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Abstract 

The process capability is a measurable property of a process related to the specification of a 

product. Traditionally, process capability analysis (PCA) measurements are expressed by a 

process capability ratio (PCR). When using a typical PCR to measure process capability, there are 

certain assumptions, and critics have been made towards PCR, that some the assumptions are 

violated. Much research has been conducted to ratify the situations when some of the 

assumptions are violated. This thesis, is going to demonstrate a research towards process 

capability using Sample Entropy method. The desirable outcome would be that this method can 

avoid violating the assumptions. 
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Chapter 1 - Introduction 

A good process control method aims to maintain all production-related elements in a 

good condition in order to obtain consistent and desirable product quality. Production 

elements include tools, materials, methods, workers and the combinations (Keller & Pyzdek, 

2003). One way to quantify the performance of a process is the measure of process 

capability. 

The process capability is a measurable property of a process related to the specification 

of a product (Bothe, 1997). A precise and meaningful process capability measurement can 

provide critical information for process analyst. On the contrary, faulty process capability 

measurement fails to reveal what is really happening in a process and may lead to incorrect 

conclusions, which may cause severe consequence. Traditionally, process capability analysis 

(PCA) measurements are expressed by a process capability ratio (PCR). 

1.1 Problem Statement 

When using a typical PCR to measure process capability, there are certain assumptions: 

1) the quality attribute is normally distributed; 2) the process is statistically in control, and 3) 

the process mean is centered. Practitioners have emphasized that PCR should be used in a 

state that the process is statistically in control (Lin and Sheen, 2005), and critics have been 

made towards PCR, that some the assumptions are violated. Much research has been 

conducted to ratify the situations when some of the assumptions are violated (Wei  et al 

2009; Pearn et al, 2014; Yum and Kim, 2009). 

Process capability ratio is widely used in industries, which is an important part of 

process capability analysis. Montgomery stated the purposes of a PCA study include the 

following: 

1. Predicting how well the process will hold the tolerances 

2. Assisting product developer/designer in selecting or modifying a process 
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3. Assisting in establishing an interval between sampling for process monitoring 

4. Specifying performance requirements for new equipment 

5. Selecting between competing suppliers and other aspects of supply chain 

management 

6. Planning the sequence or production process when there is an interactive effect of 

process on tolerances 

7. Reducing the variability in a process 

PCA should be implemented throughout a product lifecycle, including product design, 

process design, supply chain management, manufacturing planning, and manufacturing 

(Montgomery, 2009). Practitioners often use a ratio to quantity PCA results. Kotz (2002) 

concluded that a state of statistical control should be established before using these indices. 

Specifically, a univariate quality characteristic (QC) should be independently and identically 

distributed (i.i.d.) before a PCR index is calculated. If distribution parameters such as mean 

and/or standard deviation change, the identical distribution assumption will fail. The PCR 

ratio computation will not be valid.  

In order to overcome the disadvantages of PCR, we propose an alternative non-

parameter method that can quantitatively measure process parameter changes. The 

proposed method should acutely identify whether PCR’s assumptions are met or not. If the 

PCR assumptions are violated, the proposed method should be able to pin point the change 

points in the time series generated for the quality characteristic of interest. 

1.2 Potential Solution Approaches 

Among several change detection methods, several Entropy methods are most likely to 

meet our expectation. Entropy has been used as a measure in detecting chaotic time series 

(Nair, 2014). It treats all time-series indifferently, and reports the stability of a process as 

reflected by a time series. Though entropy handles non-identically distributed data, it cannot 

be used for process capability directly. SampEn performs well in identifying variance changes 
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but not mean shifts. In chapter 3 of this research, we explain the discovery of this property 

in details. Adjustments are needed for implementing SampEn for process capability study. 

The fundamental algorithm is derived from Shannon’s (1948) theory by Kolmogorov 

(1998).  The original entropy theory was based an infinite time series. Researchers have 

developed computational entropy heuristics algorithms for finite input data. Approximate 

Entropy (ApEn) from Pincus (1991), and Sample Entropy (SampEn) by Grassberger (1983, 

1988) are most widely used methods. Richman and Moorman (2000) criticized ApEn for 

outcome inconsistency when sample size differs. In a process capability study, a failure to 

check the stationary assumption of a production data set will cause inaccurate result, and it 

may even result in opposite conclusion. The existing Entropy methods introduced so far have 

potential but can only detect variation changes and are not very consistent. 

Grassberger’s SampEn algorithm (1983, 1988) produces consistent outcomes for 

different data lengths. Thus in this research, SampEn is implemented as the foundation of 

the process capability measurement. Though SampEn is a good tool for detecting noise, it is 

not able to capture process mean shifts, which is a significant disadvantage because mean 

shifts are often observed in out-of-control processes. If there is a way to adjust SampEn to 

enable it to capture mean shifts, it may become a good tool for validating process capability 

study. In the next section, we will describe the proposed method to enable adjust SampEn 

for the research question. In chapters 2 and 3, we will introduce and discuss the 

computational aspect of entropy in more details. 

1.4 Expected Results 

The decision making related to the use of the proposed method is the following. In 

cases where only mean shifts are presented in the time series, the combined results from 

the proposed AdSEn and SampEn would reveal that there are changes in AdSEn but not in 

SampEn. For variance-change only cases, both AdSEn and SampEn should indicate changes 

of similar magnitudes. Finally, when both mean and variance have changed, both AdSEn and 
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SampEn results should indicate changes but with different magnitudes. The proposed AdSEn 

should indicate a larger entropy change. 

 

We expect that the proposed method will overcome the disadvantage of SampEn algorithm. 

Specifically, the proposed method should have the following capabilities: 1) AdSEn is able to 

detect both mean shift and variance change, 2) the numerical measurement has a high level 

robustness to handle various situations, and 3) the proposed measurement can return a 

meaningful conclusion regardless of changes in data patterns and distributions. 

 

1.5 Organization 

The organization for the rest of this thesis is the following. Chapter 2 describes the 

deficiency of PCR, and lays the theoretical foundation of the proposed methodology AdSEn. 

Chapter 3 introduces the proposed methodology and provides a real-world example to 

demonstrate how the proposed method can be implemented. Chapter 4 presents a 

simulation study to quantify the properties and robustness of the proposed methodology. 

Finally, chapter 5 summarizes the proposed research and outlines future research 

opportunities. 
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Chapter 2 - Literature Review 

In this chapter we will review literature related to process capability analysis and 

entropy analysis. In section 2.1, we review the literatures on traditional process capability 

study methods. Section 2.2 discusses the fundamental of entropy, and the choice of the 

SampEn algorithm over the ApEn algorithm. Finally, we will review other applications of 

SampEn in section 2.3. 

2.1 Process Capability Index Background 

Process capability analysis is a vital part of an overall quality-improvement program 

(Montgomery, 2009). Process capability methodologies have been reviewed by many 

researchers (Juran, 1974; Kane, 1986; Boyles, 1996; Kotz, 2002; Wu, 2009). Kotz and Johnson 

(2002) conclude that we need to establish a state of statistical control before process 

capability ratios (PCR) can be computed. Examples of PCR include    (Juran, 1974) ,      

(Kane, 1986) and     (Montgomery, 2009). These three PCRs are measurements of 

uniformity for univariate processes. They are quantitative indices of a process’ ability to 

meet specification requirements under the assumptions that: 

1. The quality attribute is normally distributed. 

2. The process is statistically in control. 

3. The process mean is centered. 

We have following PCRs: 

   
       

  
  Equation 2.1 

where 

USL: upper spec limit, 

LSL: lower spec limit, and   is the standard deviation of the QC. 

