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INTRODUCTION

The ob.ioclivo of thifi report is to apply the continuous

maximum principle to the equipment replacement problems.

One kind of problem faced by manufacturing firms, which

is susceptible to total value analysis, is that of making

decision concerning investment in capital equipment. Here,

management is spending money with the expectation that it

will produce revenue in the future. A sum of money is "sunk"

in a machine, for example, and the machine is used up over a

period of years in the production of goods from which the

firm derives revenue.

The "replacement problem" is primarily concerned with

how frequently the machine should be replaced. A firm uses

a machine which "wears out" after a certain amount of time

and is then replaced by a new machine.

A decision model for replacement of equipment should

portray the basic economic problem in such terms that the

parameters may be evaluated with generally available business

data. At the very least, it must be economically feasible

to secure the required data. Also, the model should be

capable of modification to fit the requirements of as wide

a range of situations as possible.

From the efficiency point of view, two general kinds of

equipment may be distinguished: the "constant efficiency"

and the "diminishing efficiency" types. Under the first

category we may classify those items whose efficiency remains



fairly constant throuf;hout their service lives and whose ser-

vice terminates abruptly with their first failure. An

electric light bulb is the best example of this type of

equipment. To the second classification belong those dur-

able goods whose service life may be extended almost in-

definitely if their component parts are replaced or repaired

as necessary. This type of equipment is characterized by a

decline in productivity and/or increase in maintenance costs

as they are used over time.

The economics of replacement associated with these two

types of equipment are quite different. For those equipments

displaying constant efficiency, a probability distribution

for the length of their lives may be obtained from life tests

and various replacement policies may be evaluated on the

basis of this distribution. Since there is no cost of

declining efficiency associated with the problem, the an-

alysis is very often reduced to a comparison of the expected

values of the several alternatives.

In the case of "diminishing efficiency" type of equip-

ment (13), for each year of operation the machine produces

a certain revenue, each year there is a maintenance cost,

and at the end of any year the equipment may be sold for

salvage at a certain price. The problem of determining

when to replace a piece of equipment depends on the produc-

tivity of equipment, the maintenance cost on the equipment,

the trade in or salvage value of the equipment as a function



of the equipment age, and also the purchase cost of a new

equipment. In general, with the age of the equipment (a)

the net revenue decreases, (b) the maintenance cost increases

and (c) the salvage value decreases. It is this "dimin-

ishing efficiency" type of equipment that will be considered

in this report for the applicability of the continuous max-

imum principle.

A problem faced by a manufacturing company when in-

vesting in production equipment is that of either maximizing

the net present worth of investment or minimizing the present

worth of all expenses on the investment.

Case 1 is an extension of the work done by Daccarett (2)

for a single machine problem. It deals with the maximization

of the net present worth of an investment in production

equipment for a chain of machines problem. A basic model

for profit maximization treated by Preinreich ( 9 ) and

others (1, 6, 7, 11) is used to illustrate how the optimum

life of the equipment can be determined by means of the

continuous maximum principle.

Case 2 deals with the minimization of the present worth

of all expenses as sometimes it is difficult to allocate the

portion of the revenue of the product to a particular machine

when many different operations are carried out on the same

product by different machines. This case has also been con-

sidered for a chain of machines, as it is the usual situation

in practice, rather than a single machine. A basic model
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treated by Bowman and Fetter (1) for cost minimization is

used to illustrate how the optimum life of the equipment in

a chain can be determined by means of the continuous maxi-

mum principle.

Case 3 deals with a more realistic model than that of

Case 2 by taking into account production rate as the second

decision variable. It also takes into account variable

costs, fixed overhead costs and maintenance costs separately

for the minimization of the net present worth of all expenses

per unit of production for a single machine. The theoretical

solution has been obtained by means of the continuous maximum

principle for this model.

A numerical problem has been solved for each of the first

two cases in order to show the validity of theoretical re-

sults obtained. For third case, as it involves a number of

simultaneous non-linear differential equations, a further

study by numerical methods is required,

STATEMENT OF THE ALGORITHM OF THE CONTINUOUS
MAXIMUM PRINCIPLE

The representation of the continuous simple process is

shown schematically in Fig. 1. The performance equations

of the process have the form (3, 4, S, lo)

dx-i^ = f^(x^(t), x^it), ..., x^(t); 0^(t), ..., e^{t)),

to^t^T,

..- ;- ,^zaa- --.'.
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x.(tQ) -^^, i = 1, 2, ,.., S,

or in the vector form

g - f(x(t); e(t)) , xit^) =^
,

(1)

where x(t) is an s-dimensional vector function representing

the state of the process at time t and 0{t) is an r-dimen-

sional vector function representing the decision at time t.

It may be noted that the variable t may represent the distance

in a steady-state continuous process in space.

A typical optimization problem associated with such a

process is to find a piecewise continuous decision vector

function, e{t), subject to the constraints

(^i(ei(t), e2(t), ..., ej,(t))^0 , i = l, 2, ..., m, (2)

which makes a function of the final values of the state

s - .

S = ^L c^x^(T), c^ = constant, (3)
i=l

an extremum when the initial condition y^it^) -^ is given.

The function, S, which is to be maximized (or minimized), is

termed the objective function of the process. The decision

vector function so chosen is called an optimal decision vector

function or simply an optimal decision and is denoted by

e{t).
,



When the time interval is fixed, there are two different

types of basic problem: a fixed right-end problem and a free

right-end problem, depending on whether the final condition

is given or not. In this section we shall consider only the

free right-end problem. •

The procedure for solving the problem is to introduce

an s-dimensional adjoint vector z(t) and a Hamiltonian func-

tion H which satisfy the following relations:

• H(z(t),x(t),e(t)) = (z)'^f(x;e) = ^z.f.(x(t);e(t)), (4)
i=l

dr=r|^ = -^f,^j^'
i = i' 2, ..., s. (5)

Zi{T) = Ci , i = 1, 2, ..., s. (6)

The optimal decision vector function e{t), which makes

S a maximum (or minimtim), is the decision vector function,

0(t), which renders the Hamiltonian function, H, maximum

(or minimum) for almost every t, tQ:<t^T. If the optimal

decision vector function 9(t) is interior to the set of

admissible decisions e(t) (the set given by equation (2)),

a necessary condition for S to be an extremum with respect to

6(t) is -
-

^ = 0. (7)
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If e(t) is constrained, the optimal decision vector function

e(t) is determined either by solving equation (7) for 6(t)

or by searching the boundary of the set given by equation

(2).

