-

BN film (previously discussed in XPS data).  

 Structural characterization of the MoS2 grown on h-BN film 

Recent reports indicate dramatic improvement in optical and electronic properties of 

TMD47,48 layers stacked on h-BN dielectrics49,50. A substantial amount of previous work reports on 

mechanical exfoliation of at least one of the TMDs or h-BN materials to form both the lateral and 

vertical heterostructures49,51,52. In order to leverage the potential of our direct grown h-BN film, 

heterostructured films with MoS2 is fabricated and characterized. The right inset of Figure 3.11a 

shows the optical image of synthesized MoS2 surface.  

Raman spectroscopy is a commanding technique to determine the presence of MoS2 and its 

thickness through the measurement of E1
2g and A1g peak positions and their frequency difference53. 

In Figure 3.11a, E1
2g and A1g peaks of MoS2 grown on h-BN are centered at ∼375.6 and ∼401.5 

cm-1, respectively. The E1
2g mode represents the in-plane vibration (S atoms in opposite direction 
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to the Mo atom), while the A1g mode is related to the out-of-plane vibration (S atoms in opposite 

directions) (left inset of Figure 3.11a)54. The corresponding Raman mapping of E1
2g and A1g 

peaks indicates the MoS2 formed over the entire surface of h-BN/SiO2/Si substrate as shown in 

Figure 3.11c-d. The difference between E1
2g and A1g peaks are ~ 26 cm-1, implying multilayer 

structure55. Furthermore, Figure 3.11b shows that the intensity of the h-BN peak (~1368 cm-1) 

corresponds well with the MoS2 peak intensities (i.e. the relative intensity of h-BN [E2g] peak to 

 

Figure 3.11 MoS2:h-BN heterostructure: a) the Raman spectrum corresponds to E1
2g 

and A1g peaks the Raman E2g phonon mode of underneath h-BN. Inset: (left) Raman 

vibrational modes for MoS2 in-plane E1
2g and out-plane A1g modes, (right) Optical 

image of MoS2:h-BN heterostructure. c-d) The Raman intensity mapping for (b) MoS2 

(E’2g), (c) MoS2 (A1g) 
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MoS2 [A1g] peak or [E1
2g ] peak remains constant through-out the Raman scanning area). Since the 

peak intensity is sensitive to the distance from the focal plane of the laser, this implies that the 

general distance between h-BN and the MoS2 layers is consistent and thus governed by van der 

Waals interaction. Furthermore, the h-BN peak positions do not change after synthesis, which 

implies that the layers are expected to be electronically isolated. 

The chemical composition of MoS2 on h-BN was confirmed via XPS. Figure 3.12a shows 

the Mo 3d peaks at 229 eV and 232 eV corresponds to 3d5/2 and 3d3/2, respectively, whereas the S 

2s peaks appears at 226 eV. The S 2p3/2 and S 2p1/2 peaks appear at 161.5 and 163 eV, respectively 

as displayed in Figure 3.12b. These are consistent with the peak positions from literature56. There 

is no evidence of bonding between h-BN and MoS2 which further confirm electronic isolation 

between two layers. This is also attributed to the thermal stability of h-BN during the growth 

process.  

 

Figure 3.12 XPS analysis of MoS2:h-BN heterostructure: a) Mo 3d and b) S 2p. 
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 Electrical analysis of the MoS2 grown on h-BN film 

The photoluminescence (PL) of direct growth MoS2 on h-BN and SiO2 samples were 

investigated by using 532 nm laser excitation. As bulk MoS2 thinned to monolayer MoS2, the 

indirect band gap increases, while the direct excitonic band structure at K point does not alter. 

Hence, the direct transition becomes more favorable, leading to a stronger photoluminescence 

signal in monolayer and few layer MoS2, than in bulk MoS2
57. The PL spectrum comprises of the 

A peak, corresponding to neutral exciton emission from the direct transition at the K point and the 

B peak, corresponding to  the exciton emission from another direct transition between the 

conduction and valence band57. The peaks were fit with Lorentzian curve. Figure 3.13a-b shows 

two pronounced PL peaks located at 1.85 eV (A) and 2.01 eV (B), which are in good agreement 

with the previous report51 for both MoS2 on SiO2/Si substrate and that on h-BN/SiO2/Si substrate.  

The influence of h-BN on the electrical property of MoS2 was characterized through current-

voltage (I-V) measurements of MoS2/h-BN sample as shown in the Figure 3.13b. The 

conductivity can be expressed as 𝜎 = 𝑞𝜇𝑝𝑝 + 𝑞𝜇𝑛𝑛, where q is the elementary charge, 𝜇𝑝, 𝜇𝑛 are 

hole and electron mobilities, and p, n are hole and electron concentrations. Since, these MoS2 is n-

type due to the pinning of the conduction band close to the Fermi level of metal contacts, this 

equation becomes: 𝜎 = 𝑞𝜇𝑛𝑛. Furthermore, MoS2 on both h-BN sample and SiO2 were grown in 

the same CVD tube (i.e. same process conditions) and the growth mechanism of MoS2 film is 

similar to physical deposition (surface independent process), the thickness of MoS2 on both sample 

are assumed to be similar. Furthermore, when the MoS2 layers are placed on SiO2 surfaces, these 

films are unintentionally negatively doped due to high level of trapped donors58,59. Hence, the 

electron concentration (n) in MoS2/SiO2 heterostructure is expected to be higher than on h-BN. On 

the other hand, placing MoS2 layer on h-BN surfaces, provide an electronically clean platform with 
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limited doping as h-BN lacks trap charges. However, our results show that the current (I) of 

MoS2/h-BN are 5 times higher than MoS2/SiO2. Since the electron density on h-BN is expected to 

decrease, the increase in total conductivity of MoS2/h-BN implies an enhanced electron mobility 

(𝜇𝑛), attributed to the smooth h-BN substrate and reduced charged impurity scattering. This 

conclusively indicates that h-BN enhances the carrier/phonon transport in the interfaced MoS2, 

and also potentially in graphene as shown in previous work3.   

  

 

Figure 3.13 a) PL spectrum of the direct grown MoS2 on SiO2 sample at room 

temperature. b) PL spectrum of the direct grown MoS2 on h-BN sample at room 

temperature. b) I-V characteristic of MoS2/h-BN vs. MoS2/SiO2 samples.  
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 Conclusion 

In conclusion, this chapter demonstrate a facile, and robust method to grow uniform, large 

scale, controllable thickness of h-BN films on SiO2 and quartz substrates. Such manufacturability 

will benefit several electronic, photonic, composite, and mechanical applications. This chapter also 

provide the details of the growth mechanism, where the oxygen on these surfaces binds with boron 

to produce nucleation sites for oxide-assisted growth of large-area and continuous films of h-BN. 

The nucleation density and domain sizes are highly dependent on the surface morphology and 

oxygen content. In addition, due to the increased surface oxygen on the SiO2/Si and the strong 

binding between B and O, the edge-attachment energy barrier is reduced. Furthermore, the large-

area, van der Waals bound, and electronically isolated MoS2 heterostructures with h-BN were also 

grown. The grown h-BN has consistently exhibited its use for enhancing carrier mobility for 

electronic 2D nanomaterials by bringing electronic-isolation and providing ultra-smoothness 

platform. The results from this work provide avenue for large-area, scalable, directly-grown, 

contamination free, transfer/unloading free and heterostructure-ready h-BN, which is vital for 

high-performance 2D nanoelectronics, optoelectronics and nanothermionics, currently limited by 

physically exfoliated h-BN flakes or transferred h-BN. Furthermore, the atomically-precise 

placement achieved here can be extended to produce complex sandwiched and lateral architectures 

for ultrathin integrated 2D-circuitries. 
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Chapter 4 -  Few layer graphene interfacing with reversible 

mechanical dipole-modulating molecules: A graphene interface-

molecular machine 

 Abstract 

Molecular dipole-moment plays a significant role in governing important phenomena like 

molecular interactions, molecular-configuration, and charge-transfer, which are important in 

several electronic, electrochemical and optoelectronic systems. This chapter demonstrates the 

effect of the change in the dipole moment of a tethered molecule on the carrier properties of 

(functionalized) trilayer graphene – a stack of three layers of single-atom-thick sheets of sp2 

hybridized carbon atoms. It is shown that due to the high carrier-confinement and large quantum 

capacitance, the trans to cis isomerisation of ‘covalently-attached’ azobenzene molecule with a 

change in dipole moment of 3D, leads to the generation of an effective gating voltage. Resultantly, 

6 unit of holes are produced per azobenzene molecules (hole density increases by 2.44 x 1012 

holes/cm2). Based on the Raman and XPS data, a model for outer-layer, azobenzene-functionalized 

trilayer-graphene with current modulation in the inner sp2 matrix is outlined. Here, 0.097 V is 

applied by the isomerisation of the functionalized azobenzene. Furthermore the measured large 

quantum-capacitance of 6.3 F/cm2 justifies the large Dirac point in the heavily doped system. 

The mechanism defining the effect of dipole-modulation of covalently-tethered molecules on 

graphene will enable future sensors and molecular-machine interfaces with graphene.  
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 Introduction 

Isomerizable molecules produce precise dipolar-modulation and nanoscale mechanics1–8, 

which can be employed to build molecular-valves2,9, molecular hydro-switches8, molecular-cargo-

lifting10, and molecular-shuttles4,11–13. Similarly, several biosystems leverage molecular mechanics 

and dipolar behavior. For example, flagella strands (2 – 100 nm) on the outer cell-wall of bacteria 

rotate to propel bacteria in solutions. Amongst mechanically actuating molecules, the photo-

switchable (photo-isomerizable) molecules are interesting since these systems can be switched 

optically. The mechanics of these molecules are characterized by modulation of dipole-moment, 

response at high frequencies and absence of heat-production. An extensively studied photo-

switchable molecule is azobenzene, which photo-isomerizes between trans and cis states, where 

the two configurations assume different dipole moments (trans = 0D; cis = 3D). There are several 

examples of electron-tunneling-modulation through junctions with azobenzene5–7,14; however, 

studies on its “covalent interfacing” to apply dipole-induced potential to change the carrier 

properties of the interfaced substrate are limited. In 2011, Kim et al12, showed that azobenzene 

molecules attached vertically on graphene via  interfacing between pyrene and graphene can 

induce a doping. However, noncovalent anchoring strategies ( interfacing, adsorption etc) are 

less robust at certain conditions required for cleaning graphenic surfaces such as annealing at high 

temperatures or joule heating under high vacuum.  