There are also cases that measure one-sided specification limits: 

    
     

  
  Equation 2.2 
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  Equation 2.3 

Montgomery (2009) states that those assumptions are critical to the analysis result. 

Misusing PCR will lead to invalid results and induce inaccurate conclusions. For example, 

when a process mean deviates from the center (target),    will remain the same value. Note 

that the third assumption is violated in this case.     obeys the assumptions 1 and 2, but 

relaxed on the third assumption, so it can measure the stability for non-centered processes. 

In other word,     can measure mean shifts in a process. 

                  
                    

  
  Equation 2.4 

There are research works relaxing the normal assumption. Practitioners use     to 

measure non-normally distributed processes. In Equation 2.5, notation X means a series of 

input variable,   
 

 
          is the process target value. In practice,   

 

 
 is usually set 

to 7.52 to represent a 6  control level. 

    
       

  
 

 
      

  Equation 2.5 

However, though constraints are relaxed, all existing PCRs assume that the estimated 

variance remains the same throughout the entire calculation. In other word, this is an 

assumption that all observations are from the same distribution although they may be 

collected over a long period of time. In a real production system, this assumption is rarely 

true. 

2.2 Entropy Background 

Entropy has been utilized to measure how chaotic a signal is (Nair, 2014). Shannon 

(1948) was the first to use the concept of entropy on information theory. Kolmogorov (1998) 

laid the theoretical background for entropy algorithms. He stated the following assumptions: 

1) there exists a constant p, pϵ [0, 1]; 2) an N sized random table T is called (n,ε) in   , 

A=R(T), Rϵ   with number of elements V≥n; 3) the frequency   
 

 
       satisfies the 

inequality |      |≤ε.  
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Define (n, ε, p)  as the randomness, then there holds the following two theorems: 

Theorem 1: If the number of elements of the system    does not exceed 

       
 

 
     

 then for any pϵ [0, 1], there exists a table T of size N that is (n, ε, p) 

–random with respect to   . 

 Theorem 2: If   
      

  
                  , then 

        
 

 
       Equation 2.6 

In the original Kolmogorov entropy theory, the length of data taken into consideration is 

approaching infinity, which is not practical for real-world applications such as quality control. 

Pincus (1991) proposed an Approximate Entropy (ApEn) to measure system complexity in 

term of process changes. Each data set should contain at least 1000 data points. ApEn(m, r) 

takes a positive integer number m as the size of the vector, and a positive number r as the 

threshold, in term of the size of the overall standard deviation from the process. Pincus 

(1991) defines that a time series   with equal time interval has N points where   

            . We can divide   into N-m+1 vectors. For each m dimensioned vector, 

namely                       , 1≤i≤N-m+1. The distance between           is defined 

as:                               , where kϵ[1,m]. Define: 

  
     

                         

     
  Equation 2.7 

as the count of distance less than r of vector i of m dimensions divided by the number of 

different vectors N-m+1 and 

      
   

         
 

     
  Equation 2.8 

as the accumulation of   
    . Then 

      
   

         
 

     
              Equation 2.9 

The numerical result of ApEn can be calculated by: 

                   Equation 2.10 
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The computation of ApEn can be accomplished by a function approx_entropy() under 

pracma package in a computer language R (package ‘pracma’) for calculation purpose 

(Borchers, 2014). 

Richman (2000) and Lake (2002) criticized ApEn for outcome inconsistency when 

sample size differs. A possible remedy is the use of sample entropy (SampEn) proposed by 

Grassberger (1983, 1988). Richman (2000) and Lake (2002) made a comparison of SampEn 

to approximate entropy and pointed out that SampEn does not include self-match, which 

means the distance defined by (Pincus, 1991)                                does 

not consider the case when i=j in SampEn. That is the equations (2.8) and (2.9) can be 

revised to the Equations 2.11 and 2.12. 

  
     

                         

   
  Equation 2.11 

      
   

       
 

   
  Equation 2.12 

Similar to ApEn, this counting mechanism enables SampEn to detect variance 

changes. The difference in                       records the largest difference in 

neighbor vectors     and   . The selected threshold r is a 0 to 1 fraction of overall standard 

deviation of the dataset.  If the maximum distance is greater than a selected threshold r, that 

Equation 2.11 will not record this count. If the sample dataset becomes noisier (i.e. with a 

higher standard deviation) as time progresses, a larger          would occur, meaning that 

the less counts will be recorded for           . Equation 2.13 provides the numerical 

result of SampEn computation. 

                 
       

     
  . Equation 2.13 

According to Richman (2000), SampEn output shows higher consistency in different 

data length than ApEn. For the purpose of change detection in process parameters, we 

would require a reliable tool. Consequently, SampEn should be chosen over ApEn in this 
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research. There is also a function sample_entropy() available under the pracma package, for 

performing SampEn algorithm calculation (Borchers, 2014). 

Multi-scale Entropy (MSE) proposed by Costa (2002), is based on a multiple time 

scale concept. The author utilized the concept of multiple time series in one spanned 

physical system. The idea is to divide a time series into   equal length segment, and 

performed SampEn algorithm to each segment. Given a one-dimensional discrete time 

series,             , he constructed consecutive coarse-grained time series,       , 

determined by the scale factor,  , according to the equation:   
   

 
 

 
   

   
           . For 

scale    , the time series        is simply the original time series. SampEn was calculated 

in an integral of a series of continuous variable  . In our research, we are going to adopt the 

concept of multiscale to provide more information for each segment, but the analytical 

computation will not be identical to the original method. 

It is a good idea to examine the entire time series for detecting out-of-control 

portions. This can be accomplished by implementing analysis on various segments of this 

time series. The numerical outputs would allow the detection of heterogeneous 

distributions with a time series. Thus in our research, the multi-scale concept is adapted, 

and SampEn will be utilized as the numerical analytic tool on segments of the entire process 

data set or time series.  

2.3 Entropy Applications 

SampEn applications can be found in physical and biological applications. Aboy (2007) 

implemented SampEn on biomedical analysis. This characterization study provides 

additional insights regarding the interpretability of SampEn in the context of biomedical 

signal analysis. 

In manufacturing, entropy has been used as a diagnostic tool. Liu and Han (2014) 

utilized multiscale SampEn (MSE) for roller bearing fault diagnosis, more specifically, to the 

experimental bearing vibration signals analysis. In this article, MSE result is not the only tool 
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used, the author implemented the MSE result as a summary statistics for BP (back 

propagation) neural network model. A similar application of multiscale entropy on fault 

diagnostics can be found within manufacturing practitioners in recent years, such as Wu, et. 

al. (2012). 

 Inspirationally, Martı´nez-Olvera (2012) has utilized entropy as a tool of quality 

assurance. The author proposed the use of entropy as an indicator measuring manufacturing 

complexity by developing an indicator of the impact the BOM (bill of material) structure. He 

also provided an entropy-based complexity measure that allows an objective mean of 

comparing system performance. Though not using SampEn, his adoption of entropy to 

measure enterprise resource management, manufacturing complexity, and quality assurance 

is very close to goal of the proposed research of this thesis. 