Once the decision vector function G(t) is chosen the

adjoint vector function z(t) is uniquely determined by equa-

tions (5) and (6) and the initial condition at t = t^,

x{tQ) =c><. It may be noted that the performance equation

(1) can be written in terms of the Hamiltonian function as

• dt~ ^^T. . 1 = 1, 2, ..., s. 18;

Pontryagin's maximum principle can be summarized in the

following theorem.

THEOREM . Let 0(t), t^^ti^T be a piecewise continuous

vector function satisfying the constraints given in equation

(2). In order that the scalar function S given in equation

(3) may be a maximvim (or minimum) for a process described

by equation (1), with the initial condition at t = t^,

x(tQ) =<^
,
given, it is necessary that there exists a non-

zero continuous vector function z(t) satisfying equations

(5) and (6) and that the vector function 9{t) be so chosen

that H(z(t),x{t),0(t)) is a maximum (or minimum) for every

t, tQ-^t^T. Furthermore, the maximum (or minimum) value of

H is a constant for every t. When T is not fixed, the value

of this constant is fixed at zero for every t.
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A system is called non-autonomous if the right hand side

of the performance equation depends explicibly on time t.

The performance equation is the form of
,. ,,./ ,--

^= f(x;t;e).
"'

<9)

This can be transformed to the standard form of equation (l)

by introducing a new state variable Xg^.-^ to satisfy

Xg^-L(t) = t, to<t^T. (10)

Hence the corresponding component of the adjoint vector can

also be written in the form

d^s-fl = .^H •

dt Bt

Then equation (9) becomes

^=f(x;e), .. (11)

where x represents an {s+l)-dimensional vector, (x-j^, X2,

..., Xg, Xg^2.)' '^^^ ^®^ state variable satisfies the

differential equation

-jfii^l, t„-t5T, (12)

and the initial condition

^s+i^^o) = to . .: \ (13)
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Equation (11), which includes equation (10), is the per-

formance equation of an enlarged system in the form of

equation (1) with initial conditions given by x(to) ^^

and equation (13 )

•

Problems involving non-autonomous systems can also be

solved without introducing an additional state variable.

The basic theorem, with the exception of the condition that

the maximum (or minimum) value of H is a constant for every

t , is valid. ,
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CASE 1. A CLASSICAL MODEL FOR PROFIT
MAXIMIZATION—CHAIN OF MACHINES

REPLACEMENT PROBLEM

For a single machine of the diminishing efficiency type,

the net present value of the investment to the firm is given

by (9)

T

Vjl = J [R(t) - U(t)] e"^^dt + D{T)e"^'^-B (U)

where ,

Vj = net present worth of the investment,

B = installation cost of the equipment,

T = economic life of the equipment,

D(T) = Salvage value of the equipment at time T,

i = annual rate of interest,

R(t) = revenue function at time t,

U(t) = maintenance and operating expenses function at

time t.

Note that the expense function, U(t), excludes depreciation

costs and interest on investment in order to avoid double

counting of these items in equation (14).

The model of equation (14) assumes that the firm uses a

machine for some kind of production until the end of its life,

T, and then sells it for D(T), and never again engages in

production of this kind. The more usual situation is that

the firm intends to continue the given kind of production

over an indefinite future period and will consider the
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acquisition of a chain of equipment to do this. When the

chain is infinite, the capitalized value of all future income

will be const,ant and the lifetimes of the machines in the

chain will be the same. In this case, the formula for the

net present value given by equation (14) becomes (9)

^«?"{/ [R(t)-U(^)J e-i^dt+D(T)e-iT_BJ'(l+e-^^+e-2iT+...)

T

J
J

[R(t)-U(t)j e-^^dt+D(T)e-i'^-B|—^-TY • (15)

Equations (H) and (15) are very often of the discrete

character in which a summation of the discrete revenue and

expenditure discounted to the present replaces the integrals

of equations {lU) and (15).

We shall consider only the continuous case for a chain

of machines. The objective function for the case under con-

sideration can be written

S = V„o .
(16)

The problem, therefore, becomes that of determining the

optimum life of each equipment, T, so that the net present

value as given by equation (15) attains its maximum.

OPTIMIZATION BASED ON THE Slf^LE MODEL

Before we proceed to solve the optimization problem

stated above, let us briefly discuss the applicability of

the maximum principle to the problem.
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Figure 2 is a graphical representation of the optimal

trajectory concept used in such variational technique as the

maximum principle and the classical calculus of variations.

The problem usually treated by these techniques is that of

selecting a decision function, e{t), to obtain an optimum

trajectory,' x(t), which renders the objective function,

S(t), an extremum in the closed interval, t^^t^^T. Very

often the boundaries of the interval are also to be chosen.

These techniques are also applicable when the initial and/or

final conditions are specified.

For the optimization under consideration, the deter-

mination of the optimum upper bound, f, alone will extremize

the objective function. That is, the problem belongs to the

"zero control" category in which no decision function is

involved and, consequently, there are no trajectories in-

volved. This problem, therefore, does not belong to a class

of problem in which the application of variational techniques

is advantageous. This type of problem is amenable to solution

by the classical calculus.

Taking the derivative of equation (15) with respect to

T and applying the condition

^=0 (17)

given by the classical calculus, we obtain
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or

^. ^rR(T)-U(T)J e-THD.(T)e-'''-iD(T)e-T}-l—
I ^ 1-e

T

- _J.elil_J
j

[^R(t)-U(t)] e-i^dt-tD(T)e-i'^-Bi

0,

[r{T)-U(T)] = iD(T)-D'(T) +

i J
j

[R(t)-U(t)j e-i^dt+D(T)e-iT_B y . {IS)1_

Equation (IB) indicates that each machine in the chain

will be kept until that time when the earnings of the machine

(left-hand side) just cover interest on its salvage value

plus decline in salvage value plus interest on the present

worth of all future earnings of machines in the chain. If

the functions for revenue, expenditure, depreciation and

interest rate are known, the optimum service life, T, can

be obtained from equation (l8) by means of a numerical

analysis.
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SOLUTION BY THE MAXIflUM PRINCIPLE OF
THE SIMPLE MODEL

In orcWr to apply the maximum principle, let us define

t

j [R(t)-U(t)j e-i^dt

x^{t) ==
^ ^ (0) ^ 0, (19)

1-e"^^

: (t) rR(t)-U{t)] e-i^
[ ^ 7 it/ ip-it(t) 1 R(t)-U(t)J e -"
[

^

7 it/ ip-it

(20)

Xp(t) = D(t)e"^^-B
^ (0) = 0, (21)

^ D'(t)e-i^-D(t)e-^^ [D(t)e-^^-BJ _.^
dt = ^_^-it - (i.e-it)2

^^ (22)

where d' (t) = ^ .

