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Abstract

Advances in technology easily collect a large amount of data in scientific research such as
agricultural screening and micro-array experiments. We are particularly interested in data
from one-way and crossed two-way designs that have a large number of treatment combina-
tions but small replications with heteroscedastic variances. In this framework, several test
statistics have been proposed in the literature. Even though the form of these proposed
test statistics may be different, they all use limiting normal or chi-square distribution to
conduct their tests. Such approximation approaches the true distribution very slowly when
the sample size n; is small while the number of levels of treatments a gets large. A strategy
to obtain better accuracy in the classical large sample size setting is to use the bootstrap
procedure with studentized statistic. Unfortunately, the available bootstrap method fails
when the number of treatment level combinations is large while the number of replications
is small. The Fisher and Hall (1990) asymptotic pivotal statistic under large sample size
setting is no longer pivotal under small sample size setting with large number of treatment
levels.

In the first part of this dissertation, we start with describing suitable bootstrap statistics
and procedures for hypothesis tests in one- and two-way ANOVA with a large number of
levels and small sample sizes. We prove that the theoretical type I error-rate of Akritas and
Papadatos (2004) and Wang and Akritas (2006) test statistics and the corresponding boot-
strap versions have accuracy of order O(1/+/a). We then modify their statistics to obtain
asymptotically pivotal statistics in our current framework. We prove that the theoretical
type I error-rate of the bootstrap version of the pivotal statistics is accurate up to order
O(1/+/a). In the second part of the dissertation, we propose a new test statistic in one-way
ANOVA which is asymptotically pivotal in the current setting. We improve the accuracy
of approximation of the distribution of the test statistic by deriving asymptotic expansion
of the statistic under the current framework and define a new test rejection region through
Cornish-Fisher expansion of quantiles. The type I error-rate of the new test has a faster

convergence rate and is accurate up to order O(1/a). Simulation studies show that our tests



performs better in terms of type I error-rate but comparable power with that of Akritas and
Papadatos (2004) in the large a small n; setting. The connection between our asymptotic
expansions and bootstrap distribution in the large a, small n; setting is discussed. Our pro-
posed test based on asymptotic expansion and Cornish-Fisher expansion of quantiles have
both the advantage of higher accuracy and computational efficiency due to no resampling

is needed.
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Chapter 1

Bootstrap test for ANOVA with a
large number of levels and skewed

populations

1.1 Introduction

For scientific investigations in agricultural screening, many of the experiments collect molec-
ular data using high throughput technologies such as micro-array and sequencing. The data
collection from such experiments often arise in the form of one-way and crossed two-way
designs with very small number of replications within each treatment combinations. In most
cases, the data are skewed in distribution. We are interested in testing the hypothesis of
no main treatment effect (one-way and two-way designs) and no interaction effect (two-way
design) when the number of treatment combinations is large but with small replications with-
in each treatment combination in the presence of extreme observations and heteroscedastic
variances.

In this framework of large number of treatments with small replications within each
treatment in the presence of extreme observations and heteroscedastic variances, pioneer
studies in the literature include, cf., Akritas and Arnold (2000), Akritas and Papadatos
(2004), Wang and Akritas (2004), Boos and Brownie (1995) etc. Bathke (2002), Wang
and Akritas (2006), Wang and Akritas (2011) have also conducted research on two-way,



three-way ANOVA and other multi-factor designs when the number of treatments is large.
In these papers, they presented different test statistics and their asymptotic distributions.
Even though the form of their statistics may be different they all give asymptotic normal
or chi-square distribution to approximate the distribution of their test statistics. We prove
in this dissertation that the error of their approximations is of order O(a~'/?) (where a is
the number of treatments). With this rate, the type I error of these tests converges slowly
to the nominal level when the data are skewed.

It is well known that in the classical small number of treatments with large replications
setting, the bootstrap tests and confidence intervals generally have better approximation
accuracy. Efron (1979), Beran (1988) and Hinkley (1988) have studied the general boot-
strap hypothesis test. Fisher and Hall (1990) used both asymptotic pivotal and non-pivotal
statistics to provide a general idea for conducting bootstrap hypothesis test in heteroscedas-
tic and unbalanced analysis of variance. They noted that their non-pivotal statistics have

slower convergence rate while their asymptotic pivotal statistic

T2:Z{nz(z_1)( /ZXZJ X }

i=1
which was proposed by James (1951), has faster convergence rate in the classical setting
of large sample sizes. For computing the bootstrap version of their pivotal statistic, they

defined another statistic

a

Top=) {n(n - 1)(Ys —?..)2/2(Yij —?Z-.)Q} :

i=1
where Vi, = X — s, Y;. and Y.. are defined in the obvious manner. Under the null
hypothesis of no treatment effect, the distributions of 75 and Tp, are identical. The statistic
The provides an easy statistic for resample. Let X}, ..., X/} be a simple random sample of
{Xi1, -+, Xin,} with replacement. Then the bootstrap version of Ty, is computed as

Ta‘zzi{ = 1)(T /Z v }

=1



where Y7 = X/, - X,., Y, =n;t > Y, Y. = NV and N = ng + -+ + ng.
Fisher and Hall (1990) recommended to approximate the distribution of The under the null
with the bootstrap distribution of 7f,. They showed that the bootstrap distribution of 7,
approximates the distribution of their pivotal statistic 75 for large n;. In the large number
of treatment a and small replications n; setting, Fisher and Hall (1990) bootstrap procedure
fails. In the next paragraph, we give analytical description of why their bootstrap approach
does not work in our current framework.

For a large a small n; setting, suppose X = (X1, -+, Xiny, 5 Xats -+ » Xan,)'- Then
under the null hypothesis of no treatment effect we want to deduce that the distribution of
T5 does not approximate well the bootstrap distribution of 7f,. Analytically, we note that
Ty and T}, are functions of (X;. — X..)%> and (Y, —Y )2, respectively. Then under the null,

it can be shown that

EX; -X.)? = Var(X; —X..)

2 2 2

I S
n; a? n; N
o7

— >
n;

as a — oo and n; stays fixed. Similarly, we have

E[(Y, =Y )*X] = [BEY, =YX+ Var[(V; = V)|X]
— 52 1 < 52 52
= (X; =X P+ 24+ = 2t _ 9t
(X, ) +nz~ +— 2, N
~2
— (yi.—y..)zﬂLﬁ,
n;

as a — oo and n; stays fixed, where 67 = n; ' Y™ (X;; — X;.)?. Thus, the difference

i =

between E(X,;. — X..)? and E[(Y, =Y )?|X] is

E(Y, -Y )X -EX; - X.)? > (X; - X )2+ 11—

n;

Since the difference does not approaches zero when n; stays fixed, then analytically we can

infer that E(Ty) — E(T5,|X) will not approach zero and thus the centers of Ty and T, are

3



not the same when the number of treatments is large. In the next paragraph, we illustrate
with an example that for a large number of treatment levels and small n;, the bootstrap
distribution does not approximate the distribution of their test statistic well.

Using the Fisher and Hall (1990) bootstrap resampling approach outlined above, we
present the following example to explain the limitation of their test statistic when the group
sizes n;’s are small. We simulate data from a skewed Chi-square distribution with degrees
of freedom 3, with number of treatment levels, a = 20, and small group sizes; 4, 4, 4, 4, 4, 4,
4,4,6,6,4,4,5,4,4,4,4, 4,4, 5. The data satisfies the null hypothesis. We compute the
test statistic T, presented above. The data generation and computation of the test statistic
were repeated 5000 times to obtain the Monte Carlo probability density and cumulative
distribution functions of the test statistic T;. Figure 1 shows the plot of Monte Carlo cdf
of the 5000 runs of 7, and the empirical cumulative distribution function (ecdf) of 2000
bootstrap statistics Tpe from one sample. The Monte Carlo pdf and kernel density estimate
of the bootstrap statistics were also plotted in the right panels of Figure 1 (but in the scale
of 2'/5 because their ranges are too different to be plotted in the original scale). In the
setting of this example, it is observed from Figure 1 that neither the ecdf nor kernel density
estimate of 2000 bootstrap statistics 1oy approximates the Monte Carlo cdf and pdf of T,
under the null, in our large a small number of replications setting. The bootstrap statistic
and Tpy obviously have drastically different support. Therefore, it is important to consider
a test statistic well suited for the bootstrap methodology when the number of replications
is small and the number of treatment levels is large.

In this dissertation, we study the type I error accuracy of the test statistics of Akritas
and Papadatos (2004) and Wang and Akritas (2006) and their bootstrap versions when the
number of treatments is large with small replications in the presence of heteroscedastic and
non-normal data in one- and two-way ANOVA, respectively.

In section 1.2, we discuss analytically that Akritas and Papadatos (2004) test statistic

is suitable for bootstrap hypothesis test in one-way ANOVA in our current framework. We
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study the theoretical type I error-rate of Akritas and Papadatos (2004) statistic and its
corresponding bootstrap version. A modification of Akritas and Papadatos (2004) is also
considered and we study the type I error-rate of its bootstrap version. Similarly, in section
1.3 we study the theoretical type I error-rate of Wang and Akritas (2006) statistic which
is suitable for bootstrap hypothesis test in two-way ANOVA. We investigate the type I
error-rate of its corresponding bootstrap version. We also discuss a modification of Wang
and Akritas (2006) statistic and present the type I error-rate of its corresponding bootstrap
version. Sections 1.4 and 1.5 will present simulation studies in one- and two-way ANOVA,
respectively. The technical proofs for one- and two-way ANOVA are presented in sections

1.6 and 1.7 respectively.

1.2 Bootstrap Test for One-Way Analysis of Variance

In this section, we let X;;, 7 = 1,---,n; be independent observations from treatment i,
1 = 1,---,a with unknown mean p; and standard deviation o;. We study the bootstrap
hypothesis test for testing the hypothesis of no treatment effect, i.e., Hy : y; = p when the
number of treatments a is large with small number of replications n; within each treatment
level in the presence of heteroscedastic and non-normal data. We discuss an appropriate
test statistic suitable for the bootstrap procedure in the next paragraph.

In this large number of treatments and heteroscedastic setup, Akritas and Papadatos
(2004) presented several test statistics and recommended to use the unweighted statistic T,

given by

a

T,=a 'Y [ni(fi. X2 (1 - %) Sf] (1.2.1)

i=1

where X; = n;* ) ZlX»» X.=N1y0, >y Xig, SP = (ni —1)7! Z:(Xij — X;.)? and
i= =



N =mnq + -+ ng,. Since T}, is a function of (X;. — X..)? and S?, then under the null,

Ni = 0% 2n;

_ 2 i i i 2 2
= 0+ — = o; — 0;
a“ 4 Ny N

=1
a
n; 02-2/ 27’LZ 2
= —_ _— (o
a? “—~ ny N
=1
— 0
/
as a — oo and n; stays fixed. Now suppose X = {Xz'*pXi*za e ,X;‘ni} denote a sam-

ple drawn randomly with replacement from X; = { X, Xj2,- - >Xm,~}/, where X; is the
collection of independent and identically distributed observations from treatment level ¢,
i=1,2,---,a. To construct the bootstrap version of the test statistic in (1.2.1), we consid-
er the transformation Y;; = X;; — p; as used in Fisher and Hall (1990). Since g, is unknown,

we use the resampled data to compute Y7 = X7 — X,.. The bootstrap version of the test

*
J

statistic T, in (1.2.1) is T}, which is computed from the resampled data as follows:

Ty =a 23 @ -7 - (1- 1) %] 1.2.2
a a ; n ( 1. ) N K3 ( )
where 7; =n;' i: Yii, Yik, =N'13 Z Yi;, N = > i1 Miy and SPF = (n; — 1)7! i(y;; -
= | j=1
7:.)2. Since T* depends on (7: — _*..)2 and S?* we compute the following

En(Y; =Y .)’X] = nE[(Y; =Y .)*X]



as a — oo and n; stays fixed, where 62 = n; ! > (X — X;.)%. Next we also compute

BISFIX] - E iliw* _?.)2|X]
_ [0 -7
- { V7)IXJ? + Varl(vy; ~ V1)1X]}
_ s;+

Using the above computations, we approximate the center of 7 as follows:

‘”22{ v 52*}|X] = oY B (YL - YIX] - BlSEX)

% Z{nl(yz - 7..)2 - SZQ} )

Therefore, T7 is centered at 0 when n; stays fixed and after dividing by its standard deviation

= [Z{nzy - X.)?= 57}

— N <O,Var

it’s distribution free and thus the statistic T, can be used for the bootstrap.

1.2.1 Type I error accuracy of Akritas and Papadatos (2004) test

In this subsection, we investigate the type I error-rate of Akritas and Papadatos (2004) test

in our current framework of large a small n;.

Akritas and Papadatos (2004) showed that the limiting distribution for the unweighted

statistic T, is N(0,1?), where 12 = 2(s* +4*) with £ 37 | o} — s* and 237, — 4

n; 71
as a — oo under the null. To study the type I error accuracy, we need more accurate
approximation of the distribution. We give the asymptotic expansion of the distribution of

T, in the next paragraph.



By using projection method for quadratic forms, Akritas and Papadatos (2004) showed
that T, in (1.2.1) is asymptotically equivalent to fa = \/La Y% g; under Hy, where

n; 1 e
g9i = (1 - N) n; — 1 Z €ij1€ijas

J1,J2=1,J2#51

with €;; = X;; — E(X;;). We know ¢;’s, i = 1,2,--- ,a are independent random variables.

After some algebra, they obtained

'I’L»Ll 7”L12

T T, = g V2N Z Z Z €irjr €injo

i1749,i1,i2=1 Jj1

with E(T, — T,) = 0 and

E(T 1) aN2 <an ) an _alrilzagga — 0.
Thus, fa -1, = Op(afl/Q). Note that fa is the sum of independent random variables.
Applying Corollary 19.4 of Bhattacharya and Rao (2010), we know that the distribution of
fa admits Edgeworth expansion. To obtain the Edgeworth expansion of the distribution of
T, we write P(T, < x) as
P(Ty,=To+ (T, —T,) <x)=P(T, =To+a 2A, < z)
where A, = a'/?(T, — fa) satisfies A, = O,(1). In order to determine P(7T, = fa +a_%Aa <

x), we compute the first four cumulants of

Ki(T,) = E(T,) = B(T,) + a 2 B(A,) = Ki(T,) (1.2.3)
since B(A,) = 0 and K;(T,) = E(T,) is the first cumulant of T,. Next, to compute the
second cumulant K5(7T,) we note that

E(T,) = E(T,+a"A,)?
— B(T,))+ 20 2 E(TyA,) + a " B(AY)
= B(T.))+ 0™,

9



since B(T,A,) = 0 (the proof is given in the Section 1.6.3). Therefore

KQ(Ta) = E<Ta)2_<E<Ta))2

— Ky(T,)+ O(a™Y), (1.2.4)

where K5 (T,) = E(faz) — (E(T,))? is the second cumulant of faz. Now, in order to obtain

the third cumulant K3(7,) we have that

BE(T,)’

E(T, + a_%Aa)S

~3 ~ 2

E(T,) +3a 2 E(T, A,) +3a " E(T,A%) + a 2 E(A)

~3

E(T, )+ O(a™),

which used the fact that E’(fagAa) = 0 (shown in Section 1.6.4), and E(faAg), E(A3) are

at most O(1) with the Cramer’s condition since T, and A, are O,(1).

KS(Ta)

E<Ta)3 - 3E(Ta)2E(Ta) + 2(E(Ta>>3

~ 3 ~ 2

E(T,") +O(a™) = 3(E(T, ) + O(a™")) E(T,) + 2(E(T,))?

~3 ~ 92 ~ ~

E(T,) —3E(T, E(T,) + 2(E(T,))*> + O(a™)

K3(T,) +O(a™), (1.2.5)

where K. 3(fa) is the third cumulant of fa Next, we write

E(T)* = B(T,+a 2A,)"

= B(T,)+4a 3BT, A,) + 6a E(T, A2) + 40~ B(T,AY) + a2E(A,%)

= E(T, )+0(@a™),

where the last equality is due to the fact that F (fagAa) = 0 (the proof is given in Section

1.6.5) and the rest of the terms are O(1) for similar reason as explained for E(T?). Lastly,

10



the fourth cumulant K,(7,) is given by

Ki(T) = B(T)' - AE(T)E(T,) - 3(E(T.)) + 12E(T,)*(E(T.))* - 6(E(T.))*

2 — 6(B(T,))"

(
— E(T.)+0(a™") = 4E(T))(E(T,)) + 0(a™) = 3(E(T.) + O(a™"))?
+ 12(E(T, )+ O(a ) (E(TL))

(

= B(T,) ~4B(T)E(T,) = 3(E(T, ) + 12B(T, ) (B(T) ~ 6(B(T,))* + O(a™)
= Ku(T,) 4 O(a™Y), (1.2.6)

where Ki(T,) = B(T,) — 4B(T,)E(T,) = 8(E(T, ) + 12B(T, ) (B(L))* — 6(E(T.)" is

the fourth cumulant of T,. As discussed in Hall (1992b) based on equations (3.30)-(3.32)

to deduce equation (3.36), then using K (7,), Ko(7,), K3(T,) and K4(T,) in (1.2.3), (1.2.4),
(1.2.5) and (1.2.6), respectively, we have that

P(T,<z)=P(T,<z)+0®™).

Therefore, the distributions of T}, and fa have the same Edgeworth expansion up to order
O(a™'). Corollary 19.4 of Bhattacharya and Rao (2010) can be used to get the Edgeworth

expansion of S, = T, /v where
v =1/2(s*+~%). (1.2.7)

Accordingly, under the regularity conditions in the section 1.6.1, T, admits Edgeworth

expansion of the form

Ff(x):P(fagz):P(Sagg): ( ) Z k/z k( ) ( >+O(a’(%))(1.2.8)

uniformly for Vo € R, where ®(z) and ¢(x) are the cdf and pdf of the standard normal
distribution and Py(x) is a polynomial of degree 3k — 1, with coefficients that depend on

the population moments of g;, + = 1,2,--- ,a. T, has Edgeworth expansion

Fr(e) = Fra) + O™ = @ () + #Pl (2)o(%) + 0. (1.2.9)

14
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Even though the terms in O(a™!) are omitted, they can be written as expansions to give

P = 0(2)+dh (D) of2) + b (2) o(2) + 0

= (1) 5 e (2)o(2) o

where Pii(x) = Pi(x) and Py(.) is polynomials of degree 3k—1 with coefficients that depend

(*29) (1.2.10)

on the population moments of ¢g;, i = 1,2, --- ,a. In practice, Akritas and Papadatos (2004)

approximate the distribution of T, with N(0,7?%) where 02 = 23°% | ( ) o} and o} is an

unbiased estimate of o} given by the U-statistic

_ 1 nz (@i, — Tiy)* (g — Tij)?
Pt 4 ’

i j1F#jeFAi3#Ta

Q)

where P} = n;(n; —1)(n; — 2)(n; — 3). Based on the expansion (1.2.8), we can see that the
accuracy of approximating the distribution of 7}, using N(0,7?) is only of order O(a~'/?)
since FPr(z) — ®(%) = O,(a~/?) due to the fact that

U—v=0,a"?. (1.2.11)

The proof of (1.2.11) is shown in the section 1.6.2. We discuss the type I error accuracy of
Akritas and Papadatos (2004) in the next paragraph.

The test of Akritas and Papadatos (2004) is based on normal approximation. At « level
of significance, the estimated quantile of the Akritas and Papadatos (2004) test is 0z, where
2 is the quantile of the standard normal distribution and # is the estimate of v given in
(1.2.7). The type I error-rate of the Akritas and Papadatos (2004) test is P(T, > 0z1-a),

which can be written as
P(Ta > ﬁZlfa) = P(Ta — (ﬁ — V)Zlfa > I/Zlfa). (1212)

To compute P(T, — (V — V)z1-a > V21-4) in (1.2.12), we need to know the Edgeworth

expansion of the distribution of T} = T, — (0 — v)z;_,. Write

T =T, —a DT =T, +a A, —a 2D, (1.2.13)

a

12



where T, = T, + a2 A, and D, = a/%(0 — 1)z _,. We note that D, = O,(1) and by Taylor

series expansion of g(x) = /x around v? we have

>
|
S
I
Q\
—
<
[\
N~—
—
>
[\
|
<
no
~—
+
QQ\
—~
<
[\o}
SN—
—
>

2124+ 0,(a?)

where ¢’ (v?) = 1/(2V12) and ¢"(v?) = —1/(4v%). Therefore E(D,) = -8 'v=3,/aB[(?* —
v?)? = O(1/+/a) because 0? — v* = O,(1//a). To obtain the Edgeworth expansion of T,

we compute the first four cumulants of 77. The first cumulant of 77 is computed as

a

K(TT) = E(TT) = E(T,) — a 2 E(D,) = K{(T,) + O(a™"). (1.2.14)
To obtain the second cumulant K»(T7), we compute the second moment of 77 as

E(TH? = E

(

= BE(T,+a 3A,)% — 20 E [(T; + a*%AG)Da] +a ' B(D?)
(T?) = 2a 2 E(T,D,) — 2a""E(A.D,) + o 'E(D?)
(

= E(T?) +u,+0(a™), (1.2.15)

where u, = —2a"2E(T,D,) = — 2=eg ") P ( s )af(%? —2), v = E(e) and 6; =

a? n;—1 ij

(1 —=n;/N)(1/(n; — 1)). The derivation of (1.2.15) is given in Section 1.6.6. Therefore the
second cumulant is given by
Ky(T)) = E(T,)" - (E(T))?

= Br2) - ) Y () odo - )+ Ol - (B(T) + Ofa™)?

13



third moment of T as

E(T])* = E
T+ a 30, —3a 3B [(T, + a—%AmDa} 4307 [(ﬁ + a—%Aa)Dg] —a 3E(D.?)
T3) — 3¢ 2 E(T2D,) + O(a™)

= E(T?)+0(a™),

where the third equality used the fact that £ (TQZDQ) = O(a~"/?), which is shown in section
1.6.7. Thus the third cumulant K3(77) is computed as

Ky(Ty) = E(T,)° = 3B(T,)*E(T,) +2(E(T;))°

a

= B+ o) -3 | B2 - U S (Y ot - )+ O

az im1 n; — 1
[E(T,) + O(a™")] + 2(E(T,) + O(a™"))?
— 51 - 380B) + 2720 B S () ot -0 +2B(T)°
+0(a™) :
= K3(T,)+O(a™), (1.2.17)

where the last equality is because E(T,) = 0 under Hy and K3(T,) = E(T3)-3E(T?)E(T,)+

2(E(T,))? is the third cumulant of T,. Next, we compute the fourth moment of T as

E(T])" = BE(T,+a*A,—a"2D,)"
= B(To+a 3A)' — 40 *E [(fa + a—%Aa)3Da] + 607\ [(fa + a—%Aang]
—4a 2 E |(T, + a_%Aa)Dg} +a2E(D,Y)

= B(T!) —4a 2 B(T?D,) + O(a™Y),

where E(T3D,) = 24“%92,(”2) S 102 ni(n; — 1)} [51-/ <L> (v - 2)02} is proved in sec-

7:7%/ 7 n,/ —1
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tion 1.6.8. Thus the fourth cumulant K,(7}) is obtained as

Ey(T)) = E(T,)' —AB(T,)E(T,)’ - 3(E(T,)*) + 12B(T, )*(E(T,))* — 6(E(T,

a a

- E(T;‘)—%—Zlag/(y2>i[(5fni(ni—l)af‘] {5( " )(% 2) ?,]+O(a_1)

5 1
az it My —

—4(E(T,) + O(G_l))(E(T3) +0(a™))

-3 | B(T?) - 87 “g% Z@( ) {2 -2)+0@™)
+12 E(TZ)—gz”gs(”)ijéi (n,n_’l)az(v —2)+0(a™)

-3 |(E(T,)*)? - 16 221_261;(1/ ) ;@ mn_z 1> o’ (vi—2)+ O( )]
#12 [ BB - S 2E) S 6 () otz -2+ 0fa™)

—6(E(T,))" + O(a™)

= B(T,) —AB(T,)E(T7) — 3(BE(T3))* + 12B(T,*)(E(T,))* — 6(E(T,))" + O(a™)

— K(T.)+0(a),

where the third and fourth equalities used the result F(T?2) = v*4+0(a™") = 2a™' Y1, 67n
ot + Ofa1) and Ku(Ty) = BTH) — AB(TB(TS) — (BN + 1EITEETY —
6(E(T,))* is the fourth cumulant of T,. Using K;(T}), Ko(TT), K3(TF) and K4(TT) in
(1.2.14), (1.2.16), (1.2.17) and (1.2.18), respectively, it has been shown in the Section 1.6.9

that
Ugq UaK Ta
P >vaze) = PI>vaz)+ 92" e + %{(Vﬁa}g —3(vzia)}
U K4 (T,
%ﬁ){(yzl_a)5 - 10(Vzl—a)3 + 15(V21_a)} gb(yzl_a)
+0(a™1),
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where u, = —8'21*“—9%/(1'2) Yo <n711> o%(~v? — 2). Depending on the order of K3(T,) and
K4(T,), the additional terms in (1.2.19) beyond P(T, > vz,_,) is polynomial that contains
only the odd power of vz;_,. Now we need to compute P(T, > vz;_,) in (1.2.19). Based

on (1.2.10), this probability can be written as

P(T,>vz4) = 1—=P(T,<vz_,)

= 1- FT(I/Zl_a)

@
|

2
1 s—1

= 1-P(z14) — ka(zl—aW(Zl—a) + O(Cf( 2 ))
1

= a+ #Pl(zla)ﬁﬁ(zla) +0(a™),

e
Il

where Pj(z1_4) is a quadratic function that only contains even power of z;_,, which would
not cancel the odd power terms in (1.2.19). Therefore (1.2.19) becomes P(T > vz_,) =
a+0(a"'/?), since all the other terms are of order O(a~*/2) or smaller. Thus, the theoretical

type I error-rate of Akritas and Papadatos (2004) test is only accurate up to order O(a~'/?).

1.2.2 Bootstrap Test with 7, and its type I error accuracy

In this subsection, we study the accuracy of bootstrap approximation to the distribution
of the test statistic T, given in (1.2.1). We also discuss the analogous bootstrap test for
one-way ANOVA.

At « level of significance, the bootstrap statistic in (1.2.2) could be used to obtain
the 1 — o analytical bootstrap quantile &f _, which admits the following Cornish-Fisher

expansion under regularity conditions.
1
~T A ~ ~cf
Wyi_q = V2otV E Wplk(zl—a)

where 7 is an estimate of v in (1.2.7) and p¢/(.) is a function of the estimate of Pyj(.) in
(1.2.10). For example, p/ (z) = —Pi(z), p(z) = Py(z)P'yi(z) — 0.52P(x)? — Pro(x).

This analytical form of quantile &  is an approximation of the quantile of T,.

16



In practice, computational approach is generally used to approximate the analytical

bootstrap quantile &, as follows:

e For avery large B, we randomly draw B bootstrap samples X7, = {X;‘lb, Xiop, - ,Xi*nib},,
from the observed data X; = {Xi1, Xig, -+, Xin,} fori=1,2,--+ a,b=1,2,---  B.

e For each sample, we compute Ty, = a™'/2 3" nl-(?:.(b) — 7*(6)..)2 —(1—2) Sf*(b)},
i=1
b=1,2,---,B, where 7:(17), 7*(b) and Siz*(b) are the average of i sample, overall

average and sample variance calculated from the b** bootstrap sample, respectively.

e We rank the B bootstrap replications of 7" as T;,(1) < T;’(Q) <... < T;,(B)' Then an
estimate of the computational bootstrap quantile &f_, 5 is 15 (k> Where T7 ;o has

kp observations smaller than or equal to it and kg = [(B + 1)(1 — «)].
e At significance level o, the null hypothesis is rejected if T, > &f_, p.

To test for no treatment effect, the bootstrap test uses the bootstrap quantile &, p
to define the rejection region. The theoretical type I error-rate of this bootstrap test is
P(T, > @f_a’ p). From the computational procedure, we know that Q1T_a, g 1s the sample

quantile based on T*,, b = 1,2, --- | B, which is a random sample from the bootstrap distri-

a,b’
bution conditional on the observed data. The bootstrap distribution admits the following

Edgeworth expansion
~ x | x x
FT(HZ’) = P(Ta S l’yz) = (5) + 321 WPUC (5\) ¢<Z\>, (1220)

where 7 is the plug-in estimate of v in (1.2.7) and Pyj(z) is the plug-in estimate of Py ()
in (1.2.10), in which the unknown population moments are replaced by their corresponding
sample moments.

Since Ty, b=1,2,---, B is a random sample from ﬁT(I), which has 1 —a quantile &7

conditional on the observed data, we can quantify the order of &f_, 5 —@]_,,. Specifically,

T

1_o and

conditional on the observed data &f_, z is approximately normal with mean @

17



variance (1 — a)a(B[f(Fr(1 — «))]?)~ where Fir(.) is given in (1.2.20) and f(.) is the
corresponding pdf. Hence &f_, 5 — &7, = O,(B~"/2). This term can be made arbitrarily

small by using a large B in computation. Then we can write P(T, > &]_, p) as

P<Ta - ((Di{—a,B - dj{—a) - ((D{—a - w?—a) > wi{—a) - P<Ta - (d)f—a - wT— ) > wf—a) + O(B_I/Z)'

11—«

To quantify the order of & _, — wl _, we need to trace back to S, = T, /v, which was used

to obtain the Edgeworth expansion of T,. Let w? _ and @f _ denote the true and estimated

1 — a quantiles of S, = T,/v. Based on Cornish-Fisher expansion of quantiles, w{ , and
@7, can be written as (under the regularity conditions in section)
s—2 1
c _(s—1
0= 21mat Y b (e1ma) + O (F) (12.21)
k=1
and
_— a+z ) (12.22)

where p{f(.) and p¢1(.) are functions of Pyx(.) in (1.2.10) and Py (.) in (1.2.20) respectively.

Then the true quantile w! , of T, in (1.2.1) is w? , = vw{ . The analytical form of the
bootstrap quantile & _ is given as ! = vwyf .
=~ 8 S
W? a W%La = VW_, —VWi_,
s—2 5—2 1
_(s—1
= U—v)z_ a—i—uz k/zplk(zl o I/Z Wpii(zl_a)—i-O(a (559))
k=1
= Op(afl/Z),

since 7 — v = O,(a~1/?). Thus, &I, approximates the true 1 — a quantile w!  in the order

of O(a™'/?). Now using the above results, the type I error P(T, > &{_, 5) can be written

18



as

~T ~T T
P(T >w1 a+w1 a,B wl—a+w1—a_w1—a)

- P(Ta (w?lr o,B w{ a) ((z}{—a - w?—a) > wf{—a)

= P(Tu— (@0 —wi o) >wi a)+0( )

5s—2 -2
5 1
T,— ((1/ V)z1_a+V E I<:/2 S(21a) g —/ H(21—a ) >w1_a> +0(B~Y%)
k=1

- P
k=1

= P (T ((V—V)21 a—f—VZ k/z 5 (21-0) =P (21-0)] +O(a™ )) >wfa> +0(B71?)

= P(T,—{(v - v)z1i_a + Op(afl)} > wi ) +O0(B7?)