In this contribution, top and bottom layers of trilayer graphene (which are functionalized) 

can be leveraged as a platform to covalently bind azobenzene molecules at the top sp3 regime with 

epoxy, COOH-, and –OH groups. Futhermore, the functionalization process, 

structural/optoelectronic characterization, and conductivity modulation model are further 

dicussed. In this stable, covalently-functionalized azobenzene-trilayer-graphene (ATG) device, the 
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electric-field (and its polarity) from the molecular dipole-moment of azobenzene, their 

configuration and orientation (normal-component) as well as proximity with respect to graphene 

influences graphene’s doping-density (and/or carrier-polarity). Hence, the devices exhibit robust 

and reversible carrier-doping via configuration change of azobenzene upon programmed UV/blue 

light exposure (top right in set of Figure 4.1).  

 

 Experimental Section 

In this part, a typical ATG device is comprised of three main components as shown in 

Figure 4.2: (1) Silica substrate (300 nm SiO2/ n
++ Si), (2) trilayer graphene platform, and (3) 

covalent binding azo-benzene molecule. The preparation of device, synthesizing of reduce 

 

Figure 4.1 Representative model showing azobenzene molecules covalently bonded on the 

sp3 regime of functionalized graphene. The azobenzene-group changes its configuration 

on graphene (trilayer) when exposed to UV (cis) and blue light (trans). This mechanical 

motion of azobenzene modulates the density of holes in ATG. (Bottom-right) The optical 

image of ATG device between the gold electrodes 20 µm apart. The Raman spectrum of 

the ATG sheet shows the D and G peak representing the graphenic backbone. Since 

graphene is functionalized, the Raman spectrum shows a D peak at 1350 cm-1. No 

appreciable 2D peak was observed.  
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graphene oxide (RGO), and chemical functionalization route are described in the following 

sections: 

 

 Graphene oxide (GO) preparation 

5 grams of Mesh 7 - graphite flakes were mixed with 33 ml of 68% nitric acid + 200 ml 

of 96% sulfuric acid and stirred continuously for 40 minutes in an ice bath. 30 grams of 

potassium permanganate (KMnO4) was then added into the solution, while the temperature was 

slowly increased to 40°C, and kept at 400C for 30 minutes. Subsequently, the excess potassium 

permanganate was removed by treatment with 10% hydrogen peroxide (H2O2). Finally, the GO 

sheets were obtained by centrifuging this solution at 15,000 rpm for 30 minutes followed by 

repeated washing with DI water. The sample was then dialyzed (MWCO 2000D) for 24 hours 

and the subsequently stored as a suspension in DI water at room temperature.  

 The ATG device fabrication 

The device construct consists of a 300 nm silica dielectric layer on heavily doped n-type 

silicon back-gate with ATG deposited between two gold electrodes 20 µm apart. Furthermore, a 

monolayer (3- Amino-propyl-triethoxy-silane (APTES) (Acros Organics) is used as a linker 

 

Figure 4.2 ATG device’s chemical construct  
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between silica (silane chemistry) and the bottom layer of ATG (via amide bond). Briefly, to 

fabricate the device, the silica-substrate with gold electrodes is cleaned with water, acetone, 

ethanol, and isopropanol, dried and exposed to oxygen plasma for 5 min (700 mTorrs, 100 W). 

Subsequently, the substrate is submerged in 0.1 % APTES in ethanol for 10 min to introduce 

positively-charged amine groups on the silica surface. The chip is washed with 100% ethanol 

solution, dried and baked in the oven at 120 0C for 5 min to strengthen the bond between silane 

and silica. To deposit the trilayer graphene (TLG) sheets across the gold electrodes, the chip is 

submerged in the GO solution for 15 min. This covalently binds GO to the substrate via amide 

bonds. Finally, the 4-aminoazobenzene molecule is tethered to the GO sheet via amide linkage by 

incubating the chip in 4-aminoazobenzene solution (1% aqueous) in the presence of 2-(1H-7-

Azabenzotriazol-1-yl)--1,1,3,3-tetramethyluronium hexafluorophosphate Methanaminium 

(HATU) reagent15,16 for 12 hours.  

Here, the carboxylic and hydroxyl groups on the GO’s exposed surface and the amine 

group on the 4-aminoazobenzene form amide bonds in the presence of HATU catalyst (see section 

2.3.1.2.A)15,17,18.  Subsequently the unreacted oxy-groups are reduced via hydrazine treatment (see 

section 2.3.1.2.B) to produce ATG sheets spanning between electrodes. Finally, the device is 

washed thoroughly with copious amount of water, acetone and isopropanol to remove any residual 

hydrazine or adsorbed azobenzene. For subsequent calculation and analysis, the optimized 

orientation of the azobenzene molecule with respect to graphene was obtained from the 

ChemSketch program’s molecular mechanics algorithm (Figure 4.1 and Figure 4.2). 

 Amino azo benzene attachment 

The 1% amino azo benzene solution was prepared by dissolving 0.2 g 4-amino azobenzen 

hydro chloride (TCI America, item number A0771) in 20 mL. Subsequently, the solution was 
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added with 5 mg Hatu (Novabiochem®, item number 8510130025) as a catalyst for the amide 

formation between the azo molecules and carboxylic group of chemical modified grapheme oxide.  

 The reduction of GO to RGO via hydrazine treatment 

The GO samples were treated with hydrazine vapors in a closed chamber. In this chamber, 

liquid hydrazine is heated at a temperature of ~75oC. This results in the formation of vapors which 

reduces the GO sheets into RGO immobilized on the silica surface. 

 Instrumentations for chemical, physical and electrical characterization 

 Raman spectroscopy system 

The Raman measurements were conducted using an Ocean Optics QE65000 spectrometer 

(50 micron slit) connected to an optical microscope (Olympus BX51) via a collimator. A 532 nm 

green laser with a beam diameter of 30 microns through a 50X objective was used as an excitation 

source at 50 mW. The data acquisition time for each scan was kept at 100 second. 

 X-ray photoelectron spectroscopy (XPS) system 

XPS data were recorded with a Perkin–Elmer PHI 5400 electron spectrometer using 

acrochromatic Al Kα radiation (1486.6 eV). Analysis was carried out under a vacuum less than 5 

× 10−9 Torr. The XPS binding energies were measured with a precision of 0.025 eV. The analyzer 

pass energy was set to 17.9 eV, the contact time was 50 ms, and the area scanned was 4 mm2.  The 

spectrometer was calibrated by setting the binding energies of Au 4f7/2 and Cu 2p3/2 to 84.0 and 

932.7 eV, respectively.  Spectra were referenced to C1s peak at 284.8 eV. 

 Cryostat electrical system 

The setup is similar to that described in chapter 2, and chapter 3 (Experimental section). 

The electrical measurements of ATG samples were carried out in Janis ST100 cryogenic probe 
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station. Edwards E2M5 rotary vane pump, and Edward turbo molecular pump were connected in 

series to chamber to provide high vacuum (<5 × 10−6 Torr). Lakeshore temperature controller 

(model 336) provided the control of the temperature of sample. The Keithley 2612 dual-channel 

system source meter connected to a computer via a GPIB/IEEE-488 interface card. Gating was 

performed by keeping the source-drain voltage constant and measuring the change in conductivity 

with the gate voltage, which was applied to the heavy-doped silicon backgate. 

 Results and Discussion 

 Structural and chemical characterization of ATG 

A typical device (Figure 4.1) consists of ~ 35 x 20 µm2 ATG between gold electrodes. The 

Raman spectrum of a typical ATG sheet shows the D and the G peak at 1350 and 1595 cm-1, 

respectively. This indicates the presence of the graphenic backbone in ATG (as shown in figure 

Figure 4.1). No appreciable peak for 2D band was observed, as expected for functionalized 

graphene19. AFM analysis of the ATG devices gave a total thickness of 3.6 nm (as shown Figure 

4.3a). Considering the height of the azobenzene-group (0.31 nm), the remaining thickness 

corresponds to 3 graphene layers with two outer functionalized sheets and 1 inner graphene sheet.  

In the XPS analysis, the bulk density of azobenzene molecules is analyzed from carbon and 

nitrogen peaks. Furthermore, the carbon peaks are contributed approximately from the carbon 

atoms of tri layer graphene sheet, azobenzene molecules, and silane molecules. In addition, the 

nitrogen peaks are deliberated comparably from the nitrogen atoms of azobenzene molecules and 

silane molecules. From the deconvolution of N 1s, for the ATG, the XPS analysis reveals the N 1s 

peak for the amide bond (O=C-N) and the -(N=N)- azo bond of azobenzene molecules and silane 

(containing only amide bond) appearing around 401.5 eV and 400.5 eV respectively20; while for 
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the trilayer graphene (TLG, without azobenzene) the peak for the amide linkage with silica appears 

at around 401.5 eV as shown in Figure 4.3b-c21.  

 

 

Figure 4.3 (a) AFM image (1.7 µm X 1 µm) of a typical ATG sheet shows a height of 3.6 

nm high. Subtracting the height of the azobenezene and oxy groups, the underlying 

graphene is 3 sheets (including the two oxidized sheets). (b) The XPS spectrum of the 

ATG sheet shows the presence of the azo-group. The peak at 400.5 eV corresponds -(C-

N)- and (N=N) in azobenzene. (c) The XPS (N 1s) of the TLG sheet shows the presence of 

the peak for the amide linkage with silica appears at around 401.5 eV. (d) The XPS (the 

C 1s and N 1s) shows the position and the intensity of the nitrogen peak and carbon 

peak of ATG. The atomic ratio of these two peaks is found to be 1:16 (N: C) 
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For every azobenzene molecule, there are 2 nitrogen atoms in -(N=N)- bond and 1 nitrogen 

atom in -(C-N)- bond. Moreover, there are 12 carbon atoms from the two benzene rings. 

Meanwhile, for every silane molecule, there is 1 nitrogen atom in -(C-N)- bond. Also after 

silanation, (APTES) has 7 carbons atom. Finally, in every nm2 of mono layer of graphene sheet, 

there are 36 carbon atoms (108 carbon atoms for tri layers). 

In detail, for 1 nm2 of area, there are: 

a = # N atoms in N=N azobenzene molecules per nm2, 

(6a) = # C atoms in azobenzene molecules per nm2, 

b = # N atoms in C-N azobenzene molecules per nm2 ( b =
a

2
), 

c = # N atoms in C-N silane molecules per nm2,  

(7c) = # C atoms in silane molecules per nm2, 

108 = # C atoms in trilayer graphene per nm2,  

Ratio of # N atoms: # C atoms = 1:16 (calculated from XPS data as shown Figure 4.3d), 

Ratio of # N atoms (azobenzene molecule): # N atoms (silane attachment) = 1:4 (calculated from 

XPS data). 