 Another motivational research is from Oprean and Bucur (2012). Based on Shannon’s 

original entropy guideline, he developed quality-entropy algorithm. This research identified 

two sources of quality entropy – one defined by Markovian and the other by Bernoulli 

properties. The quality entropy computations allow multiple quality characteristics to be 

summarized at a specific time. The simulation is successful in accessing tolerance in that 

whether the quality characteristic is perceived as tolerable or not. Since one of the 

assumptions is based on Markovian property to estimate probabilities, it may become 

restrictive for some applications, for example, extending the application to machine learning. 

2.4 Literature Review Conclusion 

From our literature search, we can conclude that:  

1) PCA is critical to an enterprise;  

2) Practitioners have started using entropy in the field of quality assurance; and  

3) SampEn is not widely used in manufacturing.  

In this study, we aim to explore the feasibility of utilizing SampEn towards a PCA 

study. The existing SampEn algorithm is not yet capable of handling PCA yet. Basic research 

is needed to enabling it.  
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Chapter 3 - Proposed Methodology: Input Adjusted SampEn 

The goal of this research is to study the use of SampEn towards process capability 

analysis. We have discovered that the algorithm based on Equation 2.11-2.13, SampEn is 

good at detecting variance changes. It records the cumulative probability of data point 

falling in a threshold when vector length is set to m. As explained in section 2.2, this 

cumulative mechanism is based on the overall variance of a time series, and it enables 

SampEn to detect variance changes. However, the algorithm developed by Grassberger 

(1988) does not have any element related to mean level shifts detection. For example, 

consider a time series shown in Figure 3.1 where the simulated data are from three 

different distributions. The first data segment is from N(0, 1), the second from N(1, 1), and 

N(2, 1) for the third. This distribution combination is repeated 100 times and the values of 

SampEn are generated for each segment. Figure 3.2 shows the boxplots of these SampEn 

values according to their segments. It is clear that the entropy levels do not differ much 

from segment to segment. Consequently, SampEn cannot be applied directly for process 

capability measurement. Adjustments are needed to enable SampEn to detect mean shifts. 

 

Figure 3-1 Example time series dataset, distributed as N(0, 1), N(1, 1), and N(2, 1) 
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Figure 3-2 Boxplots from 100 replicated experiments for the data distributions of Figure 

3.1.  

We will consider two approaches to tackle this problem: 

1. Cumulative Sliding Window and Multi-Scale Approach: Implement SampEn 

algorithm on cumulative sliding windows (Du, 2014) and apply multi-scale 

mechanism (Costa, 2002) on the time series of interest. By studying the outcome of 

SampEn algorithm, we may be able to determine whether this approach can be 

applied for process capability studies or not. 

2. Input Transformation Approach: Modify the inputs to SampEn to enable the 

SampEn algorithm to detect both mean and variance abnormity. 

In the following sections in chapter 3, we will discuss each approach in details. 

3.1. Cumulative Sliding Window and Multi-Scale Approach 

The most direct approach is to apply SampEn computation on different parts of a time 

series. This proposed approach follows these steps: 

1. Break the entire dataset into several equal length subsets assuming the first subset 

x1 is the template, 

2. Select the threshold r according to x1’s standard deviation, 

3. Calculate the SampEn of an initial small segment data denoted as   . When the next 

segment of data is available, it is merged into   , denoted as   . Again, we calculate 

the SampEn on   . In a cumulative fashion, all entropies of entire dataset can be 

calculated on                assuming k segments in the dataset under study. 
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By cumulative sliding window, we mean that for example, in sample data set shown in 

Figure 3-3,    represents the SampEn output of the first segment, from 1 to 300 in Figure 3-

1,    is the time series from 1 to 600, and   , where k=3 is the segment from 1 to 900. The 

goal of this exercise is to make sure that the process is stationary, i.e., the process mean and 

standard deviation stay unchanged. Under the stationary condition, the result from existing 

process capability study is valid. 

 

Figure 3-3 SampEn output with cumulative sliding window method for    

This approach has the ability of detecting mean shift in most scenarios, but it cannot 

return a conclusive quantitative result consistently because the entropy output values 

depend on both data lengths and data change patterns. We have found that the longer the 

mean shift portion is, the higher the value will be. The difference can be seen from Figures 

3.4 and 3.5. Dataset for both figures are consisted of two segments, 900 data points in total. 

The first segment is N(0, 1), and N(1, 1) for the second. The only difference is that the data 

length of the segments. For Figures 3.4 and 3.5, the first segment is 600, the second 300, 

and for Figure 3.6 and 3.7, both segments are 450 in length. According to the different 

patterns revealed from Figure 3.4 and 3.5 we can see that this fixed length cumulative 

sliding window will be subset data length dependent, the output does not return a 

consistent evaluation of a process. 
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Figure 3-4 Time series plot of ts=c(rnorm(600,0,1),rnorm(300,1,1)) 

 

Figure 3-5 Dataset consisted of first 600 points from N(0, 1) distribution and followed with 

300 points from N(1,1) 

 

Figure 3-6 Time series plot of ts=c(rnorm(450,0,1),rnorm(450,1,1)) 
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Figure 3-7 Dataset consisted of first 450 points from N(0, 1) distribution and followed with 

450 points from N(1,1) 

Regarding to the change patterns, the case under consideration is the mean level shift 

up x unit, and then drops down 2x unit so that each segment has ±x unit mean shift from 

original mean level as shown in Figure 3.8 and 3.9. 

 
Figure 3-8 This dataset is consisted of 3 segments, the first is from N(0, 1), followed with 

N(-1,1), and thirdly N(1,1) 

 

Figure 3-9 SampEn output of dataset from Figure 3.6 
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In Figure 3.9, though larger mean shifts in the last  segment, the SampEn computation 

results show that the entropy value of    (1-900 observation) is smaller than that of the 

second subset    (1-600 observations). So this cumulative-entropy computational approach 

will not be able to distinguish the magnitude of changes in this case. This example also 

confirms that the existing SampEn algorithm cannot be used for detecting mean level 

changes within a time series. 

Another alternative is using the concept of multi-scale method (Costa 2002), that is, to 

take each segment individually instead of cumulatively. However, revisiting Figure 3.1 as an 

example of a time series with three segments, we observe that, the second and third 

segments return the same entropy values as the template since there is no change in 

variance. The multi-scale may be helpful in detecting variance changes, but not mean shifts. 

Thus other approaches should be considered to make SampEn a tool for process capability. 

3.2 Input Adjustment Approach 

In order to enable SampEn to be sensitive to time series mean shifts, we propose to 

make adjustments to the input data. The proposed strategy is to embed a mean-level 

change into the existing input data stream. Let the transformed value   be a representation 

of the original dataset  , thus both mean and variance changed of   can be represented in 

SampEn outcome of  . We now consider several possible alternatives for transforming the 

raw time series x into  . 

 3.2.1. Multiplier Transformation 

Assume data set                 has a mean of μ, and standard deviation σ, then 

when       where c is the multiplier that transforms the raw data   into  . The mean of 

  will be    .  Note that                        , and, therefore:          

      . Here   can be either the process target value or the sample mean of template 

dataset. This fact lays the foundation of       transformation when this multiplier   is a 
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constant. It is easier to represent mean shift in term of target μ, or the estimated mean of 

the template data subset.  