= P(T,— (D —1)21-a >wl )+ 0@+ 0(B™?) (1.2.23)

where (1.2.23) is as a result of the Delta method in Hall (1992b) section 2.7. Based on the
results in (1.2.19), P(T, — (U — v)21_o > wi_,) in (1.2.23) is given by,
uaK?)(Ta)

61/°

P~ (0= ia ) = PO>L)+ | WL+ (@) =3l )}
uaK4(Ta)

()P =100 )P+ 15w )} 6wl ) +0(),

where u, = —82=290") >t 0 (#) o8(72 —2), K3(T,) and K,(T,) are given in (1.2.17)

a?2
and (1.2.18), respectively. Therefore,

uaK3(Ta>
61°

5 (W) + {(wia)’=3(wia)}

uaK4(Ta)
2416

{(10)? = 10(wi0)* +15(wi o) } | d(wiy)+0(a ) +O(B~2),

since P(T, > wi ) = a. That is, the accuracy of the type I error-rate of the bootstrap test
based on the test statistic T, in (1.2.1) is of order O(a=/?) + O(B~/?).

Therefore, if B is large enough, which can be achieved in computation, the theoretical
type I error-rate of both bootstrap test using T, in (1.2.1) and the test of Akritas and
Papadatos (2004) are the same and accurate up to order O(a~'/?). This is analogous to the

classical situation that bootstrapping a non-pivotal statistics does not improve the accuracy.
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An advantage of the bootstrap test is that its quantiles @] _ uses the sample moments to
estimate the population skewness and kurtosis in the data, while the normal quantiles used
in Akritas and Papadatos (2004) totally ignores the skewness and kurtosis. This could
lead to slightly better numerical performance in applications for the bootstrap test (at the

expense of more computational time).

1.2.3 Bootstrap Test with 7,/ and its type I error accuracy

It is noted that the test statistic 7, in (1.2.1) is not asymptotically pivotal. We consider an

asymptotically pivotal statistic M, defined as

M, =

T,
— 1.2.24
- (1.2.24)

where 1 is the estimate of v in (1.2.7). It can be shown that the limiting distribution of M,
is N(0,1). To study the type I error accuracy of the test based on M, in (1.2.24), we need
more accurate approximation of the distribution. As in subsection 2.1, under the regularity

conditions in 1.6.1 and under Hy, M, admits Edgeworth expansion of the form

»
[\

Fu,(z) = P(M, <) = ®(z) + #Qk(x)qﬁ(x) +0(a ), (1.2.25)

>
Il

uniformly for Vo € R, where ®(z) and ¢(x) are the cdf and pdf of the standard normal
distribution and Qg(x) is a polynomial of degree 3k — 1.

Based on the expansion (1.2.25), we note that the accuracy of approximation using
N(0,1) limiting distribution of M, is only of order O(a~'/?) due to the fact that Fy, (z) —
®(z) = O,(a=/?). In application, Akritas and Papadatos (2004) test is actually based on
M, using N(0,1) approximation. At « level of significance, the estimated quantile of the
Akritas and Papadatos (2004) test using N (0, 1) is z,, which is the quantile of the standard
normal distribution. The type I error-rate of this test is P(M, > z;_,) which can be
computed as a+O(a"/?). Therefore, the type I error-rate of Akritas and Papadatos (2004)

test based on N(0, 1) approximation to the distribution of M, is only accurate up to order
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O(a='/?). In the rest of this subsection, we study the type I error accuracy of bootstrap test
based on M, in (1.2.24).

Suppose X? = {Xi*l, Xiso s X, }/ denote a sample drawn randomly with replacement
from X; = {X;1, Xio, -+ ,Xmi}/, where X is the collection of independent and identically
distributed observations from treatment level i, ¢ = 1,2,--- ,a. Then using the resampled
data to compute Y;; = X, — X, the bootstrap version of the test statistic M, in (1.2.24)

is M, which is computed from the resampled data as follows:

T*
My=—= (1.2.26)
l/*
where T is given in (1.2.2), \/ S n:ljl and o}* is given by the u-statistic
il i (Wi, — Yip) (Wi, — ¥i,)?
v (s — D(n: — 2D (n: — 4 ’
nl(nl >(m >(nl 3) J1#JeFj3Fja

At « level of significance, the bootstrap statistic in (1.2.26) could be used to approximate
the 1 — o analytical bootstrap quantile @} _, which admits the following Cornish-Fisher

expansion under regularity conditions.

L=z a+z k/z H(21—a) (1.2.27)

where ¢/ (.) is a function of the plug-in estimate of Qx(.) in (1.2.25). This analytical form
of quantile ©}  is an approximation of the quantile of M,.
In practice, computational approach is generally used to approximate the analytical

bootstrap quantile M  as follows:

e Ior a very large B, we randomly draw B bootstrap samples X7, = {XZ.*lb, Xy, ,XZ.*nib}/,
from the observed data X; = { X1, X0, , X, } fori=1,2,--- ,a,b=1,2,---,B.

e For each sample, we compute M, = =55, b=1,2,---, B, where

T*b _ a—1/2 Z [nl(v;"(b) . 7*(@)2 . <1 . %) Sf*(b)} 7
i=1
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—

pr®) — \/% S ( L > o o0 ig given by u-statistic

n;—1 7

— n; *(b *(b *(b *(b
o0 _ 1 § : (yij( - yij( ))Q(yij( ) — yij(4))2
t (n, — 1 9 - 4 ’
ni(ni = 1)(n; = 2)(ni = 3) 1 #j2F i 4

7:_(17), Vf(b) and 51.2 *®) are the average of i sample, overall average and sample variance

calculated from the b*" bootstrap sample, respectively.

e We rank the B bootstrap replications of M} as M;,(l) < M; @) <. <M (B)" Then
an estimate of the computational bootstrap quantile &7, 5 is M; 4, where My,

I

has [p observations smaller than or equal to it and I = [(B + 1)(1 — a)].
e At significance level , the null hypothesis is rejected if M, > @71, p.

The test for no treatment effect based on bootstrapping test statistic M, uses the bootstrap
quantile @',  to define the rejection region. The theoretical type I error-rate of this
bootstrap test is P(M, > &M o,p)- From the computational procedure, we know that wM o.B
is the sample quantile based on M ,, b =1,2,---, B, which is a random sample from the
bootstrap distribution conditional on the observed data. The bootstrap distribution admits

the following Edgeworth expansion

»
[\

P, = POM; < afX) = () + Y 5 Qulr)o(a), (1.2.28)
1

e
Il

where Qk(a:) is the plug-in estimate of Qx(z) in (1.2.25), in which the unknown population
moments are replaced by their corresponding sample moments. Similar to the argument
between (1.2.20) and (1.2.21) in section 2.2, we know, @{\{a,B is approximately normal with

mean &M and variance (1—a)a(B[f(Fy, (1—a))]?)~! where Fyy, () is given in (1.2.28) and

f() is the corresponding pdf. Hence 0}, 5 — @M, = Op(B7?). This term can be made
arbitrarily small by using a large B in computation. Then we can write P(M, > &7, p) as

P(Ma_(a}{\{a,B_d)M )_((‘:}M _w{\{a) > (JJ{\{@) = P(Ma_<a}{\{a_wM ) > w{\{a)+O(B_1/2)

11—« 11—« 11—«
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To quantify the order of &M _ —wi’ . based on Cornish-Fisher expansion of quantiles, wi/

can be written as (under the regularity conditions in 1.6.1)

s—1

7)) (1.2.29)

s 1 . -
wll\/ia = Zl1—a + Z quf(zl,a) + O(a
k=1

where ¢/ (.) is a function of Q(.) in (1.2.25). The estimate of w}’  is BN, given in (1.2.27).

Therefore we have

s—2

ot~y = 3 [ (1) — B G} + BT (1)) — 6 (1)
k=1

The last equality is obtained by noting that (j,if is a polynomial with coefficients based on
the sample moments while q,if (21_a) is the corresponding polynomial with coefficients based
on the population moments. From central limit theorem for independent data, we have that

a'?(§ (z1_0) — E[G (z1-4)]) = O,(1) while the bias part E[G' (21_0)] — ¢/ (z1-0) = O,(1),

M
-«

see Theorem 2.3.1 (to get a sense of the terms in ¢t/ ()). Thus, @M, approximates the true
1 — a quantile w?  in the order of O,(a~'/?). Now using the above results, the type I error

P(M, > &', ) can be written as

P

(

= P(Ma (wl a,B wiwoa) (W{WOC wl]\{O) > wlﬂ{a)
(M
(

I
“U

(wl —a wlj\{a) > wlﬂ/ﬁa) + O<Bil/2)

= P(M,+Oya) > wl’,) + O(B™?)

N|=

= P(M,>w,)+0(a2)+0(B?) (1.2.30)

where the last three equalities are due to the Delta method in Hall (1992b) section 2.7. This
can also be computed in more detail using the same technique as in previous section. We
give it in 1.6.10. Therefore, P(M, > w ) = a + O(a=*/?) + O(B~Y2). Thus the accuracy
of the type I error-rate of the bootstrap test based on the test statistic M, in (1.2.24) is of
order O(a=Y?) + O(B~1/?).
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Therefore, for a very large B, which can be achieved in computation, the theoretical
type I error-rate of bootstrap test using asymptotically pivotal statistic M, in (1.2.24) is
O(a~1/%), which has the same rate of convergence as the test of Akritas and Papadatos (2004)
using 7, /v which is the statistics used in applications. Thus the type I error accuracy for
bootstrap test based on asymptotically pivotal statistic is not better than the test of Akritas

and Papadatos (2004) or bootstrap test based on non-pivotal statistics.

1.3 Bootstrap Test for Two-Way Analysis of Variance

With increasing advancement in technology especially in scientific research such as micro-
array and agricultural screening experiments, large amount of data are collected. In this
section, we are particularly interested in data from crossed two-way designs that have a
large number of treatment combinations but a small number of replications within each
treatment. The small replications used in the experiment are due to high cost of equipments
for conducting the experiments. For examples see Dudoit et al. (2002), Wang and Akritas
(2006), Wang and Akritas (2011). It is of interest to the researcher to examine which
treatments have significant effects as well as the significance of the interaction effect.

The classical F-test is known to perform well under the classical conditions of small
number of treatment combinations but with equal number of large replications within each
cell of treatment combination and normality. For unequal number of replications and in the
presence of heteroscedastic variances Ananda and Weerahandi (1997) discussed that results
based on the classical F-test is not robust. They demonstrated that the type I error-rate of
the classical F-test can be highly inflated under violation of unbalanced and heteroscedastic
assumptions. Some studies in two-way crossed designs have been conducted in literature
in the framework of a large number of treatment combinations with a small number of
replications. Wang and Akritas (2006) proposed new test statistics for testing the main
and interaction effects in a two-way heteroscedastic ANOVA based on original observations.

Wang and Akritas (2004) provides results for two-way ANOVA based on ranks and Wang
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and Akritas (2011) provide test statistic for multi-way layout high dimensional ANOVA.
The results of the aforementioned papers are based on the limiting distribution of the test
statistic which converges slowly.

It is notable that under the classical settings with small number of treatment level
combinations and large replications within each treatment level combination, some bootstrap
tests and confidence intervals can provide better approximation accuracy. Fisher and Hall
(1990) used the classical F-statistic to outline a general procedure for conducting a bootstrap
hypothesis test in a two-way ANOVA. However their results are only valid under the classical
setting. The conditions of Fisher and Hall (1990) bootstrap hypothesis testing do not apply
to our current framework that has a large number of treatment level combinations with
small replications in the presence of skewness and heteroscedastic variances.

In this section, we demonstrate the bootstrap hypothesis test for two-way analysis of
variance when the number of rows is large but with fixed number of columns and smal-
1 replications within each treatment level combination in the presence of heteroscedastic
variances and extreme observations.

We consider observations X, 1 = 1,2,--- ,a, 7 =1,2,--- ;band k = 1,2,--- ,n;; in a
crossed two-way design structure. We assume that X;j;’s are independent and identically
distributed in each (i,7) treatment level combination. The observations were decomposed
as Xijx = p+ o; + B + vij + €k, subject to the identifiability constraints Z?zl o =
22:1 Bi = > vij = 22:1%7' = 0. The interest is to test for no main row effect, i.e.,
Hy(a) @ all a; = 0 and no interaction effect, i.e., Ho(7y) : all 7;; = 0, when the number
of rows, a, is large but with fixed number of columns, b, and with small replications n;;

in each treatment level combination. In this two-way setup, the following notations will

be used: X5 = n;' S07 X, X, =b"! 23:17@‘., )N(g =a ' YL Xy, X. =

ij

(ab) ™ 3 > Xy, N=X0, 300 .
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1.3.1 Type I error accuracy of Wang and Akritas (2006) test

In this two-way ANOVA model, we first consider the type I error accuracy of the test
statistics proposed by Wang and Akritas (2006) for testing of no main row effect and no
interaction effect. The test statistics are
Ty = (ab)~12 Zi {(}?4 _x et (1 - 1) S—QJ} (1.3.1)
i=1 j=1 " b aj Mij h

and

a

To=(ab)™ 3 > {(YU. ~ X, - X, + X)) - WS—QJ} . (132)

ab Ny

for testing no main row effect and no interaction effect, respectively, where Sfj = (n; —
DS (X — Yij.)? These statistics were particularly proposed for the current frame-
work of large number of rows but fixed number of columns with small replications within
each (i,7) cell under the presence of heteroscedastic and extreme observations. Under the
null hypothesis of no main row effect, Wang and Akritas (2006) gave the asymptotic distri-
bution of T4 as N(0,v%), as a — oo and b is fixed, where v3 = 2(¢* + bn?) /b* with

¢* = lim (ab) ™' > Y " oh[ng(ny; — 1)) (1.3.3)

a—r00
i=1 j=1
and
a b 2 2
gt oc.
n* = lim (ab®)™* E E Lz (1.3.4)

e = s, Mg Mg

i=1 j1#j2

They also gave the null limiting distribution for T as N (0, v%) when a — oo and b is fixed,
where V3 = lim, o, 2(b—1)?¢*/b*+2n* /b. To study the type I error accuracy of these tests,
we describe the asymptotic expansion of the distribution of both T4 and T¢ in this section.

Based on Proposition 3.4 in Wang and Akritas (2006), the distributions of T4 and Ty

are asymptotically equivalent, where TA = \/La > ua; with

a—1 i b, S2
we gt (Bm) -] 159
J K




i=1,2,---,a and without loss of generality assuming that E(X,;;) = 0. This is because
both the first and second moments of Ty — Ty go to zero as a — oo while n;; and b stay

fixed under the null. We need to know the order of Ty — T4 in order to study the accuracy

of their test. The test statistic T4 in (1.3.1) can be written as
a a 2 a 1 b SQ a b 2
_ ~1/2 el T I (e i 1/2 €
no= ey 5 (5e) - (B S e (GR5e)

+(a0) YD 26 — € )~ ) + (= )]

“Ca—1 [(%:-)2 —JXb:S—QJ —(ab)™2 ) (ig]> (igﬂ>

s
= LY 11742 J=1

206 —€.) (. — ) + (. — [)*] -

a b b
TA — TA _ (ab) 3/2 Z (Z E’u]) <Z €12]> + Qa; (136)
i17i2 \Jj=1 Jj=1
where
a b nzg
—~ a—1 ewke,]kl
Ta= Z (ab)372 {Z €ij.€ijy. T Z Z e F— } ; (1.3.7)
i=1 J#£i J=1 k#k1
(1.3.8)

b
0, — (ab)_l/Q A Z [2(’51 — €. )a; + ozﬂ

and a; = j1;, — Ji... Denote the test statistic T4 under H, as Tf(xo). Thus under the null we

have
T(O) = TA — (ab)_3/2 i <Zgzlj> (ZEZ”) . (139)

A
11712 7j=1

Then
0 _ 7 —-3/2 - : - " — b2~ L
TA — Ty = _(ab> Z Z €iyj. Zeizj. = _m €iy..Ciz..
j 11742

i1#i2 \j=1



with E(TIE‘O) —T4) =0 and

a3

BRI — Ty = 2(b2) S B2 JER )
i1

b b
2 0.2

a3b

n. . n .
i1 j1=1 jp=1 = 11 "712J2

= O(a™).

Therefore, we have that T\ — Ty = O,(a~/2b"1/2). Noting that T is the sum of inde-
pendent random variables, we can apply Corollary 19.4 in Bhattacharya and Rao (2010) to
obtain the asymptotic expansion of the distribution of T4. Thus to derive the null asymp-

totic distribution of T4 in (1.3.1), we write ngo) as
T =Ty + a 21, (1.3.10)

where

N

—~ D~
M, = a3 (T — T) = a <_W > ee> : (1.3.11)

1742

satisfies I1, = O,(1). It is shown in Section 1.7.3 that

P(TY < 2) = P(Ty < 2) + O(a™). (1.3.12)

That is, the order of accuracy in approximating the distribution of Tlgo) with that of Ty is

O(a™'). Now we can apply Corollary 19.4 in Bhattacharya and Rao (2010) to obtain the

O
Edgeworth expansion of S4 = %, where

va = \/2(¢1 + bnt) /b2 (1.3.13)

Similar to the development of Fr(z) in (1.2.10), under the regularity conditions in Section

1.7.1, T 1510) also has Edgeworth expansion of the form

s—2
Foo(x)=P(TY < 2)=P (SA < 3) ! <f—A) +y° #P;‘ <£> qs(ﬁ) +0(a2))1.3.14)
k=1

A Va vy Vg
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for some s > 3 where ®(.) and ¢(.) are the cdf and pdf of standard normal random variable,
PA(x) is a polynomial of degree 3k — 1, with coefficients that depend on the population
moments of uy,; given in (1.3.5).

Under the alternative hypothesis H;(a) : at least one «; > 0, the test statistic T4 in

(1.3.6) can be written as
TO =Ty 4 a2, + Q, =TV + Q,, (1.3.15)

(note the superscript (1) in Tfﬁ is to emphasize that the data were from H;), where Ty,

and TIE‘O) are given in (1.3.7), (1.3.8) and (1.3.10), respectively. Under H;(«),

b1/2 a o .
= a% <_W Z Eil.fi?') N a%(T,Sll) —Ta —Q), (1.3.16)
a

i1#i02

satisfies I1, = O,(1). We assume that the departure from the null hypothesis satisfies
Vo> a2 = 0(a2). (1.3.17)
i=1

To determine the distribution of ngl) we write P(T 1511) < ) as
P(TY <2)=P(TY +Q, <)
It is shown in Section 1.7.7 that the above probability is

P(T < x)

2
_ (0) | k2 k1 K3 R K1 _
= P(T, <) [_21/3 (x —VA> + 5 {(m —VA> 1}] ) (:c —VA> +0(a™h), (1.3.18)

where P(Tjgo) < x) is the distribution of T/(lo) given in (1.3.14),

k1= (b/a)'?> " af, (1.3.19)
=1

a b 2

1 § 2714
K9 Oél nz.j’ ( 3 0)

i=1 j=1
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and

8(a —1)3 <& ° Vi O, i YijO3; .
3] oyt LS SNSRI O

<. n
i=1 Lj#j g j=1 ( K

We observe that the difference in distributions of 7' 1510) in (1.3.12) and T' j” in (1.3.18) is due
to the moments of €2, in (1.3.8) and the moments of cross terms of €2, and Tﬁlo).
In practice, Wang and Akritas (2006) approximate the distribution of 7' 1510) with N(0,77)

where

+ 33 Z it ”2] (1.3.22)

N, M
1772 ij1 'Yig2

is an unbiased estimate of 1% with o 0 - being an unbiased estimate of a . given by the

U —statistic,

vy L1 S 2 2 2 2

% = P 1g D [@igm = ijre)* @igks — Tigna) + (Tighy — Tijks)* (Tijhs — Tijh,)

ij 7k tho stk
+ (Bighy = Tijha)*(Tighy = Tijia)?]

where P;fij = nij(ni; —1)(ny — 2)(ny; — 3), and s3; denotes the sample variance for the (7, j)
cell. Comparing the CDF of N (0, 7%) with (1.3.4), we can see that the error of approximation
using N (0, 73) is of order O(a~'/?) since Fr, ()= ®(:%) = O,(a~'/?) this is a result of Taylor

expansion and the fact that
Ua—va=0,(a?), (1.3.23)
which can be shown similarly as in Section 1.6.2.
Similarly, for large number of row factor levels, a, and fixed number of column factor
levels, b, we let TVC denote the projection of Ty where Tvc = \/La 2?21 Uc; with

~Db-1 . S? e~ —
s — WZ (ij' _ i) S X K (1.3.24)

3
i/ (ab)r i,

for i = 1,2,--- ,a and without loss of generality assuming that E(X;;;) = 0. Let T((JO) the
test statistic under the null for testing of no interaction effect. Then based on Proposi-

tion 3.4 in Wang and Akritas (2006), the distributions of Téo) and Tp are asymptotically
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equivalent. Since Tg is the sum of independent random variables, we can apply Corollary
19.4 in Bhattacharya and Rao (2010) to get the asymptotic expansion of the distribution
of Te. Likewise, it can be shown that under the null T\) — T = O,(a~*/2) and the
P(T(O) < z) = P(Te < x) + O(a™?). Thus, we can apply Corollary 19.4 in Bhattacharya

and Rao (2010) to obtain the Edgeworth expansion of S¢ = ¢, where

ve = /2(b — 1)2¢4/b2 + 2% /b. (1.3.25)
Therefore similar to the development of Fr(z) in (1.2.10), under the regularity conditions
in Section 1.7.1, Téo) admits Edgeworth expansion of the form

FTéO)(x):P(TéO) <z)=P (SC < i) = ( )+Z by (%) gb(%) +0(a""2]1.3.26)

Ve

for some s > 3 where ®(.) and ¢(.) are the cdf and pdf of standard normal random variable,
PE(x) is a polynomial of degree 3k — 1, with coefficients that depend on the population
moments of uc; given in (1.3.24). In practice, Wang and Akritas (2006) approximate the
distribution of T.) with N(0,52) where

b

N b - ]- z 1 1 2
D2 = az an e + 5 Z S St (1.3.27)

Ngii Ny
i=1 j=1 Jisge dr Tt

is an unbiased estimate of v4. Comparing the CDF of N(0,72) with (1.3.26), we can see

T

that the error of approximation using N (0,72 ) is of order O(a~%/?) since Fr,(z) — ®(Z) =

o
O,(a='/?) due to the fact that it can be shown that
Do —ve = 0,(a™"?), (1.3.28)

where V¢ is an estimate of v¢ in (1.3.25).

It is noted that in testing for no main row and no interaction effects, the test of Wang
and Akritas (2006) is based on normal approximation. At « level of significance, to test for
no main row effect, the estimated quantiles of the Wang and Akritas (2006) test is D4 zq,

where z, is the quantile of the standard normal distribution and 4 is the estimate of 14
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given in (1.3.13). The type I error-rate of the Wang and Akritas (2006) test for no main

row effect is P(Tflo) > UZ21-q), Which can be written as
0 < 5 _ ©) .
P(T," > 0azi_q) = P(Ty — (D4 —va)21—a > VaZi_a)-

Similar to the proof in the one-way case, the above probability can be shown to be P (T,Ef” >
Vazl_a) = a+0(a"Y?). Therefore, the theoretical type I error-rate of no main row effect for
Wang and Akritas (2006) test is only accurate up to order O(a—'/?). It can also be shown
that the theoretical type I error-rate for the test of no interaction effect based on Wang and

Akritas (2006) test is also accurate up to order O(a~'/?).

1.3.2 Bootstrap tests with 74 and T and their type I error accu-

racy

In this subsection, an analogous procedure for studying the bootstrap test for one-way
analysis of variance in subsection 2.2 is employed to study the bootstrap test and its type
I error accuracy for two-way analysis of variance based on the test statistics T4 and Ty in
(1.3.1) and (1.3.2), respectively.

We denote by X7; = {X y

g1

X*

lj27..‘7

X*

Zjnij}, random samples drawn with replacement
from the data X;; = {Xijl,XZ‘jg, e ,Xijmj}, where X;; is the collection of independent
and identically distributed observations from each treatment level combination (i,j), i =
1,2,---,aand 7 =1,2,--- /b. To construct the bootstrap version of the test statistics for
testing no main row and no interaction effects in (1.3.1) and (1.3.2), respectively, consider
the transformation Yj;, = Xjji — 5. Since p;; is unknown, we use the resampled data to
= X}, — X;;. The following notations will be used: ?;; = ni_jl WY

*
compute Y ik

ijk ijk
U % — b v U — a F U — a b F *

=19 1Zj:1 Yij.? Y] =a 1Zi:1 Yz'j.? Y* = (ab) 1Zi:1 ijl Yij.? Sizj = (ny —
1)~ Y (Y, — Y5;)% The bootstrap version of the test statistic 74 in (1.3.1) is 7%, which
is computed from the resampled data as

73— (@)Y Fo-vor-g(1-1) i—] . (1.3.20)

i=1 j=1
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Likewise the bootstrap version of the test statistic T¢ is T¢ computed from the resampled

data as

(ab) WZZ{ Y+ Y- wsi (1.3.30)

ab oy
i=1 j=1 v

At « level of significance, the bootstrap statistics in (1.3.29) and (1.3.30) could be used to
obtain the 1 — a analytical bootstrap quantiles @fi‘a and @{fa, respectively, which admits

the following Cornish-Fisher expansion under regularity condition.

s—2
. . . L.
@A, = Daia D4 ) Wpf(zl_a) (1.3.31)
and
s—2 1
W, =bern—a+ 00 Y Wﬁg(zl_a) (1.3.32)
k=1

where 4 is an estimate of v4 in (1.3.3), D¢ is an estimate of v in (1.3.6), p2(.) and p¢(.)
are functions of the estimates of PA(.) in (1.3.4) and PE(.) in (1.3.17), respectively. These
analytical form of quantiles @74 and &4 are an approximation of the quantiles of T4 and
Te, respectively.

To obtain (1.3.28) and (1.3.29) in practice, computational approach is generally used to

approximate the analytical bootstrap quantiles d)lea and (I)rffa as follows:

e For a very large M, we randomly draw M bootstrap samples

* * *
ngm {Xulm’ ng2m7 o 1JM45m

fori=1,2,--+ ja,j=1,2,--- ,band m=1,2,--- , M.

e For each sample, we compute

T:&m (ab) —1/2 Z Z

=1 j5=1

and

a

Té(m —1/2 Xb:

=1 j=1

L X } , from the observed data X;; = {Xijl, Xijas s Xijny, }/



*(m)

where m = 1,2,--- , M, Y; Yy, ?;(m), Y*m) and Sfj*(m) are the weighted aver-

age of (i7)!" sample, unweighted average of i'" sample, unweighted mean of j*, overall
unweighted mean and sample variance calculated from the m* bootstrap sample, re-

spectively.

o After ranking the M bootstrap replications of T} and T as T (1) <7 @) <-... <
T3 v

tational bootstrap quantiles @4 and @' . are T* and T , respectively.
1—a,M 1—a,M A,(kar) C\(kar) Y

) and TC*‘,(I) < Tg’(z) <. < Ta( M) respectively, then an estimate of the compu-

Where T7; . has ky ~ [(M +1)(1 — a)] observations smaller than or equal to it and

T2, gy has & [(M +1)(1 — )] observations smaller than or equal to it.

e At « level of significance, the null hypotheses of no main row and no interaction effects

are rejected if Ty > & Ao and To > oe M-

In testing for no main row and no interaction effects, the bootstrap test uses the bootstrap
quantile @ipj‘a’ v and @ipfm r to define the rejection regions. The theoretical type I error-rates
of these bootstrap tests to test for no main row and no interaction effects are P(T4 > @an )
and P(T¢ > @clrfa’ ). From the computational procedure, we note that @ipj‘a’ y and O Wka, Y
are the sample quantiles based on T7; ,, and T¢,,,, m = 1,2,--- | M respectively, which is
a random sample from the bootstrap distribution conditional on the observed data. The
bootstrap distributions of 77 and 77 admit Edgeworth expansions

Fr,(z) = P(T; <z|X) = ® ( ) + Z m ——= Py (ﬁ) ¢<VAA) (1.3.33)

and

Fr.(z) = P(T}, < 2|X) = @ ( ) + Z k/QPk (;) qs(i) (1.3.34)

Ve Vo
where 74 is the plugin estimate of v4 in (1.3.3), 7o is the plugin estimate of v¢ in (1.3.6),
and P/ (x) and PE(z) are the plugin estimates of P/ (z) in (1.3.4) and PZ(z) in (1.3.7),
respectively, in which the unknown population moments are replaced by their corresponding

sample moments.
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As discussed in subsection 2.2, we note that conditional on the observed data, @?fm A 1S

approximately normal with mean &4, and variance (1 — o)o(M[f (ﬁTA(l —a))]?*)~! where

~Ty

Fr,(.)is given in (1.3.13) and f(.) is the corresponding pdf. Thus, the order of @fme—wl N

can be quantified as O,(M~'/?). Similarly, &, oM —wi¢, = @rfca =018, +01C, —wiC, with
@ffm v — @1€, = O,(M~"?). These terms can be made arbitrarily small by using a large

M in computation. Then we write the theoretical type I error-rate of the bootstrap test for
main row effect P(T4 > c&fi‘mM) as P(Ty > wiA, +oi4, M — oA ol —wlh ) = P(T,—
(@2, —wit) > wiA) 4+ O(M~Y?). In order to compute P(Ty — (&f%, — wlTAa) > wit),
we let w4 and &4 denote the true and estimated 1 — o quantiles of Sy = Z4. Based on
Cornish-Fisher expansion of quantiles, w*, and &4, can be written as (under the regularlty

conditions in section)

s—2

1
wlsfa =Z1—at Z Wp?(zlfa) (1335)
k=1
and
= Zl-a + Z k/gpk 21— a (1336)

where pf(.) and p{(.) are functions of PA(.) in (1.3.4) and PA(.) in (1.3.13), respectively.
Then the true quantile wi*, of Ty in (1.3.1) is w4, = vaw;*,. The analytical form of the

bootstrap quantile &f 4, is given in (1.3.31). Therefore we have

~Tg Ta _ o~ Sa
Witg — Wiy = VAW, — VAW 2,

—2
1 A
= (Va—Va)zi—a +Va ;—/pk Z1—a) VA;WZ% (21-a)

= Op(a_l/Q)a

since vy — vy = Op(a_l/ 2). Thus, dlei‘a approximates the true bootstrap quantile w{fa in
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the order of O(a='/?). Now using the above results, P(Ty > djfj‘a’M) can be written as

Ta ~Ta ~ T ~ Ty Ta
P(Ta > wi, + %y — @12 + 012, —wiy)

~T ~T ~T T T
- P(TA - (wlfa,M - wléc) - (wlfa - wlfo) > wlfa)

- P(TA - ((’D?fa - wffa) > wffa) + O<M_1/2>

= a+0(a ) +O0(M?), (1.3.37)

where (1.3.17) follows as discussed in the one-way case. Similarly, it can be shown that
P(Te > @(¢, ) = a+ O(a™?) + O(M~Y/?). That is, the accuracy of the type I error-
rates of the bootstrap tests based on T4 in (1.3.1) and T (1.3.2) are of the same order
O(a™?) + O(M~1/?).

Therefore, if M is large enough, which can be achieved in computation, the theoretical
type I error-rate of both bootstrap test and the test of Wang and Akritas (2006) have the
same accuracy of up to order O(a~'/?) based on the test statistics T4 and T given in (1.3.1)
and (1.3.2), respectively. An advantage of the bootstrap quantiles ©7*, and ©7¢, uses the
sample moments to estimate the population skewness and kurtosis in the data, while the
normal quantiles used in Wang and Akritas (2006) totally ignores the skewness and kurtosis.
This could lead to slightly better numerical performance in applications for the bootstrap

tests.