Since the system defined by equations (20) and (22) is

non-autonomous (the right-hand side of equation (20) and (22)

depend explicitly on time), we shall introduce a new state

variable, x-, , defined by

dXn

ar- = 1. X (0) = t^ =
, (23)
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It is obvious that x^(t) = t.

The ob.iective function as given by equation (l6) can

now be written

3
s = :^ c.x. (T)

i=l ^ ^

= x^CT) + X2(T) (24)

therefore, ^-,=02= 1, Co = 0.

The Hamiltonian and the adjoint variables are

3 dx.
H = :^ z.

'1

i=i ^ dt

dx-j^ dx2 dx
" ^1 dt~ ^ ^2 dt~

"*"

^3 dt

t

rr -, i,
c/;rR{t).U(t)]e-i^3lie-i^3

j [R(t)-U(t)j e-^^3 Lo L
-^ J

+ . .) D-^(t)e~^''3-iD(t)e-^^3 _ D(t)e-i^3-B .^-ix

1-e 3 (l_e 3)

+ Z3 (1) , (25)

dt -^ ^ * <26)



IB

Zj^(T) = c^ = 1 , (27)

dz
2 ^ ~hh

HT" " -bxo " ° '

Z2(T) = c^ = 1 ,

dz.

dt'
^=-^1^

-i [R(t)-U{t)J e-^^3

l-e--^^3

{[R(t)-U(t)] e-i^3]' ie-i^

(1-e 3)

+z.

(l-e-^^3)^{ i [R(t)-U{t)] dt^

(l-e~^''3)^

[.ie-i^3ie-iVe-^^3l(-i^e-i^3

)

X

=1^
; [r (t )-U (t )

J
e-"3 j-ie-^''3 {216-^^3

^

(l-e-^'^Sl^

-z-

r (l-e-i^3){D' (t)-iD(t)]r(-ie-^^3)-e-^''3

L (l-e-'^3)2

{D'(t)-iD(t)} (ie-i^3)

(28)

(29)
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[{D(t)e-i^3-.B}ie-i^3j 2ie-^^3

(1-e ^)

z^(T) = c^ = 0.

(30)

(31)

Solving equations (26) through (29), we obtain

Z3_(t) = 1,

Z2(t) = 1,

O^t ^T.

O^t^T.

(32)

(33)

Equations (30) and (31) can now be solved for z-(t)

to yield

(t) = jj.^
.e-i^ [R(t)-U(t)] ie-2it[^R(t)-U(t)J

1-e
-it

(1-e )

J
j [R(t)-U(t)J e-i^dtl 21^6-^^

- z.

(1-e
-it,

2
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j J
\_R(t)-U(t)] e-^''dtl2i2e-21t

L (l-e-")3

+z-

{i-e~^^){D'(t)-iD(t)|ie~^^+e-^^c[D'(t)-iD(t)}ie"^^

(1-e )

(l-e-i^)2[{iD(t)e-^^}ie-i^+{D(t)e-i^-B}iVi^J

(1-e-^M^

[c(D(t)e-i^-B}ie-^^J 216"^^

(1-e )

(34)

Substituting equations (32), (33), and (34) back into

equation (25), the Hamiltonian function becomes,

t

H =

P . .^ J j rR(t)-U(t)] e-i^t
[R(t)-U(t)Je-it Xo"^

L i J
le

-it

1-e
-it

(1-e )

-It
+ D'(t)e-^^-iD(t)e-^^ [D(t)e-^^-B] ie"^

, -it - _M-.?
1-e /, -it\2

(1-e )

T

-J
le ^^ [R(t)-U(t)] ie-2it rR(t)_U(t)/

.- r* + L — J_

1-e
-it

(1-e )
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J I [R(t)-U(t)J e-^^dt
I'

2iVi^

-it.

2

(1-e )

J j rR(t)-U(t)j e'^^dtUi^e
lo '

.2^-2it

(1-e )

-it
(i-e-^^)[D' (t)-iD(t)]ie~^Se-^^[D'(t)-iD(t)]ie"^

,- -it.

2

(l-e )

(l-e-^'^)'</riD(t)e-^':]le-^H[D(t)e-^'^-B] iV^*^]-

(1-e )

^[D(t)e-^^-Bj ie-^^}2ie-^^

(1-e J ]
(35)

According to the maximimi principle, the optimal decision

function, Q(t), which makes S maximum, makes H maximum for

every t, tQ-^f^T. Furthermore, the maximum value of H is

constant for every t. When T is not fixed, the value of this

constant is fixed at zero for every t.

max H = , t^^ t^T.

Using this optimality condition and substituting t = T

into equation (35), we obtain
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T

J"i[R{t)-U(t)]e-itdtl^ie-iT

[R(T)-U(T)Je-^^ lo
^

1-e
-iT -iT>2

(1-e )

D'(T)e

(1-e )1-e
-IT

,

or

-iT
[r(T)-U(T)J e-iT _ D'(T)e-"^-iD(T)e.-iT

1-e
-iT 1-e

-iT

T

J j
[R(t)-U(t)je-i^dt|ie-iT

+
JD(T)e-iT-B]i< ,-iT

(1-e )

I.e.

"r{T)-U(T) = iD(T)-D'(T)

T

cij [R(t)-U{t)] e-itdtU D(T)e-iT.BJ (36)

Equation (36) is the same solution given by the classical

differential calculus. It can be seen that the calculus

solution requires only one differentiation while the maximum
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principle requires considerably more manipulation than that

required in the use of calculus.

A NUMERICAL EXAMPLE (1)

Assume the following information for the given chain ,

of machines:

B = Installment cost of each equipment

= $5,000. •

^

R(t) = Revenue function at time t

«= 3000 (l-.Olt), where $3000 is the beginning

annual rate of revenue.