Therefore, 

# N

# C
=
1

16
=

a + b + c

108 + 6a + 7c
 

# N

# C
=
1

16
=

a +
a
2 + c

108 + 6a + 7c
 

# 𝐍

#  
=

 

 𝟔
=

 𝐚

 
+𝐜

  𝟖+𝟔𝐚+𝟕𝐜
 Equation 4.1 

In addition, 

# N in (azo molecule)

# N in (silane attachment)
=
4

1
=
a + b

c
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# 𝐍 𝐢𝐧 (𝐚𝐳𝐨 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞)

# 𝐍 𝐢𝐧 (𝐬𝐢𝐥𝐚𝐧𝐞 𝐚𝐭𝐭𝐚𝐜𝐡𝐦𝐞𝐧𝐭)
=
𝟒

 
=

 

 
𝐚

𝐜
   Equation 4.2 

From system of equation 4.1 and equation 4.2, number of nitrogen atoms (a = 5.0) corresponding 

to (N=N) bond is solved. For one azobenzene molecule there are two nitrogen atoms of (N=N) 

bond. Therefore, number of azobenzene molecules is ~2.5 molecules /nm2. Furthermore, the area 

of the azobenezene molecule is 0.27 nm2 (or 1/0.27= 3.7 per nm2 of packed density). Hence 

fractional coverage of azobenezene molecule (f) is 0.625 (ratio of azobenzene packed density over 

azobenzene experimental density = 2.5/3.7 = 0.625) 

 Opto-electronic characterization 

After confirming the anchoring of azobenzene on TLG, a study the ATG device’s opto-

electronic behavior under UV/Blue light exposure was conducted. As discussed earlier, graphene 

surface is ultrasensitive to the interfacial events and two primary explanations are discussed in the 

literature for this phenomenon23. (A) Graphene possesses a high quantum capacitance (for 

monolayer: Cq = (4eπ1 2⁄ hϑF⁄ )(nl + ng)
1 2⁄

, where e is the electron charge, h is Planck constant, 

ϑF is the Fermi velocity of the Dirac electron, and ng and nl are the carrier concentrations from the 

gate potential and the intrinsic carrier concentration of graphene, respectively17; for bilayer and 

trilayer: Cq = e
2gvgs 2πℏ

2ϑF
2⁄ , if Fermi energy ( F) is higher than the interlayer coupling (1); 

for trilayer: Cq = (e
2gvgs 4πℏ

2ϑF
2⁄ )(4εF + √2γ1), if F < 1. The quantum-coupling of the 

interfacial molecules with graphene enhances the effective electric-field due to the dipole moment 

of the molecules24. The effective gating potential (VG), therefore, translates from a change in 

dipole voltage (Vd) of the molecule to ∆VG = f(Cq Ctot⁄ )∆V d, where f is the fraction of sp2 area 

which is gated by the azobenzene molecules. This was calculated using the equation,f =
2πr2

√3a2
=

ρbulkAazo = 2.5 × 0.27 = 0.675, where the bulk density of azobenzene bulk = 2.5 azo/nm2 
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(calculated from XPS section) and the area of one azobenzene molecule (Aazo = 0.27 nm2). Also, 

Ctot = (Cq
 1 + Cg

 1)
 1

 and Cg is the gate capacitance. (B) Confined Doping: The change in the 

carrier concentration of graphene due to the change in the dipole-moment of the molecule is 

amplified as a result of the confinement of the doped carriers within its ultrathin structure. The 

consortium of these properties makes graphene an ideal candidate for detecting interfacial 

molecular events.  

Before the optoelectronic measurements, care was taken to remove adsorbed/non-bonded 

molecules (including any residual azobenzene, which can bind on graphene25,26. All the ATG 

devices were electrically annealed (Joule heating = IVt; 3 V for 5 min). Since high vacuum is not 

effective to avoid molecular desorption/adsorption27, the device’s optoelectronic response was 

characterized under helium-pressurized (19 psia) probe-station with quartz optical-windows (He 

adsorption on graphene surface is negligible28). The gold electrodes spanning ATG (source-drain) 

and silicon (back-gate) were connected to a dual-source meter (Keithley 2612). Each device was 

again electrically annealed (3 V for 30 min) under high He pressure to remove residual adsorbed 

impurities if any. The quartz-optical-ports were connected with UV (365 nm, power = 2.3 

mW/cm2) and Blue (420 nm, power = 0.6 mW/cm2) lamps to study the effect of UV and blue light 

exposures and dark (Figure 4.1). The UV light isomerizes the azobenzene into its cis form 

(benzene rings closer to one-another and Dipole moment = 3D), while blue light (or dark at room 

temperature) brings the azobenzene back to its trans form (benzene rings are opposite one-another 

and Dipole moment = 0D). 
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Figure 4.4 a) The figure shows the response of the ATG device (under 19 psia pure He 

environment at room temperature) exposed to UV, Blue and Dark for 90 sec each at 100 

mV source-drain voltage. b) The same response (as (a)) is measured at 10 mV source-

drain voltage. The current axis has been rescaled to better represent the change. Also, the 

azobenzene’s trans configuration can be achieved via blue light exposure and 

temperature. Since, the rate of decrease of conductivity was not significantly more than 

that in dark environment; the room temperature is high enough to favor the trans state 

in the absence of UV. Further, it is known that the azobenzene could readily fluctuate 

between cis and trans configuration22, leading to fluctuation in current as observed in 

electrical measurements. c) The response in conductivity of the functionalized TLG 

(without azobenzene attachment) on 300 nm silica substrate exposed to UV and Dark for 

100 sec each at 100 mV source-drain voltage is shown as control sample.  
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The optoelectrical measurements (Figure 4.4a-b) show that the conductivity of the ATG 

device increases with exposure to UV, and reverts back to the original value with exposure to blue 

light (420 nm) or in dark (UV/Blue off), where the exposure time was 90 seconds each. The change 

in current for 100 mV and 10 mV source-drain voltage were 0.5 and 5 nA, which are directly 

scaled with the voltage. This change in conductivity is attributed to doping of charge-carriers in 

graphene due to a change in the dipole-moment of the azobenzene. Here, the increase in dipole-

potential (due to 3D change in dipole moment) leads to hole-doping in the cis configuration on the 

p-type (shown later) device. Furthermore, the direct scaling of current-modulation with voltage 

implies that the change in conductivity is not caused by desorption, the rate of which must increase 

with voltage due to Joule heating induced desorption. A reduced-graphene-oxide device (without 

azobenzene) did not show any discernible response to UV/Blue exposure under similar conditions 

(Figure 4.4c). The noise observed in the current measurements are expected to be a result of 

fluctuation in the configuration of the azobenzene, as has been discussed in several studies22.  

The carrier mobility and polarity in the ATG device were measured from back-gating 

studies using silicon as the back-gate and 300 nm silicon-oxide as the gate-oxide (Figure 4.5a). 

The negative differential of the IDS with VG indicates that holes are the majority carriers (p-type 

device). In figure Figure 4.5b, the (average) slope of -2.22 X 10-2 nA/V implies a hole mobility 

of 0.195 cm2/V/s calculated via: 

μ =
dSiO2 ∙l

(W̅̅̅)∙ε∙εo∙VD
∙ (

∆ID

∆VG
) Equation 4.3 

Here, μ is the hole mobility, dSiO2 is the thickness of silicon wafer, l is the channel length (20 mm), 

W̅ is the average channel width (40 m), ε is the relative static permittivity of SiO2 (~4), εo is the 
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permittivity of free space, VD is the source-drain voltage, and (
∆ID

∆VG
)  is the absolute value of the 

linear slope of the back-gating curve.  

 

Based on the carrier-mobility and hole dominant transport, the change in hole concentration 

due to the configuration change of the azobenzene-molecule was approximated. Here, the gating 

voltage (|VG|) which induces the same change in current as the azobenzene mechanics (0.5 nA) 

is 36 V. This gating voltage provides the change in carrier density via the gate-capacitance 

equation: ∆q =
CSiO2|∆VG|

e⁄ . Here, ∆q is the carrier surface density created due to azobenzene 

isomerization, and e is the elementary charge (1.60 x 10-19 C). This equation provides a value of ~ 

2.44 x 1012 holes/cm2 generated due to the molecular-gating from UV-induced change of the 

azobenzene-molecule’s configuration from trans to cis. With an azobenzene density of 2.5 nm-2, 

 

 

Figure 4.5  a) A schematic of the back gating measurement setup on device consisting of 

an ATG sheet spanning gold electrodes spaced 20 µm apart. The silica substrate, 300 nm, 

acted as a gate oxide, and heavily doped silicon acts as gate electrode. b) The gating study, 

conducted at 10 mV drain voltage, showed that the ATG device is p-type with a hole 

mobility of 0.195 cm2/V/s. The measurement was made for the cis-configuration of 

azobeneze in ATG. 
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this implies that mechanics of ~ 100 azobenzene molecule produces 1 holes. This corresponds to 

3 quanta of hole generated per 100 nm2 of the base ATG. Also, the total carrier concentration at 

zero gate voltage is 1.6 x 1014 cm-2 (nTotal =
𝐿

𝑊

I

μeVDS
). 

To explain the mechanism of isomerization-induced doping in ATG, a simple model was 

developed as followed: chemically exfoliated trilayer graphene comprises of two outer (top and 

bottom) functionalized (sp3) and one middle graphene (sp2) layer. In this system, the top layer is 

assumed to have a homogenous distribution of covalently bonded azobenzene and bottom is 

assumed to have oxy-groups. Therefore, the electronic transport is dominant in the middle 

graphene layer with azobenzenes on the top layer acting as molecular gates. Although, the charge 

mobility is high in sp2 region was observed as a low value, which is attributed to the presence of 

large-density of charge-traps from the functionalized groups in the top and bottom layers.  

The dipole voltage induced  on the middle graphene layer by azobenzene molecules via the 

change in dipole moment of the molecules (from  cis to trans forms) is calculated by Vd = 

[(µ)sin()/(4or
2)][4∑[i2(ξ/rAzo-Graphene)

2 - 1]-3/2 + 3(i-1)∑[3i2/4(ξ/rAzo-Graphene)
2 - 1]-3/2 where µ 

is the change in the dipole moment of azobenzene, i is the index (representing the distance of the 

dipole of the azobenzene and the point of interest), rAzo-Graphene is the distance between a dipole and 

middle-layer graphene, packed-azo
 is the density of azobenzene molecules packed in top layer 

graphene oxide (3.7 azobenzene/nm2), and  is the angle of inclination of the cis-azobenzene with 

respect of graphene (=17.5). The µ is calculated to be 3D (3sin() D = 0.92 D), which yields an 

induced dipole voltage (Vd) of 0.097 V.  