1.3.3 Bootstrap tests with 7,/04 and T¢/P¢ and their type I error

accuracy

As discussed in subsections 3.1 and 3.2, the test of Wang and Akritas (2006) and bootstrap
test based on the test statistics T4 and T given in (1.3.1) and (1.3.2), respectively, have
the same type I error accuracy of up to order O(a~'/2). This is due to the fact that both
Ty and Ty are asymptotically non-pivotal statistics. It is therefore important to consider
test statistic which is asymptotically pivotal. In this subsection, we discuss bootstrap test

based on pivotal statistic similar to the one-way case in subsection 2.3.
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We denote by M4 and Me the studentized versions of the statistics T4 and T, respec-

tively, such that

T
My =2 (1.3.38)
VA
and
T,
Mo = =5, (1.3.39)
Vo

where 4 and D¢ are the estimates of v4 and ve given in (1.3.22) and (1.3.27) respectively.
We note that both M4 and M have limiting distribution of N(0,1) under the null. Since
we are interested in the type I error accuracy of the test based on M, and M, we consider
an asymptotic expansion of distribution of M4 and M. Under the regularity conditions in

section 1.7.1 and 1.7.2, respectively, M, and My admit Edgeworth expansion of the forms

Fuy(x) = My € 2) = 0(2) + 3 204 )o(@) + 0 7)), (13.40)

and

Fuo(@) = P(Me < 2) = ®() + Y. 5:00@)o(@) + 0@ ), (1341)

respectively, uniformly for Vo € R, where ®(x) and ¢(x) are the cdf and pdf of the standard
normal distribution, Q7 (x) and Q¢ (x) are polynomials of degree 3k—1, with coefficients that
depend on the population moments of u4; and uc;, given in (1.3.5) and (1.3.24), respectively,
fort=1,2,--- ,a.

Since we want to study the bootstrap test with M4 and Mc, we consider Y7,

= X:Jk_yz;
which has been discussed in the second paragraph of subsection 3.2. We denote by M} and
M, the bootstrap versions of M4 and M¢ given in (1.3.38) and (1.3.39), respectively such

that

M = (1.3.42)



e

Mg = — (1.3.43)
Vo
where T% and T¢, are given in (1.3.29) and (1.3.30), respectively,
b * *
N ij1 ija
N S dEm By
Jj=1 J1#352
and
b o 1 b 4* 2% 2*
. Sigr Sija
VG = aZ Zm e ng o
i=1 j=1 AT iy LT
with O/'Z%k given by the U —statistic,
/z;k ]' 1 mj * * 2 * * 2 * * 2 * * 2
O = i 12 Z [(yijkl - yijkg) (yijkg - yijk4) + (yijk1 - yijkg) (yijkg - yijk4)

Mij k1#koF#ksFka

Theoretically, the quantiles of M} and M/ are used to approximate the 1 — o analytical

. ~Ma ~Mc
bootstrap quantiles ;"% and w;_%,,

respectively, at a level of significance. Under the regu-
larity conditions in section 1.7.1 and 1.7.2, @™, and ©;"¢, admit Cornish-Fisher expansion

of the forms

- 1

ol = 210+ ) =5 (1a) (1.3.44)
k=1

and

5—2

~ I

WG = Z1—a + WQI?(zl—a>7 (1.3.45)
k=1

respectively, where ¢;' and §i' are functions of the plug-in estimates of Qs and Q¢ given in

(1.3.40) and (1.3.41) respectively. Using the computational procedure outlined in subsec-

A

~M Mc
tion 3.2, we approximate w;_7,

«

Mc

and ©;_¢, with the bootstrap quantiles w{wﬂx p and 0" 5,

respectively, where B is the number of bootstrap replications of M} and M/ denoted by

M}y = M

a@) S S My gy and Mg

) < Ma@) < 0 < Ma(B), respectively. We
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note that the B bootstrap replications, M} ,, b = 1,---, B, is a random sample from the
bootstrap distribution conditional on the observed data. Thus the bootstrap distribution

for testing no main row effect admits Edgeworth expansion of the form
Fy, = P(M% < 2|X) = ®(z) + Z ka (z), (1.3.46)

where Q{(z) is the plug-in estimate of Q{!(z) in (1.3.40), in which the unknown population
moments are replaced by their corresponding sample moments.

To test for no main row treatment effect, at o level of significance, Hy(«) is rejected

if My > @4 In theory, the type I error of the bootstrap test is P(M, > @™ ). This

probability can be written as

P(Ma>&%) = P(Ma— (0% 5 —o08) — (@17 — with) > wis)

«

= P(My— (@M — My > wMay L OB, (1.3.47)

where the equality is due to the fact that &{™, ; — &4 = O,(B~"/2) which follows from the

discussion in subsection 2.2. wi’4 is the true quantile of M, given in (1.3.38). Under the

regularity conditions in section 1.7.1, w 4 admits the following Cornish-Fisher expansion

s—2
s—1

1 _
Wi =210 + Z W%ﬁ(zlfa) +O0(a" 2
k=1

M, (1.3.48)
where ¢{(.) is a function of Q{(.) in (1.3.40). To quantify the order of "4 — w4 we have

fdf{i‘l - w{\{% = Z L/ {Qk Zl a) - E[(jl?(zl—aﬂ} + {E[dl?(zl—a)] - q;:(zl—oc)}]

= Op<a*%>

where the equality is due to the fact that by central limit theorem (Lyapounov condition)
a'? (G} (z1-a) = Eld{(21-)]) = O,(1) and the bias part E[Gi'(21-a)] — ¢ (21-a) = Op(1).
Thus, d)%‘a approximates the true 1 — o quantile w{\{“(‘l in the order of Op(a_l/Q). Using the

Delta method of Hall (1992b), the probability in (1.3.47) is equal to

P(My > &My = P(My > wM4) + 0,(a72) + O(B™?) = a+ 0,(a"2) + O(B/?).

«
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Similarly, it can be shown that the type I error rate for test of no interaction effect is equal
to a + O,(a"1/?) + O(B~Y2). Therefore, the accuracy of the bootstrap test based on M4
and M is of order O,(a"/?) + O(B~Y/?).

In conclusion, for a very large B, bootstrap test based on asymptotically pivotal statistics
have the same rate of convergence compared to that of non-pivotal statistics and the test of
Wang and Akritas (2006) based on T4 /U4 and T /D¢ for the test of no main and interaction

effects, respectively.

1.4 Simulation Studies for One-Way ANOVA

In this section, we conduct simulation studies to investigate the performance of the bootstrap
test in one-way ANOVA. We compare the type I error-rate of Akritas and Papadatos (2004)
test in subsection 1.2.1 and the bootstrap test based on both 7 and M/ in subsections

1.2.2 and 1.2.3, respectively.

1.4.1 Simulation setting

We consider heteroscedastic data generated from chi-square distribution with 3 degrees of

freedom, chi-square distribution with 8 degrees of freedom, and normal (0, 1) as follows:
e DI1: Y, =it/a+ log(i + 1)¢;j, where ¢;; are i.i.d. N(0,1).
e D2: V;; = 8(it/a)* + 8log(i + 1)(X;; — 8), where X;; are i.i.d. x32.
e D3: Y;; =3(it/a)* + 3log(i + 1)(X;; — 3), where X;; are i.i.d. x3.

D2 and D3 have larger heteroscedastic variances while D1 has small heteroscedastic vari-
ance. In addition, the distribution D3 is more skewed than D2 and D1. The data generation
and tests were repeated 2000 times under Hy i.e. 7 = 0. The proportion of rejections from
the 2000 runs are reported as type I error.

We report the type I error-rate results for D1 — D3 for the number of treatment levels

a = 10, 15, 20, 25, 50, 75 and 100 at nominal a = 0.05. We use the following group sizes
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and number of treatment levels in the data generation. For a = 10, the group sizes are 4,
5,4,6, 5, 6,4, 5,4, 4; for a =15, n; = 5,4,4,4,4,4,6,4,4,5,5,4,4,5,4 and for a = 20, n;
is equal to 4, 4, 4, 4,4,4,4,4,6,6,4, 4,5 4,4, 4, 4, 4.5 When a = 25, 50, 75 and
100 we use the group sizes 6,4,5,4,5,4,4,4,5,4,6,4,4,5,4,4,4,4,4,4,4,4,4,4,4,6,--- ,6,

where all omitted n;’s are equal to 6.

1.4.2 Simulation results

The estimated type I error-rate for D1, D2 and D3 are displayed in Table 1 for Akritas
and Papadatos (2004) test labeled as AP, the bootstrap tests in subsections 1.2.2 and 1.2.3
labeled as T;,.boot and M,.boot, respectively. We notice in Table 1.1 that the AP test is
more liberal while the bootstrap test based on asymptotically pivotal statistic is conservative
when the data comes from the more skewed distribution D3 but stable type I error-rate for
D1 and D2 when the number of treatment levels a is large. The bootstrap test based on
non-pivotal statistic T, has inflated type I error for normal or the less skewed data (D1 and
D2) when a is small. For a = 100, the bootstrap test based on T, has good type I error for
these two distributions. For the more skewed distribution D3, the bootstrap test with T,
has the best type I error control.

In general both T,.boot and M,.boot perform better than the T, test for large number of
treatments when the data comes from symmetric D1 or light skewed distributions D2 with
heteroscedastic variances. On the other hand, for the more skewed data D3 the type I error-
rate of M,.boot is conservative for large number of treatments (i.e. a > 25). This is due
to the fact that the bootstrap approach uses biased estimates in estimating the population
parameters such as the skewness. To achieve a better convergence type I error accuracy,
we need to consider a higher order asymptotic expansions of the test statistic based on

Edgeworth and Cornish-Fisher expansions.
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Distribution a AP Ma.boot Ta.boot

10 8.6 2.8 8.3
15 10.0 2.8 8.6
20 7.8 2.9 7.8
D1 25 9.3 3.7 8.5
50 6.9 4.0 6.3
7D 6.8 4.8 6.3
100 6.3 3.9 2.8
10 9.9 3.0 8.6
15 94 2.6 7.8
20 8.3 2.9 7.0
D2 25 8.2 2.8 7.1
50 7.6 4.0 6.5
D 6.5 3.9 4.7
100 5.9 4.2 4.9
10 9.5 2.2 7.2
15 8.0 2.0 2.7
20 7.8 1.6 2.5
D3 25 8.3 1.7 2.3
50 6.4 2.6 3.8
7 5.8 2.3 2.7
100 5.1 3.4 3.0

Table 1.1: Percent of rejection under Hy for D1, D2, D3 at o = 0.05

1.5 Simulation Studies for Two-Way ANOVA

We conduct numerical studies to examine the performance of the bootstrap test in two-
way ANOVA with a large number of factor levels under heteroscedastic variances for both
symmetric and skewed data. We compare the estimated type I error-rate and power for the
main row effect for the test of Wang and Akritas (2006) and the bootstrap test based on T4
and My in subsections 1.3.2 and 1.3.3 respectively. For the interaction effect we compare
the estimated type I error-rate for the test of Wang and Akritas (2006) and the bootstrap

tests based on T and M.
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1.5.1 Simulation Setting

In the two-way ANOVA, we generate data from heteroscedastic N(0,1), x2, x3 and mixed

distribution from gamma and normal distributions as follows:
o El: Vi =it/a+ (14 1/4+ j/4)Xijk, where X, are i.i.d. N(0,1).
o E2: Vi =8(it/a)* + (log(i + 1) + 2log2(5))(Xije — 8), where X, are i.i.d. x3.
e E3: Vi =3(it/a)* + (log(i + 1) + 2log2(5))(Xijx — 3), where X, are i.i.d. x3.

o F4:

v { Gamma(shape = 0.02i, rate = 0.1i/4) if j = 1;

el Normal(0.08 +i7/a,i/a) if j = 2.
It should be noted that the data generation setting for £1 — E4 are under H, for both tests
of main row effect and interaction effect. In setting E4, the data for 7 = 1 has mean 0.8
while those for j = 2 has mean 0.08 when 7 = 0. This difference is the main column effect.
However, we are only testing for the main row effect and interaction effect. The gamma
distribution used in E4 has skewness parameter 2/1/0.02i, which ranges from 4.472136 to
1.632993 for a increases from 10 to 75. The chi-square distribution used in E3 and E2 has
skewness parameter \/8/_alf7 which is equal to 1 for E2 and 1.632993 for E3. The data
generation and tests were repeated 2000 times. When 7 = 0 the data is generated under
Hy; otherwise it’s generated under the alternative hypothesis. In the data generation, we
consider fixed number of column factor levels b = 2 and small group sizes depending on the

number of row factor levels used. The group sizes and their corresponding row factor levels
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are as follows: fori =1, - ,a,

ni = (4,5,4,6,5,6,4,5,4,4) if a = 10

ng = (4,4,4,4,5,4,4,5,6,5) if a = 10;

ng = (5,4,4,4,4,4,6,4,4,5,5,4,4,5,4) if a = 15;
— (4,4,4,4,4,4,7,4,4,4,4,4,4,5, 4) if a = 15;

o = (4,4,4,4,4,4,4,4,6,6,4,4,5,4,4,4,4,4,4,5) if a = 20
= (4,4,4,5,4,6,4,5,4,5,4,4,4,4,5,4,4,4,4, 4) if 0 = 20;

i = (6,4,5,4,5,4,4,4,5,4,6,4,4,5,4,4,4,4,4,4,4,4,4,4,4,5,--- ,5) if a = 25,50 or 75;
= (

6,4,6,4,4,4,4,4,6,6,6,4,4,4,4,4,5,4,4,4,4,4,6,4,5,4,--- ,4) if a = 25,50 or 75,

where all omitted n;;’s and n;’s are equal to 5 and 4, respectively. The proportion of
rejections from the 2000 runs are reported as either type I error or power depending on
whether the data is generated under the null or alternative hypothesis, respectively. For
the test of no main row and interaction effects, we report the estimated type I error-rate
for E1 — F4 with a = 10, 15, 20, 25,50 and 75. We report the achieved power for only main

row effect for E3 with a = 25 and 50. The different values of 7 are specified in the table.

1.5.2 Simulation Results

Table 1.2 displays the estimated type I error-rate for main row and interaction effects for
the test of Wang and Akritas (2006) and the bootstrap tests in subsections 1.3.2 and 1.3.3.
We denote by T'A, T'A.boot and M A.boot for the test of Wang and Akritas (2006) and the
bootstrap tests in subsections 1.3.2 and 1.3.3, respectively, for the main row effect. Their
corresponding interaction effects are denoted as T'C'; T'C.boot and M C.boot.

As shown in Table 1.2, the type I error-rate for TA and T'C' are liberal for £1 — E3. The
bootstrap test based on asymptotically pivotal statistic M A.boot and M C.boot have better
type I error-rate for symmetric data with heteroscedastic variances E1 but conservative
for heteroscedastic skewed distributions E2 -F4. T A.boot and T'C.boot have better type
I error-rate for light skewed heteroscedastic data E2 with large a but liberal with smaller
a or for symmetric heteroscedastic data E'1. They have a better type I error-rate for the

more skewed data E3 for smaller a but become conservative for a > 50. For the mixed
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Distribution a TA MA.boot TA.boot TC MC.boot TC.boot

10 8.5 4.7 8.8 7.8 4.0 8.5
15 7.8 4.1 8.2 8.2 4.0 8.8
20 7.7 3.8 8.3 7.2 3.4 7.8
E1 25 6.6 2.6 7.6 6.9 4.0 8.0
50 7.6 4.9 8.3 8.3 5.5 9.2
7 7.1 4.9 8.2 6.5 4.2 7.3
10 8.3 2.5 7.2 8.3 2.5 7.2
15 9.7 2.0 8.2 9.7 2.0 8.2
20 8.8 24 7.1 8.8 24 7.1
E2 25 8.3 2.6 6.9 8.3 2.6 6.9
50 7.5 2.7 6.0 7.5 2.7 6.0
7 7.5 3.3 5.9 7.5 3.3 5.9
10 7.3 1.5 5.9 7.3 1.5 2.9
15 8.5 1.6 6.6 8.5 1.6 6.6
E3 20 7.6 1.7 0.2 7.6 1.7 5.2
25 8.0 2.0 5.9 8.0 2.0 5.9
20 6.0 1.9 4.5 6.0 1.9 4.5
75 6.2 1.8 3.5 6.2 1.8 3.5
10 5.4 1.6 2.8 5.2 1.6 3.2
15 4.6 1.4 2.3 4.5 1.3 2.3
E4 20 4.8 1.5 2.3 45 1.2 2.3
25 4.9 2.1 25 49 1.8 2.3
o0 5.2 1.9 2.0 5.6 2.1 2.3
75 4.5 2.3 22 49 2.2 2.1

Table 1.2: Percent of rejection under Hy for E1- E4 at o = 0.05 level

distribution setting F4, the TA and T'C have well controlled type I error for all a values
but all bootstrap tests are conservative.

Next, the percent of achieved power for more skewed data E3 with a = 25 and 50 is
displayed in Table 1.3. We observed that the achieved power based on T'A is inflated while

that of M A.boot is conservative. T'A.boot has a reasonable achieved power.
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a tau TA TA.boot MA.boot

25 0.0 8.0 2.9 2.0
25 1.0 34.1 25.2 12.0
25 1.2 67.5 55.3 31.4
25 1.4 964 90.8 72.0

25 1.6 100.0 99.0 94.2
25 1.8 100.0 100.0 99.0

20 0.0 6.0 4.5 1.9
50 1.0 234 16.5 8.2
o0 1.2 55.8 43.2 27.0
o0 1.4 92.7 84.1 67.7
20 1.6 99.8 99.0 96.0

50 1.8 100.0 100.0 99.8

Table 1.3: Percent of achieved power for E3 at o = 0.05

1.6 Technical Proofs for One-Way Layout

1.6.1 Regularity conditions

—_— ng 1 nl .. .. ) f— .« .. . = ot — .
Let u; = ( — ﬁ) T ZjthLj#ﬁ €ij1€ijs, 0 = 1,2, -+ ,a, where €¢;; = X;; — p; are the error

terms of independent random variables X;;. For asymptotic expansion of 7, we assume the

following regularity conditions (see Corollary 19.4 of Bhattacharya and Rao (2010)):
Al: For some § > 0, E(e;;)*" < oo.
A2: Let ps =a 'Y 7| Elw*, then sup, ps < oo

A3: Define g,,(m > 0) such that g, (t) = H?Z;fﬂ |E(exp{itu;})| for some integer p, satisfy

SUP,,50 f gm(t)dt < 0o and sup{gn,(t) : [t| > z,m >0} <1 (z > 0).

Even though three conditions are given, only conditions Al and A3 are sufficient. I first

explain below that under condition Al the random variables w;’s have finite absolute s
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moments. [ then further explain that knowing A1l ensures that A2 hold.

n; 1 & n;\ 8 1
1__z) i € = (1__Z> - FE
< N n; — 1 Z Cijiiga N (TLZ - 1)8

J1,92=1,52#j1
s—1 g

A\ ng(ng — 1)1
oyt (=) Y Elejenl

R S
(nl 1) Ji.g2=1je#j1

S n;

E €ijy Cija

J1,g2=1,J2#j1

E

IA
~

—_
S

s—1 ng

)
< (%) oy X Blenl)B(el)
)

J1,g2=1,J2#j1

= (1-3) m [B)) <,

J1

where the last inequality is due to Al. Therefore, u; has finite absolute moments, i.e.,

E|u;|* < oo for some s > 3. Next

sup ZE

ng

1
(-t 3 e

J1,j2=1,J2#j1

< swpo Z (1 - —> P BGe)])

< 0o0.

where the last inequality is due to Al. Thus, A2 hold.

1.6.2 Proof of (1.2.11).

To prove (1.2.5), we first show that under condition Al in section 1.6.1

4 & N 2 -
2 — 12 N0, lim = : Var (o4 1.6.1
Va(o? —v*) = <,aggoa; 1) Var@)], (1.6.1)

_2 2 4 4
where v? = 237 | (nz > of and 0? = 2% | <m_1> o}. o} is an unbiased estimate of o

given by U-statistic

] 1 o = e — )
0_21 _ Z ij1 1J2 23 tJ4 (162)
ni(ng = 1)(n =2)(ni =3) ., = 1

and Var(c;}) can be computed using the variance of u-statistics. We let
0= d, (1.6.3)
i=1
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where d; = % <L> (;;-1, 1=1,2,--- ,aand dy,ds, - - - ,d, are independent but not identically

TLi—l

distributed with E(d;) = 2 ( L >a4. To show (1.6.1), it remains to verify Lyapounov’s

a \ n;—1 1

condition for (1.6.3) is satisfied, i.e.

lim L(a) =0, (1.6.4)

a—r o0

246 o~
where L(a) = 32, Elld; — E(d;)[**] = (2)*7° 322, (nﬁil) E [|a;.l . o—;l|2+5} for some
0 > 0. It follows that

) 246
E|: 4 _ 42+6:| — R w1 vj2 tj3 ta) 4
o7 = il na(n; — 1) (s — 2)(ni — 3) | Z | 1 7
J1FJ2F 374
Using the inequality
’ Zzi|p S mp—l Z |Zi|p7m 2 1:29 2 ]-7 (165)
i=1 i=1
E [[(24 — 0?]2“1 can be written as
246 1
B |:|0/'\4 . 0_4|2+6i| < 9lté E| ZJl#Jz#JB#M(Ewl 61]2) (6135 62]4) | 4 ’04’2+6
’ ’ N (4ni(n; — 1)(n; — 2)(n; — 3))*+°
ng 2 2446
< 9ltd Zjl#]’z#]’a#h E|(eij, — €i3)*(€ijs — €334)*[** + | 4|2+6
- 420 (ni(ni — 1)(ni — 2)(ni — 3)) ]

[[E(eij, — €ij,)" )

146
2 42+6

+ ‘01{1‘2+6} )

Next, we apply the moments assumptions; E(e;j, — €;5,)* < M; < 0o and of < My < o0,

we have that
2

E [|0A4 _ U4|2+6} < 9l+d [M

i i >~ 42+9 +M2+6:| < Q.

Substituting the above expression for ¥ [|c;} — 0§1|2+‘1 in L(a) in (1.6.4), we obtain L(a) <
—5M; — 0 as a — oo. Hence, (1.6.1) holds. Next, using (1.6.1) and applying delta
method, the desired result (1.2.5) is achieved by noting that

2 ~
Ly (7)) Vareh)

2

Va(o—v) = N | o, (1.6.6)

14
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1.6.3 Proof of E(T,A,) = 0.

We let §; = (1 e (nﬁ )

E(,-ﬁzAa) = Ty — Ta

1=1 J1¢J2 i1742 ja=1ja=1

n;  Mip Mg

— N Z 5 Z Z Z E 61]162j2611]3622]4)

i=1 1742 j1#j2 ja=1ja=1

where the last equality is due to the fact that when i; # s, €;,; and ¢;,; are independent

for any j, 5.

1.6.4 Proof of E(T2A,) =

E(I?A,) = a?B[TAT, - T.)]

— < 25 Z 62]15132> <\/_N Z Z Z EZ1]3‘EZ2J4>

=1 ji#j2 11742 j3=1 ja=1

a n; a Miq Tig Mg
E 0; E €551 €ija g (Sil E €i153€i154 E E E €iajs Cisge
i=1  j1#ja i1=1  js#ja 2743 j5=1 je=1
szl 7'L12 n13

- Z Z Z 0y 6’1 Z Z Z Z E 6111€2J2611]3€2134612J562316)

i=1 i1=1147i3 J1#j2 jaFja js=1 je=1
nzl n12 nzl n7,2

= GN E 5Z15Z2 E E E E E 611]1611]2622]561234611]5612%)

172 J17#j2 ja#ja js=1 je=1

= 0.
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1.6.5 Proof of E(T3A,) = 0.

BE(T?A,) = a*E[T3(T, - T.)]

Tlil Tliz

3
1 1 « X 1 -
= azF <%252 Z 6ij1€ij2> <W Z Z Z €i1j3€i2j4>

=1 j1#j2 11742 j3=1 ja=1

1 a g a Niq a Niy
= QNE § :61 E : €ij1 €ijo § 5i1 E €i153€i1j4 E 5i2 E : €isj5€inge
a =1 j1#j2 =1 js#ja ia=1  js#je

a ni3 TLZ'4

E E , E €izj7Ciags
i3#iq j7=1 js=1

nil ni2 ni3 ni4

a a a a n;
1
= —3 NE § E E 5i5z‘15z‘2§ E E E E E (€3, €14 i js €ir ja Eings Eingo Cinr Einjs)
a 1=1 i1=1142=1 43704 J17#J2 33Fja JsF£je jr=1 js=1
2 a
_ 2: 2 2: 2 2 2
- a% 5i15i2 E(6i1j1€i1j26izj16i2j2>
1102 J1#j2
= 0.

1.6.6 Proof of E(faDa) = 421 o9 (V)a Y1, 52'( n >(75(%.2 —2) +

n;—1 1
O(a='?).
E(T.D,)
I . \
- o [(E30 S ) (o)
Va iz 1742
= ZlfaE Zél Z eijlem(ﬁ—y)]
Li=1  ji#j2
_ - . - o reo2N(n2 2 9" (v*) £2 o 2\2 -3
= 0B |30 Y eein 9040 =) + S0 =) 4 0y )
Li=1  j1#j2
_ 1(2 . — ) 2 9”(”2) - - .9 2192 _1
= Zi-ad (l/ )E Z(Sz Z Eijleijz(y -V ) + Zi—a 9 FE 267’ Z El'jIGijZ(V — UV ) +O(CL 2).
i=1  j1#j2 =1 j1#j2

20



Now considering the first term in (1.6.7) we have

a Ny
~2
E|> 6 ) eijein

i=1

J1#352

V2)]

(Z 0; Z €ij1€z'j2> (Z > (nni 1> (o} - Ufﬂ)]
=1 j1#j =1 N1

J1#72
2 o w— n
4
e 20 () 2 Pl ot
i=1 i1=1 " mém
2 e w— n
3
Ty Y () X el
i=1 i1=1 " J1#d2
1 a
2
5 5@-< ._1) <RP>Z Z Eleiji€ijo (€3, — €354)
i=1 47 j1#ids jatiatisEie

1 - n; 1 =
22 8 G 1) (mp) Y 4Bl (e — )’

J17#J2F#J3F£Ta
(€ijs — €ij.)°] + BE[esj €ijs (€15, — €13) 7 (€ijs — €350)°1}
n;

5 20| — 1) {4B e, €5, (€, — €i0) " Bl (€igy — €3a)°]

=1

+ 8Elei;, (€ij, — €)1 Eleigs (€35 — €35,)°]}

zid(nn ){4< 01)(20%) + 8(0) (03}

EZ@( & ){0?(%2 ~2)}. (1.6.7)

Next we consider the second term in (1.6.7),

E|) 6> ejein®

i=1

J1#£j2

1/2)2]

a n; 9 a n; -
< (51 Z Eijleijz) (a Z (n i 1) (0-211 - 0-?1))
=1 1 =1 N

(2 < Niq ) (% . Ufg))]
a ng, — 1
io=1

%2225 ( - ) (n:i1> 3 Elejein (ol — of)

i=1 i1=142=1 J1#52
(0?2 —03,)]
2 n;
a2 Z (n _ 1) Z E[EZJIE’LJ2 (0-11 0-211)2]
! J1#j2
O(a—l). (1.6.8)



Substituting (1.6.7) and (1.6.8) into (1.6.7), we have

a

B(E,D,) = 4729 () Z&(
=1

1.6.7 Proof of E(T?D,) = O(a"/?).

E(ffDa) = ( 25 Z %1%2) <a%(ﬁ—y)z1_a>

=1 j1#j2

= Zl_laE <25 Z 62316132> (i 5@'1 i €i1j36i1j4> (ﬁ — V)]

) 5,2~ 2)} 4+ O(a 7).

+0(a"2)1.6.9)

=1 j1#j2 i1=1 J3F#ja
niy
21—
- laE Z 25 0y Z Z €ij1 €igo Cirjz Cirga
az Li=1 i1=1 J1#J2 j3Fja
! 1/2 n 1/2
(g/(V2)(ﬁ2 _ VQ) + g (2 >(ﬁ2 _ V2)2 + g ; )(192 _ 1/2)3) + Op(a_2)}
ni,
21— g
- - 1 E Z Z 0i0i, Z Z €ijy €igo €i1j3 €irja (* —v?)
az =1 41=1 J1#J2 JaFJa
niy
21— 9
- Z 3 Z 25 5“ Z Z Ezﬂleljzelljselljz;( - )2]
: =1 141=1 J1#J2 j3Fja
niy
z
+ = d 1 Z Z 0i0i, Z Z €ijr €igo €i1j3 €irja (7" —v?)°
az i=14;=1 J1#J2 JaFja

We compute the first term in (1.6.9) as

Ny a
o Zl ag 55 2 nig
- 1 E : § : i1 E E : €ij1€i52€i153 €174 E E n 1
2 ‘ o
“ =1 i1=1 J17J2 j3Fja ia=1 2

—

= Zl ag 22255z1 ( z’nZ2 ) Z Z 6zjl61’]’261'1j3€i1j4(0142 o

N\O«

i=1 i1=112=1

_ 9fl- agé( 2)2&: (

a i=1

J1#£j2 3F#ja

) Z Z Bl 61]16132@]361]4 (O-;l o O-;l)]

J1#£j2 j37#ja

= O(a™2).

52

(1.6.10)



Next the second term in (1.6.9) is obtained as follows

nzl a
z1-a9"( 2 T - 4
- 2SS 003 3 cunnen (23 (225) @ - o)
az =1 11=1 J17#J2 J3Fja i2=1 2
2 — n -
i3 4 4
— o — O
<a2 <m3—1)< : >)]
i3=1
21 ag

g ZZ Z 265’1 ( inlz ) ( - ) Z Z Eleij, €1, €14y €4

i=1 11=11i2=143=1 J1#£32 j37#ja

(o, — a3,) (o, — o3)]

(1.6.11)
We now compute the third term in (1.6.9) as follows

iy

225511 Z Z €ij1€ijo€ivjs €Ciga <§ Z < iz ) <;Z — o} ))

21— ozg
6%

4 TLZ'Q — 1
=1 i1=1 J1#j2 jaFja ig=

(ii <n::> ) (25 () @)

4=

4Zl ag

niq
. Ny, Ny n;,
= el Sy e () () () X
i=1 i1=1 ig=11iz=1is=1 i '3 “ J1#j2 3#da
E[Eijleij26i1j3€i1j4 (0-;12 - 0-7%2)(0-;13 - 0-7%3)(0-7%4 - 0-;14)]
O(a™?). (1.6.12)

Therefore substituting (1.6.10), (1.6.11) and (1.6.11) into (1.6.9) the desired result is obtain
That is E(T2D,) = O(a=/?).
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1.6.8 Proofof E(T3D,) = 24%3/(”2) > i l07ni(ni—1)a}] [5Z~/ (L) (72 — 2)a5|.