U(t) = 1000 (1-1-0.14-t), where $1000 is the beginning

annual rate of expenses,

i = annual rate of interest

= 0.10

An estimated schedule for end-of-year salvage values is

as follows:

Tl 2 3 4 5 6 7 ^9 10

D(T) 3500 2800 2400 2000 1600 1300 1000 800 600 500

T 11

D(T) 500
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These data may be approximated by

D(T) = 5000 e"*^/^ .

SOLUTION

In order to solve equation (36) for T, it can be

written in the simplified form as

R(T)-U(T)+d' (T)-iD(T)

= _1_ |-e-^^ rR(T)-U(T)J -^ [r' (T)-u' (T)J

+ [r(0)-U(0)] + i rR'{0)-u'(0) j+iD(T)e-i^-iBU, (37)

where

R'(o)=fdRdt t = 0,
and U'(0) = ^ t =

Substituting the numerical values in equation (37),

we get the simplified form as

,-tA
2000 - 170 T

.0-lT_i

- 1750 e

- 300 + 170T - eooe^*-^"^ + -^
0.25T

. (33)

Equation (38) has only one unknown, T, which can be

solved as stated in Table 1.
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Table 1. NUMERICAL VALUES OF EQUATION (3^)

T L.H.S. of equation (3^) R.H.S. of equ. (3^)

1 468 362

2 600 Uh-7

3 663 504

4 676 540

5 649 559

6 590 558

7 505 . 565

Remark

:

L.H.S. = Left Hand Side

R.H.S. = Right Hand Side
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Fig. 3 SOLUTION OF EQUATION (38).
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Plotting the graph of each sideof equation (3^), vs.

Time, we can find out the value of T which satisfies the

equation (3^). This will be the optimum service life of

each machine in a chain of machines.

From the graph we find that T = 6.4 years satisfies the

equation (3^)

.

Hence optimum service life of each machine in the chain

is 6.1^ years. •

This service life will give the maximum value of net

present worth.

Hence from equation (15), we get

•'''
• .

^
-'

V^ =cJjfR{t)-U(t)J e-itdt+D{T)e-iT-BJ'_L__ ,

or

V^ =Y I
r2000-170t ] e-^^dt+500e~^'^-5000l'—^^—

;

. =^ ^"T"/"^
F2000-170tj + [-17o]UJ +500e-^'^-5000 L

^—Tir1-e

= $5,700.
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CASE 2 A COST MINIMIZATION MODEL (1)

The decision models which make use of a net present

worth formula, such as those presented in the previous sec-

tion, require that the following be known:

(1) A revenue function and

. . (2) A corresponding expense function (or a profit

function in place of (1) and (2)).

(3) The salvage value for all conditions of age

(4) The proper rate of interest.

The revenue function may be easily specified for a firm

which uses only a single piece of equipment in its production

process. Here, all sales revenue may be attributed to the

single machine. However, if the firm's production process

consists of a series of operations, each requiring a different

piece of equipment, then, in order to use capitalization

models, the sales revenue must be distributed back to each

piece of equipment. The problem of distributing such joint

revenue in order to determine that portion of revenue due to

each piece of equipment is very complex and has perplexed

economists and accountants for a long time (6). Before

general use can be made of this kind of model, ways will have

to be found to determine revenue functions for machines.

The expense function is, in most cases, much easier to

determine than the revenue function. The operating and main-

tenance cost of a piece of equipment in current use are often

available from accounting records. There are, of course, many
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difficulities connected with the allocation of various fixed

and seniivariable expenses to the production of a single

machine. However, the problem of estimating an appropriate

expense function is not nearly so difficult as that of

estimating revenue. Information is usually secured from

the equipment manufacturer and/or firms which have had ex-

perience using that kind of equipment.

Determining expected salvage values for various periods

of use of a piece of equipment is a problem in prediction

which is certainly hazardous. However, some knowledge of

the market for used equipment of the type in question can

often provide clues to these figures. Furthermore, in many

cases the timing of the decision is not very sensitive to

errors in the magnitude of estimation of D(T).

The selection of an appropriate rate of interest for

use in any investment decision model presents problems

which neither businessmen nor economists have bet completely

resolved. Various concepts have been pi'esented but no sat-

isfactory theory exists. In general, market rate of interest

rate is used.

In view of the difficulties just described, it is neces-

sary to make some modifications in the basic model in order

to cover the majority of situations actually encountered.

Since the objective is one of comparing alternatives, if the

revenue which the various alternatives are to produce over

time is the same, then it may be assumed a constant in the
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comparison, and the problem is turned into one of cost mini-

mization. If there are significant differences in revenue

function for the alternatives, and these differences can be

estimated, they may be treated as additions to, or substrac-

tions from, expenses and included in the expense function.

Under these special conditions, the cost is given by (1)

1 T

C = [b - D(T)e-iT -f J U{t)e-^^dt (39)

for a firm whose future is limited to the acquisition and use

of a single machine. For a chain of machines, the above cost

formula can be written in the form (1)

T .

C^ = (B-D(T)e-^'^) + j U(t)e-^^dt
1-e-iT

(40)

where

B = Installation cost of the equipment,

T = Optimum service life of the equipment,

D(T) = Salvage value at time, T,

i = Annual rate of interest.

The objective function for the case under consideration

can be written

S = Coo . (41)

The problem, therefore, becomes that of determining the

bptimiAm life of the equipment, T, so that the net present
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value of the total cost as given by equation (UO) attains

its minimum.

' OPTIMIZATION BASED ON THE CLASSICAL CALCULUS METHOD

For the optimization under consideration, the determin-

ation of the optimum upper bound, T, alone will extremize

the objective function. That is, the problem belongs to

the "zero control" category in which no decision function

is involved and, consequently, there are no trajectories

involved. This type of problem is amenable to solution by

the classical calculus.

Taking the derivative of equation (40) with respect to

T, and equating it to zero, we get

dCoo

dt i.e-iT
-D' (T)e-^'^+iD(T)e-iT+u(T)e-^'^

B-D{T)e-iT+ j u(t)e~^^dt
(1-e -iT)2

or

= 0,

U(T) + iD(T) - D (T)

l-e-iT
B-D(T)e-^'^+ ]u(t)e-i^dt (42)
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If the functions for expenses and depreciation, and values

of B and i are known, the optimum service life, T, can be ob-

tained from equation (42) by means of a numerical analysis.