A. Plan 1: Multiplier    
  

 
 

In this method,   is defined as expected mean of input variable  , and     is the 

estimated mean of the ith segment. By multiplying  , it is transformed into  . The variance 

change in   will be reflected in   according to                 , and the mean shift can 

be represented by this transformation via multiplier 
  

 
. Note that    

   

 
 contains the 

element of mean, so any deviation from   can be captured by the ratio 
   

 
. The multiplier will 

pass the mean deviation in   into   with the relationship                 , thus mean 

shift becomes detectable with this multiplier transformation. 

However, 
   

 
 multiplier has disadvantages. First, when the target  is 0,   will always be 

infinity. Plan 1 also suffers another scale issue in that the mean levels are different for 

different problems. There will be unintended results just due to the magnitude of means. 

For example,   =10000, then a shift to 10,001 will result in no effect because 
   

 
 will be very 

close to one, the transformed input variable   will be almost identical to  , the input 

variable before transformation. But if   =1 then an increase to 2 would double the 

magnification effect. In this scenario, the use of 
   

 
 as the multiplier will fail, so other 

transformation methods should be considered.  

It is important to point out that in multiplier transformation,    has to be a constant for 

equation                  to stand. In our research,     is estimated from the ith data 

subset. However, by the time of transformation,     is a known value, consequently, the 

multiplier 
   

 
 is a constant in transformation,                  holds. 

B. Plan 2: Multiplier     
    

 
 

In another approach in addressing the scale issue of the multiplier    can also be 

transformed from   with the multiplier 
    

 
. In this case,    can be estimated by    . The 
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mean level shift can be expressed by       in terms of process standard deviation σ. 

Comparing to plan 1, the transformed output   will not be over-magnified. However, this 

approach still does not solve the issue of possible zero for the multiplier when mean 

difference, i.e.,       is 0.  

 3.2.2. Cox-Box Transformation 

In multiplier transformation approach, we can notice that when the multiplier       is 

0,   will become 0, such that the transformation fails to represent what is happening in 

input variable   s. It is possible to apply a transformation that the power factor makes 

justifications of the input data. Box-Cox transformation,      (Mayers, 2009) is an 

empirical method used for power family transformation. It turned out in our research that 

when we select p to be 
   

 
, it does not avoid the case when    , the output is not available. 

It does not solve the problem that 
     

 
 0 neither because when 

     

 
 0, the output of    

will be constantly 1, which is not a desirable result. 

Learned from sections 3.2.1 and 3.2.2, the solution is not a matter of Multiplier 

transformation, but the multiplier itself is the key. It has to avoid the multiplier equals to 0 

cases, and does not over magnify the original dataset. Cox-Box transformation, is likely to 

exaggerate dataset when    , and p is greater than 1,     
   

 
 may also overly enlarge 

the variance from   into  . Plan 2,        
     

 
  seems to be an improvement over plan 1. 

However, we still need to overcome the drawback of “negative magnification” when there is 

no mean shift. 

3.3. Proposed Transformation 

The proposed transformation is  

         
    

 
       Equation 3.1 
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Let         ,      
  

 
       . For this equation to stand,    has to be a 

constant. As discussed in section 3.2.1, the proposed method is a retro-perspective analysis. 

That is, variable    can be estimated by    . In practice,     is can be calculated, thus     is a 

known value, such that     becomes a constant, and Equation 3.1 can be recognized as a 

format of       transformation. Consequently, it will have the property that        

        . 

         
    

 
     transformation based on plan 2,        

    

 
. We propose to 

add a constant 1 and the absolute value of 
     

 
. The absolute value is used because both 

increase and decrease in mean levels are considered changes. When        , it will 

maintain the equivalence        , which is the desired result. With this method,    is 

equal to      
     

 
    , both mean and variance changes in a dataset x will be reflected in 

  . Note that                
     

 
    . As discussed in 3.2.1,   

     

 
     is a known 

constant, thus                
     

 
     stands, and the mean shift in original dataset    

can be transformed to the variance of    via           
     

 
             . 

The SampEn algorithm (Equation 2.5) will be able to detect both mean shifts and 

variance changes via adjusted input y using a multi-scale method by 1) dividing the entire 

dataset into segments; 2) plotting out the SampEn value from each segment; and 3) 

identifying pattern changes according to the entropy values from all segments in orders.  

The flowchart of implementing this transformation is shown in Figure 3.3. The 

following steps describe how the proposed entropy method can be used to identify process 

mean and variance changes in details: 

1. Import data from collection devices 

2. If there is a known target and control standard deviation, use the existing μ and σ. 

Otherwise, select a reference sub dataset that is deemed representative of the process 

under study and calculate the sample μ and σ in the transformation function. To avoid 



20 

 

overestimating the within-sample variation, we use a sub sample size of n observations 

to compute a range=Xmax-Xmin and then compute      
  

  where    is the average of all 

ranges in this representative sub dataset and    is a constant related to n (Montgomery, 

2009). For example, a segment has 100 observations. If a sample size n=5 is used to 

compute the ranges, twenty ranges are available to compute   . In this case,           

Then the process mean estimate is the sample mean and the process standard deviation 

is      
  

   

3. Input Transformation: Transform   into  , that is,          
      

  
    . 

4. Standardize    : use     
      

  
.  

5. Set manipulation parameter for SampEn. Users can define parameters including 

threshold r, length m of comparing vector, delay  , and select multi-scale resolution k, 

which determines how many subsets in the original dataset will be broken into. As 

explained in section 2.2, threshold r sets the selection distance between vectors, m is the 

dimension of the vector   set the way of selecting vectors (for best use of full size data 

set,   is recommended to be 1), and also the scale k is the number of slices that users 

want to segment into. In application, If user does not have a specific concept of the 

parameters, he/she only has to define scale number k, the rest of the parameters will be 

set as r=0.2, m=2, and  =1 as default. 

6. Perform SampEn calculation and present multi-scale plots with different r’s. 

7. If the data pattern plot is consistently revealed from the multiscale plot, terminate this 

algorithm and conclude that the one distribution assumption is violated. Otherwise, 

increase the resolution parameter, by choosing higher scales to see the dataset in more 

details. Example can be seen in chapter 4. For instance, in section 4.3, from Figure 4.10 

to 4.13, we can see that patterns appear consistent when scale k =4, 8, 12, and 16. The 

example in chapter 4 is a series of boxplots because multiple simulations are run. In real 
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cases, each segment has only one entropy value. A dotted line can be used to connect 

these values to reveal the pattern which represents the changes of process parameters. 

 

Figure 3-10 Adjusted SampEn WorkFlow Chart 
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3.4 Properties of the Proposed AdSEn 

Unlike    , AdSEn does not have strict assumptions. It handles data from different 

distributions. However in our research, examples are all performed in normal distributed 

simulation data. AdSEn has some useful properties. In this section, we will discuss in details 

that the how the changes of   impact  . Let’s assume that   ~N(  ,   
 ), and   ~N(  ,   

 ). 

In the proposed transformation           
     

  
    ,    is estimated by    , where    is 

the ith subset (or segment) of the process data, and     is the jth element in vector   . 

Data template    has transformed to   . Since    has the estimated mean of   , 

thus      . Any other dataset    will be transformed to   , so    is the transformed 

subset for of    i.e. segment i, and     is the corresponding transformed observation    . 

Consequently, we will have a relationship for the standard deviation of     
, which is the 

variance of     and   . If    has an increase of      shifted from   ,           and 

      , then we can have    
   

     

  
     

  

  
    

. 