E(T3Da)

Ny Tig

= ZI;CVE (Z 0; Z 6ij1€ij2> (Z i, Z Eilj3€i1j4) (Z i, Z 6i2j55i2j6> (v — ,/)]

i=1  j1ja i1=1  ja#ja ig=1 J'5751'6
Z1—qa R g(k)(V2) ) 2\ k
- . L Z Z Z 0i0i, 0iy Z Z Z €ij1€ija €i1j3 €i1ja Cizgs Cizjo Z X (0" —=v7)
[ i=1 i1=112=1 N1#J2 J3Fja Js# 6 k=1 .
+ 0O,(a2). (1.6.13)

We compute the first term in (1.6.13) with k£ = 1 as follows:

21— ag

i=1 i1=14=1 J1#j2 js#ja js#Jje i3=1

nll n,2
—

2Zl ag i
_ 3 e e e . 4 _ A4
= — g E E E 00 ) § E E 61]1%2 €i153€i154Ciags Cingo (Ji3 Oy

i=1 11=11i9=113=1 J17#J2 j37#74 s #J6

. n;
621-a9'( n; ! —~
= —a 252 in ( — 1) Z Z El€ijy €3, €155 €ia €15 €ijs (00, — 01)]
i#i1 e J1#j2 j3#ia ;A
621-ag (V%) <= n; A — A
— (A
T ;51 5%’1( - : 1) - § g (€31 €2 i3 € El€i s €315 (07, — 03]
1711 J1#72 J3
62109 (1) o= ni, = - —
= a2 Z‘Si 0, ( ) Z Z 52]161326113%4] Z E[Eiljsehje (02{11 - Uz‘l)]
1701 g J17#J2 33Fja Js#je
ng
1221_09'(1?) & n; " L —
- ;2 25126’1 N li 1 Z E[E?j1€?j2] Z E[€i1j5€i1je (0-211 - 0-?1)]
1701 " J1#j2 J5#J6
122109 (V?) < .
e U S (Y g — D208, (42— 2)
a ey n;, — 1

nzl 7L7,2 2 a
TZZ'S 4
E E E 0; 5z15z2 E E E : €4y €iga €i1 s €i144 Cings Cinge E : ( 1) (Ui3 —0;
a niS —

_ 24zl_ag/(u)Zég[ni(ni_l)aml( Ny )[0?1(731—2)]- (1.6.14)
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The second term in (1.6.13) with k& = 2 is obtained as

nzl n12
21— ag
B Z Z Z 0304, 0 Z Z Z €ij1 €ija €i1 s €inja Cings Cingo
i=1 i1=114p=1 NF#J2 JsFja 5FJe

(3 i (_) - a@) (5 () @)

13 3
Niy Mg

- Bl S S S S () () X S Elene

i=1 i1=149=143=1144=1 J1#j2 jaFja js#je

€413 €i1 54 Ciags Cinge (0.213 - 0-;13)<U;14 - 0?4)]

= Oa™). (1.6.15)

The terms with £ = 3 and 4 are of smaller order than O(a™!). Putting these into (1.6.13),

the proof is complete.

1.6.9 Proof of (1.2.19).

We let u, = —82=2400 530 6, (125 ) 08(y2 — 2). Using K (T), Kao(T7), Ka(T) and
Ky(T]) in (1.2.14), (1.2.16), (1.2.17) and (1.2.18), respectively, we can derive xrr,, the
characteristic function of T} in (1.2.13). Under condition Al in Section 1.6.1, the charac-

teristic function x7r,, can be written as:

X1T), = €xp {Kl(TT) (it) + Ko(TF )(;t)Q + Kg(TaT)(é% + K4(Tf)%} +O(a™)

_ exp{m(T O ) 40l O 1 k) 9 k@) 8 o H)

v 202 613 2404
= exp(——)exp {Kl + [(K2(To) — 1) + ua]% + K3(To) %?3 + K4(Ta>§l4ti4
+ O(a™ }
- (it)? g (it)? (it)?
= exp(—— {K1 + (K2 (T,) — 1) 57 T2 9 T K3(To) 65
+K4(T);4 : —|—O(a1)}. (1.6.16)

Note that K»(T,) = v* 4+ O(a™'), Ki(T,) = 0 under Hy but will not varnish under H,. So

we keep this symbolic notation in it. Further, we know u, = O(a"'/?). Applying Taylor
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series expansion to (1.6.16), we get
t2 (it) (it)3

i) g (it)?
X1T ) = eXP(—E) 1+ K(T,) () (&)

202 v 2

613
(i) uaK3(Ta) . 5 uau(Th) (i1)° | K3(To)Ku(Ta) .7
K4 (T, t t
+ K a)241/4 + 61/° ()" + /6 24 + 7207 (i)

+ O(a™). (1.6.17)

+ (K2<Ta) - 1) + K3(Ta>

v

By Applying the inverse Fourier transform, we obtain the pdf of 77 under condition A3 in

Section 1.6.1 as follows,

frrp(x) = / e " xrr ), (t)dt
[e’s) 2 - <4\ 2 <1\ 2

= [ |1 @) 4 m - G + 0 R Sk

(1) wal$o(T) s | WKL) (0° | KT KT
244 61/° /6 24 7207

= o)+ KT 4 ey - D 4 B o)

—00

+ Ky(T,)

(z’t)7] dt +O(a™)

Hj()
613

H4(ZL‘) UaKg(Ta)

2414 615 Hs(x) +

+ Ky (T,)

+ O0(a™),

where Ho(x) = 1, Hi(z) = z, Ho(x) = 2? — 1, H3(z) = 2° — 3z, Hy(z) = 2* — 622 + 3,
Hs(z) = 2° =102+ 15z, He(z) = 2°—152*+452% —15, and H7(z) = 27 —202°+10523 — 105z
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are Hermite polynomials. We now obtain the cdf of T as;

Fipnla) = [ fywdo

= of0) - [ra() P 4 () - DT 4 2 T ) )
Hy(x)  uaKs(T)) waKo(T)) Hs(z)  Ka(To)Ka(T)
a5 o (@) DY 7207 H6(x)] #(x)
+ O(a™)
= 00) - | 4 (1ol - )P+ KT KT
K3(T,)K4(Ty) ug Hi(z)  uo K3(T,) ua K4 (T,) Hs(x)
7207 Hﬁ(x)] o) - Lﬂ 2 35 (@) S 24
+ O(a™)
= P <o) - [l ) BT )y W RATD B ) 4 o,
where
P<a) = o) - 1) B 4 en) - I g )
+ i) G+ O )] ot

Thus P(TT > ) = P(T, > z)— [;T'Q(x)  waBolla) (03 3y 4 valTa) (5 843 4 112) | () +
O(a™).

1.6.10 Proof of (1.2.30).

To compute P (Ma — <5 [cjff(zl_a) — qff(zl_a))] > w{‘{a) in (1.2.30), we need to know the

Edgeworth expansion of the distribution of

MM = M, —a *AM, (1.6.18)

a

where AM = ¢!/2 [(jff(zl,a) — qff(zl,a))]. We note that AY = 0,(1). To obtain the
Edgeworth expansion of M we compute the first four cumulants of M. We compute

the first cumulant of MM as
K\ (MM) = BE(MM) = E(M,) — a ' E(AM) = K\ (M,) + O(a™), (1.6.19)
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where K;(M,) is the first camulant of M, in (1.2.24). To get the second cumulant K,(MM),

we need to obtain the second moment of MM:

E(M") = E(M,—a'AY)
= E(M?) =24 "E(M,AM) + a 2E(AM?)

= E(M;)+0(a™).
Thus the second cumulant is equal to

Ky(MM) = E(MM?) — (E(MM))?
= B(M)+0(a™) = (E(M,) + O(a™"))?
= B(M7)— (E(M,))* +O(a™")

= Ky(M,)+O(a™1), (1.6.20)

where Ky(M,) = E(M?) — (FE(M,))? is the second cumulant of M,. Next, we compute the

third moment as follows:
EM") = E(M, —a'AY)
= BE(M?) =30 'E(M2AM) 4+ 3¢ 2E(M,AM") — a3 E(AM)
= E(M?)+O(a™)

The third cumulant K3(MM) is obtained as

Ky(MM) = BMM) = 3E(MM*)E(MM) + 2(B(MM))?
= E(M?)+0(a™") = 3(BE(M,) + O(a™ ")) (E(M,) + O(a™)) + 2(E(M,) + O(a™"))?
= E(M?) —3E(M2)E(M,) +2(E(M,))*+ O(a™")

= K3(M,) +O(a™"), (1.6.21)
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where K3(M,) is the third cumulant of M,. Lastly, to obtain the fourth cumulant K,(MM)

we compute the fourth moment as follows

EQM") = E(M,—a 'A))
= BE(MY —4a'E(M2AM) + 602 E(M2AM") — 4a 2 E(M,AM) + a*E(AMY)

= E(M;)+0(a™).
Thus the fourth cumulant is given by

Ky(MM) = B —aB(MM)BE(MM) = 3(B(MM™)? + 12B(M)(B(MM))? - 6(B(M2))*
= B(M})+0(a™") = 4(B(M,) + O(a™)(E(M?) + O(a™")) = 3(E(M2) + O(a™"))?
+ 12(B(M2) + 0(a™)A(B(M,) + O(a™)? = 6(E(M,) + O(a™))!
= B(M}) — 4E(M,)E(M?) — 3(E(M2))? + 12B(M,*)(E(M,))* — 6(E(M,))" + O(a™)

= Ky4(M,) +O(a™1), (1.6.22)

where Ky(M,) = E(My) — 4E(Mo)E(MZ) = 3(E(M;))? + 12E(MZ)(E(M,))* — 6(E(M,))*
is the fourth cumulant of M,. Then as discussed in Hall (1992b) based on equations
(3.30)-(3.32) to deduce equation (3.36), using K;(MM), Ko(MM), K3(MM) and K4(MM)
in (1.6.19), (1.6.20), (1.6.21) and (1.6.22), respectively, we obtain

P(MM > uM

a 11—«

)= P(M, > w )+ 0(a™). (1.6.23)

1.7 Technical Proofs for Two-Way Layout

1.7.1 Regularity conditions for testing of no main row effect

2 2
_ b — b SI . .
Let uAi:“—l[<§ j:1€ij.) —§j:1mj},z: 1,2,---,a. Then uy;, © = 1,2,--- ,a are

3
ab2

independent random variables with 0 mean. We assume the following regularity conditions

hold (see Bhattacharya and Rao (2010)):

B1: For some § > 1, E(e;5)*% < oo.
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B2: Define gpa(m > 0) such that g,a(t) = HT:J;SH |E(exp{itua;})| for some integer p,

satisfies sup,,~q [ gma(t)dt < oo and sup{gma(t) : [t| > z,m >0} <1 (2 > 0).

1.7.2 Regularity conditions for testing of no interaction effect

a—1)(b—1 b -2 SLQ -1 b —  — .
Lot ug; = @=bl=b s~ (eij_——3> — =5 D € Gijpy @ = 1,2, ;a. Then ug;,

.. 3
abd J=1 mij (ab)2

1=1,2,--- ,aare independent random variables with 0 mean. We assume that the following

regularity conditions hold (see Bhattacharya and Rao (2010)):

C1: For some § > 1, E(e;j)*% < oo.

C2: Define gmc(m > 0) such that g,c(t) = H;”:J;’;H |E(exp{ituc;})| for some integer p,

satisfies sup,,,~q [ gme(t)dt < oo and sup{gmc(t) : [t| > z,m > 0} <1 (2 > 0).

1.7.3 Proof of (1.3.12).

To prove (1.3.12) we note that under the null, the test statistic can be written as

o _7, P se (1.7.1)
A — LA a3/2 21..512..9 YN
11712
where
=~ “ a—1 b i ezjkeljkl 9
TR DR D RIS 9 BE . 172
i=1 i#h i=1 k#k g

It can be seen that Tf{” — Ty = 0,(1/+/a) because E(T( )~ T4)=0and Eb(T, T i)z} =
O(1/a). We write P(T(” < z) as

P(Ta+ (T = T4) < x) = P(Ta+a 11, < z) (1.7.3)

where IT, = a'/2(T\”) — T,) satisfies IT, = O,(1). In order to determine P(T4 +a 21, < ),

we compute the first four cumulants of

TO =Ty + a 211,. (1.7.4)
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The first cumulant of Tflo) is computed as
K(TY) = B(TY) = B(Ta) + a *E(IL,) = K1(Ta) (1.7.5)

because E(Il,) = 0 and K, (ﬁ) = E(ﬁ) is the first cumulant of T4. Next, to compute the

second cumulant K. 2(T£‘0)) we note that

E(TV)? = E(Th+a 211,)

= E(T4)+0(a™), (1.7.6)

since (ﬁl‘[a) = 0 (see section 1.7.4 for its proof). Therefore the second cumulant of Tf(‘o)

is obtained as
Ky(TY) = B(TY)? — (B(T))? = Ko(Ta) + O(a™Y), (1.7.7)

where Kg(ﬂ) = E(Tf) - (E(’f;;))2 is the second cumulant of T. Now, in order to obtain

the third cumulant K 3(T£10)) we obtain the third moment of Tflo) as
E(TY)? = BE(Tj+a >11,)°
= B(T}) +3a 3 B(Ty L) + 3¢~  E(TAI?) + a3 BE(IL,%)
= B(Ty)+0(@a™), (1.7.8)

~2

where the last equality is due to the fact that E(T4 II,) = 0 (the proof is given in Section
1.7.5), and E(T4I12), E(II3) are at most O(1) with the Cramer’s condition since T4 and II,
are O,(1).

Therefore the third cumulant K. 3(T£10)) is equal to

(1Y) =

(T = 3BTV ETY) + 2(B(T))?
a 1

N4+ 0(a ) = 3(E(Ta ) + O(a™") E(Ta) + 2(E(T4))?
(Ta

= K3(Ta)

BT
= E(T4x)+0
E(Ta)

— 3E(Ty ) E(Ta) + 2(E(Th))* + O(a™")

+

O(a™), (1.7.9)
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where K 3(ﬁ) is the third cumulant of T. Next, we compute the fourth moment of T%(10) as

E(TY) = B(Ta+a 211,)*
— B(Ty) +4a 3 E(Ty L) + 64 E(Ty TI2) + 4a~ % E(TAIT)
+a 2B(IL,%)

— B(T4)+0(aY), (1.7.10)

~3
where the last equality is due to the fact that E(T4 II,) = 0 (the proof is given in Section
1.7.6) and the rest of the terms are O(1) for similar reason as explained for F (Tgo))3. Lastly,

the fourth cumulant K4(TIE‘0)) is given by

KTY) = BT = 4B(TP)B(TY) = 3(B(TY)?)? + 12B(TY ) (E(TY)? - 6(B(T))!
= E(Ta)+0(a™") = ET))(ETL) +0(a™) = 3(E(TL ) + O(a™))?
+12(E(Ta ) + O(a ) (E(Th))* — 6(E(T4))’
= B(T%) —4E(T)ETy ) = 3(E(Ta))* + 12B(Tx )(B(TW) — 6(E(Th) +Ofa™)

— Ky (Ta)+0O(a™), (1.7.11)

where

Ky(Tx) = BE(Ta)—4E(T)ETL) - 3(E(Ta )’ + 12B(Tx )(E(T,)) - 6(E(Ta))*

= E(TM)-3(E(T4))

(since E(ﬁ) = 0) is the fourth cumulant of T,y. As discussed in section 3.5 of Hall (1992b),
then using K1(T'"), Ko(T'), K5(T\) and K (T in (1.7.5), (1.7.7), (1.7.9) and (1.7.11),

respectively, the proof of (1.3.12) can be completed.
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1.7.4 Proof of E(T,I1,) = 0.

Using (1.7.2) and (1.7.1), we have

)

Ez]kez]kl 611 612 ]

ni;(ni; — 1)

emkez]kl 61 E[az]

b1/2
a7

|

a

E €i1..€io..

11742

E(Tall,) = o?BE[TA(TY - Th))
a b N5
a—1 €;ikEi
- e (32 (ab)m{zm 3y
i=1 J#i j= 1k¢k1 i
a—1 -
S DRSS 35
=1 i17#i2 Lj#h Jj= 1k75k1
_1 "tig
S DY IR 3
i#i Lj#d J=1 k#k1
= 0

1.7.5 Proof of E(T311,) = 0.

To show that E(T211,) = 0, we first compute 72. Using (1.7.2) w

a b
o a—1 eUke
Ty = (Z (ab)3/2 {ZGU €iji. T Z Z 15 (1
i=1 J#h =1 kthy N
-1
- (a(ab) x (A1 + A2 +2A3),

where
a b 2
A = E E €ij.€j. |
=1 j#j
a b 2
=2 Z o
1 )
i=1 j=1 k#k; n”<n” )
and

b Miygo

E :E : E : E : E :EZ] €ij1.€i152k €152k -

i=1 i1=1 j#j1 jo=1 k#k1

63

N TLU

e have that

ijk1 i
in))

1)

(1.7.12)

(1.7.13)
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We now express E(T2I1,) in terms of Ay, Ay and As in (1.7.13), (1.7.14) and (1.7.15),

respectively.

E(T3,) = a'?E[TATY —Ty)]

= a'’E [%(Al + Ag + 205)(TY) TA)}

= %[E(Al(ﬁo) —Ta)) + E(A(T — Ta)) + 2B(As(T — T))](1.7.16)

Using (1.7.13) and (1.7.1) we compute the first term in (1.7.16) as

a b 2 /2 @
E(Al(T ~Ta) = E (ZZEUEUL) <—% Zal..gz‘g.)

i=1 j#j 1702

= a3/2 E E E E E 611 Eis. €i3j.€izj1.€iaga.Cinjs. ]

11712 13,14 J#Jl J2#33
bl/2 a

- a3/2 Z Z Z e“'ﬁiljﬁiljk]E[612~~€i2j2-6i2j3.]

i17#i2 j#51 j2 773
— O’

since j # j; and jo # j3. Next we use (1.7.14) and (1.7.1) to compute the second term in
(1.7.16).

2
(A ( T )) _ - i Z EZ]kE’L]kIl _ﬂ i Tz
i ! N =1 z] nz] 1) a’3/2 e

J=1 k#ky 117102

a b Migjy Tiggo

_ Ele;,. 612 623]1k€13]2k1614]2k261433k3]
a3/2 Z Z Z Z Z — -1)

(n; D)ng,,(n;
7’17&22 ’L3 ia ]1 ]2 k#k’l k’27£k‘3 13.71 13.71 ) Z4J2( 7/4.72

b Thyjp Tigga

_ § :§ :§ : § : 611--€i1j1k€i1j1/€1]E[Ei2--6i2j2k26i2j2k3]
a3/2 . T 1)

Niyiy (Mg, — D)Nigin (0
1742 j1,j2 k¢k51 kg;ékg 11.71( 171 ) 12]2( 1272

= 0,
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where the last equality is due to the fact that €;, ;,, and €;,;,x, are independent when k # k.

Lastly we use (1.7.15) and (1.7.1) to compute the third term in (1.7.16).

R €ij. Em €i1jok€iigoks b2 & ~ ~
Z Z Z Z Z 0,3/2 Z €i5..Ci3..

n; n -1 ,
i=1 i1=1 j#j1 jo= 1k¢k1 g2\ g ) inFis

E(A(T —Ty) =

b ”2132

_ El] 6231 E21]2k‘521]2k1612 623 ]
a3/2§:§: 2: 2:2: 2:

Ny (Miyjo — 1
i=1 41=1i2#i3 j#j1 jo=1 k#k1 1172 \"Y172 )

1/2 @ b Tiyj1 Miggg ~
_ b / § ’ § § E 61] 6l]l 61 . [611j2k€i1j2k1€i1.-]
- 3/2 -1
(I n n;
11742 J1,J2 k#k1 ka#ks 11]2( 72 )

The last equality is also due to the fact that €, ;,, and €;,;,x, are independent when £k # ;.

Thus combining the three terms we have that E(T211,) = 0.

1.7.6 Proof of E(T3I1,) = 0.

In order to prove that E(T311,) = 0, we write T3 as follows.

a b 3
~3 a—1 €ijk€ijky
m - (S e o e )

=1 J#5 J=1 kthy W\ T

(a—1)°

where

= (Z Zb:aj,aﬁ) : (1.7.18)

i=1 j#j

a b Nij 3
ZZ Z €ijk€ijky

=1 j=1 k#k

b Miyjo Migjz  _

Ag = Z Z Z Z Z Z €ij. 6l]l €i1jokCiijok: Ciagsko 61213’?13) ’ (1.7.20)

Ny (M, — 1)1 n;
i=1 i1,i2 j#j1 J2,j3 k#k1 ka#ks3 g2\ Mgz ) Z2J3( t2J3
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and

Nij

Z Z Z Z Z Z emkemkilu;enf ?)2]5 €injs. ' (1.7.21)
2] ij

=1 d102  J J1#j2 JaFja kFka

We now express E(T311,) in terms of Ay, As, Ag and A7 in (1.7.18), (1.7.19), (1.7.20) and
(1.7.21), respectively.
E(T1,) = oPE[TY(TY - T))

1
= d'’E (a—1)° (Ag+As + 376 + 3A7)(T TA)

(ab)®/?
= —(24_()9}2) BT — Ta)) + BT — T) + 3B(A(T — T))
+ 3E(A(T} =T (1.7.22)

Using (1.7.18) and (1.7.1) we compute the first term in (1.7.22) as follows.
BA(TY = Ta))

a b 3 pl/2

=1 j#j1 1742
b1/2 a a b b b
= i > DD > > Bl s FiagaFiaga Fisga Einis.)
d1742 13,14,15 j#]& j275j3 Ja#gs
bl /2 @

= a3/2 E E E E El€i, €i1j€iji €irjo.€irjs ) El€in €injy Einjs]

i17#42 A1 JeF T3 jaF s
— O7
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where the last equality is due to the independence of €;,;,. and €;,;, when j; # js. Next we

use (1.7.19) and (1.7.1) to compute the second term in (1.7.22).

E(As(TY) —Ty))

b 3
_ - €ijk€ijk 0 ¢ = =
Cr|(Sn s e ) (LS
i=1 j=1 k#k; A 1172

Migjy Tigja Mgz

- ag/QZZ Y Yy Y

Nigiy (Migiy — DNigjo(Migia — DNisjg (Mg — 1
i1740 13,04,i5 71,52,53 k#k1 koFks kaFks 1371 13J1 ) Z4.72( 142 ) 15]3( 1573 )

611 Ein..€izjikCisjoks Cigjoks Cisjaks EisjakaCisjaks ]

b My Mipgy Migga

_ 2 :2 :§ : E : 2 : Ele;,. 6@1]116611]1161Euhk‘z6%1]1’93]E[Eiz--€i2j2k4€i2j2k5]
a3/2 —_1)2 R 1)

14 J1,J2 k#k1 ka#ks katks 11]1 (nzljl ]‘) nz2]2 (nz2]2

g 07

where the last equality is due to the independence of €;,j,k, and €, 5, When ks # k5. Next

we use (1.7.20) and (1.7.1) to compute the third term in (1.7.22).

E(As (T(O) f 4))

b Mgy Migjz bl/2 a
€ij. 6111 €i1jokCirjok: Ciagjaks Ciogaks _ ~ ~
_ &3/2 623..614..

Ny iy My iy — 1)y (1 1
i 11712 ]?é]l ]27]3 k‘;ﬁkl k2#k3 11]2 11]2 ) 7/2]3( 7/2]3 ) ’L‘37£’L'4

b Tiyjg Migjg

_ 61] 67JJ1 Elljzkellhlﬂ622]3k2612]3k3613 614 ]
a3/2zzzzzz - —1)

Ny in (M 1n n;
i,01,92 13704 j#J1 J2,J3 k#k1 ko#k3 g2\t gz ) 12]3( 1273

Lastly we use (1.7.21) and (1.7.1) to compute the fourth term in (1.7.22).

<A7<T/&°> - ﬁ))

Mg 1/2 a
€ijkCijk 6llJ1 611J2 622]3 61234 b ~ o~
- €is..€iy..
nij(ni; — 1) Va

i1, J ]175]2 JaFja k#k1 i3Fig

b Mg Migjg

_ § : § :2 :2 :2 : § : EljkeijklEiljl~Ei1j2~gi2j3~gi2j4.€i3~61’4..]
a3/ 2 nij(ni; — 1)

i,i1,02 13714 JFJ1 J2.J3 k#k1 ko#k3

Therefore, combining the four terms we end up with E(T3I1,) = 0.
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1.7.7 Proof of (1.3.18).

As given in (1.3.17) we assume the departure from the null hypothesis satisfies
Vb~
To determine the distribution of TE) in (1.3.15) we write P(TS) <z) as
P(TY <2)=P(Th+a 21, +Q, <) =P(TY +Q, <), (1.7.23)

where ), is given in (1.3.8). To determine this probability, we compute the first four

cumulants of TS). The first cumulant K, (TS)) is obtained as
K(TY) = B(TVY) = K (T + ky, (1.7.24)
where K (T ;10)) = E(Ty) is the first cumulant of foo) given in (1.7.5) and
k1 = (b/a)"/? i . (1.7.25)
i=1

The second cumulant KQ(TS)) can be computed as

FKo(T5)) = Var(T") = E[TY + (2 — E(Q))?
= B(TY)? + 2B[(Ta + a 211,)(Q, — B(Q))]

+ B(Q, — E(Q,))% (1.7.26)

The term E'(TIEXO))2 was given in (1.7.6). In order to obtain the second term in (1.7.26), we

note that
P\Z .
2, — E() =2 (—) (€. — €. )], (1.7.27)
which gives

E[(Ta + a™211,)(Q — E(Q))] = E[T4(Q — E(Q))] + a2 E[[1,(2 — E())].

68



Using (1.3.7) and (1.7.27) we compute E[T4(Q, — E(£,))] in the above equation as follows:

[TA<Qa E(

a

=1

20a —1) <&
a?b

%
>3

7

2(a—1)
a?b

since j # 71 and k # k;. Next we use (1.3.16) and (1.7.27) to compute E[I1,(,

E[Ha(Qa - E(Qa))]

since E[¢,.] = 0. We get the second term as E[(Ty + a~211,)(2,

5|

a))]
b M4 1 4
Saur X Y s b (1) S
3-€ij1. i nm—l a : . TE.
17511 J=1 k#k1 i=1
& Ezﬂcez]k1<611 E)]
5 o Bl . - +zz D
47&31 J=1 k#k1 AN
<L Eleijneiin (6. —€.)]
ni;(ni; — 1)
Li#d J=1 k#k1

- E(sz))]

. INCIRCR P\Zn .
= CLQE [(—m Eil_.€i2_.> (2 <a) Z[(Ez - E)OZZ]>
i1io i=1
== Z Zaz 611 612 ez _g>]
11;éz2 i=1
4b ~ S ~
= = a;Ele, |E& (6. —€.)] =0
z;ézl

— E(9,))] = 0. Using

(1.7.27) we proceed to compute the third term in (1.7.26).

B[(Q — B(Q))?]

1 2
b\ ? —
E|2(- €. —€. )
() > e...m]

4b & I -
- azazlE[(Ei.. — € )(621 — € )]
a 1,01
4 | & o . -
e ZaZQE[E;Z - 261..6... +E2] + ZOQO./“E[EZ €iq €. €. — € ‘511

| i=1 i
4 | & o -
— ZaZQE[E;Z — 26 €. +E]+ Z(—OZQ)E[—ZQ..E... +e]

L =1 i=1
b & 4 & Lol
= 22l = — 2°Y




since it can be shown that

1 <02 1 < o2 1 At o2
E@)==Y 2, EGe)=—7Y —2 E@)= —U(1.7.28)
- b2 ]Z:; Nij ab? Z:: Nij (ab)2 22:1: = Nj

Therefore the second cumulant is given by

Ko(TY) = Ko(TY) + ko, (1.7.29)

where KQ(TIEXO)) is the second cumulant of T’ jo) under the null given in (1.7.7) and

a b 2
4 3 27ij
=1 j=1

Next we compute the third cumulant K 3(T1511)) as follows:

Ky(TY)) = B[(Ta+a 21L) + (2 — B(Q)?
= B(Ta+a 2I,)* + 3E((Ta + ™ 210,)*(Q — E(Q))]

4 3E[(Ta +a 311 (Q — E(Q))H + E(Q. — E(Q))%. (1.7.31)

To get the result for Kg(Tlgl)) we need to compute each term in (1.7.31) separately. The
first term in (1.7.31) is the third cumulant of Tf(xo) given in (1.7.9). We compute the second

term in (1.7.31) as follows:

Bl(Ta+a 1,20 — Q)] = E[(Ta +2a 3 T4Tl, +a” ' T2)(Qu — E(Q,))
= E[T) (Q — E(Q))] + 20 E[T4l1,(Q, — E(Q,))
+ a ' E[I(Q, — B(2,))]

— E[T4 (Q — E(Qu))] + 2072 E[Tall,(Q — E(Q,))] + 0(a™),

where the last equality is due to the fact that E[II2(Q, — E(Q,))] is at most O(1) since
II, = O,(1) and Q, — E(Q,) = O,(1). Using the result in (1.7.12), E[ﬁQ(Qa — E(Q,))] is
expressed as

BT (9 - B@)] = B9, - BQu) + B(Aa(0 - BO) + 25{Aa( ~ EQ)Y
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where Aj, Ay and Aj are given in (1.7.13), (1.7.14) and (1.7.15), respectively. We compute

the three terms in the above equation as follows:

E{A(Q~ E()) = E ZZEZ-J'.%> (2 (S)QZ[(Q..—E..)%O

b b
b ~
= 2 <a> Z Z OZZQE[GU €ij1.€i1j2.€i153 (622 € )]
1,01,02 71 j2 753
1 4 b b
b 2 ~
- <a) Z Z Z i (€35 ijy €y Eijs. (€. — €.)]
=1 j#j1 jo#j3
1 qa b
- 4<9>2 Y wEE e, (6. —7.)]
= a 7 1J.71J1.\ "0
i=1 j#j1
1 qa b
- 4@)2 S adBRE, & - B2, 2.1}
= B i ij.%ij1. € ij.%ig1
i=1 j#j
1 a b b
b\ 2 1
= 4 (a) Z 0% {E EZZJ E’Lz]l (g Z EijQ')]
=1 j#j1 J2=1
1 a b
—2 2 =
i1=1 jo=1
b\ 2 a b 1 1
Sy <_> S {EE[Ef’]]E[th |- 2Bl
i=1 j#j
- a3/2l)1/2 TR
i=1 j#j ”

71



E{A2(Qa - E(Qa))}

i=1 j=1 k#k =1
Nij Mg €. €
b Eleijk€ijm €irgiks€irgiks (€in.. — €..)]
= 2 - ZZZZ 1€9171k2Ci1g1ks \Cia..
a 101,02 3,01 k#k1 ka#ks nij(nij - l)niljl (niljl - 1)
b Nij Mg E[Eijkei]’k €ijk eijk (a - g)]
:ﬂg)zzzz% KT
i=1 j=1 k#k1 ko#ks AN
- m ZJ K
_49222 —
=1 j5=1 k;ﬁkl
= 4 b a < ijez?jk1€i~-) —E(efjkefjkf...)]
SIS et 2 (n — 12
@ = 1 J=1 k#k; ni' nU
b a b Mij ! €;
. _
= 4 (a) Z Z 041 Z]k’e’mkl ( Z Z - 2)] n” 1) 2
=1 =1 kthy J1=1ko=1 Z

—4(2)52ii0‘1

i=1 j=1 k#k;

- ( 1 ) Za:i: i * Ul)ﬂ] -8 (a3/2b1/2> ZZ i R ”k 12]];;]

z]k€2]k1 ( " Z Z Z 611]1162)] n;]?(nij — 1)*2

11=1j1=1ko=1 11]1

i=1 j=1 k#k; i=1 j=1 k#k;
a b
B CL— 1) - YijO. zg
a3/2b1/2 E:E: ¢ 2 nz _1)
i=1 j=1 J

and

E{A?)(Q - E(Qa))}

X EU €ij1.€i152k 412kt b % - ~ ~
p[(EE sy 3 i) (4(1) S 7
i=1 i1= 1]7@1 jo=1k#k1 132 1J2 —

_ ( ) Z ZZ i elj-giji.€‘i1‘jgkez“1]“2k1_(’ii§.. -l

Ny a0 (N
001,00 J#h J2=1k#k1 irda (Tirja

. b 67, €ij 1.€ijk€ijky (62 - E)]
a (a) Z Z Z - ]nwjnwj_ 1)

i=1 j#j1 k#k1

p—t 0’
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where the last equality is due to the fact that j # j; and k # k;. Therefore combining the
terms for F{A1(Q, — E(Q))}, E{A2(Q, — E(Q,))} and E{A3(Q, — E(Q,))} we have

—~9 (CL — ]_ a — 1 ")/7« 1J1 -1
BIT: (2~ BO)] = < [ambm I T ot
i=1 j#q 2] 1J1
CL - 1 ’}/’LJ z]
a3/2b1/2 ZZ & 2 (nij — 1)
i=1 j=1 J
8(a— 1) <= [o= 1595 95, | < %%
= — Oj——5— + (0%

a9/2p7/2 ; L%:l ngj Nijy 32—; n2 (nw — 1)

Using (1.3.7), (1.3.16) and (1.7.27) we compute E[ﬁHQ(Qa — E(9Q,))] as follows:

E[ﬁn (Q - E(Qa))]

a

a—1 b - ez]kez]]ﬁ 1 61/2 - -
E Z (ab)3/2 Z €ij. 61]1 + Z Z az _W Z €iy..€iq..