SOLUTION BY THE MAXIMUM PRINCIPLE

In order to apply the maximum principle, let us define

jU(t)e"^^dt

^l(t)=^ i^- , X, {0)=0, (43)

. t .•

dx (t) r ^ it
Ju(t)e-^^dt^-(ie-iMl

"^^1^^^ = U(t)e"^^ ^ )^
J

^^ 1-e-i^ (l-e-i^)2

t

ie-^^[ju(t)e-^^dtl

= U(t)e-it ^Q ±
I---'' (l-e-i^)2

(44)

X2(t) = B-D(t)e-^^
, (0) ^0 ^^^^

^^2^^)
_ iD(t)e-^^-D'(t)e-^^ .

[B-D(t)e-^^] {-1 (ie^^^)}

dt L_^.it (l-e-^M^

= iD(t)e-^^-D'(t)e-^^ ie-^^[B-D(t )e-^^j

(l-e-i^) (l.e-^)2 ' /^.^^

where d' (t) = dD
dt •
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Since the system defined by equations (UU) and (46) is

non-autonomous (the right hand side of equations iUU) and

(46) depend explicitly on time), we shall introduce a new

state variable, x , defined by
.,; •/

dXo (t)
, fin\-1^=1 , X3(0) = t^ = 0, .

(47)

It is obvious that x^{t) = t. -^

The objective function as given by equation (41) can

now be written

3 ; .

s = :^ ex. (T)

i=l ^ ^

= X (T) + X (T) (46)

therefore, c, = C2 = 1» c = 0.

The Hamiltonian and adjoint variables are

"
i=l

^^ dF"

dx-, dx2 dxn

^1 d^ + ^2 dt~ "^ ^3 dt

ie-i^3 r Ju(t)e"^^3dt]

jRitle^l ^___ L
H l-e-^^3 (l-e-"^3)2 J
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iD(t)e-i^3-D' {t)e-i^3 ie-i^3[B-D(t )e-i^3j

+ z-

(l.e-^"3) (l-e-'"3)2

+ z^d) (/.9)

^ = *M- = (50)

z^(T) = c^ = 1

dt ~ lixo
=

z^{1) = c^ = 1.

dt "^ ~
~bXr,

(51)

(52)

(53)

r l
U(t)[-ie-^^3]

_^
ru(t)e-^^3/C-l(ie-i^3)]l

'n, (l-e-^^3)

^
(l-e-^3) ^

ju(t)dt 4ie"^^3 -le-^^3j+e-=^^3[-iVi^3]j'

-iXo,2
(1-e 3)

ie-i^3 ju(t)e-^^3 dt

'-0

T r
. .-IX'

-2 (+16-^^3)

(l.e-i^3)^

(;-(iD(t)-D'(t)j[-ie-^^3] [iD(t)-D'(t)je-i^3[-l(ie"^^3)]
;''4

(l-e--3)
'

(l-e-^^3,2 J
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- 2.

(• r-lV"3{B.D(t)e-^''3\1 4le-^^3 [lD( t je'^^J
]

a (l-e-^''3)2

ie-^^3[B-D(t)e-^^3] [_-2 (^ie-^^3 ) ]
7

"

(l-e-'^3)3 J

or

^^ V j u(t)e-^^3.i ^ iU(t)e-^^^3

r ^

2iVi^3l_ ju{t)e-^^3dt , 2 -2ix3
2i e |u(t)e"'-''3dt

(l-e~^''3)^
-ix^ 2

(1-e 3)

iie-^^3[iD(t)-D'(t)j ^ ie-^^^3[iD(t)-D'(t)]
^ ^4 (l-e-i^3) (i-e-^''3)2

i2e-i^3[B-D (t ) e-^^3j ~iV^^^3D(t)

(l-e"^''3)^

2iV2i^3[B-D{t)e-^^3j

{l-e-'^3)3

(54)

and

z^(T) = c^ = 0. (55)
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Solving equations (50) through (53) we obtain

z^(t) = 1, O^t^T.

Zp(t) = 1, 0<t^T.

(56)

(57)

Equations (54) and (55) can now be solved for z^(t)

to yield

(t) = / z^W
^U(t)e-^^i ^ iU(t)e~^^^

M -it.

2

(1-e )
1-e-It

>i2e-i4ju(t)e-iW 2iV2iYj2iV2iW ru(t)e-^^dt

M -it,

2

(1-e ) (1-e )

+ z-
ie"^^[iD(t)-D'(t)j ^ ie-2^^[iD(t)-D'(t)J

(1-e^^) (l-e-i^)2

_ iV"[B-D(t)e-^^]-iV^^^D(t)

(l-e-i^^

„.2 -2it
2i e [B-D(t)e-^M

(l-e-^^)3
(5S)

Substituting equations (56), (57) and (5S) back into

equation (49), the Hamiltonian function becomes
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r t

ie-i^ ju(t)e"^^ dtj

" ""^
, -it "

, -it.

2

1-e (l-e )

2i2e-^^rju(t)e-^^dt/
.-2it

!iV2i^[iu(t)e-^^dtl
J] _Ue~^^[iD(t)-D'(t)j

(l-e )
-iS3 J \ d-e""^)

ie-2KiD(t)-D'(t)] iV^"[B-D(t)e-^^] - iV^Dtt)

(l-e )
(l-e

^

2iV^KB-D(t)e-i^J ? 1 ^ (59,

According to the maximum principle, the optimal decision

vector, e(t), which makes S minimum makes H minimum for every

t t <^ti^T. Furthermore, the minimum value of H is. constant

for every t. V/hen T is not fixed, the value of this constant

is fixed at zero for every t. That is
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min H =S>, O^t^T.

Using this optimality condition and substituting t = T

into equation (59) we obtain

T

H = U(T)e
"^'^

ie-i^ Ju(t)e-'-^dt
'0

1-e (l-e ;

iD(T)e-iT,D'(T)e-^^ ie-^^fB-D(T)e-^^]
+ '

'
. m ; f o

(l-e"^^^i ^1:7^

= 0,

or

U(T) + i D(T) - d' (T)

^_.^ fu(t)e-^^dt +

l-e~ L

B - D(T)e"^'^ (60)

This result is the same as that obtained by the classical

calculus method.

SOLUTION OF THE COST MINIMIZATION PROBLEM (1)

V/e will use the same data as in the previous example

(of present net worth maximization), i.e.