Performing standardization for transformed variable     
      

  
, such that the 

template dataset will have a mean of 0, and standard deviation of 1,  equivalent to 

   
        . Thus the relationship will be defined as: 

   
        Equation 3.2 

If mean level shift   is zero i.e. mean unchanged, the standard deviation of the 

transformed variable     stays unchanged    when   =1. Therefore,   =0 and   =1 is the 

case when the process is stationary. On the other hand, if there is any increase of   or  , the 

net result is the increase of variation as reflected in Equation 3.2. Specifically, if   

increases,    
 will increase, and so that the SampEn output will increase. The change can be 

revealed in the final AdSEn result. Similarly, if   increases, the    
 also increases. 

We now consider a case where the historical process and variance are not available 

but the first segment of the time series is used as the template. The mechanism is to divide 
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the entropy value of    by the entropy of    of the first segment. Specifically, a boxplot is 

plotted; the median is used to define the critical value. However, the input datasets can be 

very random. It is very difficult to precisely predict the distribution of each subset. It is 

difficult to draw any conclusion from one SampEn output to make conclusions without any 

statistics about the proposed SampEn.  

We propose to express the change in a confidence percentage. The proposed method 

is to take the SampEn value    of each segment, and divide it by the SampEn of the template 

dataset   , denote the ratio of ith segment as   .  

A simulation is replicated 1000 times according to different r values. Standard 

deviation difference from    
     to  , which is            .  Sequences of 

boxplots are generated. From the boxplots, the ratio value of the entropy value at segment i 

vs. that of the template segment at 95th percentile, 75th percentile, and the median are 

recorded in the table, as demonstrated in Table 3.1. Each table value is the ratio of SampEn 

values     based on 1000 simulation runs. 

 User Guidelines for Table 3.1 

The magnitude of deviation is measured by the combinatory effect of standard 

deviation    
      , since the calculation result is from a standardized input data. The 

deviation from target standard deviation can be simply measured by    
  .  To look up the 

table, we use the first column to be predefined r value, which is predetermined according to 

step 3 in section 3.3. Then we search for the AdSEn output value v along the specific row. 

When scanning through the selected row, if the AdSEn output v is in between two values 

listed in the same percentile value, say 95, then we can conclude we will encounter 95% of 

the cases that the process parameters have changed. The magnitude of combined deviation 

can be read from the corresponding value listed on the top row of the table. It is possible 

that the output   occurs in multiple places. For example, we selected r=0.1, then we look at 

the row of 0.1, and if v=1.33, we can find it in 95 percentile that    
    . We can also find 

v=1.33 in 75 percentile of    
    . We have higher confidence (95 percentile) that the 
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combined deviation is 1.1sigma than a 1.6 sigma shift (75 percentile). In the case of 

   
    , the process has at least 0.1 combinatory standard deviation increase, and in 75% 

of the cases, the process has at least 0.6 combinatory standard deviation increase. In 

addition, the combined deviation from the template (e.g. the first segment), is a 

combinational effect due to mean shift only, variance shift only, or a combination of both. It 

is not possible to identify the exact source(s) of deviation without further data analyses. The 

details of the simulation experiments will be discussed in chapter 4.4, and an example of 

using Table 3.1 will be presented in section 3.5. 

3.5 AdSEn Application Example 

 This example is from the extruder machine sensors of local manufacturing company. 

The dataset was taken from an extrusion machine. The quality characteristic of interest is 

the machine temperature in a zone when activated. 

 The dataset is shown in Figure 3.11. AdSEn is performed. The dataset is segmented 

into 10 subsets, using the first segment as the template, and the threshold value r is set to 

be 0.2 times the standard deviation of the template subset. We have the result and ratio 

shown in Table 3.2. The first row is the AdSEn output, and the second row is the AdSEn ratio, 

which is calculated by divide the ith segment’s AdSEn output by the 1st AdSEn output. Any 

ratio smaller than one means there is change in the process’ favor, but when the ratio is 

greater than one, it raises the alarm, such that we use Table 3.1 for interpretation.  
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Table 3.1 AdSEn Ratio Values ρ as a Function of r, Standard Deviation Change, and 

Percentile 

 

 

 

Figure 3-11 A Real-World Temperature Dataset 

  

50 75 95 50 75 95 50 75 95 50 75 95 50 75 95
0.1 1.04 1.14 1.32 1.06 1.18 1.42 1.08 1.22 1.50 1.11 1.26 1.56 1.15 1.30 1.66

0.2 1.04 1.10 1.18 1.09 1.14 1.23 1.12 1.18 1.28 1.15 1.22 1.34 1.18 1.25 1.37

0.3 1.05 1.10 1.17 1.10 1.14 1.22 1.15 1.19 1.27 1.18 1.24 1.32 1.22 1.27 1.36

0.4 1.06 1.11 1.17 1.11 1.16 1.23 1.17 1.21 1.28 1.22 1.26 1.33 1.26 1.31 1.40

0.5 1.07 1.11 1.19 1.13 1.18 1.26 1.20 1.25 1.33 1.25 1.31 1.39 1.31 1.36 1.43

0.6 1.08 1.14 1.22 1.16 1.21 1.29 1.23 1.28 1.37 1.29 1.36 1.43 1.35 1.40 1.49

0.7 1.09 1.15 1.23 1.17 1.23 1.32 1.25 1.32 1.40 1.32 1.38 1.47 1.39 1.45 1.55

0.8 1.10 1.17 1.27 1.19 1.26 1.36 1.28 1.35 1.44 1.37 1.43 1.53 1.45 1.51 1.61

0.9 1.11 1.18 1.31 1.22 1.29 1.39 1.32 1.39 1.50 1.40 1.48 1.59 1.50 1.58 1.69

1 1.13 1.21 1.33 1.24 1.32 1.44 1.35 1.43 1.56 1.45 1.54 1.66 1.56 1.63 1.76

50 75 95 50 75 95 50 75 95 50 75 95 50 75 95
0.1 1.17 1.33 1.76 1.20 1.41 Inf 1.22 1.44 Inf 1.26 1.46 Inf 1.29 1.54 Inf

0.2 1.21 1.29 1.40 1.24 1.33 1.47 1.27 1.36 1.49 1.31 1.40 1.59 1.32 1.42 1.58

0.3 1.26 1.32 1.40 1.29 1.35 1.45 1.33 1.38 1.49 1.35 1.42 1.54 1.38 1.46 1.58

0.4 1.30 1.35 1.43 1.35 1.40 1.48 1.38 1.44 1.52 1.42 1.48 1.57 1.45 1.52 1.63

0.5 1.35 1.41 1.48 1.40 1.46 1.54 1.45 1.50 1.60 1.48 1.54 1.63 1.53 1.58 1.69

0.6 1.40 1.46 1.54 1.46 1.52 1.60 1.51 1.57 1.66 1.55 1.61 1.71 1.60 1.66 1.75

0.7 1.46 1.52 1.62 1.52 1.58 1.68 1.57 1.64 1.74 1.63 1.69 1.79 1.68 1.74 1.84

0.8 1.51 1.58 1.68 1.58 1.65 1.75 1.66 1.73 1.84 1.71 1.78 1.88 1.77 1.84 1.95

0.9 1.57 1.66 1.77 1.65 1.74 1.85 1.73 1.81 1.92 1.80 1.88 2.01 1.87 1.94 2.06

1 1.64 1.73 1.86 1.73 1.82 1.94 1.81 1.89 2.03 1.88 1.98 2.11 1.96 2.05 2.18

r

1.5

1.6 1.7 1.8 1.9 2
Standard Deviation Change

1.1 1.2 1.3 1.4r
Standard Deviation Change
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Table 3.2 AdSEn Output and Ratio Table of each segments, for ratio greater than one, the 

process if out of control, if less than one, the process if in control 

Segments 1 2 3 4 5 6 7 8 9 10 

AdSEn Output 0.28 0.13 0.16 0.26 0.13 0.17 0.13 0.16 0.42 0.38 

AdSEn Ratio 1.00 0.48 0.58 0.94 0.48 0.62 0.47 0.58 1.51 1.38 

 