=1 J#i J=1 k#k1 Zj 11742
1
A
(2 (2) Si@. - e...>ai3J)]
iz=1
2a — 1 a a a b o o N N
= —W Z Z Z Z aigE[‘Eij.eijl.ﬁh..eig..(Eig,. - 6)]
i=1 i1#ig i3=1 Lj#j
Nij _ ~ ~
Ezjkeijk1€i1..€i2..(51‘3.‘ - 6)]
i Z 2 nij(ni; — 1)
7=1 k#k1
4(a —1) ~ _ o _
= - a3b1/2 Z L ah 621 623 - €~~.)]E[€i2j~€i2j1~€i2~]
i1#i2 Li#j1
N Z i E&, (€5 — € )| E€iyjn€irjb: Eir ]
] 1 k#kl n742.7 (nZQ.] - 1)

=0

since j # j1 and k # k;. Combining the results for E[ﬁQ(Qa — E(Q,))] and E[ﬁHQ(Qa —
E(£,))], the second term in (1.7.31) is given by

E[(ﬁ + a_%Ha)2(Q - E(Qa))]

8(a—1)3 & b %gw o7 Vi o,
= 022 Z[ZO‘ 2 +Z zng—l) : (1.7.32)

n.. n; n
i=1 i1 i i1 ( )
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We now consider the third term in (1.7.31).
B[(Ta+ 0™ 210) (U — B(€))] = E(Ta(2 — B())*) + ”* E[Iu(Q — B(2)°).
We use (1.3.7) and (1.7.27) to compute E[ﬁ(@a — E(Q,))? as follows:

E[TA(Q — E(Q4))?]

- |y {i S n;’“l)} (2 (%) T z..>ail]>2

i=1 i#h =1 kthy

NI

4(a —1) _ - SO ~
= a5/2b1/2 E [’ iy i, B[ (€35.€5,.) (€, — €.) (€. — €.)]
#1

7 Zl 12
N Z i i, El(eijneij ) (€. — €.)(E,. — g”')]]
] ngj(ni; — 1)
a b
- % ”21;2 Léjl i, i, Bl €5, (6, €, — 6,8 — € &, +¢)]
+ Z i o, i, Eleijx€ijr, (€1, €. — €y €. — € €y +€°)]
J=1 k#ki gy = 1)

It is shown in Section 1.7.8 that

a b
Z [ ai1ai2E[Eij-Eij1~(gir-’gi}- - gug - Eg@z + EQ)]

1,891,592 Lj#j1
N ~ o~ ~ o~ ~
Z Z Eleijk€iji, (€1, €y — €. €. — € €y +€ )]
* i @iz ni;(ni; — 1)
§=1 k#k: AN

_ 0 ((1 _ 2 N %) %) | (1.7.33)

Therefore, E[TA(Qa — E(2))2] = O(a~'b71).
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Using (1.3.7) and (1.7.27) we compute E[I1,(Q, — E(Q4))?] as follows:

. 12 @ 3 @ 2
BIL(©, - @) = B ol (J’_/ Z“) (2 (%) Z[(ag..—maig])

11702

4b2 JURNS ~
= Z Zalgam 67,1 612 (613 - 6“.)(67;4.. - 6)]

217£12 13,84
8172
= Z o, i B [Ezgg ]
11#12
a b 2 b 2
8 1 0i1j1 > (1 012]2 )
= ——7 D ot |3 52 (1.7:34)
a*bz 175 (b =t Mt b o Mg
It can be seen that
b 2
1 of .
. L < M, i, (1.7.35)
Jji=1 Mirg
for some finite M, since E(e};),) < co. Therefore
E[l,(Q% — E())*] < 2 Z | vy iy | M3
a2bz
11712
4 2N~ 2 2
S M Z (ail + aig)
a2bz Pl
= O(a'b71).

where the last equality is due to condition (1.3.17). Thus combining £ [ﬁ(Qa — E(Q,))?]
and E[l1,(Q, — F(Q,))?], the third term in (1.7.31) is

3E[(Ta + a *1L)(Q — E(Q))Y] = O(a~"b7Y). (1.7.36)

We proceed to compute the fourth term in (1.7.31). Using (1.7.27) we compute E(£2, —

5



E(Q,))? as follows:

B, EQ.) = E (2 (9)% 'a [(é..—%i..)ai})g

N
—
(7=

)
<Sw
1S
™

|

™
=
+

[\]

Q
=T
8
&
m

|

2
o
™

|
™

The first term satisfies

a a a M
|Zi:a?E[(g¢.. —e )’ < Za?l[aiE(a.. —e )< Xi:a?b—; =0 (\b/_gﬁ) ;
where the last inequality is a result of condition (1.3.17), E(ej};) < oo and the fact that o

is bounded for all 7, which lead to the existence of some finite M5 such that

b
1 505 .
0> 1975 < My, Vi (1.7.38)
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The second term satisfies

a
2
§ Q; gy

1#£11

Z a?ail [E E?
ity
+ E(&) - 2E(5 ¢

El(&. —€.)%(&,. —€.)]

~ 1
— >l [1E@) + B
i1
- 1 3 -
- 1 3
= Yoo (5- ) B -
1 a a
N 1 3 1
< 3 Z_IEE
< ;rcm{(a @)+ >
- 1 3 2\ M
3 3
: ;’ai'<a—@+§)b—z
- 1 3 2\ M
_ 2 3
= Sallal (G-t n)

1
Vab:

0( )

where the last inequality is a due to the fact that > 7 | af|a;| < O <

(1.3.17) since «; is bounded. Similarly, the third term also satisfies

Z aiailaiQE[(a.. - E)(al - E)(ag

—€.)]

i1 742
a
= Y 0iay0,B[36.8 — @]
741 742
a 1 a
= Z OG0, Oy ? fv? - 5 ZE(EZ )
i;éil?flé ts=1
- azzE? Zam( — Q)] 32 ZE
1071 i3=1

Vva

g)

b2

o

7

€,.) +2E(5.

1=

)+ E@EE.)

w]

s 2

€i..

)+ afai, E(@)

i;éil

ZZE

11=1

>|}

1

a

) with condition

SIS

) (1.7.39)

(1.7.40)

>]



where (1.7.39) is due to

a a
E Oéi()éz‘lOéi2 = E Oéz‘Oéil (O — O — Oéil)

1711 #£l 1#£0

a a
— § 2 E : 2

iiy iin

a a
_ 3 3
= E a; + E ajy,
=1

i1=1
a

_ 3

= 25 o,
i=1

and (1.7.40) is because

z“: aiailaiQ%E@?.) = Za:aiE(é"“)iaiQ(_ai_ah)
=1

iF#i1Fi ioFi
a
2 2
Q; — E %‘2]

a 3 »
= D 05 B@)
i1 ¢ inFi

3 a [ a
i=1 | i
3 a [ a
< 23 |l ol Yoo, | 1B@)
i=1 | i
3 a [ , a , M3
< )|l D el Magy
i=1 | i

= O( 15)7
Vab?

where the last equality uses conditions (1.3.17) and the fact that «; is bounded for all 1.

Putting them together gives

E(Q.— E(Q,))* = <9> : O <ﬁ> =O0(a b7 1). (1.7.41)

5
a b2

Replacing the first term in (1.7.31) with K3(T”) and putting (1.7.32), (1.7.36) and (1.7.41)
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into (1.7.31) we give the third cumulant of Tfll) as follows:

a b 2
(1) _ (0) 8(6L — 1)3 77«70-7,] i Vi O 1]
Ks(Ty)) = Ks(TW)+ =g D D oyt +Z T (g — 1)

n:;. 1 n
i=1 i£j1 i ij1 j=1 ( )

= K3(T") + ks, (1.7.42)

where K3(T ;10)) is the third cumulant of T/(P) under the null given in (1.7.9), and

8la—1) = [N %5 5§ 593 1743
N8 =~ oy 2|2 n2 nij1+zo‘i 2 (nyy — 1) | (1.7.43)

i=1 Lj#in i j=1 i

Lastly we compute the fourth cumulant K4(7; ( )) as follows:

Ky(T3)
= E[(Ta+a 21L,) + (2 — B(Q))]* — 3[Var(T{)]?
= B(Ta+a *TL)* + 4B[(Ta + a *T1,)3(Q, — E(Q))] + 6E[(Ta + a *11,)% (% — E(2,))’)
+AB[(Th + a 211,) (% — B(2.))%] + E(Q, — E(Q))" — 3[Var(T{)]% (1.7.44)
In order to obtain the result for K4(TIE‘1)) we need to compute each term in (1.7.44) separately.
The first term in (1.7.44) is given in (1.7.10) as E(C/T\; +a20l,)t = E(i:l) + O(a™'). Next
we compute the second term in (1.7.44) as follows:
E[(Ta +a 3113 (R — B())] = E[(Ta +3a 3Ty I, + 3a~'Tall2 + a $11)(Qu — E(Q))]
—~3 —~2
= BT (% — B(Qu))] + 3072 BT Tl — B(0)

+0(a™), (1.7.45)

where the last equality is due to the Cramer’s condition and the fact that E[TAIT2(Q, —
E(Q,))] and E[I13(Q, — F(£,))] are at most O(1). Using the result in (1.7.17) we express

EITA (@0 — B(Qu)] as
BTy (2 - E(Q))] = E %(m + A5 + 30 + 3A7) (R — E())
_ (?a;);/); [E(A4(Q — E(Q))) + E(As(Q — E(R,)))
+ 3E(A6(Q = E(W))) +3E(A7(a — E(Qa)))];
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where Ay, A5, Ag and A7 are presented in (1.7.18), (1.7.19), (1.7.20) and (1.7.21), respectively.

We compute the four terms in the above equation as follows:

E{A4(Qa - E(Qa>>}

a b 3 1 4
b\ ?2 » _
= F <Z ZQ’;‘.Q‘;@.) (2 (5) Z[(Ez — 6.“)&1-])
i=1 j#j i=1
b % a b b b
=2 (5) Z Z Z Z ai?’E[Eij-gijl-Eilj2~Ei1j3-gi2j4~gi2j5.(ag.. - E)]

1,11,92,13 JAJ1 JoFJs JaFJs

b 1 a b b b _
= 2 (a) : [Z Z Z Z aiE[Eij.Eijl,Eijg.g'ijg.gijAL.EijS-Ei..]

=1 j#j1 j2#J3 jaFJs5

a b b b
+2) 3 > o, Bl @y g ) E [Ez‘ljzfnjg.al..]]
i#i1 j#J1 JoF#J3 JaFTs

= O(a2b?),

where the last equality is because the second term is zero since €, ;,. and €, ;,. are independent

when j, # j3. Next,
E{A5(Q —E(Qa))}
3 L,
- | (X3 ) (2(2) e -2 e)
(z 1 =1 kot (ng; — 1) a) ‘=
e 2( ) Z Z i i iﬂ Eljkel]k1611]1k2611]1k3€z2j2k4612]2k5(613 —g)]
4,01,82,88 JJ1,J2 k#k1 ka#ks ka#ks n” Nij — 1)”21]1 (nhjl - 1)”12]2 (leJQ - 1)

l N5 g5 Lz
o (b) j :2 : 2 : 2 : 2 : Ez]kemkl Ez]k2€1]k362]k46mk561 ]
(nm —1)3

i=1 j=1 ketky kostks kaks

(NI

Q|

Nij  Mayg  Mij ~
+2§ :2 :E :2 : § : E : EljkeljklEwk4€wk5}E[€2131k2611j1k36i1~]]
n —1)n n 1
iir j=1 j1=1k#ky ko#ks ka#ks K V1, (i )
= O(a2b?),

where the last equality is due to the fact that the second term is zero for ky # ks, €;,jr, and

€ jks are independent.
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Next

E{Afi(Qa - E(Q))}

b Miyjg Migjz _ b % a
€45. Eljl €i1jok€i1jaks Ciogaka Cingsks 9 (2 [(N > ) ] ]
— a €iz.. — €. ) Uy

Mivin(Miyjo — 1)Miyis (M 1 .
i,i1 7/2]75]1 jo2,j3 k;ék‘l k‘g;ék‘g 1172 1172 ) 742]3( 1273 ) iz=1

b Miyjo Migjs ~
_ 62] Eljl €i1jokCi1joks Cinjska Cingaks (613 — )]
= a’Lg 1)

n Ni i, — L)N n;
1,41,12,13 j;ﬁ]l 72,73 k;ékl ko#ks 1132( 172 ) lz]a( 273

b Miyjy Mijg E
_ O(a% % E E E § ' § ' o GZJ 61]1 61]3k2€wsk3] [611J2k611]2k1613 ]
- 1

' Nijs (nws - 1)n11]2 (nllh - 1)
111 j#J1 J2,J3 k#k1 ko#k3
1.5

= O(a2b2)

since for k # ki, €, j,x and €, j,5, are independent. Similarly,

b b N4 _ _ _ _ 1 4
€ijk€ijky €i151.€i152.€Cinj3.€injy. b\? ~ ~
2335 5 mesbatutetn (o(0) S 6 -7 o)
_ )’ & == o E[€ijk€ijky €irjy €irjo.€injs. €inja. (€iy.. — €..)]
= 2= ZZZZZ% 25

nij (1

Nij

1.7
= o2 (1) 3 3 S e (Bl G

Al J J1#d2 JaFia kFka
1

+ Eleyreijn (6. E [Ez’mEnjzfnjgfim.]}m

where the last equality is obtained because for j; # ja, €,;,. and €, ;,. are independent, and
for k # ki, €1 and €, are independent. Therefore combining the results for the four terms
B{A (0 — B}, B{As(20 — B(2))}, E{As( — B(©,))} and E{A7(Q, — B(2,))}, we
get

(SR

b

[N

BT @ - B = Do

(ab)/2 )=0(a'b7h).

Next we compute E[ﬂQHa(Qa —E(Q,))] in (1.7.45). Using the result in (1.7.12), we express
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E[ﬁQHa(Qa - E(Qa))] as
B ML~ B = oSl IBAL(, - BQ)} + B, - ()
+ QE{ASHa(Qa - E(Qa))}]a

where Ay, Ay and A3 are presented in (1.7.13), (1.7.14) and (1.7.15), respectively. We com-

pute the three terms in the above equation as follows:

E{AlHa(Qa - E<Qa))}
b1/2

- E <i iQJ.Eiﬁ.):% <_W i Q.E@..) (2 <g>§ i[(ag.. —E..)&zs])

i=1 j#j BEP i3=1

N ( ) Z Z Z Z O% 611 Ez2 613] 6la’]l 624]2 6Z4J3 (615 - 6)]

11702 13,04,05 J#Jl Je#Js

) Z Z Z i {2E[€, €, €irjy i, irjs | B [Ei. 3.
+ 4E[€i1..6i1j~€i1j1-]E[€i2-.€i2j2.€i2j3.gi2n]}

N\O«

117492 jF£J1 J2F£93

= O(a?b?),

E{Aolla(Qa — E(2))}

- (Z 3 nn1)> <_% > ~~) (2 (1) S - a_.m)

i=1 j=1 k#k; 1749 i=1

Nigj Migjy ~
- v 611 612 Glgjkelgjk‘l€Z4j1k2€l4]1k3(615 - )]
- (]

Ni.i(Ni.s — 1)n n;
741#12 i3,i4,i5 ]]1 k‘;ﬁk‘l k27£k3 Z3]( 7/3] ) 7/4]1( 714\71

Niyj MNiqyj ~ o~
o Z Z Z Z 2 : . Ellneiljkelljkl elljkzGlljks]E[eizneizu]
- (3
2 1)2

i140 j=1 j1=1 ketk1 kotks n“J (5 —
E[al..GiljkGiljkl]E[eig..eigneigjlkeizjlkl] }
Ny (Niyg — Dnigg, (Nigg, — 1)
= O(azb?),

+4
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and
E{A311,(Q20 — E(Q))}

b Ty . _ 1/9 @
§ : § : § : 2 : €ij. El]l €i1jokCirjak CL% _b/ 2 :E c
. n o 1) a3/2 12..+-13..
1172 1172

i,01=1 j#j1 jo=1 k#k1 12713

(2 <g)§ i[(’@.. —E..)%])]

ig4=1
b nlljg ~
_ b EU 6Z]l 6213216621]2/61612 613 (614 — 6)]
B as s Niyin(Miyjy — 1)
az 1,01=1 i3 14=1 j#£j1 jo=1 k#k1 172 \""i1]2
1
= O(a2b?)

Combining the three terms E{A;11,(Q, — E(£2,)) }, E{AIL, (2 — E(Q,))} and E{A3IL, (2, —

E(Q,))} we get

E[Tx Ta(Q — E(Q)] = O(a%b*) = O(a™ 7).

Thus the second term in (1.7.45) is equal to
E[(Ta + a™211,)*(Q — E(Q))] = O(a™). (1.7.46)

We now proceed to obtain the result for the third term E[(ﬁ +a211,)2(Q — E(Q,))?] in
(1.7.44) as follows:

E[(Ta+ a™2T1,)%(Q% — E(Q))?]
= E[(T4 + 20 Tall, +a ' T2)(Q, — B(2,))’]
— B[4 (Qu - E(Q))") + 20 E[TAlL (% — E(Qu))°] + o E[I2(Q, — E(Q,))?]
= E[T4 (U~ B(Q))*] + 207 B[TAL (% — B(2,))%] + O(a™),

where the last equality is due to the fact that E[II2(Q, — E(Q,))?] is at most O(1). Using
the result in (1.7.12), E[ﬁQ(Qa — E(Q4))? is expressed as

BT (Q — B(Q))?]

= O D B B0 + B{As(R — B} + 2B{As( — E(Q)))
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where Aj, Ay and Aj are given in (1.7.13), (1.7.14) and (1.7.15), respectively. We compute

the three terms in the above equation one by one.

E{Ai(Q — B(Q))*}

_ (Z;) ( (S)Qiﬂ[(a.—a.)aﬂ)
_ 4@

b
a

a b

Z Z Z al2a23 61] 6131 6Zl]z 621]3 (612 - E)(’QS - E)]

1,11,82,13 j#J1 J#Js

a b
} : 2 : } : ~ =~ =~
) Qi B 61] €ij1.€i1 4.y js. (622 iy — €ip € — €y €+ 6)]

= 4

7 N

1,11,82,3 J#Jl J2#£33

a

Il
o0
SIS

( E § iy iy [E(€35.€ij, €5 €in gy €in. €is..) — 200(€15. €35, €153,y €y €.
1,11,12,13 j7#J1

+ B(€ 8y €irjiiuji. )] (1.7.47)

The first term in (1.7.47) satisfies

b a b o
5) Z Zai2ai3E(Eij-gijl-gilj'giljl.Eig..eig..)
i,i1,i2,13 j£51
b
a)zzm S ( )ZZ E(€,)E@,.)
N i#i1 A1
b\ o= , /(1)<
- 8(2) e (@)Z

_3 3 -2
€ij.€ij1. +ZE €4j. l]l €ijs. +2E( Uejl)

i=1 J#j1 Jjz3=1
Fo(4) 303 e e
i#11 j#J
- +(2)2 > ot s (7 ) Y HIELCALCRECS

i#i1 j#5

o) (B)EE g

M5 Mys, Ty
i#i1 j#j1 j2=1 i Tign Tiga

where the last equality is due to condition (1.3.17), and E(e};,) < oo which assures that

'Lgk

84



there exists some finite M5 such that,

(

1

2

)3

b
E@E e

©7. 7171

j#jl Js=1

o; 1
- op Z J %J + 2735 + 2n5(nij-1)] + 5 v

J#ﬁ

The second term in (1.7.47) satisfies

since )¢ _

. a
since » 7y o,

Next

E{Al (Qa - E(Qa))

u(l) 3

| @y = 0. Similarly, the third term in (1.7.47) also satisfies

a b
_ >
E E iy iy B (€35.€3, €35 €0y gy €)

(3)

a
=0and )5,

1,81,82,13 J#j1

1,41,2,83 J#j1

Sy Y

i#i1 j#51 j2=1

()3

E{AQ(Qa - E(Qa))Z}

|

Q| o

i
i
(@

Q|

4

+

)
)2
)

(€ijk€ijhy €in ko Eir js

a

b

j :j :2 : Eljkeljkl

i=1 j=1 k#k;

ZZZZ%%

1,11,92,83 J,J1 k#k1 ka7#ks

Ezgkezjkl €i1jko€i
(6787 0
Ly

1,81,02,03 J=1 k#k1 ko#ks

)SID3) DD SRR

N5

l] nZ]

b Mg Mgy

)+ B, &,

JEJ1#T2

)

>

2 2
945 Tiji

0,

2
2]1 11]2

Thig Thijy Thiygo

>2<2(§)5§2Ma“—e;xm>2

€ij€ijk1 Giljlk‘z 6i1j1k3 (eiz.. -

2

ag;
2 < M5, Vi.

Mg Mgy Thijy

0,

= 0. Putting the terms together gives (1.7.47) as

+0<%).

Nij Ni;j

nij(ni; —

17k3 (Eiz..eig.. -

1)nilh (ni1j1 -

’I’LZ] nZ,Lj

1,81,12,03 J=1 k#k1 ko#ks3

1

el

(i —

Ezjkﬁijkl €i15ko€iyjks 61‘2..613..) -

nij (Mg — 1)ngy5(niys —
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1)

1)nilj (nilj -

2E(€jk€ijki €ir jhoEir js €in..E...)

(1.7.48)



The first term in (1.7.48) satisfies

n” n’Llj
} : } :2 : 2 : o el]kel]k1621]k2611]k3612 €is..)
B2 (s 1)”%1](”21] 1)

n
ii1,i2,i3 j=1 k#k1 ka#ks Mg \Thij

- ()zz"i nll) s (1) 33 [ e )

i=1 j=1 k#k1 i#£11 j=1 k#k1
T 200, E(eijreiji €i.) Bl jn€ivjn En..)}
nij(nij — Dngyj(ni; — 1)
a b Nij M5
b 5 (1 2 9 1
= 38 (5) Zai <b_2> Z Z zjk€zgk1 + Z 2 zgkez]kl zgk2>] n2(n _ 1)2
i=1 j=1 kky Z] z ig\'bj
a b Nij ~2
b 9 E(eijk)E(eijkl)E(eil..)
i 8(5) 22 2 ok
i#in 5=1 kth: e
Nj 1

(3o () £ e,

17521 J= 1 k;ékl

i' o}
= abzzz i e = 1) vy 2 ZQ{QMS’L

n;
i1 j= 1]1 1 ij1

1
S 3) 3p ST i Y (S}

i#i j=1 j1=1

where
1 b mij i 2 1
M5Z = 7 Z Z Z]keljkl + Z ZJkEUkl ZJk?) n2.(n. —1)2
b n ni(ni — 1)
=1 kth k=1 s !
L
b Z 3 (ngj — ) oyl + 275 + ni; — 2], (1.7.49)

1

<.
Il

is bounded with the assumption of E(ej;;,) < co. The second term in (1.7.48) satisfies

Nij Tiyj ~

Z Z Z Z i L Ezﬂcez]kl611]k2611]k3612..6...> -0
10X -
oY — Dniyj(nig; — 1)

n
1,01,12,03 J=1 k#k1 ko#ks Mg\

since ) ¢ _; a;, = 0. Similarly, the remaining term in (1.7.48) satisfies

N5 nL,Lj ,\2
§ : § :E : E :Oc . 613k611k1€%1]k2€11]k3 ) —0
(A T, -
T n (i — Dngyj(ni; — 1)

1,81,82,03 J=1 k#k1 ko#ks3
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since ) ¢, a;, = 0and Y7 | a;; = 0. Putting the terms together into (1.7.48) gives

a b b 2
o7 . 1
E{A:(Q2, — E(Q2 = §§§ LI — .
(el ()"} 8(ab> i#i j=1 j1= 1%% ”w 1) nij +O<\/ab)

Now
E{As(Q — E(Q ))*}

_ (Z D3 Z 32 ) (2 (9) : SIE - 'ei..>az-1>2

Niygo (Miyjy — 1
i=1 i1=1 j#j; jo=1 k#k1 11J2 11j2 )

7,J2 ~ ~ ~
— 4 b EZJ EZJl €i1jok€irjoks (612-- - 6)(623 - 6)]
= - iy iy 1
a 1 2R (nllh - )
1,01,92,13 J#n Jjo=1k#k1
Ny, o - -
_ g b E€€j, €, jk€irjiy (€iy. €. — €3y €. — €5 €.+ € )]
= — iy iy 1
a Ty 5 (nm )
4,81,12,13 ];éjl k#k1
nllj
= 8 ( ) E E Y iy, [E(Eij Eijy €0y ji€ir i Cin. is..) — 2B (1 &y €3, 1€t . ..)

1,11,92,13 j#£j1 k#k1
1

+ E(Eijfzjl.€iljk6i1jk1€.2..)]m'

The summation of the second and third terms in the above equations is zero because
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2?3:1 a;, = 0. The first term in the above equation satisfies

;5 _ ~ o~
E(€5.€j, €1 jk€ir jky €in..€i5..)
Qo Qg
—1)

n. . n. .
1,11,12,13 J#J1 k#k1 “J( nj

= ( > Z Z i Ezj.EijLﬁijkﬁijkl i.. ( ) Z Z % [ elj~gij1~€ijk€ijk1)E(é?l“)

i=1 j#j1 k#ki nirj (Mg = 1) i#i1 j# k#k Niyj (g = 1)
E(Eij.gijl.gi..)E<€i1jk€iljk1gil.,):|
Ny (niyy — 1)

()£ S () Ebett)

N (N
i=1 j#£j1 k#k1 ’J< v

(LR () e

i=1 j#j1 k#k1

+ 20404,

VA
208
g
SQ[\;
VR

MQ“
KN
N————
PR
g
3|9
g |
N——

where the last equality uses condition (1.3.17). Putting the three terms together gives
Vb
E{A3(Q% — E(Q))?*} =0 | —=|.
{As( (€24))°} ( a
Therefore combining the results for the terms E{A1(Q, — F(Q.))*}, E{A2(Qa — E(,))*}
and E{A3(Q, — E(Q,))?}, we get

__y 8—1 50t N Thi
E[TA (Qa - E(Qa))z] = a Z [Z Z Yir T @n;jl Z Z_ nl] nl] 1) 'U'

n
it Lj#g je=1 11

+ O(a™2b73).
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Next using (1.3.7), (1.3.16) and (1.7.27) we compute E[T4I1,(Q, — E(€2,))?] as follows:

E[Tall,(Q — E(,))?]

a _ 1 b 1 1
=B (25)3/2 {Ze” Ci. +Z Z nj]:jjk >}

i=1 J#51 J=1 k#k1
1 /2 Ey D)2 ~ 2
Qaz _W Z €i1..€6s.. 2 (a) Z[(els N 6'”)0%3]
i1712 13=1

4(a —1) ¢ (e €
CL7/2 Z Z [Z 05140415 611 612 613] 6’L3J1 (614 - 6"')(615" o €>]

11742 93,84,05 Lj#

. - ~
+ Z i G, O Ezl Ei. .€iz5kCisjky (614 —€ ->(6i5“ — E)]
14 W5 nl3] (nm )

=1 k#ky

4(a —1) Z Z Z
~ ~ |~
2 L a o B 611 612 iz Cigjy. (614 €i5.. = 265, €.+ 6)]

. (1.7.50)

11712 13,%4,15 #J1
Nigj c. c 2
6@1 612 €izjk€izjky (614 €iz.. — 2€i,.€.. T € )]
+ Ay Qg 1
7=1 k#k1 s (7%3] )
Nigj ~ ~ ~
a — 1 E 511..€i2-.6i3jk6i3jk1€i4--€i5-~]
—m 0, O (€5, 6. €igj.€igj1.Cis.. €5 Niyj(Mig; — 1)
i1712 13,14,5 J7#I1 J=1 ket e
b Miyg ~ = P
16 a 1 E I > E[Gil,,ﬁiljkGiljkl€i1.~]E[€i2~-]
a7z E Oy O,y § [, €i15.€i1j1.€r. ] [612 ]+Z Z Ny j(ni; — 1)
= ~ =1 ke 117\"'"11]
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The first term in (1.7.50) satisfies

16 (a—1)
a7/2 Z Qryy iy Z E 6%1 621] €Z1J1 621 ]E[EZQQ ]

172 J#n
b b
16 (a—1) 2 " 1 L
- Tz Z Oy Oy Z [—QE(EZ‘U‘.)E(EZ‘U‘I.)} [ﬁ Z E(€i2j2.>
712 J#i ja=1
b 2 2 b 9
= 32 a _ 1 1 035 Tinga 1 Tigjo
- PR ey [ 55
ZHézz J#5 1 jo=1 1272
32(a —
< CL7/2 b ; |06110412|M7
BEZD)
16(a — 1)
S CL7/2 b Z 11 + azg

117519

1
- o).
ab2

where the last equality is due to condition (1.3.17), and the finite fourth central moment
condition, which assures that for some finite Mz,
b b2
Z |: 12 Uu] 0@1]1:| 1 Z Tinjo < M7,Vi.
—~ b My 5 Miqga b — Tigjo
J#h J2=1

Similarly, it can be shown that the second term in (1.7.50) satisfies

24 a — 1 < 611 eiljk€i1jk1€il ]E[EQQ ] < 1 )
al az .. . 12.. — O .
a2z l;@ 1@y ; l;lﬁ Niyj (i — 1) ab?

Putting them together gives

BITAL (0, — B@)) =0 (=),

abz
Therefore combining the results for E[ff(Qa — F(9Q,))?% and E[ﬁﬂa(Qa — E(Q4))?%], the
third term in (1.7.44) is equal to
B[(Ta+ 0™ #11)*(Q — E())]
8(a — 1 ija Tinj 4 Tiyj
M S (S e e 53 -
i#i1 Lj#j1 j2=1 Jj=15n=1

+ O(a_ ). (1.7.51)
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Next we compute the fourth term E[(T4 4+ a~2I1,)(Qq — E(€2,))*] in (1.7.44):
E[(ﬁ + a_%Ha)(Qa - E<Qa))3] = E[(ﬁ(ga - E(Qa))3] + a_%E[Ha<Qa - E(Qa))g]
Using (1.3.7) and (1.7.27) we compute E[ﬁ(Qa — E(Q,))?] as follows:

E[TA(Q — BE(Q))°]

a

-1 b Mij - b 1 a N N 3
- E 2(2&;)3/2{26”6”1 +Zzn;];§” }(2 (5) Z[(eilu—em)%]>

J#i1 J=1 k#k1

8(a - 1) o~ SN o~ -
= T s Z L Oz“OémOézg Elj-eij1->(€i1-- - E---)(Eiz-- - 6---)(€i3-- - 6)]
#h

1,41,12,13
g o~ ~ o~ ~ ~ ~
z El(€ijk€ijr, ) (€. — € ) (€, — €. ) (€. —€.)]
+ Z D 0y (g — 1)
j=1 kky AT

a 1 a "'i E € 6 6 6 ]

_ ijk z]k1 21..-12..%13.