B = Installation cost of equipment

= $5,000
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i = Annual interest rate

= 0.10

D(T) = Salvage value at time T

= 5,000 e"*^/^. •

Now, the expense function must be modified to account

for the given revenue loss over time. This may be done by

U(t) = 1000 (1 + 0.17 t)

where $1,000 is the yearly expense rate when the machine is

new.

From equation (60), we get the final relation as

U(T) + i D(T) - d' (T)

r- T
.

-itj.. . rj r\l'y\ „-lt

1-e-iT
[ U(t)e'^^dt + B-D(T) e"

UO

By substituting the given values, the above expression

should be solved for T, i.e.,

(1000 + 170 T) + 500 e"*^/^ + 1250 e""^/^

r
"^

^_ .

^ j (1000+170t) e-^^dt + 5000 - 5000 e

1"^ Lo

Simplifying the above expression, we obtain

-.35T



40

1000 + 170 T + 1750 e"*^^*^

1^^
I
-cJ2700 + 170Tt+ 3200 e^*^*^- 500 e"*^^*^

;^^-i I

(61)

In order to solve this expression, for each value of T,

L.H.S. and R.H.S. are calculated and then they are plotted

against time, T. The intersection of the two curves gives

the optimal value of T, i.e., T. This optimal value, T,

will minimize the total costs.
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Table 2. NUMERICAL VALUES OF EQUATION (61)

T, in Years L .H.S. OF E(

1 2532

2 2400

3 2337

4 2324

5 2351

6 2410

7 2495

R.H.S. OF EQU. (61)

2635

2535

2500

2460

2440

2430

2440



2600

2500

CO

X

o

CO

3:

2400 •

2300

2200

Age of fechine in Years, T

Fig. 4. SOLUTION OF EQUATION (61)
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From the curve plotted in Fig. 4, we find that

T = 6.4 years (same as previous answer).

The net present value of the total cost, C^^ for this value

of T is

6.4

f (1000 + 170t) e"^^dt + 5000 - 5J00 e
-.35T

.0

1-e

$24,2^0.

=T^

In general, Case 1 and Case 2 are different problems,

However, for this special numerical example the problems

are equivalent. In Case 1 the revenue function is given

by

R(t) = 3000 (1-0. Olt) .
' '.

and the expense function is given by

U(t) = 1000 (1+0. 14t).

•?'

,

As we are not considering revenue function in Case 2 the

expense function has been modified to

U(t) = 1000 (1+0. 14t) - 3000 (-O.Olt)

= 1000 (1+0. 17t)
'

in order to account for the loss of revenue function. The

expense function of Case 2 is equivalent to the revenue

-'
t • ... •
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function and the expense function of Case 1 and this is

why we get the optimum life of the machine the same in both

cases.

> '.•J.-
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CASE 3 A MORE REALISTIC MODEL

We assume in the models discussed previously that the

investment time, T, is solely responsible for the maximiza-

tion of profits or minimization of costs, as the case may be.

It is easy to visualize, however, that under actual conditions

there are other factors which are equally or more significant

than the investment time and which should, therefore, be

brought into the analysis. One such factor is the produc-

tion rate at which the equipment is operated. In the anal-

ysis that follows, the production rate is introduced as the

second decision variable which is dependent on time.

The manner in which the production affects the operation

of the system varies with the market conditions, the manu-

facturing process (expense function) and the type of equip-

ment used (depreciation function). These factors are not

completely independent of each other but for computational

purposes they may be considered so without lessening the

efficiency of the model.

A mathematical model which accounts for all possible

forms of variation in the system is obviously unattainable

and therefore, simplifying assumptions are made here.

(1) The company's share of the market, M , remains con-

stant throughout the investment time, T.

(2) The cost of any shortage is negligible and no in-

ventory is carried. Consequently, we can write
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O^P(t)<M^, 0£t<T, (62)

where P(t) is the production rate.

(3) The amount of maintenance and servicing required

per unit of production, M(P,t), can be considered as a fun-

ction of the commulative service (production) obtained from

the machine and can be approximated by the relationship (12)

M(P,t) = a (l-e-^P^(t)) (63)

where a and b are constants and P (t) is the cummulative

production at time t, i.e.,
'

t

Pl(t) =
J*

P{t)dt. (64)

The constants a and b can be determined from the company re-

cord (or manufacturer's data) on similar machines in the

past. The unit of 'a' can be written as $ per unit time per

unit of production whereas that of b can be written as per

unit of production.

The graphical presentation of equation (63) is shown in

Fig. 5. It is interesting and enlightening to provide some

interpretation (12) of the result contained in Fig. 5 which

shows that maintenance cost per unit of production begins at

zero when a machine is placed in service and rises at a uni-

formly declining rate, reaching a horizontal plateau after a

certain level of cummulative production is reached. Of course,

the nature of this function is going to depend partly on the
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PRODUCTION
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firm's maintenance policies; it is not a technical relation

in the strict sense, as it reflects suboptimal behavior.

Assuming, however, that the general characteristics of this

function hold for typical machine maintenance policies, we

will try to give explanation for this type of behavior.

Reflection will show that a relatively simple stochastic

failure model will generate this observed maintenance cost

fundtion. When a machine is new, each of its component

parts is new, and each of these parts is subject to a pro-

bability failure density, with age (cummulative production)

as an independent variate. These probability densities will,

in general, be different and have different expected values.

As a machine renders production service these parts begin

to fail, with the parts of lowest expected life tending to

fail first and so forth. Very few parts fail early in

service, while more and more fail in later service. Hence,

the maintenance cost curve tends to rise. Eventually, how-

ever, the past replacement of parts creates a machine with a

more even age distribution of component parts, rather than a

distribution heavily biased by relatively new parts as is

the case in the early periods of service. Once the ages of

the many component parts begin to fall into a wider distri-

bution, the failure of individual parts tends to become

random with the average maintenance cost rate approaching a

constant level.
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It is believed that this explanation will describe

adequately the behavior of any complex mechanical system

composed of a large number of component parts, such as

automotive equipment, pumping equipment, various kinds of
'

automatic conveying and mechanical fabricating equipment

and so on. Therefore, one might expect the maintenance

cost function of Fig. 5 to be typical of many complex

mechanical systems.