The gating experiment shows that the change in conductivity via azobenzene’s 

isomerization (0.5 nA at 10 mV VDS) is also brought by 36 V of gating potential (as shown in 

Figure 4.6). This implies that the change in the charge carriers for azobenezene-isomerization 



103 

through graphene’s quantum capacitance is the same as that produced by gating: ∆VG =

f(Cq Ctot⁄ )∆Vd, where f is the fraction of sp2 area which is gated by the azobenzene molecules as 

defined above.  This provides a quantum capacitance value of 6.3 F/cm2. Furthermore, since the 

mobility of carriers in TLG is not expected to change with doping,31 our approximation of constant 

mobility with azobenzene-actuation is justified and consistent with earlier results on molecular-

interfacing of few layer graphene with molecular moieties15,28–31. The quantum capacitance of 4.3 

provides a measure of the total carrier concentration (fCQ = (4eπ
1 2⁄ hϑF⁄ ) (nTotal)

1 2⁄ , nTotal = 2.9 

x 1012 cm-2.  

 

 

Figure 4.6 Graphical analysis of VG determination 
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 Conclusion 

In summary, this chapter demonstrated that molecular mechanics (trans to cis configuration) 

of covalently anchored azobenzene (density = 2.5 nm-2) on trilayer graphene (37.5% sp2 coverage) 

can sensitively and reversibly modulate its carrier density (2.44 x 1012 holes/cm2). Here, the change 

of 3D in the molecular dipole-moment produces 0.097 V of dipole voltage, which leads to 

production of 1 quanta of hole per 100 azobenzene molecule. The sensitivity evolves from the high 

quantum capacitance of 6.3 F/cm2. The total carrier density calculated from gating was consistent 

with that from quantum capacitance. We envision that this work will generate interest in applying 

graphene’s sensitivity to molecular actuation and dependence on original orientation to develop 

rational interfaces with molecular-machines (for example, rotaxane) and biomolecules for 

advanced applications in molecular switches, electromechanics and protein-folding. Futuristically, 

graphene nanoribbons devices interfaced with actuable molecules (proteins or molecular 

machines) could exhibit enhanced sensitivity. 
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Chapter 5 - Molybdenum disulfide (MoS2) for metal-nanoparticles 

interfacing: An avenue for the modification electrical, thermal, and 

structural Properties  

 Abstract 

Ultrathin (0.3 – 3 nm) metal dichalcogenides exhibit confinement of carriers, evolution of 

band-structure and photophysical properties with thickness, high on/off rectification (in MoS2, 

WS2 etc) and high thermal absorption. This chapter shows the leveraging of the stable sulfur/nobel-

metal binding for the incorporation of highly-capacitive gold nanoparticles (Au NPs) onto MoS2 

in order to raise the effective gate-voltage by an order of magnitude. Functionalization is achieved 

via both diffusion limited aggregation and instantaneous reaction arresting (using microwaves) 

with selective deposition on crystallographic edges (with 600 displacement). The electrical, 

thermal and Raman studies show a highly capacitive interaction between Au NP and MoS2 flakes 

(CAu-MoS2 = 2.17 F/cm2), a low Schottky barrier (14.52 meV), a reduced carrier-transport thermal-

barrier (253 to 44.18 meV after Au NP functionalization), and increased thermal conductivity 

(from 15 W/mK to 23 W/mK post NP deposition). The process could be employed to attach 

electrodes to heterostructures of graphene and MoS2, where a gold film could be grown to act as 

an electron-tunneling gate-electrode connected to MoS2.  

 Introduction 

Elimination of interfacial influences and evolution of confinement by isolating sheets from 

layered materials has led to the realization of a wide variety of phenomena and extraordinary 

applications. This outcome was first observed in graphene, where due to the emergent electronic 
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structure with massless Dirac fermions, ballistic carrier transport was achieved1. As a 

semiconducting analog of two-dimensional (2D) graphene, MoS2 monolayer is a three-atom-thick 

layered transition-metal dichalcogenide, composed of a stratum of molybdenum atom sandwiched 

between two layers of sulfur atoms in a trigonal prismatic (or antiprismatic) lattice. The relatively 

weak interlayer interaction between the MoS2 sheet allows their monolayer crystals (thickness 0.65 

nm) to be cleaved mechanically and chemically2. Furthermore, the electrical and optical properties 

of MoS2
 changes dramatically with number of layers: bulk MoS2 exhibits an indirect band-gap of 

1.2 eV, while monolayer MoS2 has a direct band-gap of ~1.8 eV3 with enhanced 

photoluminescence4. Single layer MoS2 field effect transistor (FET) exhibits a mobility of 0.5 – 

15 cm2/(Vs) with a high on/off current ratio (103 to 108)5. Recent studies show that MoS2 can be 

applied effectively in sensing6,7, energy harvesting8, and photo-electronic application9.  

To incorporate MoS2 into rational applications, it is imperative to functionalize it with 

chemical moieties, which can enable its interface with other nano- or micro- systems. Nano-

interfacing can provide an avenue for controlling MoS2‘s electrical and thermal properties; while 

metal functionalization can provide contacts for MoS2-graphene heterostructure-devices. Other 

applications that will be impacted include plasmonic devices, catalytic substrates, Raman active 

surfaces, controlled photoluminescence, and selective sensing. Furthermore, anchoring gold 

nanoparticles (Au NP) on heterostructures can enhance photophysical properties for improved 

optoelectronic application.10 This chapter reports the solution-based metal functionalization of few 

layer MoS2, the metal-interfacing mechanism and its influence on the electrical, thermal and 

structural properties of MoS2. 
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 Experimental Section 

Metal nanostructures were incorporated on chemically (liquid-dispersed-phase) and 

physically (solid-phase) exfoliated MoS2 crystals (from SPI supplies). This was achieved by 

reduction of metal salt by chemical, microwave, and thermal routes, and establishing sulfur-metal 

linkage on MoS2.  

 MoS2 incorporation with metal-nanoparticles via chemical route 

 Procedure for mechanical exfoliation MoS2  

Physically exfoliated MoS2 sheets were produced via scotch-tape method5 and transferred 

onto a silica chip (300 nm silica on n-doped silicon substrate) with (or without) pre-deposited 

electrodes (300 nm gold, with 5 or 10 m gap) for electrical studies. The chip was washed with 

copious amount of water and IPA, dried in N2 flow for Furthermore characterization. For 

functionalization of this pre-immobilized MoS2, the MoS2-substrate was immersed in the metal 

ion solution (10 mL, 1 mM), followed by adding NH2OHz (50 wt%, 15 µL) and keeping the 

solution undisturbed for 10 h. The substrate was later removed from the solution and washed 

thoroughly with water and IPA, dried in N2 flow, and kept for structural and electrical 

characterization.  

 Procedure for solution-based exfoliation MoS2  

The liquid phase exfoliation and dispersal of MoS2 (10 mg) was carried out in N-methyl-

pyrrolidinone (NMP, 10 mL in a 20 mL glass container)2 via 2 hr sonication and 10 min 

centrifugation (5000 rpm). Furthermore, a silica chip (300 nm silica on n-doped silicon substrate) 

was immersed in this solution for 2 to 24 h at ambient conditions (Figure 1). The chip was then 

taken out of the solution, washed and dried in N2 flow for further characterization. For MoS2 
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dispersed in NMP, the metal salt (HAuCl4 (10 mL, 1 mM) or AgNO3 (10 mL, 1 mM)) was added 

and stirred for 5 mins. A mild reducing agent, hydroxyl amine (NH2OH, 50 wt%, 15 µL) was then 

added to reduce the metal ions in the solution (10 min). To immobilize the resultant MoS2–metal 

structure, a bare silica chip was introduced into the mixture and kept undisturbed for a set period 

of time.  

 MoS2 incorporation with metal-nanoparticles via microwave route 

Metal NP incorporation onto MoS2 sheets can also be induced by microwave (MW) aided 

instantaneous reduction and incorporation. Here, local dielectric heating from MW exposure 

(1.05 kW, 2450 MHz) is applied on an aqueous solution of metal salt (0.1 mM of HAuCl4, or 

AgNO3) and MoS2 (solvent assisted exfoliation, 500 μL of parent solution in 10 ml) for 2 to 15 

seconds. Furthermore, to deposit the resultant MoS2–metal structure, a bare silica chip was 

submerged into the mixture and kept undisturbed for a set period of time. 

 MoS2 incorporation with metal-nanoparticles via physical deposition (DC 

sputtering) 

A MoS2 (mechanical exfoliated) device was sputtered with Au/Pd (cold sputtering) for 2 

and 4 second (35 mTorr Ar atmosphere, 45 mA current). This control sample is for comparison 

of the interaction between chemical functionalization route and physical deposition route, which 

is shown in section 3.4.3.3) 

 Instrumentations for chemical, physical and electrical characterization 

 Raman spectroscopy system 

The data for Raman spectroscopy was obtained using Horiba spectrometer (iHR550 f/6.4, 

50 micron slit) connected to an optical microscope (Olympus BX51) via a collimator. A 
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thermoelectric cooled Synapse CCD camera (SYN-1024x256- BIDD) (-75oC) used to collect 

Raman signal.  Furthermore, a laser excitation wavelength of 532 nm (power of 20 mW) was used 

with spot size of 1 m. The focal length of Horiba spectrometer is 550 mm, which was connected 

to a collimator via 100 m optical fiber cable. The 100X objective (NA =0.9), the integration time 

of 0.1 s, and 600 l/mm grating were used to examine all MoS2 and Au-MoS2 samples. The SiO2/Si 

substrate (~520 cm-1) was used as a reference to calibrate the Raman instrument.  

 Thermal conductivity measurement set-up 

Raman spectroscopy provides an indirect route to measure thermal conductivity of 

nanomaterials. It is essential to measure the Raman shift as respect to reflected laser power, and 

as respected to sample temperature (as discussed later in the result and discussion section). The 

2400 l/mm grating was used here to provide high spectral resolution. The contact time is 0.5 s to 

increase the intensity of the peak.  

 

 

a) Set up for measurement of reflected laser power on sample. b) Set up for 

measurement of Raman on sample, where Raman spectrometer is replaced the 

laser power meter in set up.  
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The reflected laser power is varied by inserting a 532 nm laser power filter (50%, 90%, 

and 99.5%).  The reflected laser power was measured using laser power meter (as shown in 

above figure a).  Using the current set up or the Raman data (above figure b), the at the minimal 

power (99.5% inserted power filter), the temperature of the sample is varied (25oC, 40oC, and 

55oC), and the Raman signals are measured. In the other hand, at room temperature, the reflected 

power laser (100%, 50%, 10%, and 0.5%), is varied, and the Raman signals are measured.  

Furthermore, this thermal conductivity was setup for the measurement for both bare and gold 

functionalized (via microwave process) trilayer MoS2 supported on 300 nm SiO2 (mechanical 

exfoliation)10.   