We demonstrated the use of the proposed AdSEn in this example. First of all, we 

implemented the transformation towards the input variables:          
    

 
    . Then 

we run the SampEn algorithm on the transformed input data    . The outcome is listed in 

Table 3.2. Row 1 records the AdSEn results of each segment. Row 2 records the ratio of 

AdSEn output of the ith segment to the that of the 1st segment (aka. template). The larger 

the ratio is, the bigger difference exists between the ith segment and the template segment. 

From this result, we observe that segments 9 and 10 have the ratios larger than 1. Since 

the SampEn coefficient r value is selected at 0.2, we look at the row r= 0.2 in Table 3.1. 

Using the 9th segment as an example, the 95th percentile in 1.8 standard deviation of change 

has the ratio 1.49. In other words, we can conclude with 95% confidence that the combined 

change 1.8 in both mean and variance has been contributed to 1.49 times of the template 

entropy. Simulation studies for the properties of the proposed method will be presented in 

Chapter 4. 
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Chapter 4 - Simulation Analysis 

SampEn is a popular tool for tackling data noise, and data complexity (Nair 2014). It has 

a user specified threshold based on the overall standard deviation to capture non-

conforming data points. As stated in the previous chapter, this original SampEn technique 

cannot detect process mean changes, and the proposed adjusted SampEn (AdSEn) is 

expected to maintain the ability of finding process variance change, and in the meanwhile, 

has the detectability of detecting mean shifts. 

In this chapter, different simulated data patterns will be used to demonstrate the 

performance of the proposed AdSEn. In section 4.1 and 4.2, the selection of threshold in 

implementing AdSEn will be discussed. Specifically, experiments are conducted to explore 

the selection of r and the sensitivity of detecting small changes in either variance or mean. 

In section 4.3, the mixture simulations where both variance and mean change 

simultaneously, experiments are conducted to study the selection of scale k and the impact 

of resolution r in detecting pattern changes. In section 4.4, experiments are performed to 

discover the numerical solutions, and a series of tables are generated on purpose of drawing 

a numerical conclusion. 

 4.1. Case 1: Variance Change Only Pattern 

 4.1.1Experiment Design and Procedure 

The purpose of this experiment is to verify that the AdSEn method maintains the 

fundamental capability from SampEn of detecting variance changes. This part of simulation 

is performed on a known set of simulated data, the entire data set is consisted of three 

portions, 300 data point each, from different distributions, which has the same mean level 

but different variances. The first 300 data points are from the standard normal distribution, 

N(0,1), and the following two portions are from N(0,2) and N(0,3). The data set is shown in 

Figure 4.1. 
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This experiment explores how small a change in variance change only cases that the 

proposed AdSEn can detect. In this section, we will firstly perform experiment in a larger 

range of variance, the first 300 data points are from the standard normal distribution, N(0,1), 

and the following two portions are from N(0,2) and N(0,3), and then gradually narrow down 

to smaller variance deviations. We expect that the proposed method is capable of detecting 

a variance change in 0.01. 

The experiment is replicated 100 times from different random seeds. Boxplots are 

drawn for each individual threshold value R. In small sample size, SampEn does not give 

good result on low r values. Studies for lower r value SampEn application on small dataset 

are still needed. In this section, discussions are mainly focused on larger r values. For 

practitioners, Figure 4.2 provides a guideline for selection of resolution r when a clear-cut 

standard is available. In lower values of r in Figure 4.2, we can see that the boxplot looks 

abnormal. The data output shown in Figure 4.3 shows that there are entropy outcomes such 

as not available (NaN) and infinite result (Inf). The cause of NaN and Inf is that denominator 

in Equation 2.12                  
       

     
 , the denominator is 0, or approximating 0. 

To ensure better results, experiments are only performed on higher r values in this research 

to avoid the NaN and Inf output cases.  

 

Figure 4-1 Variance change only data set 
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Figure 4-2 Multi-R plot for Variance change from 1to 3 

 

 

Figure 4-3 Example SampEn output of Inf/NaN cases 

With selected threshold parameter r, a study to identify minimum detectability is 

performed. Since the entropy output shows large abnormality in r= 0.1~0.4, experiments 

will be performed on r=0.6~1.0 to provide more meaningful results. Datasets for experiment 

will be simulated from normal distribution. As shown in Figure 4.4, N(0, 1) to N(0, 2), 6 

subsets with 300 data points, variance increase in the increment of 0.2  for each segment. 

Trials and errors were performed to ensure the lower bound of AdSEn can be detected. In 
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Figure 4.4, we observe that when boxplots do not overlap with each other, the conclusion 

can be made that there is a change in process parameters. 

A simulation of smaller increment size in variation is performed as shown in Figure 4.5, 

r=0.5~1, dataset variance increases 0.01 from N(0, 1) to N(0, 1.06). From the figures, we 

observe that when r is large, the neighboring boxplot of the template is slightly overlapping, 

but also have a significant difference in majority of the distribution, since 25 percentile to 75 

percentile region (called the interquartile) is not overlapping at all. These figures 

demonstrate that as small as 0.01 variance change (or 0.1 standard deviation change in the 

variance change only cases) is detectable. This result agrees with the conclusions drawn in 

section 3.4 and 3.5. 

 

Figure 4-4 Boxplot of r=0.5~1.0, dataset variance increment 0.2 from N(0,1) 

 

Figure 4-5 Boxplot of r=0.5~1, dataset variance increment 0.01 from N(0,1) 
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 4.1.2 Result and Discussion 

As shown by the higher r values in Figure 4.5, we can conclude that AdSEn maintains 

the ability to detect the variance change which SampEn also is capable of. We can also see 

that threshold selection is important when implementing AdSEn. When r is too small, the 

function will not have a quantitative conclusion. Though results can be interpreted 

qualitatively, quantitative details will be more conclusive and persuasive. Pushing to its limit, 

AdSEn can detect a variance change as small as 0.1 . 

1.3 Proposed Method 

To enable SampEn detecting mean shift, we propose a method called Adjusted Sample 

Entropy (AdSEn) which is based on Grassberger’s (1983, 1988) SampEn algorithm. However, 

since the original SampEn itself does not detect mean shifts, we propose a transformation 

on an input time series  . The proposed method transforms original   to a new time series  , 

such that the variance change and mean shift will both be reflected via the transformation. 

Then we perform Grassberger’s SampEn algorithm on the new standardized time series  . 

The proposed AdSEn should be able to numerically identify the stability of a process. 

Brassberger’s SampEn algorithm should also be applied to the original input time series   as 

well. The combinational use of both entropy outputs should guide users for proper decision-

making regarding to process capability studies. 