From equation (63), we can see that

M(P,t) = 0, when P^(t) = 0, at t =

and '^
•

M(P,t) approaches nearly 'a' when P-'-(t) tends to be larger '•

with the increase in service time t of the equipment.

(4) We assume E to be the fixed overhead cost associ-

ated with the machine {$ per unit time).

We assume C^ to be the variable cost associated with the

machine ($ per unit time per unit of production).

(5) With the total installed cost, B, and a constant

rate of depreciation, k, the salvage value of the machine at

time t is given by

D(t) = Be-kt
. ^^^j

Using the cost minimization per unit of production as

the criteria for optimality we write

C - Cost per unit of production
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Vpf^-'l-e-^"^'^') e-itdt+—

^

p1(t;

_ D(T)e-^'^

P^{T)

(66)

where

P-^(T) = Total production at the end of the optimum life,

T, of the machine

T
= j P(t) dt.

The term under the integral sign in equation (66) represents

the present worth of all the expenses per unit of production

except depreciation. The two terms outside the integral sign

may be understood as the net cost per unit of production of

buying the equipment and selling it at a price D(T) after T

years of use.

Substituting equation (65) into the equation (66) we

obtain

' = l^-pf^a(I.e-b''^(t), e'^^dt+^pl
P^{T)

Be-(^-^i)T

pl(T)

L -J

,-it,,,B(l-e-C^-i)T,
_ ,,^,

P^(T)

Our objective is to minimize the value of C as given in

equation (6?) by choosing the most profitable rate of produc-

tion, P(t), during the optimum investment time, T. We shall
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try to accomplish this through the use of the maximum

principle.

OPTIMIZATION BASED ON MORE REALISTIC MODEL

To apply the maximum principle let the production rate

be the decision variable, i.e.,

e(t) = P{t), O£0(t)^e,
max (6g)

The state variables are defined as follows;

x^(t) = a{l.e-^->^©^^)dt)
^ (69)

dx

3t^ = ab0(t)e-^-''6(^^dt
, x^(0) = 0, /,

.
- (70)

X2(t) =£!>! J
, (71)

je(t)dt ,.

d^2 [ie(t)dt] B(k+i)e-^^+^^^-B(l-e-^^"^^^^) e(t)
dt

r je(t)dtj

x,(0) = 0,

=;['x,(t)= Ho. .^.x^ e~^^dt
,

(72)

(73)

dxo

^^eft- + xJ e-i^
, X3(0) = 0, (74)
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X (t) =
J

e(t)dt
, (75)

dx.^ = 9(t) , x^(0) =0. • (76)

Since the system defined by equations (70), (72), (74)

and (76) is non-autonomous (the right hand sides depend expli-

citly on time), we shall introduce an additional state var-

iable Xr, defined by

X5(t) = t
, (77)

dxc^ = 1, x^(0) = t^ = 0. ; (73)

The objective function to be minimized now becomes

S = ^ c.x. (T)
i=l ^ ^ ^ -

«= X2(T) + x^(T). (79)

Therefore,

Ct = c, = c = 0,

c^ = c^ -= 1.
2 3

The Hamiltonian function and adjoint variables can be

written as

i=l i dt~
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cbc.

Substituting respective values of — , i=l, 2, ..., 5

from equations (70), (72), (74), (76) and (73) we obtain

H = z^abe(t)e''^^4

^ fx,B(k+i)e-^^^i^^5-B(l-e-^^-'^^^5) e(t)

n-

C + —

E

fcy e"'-'^5+z^e(t)+z^(l)
,

(SO)

^^1 = "^H
- z.e-^^5

Ztl(T) = c =
,

(Si)

(a2)

dz

dF
2 _ '^H _= ,

Zo(T) = c^ = 1
,

-.^\ - r'

(83)

(S4)

dzo

Ht
"^^

z^(T) = c «= 1 ,

(85)

(86)

^ _|^ . z,ab^e(t)e-^-4.z,{B(..i)e-^^-^)x,

2B(l-e-^^-^^^X5) 9(t)
^3 } (87)
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2^(T) = c^ =
, m)

dz

dt "bx^ ^2

x^B(k+i )2e- (k+i )x5+B(k+i je"
^^"^^ ^^56 (t

,

+ z-i c + E
+ X,

V e(t) 1
6-1^5

,

z_(T) = c^ = 0.

(89)

(90)

Solving equations (83) through (86) we obtain

z^it) = 1
,

Z2(t) = 1
,

0-^t<T .

(91)

(92)

Substituting equations (91) and (92) into the equation (80)

and separating terms we obtain

H = Variable portion of the Hamiltonian which includes

the decision variable, e(t) + the portion of the

Hamiltonian which does not include e(t)

«= H* + H remainder

or

H = H«+.B(k+i)e-^^+^^^5 +
[cv-^^l] e- IX 5 +z

5
' (93)

where

H'«' = z^abe(t)e~^^4 - B(l-e-^k+^)x5) e(t
. 2
^4
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^mtj^'^''^ ^ V^'^

z abe 4 _ B(l-e-^^^^^^$) ^

.2 ^r^^^^efo^""^

(94)

The optimum value of e(t) can be obtained by taking the

partial derivative of equation (94) with respect to e(t)

and then equating it to zero, i.e.,

--, = 1 z^ abe 4
-bx _ B(l-e-^^^^^^^5) + -^ e 5

,

or

Simplifying equation (94), we obtain

J-
(95)

e(t) Ee-"^5

yx2z^abe-^-4.B(l-e-^^^i^^5) + z^x^j ^
(t) . (96)

Substituting equation (92) into equation (61) and then

integrating the resulting equation, we obtain

.(t)=^^+c (97)
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where c is a constant of integration. Using the boundary

condition z (T) = 0, we obtain

c = - ^
i

and hence from equation (96), finally

z (t) = £L_z£!i_ , 0<t^T. (9S)
1 1 ^

Substituting equation (9^) into equation (96) we obtain

/

e(*.) J^ Ee~-^^5

F; ^ -e abe 4-B(l-e -^)+z.X)4^4
r^4^^.^

(99)

Equation (99) gives the optimum value of 0(t), as a continuous

function of time.