 Field emission scanning electron microscope (FESEM) 

The FESEM image was collected using FEI Company Nova NanoSEM 430. The acceleration 

voltage was used as 10-30 kV with ETD detector, and spot size of 3.5.  

 Transmission electron microscope (TEM) 

The TEM image was collected using FEI-CM100 TEM. The acceleration voltage was 100 

kV. 

 Cryostat electrical system 

The setup is similar to that described in the experimental section of pervious chapters. The 

electrical measurements of MoS2 and Au-MoS2 samples were carried out in Janis ST100 cryogenic 

probe station under high vacuum (<5 × 10−6 Torr). Lakeshore temperature controller (model 336) 

provided the control of the temperature of sample. The Keithley 2612 dual-channel system source 

meter connected to a computer via a GPIB/IEEE-488 interface card. The I-V characteristic was 

measured by varying the current, and measured the voltage. Gating was performed by keeping the 



113 

source-drain voltage constant and measuring the change in conductivity with the gate voltage, 

which was applied to the heavy-doped silicon backgate. 

 Results and Discussion 

 The mechanism of Au incorporation into MoS2 via chemical route functionalization 

and the corresponding structural characterization structural characterization  

The formation of these nanostructures commence with creation of metal nuclei via 

nanoscale-crystallization of chemically reduced metal ions. Figure 5.1a is the mechanistic 

representation of this functionalization process, where the hydroxyl amine reduces Au3+ (Ag+) to 

Au0 (Ag0) (HAuCl4 + NH2OH  Au + 4 HCl + NO). The defects and edges on MoS2 contain 

partially-unbound sulfur, which binds with Au or Ag and act as sites for metal nuclei seeding and 

their subsequent growth into bigger nanostructures via Au0 (Ag0) crystal-incorporation. The Au 

(or Ag) radicals can also incorporate onto the gold nanostructures (GNs) in solution11,12 and may 

later anchor onto MoS2
13–15. Furthermore, oxygen can dissociate the Mo-S-Mo bond, resulting in 

increased defects16 with reaction time: 2h (Figure 5.1d), 6h (Figure 5.1f) and 24 h (Figure 

5.1e) of reaction shows increase in the functionalization density with time.  

Here, the rate of nucleation, J (i.e. the number of nuclei formed per unit time per unit 

volume), can be expressed in the form of the Arrhenius reaction velocity equation17 (J =

A exp [
(∆Edes ∆Ed ∆Gcrit)

𝑘𝑇
]), where ∆Gcrit is the critical excess free energy (nucleation); ∆Edes is the 

atomic activation energy of desorption, ∆Ed is the surface diffusion activation energy, k is the 

Boltzmann constant, and T is the temperature17. These nuclei grow to form highly faceted seed 

particles. It is known that heterogeneous nucleation (on a suitable surface (like MoS2)) occurs with 

lesser change in free energy compared to the spontaneous nucleation process in super-saturated 
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homogeneous systems17. The strong affinity of metal nuclei towards valency-deficient sulfur on 

MoS2 surface leads to its anchoring on MoS2, which acts as the heterogeneous substrate. 

Furthermore, these seed-particles moving randomly in solution stick onto MoS2 with specific 

lattice facets depending on their chemical potential (). Since the sulfur atoms at the edge of the 

sheets as well as those on surface defects are valency deficient, the gold nuclei get preferentially 

incorporated during the initial phase of the reaction (as shown in Figure 5.2). The phenomenon 

is more pronounced in microwave based instantaneous gold nucleation and incorporation process, 

which will be discussed in next section (Figure 5.4a). 

 

Chemically exfoliated2, substrate-immobilized MoS2 sheet functionalized with Au NP 

(Figure 5.1e, FESEM) show star-shaped GNs (SGNs) and dendritic structures with 

anisotropically rough arms embedded on the MoS2 sheet (see Figure 5.1g). The dendritic 

 
Figure 5.1 a) Schematic depicting the anchoring of gold nanoparticles on MoS2 via 

chemical reduction strategy. b) TEM image of MoS2 before functionalization. c) FESEM 

image of Au-MoS2 NP hybrid. d-f) Time-dependent images of the hybrid at different 

stages of functionalization.  d and e) FESEM images of the hybrid after 2 h and 24 h of 

reaction respectively. f) TEM image after 6 h of reaction. g and h) FESEM and TEM 

image of the nanoparticle formed on MoS2 sheet. 
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structure formation involves the surface catalyzed seeded growth of nanoparticles on MoS2, which 

is based on diffusion limited growth11. The total rate of formation of GNs (rF) is governed by the 

rates of diffusion of Au3+ onto the MoS2 surface (rD) and the rate of Au incorporation into a 

growing dendritic structure (rG); rF
-1 = rD

-1 + rG
-1. Here, rG >> rD, since metal incorporation is 

catalytic. Therefore, the dendritic structure is governed by rate of diffusion (rD), which has a strong 

dependence on temperature. Consistently, our reaction at the room temperature exhibited the 

SGNs, at 4 0C the process yielded comparatively smaller particles with lower density and at higher 

temperature of 60 0C a larger density of irregular fractal structures of NPs was produced (as shown 

in Figure 5.2b-d).  

At lower temperature, the resistance for diffusion (kD
-1  T-1.5) and particle incorporation 

(kG
-1  exp(EA/(RT))) increases leading to a smaller particle size and lower density. At room 

temperature, kD (< kG) is believed to increase more than kG and will result in the formation of 

dendritic structures. Moreover, due to the difference in the surface chemical potential () induced 

by small deformations, anisotropic growth occurs. As suggested by Mullins-Sekereka 

instability18,19, irregular surfaces with high  grow more preferentially than blunt surfaces with 

low . Furthermore, high mass-transfer rates and the chemical potentials at higher temperatures 

result in a nanoparticle-cluster formation on MoS2 surfaces. Since this is diffusion limited process 

conducted over a large time-scale, the selectivity with respect to edge is low. Micrographs of Ag 

NPs functionalization can be found in Figure 5.2e.  
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 It is important to mention that MoS2 acts as a stabilizing agent for the GNs, since in the 

absence of MoS2 the NPs settle down to the container floor. As shown in Figure 5.3, The formed 

composite was analyzed using energy dispersive spectroscopy (EDS), and the elemental maps and 

the EDS spectrum validating the formation of proposed hybrid structure.  

 
Figure 5.2 a) FESEM images of multilayered MoS2 preferentially functionalized at the 

edges during the initial phases of the chemical reduction reaction. b-d) FESEM images of 

Au-MoS2 composite prepared using chemical reduction route done at different 

temperatures, b) 4 oC, c) 25 oC and d) 60 oC. e) FESEM images of Ag-MoS2 composite 

prepared using chemical reduction route. 
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 The mechanism of Au incorporation into MoS2 via microwave route 

functionalization and the corresponding structural characterization  

Metal NP incorporation onto MoS2 sheets can also be induced by microwave (MW) aided 

instantaneous reduction and incorporation (Figure 5.4a). The mechanism of attachment is similar 

to that for chemically reduced Au, where the valency deficient sulfur atoms in the matrix act as 

nucleating and anchoring sites (Figure 5.4b-c) for Au NP hybrids; however, the process of 

nucleation, implantation, stabilization on the MoS2 sheets and nuclei growth is simultaneous and 

expeditious. This is due to high local temperatures, which eliminates diffusion limited growth and 

dendritic structure formation, while ensuring that large density of nanoparticles is embedded onto 

the sheets. Here, microwave induces space-confined heating given by E = fε’(tan δ)P2, where P is 

the microwave power, f is the frequency of the microwave, ε’ is the dielectric constant of the 

 

Figure 5.3 EDS spectrum and elemental maps of Au-MoS2 hybrids produced by chemical 

reduction. The corresponding electron microscope image also can be seen. All scale bars 

are 10 µm. 
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solvent, and δ is the loss factor. In high dielectric solvents such as water the rapid dipolar rotations 

of the polarized water molecules creates local heating and regions of high kinetic energy. This 

reduces the barrier and duration of ion reduction, nucleation, and incorporation, leading to 

formation of NPs on MoS2 (Note: Total time of MW is 2 – 15 s). Here, reduction and nucleation 

are independent, while incorporation process is dependent on the interaction between the metal 

and sulfur, which is higher at the edges even for small duration of MW exposure. It is for this 

 

Figure 5.4 a) Schematic depicting the anchoring of gold nanoparticles on MoS2 via MW 

irradiation. b) and c) large area and higher magnification FESEM image of Au-MoS2 NP 

hybrid. d-f) Time-dependent images of the hybrid at different stages of functionalization.  

d) 2 s, and e) 5 s and f) 10 s of MW irradiation. (g) FESEM images showing the 

preferential edge and/or defect functionalization of gold nanoparticles on turbostatic 

multilayer MoS2. A large number of gold nanoparticles formed in lines indicating the 

presence of edges or defects. Scale bar 30 m. 
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reason that the gold nanoparticle deposition on MoS2 edges is clearly evident (Figure 5.4b and 

Figure 5.4g).  

This was verified further by using a multilayered MoS2, where functionalization occurs 

preferentially on the edges on the multilayer structures, indicated by the formation of NPs in 

straight lines (Figure 5.5) with angular displacement of 60o, evidence of crystallographic 

deposition of metal nanostructures. On turbostatic crystals, the angle can be variable; however, the 

NP deposition on straight lines is still observed (Figure 5.4b). Consistently, the selectivity of 

functionalization on the edges is higher at smaller durations of MW irradiation (2 s) (as shown in 

Figure 5.4d and Figure 5.5), while the number-density and size of the nanoparticles formed is 

higher for longer irradiation times (Figure 5.4d-f). Furthermore, the density of GNs produced on 

physically exfoliated MoS2 (on substrate) was lesser than for solution dispersed MoS2. This is 

 

Figure 5.5 FESEM images of multilayered MoS2 preferentially functionalized at the edges 

during the initial phases of microwave irradiation. 
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attributed to a low degree of surface defects on physically exfoliated MoS2. Furthermore, the lack 

of capping molecule on the anchored gold nanoparticles implying their high catalytic efficiency12.  

The structural characterization is further confirmed through the transmission electron 

microscopy (TEM). Similar to the observed images of FESEM, the selectivity of NPs at the edge 

is favorable due the excessive dangling bond of sulfur.  As shown in Figure 5.6, the TEM images 

further confirms an intimate contact between MoS2 and Au NPs in the hybrid. 