= QG Oy Qtyg E Ezg E7,]1 611 612 613 1 ’
E § : Z Z nij(ny; — 1)

[ 11 12 23 75]1 ] 1 k;ﬁkl
The first term in the above equation can be simplified as

b
8(a—1) U
¥ Z Z Q;y Oéz'2OéigE[Ez'j.Gijl.61'1..62'2..61'3.‘]

ad e L=
i,11,02,13 j#J1

8(a - 1) - ° 3= = 3
1=1 j;éj1
1 2
62] ( Ezj>gij1- (ggiﬁ-) ]

_ a—l ZZ“3E
- Z ZE €n.)

=1 j#j1
=1 J#i1

16(a — 1) )
< = Z a? M, Ms

3,_3
2

= O(a_ib )7

where the last equality is due to condition (1.3.17), and M, is a finite upper bound of a;,

3
1] 7”1 i1

Vi and Mg is an upper bound of , which exists since E(e} €i1) < 00, Vi, j. Similarly,

iJ 7,]1
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the second term can be shown to satisfy

N5

8 - ]- i7kCig 7 7 7 _3,_3
D IR M 3 S
zy i

7 Zl 12 7,3 ‘775]1 ] 1 k#kl

Putting them together gives
E[TA(Q — E(Q4))*] = O(a™2b™2).

Next we use (1.3.16) and (1.7.27) to compute E[I1,(2, — E(Q4))?]:

) 12 a a 3
E[Ha<Qa - E<Qa))3] = F |a2 <—% Z guéz) (2 (g) Z[(as _E..)ai3]>

i1#i42

N

11742 13,14,15
a a

8b e e e~
= ——5§ E aigai4ai5E[Eil..eig..eig..€i4..6i5..]

11712 13,14,15

- _aéiQ Z Qi Qv <b2 Z Z lel %27]; ZQ]Q)

Jj1=1j2=1 Mg 1272

418 & ) 24 s .
< Z |cviy 0, [ M Sa%lﬂ Z<ai1+ai2)MS

Thus combining E[T4(Q — E(2,))?] and E[IL,(Q — E(4))?], the fourth term in (1.7.44)

18

E[(Ta + a 311,)(Q — E(Q))] = O(a"3073). (1.7.52)
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Using (1.7.27) we now compute the fifth term F(Q, — F(2,))* in (1.7.44) as follows:

b - N SN SN
= 16 (5) Z o, 0,0, E[(6. —€ ) (€, —€.)(€,. —€.)(€,. —
1,01,82,13
A
= 16| - 0,y B € € €y €y
(a) AZAO[O“OCQO%E[G €1y 6y €is. ]
2,21,12,13
A
_ 16 v 4 2 2 "2 "2
(a) {Z%E(l +QZO‘Z%E &.)B(e,.)
= 171
= (YY) Za Z4<T by 142y %
a 7 b2 l] ] (/A = Nijy nzgz
= 1 2

)

i#iy jo=1ja= 1/’7’1]2 n’ll]B
() [t
1#£11
= O(a™2b72) + O(a™"b7Y),

(1.7.53)

where the last equality is due to condition (1.3.17), M, is given in (1.7.35) and the condition

that E(e;;,) < oo assures that there exists some finite My such that

b 4 b 2 2
1 05 o O
12 (E :n;(Tij+nij )+ 3 E —L jg) < Mo, Vi.

j=1 "4 J1#j2 Migy Tigo

Lastly we compute [\/zaur(ﬂ(‘l))]2 in (1.7.44). Using the result in (1.7.29) we have

[Var(T{V)]?

B(Tx) +0(a™) +—ZZ an]

i=1 j=1

- e (5)sm0 S5t e (5) [Sxe] (S5

11=171=1

=1 j5=1 =1 j5=1

+0(a™1).
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The third term is O(a~'b~1). Therefore,

a b 2

Var(T{) = [B(Ta ) +8 (ib) B(TA)Y Y il + 0™

i=1 j=1
~2

To finalize the result for [Var(Tf(‘l))]Z, we need to compute E(T4 ). Using the result in

(1.7.12) we compute the E(Ti) as follows:

(a—1)%
(ab)?

E(T?) = [E(A1) + E(Ay) + 2E(A3)].

Using (1.7.13) we compute E(A;).

E(A) = E (Z Z%‘.Qﬁ.)

i=1 j#j

a b b
= E § E E[€5€j, €141 js.]

1,01 j7ﬁj1 Je#Jjs

S » LN

i=1 #31

S D) Pty

n
i=1 j#j1 U ij1

Next we use (1.7.14) to compute E(A,).

s - £ (33 o)

11] 1 k#k ”

Nij  Tiygp

S YYY Y

(nij — Dngy gy (ngy, — 1
i1 g1 k#tky kaks 1] ij ) 741J1< 11J1 )

Ezjkﬁz‘jkl €i1 41 ko €i1j1k3]

i Mgy

= ZZ Z Z EZJkEZJk161Jk12)E;Jk3]

=1 j=1 k;;ékl ko#ks

ngj E

Z]k z]k1]
Sy Yyt

i=1 j= lkz;ék U
oy Yy

i=1 j=1 nl](n'L] 1)
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Lastly we use (1.7.15) to compute E(A3).

b Miyje _
E :E : § : § : § : €ij. 6l]l €152k Ci1jok1

T; n —1
i=1 i1=1jtj) jo=1kitky ~ J2\1"0j2 )
Mg _
— 9 E : 2 : j : EU Eukewkl E[Eijl.]
n; n —1
1=1 j#j1 k#k1 ij\"vij )
= 0.

E(A3) =

Therefore combining the terms F(A;), E(Ay) and E(A3) we get

" —1)2 a b o2 o2 b ok
mm=ﬁﬁﬁﬂ ( T Dy g &
(ab) i1 \jzgy v i 5T T (nij = 1)

Thus [Var(T{"))? is equal to

[Var(T4)]?
2 a b 0'.2. 0'2. b
- [E(ﬁ2)]2 1o ((a(c;))lﬁ ) Zl [HAZ H_Zﬁ " Zl g (n ij ] [21 Zl :zjz]
+ O(a™). (1.7.54)

Based on (1.7.51) and (1.7.54) we note that
6E[(Th + a 11,)% (2 — E(Q))?] — 3[Var(TV))2 = —3[E(T4 ) + O(a™Y).  (1.7.55)

Thus, substituting the results in (1.7.10), (1.7.46), (1.7.51), (1.7.52), (1.7.53) and (1.7.54)

into (1.7.44), we obtain the fourth cumulant as
~4 —~2
K(Ty)) = B(Ta) = 3[BTy ) +0(a™)
= KT+ 0(a™), (1.7.56)

where K4(T£‘0)) is the fourth cumulant of Tj{’) under the null.
In summary, the cumulants of the test statistic under H; are related to those under Hy

in the following manner:
(7O — e (0 , N
KJ<TA )_KJ(TA )‘i‘fi]—f-O(CL )7]_17273747
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2
1/2 a2 i
where R1 = (b/a) / ZZ 1 Oé ab Zz 1 Z] 195 ngj’
Ky = Szl S oz»%] i 12“ + 50 % | and kq = 0. These are given in
= a9/2b7/2 i=1 J#5 2 = e &

i T2 (s
ng; Mg Jj=1 ng;(ni;—1)

(1.7.24), (1.7.29), (1.7.42) and (1.7.56), respectively. Now we can derive Xg() /0 the char-
A 14

acteristic function of TS) in (1.2.13). Under the conditions (B1) in Section 1.7.1, the char-

acteristic function Xp( ,, can be written as:
A

t) (it)? 1, (it)? 1, (it)* _
: - K@) 9 | gy G L ey Ky(TV !
X = e { KT 4 a0+ R S+ ) S+ 0t

it it)? it)?

— exp {[K1 (T + m]u + KT + m]% + [K5(T) + k) ( >3

va 2v4 vy

2404
2 t Ky(TY it)2
= exp <——> exp (—zt) exp {Kl(T( ))<Z ) + [( 2( 2’4 ) _ 1]+ K—; (it)
2 A VA vy val 2
) (it)” (0, (it)* o
Ks(T T
T + mal g + KT +0(a™)
2 K1 | K(TY) . Ky (TY) (i) Ky
= —_ - A A =
exp ( 2) exp (VA zt) exp { ) (it) + 2 5 + ) (it)
Ks(T) sl s Ka(TL) i o
. 1
+ 607 (it)° + i (it)* +O(a™) (1.7.57)
Applying Taylor series expansion to (1.7.57), we get
Xr( ), (2)
— e (=5 ) e (F1it) 1+ Kl(T‘E‘O))('t) J (BT ) G0 ke (it)?
= AP 2 =P VAZ VA ! Vi 2 21/31 ’
[KB(T/(xO)) + k3] s K4(T(O)) v -1
t —=—= (1t . 1.7.
+ 67 (it)° + 2t (it)*| + O(a™) (1.7.58)

By Applying the inverse Fourier transform, we obtain the pdf of TS) under conditions (B1)
and (B2) in Section 1.7.1 as follows:
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Frw,,, ()

(0) (0)
Ko . \9 [K?)(TA )+“3] N3 K4(TA ) v -1
+—2V§‘ (1t)” + 607 (it)” + ) ()" + O(a™")dt
N g e (0) (0) 12
/ ) (%) |4 + (T )( t) + (KQ(ZA ) ) ()"
(0) (0)
Ko .o B3(Ty7)+nks] s Ka(Ty'),. 4 ~1
+ —21/31 (it) 607 (it)” + S (it)*| + O(a™")dt
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Hermite polynomials. We can then obtain the cdf of T’ 1511). Forany y € R, let t = <y — ﬂ)

va

FTX)/VA(y) = /_ fo(u)du

(0) (0)
KT 1 [ Ky(T
— o) - Mﬂow—(%—l) H (1) + 2 1, (1)
VA 2 vy Vi
[Ks(T4") + Ki(Ty") 4
Hs(t —= - Hs(t t
# B )+ S ) o)+ O )
K\(T4") 1 Ey(T)) K(T1")
= P(t)— | —=LHo(t) + = | —=———1 | Hi(t) + ——=—H(t
0= | =+ 5 (2 )+ 2
Ky(Ty") K2 K3 1
H;(t t) — Hi(t Hs(t t
S H0)| 600 = |5 (0 + 0| o0) + O™
(0) k2 k3 /2 —1
= P(T;’ <t)— |=—5(t —(t"—1 t
1 <0 - |20+ 2 - 1)] 600 + 0
2
— pTO <y 2 R R AL B _ M
(Ta" < VA) 202 J VA +61/i 4 Vs o\v VA
+ O(a™)
where
P(TY <t) = d(t) - KI(T’E‘O))H(t)—l—l BT H(t)+K3(T’E‘O))H(t)
4 = n VA 0 2 Vfl ! 67/52 2
KT
B (| o0
is the Edgeworth expansion of T ,510) under H,.
1.7.8 Proof of (1.7.33).
To prove (1.7.33), we first consider
a b
Z Z ai1ai2E[gij-€ij1-(gib-glé-- - alg - g’gm +%2)]
1,11,92 JF£J1
a b
= > > agai, {EEEg @ &, ] — 26,56 € )+ Elee;, €]}
,01,82 j#£J1
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We compute each term in the above equation as follows:

a b a b
_ o~ o~ 1 - _
Z Z iy E€5 €5, 6, €6, ] = 2 Z Z a?ﬁE[GiZj.]E[e?jy]
i,01,02 j#£j1 =1 j#j1
a b 2 2
1 o o%.
Y N (N e A1
Z: i (1?2 Z Nij Mijy
i=1 J#j
a b a b 1
oY oanEEEn e = —2) ) O‘?WE[E?J:]E[E?J'L]
i,01,02 j#£51 =1 j#h
1 < 1 < 02 02
_ _o- i+ Yij Yija
a Z i b2 Z N5 Ny
i=1 g#i
a b a b 1
Z ZailaigE[gi]’.gi]’l.gZﬂ] = —QZZa?ﬁE[E?j]E[E?jL]
1,81,12 ]75]1 =1 .775.71
1 ¢ 2 1 " Ui2j Ul2]1
= 22 Do (b_2 Z i 1y
i=1 J#n

Putting them together we get

a b
>0 i, Ble ey, (6, &, — &, —¢ G, +¢)

1,81,82 j#J1

IN
[\
VRS
[S—y
+
ISHE
|
@le
N———"
o
=N
=

-of(-202)%)

0'.2. O'v2v
where the last equality uses condition (1.3.17) and M is a finite upper bound for ﬁ# for
1, 7 1

all 4, j due to the fact that E(e};,) < oo, which assures that

b 2 9
1 2



Following the same procedure it can be shown that

a b
Z Z Z OéilaizE[eijk‘Eijkl (alaz - gllg - ggm +EQ)] =0 (<

iyi,02 j=1 kstky

Thus the proof of (1.7.33) is complete.
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Chapter 2

Asymptotic Expansions in One-way
ANOVA with a large number of levels

and skewed populations

2.1 Motivation and existing methods

For scientific investigations in agricultural screening experiments, researchers often want to
compare a large number of cultivars (or genotypes) with very small number of replications
within each cultivar. The choice of small replications is due to cost concern since many of
the experiments collect molecular data using high throughput technologies such as micro-
array and sequencing. Data from such experiments are often found to be skewed. We
are interested in testing the hypothesis of no main treatment effect when the number of
treatment levels is large while the sample sizes are small. We are particularly interested in
the case that there are extreme observations and heteroscedasticity in presence.

The set up of this data setting can be described as follows. Suppose there are a treatments
(cultivars) and independent observations X;;, j = 1,---,n;, observed from treatment i,
¢t =1,---,a. The distribution of X;; is unknown with mean p; and standard deviation o;.
We are interested in testing the hypothesis of no treatment effect, i.e., Hy : pu; = p versus
H, : at least one y; is different from g, for some constant p. The number of treatments

a is large while n;’s are small. Pioneer studies in the literature include, cf., Akritas and
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Arnold (2000), Akritas and Papadatos (2004), Wang and Akritas (2004), Boos and Brownie
(1995) etc. Bathke (2002), Wang and Akritas (2006), Wang and Akritas (2011) have also
conducted research on two-way, three-way ANOVA and other multifactor designs when the
number of treatments is large. In these papers, they presented different test statistics and
their asymptotic distributions. Even though the form of their statistics may be different
they all give asymptotic normal or chisquare distribution to approximate the distribution
of their test statistics. The error of their approximations is of order O(a~*/?) in the sense
that the difference between the true distribution and the approximate distribution of the
test statistic is O(a_l/ 2). With this rate, the type I error of these tests converges slowly to
the nominal level when the data are skewed.

In the next paragraph, we first review three articles. Fujikoshi et al. (1999), Yanagihara
(2000) and Harrar and Gupta (2007). All of them studied bootstrap tests or asymptotic
expansions in ANOVA setting. We will explain that the bootstrap methods in the first three
references fail to work in the large a small n; setting. The result of Harrar and Gupta (2007)
works in large a small n; case if the variance is constant. None of them applies to large a,
small n; and heteroscedastic settings.

Fujikoshi et al. (1999) provided a higher order asymptotic expansion of the limiting
null distribution of the regular F-statistic for one-way ANOVA up to order 1/a when the
variances are constant. Their result is based on the assumption that Huber’s condition
(Huber (1973)), n/n; = O(1) is satisfied. Therefore Fujikoshi et al. (1999) expansion requires
that the number of replications to be large. Their result does not apply to the setting of
small n;’s and heteroscedastic variances.

Yanagihara (2000) also derived the asymptotic expansion of the null distribution of the
test statistic Ty proposed by James (1951) suited for one-way ANOVA under heteroscedastic
and unbalanced situations. His result however, is also based on the assumption that Huber’s
condition (Huber (1973)), n/n; = O(1) is satisfied. This requires the number of replications

n;’s to be large.
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Harrar and Gupta (2007) improved the approximation of the limiting distribution of the
regular ANOVA F —statistic, by deriving the asymptotic expansion of the null distribution
of the classical F-statistic for one-way ANOVA under non-normality. Their approach works
for small number of replications and large number of treatment levels. However, their
results require homoscedastic variance and the F'—statistic is not asymptotically pivotal
in heteroscedastic case. As mentioned in Fisher and Hall (1990), the classical F statistic
has a complicated limiting distribution that depends on the population parameters o; and
skewness in the unbalanced case and these parameters cannot be estimated with order
O,(1/+/a) when n;’s are small. In practice, population parameters are unknown, to apply
the Edgeworth expansion of Harrar and Gupta (2007), estimated population parameters
need to be used, leading to an overall accuracy of O(1/4/a) for their unbalanced case. In
addition, it’s difficult to assess the common variance assumption when the group sizes are
small. It’s therefore necessary to develop a test with better type I error accuracy for skewed
populations with a large number of treatment levels and small sample size per treatment
level.

In this chapter, we propose asymptotically pivotal statistic in the setting of large number
of treatments with heteroscedastic variance and non-normal data. Our statistic is suitable
for both small and large number of replications in unbalanced one-way ANOVA. We give a
higher order approximation of the limiting distribution by providing asymptotic expansion
of the test statistic up to order O(1/a). We will then develop a test using the Cornish-Fisher
expansion of the distribution. We prove that the new test has better type I error accuracy
and power for data from skewed populations.

The proposed test statistic is introduced in section 2.2. In section 2.3, we give the
Edgeworth and Cornish-Fisher expansions of the test statistic. We discuss the bootstrap
distribution of our proposed test statistic and its connection with Edgeworth expansion in
section 2.4. In section 2.5, we present the new test. The theoretical type I error is presented

in section 2.6. Section 2.7 is devoted to the power of the proposed test. In section 2.8,
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numerical results will be presented. Finally, the technical proofs are presented in section

2.9.

2.2 The proposed test statistic

To describe how our test statistic is proposed, we give a brief review of the development of
the test in this large a small n; setting. Under homoscedasticity, Boos and Brownie (1995)
and Akritas and Arnold (2000) derived the asymptotic null distribution of the classical F
statistic for balanced case in this large a and small n; setting Scheffé (1959) reported that
the classical F test is sensitive to departures from homoscedastic assumption, particularly in
unbalanced case. Akritas and Papadatos (2004) presented results to show that the classical
F-statistic is sensitive to departures from homoscedastic in both balanced and unbalanced
case. They suggested to use a'/ 2(F — 1) as the test statistic when the number of treatment
levels is large, where F' = MST/MSE is the classical F-statistic, for both balanced and
unbalanced homoscedastic variances. In the next paragraph, we discuss some statistics that
are suited for heteroscedastic variances and unbalaced case.

In this large number of treatments and heteroscedatic setup, Akritas and Papadatos

(2004) proposed an unweighted statistic 7, given by T, = a1/ Zl[nZ (X, —X.)?—(1-2)57]

where S2 = (n; —1)7! Y (X;; — X;.)? and N = ny +- - - +n,. They showed that the limiting

7=1
distribution for the unweighted statistic 7, is normal under both null and local alternatives

for the cases when group sizes are either small or large. In addition, Akritas and Papadatos

(2004) also considered the generalized or weighted least squares statistics T w given by

a R a _ 2
Tw=> uX f — - (Z @ X 1) . They showed that the limiting distribution for the
i=1 "% > ni/SP \i=1""

1=1
weighted least squares statistic Ty is also normal under both null and local alternatives for
the case when group sizes is large. They noted that, the weighted least squares statistic
T doesn’t work well for small sample sizes. Akritas and Papadatos (2004) found that, the

asymptotic properties of the unweighted statistic T, are preferable to those of the classical
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F-statistic even in the homoscedastic case, and they recommended 7, over the classical
F-statistic in all unbalanced situations (homoscedastic or not).

Considering the same setup, Wang and Akritas (2004) constructed a different test statis-
tic, that is suitable for both small and large group sizes in unbalanced ANOVA regardless of
whether the variances are heteroscedastic or constant. We will give the form of the statistic
shortly. They derived the limiting null distribution of the rank version of the statistic to be
normal.

The test statistics used by Akritas and Papadatos (2004), Wang and Akritas (2004),
Harrar and Gupta (2007) are not asymptotically pivotal. Their limiting results are only
accurate up to order O(1/y/a). As noted in Fisher and Hall (1990) and also discussed by
Hall (1992a), asymptotically pivotal statistics have a faster rate of convergence and better
accuracy compared to non-pivotal statistics. The objective of this paper is to construct
asymptotically pivotal statistic and derive a better approximation to the limiting distribu-
tion of the asymptotically pivotal test statistic. In the rest of this section, we will derive
our asymptotically pivotal test statistic by modifying the test statistic proposed by Wang
and Akritas (2004), suitable for our large a with small n;, under both homoscedastic and
heteroscedastic settings.

For the setting with a large number of treatment levels and small group sizes in the
heteroscedastic unbalanced setup, we start with the mean squares for treatment and mean

squares for error constructed by Wang and Akritas (2004) based on the original observations.

Let X;. = _1ZXU, X.. _1EX1, X.. =N~ ZZXU,WhereN > n;. We define
7j=1 = i=17=1
—~— . @ _‘ B ~ 9
MST(X) = — (X -X.)2 MSE® Z o — 5%, (2.2.1)

i=1

where X = (XH, cee 7X1ni, s 7Xa17 e ,Xana)/ and SZQ = (nz — ]_>_1 ZZ(XU — 71)2 They

=1

—_—

noted that, the test statistic based on the ratio of w( X) and MSE®(X) is also suitable

for large number of replications within each treatment level. Considering the test of no
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treatment effect, i.e. Hy : p; = p, we have that W(X) = m(g) =L za:(a —e.)%
where € = (€11, , €1y, €als " ,e(ma)/ and €; = X;; — p;. Under the m;lllhypothesis
of no treatment effect, £ (]\/[NST(X)> =F <M/§E/(2) (X)), thus, it is reasonable to compare
m( X) with M/SxE/ )(X) for the test of no treatment effect. Note also, that for the test

of no treatment effect, we have

a

MST(X) - MSE®(X ZZ egezi . a(al_l)za.ei,, (2.2.2)
?ﬁ K3

i

The proof of (2.2.2) is given in section 2.9.1. The mean and variance of \/a <W(X) — MSE® (X))

under the null are given by

Cij€ij 1 o
( g ; (n; — 1) a(a —1) Z in")] =0 (2.2.3)

i

and

a

Var [\/a (m(&) B M/EE/@) (X)ﬂ - ala i 1)2 Z NN + 2 ; n;(n; — 1) (22.4)

;é /

2

An unbiased estimate of o202 is S2S3 when i # ¢’ and S? is the sample variance. An

unbiased estimate of o} is o} based on U-statistic given by

i 1 Zn (@i, — Tiy)* (Tigs — Tij)? (2.2.5)
T =D (ni—2)(ni— 4 -
ni(ni—1)(n:=2)(ni=3) 1#j2# 374
Thus var = I 1 s> 7&1 o —|— Z 7 is an unbiased estimate of the variance. Finally,

the asymptotic pivotal statistic Wa is deﬁned as
Va (MST(X) - MSE®(X))
M,(X) = — . 2.2.6
x) — 220

2.3 Edgeworth expansion and Cornish-Fisher expan-

sion of the test statistic

In this section, we present higher order approximation of the null distribution and quantiles

of the test statistic M,(X) presented in (2.2.6).
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Throughout the rest of this chapter, we assume ¢; = X;; — p;, 7 = 1,--- ,n,, are

independent observations from some unknown distribution F; say, with unknown means p;’s

and unknown standard deviations o;’s, for ¢ = 1,--- ,a. We define the following averages:
nlnl—l “ ala—1)4&=""0
=1 j#£j' i
1 5252 1¢n ol
Y3, = — ) Yie=- :
s a(a—l); NN ! a;m( i—1)

Let Y = (Y14, Yaq, Yaa, Yie)  and u be its mean i.e.,

u = E(Y)=(EMd), E(Yaa), E(Ya), E(Y1a))

- (u17u27u37u4>/

1 °\olo? 1 o}
= (0, 0 i N T

( 7 ala—1) ; ning’ a;ni<ni_1)>

The test statistic M,(X) defined in (2.2.6) can be written as

Va(Yia + Ya)
M,(X) = WYX = —————F = oY
where
2 Yia + Yaa
hY) = Y- 2Y4, Y) = ——=
(—) \/CL 1 3¢ + da ga(—) h(X)

Note that Y, and Y}, are averages of non-iid terms. Also, Y3, and Y3, are quadratic forms
of non-iid terms. If they were iid, then Bhattacharya et al. (2016) Theorems 11.2 - 11.4 on
pages 285 - 288 can be applied. But in our case, the summand for different ¢’s are not iid.

By Taylor series expansion of g,(Y) at u, we obtain
0ga(u) co 1 ,0%g,(u)
Y - S(Y -
ou ( u) + 2( u) ou?

h;??hy&fﬂﬁxym+yg)—hf%uXY@_uD@@ﬂ}@J+0Ma§)

9a(XY) = ga(u) + (Y —u) + O,(|[Y —ulf)

1
= W(Ym+Yza) -

Therefore we can write

Wa(Y) = Vaga(X) = g1(Y) + 92(Y) + g5(Y) + Op(a™")
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where
Va
h(u)

p(0) = VI ) i+ Y20) = 0,0,

g3(X> = _\/ahis(u> (Y;La - U4)(}/1a + Yv2a)-

91(1) — (}/1a + YQa)a

Therefore,

My(X) = Wo(Y) = Vaga(Y) = 9:1(Y) + g3(Y) + Op(a™).

Before we state the Theorem, we state the assumptions.

K1: E(XZJ—,U/Z)6<OO
K2: lim sup |E<€Xp[ (tlna + tQ}/éa + t3Yéa + t4Y;1a)]>| < 17 Va > 17
[[t]|—o00

where t = (t1,t,13,t4) and ||t|| = (£2 + 2 + t2 +¢2)1/2. K2 corresponds to the Cramer’s
1 Tt ti3+ 1

condition used on page 544 of Harrar and Gupta (2007).

Theorem 2.3.1. Suppose n; > 4 are fived for all i. Then under Hy : p; = p,Vi and
reqularity conditions K1 and K2, the distribution of the test statistic M,(X) given in (2.2.6)

has the following expansion

Fu(z) = P(M, < 2) = ®(x) + %@(W(x) + O, (2.3.1)

where ®(+) and ¢(-) are the cumulative distribution and probability density functions of the

standard normal distribution and

Qu(w) = =) = "2 (a* 1) (2.3.2)
with
—2 V(2 -2) 2 = 0%(572 +4n; — 14)
g — 1\ 11 g _ 7
1 h(u)3a ; nZ(n; — 1) ' 53 h(u)3a ; nZ(n; — 1)’
0w IR PRV
u) = z
o a(a—1)22¢z,nnz a = ni(n Z—l
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3
and v; 18 a measure of the population skewness computed as v; = F {(M) ] .

The proof of Theorem 2.3.1 is given in section 2.9.1. When o?(7Z —2) and o (52 +4n; — 14)
are estimated with unbiased estimates, the £, and k%, estimates of 7, and k35 have accuracy
of order O,(a~1/2). Such estimators can be obtained with Jacknife procedure or U-statistics.

The latter can be written without trouble when n; > 10. The Jacknife estimate can be

obtained with any sample size > 3. Denote Q(z) the estimate of Q)(z) when unbiased
estimators ";“(1;\1 and /;g\?) are used to replace kf; and kj;. The resulting estimate I3 () will
have accuracy of order O(a™!). This provides a better order of approximation compared to
the asymptotic distribution of the classical F test.

Next, we give the percentiles of the test statistic M,(X) based on Cornish-Fisher expan-

sion.

Corollary 2.3.2. Denote w, the a-level quantile of the test statistic M,. Then, based on

Cornish-Fisher expansion, w, admits an expansion of the form in (2.3.3) below:

1
Wo = Zo + %%(Za) + Op(afl) (233)
where z, 1s the a-level quantile of the standard normal distribuion and qi(z,) = —Q1(za)

with Q1 given in equation (2.3.2).

The proof of Corollary 2.3.2 is given in section 2.9.3.

The distribution of the test statistic M,(X) given in (2.3.1) is the first-order Edgeworth
Expansion. Hall (1992a) discussed that, under more stringent conditions with all moments
finite, the full Edgeworth Expansion of sum of iid variables has the form

Z2 Q)00 + Qo) + - (23.4)

where Q;C(as) is a polynomial of degree 3k —1, with coefficients that depend on the population
moments. In our case, we could also achieve higher order expansions by using higher order
Taylor expansion of g,(Y’). But in terms of formulating the test rejection region with w,,

it’s not helpful to consider higher order expansions.
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2.4 Bootstrap distribution of the test statistic and its

connection with the Edgeworth Expansion

Consider the observed data X = (X1, -+, X1ny, -+, Xa1, - ,X(ma)/. In this section, we
consider resamples from X, and introduce the test statistic M, where M is the bootstrap
version of the test statistic M, given in (2.2.6). We will present the bootstrap distribution
of the test statistic M and discuss the approximation of the bootstrap distribution of M}
to Fy(z) presented in (2.3.4).

Consider the independent observations X;;, j = 1,2,--- ,n;, from some unknown dis-
tribution F; say, with ¢ = 1,2,---  a with unknown means p.s and unknown standard
deviations ols. We use the bootstrap resampling idea discussed in Fisher and Hall (1990).
Let X: = {Xi*pXi*m e ,X;*m}, denote a resample drawn by sampling randomly with re-
placement, from X; = { X1, Xio, -+, Xin, }, where X; is the collection of independent and
identically distributed observations from each treatment level 7, 7 = 1,2, --- , a. To construc-
t the bootstrap version of the test statistic, consider the transformation Y;; = X;; — pu; as
used in Fisher and Hall (1990). Since p; is unknown, we use the resampled data to compute
Y = X7 — X;.. The bootstrap version of the test statistic M,(X) defined in (2.2.6) is

M (Y™), which is computed from the resampled data as follows:

@ . e a T (V- Y )2
f{ﬁZ(Yi.—Y--V—%ZZ OO }
M*

=1 i=1j=1
. = — (2.4.1)
52 SQ* 9 0_;1*
\/a (a—1)2 Zl;ﬁl nin; + a Z:I ni(n;—1)
—
— a — —
where Y, = n;! Z Y =a! 23/;, Y. =N"! Zl Z o, where N = Y7 n; , S7* =
i= i=1j=
n; — N e ; ana o, 1s given by € U-Statistic
1)t YZ;‘ Y, )? and o}* is given by the U-statist
j=1
— oy )2 (yr —yr )?
U?* - m(ni—l)(nli—Q)(m—fi) Z?li#jz#jza#jzi = y212)4(yu3 Vi) . We now proceed to present the

bootstrap distribution of M} given in (2.4.1).
The bootstrap distribution of the statistic M presented in (2.4.1) is the distribution of
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M conditional on the observed data, X. It is equivalent to treat the observed data X, as
the population and sample from it randomly. Therefore, the distribution of M} conditional

on the observed data, admits Edgeworth expansion of the form

F(x) = POM; < 2|X) = 0(x) + %@axw(as) FoQu@ol) 4 (242)

where Qx(z) is an estimate of Q) () in (2.3.4), in which the unknown population moments
are replaced by their corresponding sample moments. This is analagous to the relationship
of bootstrap distribution with Edgeworth expansion in sum of iid variables in Hall (1986)
and Chapter 3 of Hall (1992b). If we use F\f/l(m) presented in (2.4.2) to approximate Fy;(z)
n (2.3.4), we have that

B9 ()~ Fi() = —=(@ulw) — Q4 (@)olw) + -+

S\ %\

[{Ql( ) — E(Q)} + {E(Q1) — Q4 (x) Yo (x) + -
1/2)

I
)

P Y

where the last equality is due to the fact that by central limit theorem (Lyapounov’s condi-
tion) Q1(z) — E(Q1) = O,(a~"/?). The bias part F(Q;) — Q(z) = O,(1). The reason being
that the bootstrap uses sample moments to estimate the population parameters such as the
skewness. Moreover, observing the form of @ (z) in (2.3.2), it’s realized that by Jensen’s in-
cauality B(32) > (E(5))? and E(3%) > (E(6))° resulting in E(3269) > (E(62))*(E(3:))*
Thus, the error of approximation is of order O,(a~'/?).