In order to solve 0(t) from equation (99) explicitly

as a function of time, we need to solve equations (70), •

(76), (78), (87) and (99) simultaneously. An attempt has

not been made to solve these simultaneous differential

equations as it might involve complex mathematical situa-

tions. Instead, a simplifying assumption is made which

considers production rate as a constant over the life of the

equipment in the numerical problem which follows the theo-

retical analysis. In order to solve those simultaneous

differential equations, a further study by numerical methods

is required.
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It remains to be determined what the optimum investment

time T should be. According to the maximum principle, a

condition for optimality is obtained by making use of the

fact that min H = for O^t^T. It should be noted that

in order to minimize objective function, the Hamiltonian

function should be minimized. Putting t = T in equation

(Bo) we obtain

min H = z (T)ab0(T)e~^^4(T)

+ 2 (T) f x^(T)B(k+i)e-^^-^^^^-B(l-e-(^^^)T)e(T)

1 [x,(T)j2

fT) [c^+efTT+x^(T)] e-^Vz^(T)0(T)+z^(T).Z3

= . (100)

|; Substituting equations (82), i&U) , (86), (88) and (90) into

I
equation (100) we obtain

'^ x,(T)B(k+i)e-"<+i'f-B(l-e-"'+i)T)e(T)

K"'']'

L
x^(T)Je--

E_ + V (r\ ] o-iT =
''v ^ etry

" ''^^'^^ '^ ^ °'

or

x^(T)B(k+i)e-^^'"i^'^-B(l-e-^^-'i^T)e(T)
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^^efrT^'T* -""J\'T)
=

I.e.

,

4

Be(T) - c,+ -Att + x^iT)] e-^^rx^{T)J^" em " ^1

X • 6 • y

gg-(k+i)T
|^x^(T)(k+i)+e(T)]

Be{T) - [V«fTT"=<l(T'J --'"-.[x.fT)]

I.e.

,

Be-(k+,),J'^'^-['^'mf\^'^^'''[\^'^]
X, (T)(k+i)+e(T)
4

This equation can be used to find the optimum investment

life, T, of the equipment when 0{T), x (T), x, (T) and
± 4

other constants are known.

Solution of the Numerical Problem

In order to simplify the numerical analysis we assume

that production rate is constant throughout the service

life of the machine. With this assumption, from equation

(75) we obtain
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(t) = j dt

•= et, 0-^t<T.

Substituting this value in equation (101) we obtain

Be-(k+i)T =
Be- ^c^+|fa(l-e-beT )]

e-^T ^

e rT{k+i) + 1
j

B- [c^+|+a(l-e-beT)j ^-iT ^ q^2

(k+i)T + 1

Q2.p2

(102)

(103)
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DATA FOR THE NUMERICAL PROBLEM

The following data is provided for a particular type

of machine.

The installation cost of the machine, B = $20,000.

Fixed overhead costs, E = $250 per unit time.

Variable costs, C^ = $0.60 per unit time per unit of

production.

Depreciation rate, k «= 0.30 (exponential)

Annual interest rate, i = 10^

Market share, M^ = 500 units per unit time

Machine Capacity, ^^it) = 700 Units per unit time

The maintenance cost function for the machine is given by

M(P,t) = a(l-e-^®^)

where

a = 0.40, $ per unit time per unit of production,

b = S.I+ X 10"^ per unit of production,

= average rate of production

«= mint

= 500 units per unit time

Solution:

In order to find optimum investment time, T, we can

use the equation

Ms
P (t)
^m

Be-(k+i)T=
B- -E -bOT'Cyf^-fa(l.e-°"M

(k+i)T+l

.-iT X OT'

(104)
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Table 3 NUMERICAL VALUES OF EQUATION (104)

1

2

3

4

5

6

L.H.S. of equ. (104) R.H.S. of equ.

$
(104)

13,400 13,890

9,000 ' 9,900

6,020
^'' '

6,980

4,040 4,750

2,710 ,-.
' 3 , 000 r

1,320 . r 1,618 ^
".

,
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\

CO

CO

20,000

16,000

12,000 -

g,000 -

4,000

•v .:»

Age of Machine in Years, T

Fig. 6. SOLUTION OF EQUATION (104).
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From the graph in Fig. 6, it is seen that the optimum

investment life of the machine is

T = 5.70 years.

The present worth of total expenses per unit of produc-

tion can be found from the equation (66) as
,

- i [s
E -bet+
I +a(l-e-°^^)

J
e"-^"dt+i

5.7

= j To. 60+0. 50+0. 40(l-e"*^^^)

.

^

-it,.. 20^000(1-6-^)
e ^''dt+

500 X 5.7

5.7^7 + 6.3

$12.0^7 per unit of production.

.*:-::vi,,,A'
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CONCLUSION

This report provides a comparative study of the con-

tinuous maximum principle. It can be seen that for first

two cases the classical calculus method is comparatively-

easier than the continuous maj^imum principle. However, the

results obtained by both the methods are same which proves

the validity of the continuous maximum principle. Case 3

cannot be solved by the classical calculus method due to

the complexities involved in handling such models by this

method, the maximum principle definitely shows a method

to solve such problems.
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The objective of this report is a comparative study

of applicability of the continuous maximum principle. The

problems treated are those of finding the optimum investment

life of the "diminishing efficiency" type of equipment so as

to maximize the net present worth of the investment or to

minimize the net present worth of all expenses on the equip-

ment .

Three cases have been considered in details in this

report. Case 1 deals with the finding of the optimum in-

vestment life of the machine so as to maximize the net present

worth of all returns on the investment. Sometimes it is

difficult to allocate a portion of revenue to a particular

machine when many different operations are carried on the

same product by different machines. In order to avoid this

difficulty Case 2 deals with the minimization of the present

worth of all expenses on the machine. These two cases deal

with the replacement problem for a chain of machines. Case 3

deals with a more realistic model than that of Case 2 by

taking into account production rate as the second decision

variable. It also considers variable costs, fixed costs and

maintenance costs separately. The problem is to minimize

the present worth of the sum of all costs (including depre-

ciation) per unit of production.

A numerical problem has been solved for each of the first

two cases in order to show the validity of theoretical results

obtained. For third case, as it involves a number of



simultaneous non-linear differential equations, a further

study by numerical methods is required.

Case 1 and Case 2 are "zero-order" control problems

in which the application of variational techniques is not

advantageous. Although much more computations are neces-

sary in finding the solution by the maximum principle as

compared to the classical calculus method, it certainly

gives a correct solution. Case 3 cannot be solved by the

classical calculus method due to the complexities involved

in handling such models by this method, the maximum prin-

ciple definitely shows a method to solve such problems.