 

 Raman characterization for metal-nanoparticles incorporated MoS2 

The effect of formation of such a hybrid on the lattice of MoS2 was analyzed using Raman 

spectroscopy. The pristine MoS2 and MoS2-gold NP hybrid were analyzed using Raman 

spectroscopy (Figure 5.7a-b), which shows the E1
2g (~391 cm-1) and A1g (~417 cm-1) peaks 

corresponding to the in plane (2 S atoms in opposite direction to the Mo atom) and out of plane (S 

 

Figure 5.6 TEM images showing the high selectivity of Au NPs at the edge, and indicating 

the intimate contact between MoS2 and Au NPs. 
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atoms in opposite directions) vibrations for bulk MoS2 (Figure 5.7c)20. The difference in the peak 

positions,  (difference between the E1
2g and A1g peak positions), is known to be an indicator of 

the number of layers3. Here, when the number of layers increases, the van der Waals force between 

MoS2 sheets results in a higher force constant for atomic vibration. This affects the E1
2g peak 

predominantly and results in its blue shift. On the other hand, stacking-induced long-range 

Coulombic interlayer interactions result in a redshift of atomic vibrations, predominantly observed 

in A1g. As a combined effect, the energy gap () between E1
2g and A1g decreases with reduction in 

number of layers10,16. Bulk MoS2 shows a  value of 26 cm-1. Our sample after exfoliation 

exhibited a  value 23.6 cm-1 suggesting that they are trilayer MoS2 sheets. Furthermore, the line 

width for our trilayer samples also increased in comparison to the bulk MoS2. This is because for 

bulk MoS2, the inner layers dominate the Raman intensity resulting in a reduced line width. 

Thinning down of MoS2 and the associated structural changes results in the development of 

 

Figure 5.7 Raman spectrum of Au-MoS2 hybrid prepared via (a) chemical reduction and 

(b) Microwave irradiation. The Raman spectra of the bulk MoS2 sheet showing the E1
2g 

(~385 cm-1, in plane vibration) and A1g (~410 cm-1, out of plane vibration) peaks (a). The 

 represents the difference between the Raman peak positions (i.e. A1g – E1
2g), and is used 

to determine the number of MoS2 layers. For  ~23 cm-1, the number of layers was 

estimated to be three. After gold deposition, the A1g and E1
2g peaks up-shift by ~ 1 cm-1 

(in a), which implied p-doping. In the case of microwave irradiation (b) a downshift of 

features can be observed, implying n-doping. (c) Illustration of relevant modes of 

vibration in MoS2. 
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varying force constants between the inner and outer layers of the material inducing an increased 

line width with decrease in the number of layers10.  

After attachment of Au nanoparticles via chemical functionalization, the Raman showed a 

distinct up-shift of features indicating p-type doping of MoS2 sheets21, consistent with recent 

studies (Figure 5.7a)22. However, MW assisted functionalization showed a small down-shift of 

features pointing towards n-type doping as shown in Figure 5.7b. Several experiments confirm 

this trend and indicate the importance of the mode of bonding on the polarity of doping. It is 

important to mention that MW process did not have hydroxylamine and exhibited higher edge-

selectivity, which might have a role to play in doping MoS2. More studies are required to identify 

the cause of the difference in doping polarity. 

 Electrical characterization for metal-nanoparticles incorporated MoS2 

The influence of the metal functionalization (chemical) on the electrical properties of 

mechanically exfoliated layered-MoS2 between electrodes (gold, 20 m channel width) was 

characterized for the Schottky barrier, gate capacitance of MoS2, and Au-MoS2, thermal-barrier, 

carrier concentration and field effect mobility. Each device was washed in acetone and isopropanol 

mixture (3:1), dried in N2 and placed in a cryostat chamber at 10-4 Torr. The device was thermally 

annealed at 120 0C, followed by electric Joule heating (2V, 2 A) for 3 hours to remove adsorbates 

and to reduce contact resistance between MoS2
 and Au contact.  

 The Schottky-barrier analysis 

Due to the mismatched work-function between MoS2 flakes (~25 nm thick, confirmed by 

atomic force microscopy (AFM of Figure 5.8a) of 5 m channel,) and metal contacts, a Schottky 

barrier is introduced at the interface between source/drain electrodes and MoS2. Here, as the 

source-drain bias voltage increases, the carrier hopping through the Schottky barrier increases23. 
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This phenomenon translates into an increase in current at high source-drain voltage in the IV curve 

as shown in Figure 5.8b. Furthermore, at intermediate bias voltage, the total current I is governed 

by the Schottky barrier according to the following equation24,25:  

𝑰 = 𝑺𝑱𝒔 𝐞𝐱𝐩 [𝑽𝑫𝑺 (
𝒒

𝒌𝑻
−

 

𝑬𝒐
)]     Equation 5.1 

Linear relationship equation is derived as shown: 

 

Figure 5.8 a) MoS2 device, 25 nm thick, is extracted using scotch tape-base 

micromechanical cleavage. Inset shows the AFM imaging of MoS2. b) IDS-VDS curves 

recorded for MoS2 device at various temperatures from 80 K to 180 K. It shows as source-

drain bias voltage increases the hopping tendency is significantly increased in the reverse 

side than forward side. c) at 160 K a) logarithmic plot of total current I as a function of 

reverse bias VDS shows an estimation of Schottky barrier Eo = 14.80 eV and b) logarithmic 

plot of total current I as a function of forward bias VDS shows an estimation of Schottky 

barrier Eo = 14.45 eV. 
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𝐥𝐧(𝑰) = [(
𝒒

𝒌𝑻
−

 

𝑬𝒐
)] 𝑽𝑫𝑺 + 𝐥𝐧(𝑺𝑱𝒔) Equation 5.2 

Where Js is a slowly varying function of applied bias, S is contact area associated with the Schottky 

barrier, VDS is the source-drain bias voltage, q is magnitude of electron charge, k is the Boltzmann 

constant, T is the absolute temperature, and Eo is the Schottky barrier, which is estimated to be 

14.62 meV (average) is obtained from slope of logarithmic plot of total current I versus VDS ( 

Figure 5.8c-d). The carrier density, n (evaluated to be 1.39 x 1015 cm-3), carrier concentration of 

MoS2 sample, was found from 𝐸𝑜 = 𝐸𝑜𝑜coth (
𝑞𝐸𝑜𝑜

𝑘𝑇
) with 𝐸𝑜𝑜 =

𝑞ℎ

4𝜋
√

𝑛

𝑚∗𝜀𝑟𝜀𝑜
, where Eoo is the 

Padovani-Stratton parameter, m* is effective electron-mass in MoS2, 𝜀𝑟 is the relative permittivity 

of MoS2, 𝜀𝑜 is vacuum permittivity, and h is the Planck’s constant. From the calculated carrier 

concentration, the average electron mobility is estimated to be 3.11 cm2V-1s-1 using the equation 

𝜇 =
1

𝑛𝑞𝜌
 where 𝜌 is the resistivity of MoS2 sample. This mobility value is consistent with previous 

measurements from other groups26. The Schottky-barrier analysis cannot be applied on the Au-

MoS2 device due to the added capacitance between MoS2 and the Au NP islands (discussed in later 

section). 

 MoS2 field effect mobility analysis 

Figure 5.9a shows the current-voltage (IDS-VDS) behavior of a 5 m channel of MoS2 flake 

before and after gold NP deposition. Post Au NP incorporation, the device exhibits 3 orders of 

magnitude increase in conductivity at 80 K. From the VBG versus IDS at 160 K (as shown in Figure 

5.9b), the field-effect mobility was estimated as ~ 3.71 cm2 V-1s-1 for MoS2 device using the 

equation:  

𝛍 = (
𝐋

𝐖
) (

𝐝 𝐃𝐒

𝐝𝐕𝐁𝐆
) (

𝐕𝐃𝐒

 𝐁𝐆
) Equation 5.3  
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where L/W ~ 70 is the ratio between channel length and width, 𝑉𝐷𝑆 is the source-drain voltage, 

and (
𝑑𝐼𝐷𝑆

𝑑𝑉𝐵𝐺
) is the absolute value of the linear slope of the back-gating curve. At a voltage bias of 

VDS = 500 mV, the current on/off ratio: Ion/Ioff is ~103 for the  20 V range of VBG, with the off-

state current smaller than 100 fA (as shown in Figure 5.9b). Figure 5.9c shows the subthreshold 

 

Figure 5.9 a) At 80 K the conductivity of MoS2 device is increased 103 folds after gold 

functionalization (Au-MoS2). The inset shows an enlarged view of IDS versus VDS 

response for MoS2 at 80 K. b) Back-gating characteristics (160 K with VDS = 0.5 V) of 

MoS2 and Au-MoS2 FETs are shown. The top inset shows capacitance circuitry of the 

Au-MoS2 device. Bottom-left inset shows the structure of MoS2 FET with electrical 

connections used to characterize the device. Au-MoS2 device shows ~9 fold increase in 

effective gate capacitance. Bottom-right inset shows an FESEM micrograph of gold 

nanoparticles on MoS2. (Bar = 10 m). c) Log scale of drain current versus back gate. 

Subthreshold-Swing measurement is made for currents increasing from 1 nA to 10 nA. 

The insets show the zoomed in graph for both MoS2 (black curve) and Au-functionalized 

MoS2 (red curve). The gate voltage increases from 2.7 to 3.725 V for MoS2 and from -

11.375 to -7.375 V for Au-MoS2. 
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voltage, which is estimated as the gate-voltage per current-decibels from the gating data for 

currents increasing from 1 nA to 10 nA or 1 decibel. The sub-threshold swing for MoS2 increases 

from 1.025 to 4.1 V/dec after Au-functionalization in our device. 

 The enhancement in gate capacitance 

It is known that a top gate electrode (disconnected) along with a bottom gate enhances the 

net gate capacitance; implying that at lower gate voltage a higher change in source-drain current 

(IDS) can be achieved27. The Au NP deposition on MoS2 is proposed as an unconnected top gate 

with very high capacitance (CAu-MoS2), which leads to an enhanced effective gate capacitance 

(Ceffective), when the back gate is applied (Cback-gate). Therefore, Ceffective = Cback-gate + f(CAu-MoS2
-1 + 

CAu-back
-1)-1, where CAu-back is the capacitance between gold and silicon and f is the fraction of MoS2 

area with Au NP. Since CAu-back > CAu-MoS2 > Cback-gate, Ceffective ≈ fCAu-MoS2. This implies that the 

effective capacitance becomes CAu-MoS2, which is higher than the Cback-gate. For MoS2 with gold 

nanostructures acting as gate enhancers, the slope (
𝑑𝐼𝑆

𝑑𝑉𝐵𝐺
) shows a 9.04 fold increase (as shown in 

figure 3.9b), implying that effective capacitance increases from 12 nF/cm2 (= Cback-gate) to 108.48 

nF/cm2 (= Ceffective ≈ fCAu-MoS2 = 108.48 nF/cm2) for an Au NP coverage of ~ 5 %. This implies 

that the CAu-MoS2 ~ 2.17 F/cm2, a value similar to the quantum capacitance for graphene28–30. This 

capacitance coupled with gate electrode provides an enhanced pseudo-mobility27 of 33.5 cm2/V/s. 