Next, we want to discuss the connection between Fy; P2 (z) and Fy(z) an estimate of the

cdf of M, given in (2.3.1) with 4J, and &%, being a~'/? consistent unbiased estimate for xJ,

and kY, respectively. The form of Fy(x) is

Fuu(r) = ®(2) + =G (2)0(z), (2.4.3)
where
Q1(z) = —Ff) — %§3<x2 —1). (2.4.4)



with

po o= 2 za: =2, 2 ~oi(Eitdn —14)
! h(u)da = ni(n; — 1)~ 9 h(u)?a = n?(n; —1)2
; 2 5252 2~ o i LS O d
h = 7 7 - R Ai — (2 1 1 ‘
() ala —1)2 ; ning a ; ni(n; — 1)’ 7 (n; — 1)(n; — 2) ; { S; }

where 05(77;2\— 2) and af(5’yi2:4\ni — 14) are unbiased estimates of 0%(y? — 2) and o%(572 +
4n; — 14), respectively. Hall (1986), considered coverage probabilities of confidence inter-
vals and showed that bootstrap approximation to the distribution of a pivotal statistic is
assymptotically equivalent to that of estimated first-order Edgeworth expansion approxima-
tion. Using transformation of pivotal statistic, Abramovitch and Singh (1985) also showed
related result. Hall (1986) and Abramovitch and Singh (1985) results pertain to iid data
and the classical large n; case. In our current setting of large a small n;, the theoretical
results show that the estimated first-order Edgeworth expansion Fi(z) in (2.4.3) has a bet-
ter approximation to Fjs(x) in (2.3.4) than bootstrap approximation ﬁﬁ) (x) in (2.4.2). We
give the following examples to demonstrate this.

We simulate data from a skewed population Chi-square distribution with degrees of
freedom 3, with a = 20 and small group sizes; 4, 4, 4,4, 4,4, 4,4,6,6,4,4,5,4,4,4,4, 4,
4, 5. The data satisfies the null hypothesis. We compute the test statistic M,(X) presented
in (2.2.6). The data generation and computation of the test statistic were repeated 5000
times to obtain the Monte Carlo density and distribution functions of the test statistic
M,(X) presented in (2.2.6). We compare the approximations of F JS) (z) and Fy(z) given
in (2.4.2) and (2.4.3) respectively, to the Monte Carlo cdf of the test statistic M,(X). The
bootstrap density and Edgeworth expansion of density can also be compared. The estimate
of the density function of (2.3.1) is given by

3 — 3x

Furlz) = o(z) + % [gglx e ( . )} 6(z) + O(aD), (2.45)

where /7, and ij; are given in (2.4.4). We compute the kernel density estimate of 2000

bootstrap statistics M* and fy(z) presented in (2.4.5) to the Monte Carlo pdf of the test
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statistic M,(X). The plot of ﬁﬁ) (z) (in red), Fy(z) (in blue) and the Monte Carlo cdf of the
5000 runs of M,(X) (in black) is shown on the left panel in Figure 2. The plot on the right
panel in Figure 2 shows the kernel density estimate of 2000 bootstrap statistics M} (in red),
fM(:c) presented in (2.4.5) (in blue) and the Monte Carlo pdf of the test statistic M,(X)
(in black). The estimated pdf plot in Figure 2 also supports that the probability density
functions for the bootstrap and first-order Edgeworth expansions are good approximations
to the Monte Carlo pdf of the 5000 runs of M,. In our next example, we again generate data
for 20 groups (treatments), each from the Chi-square distribution with degrees of freedom 3.
This time we consider moderate group sizes of n; being 10, 10, 10, 10, 10, 10, 10, 10, 12, 12,
10, 10, 11, 10, 10, 10, 10, 10, 10, 11. The data satisfies the null hypothesis. Figure 3 displays
the probability density and cummulative distribution curves of the bootstrap, first-order
Edgeworth expansion and the Monte Carlo pdf and cdf of M,(X). The Monte Carlo pdf
and cdf of M,(X), kernel density estimate of bootstrap statistics from one sample and our
first-order Edgeworth expansion F () are computed similarly as in small n; case. The plot
on the right panel of Figure 3 shows the kernel density estimate of 2000 bootstrap statistics
M (inred), fu () presented in (2.4.5) (in blue) and the Monte Carlo pdf of the test statistic
M,(X) (in black). Figure 3 below, displays the probability density curves of the bootstrap,
first-order Edgeworth expansion and the Monte Carlo pdf of M,(X). From the estimated
cdf plot in Figure 3, we observe that F Jg) () and I3 v (x) provide better approximations to
the Monte Carlo cdf of the 5000 runs of M,(X) for moderate group sizes than previous
cas with small n;’s. The estimated pdf plot in Figure 3 also supports that the probability
density functions for the bootstrap and first-order Edgeworth expansions are close and both
are good approximations to the Monte Carlo pdf of the 5000 runs of M, for moderate group
sizes. Comparing Figures 2 and 3, we see that the approximations to Monte Carlo cdf of
the 5000 runs of M,(X) becomes better as the sample sizes n;’s increases. In the setting for
our examples, the proposed statistic can be used for both small and moderate sample sizes.

Both ﬁﬁ)(x) and Fy(z) presented in (2.4.2) and (2.4.3) respectively, approximate Fy;(z)
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~~~~~~~~ Ecdf or kernel density of Bootstap M;
---- Edgeworth expansion of cdf or pdf
—— Monte-Carlo cdf or pdf
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Figure 2.1: Empirical cdf and kernel Density estimate of 2000 bootstrap statistics M from
one sample vs. Monte Carlo pdf and cdf of M, vs. First order Edgeworth expansion cdf
(2.4.3) and pdf (2.4.5). The data contains 20 groups of X3 samples of group sizes 4, 4, 4,

47 47 47 47 47 67 67 47 47 57 47 47 4? 47 47 47 5'
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~~~~~~~~ Ecdf or kernel density of Bootstap M;
---- Edgeworth expansion of cdf or pdf
—— Monte-Carlo cdf or pdf
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Figure 2.2: Empirical cdf and kernel Density estimate of 2000 bootstrap statistics M from
one sample vs. Monte Carlo pdf and cdf of M, vs. First order Edgeworth expansion cdf
(2.4.3) and pdf (2.4.5). The data contains 20 groups of x3 samples of group sizes 10, 10,
10, 10, 10, 10, 10, 10, 12, 12, 10, 10, 11, 10, 10, 10, 10, 10, 10, 11.
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in (2.3.4) well. They are much better than the bootstrap approximation of Fisher and Hall
(1990) to their statistic.

2.5 A new test and its connection with the Bootstrap
test

In this section, we specify a new rejection region to test the null hypothesis of no treatment
effect.

We define w,, the estimated quantile of w, presented in equation (2.3.3) as

1
C?Ja = Zo + %(_?1(261) (251)
where
~ "%53 2
G1(z0) = —Q1(24) = /], + ?(Za —1). (2.5.2)

kY, and &kY; are given in (2.4.4). Now, we define the new test rejection region based on
the estimated first-order Cornish-Fisher expansion of the quantile in (2.5.1). To test the
hypothesis of no treatment effect, i.e. Hy : u; = pu versus Hy : at least one p; is different

from p, for some constant i, we define the rejection region as
My(X) > @010 (2.5.3)

i.e. the null hypothesis is rejected if the observed value of the test statistic M, is more
extreme than the critical values based on the estimated first-order Cornish-Fisher expansion

of the quantiles. We consider one-sided test because under the alternative hypothesis,

P e N

H, = E(X;j) = i = o+ a; where o; # 0, we have that MST(X) = MST(¢) + 2y/a(a —
1)~

a—1 <
=1 7

Suppose we denote the analytical bootstrap quantile by @? which is an approximation

;. 4Co Where ¢ = Y2 3" a2 Therefore under H,, E (Mg}(/X) — /S\ETX)) > 0.
=

of the true quantile of M,, such that
W=z +iqAb(z )—l—lqAb(z )+
a a \/a 1 « a 2 a )
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where ¢%(.) are functions of the plug-in estimates Qx(.) in (2.4.2). As an example ¢! (zq) =
—Ql (z). Then as discussed in section 1.2.3 the theoretical type I error-rate of the bootstrap
test is accurate up to order O(a~'/?). To have an idea what the estimated type I error-rate
will be for the bootstrap test in practice, analytically, consider the form of él(za) in (2.4.4).
kY, and &3 contain the term 7%92. Since bootstrap method uses plug-in estimates, the
estimation of a9472 results in &Y, underestimated and &3; being inflated (notice the negative
sign in 47,). Thus the bootstrap quantile becomes inflated which leads to the bootstrap test

being conservative.

2.6 Type I error-rate of the proposed test

In this section, we derive the accuracy of the type I error rate of the test in (2.5.3). At a

significance level of «, the probability of type I error is given in (2.6.1) below

P(M, > @n1_q) (2.6.1)

We can write @, as W, = Wy + Wa — Wa, Where w, is the true quantile of the distribution of

M,. We know that

1
Wa:Za+_q1(Za)+"'7

Va

where ¢;(z,) = —Q1(24). Hence
G =00 = (@1 (z2) — @ (2)) + Opla™) = Oyfa™),

since from (2.5.2) we know §;(z,) is an unbiased estimate of ¢;(z,), thus ¢i(za) — ¢1(24) =

O,(a™!'). Now using the above results, (2.6.1) can be written as

P(Ma > Wlg + Wi—q — wl,a) (262)
= P(Ma - (wlfa - wlfa) > wlfa)

= P(M, >wi o) +0(a™),
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since M, and M, — (W, — w,) all have the same first order Edgeworth expansion as a result

of the Delta method in Hall (1992b) section 2.7. We need to compute P(M, > w;_,). Write

P(Ma > wl_a) =1- P(Ma S wl_a) = 1- FM(wl_a)

where Fy/(z) is the distribution of M, presented in Theorem 2.3.1.

P(My>wi_y) = 1-@ <z1a + q1(\2/1a_a) 4 0(1/a)> _ %Ql (Zla . ql(\z/la—a)

x (zl_a + Q1(f/15‘“) + O(l/a)) +0(@a™).

Next, we apply Taylor expansion to the expressions ® (zl_a + L\}g‘*) +0(1/ a)),

Q1 (zl_a + L\};) + O(l/a)) and ¢ (zl_a + &\}ga) + O(l/a)) at z1_,. We have

2 ( e | 0<1/a>) — B(1ma) + e (5a)d(50) + Oa)

1
Va "V

Q ( L aEa) | o<1/a>) = Qu(21-0) T =1 (21-0) Q) (51-0) + Oa™)

1
Va " a

1(210) = (2 L 2z (2 a
¢(zla+ o +o<1/a>)—¢< o)+ Ja(ea-a)d (1) + Ol

Substituting (2.6.4), (2.6.5) and (2.6.6) into (2.6.3), we have

P(M, > w1-0) = 1 = B(e1-0) = = [01(:1-0) + @1 (21-0)] 631-0) + Ofa™),
We know that ®(21_,) =1 —a and ¢;(21-4) = —Q1(21-a). Therefore
P(M, > wi_s) = a+O0O(a™t).
Combine this with (2.6.2) we get

P(M, > &1 o) =a+0(a™h).

That is the accuracy of the type I error-rate of the test in (2.5.3) is of order O(a™*
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2.7 Power of the proposed test

In this section, we present the distribution of the test statistic under the local alternative.
We will also present the theoretical power of our new test.

We consider the decomposition E(X;;) = p; = p+ o where Y ¢ jo; = 0. Then our
hypothesis of Hy : p; = p versus H; : at least one p; is different from p, for some constant
1, is reformulated as Hy : a; = 0 versus H, : at least one a; > 0,7 =1,--- ,a. Under the

alternative hypothesis, we have that

—_—

MST(X) = MST(e) + 2vala — 1) Z Qe+ ca (2.7.1)

where

Vi =
= a;.
a—1 ; !
We consider the case that ¢, converges to a constant under the alternative hypothesis. More

specifically, we assume the departure from the null hypothesis is of order
a; = O(a’i),for alli=1,--- a. (2.7.2)

In this case, the test statistic M,(X) can be written as

Ma(X) _ ﬁ(MST(X) — MSE(Z)(X))

Va(MST(e) — MSE® (X)) + 2v/a(a — 1) " ages. + co
= =1 (2.7.3)

L2yl
a(a 1)2 . Z nings E ; n;(n;—1)

To present the distribution of the test statistic M,(X) in (2.7.3) we define the following

averages;
61]61] -1 R —
Yoo = ——— 3 G,
=1 j#j' i
1 5252 1 7 1 &
Ya = Ya = - d Ya i€i
° a(a—l)gnml ! az_:nz( — 1) i a—ll_loéE
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Let Y = (Y14, Yau, Yaa, Yia, Ysa) and u be its mean i.e.,

u = E(Y)=(EWa), E(Vaa), EVaa), E(Yaa), E(Ysa))

- (u17u27u37u47u5)/

!

1 ‘Lol I « o}
— O O ) - —’L’ 0
< "7 ala—1) ; ning’ a ; ni(n;—1) )
The test statistic M,(X) under the local alternative in (2.7.3) can be written as
a(Yi, + Yo, + Ys,) + o «
Mx) 2wy = Yeetlerdulto g vy gy)
hY)
where
2 }/vla + }/7201 + }/:r)a Ca
Y = Y34 +2Y4 ) Y = ) i Y)= .
S Y B % T tle ) -

By Taylor series expansion of gy, (Y) at u, we write

9. %) = g, () + W iy Ly oy DI ) o,y )
- h=(u)
= W(Yla—l-yza—i-ysa) B— (Yaq—u3)(Yig+ Yoo +Ysa)

= W (@) (Yia =) (Vi Yo+ Yau) + Op(a ).
We have that,

Vagn, (Y) = Gi(Y) + G2(Y) + G5(Y) + Op(a™)

where
a
(YY) = W{)ma Yo+ Yau)
—v/ah™3(u
Gal¥) = Y 3 ) (V4 Yo+ ) = Oyfa)
and

G3(Y) = —vah ™ (u)(Yaa — ta) (Yia + Yoo + Ysa)-
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Next, we apply Taylor series expansion to ¢*(Y) at u and write
0" (u)
ou

= h(u) + G4<X) + Op(a_ )

gX) = g"(u)+ (Y —u) + Op(|IY. — ul*)

where
Gi(Y) = —c,h?(0)(Yig — ug).
Therefore, the test statistic W,(Y) under the local alternatives is written as

Wa(Y) = Gi(Y) + Gs(Y) + Ga(Y) + W +0,(a™).

To state the result, we state Cramer’s condition in this case as

K3: lim sup ‘E[exp{i(tl}/la + tQYVQa + tBYE’)a + t4Y;la + t5YT5a)}]| < 1,VCL > 17

It =00

where t = (t1,ty, b, ta, ts5) and [t|| = (6 + 5 + 65 + £ + £3)"/2.

Theorem 2.7.1. Suppose n; > 4 are fized for all ©. Then under the local alternative
hypothesis of order in (2.7.2) and regularity conditions K1 and K3, the distribution of the

test statistic M, given in (2.7.3) has the following asymptotic expansion

Fiu(r) = P(M, < 2) = ®(x) + —=Qi"(x)o(x) + O(a™) (2.7.4)

Vva

where ®(+) and ¢(-) are the cumulative distribution and probability density functions of the

standard normal distribution and

. 1 _ 1
Q1" (x) = =y + £h) = Sl + 2cah™ (W) (1 + )] — (s — 15aT) (2" — 1)(2.7.5)

with

—4 ~  ai0) 4a’/? a
- *— and K33 =
1 (a = Dh(u)? ; ni(n; — 1) ? 7 (a—1)*n(u)? i=1

and ki, K35 and h(u) were defined in equation (2.5.2).
The proof of Theorem 2.7.1 is given in section 2.9.4.
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2.8 Simulation Studies

In this section, we conduct simulation studies to investigate the performance of our proposed
test. We compare both type I error-rate and power of our proposed test in (2.5.3) to that of
the asymptotic test proposed by Akritas and Papadatos (2004) based on the test statistic Ty,.
We also compare with the test based on the asymptotic expansion of the null distribution of
the classical F-statistic in Harrar and Gupta (2007), the Fisher and Hall (1990) bootstrap
test based on their pivotal statistic 75, and the Bootstrap test based on statistic (2.4.1).

Again we compare to Fi(z) in (2.4.3) based on the p-value.

2.8.1 Simulation setting

The simulations are based on 2000 replications and the data were generated from the fol-
lowing three distributions; chi-square with 3 degrees of freedom, chi-square with 8 degrees
of freedom, and normal (0, 1). The three distribution has skewness parameter 1.63299,
1 and 0, respectively. All three distributions were used in Harrar and Gupta (2007). In
the data generation, we consider both constant variance and heteroscedastic cases. For
heteroscedastic cases, we consider both small and large heteroscedastic variances.

The simulation studies were conducted for small group sizes and consider when the
variances are homoscedastic and heteroscedastic cases. The small group sizes n; for the
number of treatment levels a = 10, is 4, 5, 4, 6, 5, 6, 4, 5, 4, 4; for a =15, n; =
5, 4, 4,4, 4, 4, 6, 4,4, 5, 5, 4, 4, 5, 4; for a = 20, n; = 4, 4, 4, 4, 4, 4, 4, 4,
6, 6, 4, 4, 5, 4, 4, 4, 4, 4, 5. When a = 25, 50, 75 and 100, we use the group sizes
6,4,5,4,5,4,4,4,5,4,6,4,4,5,4,4,4,4,4,4,4,4,4,4 4,6,--- ,6), where all omitted n;’s are

equal to 6. Under the null, for homoscedastic variance case, we generate our data as follow:

e D1: Standard normal N(0,1).
e D2: 2 with 3 degrees of freedom.

e D3: \? with 8 degrees of freedom.
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Considering small heteroscedastic variances, we generate the data as follows:
o D4: Y, =ix7/a+log(i+ 1) * €;;, where ¢;; are i.i.d. N(0,1).
e D5: Y;; =3x (ix7/a)®+log(i + 1) * (X;; — 3), where X;; are i.i.d. x3.
e D6: V;; =8x (ix7/a)® + log(i + 1) * (X;; — 8), where X;; are i.i.d. x2.
For the large heteroscedastic variances the data generation are as follows:
o D7: Y;; =3« (i*7/a)* + 3 xlog(i + 1) * (X;; — 3), where X;; are i.i.d. x3.
e D8 Y;; =8x(i*7/a)* +8xlog(i+ 1) * (X;; — 8), where X;; are i.i.d. x3.

We report the type I error-rate results for the number of treatment levels a = 10, 15, 20,
25, 50, 75 and 100 with nominal o = 0.05 for only the homoscedastic data D1 — D3. For
heteroscedastic data we report the type I error-rate results for the number of treatment
levels a = 10, 15, 20, 25, 50, 75, 100, 150 and 200 with nominal o = 0.05. Since the signal
to noise ratio are the same for D5 and D7, and, D6 and DS, the type I error-rate for D5
and D7 are the same and that of D6 and D8 are also the same. We report the achieved
power of our simulation studies for the number of treatment levels a = 75, 100, 150 and
200, at nominal level o = 0.05 for D6 — D8. When 7 = 0, the data is under the null. For
the alternative hypothesis, we let 7 take value in (0, 4). The values of T are specified in the

tables.

2.8.2 Simulation results

Table 2.1 shows the estimated type I error-rate for homoscedastic cases for the asymptotic
test in Akritas and Papadatos (2004) labeled as AP, the asymptotic expansion in Harrar and
Gupta (2007) labeled as EHG and our test in (2.5.3) labeled as CF. It is clear from Table
2.1 that for more skewed distribution x% with constant variances both our test CF and EHG
have empirical type I error converges to the nominal level faster than the AP test. Under

heteroscedastic variances, the estimated type I error-rates are given in Table 2.2 for the EHG,
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AP test, Fisher and Hall (1990) bootstrap test based on their pivotal statistic 75 based on
both quantile (HF.reject) and p-value approach (HF.p), our Bootstrap test based on statistic
(2.4.1) using quantile (Boot.CF.reject) and p-value approach (Boot.CF.p). We also listed
a test WR, which uses p-value computed from F, w(z) in (2.4.3) to make a conclusion. The
results show that, HF.reject and HF.p did not reject any test. This consistent to the fact
demonstrated in Figure 1.1 which shows that the values of the bootstrap statistic 7f, are
much larger than that of 7;. This leads to a large bootstrap quantile than the value of the
test statistic Ty, thus leading to almost no rejections. Our test CF performed better than
the bootstrap tests, EHG and AP in the settings of large number of treatments with small
replications under the presence of heteroscedastic and skewed data. We can see that CF
approached the desired nominal level of 0.05 faster than other tests. The WR using p-value
also reached the nominal level for large a but had very liberal type I error for smaller a.
This is because the approximation of cdf for smaller @ might have abnormal behaviour at
both ends of the cdf.

Next, we assess the power achieved using the heteroscedastic data D6, D7 and DS
described in the simulation setting section. The left panels of Figure 2.3 through Figure
2.14 display the power achieved by our test CF, our bootstrap test (BootCF), the test in
Akritas and Papadatos (2004) and the test of Harrar and Gupta (2007). The right panels
of Figures 2.3 through 2.14 plot the differences in power for BootCF - CF (red), AP - CF
(green) and EHG - CF (blue). We observe that CF and AP have comparable power but
better better than that of EHG and BootCF in the presence of heteroscedastic and skewed
data.

In summary, the numerical results provided in the above simulation studies show that
for large number of treatments, our test based on asymptotic expansion of our proposed test
statistic is satisfactory for skewed data and even symmetric data under both homoscedastic

and heteroscedastic variances.
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Test a D1 | D2 | D3
AP 10 | 100|741 7.3
15 | 80 | 7.0 | 8.0
20 | 88 | 81 | 8.0
25 1 92 |66 |75
50 | 8.0 | 7.2 | 6.1
7 | 5.6 | 6.5 5.1
100 | 5.8 | 5.8 | 6.0
EHG | 10 | 5.2 [ 4.7 | 4.9
15 | 54 | 41150
20 | 5.0 | 5.1 |48
25 | 6.6 | 4.6 | 5.2
50 | 5.6 | 54 | 4.8
75 | 4.4 | 55| 4.0
100 | 4.2 | 44|56
CF 10 | 74 | 6.7] 6.8
15 | 7.0 | 5.8 | 5.5
20 | 7.6 | 6.1 | 5.1
25 | 80 | 5.6 | 5.0
50 | 5.2 | 6.4 | 5.1
75 | 4.6 | 5.8 | 4.4
100 | 5.0 | 5.1 ] 5.0

Table 2.1: Percent of rejection for homoscedastic (D1, D2, D3) cases, o = 0.05.
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Distr. a |HF _p|HF.reject|Boot.CF.p|Boot.CF.reject | EHG | AP | WR || CF
10 | 0.0 0.0 3.3 3.1 5.9 19.0(13.2]8.2

151 0.0 0.0 4.2 3.9 7.3 [10.0{12.4|9.2

20 | 0.0 0.0 3.8 3.5 7.0 [10.5]10.9(9.1

D4 251 0.0 0.0 3.3 3.1 6.2 | 7.8 | 85 6.6
50 | 0.0 0.0 4.3 4.0 40 | 71|73 |7.2

75 0.0 0.0 5.8 5.8 5.1 | 7.3 7.017.0

100| 0.0 0.0 4.8 4.8 43 | 737270

150| 0.0 0.0 4.7 4.7 3.8 16.7]6.016.0

200( 0.0 0.0 3.9 4.1 3.3 | 585252

10| 0.0 0.0 2.3 2.1 6.2 | 8.2 1]19.3|7.5

151 0.0 0.0 14 14 5.7 | 7.3 |18.8]5.7

D5 and D7| 20 | 0.0 0.0 1.9 1.8 6.0 | 7.6 |21.5|5.1
25| 0.0 0.0 2.4 2.3 9.3 19.8124.9(6.2

50 | 0.0 0.0 2.5 2.4 3.2 15719155

75 0.0 0.0 2.8 2.9 3.1 159 (5555

100| 0.0 0.0 3.7 3.9 3.7 1641]6.0 6.0

150| 0.0 0.0 4.3 4.4 4.0 | 6.1 | 5.7 ||5.7

200| 0.0 0.0 3.4 3.6 3.1 1531]4.914.9

10| 0.0 0.0 3.0 2.9 7.2 19.11]16.7|7.4

151 0.0 0.0 2.4 2.3 6.5 |1 9.0 |15.3||7.1

D6 and D8| 20 | 0.0 0.0 2.5 2.4 6.8 19.4 |15.8|7.1
251 0.0 0.0 2.4 2.4 8.6 |841]16.4|6.8

50| 0.0 0.0 3.8 3.8 39 [70|72 |54

75| 0.0 0.0 3.6 3.8 3.0 15915959

100| 0.0 0.0 4.3 4.4 34 166 ]6.1|6.1

150| 0.0 0.0 4.1 4.3 3.3 16.0]5.6156

200| 0.0 0.0 4.1 4.2 3.6 | 5.6]5.015.0

Table 2.2: Percent of rejection under Hy for D4, D5(D7) and D6(D8) with 7 = 0 at
a = 0.05.
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Empirical Power; chisg.8.log ; a= 75 Power Difference; chisq.8.log; a=75
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Figure 2.3: Achieved Power for heteroscedastic x% data D6, a = 75, a = 0.05.
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Empirical Power; chisg.8.log ; a= 100 Power Difference; chisq.8.log; a=100
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Figure 2.4: Achieved Power for heteroscedastic x% data D6, a = 100, o = 0.05.
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Empirical Power; chisg.8.log ; a= 150 Power Difference; chisq.8.log; a=150
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Figure 2.5: Achieved Power for heteroscedastic x% data D6, a = 150, o = 0.05.
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Empirical Power; chisg.8.log ; a= 200 Power Difference; chisq.8.log; a=200
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Figure 2.6: Achieved Power for heteroscedastic x% data D6, a = 200, o = 0.05.
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Empirical Power; chisg.3 ; a= 75 Power Difference; chisq.3; a=75
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Figure 2.7: Achieved Power for heteroscedastic x3 data D7, a = 75, a = 0.05.
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Empirical Power; chisg.3 ; a= 100 Power Difference; chisq.3; a=100
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Figure 2.8: Achieved Power for heteroscedastic X3 data D7, a = 100, o = 0.05.

132



Empirical Power; chisg.3 ; a= 150 Power Difference; chisq.3; a=150
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Figure 2.9: Achieved Power for heteroscedastic x3 data D7, a = 150, a = 0.05.
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Empirical Power; chisg.3 ; a= 200 Power Difference; chisq.3; a=200
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Figure 2.10: Achieved Power for heteroscedastic x3 data D7, a = 200, o = 0.05.

134



Empirical Power; chisg.8 ; a= 75 Power Difference; chisq.8; a=75
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Figure 2.11: Achieved Power for heteroscedastic x2 data D8, a = 75, a = 0.05.
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Empirical Power; chisg.8 ; a= 100 Power Difference; chisq.8; a=100
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Figure 2.12: Achieved Power for heteroscedastic x3 data D8, a = 100, o = 0.05.
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Empirical Power; chisg.8 ; a= 150 Power Difference; chisq.8; a=150
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Figure 2.13: Achieved Power for heteroscedastic x3 data D8, a = 150, o = 0.05.
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Empirical Power; chisg.8 ; a= 200
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2.9 Technical proofs

2.9.1 Proof of (2.2.2)

—~——

MSE® (X) =

—~—

MST(X) -

LS X - %o

a—li:

Under the null hypothesis of no treatment effect, we have that

MST(X) — me) _ 1 Z(EZ B E,)Q B 1 ~ (e — Gi.)2
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From the last equality, we see that the first and last terms cancels out to arrive at equation

(2.2.2).

2.9.2 Proof of Theorem 2.3.1

To prove Theorem 2.3.1 we define the following averages;

17 %1 _1 - —
ZZ m e?;fi 1 Yo, = m Zﬁi-ﬁim

1175/

1 5252 1 loF
Vi = vy, =N %
3 a(a —1) ; ning 4 a ; ni(n; — 1)

Let Y = (Yi,, Yaq, Y34, Yie)  and u be its mean i.e.,

u = E(X) = (E(}/ia)aE(}/Za%E(Y’?)a)vE(Y;la))/

’

- (u17u27u37u4>
1 ‘L o202 1 o}
= 07 07 — ) - -
( a(a—1) Z M a lz_: ni(”i_1)>
The test statistic M,(X) defined in (2.2.6) can be written as

Va(Yig + Ya,)

M,(X) = W,(Y) = TaY) Vaga(Y)
where

By Taylor series expansion of g,(Y) at u, we obtain

aga(u) ! 1 ’82911(“)
Ju (Y —u) + §<Y —u ou?

- ﬁ(mﬂéa) - h:’_(lll) (Vaa—us) (Yia+Yaa) — h™3(0) (Yag— 1) (Yig+Y2a) +Op(a ™).

Therefore we can write

(Y — 1)+ Oy([[Y — ulf*)

9a(Y) = ga(u) +

Wa(Y) = Vaga(X) = g1(Y) + 92(Y) + g5(Y) + Op(a™")
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where
\/a
h(u)

02 (X) = VIO v )Y+ Ye) = Oyfa2)

93(Y) = =vah™>(0)(Yag — tg)(Yia + Yaa)-

a(Y) =

(Yia + Yaa),

We end up with
Wo(Y) = Vaga(Y) = g1(Y) + g3(Y) + Opa™).
Now, W, (Y) is written as
Wo(Y) = g(Y) + Op(a™)
where

9Y) = q1(Y) + g3(Y).

We now obtain the first four moments of g(Y") as follows: The first moment of g(Y) is given

by
Elg(Y)] = Elg1(Y)] + E[g3(Y)].
Elg1(Y)] = %E[Ym + Yaa = 0

ED/la] - ED/Qa] =0.

Elg;(Y)] = —Vah(0)E[(Yia — ua)(Yia + Y24)]

= —ah (W) {E[(Yia — u1)Yia] + E[(Yia — 14)Yaa]}

[ 2 6%(472—2)
_ 3 i
= —h ZL&;/z 2n—1)]

=1
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since

and
E[(na - u4>}/2a] = 0.