4.2. Case 2: Mean Level Shift Only 

 4.2.1Experiment Design and Procedure 

The purpose of this experiment is to test whether AdSEn method has obtained the 

capability of detecting mean shifts. This part of simulation is performed on a known set of 

simulated data, the entire data set is consisted of three portions, 300 data point each, from 

different distributions, which has the same variance but different mean levels. The first 300 

data points are from N(0, 1), and the following two portions are from N(1, 1) and N(2, 1). 
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The data set is shown in Figure 4.6. Similar to section 4.1, via the same approach we also 

performed lowest detectability experiment for mean level shift only cases. 

 4.2.2 Result and Conclusion 

As shown by higher r values in Figure 4.7, we can conclude that AdSEn is capable of 

detecting mean-shift-only data patterns. We also observe that threshold selection is 

important when AdSEn is implemented. When r is too small, the proposed AdSEn does not 

provide a quantitative conclusion. 

 

 

Figure 4-6 Mean shift only data set 

This experiment is also replicated 100 times from different random seeds. Boxplots are 

drawn for each individual threshold value r for threshold selection when the specification 

limits are not given. There are also abnormal boxplot results due to NaN and Inf entropy 

output when small r values are used.  
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Figure 4-7 Multi-R plot for Mean Shift from 0 to 2 

In a sensitivity study, we set out to show that the proposed AdSEn is capable of 

detecting a process mean shift as small as 0.1  . One hundred simulations are performed for 

r from 0.2~1.0, and the results are shown in the boxplots in Figure 4.8. The first segment 

contains the data from the simulated dataset N(0, 1). The rest of the data segments have an 

incremental increase of 0.1 mean shift up to N(0.5, 1). Six boxplots represent the 

distributions of ratios  between the ith segment and the first segment. From the boxplots, 

we observe that the large (> 0.2) mean shifts can be easily detected because the boxplots do 

not overlap with that of the template (i.e. the first boxplot). The trend demonstrated by the 

boxplots show that the proposed AdSEn can be used to identify mean shifts larger than 0.2. 

Since the process standard deviation is 1 in this case, sigma is 1. 

When the mean shift is as small as 0.1 sigma shift, the identification through the use of 

AdSEn will depend on the choice of r. For example, in the case of r=0.9, interquartile range 

of the 2nd boxplot is the largest. However, the second boxplot and the first boxplot (for the 

template) do not overlap. When r=0.2 is chosen, on the other hand, the first and the second 

boxplots overlap, meaning that it is likely that 0.1 sigma mean shift may not be detected in 

some simulation runs. In general, we recommend the choice of a large r value (e.g. r >0.4) to 

allow the proposed AdSEn to perform better in identifying a potential process mean shift, 

large or small. 
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Figure 4-8 Multi-Scale Boxplot for multiple r=0.2~1.0 

4.3 Both Mean and Variance Deviated Data 

 4.3.1 Experiment Design and Procedure 

The purpose of this experiment is to test the performance of multi-scale method, in 

detecting pattern shift. This part of simulation is performed on a known set of simulated 

data, the entire dataset                 is consisted of four portions, 1200 data point 

each, from different distributions. The template dataset    is the first section, all    ’s are 

from N(0, 1),     is from N(1, 1),     is from N(0, 2), and     is from N(1, 2). The data set is 

shown in figure 4.9. Similar to sections 4.1 and 4.2, the experiments were performed for 

mean shift and variance change combined cases via the same approach. 
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Figure 4-9 Dataset                 

The experiment is also replicated 100 times from different random seeds. Boxplots are 

drawn for a controlled r value 0.6, for the purpose of high upper limit, which can tolerate 2 

sigma mean shift and 2x variance change. The detectability of mean shift and variance has 

been verified from 4.1 and 4.2, and the sensitivity analysis is also concluded that when r=0.6, 

AdSEn can detect a 0.2 sigma mean shift and 0.2x standard deviation change, thus 

detectability and sensitivity experiment will not be repeated in this section. The purpose of 

this section is to discover the pattern detection of adjusted SampEn multi-scale method. 

 4.3.2 Result and Conclusion 

This experiment results are shown in figure 4.10~4.13. From all the different scales, we 

can see that scale 4, 8, 12, and 16 are revealing the exact same result, other than that, the 

rest of all the boxplots does not appear to be in common with any of the others. We can 

conclude that in this case, the dataset pattern occurs at 4 equal length points. 

It is important to mention two drawbacks of this method. First, this result is not a 

general case. Though the proposed multi-scale approach seems to work perfectly in this 

scenario, it might not perform as well in data pattern shift occurring in segments with 

unequal length. Adjusting/increasing scale number can help making a better approximation. 

When no common patterns found in the boxplots, we can either increase the resolution by 

increasing scale, or apply change point algorithm to define the pattern. However, the effort 
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to decide change point will seem costly when we see that AdSEn returns a good detection 

based on a sufficient approximation. 

 
Figure 4-10: Scale 1 to 4 

 
Figure 4-11: Scale 5 to 8 

 
Figure 4-12: Scale 9 to 12 

 
Figure 4-13: Scale 13 to 16 

 

Secondly, this approach might face situations when mean and variance changes may 

compensate each other, for example, when variance becomes smaller but the mean level 

shifts in a time series segment. Using Equation 3.1,          
    

 
    ,  we observe that 

the new incoming data has a decrease of variance in original input variable    , however a 

large mean level shift would cause  
    

 
  to increase. The net result is that the decrease of 

variance would compensate for the increase in  
    

 
    

In the cases of both mean shifts and variance changes, we should examine the entropy 

values of both original time series    and transformed data    .  If the entropy value 

generated from     decreases but that of     stays the same, this may be an indication that 

the scenario described in the previous paragraph may take place.  
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4.4 Generate AdSEn Ratio Values 

 4.4.1Experiment Design and Procedure 

To generate AdSEn Ratio Values, experiment were run 1000 replicates for different size 

of changes. From section 3.4, we know that    
      . In the conducted experiments, 

   
    

, since we used standardized data, 
   

   

    
, and     

 was controlled within 1.1~2.. 

The selection of proper data length for this experiment is critical. Even though SampEn 

claims less dependent and more consistent than ApEn (Richman, 2000), the recommended 

length of ApEn is    ~   , as explained in section 2.2, m is the size of vector (Pincus, 1994) 

to ensure the robustness of calculation result, and (Ahmed, 2012) suggests that SampEn use 

N≥300. However from the experiment result, 300 failed to guarantee effective output of 

SampEn, the recommended data length of ApEn is adopted. Since m=2 is used throughout 

the all the experiments, N=   =400 was employed in this one as well. 
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Table 4.1 The Percentage of Replicates Table of Ratio Greater than 1 (Note: If ratio is 

greater than one, then there is change) 

r 
    

 changes 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0.1 60.80% 66.50% 69.00% 74.30% 78.10% 81.90% 85.10% 83.80% 85.10% 86.60% 

0.2 73.20% 86.50% 94.40% 96.70% 99.90% 99.00% 99.50% 99.80% 99.50% 99.90% 

0.3 80.60% 94.40% 98.80% 99.70% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

0.4 83.80% 96.10% 99.50% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

0.5 84.80% 96.90% 99.60% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

0.6 87.60% 98.10% 99.60% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

0.7 83.50% 98.30% 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

0.8 87.90% 98.00% 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

0.9 88.60% 98.30% 99.90% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

1 87.40% 97.90% 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

 4.4.2 Result and Conclusion 

From the 1000 times of simulation results, we have generated the ratios of entropy 

from a segment of interest to that from a standard segment. Table 4.1 records the 

percentage that the replicates. At the certain shift level, the percentage of the cases that 

ratio value    greater than 1 are recorded. 