It is important to mention that interfacing MoS2 with high-k dielectric material can cause dielectric 

suppression of the Coulomb scattering and modification of the acoustic phonon spectrum5,31,32. 

However, that requires higher (complete) coverage of the dielectric. Furthermore, Fuhrer and 

Hone27 showed that capacitive interfacing on relatively thicker dielectric produces a two-orders of 

magnitude higher pseudo-mobility than dielectric suppression. Therefore, capacitive coupling is 

conjectured as the primary mechanism behind the modified gating behavior of our device.  
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 The analysis of gate capacitance of Au deposition via functionalization route and 

one via physical deposition 

The strong interaction of chemically deposited Au NP on MoS2 was compared with sputter 

deposited Au on MoS2 via analyzing the respective capacitance between deposited Au and MoS2. 

Figure 5.10 shows the evolution of response in the form of back gating scans of  sputtered Au-

MoS2 . After each sputter (0 s, 2 s, and 4s), the back gating mobility of device increased to 2.3, 

  
Figure 5.10 Back gating scans of MoS2 before and after 2 and 4 seconds Au/Pd 

sputtering. The mobility increases progressively from2.3 cm2V-1s-1 to 4.6, and11 

cm2V-1s-1. The inlet shows the back gating schematic of Au sputtered MoS2. 
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4.6, and 11 cm2V-1s-1, respectively. At 4 sec sputtering and a 4.78 fold increase in mobility, the 

capacitance between sputtered gold and MoS2 was estimated, assuming there is no damage to MoS2 

during sputtering. Here, the Ceffective ≈ fCAu-MoS2 = 57.39 nF/cm2.  Hence, the capacitance between 

sputtered gold and MoS2 was ~ 3 folds less than Cgold-MoS2. This confirms a more intimate contact 

between MoS2 and Au deposited via chemical process than physical process, as expected. 

Moreover, gold-sputtered on MoS2 exhibits lesser n-doping.  

 The effect of loading density on the I-V behavior 

As mentioned above, the final deposition density of gold NP on MoS2 is dependent on the 

defect-density on MoS2.  For long duration of functionalization, the device shows ohmic and high 

conductivity, attributed to connected gold channels (leakage). As shown in Figure 5.11 (top 

panel), as the loading density increase, the deposit Au NP starts to form islands of NPs, to a 

 

Figure 5.11 (Top panel) FESEM images of gold NPs with different loading densities 

deposited on MoS2 device.  At high loading, a percolating connection is formed between 

gold nanoparticles between electrodes. (Bottom panel) I-V respond of different Au NP 

loaded device (left) low loading non bridged gold channel, (middle) high loading non 

bridged gold channel, (right) bridged gold channel (short-circuit). 
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percolating network, and finally a connecting bridge between the electrode. At such high loading, 

The Au NPs tends to make conductive channels between the source and drain, which is indicating 

by the linearlity of current-voltage curve as shown in Figure 5.11 (bottom panel). 

 The effect of the metal’s work function on the doping polarity on MoS2 

The polarity of doping induced by metals on MoS2 strongly depends on the work function 

(ɸ) of the metal as well as MoS2. MoS2 work function (ɸMoS2) is reported to vary from 4.48 eV to 

5.2 eV depending on the layer thickness33–36. The same for gold (ɸAu) is reported to be 5.1 eV. 

Hence, thin flakes of MoS2 (multilayer) are known to get n-doped37 when in contact with gold. 

Interaction of ultrathin MoS2 (1-3 layers) can also modulate the work function.  In the present 

study, anchoring of Au NP on trilayer MoS2 induces a p-doping as verified by Raman spectroscopy 

(Figure 5.7a). This implies that trilayer MoS2 on silica has work function (and Fermi level 

position) which allows the electron to flow from MoS2 to Au, resulting in p-doping. However, our 

electrical gating measurements show an increase in saturation current after anchoring of Au NPs. 

The increase in saturation current in n-type MoS2 implies n-type doping.  

The difference in polarity between the Raman (shown in Raman analysis section above) 

and electrical measurement is due to two things. (1) The MoS2 sample used for electrical studies 

are thicker (25 nm, multilayer) compared to the sample used for Raman measurements (trilayer). 

This in turn translates into a lesser work function. (2) While the sample for Raman measurement 

was supported on SiO2, the electrical measurements were done on SiO2 chips with pre-deposited 

Au electrodes. The interaction of MoS2 with Au electrodes modulates the Fermi level of MoS2 (via 

n-doping37) to facilitate the transfer of electron from Au NP to MoS2 after Au NP deposition as 

shown in Figure 5.12. To verify this, Raman spectra was taken from the sample on Au electrode 
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before and after Au NP anchoring. The Raman spectra clearly showed a downshift, implying n-

doping, consistent to the electrical measurement and the theory.  

  

 The effect of MoS2 defects on the electrical behavior 

The MoS2 devices’ conductivity scans (I-V), and back gate responses were measured 

before and after water exposure at 25oC for 24-hour period. In contrast to the Au incorporation, 

exposing the MoS2 device with only water for 24 h without gold source causes a reduction a 

reduction in 4-point probe conductivity (~ 10 folds) and field effect mobility (~ 2.33 folds) are 

shown in Figure 5.14a-b. The observed result can be explained by generation of defects on MoS2 

via water interaction (oxidized or thiolated sites), which act as nucleation sites on MoS2 for 

incorporation/growth of gold nanoparticles. This observation is consistent with an earlier study on 

oxidation and hydrolysis of MoS2 in water38. 

 

Figure 5.12 Raman spectra of MoS2 before (black) and after (red) Au NP 

functionalization. a) MoS2 on SiO2, and b) MoS2 on gold electrodes.  
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In the other hand, a lesser reduction in conductivity was observed for device exposed to 

microwave (device immersed in water, under microwave for 5s) as shown in Figure 5.14a-b. 

Here the interaction of MoS2 and water happens at elevated temperature but for significantly lower 

interval (5s). Hence the resultant defect formation might be minimal. Furthermore, the presence of 

metal centers could cause local hotspots, which can create highly elevated temperatures and hence 

more defects leading to more functionalization. Here, in the absence of metal NPs, only minimal 

defects might be getting formed indicated by the lesser extent of reduction in conductivity and 

field effect mobility. 

 

Figure 5.13 a) Room-temperature current versus voltage (IV) curves (VG = 0V) for 

before and after MoS2 device in water for 24 hrs. b) Room-temperature gating scans 

(VDS = 1V) for before and after MoS2 device in water for 24 hrs The conductivity of the 

device decreases after water interaction. The mobility of the device decreases after water 

interaction 
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 The carrier transport mechanism in metal incorporated MoS2 device 

Variable temperature measurements were carried out to investigate the carrier transport 

mechanism in the Au-MoS2 device (Figure 5.15a). With a decrease in temperature, both Au-

MoS2 and MoS2 exhibited a decrease in conductivity and an increase in VDS-IDS non-linearity (as 

shown in Figure 5.8b). This suggested a finite total thermal barrier for both devices, which can 

be described as Arrhenius equation 𝐼 𝑠𝑎𝑡 =  𝐶𝑒
(
−𝑡ℎ
𝑘𝐵𝑇

)
, where Isat is current saturation at VBG = 20 

V (in our experiment), C is a constant, 𝑡ℎ (eV) is the thermal barrier, kB is Boltzmann constant 

(8.617 x 10-5 eV K-1), and T (K) is temperature. From the ln(Isat) versus 1/T plot, it is observed that 

Au-MoS2 and MoS2 exhibit linear dependence, consistent with the equation. Thermal barrier 

heights 𝑡ℎ (eV), estimated from the slope of these curve are 253 meV and 44.18 meV for MoS2, 

and Au-MoS2 respectively as shown in Figure 5.15b. Furthermoremore, the carrier transport in 

Au-MoS2 and MoS2 can be classified as variable range hopping mechanism due to the linear 

 

Figure 5.14 Room-temperature current versus voltage (IV) curves (VG = 0V) before and 

after MoS2 device in water exposed to microwave for 5 s. and (b) Room-temperature 

gating scans (VDS = 1V) before and after MoS2 device in water exposed to microwave for 

5 s.   
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relationship in (ln IDS  𝑇
−1

3 ) plot (inset of Figure 5.15b), which involves inelastic tunneling 

dominantly in 2 dimensions (in plane and between the layer)11,12,39.  

 

 The thermal conductivity analysis of MoS2 and metal incorporated MoS2  

Since the electrical properties of MoS2 are sensitive to its temperature, it is important to 

study the heat transport properties in these structures for comprehensive device analysis. This 

analysis was conducted for both bare and gold functionalized (via microwave process) trilayer 

MoS2 supported on 300 nm SiO2 (mechanical exfoliation)10. Raman spectroscopy provides an 

indirect route to measure thermal conductivity of nanomaterials, while its accuracy is dependent 

on the frequency of the Raman peaks. Lower thickness MoS2 provides higher sensitive Raman 

signal; therefore, trilayer MoS2 was used to study its thermal conductivity before and after gold 

functionalization (a sufficiently large monolayer was not observed even after extensive search). 

 

Figure 5.15 a) The gating characteristic (IDS versus VBG) for Au-MoS2 FET between 80 

K and 180 K with 0.5 V applied bias voltage (VDS). b) The Arrhenius thermal activation 

fit for MoS2, and Au-MoS2. Inset: The Variable range hopping model fit for Au-MoS2 

device at the studied temperature range.  
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High flux and intensity laser exposure can etch MoS2 and thus can interfere with the thermal 

measurements40. The maximum laser power used in our measurements was 20W, which is 500 

times lesser than the power used by Castellanos-Gomez et al40 to etch MoS2. Control experiment 

was conducted to study the change in Raman features from exposure to the maximum laser power 

(20 W) for 15 s (as shown in Figure 5.16b). Absence of any noticeable change in Raman peaks 

indicates that the thermal conductivity measurements are negligibly affected by laser interaction 

with the samples. Here, a 532 nm laser beam (~1 m diameter) was focused at the center of trilayer 

MoS2 and the generated heat propagates laterally and steadily through the thin layer, presumably 

due to low thermal conductivity of air (0.025 W/mK) (Figure 5.16a)10. The intensities of the 

reflected beam from MoS2 and from bare silica were measured by a laser power meter to obtain 

the power absorbed by MoS2 given by P. The radial heat conduction through the surface of cross-

sectional area A can be evaluated from the following equation 

 

Figure 5.16 a) Schematic of thermal conductivity experiment showing the 532 nm laser 

focused on supported MoS2 sheet. The focus laser generates local hot spot which 

radially dissipate over MoS2 sheet. b) Raman spectrum of control MoS2 sample before 

(black) and after 15 S exposure under maximum laser power showing no shift in 

Raman features. 
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  dATk
t

Q




 Equation 5.4 

where Q is the amount of heat transferred over time t, T is the absolute equilibrium temperature, k 

is the thermal conductivity. The steady-state, average solution of this equation provides the thermal 

conductivity: 
T

P
dk





2

1
 where, d is the thickness of MoS2 layer (2 nm). Here, T is the equilibrium 

temperature for a given power, P.  

 

To measure k, 
T

P




 or the relationship between power and temperature was required. This 

interplay is evaluated indirectly via Raman by correlating the Raman peak position with 

temperature (controlled externally) and with laser power, then combining them to find k:  

 

 

Figure 5.17  Raman spectra at different temperatures and the gradient of E1
2g, and A1g 

peaks positions with temperature 
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where, 














T


 is the gradient in the A1g or E1

2g Raman peak positions with sample temperature 

(as shown in Figure 5.18), and 














P


 is the gradient in the A1g or E1

2g with laser power (as 

shown in Figure 5.19)41. From these gradients, the thermal conductivity of MoS2 and Au-MoS2 

are averaged to be 16.2 W/mK and 21.3 W/mK respectively. The increase in thermal conductivity 

is attributed to the high thermal conductivity of gold islands (~300 W/mK), which enhances 

phonon transport on MoS2 platform.  

 

 

Figure 5.19 Raman spectra at different power and the gradient of E1
2g and A1g peaks 

positions with the reflected power 
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 Conclusion 

In conclusion, this chapter has shown chemical and MW routes to incorporate Au and Ag 

nanoparticles on MoS2, which results in significant modulation of its electrical, thermal and 

structural properties, and increased effective gate capacitance by 9 folds. Here, a facile sulfur-

metal interaction is leveraged to achieve functionalization of metal nanostructures on MoS2 via 

both diffusion limited aggregation and instantaneous reaction arresting. The NP deposition occurs 

preferentially on the edges and defects, and exhibits 600 displacements on certain crystallographic 

edges. The Raman measurements show that the polarity of doping is dependent on the 

functionalization route and electrical analysis indicated that the interaction between gold 

nanoparticles and MoS2 flakes is highly capacitive (CAu-MoS2 = 2.17 F/cm2). Through Schottky 

model analysis, a barrier of 14.52 meV and a mobility of 3.11 cm2/V/s (and 3.71 cm2/V/s from 

gating) is evaluated; while the thermal transport barrier reduces from 253 to 44.18 meV after gold 

nanoparticle functionalization. The thermal conductivity of MoS2 was found to increase from 15 

W/mK to 23 W/mK post nanoparticle deposition. Furthermore, the deposition of highly capacitive 

gold nanostructures on MoS2 can be employed to increase the effective gating by orders of 

magnitude. Futuristically, this versatile process can provide access to a wide range of 

functionalized metal dichalcogenides for development of fundamental theories on the 

optical/Raman42/electrical/thermal/structural properties/correlations and novel 2D 

heterostructures and applications. 
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Chapter 6 - Conclusion  

In this dissertation, this dissertation successfully addressed the challenges associated with 

the incorporation of 2D nanomaterial into practical applications. Chapter 1 presented a brief 

overview of the wondrous class of 2D nanomaterials (graphene, MoS2, and hBN), and the 2D 

nanomaterial current synthesis technique. Such backgrounds of these materials provided insights 

of motivation, and an attempt to contextualize the results in chapters 2 – 5 in perspective view of 

the overall landscape of 2D nanomaterial science 

By leveraging the carbon diffusion through copper grain, the direct formation of large area, 

high quality, and thin layer graphene on SiO2 substrate was enabled. This growth mechanism was 

discussed in detail in chapter 2.  Furthermore, the growth parameters (T=900oC, and FH2/FCH4~1/5) 

are optimized to robustly form turbostratic stacking, and low defect thin graphene film (La~140 

nm), with a field effect mobility of 277 cm2V-1s-1, and 233 cm2V-1s-1 for holes and electrons 

respectively. The electronic transport in thin film graphene was described by an overlapping band 

of 2.3±0.4 meV (STB model), a thermal activation energy of 2.0±0.2 meV (Arrhenius thermal 

activation model), and 2-D hopping conduction (VRH model). 

Chapter 3 provided a novel method to growth of uniform, large area, continuous h-BN 

films on SiO2. In our understanding, the oxygen on the SiO2 substrate plays a crucial role as a 

nucleation sites by bonding with B of boron nitride active radical, which is confirmed by XPS 

data. The domain size of h-BN film was estimated to be 10 m in diameter. Furthermore, the h-

BN film was 6 fold smoother than SiO2 substrate, which played a dominant role in affecting the 

electrical performance of other 2D nanomaterial placed on its surface, such as MoS2. Through the 

study of the electrical behavior of MoS2 on the grown h-BN, the h-BN film possesses a smooth 

platform, which also provides an electronic isolation to MoS2. Consequently, this resulted in 
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enhanced carrier mobility for electronic 2D metal chalcogenides, leading to an improvement of 

the electrical conductivity (5 folds).  

Chapter 4 showed the study of nano-molecular actuation on the surface of trilayer graphene 

(37.5% sp2 coverage). These photo-switchable azobenzene were covalently incorporated into 

graphene lattice with a density of 2.5 nm-2. Due to trilayer graphene’s high quantum capacitance 

of 6.3 F/cm2, and its quantum confinement, the trans to cis configuration of azobenzen (the 

change of 3D in molecular dipole moment) generates a hole carrier density of 2.44 x 1012 in 

graphenic platform, corresponding to 1 quanta of hole per 100 azobenzene molecules. Remarkably, 

the total carrier density calculated from gating was consistent with that from quantum capacitance. 

We believe that this work leads to the development of  graphene interface with other molecular 

electronic systems such as molecular-machines (for example, rotaxane) and molecular switches, 

and photo-detector, MEMS and protein-folding.  

Chapter 5 demonstrated a controlled functionalization and/or covalently interfacing of 

MoS2 with noble metal nanoparticles (Au, and Ag). The stable sulfur/noble metal functionalization 

was enhanced via both diffusion limited aggregation (chemical functionalized route) and 

instantaneous reaction arresting (microwave assisted route). The gold nanoparticles were 

incorporated selectively on MoS2 crystallographic directions (with 60o displacement).  Such 

incorporation can significantly modulate that the electrical and thermal properties of MoS2 

material. Via electrical measurement, the interface between MoS2 and gold nanoparticles led to a 

9-fold increase in effective gate capacitance, (CAu-MoS2 = 2.17 mF/cm2), and a vastly reduced 

carrier-transport thermal-barrier (253 to 44.18 meV). Via Raman data analysis, the polarity of 

doping can be altered by switching the functionalization method. Furthermore, by modifying the 

Raman spectroscopy system, the thermal conductivity values were evaluated at 15 W/mK for 
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MoS2, and 23 W/mK for Au-MoS2. We envision that this versatile process provides an avenue to 

interface 2D metal dichalcogenides with the class of metal nanoparticles leading to the 

development of various potential advanced thermionic, and electrical systems, such as electrode-

attachment to the hetero-structures of graphene and MoS2, where the gold nanostructure could be 

grown to act as an electron-tunneling gate-electrode connected to MoS2.  
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Chapter 7 - Future outlook 

This dissertation reports key discoveries in the growth mechanism and interfacial 

chemistries of 2D nanomaterials; resulting in several high impact publications. Although these 

findings have made an impact in the field, there is research required to expand the applications of 

2D nanomaterials and expand the scope of interfaces that can be achieved. Further, the research 

can be applied to other 2D nanomaterials. Some of essential points that we would contribute to a 

further understanding of the growth mechanism, and the structure of the materials are discussed 

below: 

In the case of the growth of multilayer graphene on SiO2 substrate, the complete growth 

mechanism can be understood by studying: 1) the chemistry, and the kinetic of the graphene 

formation at the interface, 2) the effect of underlying SiO2/Si <111> and SiO2/Si <100> substrates 

substrate on the crystallization of capped Cu layer at elevated temperature, and 3) the transport of 

the carbon radicals (CxHy) through Cu grain boundaries. We suggest that a study of sequential 

dosing of isotope methane (12CH4 and 13CH4) should further explain the growth formation of 

graphene at the interface. By leveraging the separation of the 12C and 13C Raman modes, Raman 

G band position mapping will reveal the spatial distribution of graphene domains at different 

growth time, i.e. whether the graphene islands, strings of graphene, and the graphene film consist 

of 12C local regions and 13C ones. Further, the surface chemistry of interface between Cu and SiO2 

on Si<111>, and on Si<100> should provide information on the crystallizing process of Cu film 

at elevated temperature. Lastly, the comprehension of the transport of carbon radical through the 

copper grain boundaries could be determined by either an in-situ study via TEM with heating stage.   

For the growth of h-BN on SiO2 substrate, the comprehension of the growth mechanism 

can be accomplished by elucidating (1) the role of oxygen on SiO2 surface on the formation of h-
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BN film, and (2) the kinetic growth model for multilayer h-BN film. In the first case, whether 

oxygen has influence on the adsorption step or on the surface reaction, there should be a study of 

surface chemistry of SiO2 film interacting with (BN)x(H)y radical at high temperature. In the latter 

case, we suggest another study on the growth of h-BN film with respect to the growth time, and 

dielectric substrates such as silicon nitride (SiN), and sapphire (Al2O3).  

In order to further realize the electronic applications of directly grown h-BN film, and 

directly grown multilayer graphene film, there should be a research on their structural defects 

including point defects (holes, atomic vacancies), line defect (grain boundaries, Stone-Wales 

defects), and sp3 defects, which introduced by oxidation during CVD process. In case of multilayer 

graphene film, these defects are major limiting factors in the charge mobility in the grown 

graphene. On the other hand, these defects in h-BN film not only influence the dispersion of 

electronic bands, but also the spatial charge inhomogeneity in 2D nanomaterial interfacing the 

surface of h-BN film. The structural characterization of these directly grown materials could be 

accomplished by employing high resolution TEM, and scanning tunneling electron microscopy 

(STM) techniques. Although, the grown h-BN film was shown as a clean electronic platform for 

2D nanomaterial electronic applications in our study, we recommend a study of the electronic 

charge distribution in 2D nanomaterials such as graphene, and MoS2 placed on h-BN film. Because 

the electronic local density of states of 2D nanomaterials is proportional to the tunneling current 

of STM, the profile of electronic charge puddles can be mapped via scanning tunneling electron 

microscopy (STM) technique.  
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