In Tables 4.1 to 4.4,   values of desired percentiles are calculated. Table 4.2 records the 

value of   at 95th percentile. If the number is larger than the number in the table, that 

means we have at least 95% confidence that the process has been deviated the 

corresponding value in    
. The   at 75th percentile and median level are recorded in Tables 

4.3 and 4.4. 
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Table 4.2 AdSEn Ratio Values ρ as a Function of r, Standard Deviation Change, at 95th 

Percentile 

95% 

r 
    

 Change 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0.1 1.32 1.42 1.50 1.56 1.66 1.76 Inf Inf Inf Inf 

0.2 1.18 1.23 1.28 1.34 1.37 1.40 1.47 1.49 1.59 1.58 

0.3 1.17 1.22 1.27 1.32 1.36 1.40 1.45 1.49 1.54 1.58 

0.4 1.17 1.23 1.28 1.33 1.40 1.43 1.48 1.52 1.57 1.63 

0.5 1.19 1.26 1.33 1.39 1.43 1.48 1.54 1.60 1.63 1.69 

0.6 1.22 1.29 1.37 1.43 1.49 1.54 1.60 1.66 1.71 1.75 

0.7 1.23 1.32 1.40 1.47 1.55 1.62 1.68 1.74 1.79 1.84 

0.8 1.27 1.36 1.44 1.53 1.61 1.68 1.75 1.84 1.88 1.95 

0.9 1.31 1.39 1.50 1.59 1.69 1.77 1.85 1.92 2.01 2.06 

1 1.33 1.44 1.56 1.66 1.76 1.86 1.94 2.03 2.11 2.18 

We can also notice that there are some cells in the tables when r=0.1, the cells are 

showing “Inf”, and some of the result are very inconsistent. As discussed in sections 4.1 and 

4.2, we do not recommend the use of small r values. It is difficult for SampEn algorithm to 

ensure good performance in small sample size when small r values are used.  
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Table 4.3 AdSEn Ratio Values ρ as a Function of r, Standard Deviation Change, at 75th 

Percentile 

75% 

r 
    

 Change 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0.1 1.14 1.18 1.22 1.26 1.30 1.33 1.41 1.44 1.46 1.54 

0.2 1.10 1.14 1.18 1.22 1.25 1.29 1.33 1.36 1.40 1.42 

0.3 1.10 1.14 1.19 1.24 1.27 1.32 1.35 1.38 1.42 1.46 

0.4 1.11 1.16 1.21 1.26 1.31 1.35 1.40 1.44 1.48 1.52 

0.5 1.11 1.18 1.25 1.31 1.36 1.41 1.46 1.50 1.54 1.58 

0.6 1.14 1.21 1.28 1.36 1.40 1.46 1.52 1.57 1.61 1.66 

0.7 1.15 1.23 1.32 1.38 1.45 1.52 1.58 1.64 1.69 1.74 

0.8 1.17 1.26 1.35 1.43 1.51 1.58 1.65 1.73 1.78 1.84 

0.9 1.18 1.29 1.39 1.48 1.58 1.66 1.74 1.81 1.88 1.94 

1 1.21 1.32 1.43 1.54 1.63 1.73 1.82 1.89 1.98 2.05 

Table 4.4 AdSEn Ratio Values ρ as a Function of r, Standard Deviation Change, at 50th 

Percentile 

50% 

R 
    

 Change 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0.1 1.04 1.06 1.08 1.11 1.15 1.17 1.20 1.22 1.26 1.29 

0.2 1.04 1.09 1.12 1.15 1.18 1.21 1.24 1.27 1.31 1.32 

0.3 1.05 1.10 1.15 1.18 1.22 1.26 1.29 1.33 1.35 1.38 

0.4 1.06 1.11 1.17 1.22 1.26 1.30 1.35 1.38 1.42 1.45 

0.5 1.07 1.13 1.20 1.25 1.31 1.35 1.40 1.45 1.48 1.53 

0.6 1.08 1.16 1.23 1.29 1.35 1.40 1.46 1.51 1.55 1.60 

0.7 1.09 1.17 1.25 1.32 1.39 1.46 1.52 1.57 1.63 1.68 

0.8 1.10 1.19 1.28 1.37 1.45 1.51 1.58 1.66 1.71 1.77 

0.9 1.11 1.22 1.32 1.40 1.50 1.57 1.65 1.73 1.80 1.87 

1 1.13 1.24 1.35 1.45 1.56 1.64 1.73 1.81 1.88 1.96 
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Chapter 5 - Discussion and Future Work 

From the simulations and the real case example, we find that AdSEn is a promising tool 

based on SampEn. The proposed transformation          
     

 
     enables SampEn 

algorithm detecting mean shift. A table-look-up technique is developed as the numerical 

solution for AdSEn, the example in section 3.5 proves that this technique is feasible. In 

chapter 4, the replicated simulation studies illustrated that the proposed tool can identify 

process changes before a proper process capability studies are performed. 

However, our research is limited in time and computing resources, we still have some 

research questions to be answered in future studies. Although AdSEn performs well in our 

example in section 3.5, it may not be able to handle all cases. For example, when very small 

standard deviation change occurs. From Equation 3.1    
      , we found that in 

some cases, mean level change   and standard deviation change   will compensate each 

other. Though the impact of standard deviation can be transformed perfectly towards    
, 

    causes co-effect in the output, mean level change   becomes meaningful. If a small 

standard deviation change   occurs, the effect of   will be under expressed. 

Since a high   might be compensated by a low  , where returns small change, no 

change, or even a change towards    
  . We suggest a variance test prior to AdSEn 

process to distinguish the cases that whether    
    or    

   . If    
    or    

   , 

AdSEn algorithm will perform perfectly. Otherwise, we need to develop another method to 

tackle this situation. 

   
  

      
   

                    
   

 

In this research, simulations are all performed under normal distributions for 

demonstration purposes. The goal of this research is to enable SampEn to be a capable tool 

for detecting changes in a time series, thus simulation of other type of non-normal 

distributions are needed to further verify the proposed AdSEn. We expect that the proposed 

AdSEn is capable of handling all kinds of data distributions.  
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This method can also be extended into multivariate cases. It is commonly recognized 

that process capability analysis should be able to handle multiple variables (Tano, 2012). In 

most manufacturing applications, there are more than one QCs to be considered, and some 

may also interact with each other. In traditional PCA studies, Tano (2012) have proposed 

multivariate PCRs. This is also an important topic to extend this research. 

Xie (2010) pointed out that SampEn(m, r, N) is not defined if no template and forward 

match occurs in the case of small r and dataset length N. Moreover, the value of SampEn is 

discontinuous and may vary significantly with a slight change of the tolerance r. Xie (2010) 

claims that a modified SampEn (mSampEn) can overcome these difficulties. From our 

experiment results, Xie’s opinion is very valuable. Kong (2011) has implemented mSampEn in 

measurement to classify ventricular tachycardia and fibrillation. However, not very many 

applications are found in manufacturing applications. It is worth topic for future studies 

towards process capability. 

 

  



43 

 

References 

Aboy, M., Cuesta-Frau, D., Austin, D., & Mic ó-Tormos, P. (2007). Characterization of 
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