Therefore, the first moment of G(Y) is

E[G(Y)] = —Qh(;s/(au) 2 [;2((73 __12))2] '

i=1

Next, we obtain the second moment of g(Y) given by

Elg*(Y)] = El(g1(Y)+g5(Y))’]

= Elg{(Y)] + Elg;(Y)] + 2E[0:(Y)g5(Y)].

Elgi(Y)] = va E[Y2 +2Y1,Ys, + Y2).

h?(u)
: €ij€ijr _ 2
CARE P oELCN ) wem
i=1 j#£j’ =1
| - -1 -
EY1,Yo,] = E ( ZZ ni(n; — 1)) (a(a— 1) ZGz K )] -
=1 j#j’ 7
) 2
EY2]=E =T Y @E| =0
it
We have,
-1
Elgi(Y ahQ Zl [ ] +06E)

Elg3(Y)] = ah *(WE[{(Yia — ua)(Yia + Y20)}]

= ah (W) E[(Yaa — ua)2(YZ + 2Y1.You + Y2)].
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= O(a™?)
a 0/-;4 — F O/'} 2 o a 2
Bl(Yia = ua) V) = B [(é ) < na(n; <1)>>) (a(a _1 1) ZEE> ] =0(a™).
i=1 E i/
We obtain
Elg;(Y)] = O(a™)
E[gl (X)QS(XH = ah_4(u)E[{(Y;la - u4>(}/ia + }/211)2}]

= ah ™ (W) B[(Yaa — ug) (Y2 + 2Yi,Yaq + Y2)].
a CTA?—E ;1 €ii€; i
G S S

E[(Yia — us)Y1aY2a] = E[( a <O;%En,E_<j )>) < ZZ eyfil>

B[(Yi, —u)Yg] = E

SIS
g
;




We end up with
E[g1(Y)g3(Y)] = O(a™").

Thus, the second moment of E[g?(Y)] is given by

a

2 2 o} a-!
001 = s 2o [ = 0

We now proceed to derive the third moment of g(Y).

Elg*(Y)] = El(g(Y)+g5(Y))’]

= Blg(Y)] + Elg;(Y)] + 3E[gi (Y)g5(Y)] + 3E[9:(Y) g5 (Y)].

, a3/2 \
Elg7(Y)] = WE[(YM + Y2,)°]

_ e E[YE +3Y2Ys, + 3Y1.Y2 + Y3

- W la lat2a lat2q 2al*

Therefore we have,

E[Q?(X)] — #S(u) |:Ui [%’ + 2(”1’ - 2)]



Elgi(Y)] = —a*?h°(w)B[{(Yae — ua)(Yia + Yaa)}']

= —a*2h (W) B[(Yaa — ua) (Ve + 3Y(, Yoo + 3Y1aYs, + Yy ).

(50D (55 e )3

=1 j#£j'

= 0(a™?).

Z

= O™
a 0/-\:1 — F O/'} ’ . a 3
B[(Yio —ua)’Yp] = E |:<é Z ( (s <1)>>) (a(a _1 0 ZQ-QA) ] = 0(a™).
i=1 LA i
Therefore we obtain
Elg3(XY)] = O(a™?).
Elgi(Y)gs(Y)] = —ah™(w)E[(Yia — wa)(Yia + Yaa)]

= —ah™ (W) E[(Yia — ua) (Y, + 3Y(Yau + 3Y1aYa, + Vau ).




‘ ‘;}_E &} LN g
BlVia —u¥iaY] = EK%E(MW(U)))*GZ m)

= O(a™®)
E[(Yia — ua)Ys] = E [(é g <U;Ll(nf?<alz)>>) (a(a__l 1) ;Ei'gi/) ] - O(@%)-

Therefore,

Elg{(Y)g3(Y)] = O(a™).

Elg(Y)g3(Y)] = a?h (W) E[(Yia — ua)*(Yia + Yau + Y5a)”]

= PhTT (W) E[(Yia — ua)* (Vi + 3Y,Yau + 3Y1aY5, + Y3,)].
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= O(a™?)
~ N 2
4 4 3
1< (oi —E\o; 1 o -
E[(Yia — us)*Y5] = E |:<a Z < ni(n; <1)>>) (a(a - 1) ZQ.@_) ] =0(a™).
i=1 e i#i!
Therefore we obtain,
Elg(Y)g3(Y)] = O(a™*?).
Thus, the third moment of g(Y), E[¢*(Y)] is given by
3 - ’yz + 2 nl — 2)] -1
B Y) = e Z[ 222 o,

=1

Next, we derive the fourth moment of ¢(Y).
Elg"(Y)] = El(g(Y)+gs(Y))"]
= Elgi(Y)] + 4E[g)(Y)gs(Y)] + 6Elg; (Y) g3 (Y)] + 4E[g:(Y) g5 (Y)] + Elgs(Y)"].

CL2

Elgi(Y)] = i Bl +Ya0)'
2
- hf(u) E[Y{, +4Y(Yao + 6Y1Y5, + 4Y1aY50 + V3.
I € ! 12 olot
41 ij&ij o; Z »
E[}/la] E a;;n(nl—l ] o CL4Z ] )TLZ (’[’L _1)+O(a )

E[Y},Ya] = E !(é > Z — (6;;63 1)> (a(a__l 0 ZEE)] = 0(a™).
=1 j#j5'

it
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Therefore, we end up with

o120 oi0;
Elg(Y)] = a2h*(u) Z [m(m — ny(ny — 1)

i

Elg(Y)gs(Y)] = —a’h™*(w)E[(Yia — ua)(Via + Yaa)']

= B W) E[(Vi — ua) (YVih + 4Y5 Yo + 6YRYZ +4Y1,Y5, + Yib)].

(%i @;(f(f”) ISy )4] =0

i=1 j#j’

E[(Y;la - u4)Yv1%1] =F

o~

sl = | (15 D) (155 )

i=1 j#j’

‘ %_E f;} L& g6 :
Bl(Yia —w)Yi Yz = E[(%Z<ni(ni<l)>>) (lzg—n(n_1)>
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it
~ O
E[(Yia — w4)Ys,) = E [(% lzj; <02’L,(nlE<011)>)) (a(a__l 1) ;Eifi,) ] =0(a™).

Therefore, we end up with

Elg}(Y)g3(Y)] = O(a™).

Elgi(Y)g;(Y)] = a*h () E[(Yia — ua)*(Yia + Y2a)"]

= —a’h (W) E[(Yia — ua)*(Vig + 415 Ya0 + 6Y1, Y55 + 4V1Y5, + Y3,))-

1 ¢ (C;}_E(/})) €ij€ij '
(Ei n;(n; — 1) ) < Zme—l) N

1=1 j#£j’

E(Yia — )Y Ya,] = E[GZ("WE(;))) GZ; o )

E[(Via — w)?Yi] = E

= O(a™)
Bl - w23 - E{(l <Om<f<j3>>) (iS5 )
-1 ‘Y ?
*<w%n§;m)]
= O(a™%).
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oo - | (1R ) (55

= O(a™).
s | (5O ()| o

Therefore, we end up with

Elgi(Y)g3(Y)] =O(a™).

Elp(Y)gs(Y)] = —a’h (W) E[(Via — 1)’ (Via + Yaa)']

—CLthlO(u)E[(Y&a - U4>3(}/1i + 4}/1?:1}/2(1 + 6Y’12aY22a + 4Y’1aY2%z + Yvﬁz)]

| (12 ()

E[(Yia — w)*Yi] = — O(a™).

i=1 i=1 j#j’

B[(Yia — i) *¥iiYa] = E[<12<0n<nE<j>))) ( ‘

= O(a™)
s - 5| (5O (158 e
i=1 T i—1 g N
1 o 2
* <(_1);>]
= O(a™).
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oo - | (£ O (55

= O(a™)
s | (S5 ECE) ()| o

Therefore, we end up with

Elq(Y)gs(Y)] = O(a™?).

Elgs(Y)] = a*h *(w)E[(Yia — ua)*(Yia + Yzo)']

= a*h (W) E[(Yie — ua)'(Vig + 4Y7, Va0 + 6Y7 Y50 + 41050 + Y, ).

= %_E ‘7:4 4 N T )
(ézl ( ni(n; (1)))) (ézzm(m B 1)>

i= i=1 j#i’

=0(a™).

[
-1 @ o
= O(a™).
E(Yia — us)'Y2Y2] = E[(EZQ’H (f(ff;))) <; d Z m )
i=1 T i—1 g N
-1 @ o 2
: <(_1);>]
= O(a™P).
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_— nl(n, 1)
. 3
* (a(a_ 1) ;Ei'ei’,> ]
= 0(a™%
i AR L
E[(Y —u )4y4] - F li <0i - K <01>> -1 ig e _ O(CL_G)
4a 4 2a a L nz(”z _ 1) CL(CL _ 1) i;éi/ i-€4. :
Therefore, we end up with
Blg3(Y)] = O(a™?)
Thus, the fourth moment of g(Y), E[g*(Y)] is given by
12 < otod
4 _ LT -1
E[g (X)] = a2h4(u) ; [nz(nz — 1)”1" (ni/ — 1) + O(a )

Let kY, k3,, K3, and k], be the first four cumulants of g(Y). Then using the first four

moments, we obtain the cumulants as follows:

W, = Elg(Y) = %

where 7, is defined in equation (2.3.2).

K3 = Blo* (V)] — {E[g(Y)]}* =1+ O(a™).

K3 = Elg*(Y)] = 3Bl V)| Elg(Y)] + {Elg(Y)]}" = %/@33 +0(a™)

where k%, is defined in equation (2.3.2).
Wa = Blg'(Y)] - 4B (V)E(Y)] - 3{Elg*(Y)]}* + 12E[¢*(Y) | { E[g(Y)]}’
— 6{Elg()]}*
= O(a™").
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Using the cumulants, we now proceed to obtain the characteristic function of g(Y). Let x4

be the characteristic function of ¢g(Y). Then,

it)? +)3 )4
Xg(t) = exp{ﬁfa(it) + K (22> + mga—(ZG) + K, (; i }

= exp[%/ﬁl(it) + % + %Fagg% +O(a™1)]
t? 1 (it)?

= exp(—)exp[—=(k1,(it) + Kis 6 ) +O0(a™)].

[\
IS

By Taylor expansion, we obtain

t? 1 (it)3

Xo(t) = eap(—g)erpll + (s (1) + sy go) + O]

Applying the inverse Fourier transform, we obtain the pdf of g as,

B = [ et

o0

= [ - Seaplt + et + o, ) + Ot

Hj(x)

0(@) + 0,

— +%[na’1m<x> T Kl

where Hy(z) = 1, Hy(z) = z, Hy(z) = 2> —1, and H3(z) = 2*— 3z are Hermite polynomials.

We now obtain the cdf of g as;

Fa) = [ fwd

— a() - %%H@)%H

— () + %@mm) + 0@

where

1
Qu(x) = ~ [ty + Srtpla® ~ 1))
Since W,(Y) = g(Y) 4+ O,(a™ ") then by the delta method of Hall (1992b), F,(x) is also an

approximated cdf of W, in the order of O(a™!). Thus,

Fu, () = B(x) + %Ql(rﬂ)qﬁ(w) + 0.

Hence the proof.
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2.9.3 Proof of Corollary 2.3.2
Let w, be the solution to
P(M, < w,) = «,

for a given value of @ € (0,1). Then, as discussed in Hall (1992b) section 2.5, we may invert

the above expression to obtain w, as

— - i(%a)
o = ”;(W’

where z, is the a—level quantile of the standard normal distribution. Using the distribution

of M, presented in (2.3.1) and evaluating at w,, we have that

=+ (L8R 0 (+ B - Zﬂ s

Next, we apply Taylor expansion of the expressions ® (za + ZOO h Z"‘- ) ( > ql( -)>

and ¢ <za + >0 qi/zf)“z) > at z,. Applying the Taylor expansion, we have

v ( > ?H) = B(z0) + 2 (0)0(z0) + O™ 292

o] (mZ% ) Qu(z) + jaqxza)cz;(za)w(a-l) (2.9.3)

2 (ay

¢ (za +> qj(z“)) = &(za) + %%(Za)(ﬁl(za) +0(a™) (2.9.4)
Substituting (2.9.2), (2.9.3) and (2.9.4) into (2.9.1), we have

Far(wa) = ®(za) + % 61 (20) + Q1 (20)] a1 (0) + O(a™).

We know that Fi/(wa) = o and ®(z,) = a. Therefore, we have that

71(2a) = —Q1(2a)-

Hence the proof.
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2.9.4 Proof of Theorem 2.7.1

To prove theorem 2.7.1, we define the following averages;

171, —1 - —
ZZ 6]‘5] Yéa - CL(CZ — 1) ZE,‘.EZ‘/.,

i= 11753

a 4 a
; 1

zsfsf’ v 12—‘ v *
a— ) a = Q€ .
ala —1) = niny 4 aizlni(ni—l) b a—1+%

Let Y = (Y14, Yau, Yaa, Yia, Ysa) and u be its mean i.e.,

u = E(X) = <E<Yv1a)7E(Yv2a)aE(Yvi’wa%E(na)aE(Y})a))/

’

= (u17u27u37u47u5)
1 * 0202 1 o o}
= 07 07 - ) - —27 0
( ala—1) ; NN a Z n;(n;—1)
The test statistic M,(X) under the local alternative presented in (2.7.3) can be written as
Va(Yia +Yaa + Ysa) + a

MX) = W(Y) = e = Vagn,(¥) +¢'(Y)
where
2 Yia + Yo, . Ca
) =y a0 = TRy oo

We first apply Taylor series expansion to g, (Y) at u. We obtain

9. (¥) = g, ) + 222 oy wy Loy P9y ) 0, )
- h ()
= m(}qa+}/2a+1/5a) - a1 (}/3“_”3)<Y1a+}6a+§/5)a)

— B3 () (Yag— ) (Vi + Yaat Ya) 4 Op(a 7).
We have that,
Vagu,(Y) = Gi(Y) + Go(Y) + G3(Y) + Oy(a™)
where

Gi1(Y) = %(Ym + Yoo + Yaa)
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Gy(Y) = %}3(‘1)0@@ —u3)(Yia + Yaa + Y54) = Op(a™)

and
G3(X> - _\/ah_g(u> (}/Zla - u4)(§/1a + }/Qa + YVE)a)-
Next, we apply Taylor series expansion to ¢*(Y) at u and obtain

o) = o'+ 2y o, )

= + G4(X> + Op(afl)

where
GyY) = —cah_3(u)(Y4a — Uy).

Therefore, the test statistic W,(Y) under the local alternatives is written as

Cq

WolX) = Ga(X) + Ga(X) + GulX) + 1+ Opla™).
Now, we write W,(Y) as
W.(Y) = G(Y) + ﬁ +0,(a™)

where
G(Y) =Gi1(Y) + G3(Y) + Gu(Y).

To obtain the distribution function of W,(Y), we need the first four moments of G(Y) as

follows: The first moment of G(Y) is given by

E[G(Y)] = E[G1(Y)] + E[G3(Y)] + E[G4(Y)].

EG/(Y)] =

E[lea‘i“YZ(z‘I“YvBa] - 07
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since

E[Yla] = E[na] = E[Y\’)a] = 0.

ElG3(Y)] = —Vah*(0)E[(Yay — us)(Yig + Yoo + Ys4)]

= —Vah 7 (0) {E[(Yiq — u4)Y1a] + E[(Via — u4)Y2a] + E[(Yaa — s)Ys4]}

a 2 0%(72 —2) 4 0]
o ; i A
= h (lI) Zl |:(l3/2 n?(m N 1)2 + Cbl/2<a — ]_) (nz — 1)

1=

since

E[G4(Y)] = —coh (W) E(Yaq — uy) = 0.

Therefore, the first moment of G(Y) is

a

. 2 a}(vi -2 4 aivi07
BIGOO] = —h7(w) ) [a?’/Q P2n — D2l — 1) n2(n; — 1)

i=1

Next, we obtain the second moment of G(Y), which is given by

EG*(Y)] = E[(Gi(Y)+G5(Y) + Ga(Y))?]
= BGI(Y)]+ E[G5(Y)] + E[GI(Y)] + 2B[G1(Y)G5(Y)] + 2E[G1 (Y) G4(Y)]
+ 2E[G5(Y)Gu(Y)]-

a
ElGI(Y)] = %E[Yﬁz +2Y1,Yo0 + Yoo + 2Y14Y50 + 20, Y5, + Yo .

2
€;i€; 2 U;‘l
B3] =E ZZW;il] e

i=1 j#j’
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€€ -1 ‘
EY1.Ys,] = AL €;.€ =0.
YiYad ( PpPRCE ) (a(a_l)zezez_)] 0
i=1 j#j’ i#5!
J— ?
271 — = = _ -2
BNl =F <_1>Z] = 0la™)
110
‘ €765 1 ‘
E[Y1.Y54] iy’ z —0
s | (33 ) (A 3an )| -0
= €;. €y ;€;. =0.
2a 1 5a a(a—l) o 3-Cq. a—1 ot A
2
1 < 4 e o202
E[Yga] =F Oéigz — sz O-Z .
a—1 (a—1)2 n;
i=1 i=1
We have,
1 T2 ok da oo
G?(Y)] = = i Zil L O(g7t
Gi(Y)] h?(u) — [ani(ni—l) * (a—1)% n; } +0(a™)
[G3(Y)] = ah *(W)E[{(Yaa — ua)(Yia + You + Ysa) }’]
= ah (W) E[(Yia — ua)* (Y + 2Y1aYa0 + Yo, + 2Y14Vsq + 2Ya Yo + Yo )]

E[(Yia — u4)2Y12a]

E[(}/Zla - u4)2}/1ay2a]

a n;
€ij€ij

) (580)

i=1 j#j
2

1 a n;
* —
a n;
i=1 j#j5'

A[RNCRTC)
E (5; ni(n; — 1)

O(a™?).

€ij€i5

(n; —1)

)

*
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E((Yio —ua)*Yy] =

B(Yia — w)*Y1aYse] = E [

(a5

E[(na - u4)2Y’2aY,5a]

E[(Yia —ua)*Y5,] =

We obtain

E[GI(Y)] =

[y (o
a= nin;—1) ala
O(a™®)

i@E@)))z(alli
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ElG1(Y)G3(Y)] = ah*4(u)E[{(Y4a —ug)(Yia + Yoo + Yéa)Q}]

= ah74(u)E[<Yzla - u4)(}/12(1 + 2Y1a}/éa + Yéza + 2}/1(13/5a + 2Yv2aYr5a + Y:sza)]

oo ) ()

i=1 j#j

R0 - wbtal = P [( PR _<j;>>) (55

E((Yio—u1)Yp] = E

E[(Yia — ua)YiaYsa] = E[(lz(“n(nE<Z)))) (; Z; m )

* 1 - €
R QG E;.
i=1

= O(a™"*) by condition (2.7.2).

~

E[(Yig — u4)YaYss] = FE [(2 za; <U;erf_(?)>>) * (a(a_—l 0 i@‘-@/.)

1=

(5w

= O(a™**) by condition (2.7.2).

El(Yie —w)Ys) = E !(é il <U;Z(nf?<all))>) (a i 1 gaﬁi) ]

1=

= O(a®/?) by condition (2.7.2).
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We end up with

E[G\(Y)G3(Y)] = O(a™").

[Gl( )G4< )] = _\/acah_4<u)E[(}/4a - U4)(1/1a + }/2(1 + YVSa)]

= c,h () E[G3(Y))

a

- —cah‘4(u)2[ 2 oli=2) , 4 L }

— a2 ni(n; —1)*  a'2(a—1)ni(n; — 1)

ElG3(Y)G4(Y)] = Vacsh S(0)E[(Yia — ua)*(Yia + Yoo + Ya4)]
= Vac,h (W) {E[(Yia — ua)?Via] + E[(Yaa — 1a)?Vau] + E[(Yaa — 1a)*Vza] } -

e (G BN [
B(Yia — ui)Via] = E{(lZ( nxni(l)))) (122m>]

=1 j#j'
= O(a™?)
B((Yia = ua)Yad] = E{(l (U;i<n?(iz5))) <a<a__1 1>§>]
= O(a™®).

~ ~ 2

50 ()

=1

E[(Yia — us)?Yss] = E{(
= O(a™*) by condition (2.7.2).
We obtain
E[G3(Y)G4(Y)] = O(a™"?).

Thus, the second moment of E[G*(Y)] is given by

1 —[2 ot da ;o2
2 o 7 1Y
ElEO) = 2w 2 {anl( =1 (@12 m }
=1
[ 2 6% —-2) 4 ;Y07 _
o —4 i\ 17 LIt 1
2¢c,h™"(u) ; [a?’/? 2 — 172 + a2 = 1) n2(m; — 1)} +O0(a).

161



We now proceed to derive the third moment of G(Y).

E[G}(Y)] = E[G:i(Y)+ G3(Y) + Gu(Y))*
= E[GIY)]+ E[G5(Y)] + E[G}(Y)] + 3E[G1(XY)G3(Y)] + 3E[G1(Y)G3(Y)]

+ BE[GI(Y)G4(Y)] + 3E[G1(Y)GI(Y)] + 3E[G5(Y)G4(Y)] + 3E[G3(Y)Gi(Y)]

+ 6E[G1(Y)G3(Y)G4(Y)].

3/2
3 . a 3
ElG1(Y)] = mE[(Ym + Yaq + Ya)?]
a3/? ; ) , , ) 2
= BlY? + 3Y Y, + 3Y1,Ys, + Yo 4+ 3Y Va0 + 6Y1,Y5,Y5, + 35, Y5,

+ 3Y1,Ya, + 3Ya Y5, + V5.

%ew ’ S+ 2(n; — 2
iyl gy 2

i=1 j#j'

2
I~ €€ -1 -
EY2Yy] = E||- Y &Ger. || =0.
[ la 2] [(CL : - nl(n2_1)> <a(a1)26161.>] O
i=1 75 i

2
1 a  ng €ii€inr -1 .
ElY, Y2 =FE || = ij ij €€y = 0(a™).
[Y1aY54] [(“i o ni(m—l)) (a(a—l);:'6 € ) ] (a™)

3
-1 e
31 — = = -3
E[Yéa] =EB CL(CL _ 1) ;Ei'ez’ - O(a )
a n; 2 a
BV = B[S0 LY
a a Py ni(nz — ].) a — 1 i—1




2
—1 ‘  —
E[Y:Ys] = E (a(a_ 0 § ez.e,,) (a_ : ;1 oz,ez.>

it
= O(a™'/*) by condition (2.7.2).

u 2
i) - £ | (13 e (o)
i(ni i=1

i=1 j£j"
= O(a™°/) by condition (2.7.2).

2
—1 1 < _
ED/ZG}/SQCL] = E (a(a/ — 1) Zei'ﬁi/.> <CL 1 Za261>
=1

il
= O(a™®"*) by condition (2.7.2).

3
1 & _
E[Y}i] = 1 Z aiﬁi-]
i=1
= O(a"'*) by condition (2.7.2).
Therefore,
4 K1 682 +2(ns —2)) 12 ;i07 _
3 _ illg 1 i )i 1
Blei(X)] = h3(u) 121 Lﬁ/? n?(n; —1)? * a'2(a —1)n?(n; — 1) +0(a™).
EG3(Y)] = —a*h~*(w)E[{(Ya — ua)(Yia + You + Ya)}']

= —a*2h (W) E[(Yaa — ua) (Vi + 3YS, Yoo + 3Y1aYy, + Y, + Y1, Yo

+ 6)/1a}/2a}/iia + 3}/22(1}/5[1 —+ 3}/1a}/52a + 3}/2a}/52a + }/551)]

B{(Ye —w)'Vi] = éi(";;f_(?;)) (3 e )

i=1 i=1 j#j

El(Viu — w)'V2Ya] = B li@_?((;)) ( ZZ )

nz—l
i=1 j#j’

*
VR
Q
—~
=1
| | —
—
S~—
¥ s
Q‘\I
ol
~_
| I
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—1

-1 . |
<a(a — 1) Zei.ei/,) * (a 1 ;aiei)

it
= O(a"'"*) by condition (2.7.2).

. ~ 3
3 1 — (U?_E(J?» Lo €

E[(Yig — w)*Y1aYaoaYsal = E || = a R E—

(Y 14)°Y14Y24Y50] 0 (= 1) * a“ Zm(m—l)

s - 5| (1) (et e
= O(a™).
Bl(Yia — ui)'Y2Ys] = E (1Z<f’n ZnE (03))) (1 Zznm_l))
=1 i=1 g

(g

= O(a""/*) by condition (2.7.2).

Bl(Yia — )i Y2] = E (1 a <”?_?_<j§)>)

= O(a""?) by condition (2.7.2).
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E[(Yia — u4)3y22ay5a] =

E[<Y4a - u4)3Y2aY52a] =

B[(Yia —ua)’Y5] =

Therefore we obtain

EGi(Y)] =

=1

)

O(a 17/4 y condition (2.7.2).

s

O(a™*?) by condition (2.7.2).

3

i=1

(e

O(a™'%/*) by condition (2.7.2).

E[G3(Y)] = O(a™*?).

Cah™ (W) E[(Yia — w)’]

e

= —acah_5(u)E[(Y4a — U4)(Y1a + Yo, + Y5a)2}
= c,h () E[G1(Y)G5(Y)]
= O(a™).
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E[Gi(Y)GIY)] = Vacsh  (WE[(Yie — ua)*(Yia + Yoo + Y5)]
= ch” (0)E[G3(Y)Ga(Y)]
= O(a??).
E[G%(X)GZ’:(X)] - _a’h_s(u)E[(Y;la - u4)(Yia + Yéa + }/50,)3]

E[(Y;la - U4)}/1?;]

E[(Yia — u4)Y12aY2a]

E[(Yéla - u4)Y1aY22a]

E[(Y;la - u4)}/1a}/2a}/5a]

—ah ™ (W) E[(Yig — ug) (Y2 4+ 3Y2Yaa + 3Y1 Y + Y3 4 3Y2 Vs,

6Y10Y20Ysa + 3V Ysq + 3Y1,Y2 + 3V, Y2 + V3)].

‘ UA?_E ‘;\? T ’
[ ) (15 e ]

1 °
* (a(a—l);@@)]
= O(a™?)
o« (ot —E (o s e
- [(%2 | m(ni<1>)>) * (%;]#m)
1

N
Q
—~
IS
|
—
SN—
¥ s
ol
ol
~_
%

*

iglgl/) * (a i 1

O(a™**%) by condition (2.7.2).
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; )I

= Oa” 9/4) by condition (2.7.2).
4 ! .
1 < (Ui - F <0i)> 1 B e
El(Yie —u)Y1.Ys] = ) D~
(Vi = ug)Via¥s b [(a —~  ni(n; — 1) “\a — = n;(n; — 1)

2
1
* (a—]_izlaiq'> ]

= O(a"*?) by condition (2.7.2).

1 (o -2 () oY
(52 ni(n; — 1) )*<a(a_1);€i'6i,.>

E[(Yﬁla_u4)YQ2aY5a] = Fk

(i)

= O(a ") by condition (2.7.2).

E[(Yia — ug)Ye Y] = E [(2 i <Uiz(nZE(ﬁ>>) * (a(a_—l 0 g@-@.)

2
1 —
* (a,— 1 ;CYZ’EZ‘.> ]

= O(a"™?) by condition (2.7.2).

sy - o[ (15 EE D) (5]

= O(a"''/*) by condition (2.7.2).
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Therefore,

E[GI(Y)G3(Y)] = O(a™").

E[Gi(Y)G(Y)] = @®2h (W) E[(Yag — ua)*(Yia + Yoo + Ysa)”]
= a3/2h*7(u)E[(YZm - u4)2(Yﬁl + 3Y12aY2a + 3Y1ay22a + Y;; + 3Y12aY5a

+ 6Y1Ya0Y5a + 3Y 2 Y50 + 31, Y2 + 3V, Y2 +Y23)).

1 a <O/'\4 — E (O/':L)) ’ 1 a g 3
_ 2% 3 _ 1 7 7 eijeij’
E[(Y;la U4) Yia] E a ZZI nz(nz . 1) ( ;; ni(nz — 1))
= O(a™®)
~ ~ 2
« (ot —FE (ol a oo\
E[(Y;La o u4)2Y'12ay*2a] - E 1 ( ( )> " 1 €ij€ij
a = ni(n; — 1) @ = ni(n; — 1)
* -1 g €;.€;
a(a — 1) s €;.€;r.
= O(a™®)

E[(Yia — u4>2Y1aY22a]

I
&)
 ~
Q|+~
)
~—
Q)
3|
=
I —
=S
~— W~
~
~
~_
[\
*
VR
| —
B
3
S
s
A
| |s
=
~__—

1 — (UA?—E(U»
E[(Yie —w)*iaYauYsd) = B || =

J
-1 = 1 =
<a(a - 1) Zei'ei/') * (a —1 Zam.)

14 =1

= O(a ") by condition (2.7.2).

*
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SR )
~ 0™
v - 5[ (£ )

= O(a""?) by condition (2.7.2).

E|(Yia — w)?YYa] = E (li(#E@)))

a —1 le(nl — 1)

o)

= O(a"™?) by condition (2.7.2).
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2

B(Yie —u)*Y5] = E [(% Za: <Uil(7”f<ali)))

i=1

(%)

= O(a™"*) by condition (2.7.2)
Therefore we obtain,

E[G1(Y)G3(Y)] = O(a*?),

BlG2(Y)G4(Y)] = —acsh ™ (0)E[(Yig — us)?(Yia + Yoo + Ysa)?]

= —aceh” (W E[(Yia — ua)*(Yig + 2Y1aYaa + Yo, + 2Y1aY50 + 2Y2a Y50 + Y5,)].

ey o[£ 2O (e ]

i=1 jAj
— O
E[(Y;la o u4>3Y1aY2a] = b |:<é a (0;(nE<?)))> <% i i n(e;;ezi/ 1))
=1 Y i=1 Ay
-1 a o
* (a(a I ;ei.eil )]
= O(a™?).
E[(Yia —ua)’Ys] = E |7(2 i <Uznan_(012)>>) (a(a_—l 1) i@fz".) ]
i=1 B it
= O(a™)

E[(Yi, — U4)3}/1a}/5a] = |:(% z_: ( ny( nlf_<01;)> ) <a z_: Z nl E;szei 1))

= O(a""*/*) by condition (2.7.2).

*
/N
I~
|
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E[(Yzla_u4)3}/2a}/5a] = E[

e

El(Via — u)*V2] = E{(Ez@n(f(?)))) (1120‘)}

i=1

= O(a""?) by condition (2.7.2).
Therefore, we obtain

E[G5(Y)G4(Y)] = O(a™?).

ElGs(Y)GA(Y)] = —vVac2h () E[(Yia — 1)*(Yia + Yao + Ya0)]
— —Vah™(w) { E[(Vi — 1)*Via] + E[(Yia — 1s)*Yoa] + E[(Via — u4)*Vs]} .

e (G B [
E[(Yia — )Y, = E {(é; ( nz(nz<1)>>> (%;;—m(;””)]
= O(a™?)
E[(Yi, — U4)3Y2a] = B {(% a <Ui(nE(ali>>) (a(a__l 1) za:a'gi')]
i=1 E ii!
= O(a®).
Bl(Vaa — o] = E l(l a (Uixj(ﬁ))) <ai i Za)]

= O(a™%*) by condition (2.7.2)
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We obtain
E[Gs(Y)G(Y)] = O(a™?).
ElGi(Y)G3(Y)Gi(Y)] = acsh™ (w)E[(Yaa — t1)*(Yia + You + Y5a)]

~ ach T (w) EIGA(Y)
= O(a™).

Thus, the third moment of G(Y), E[G3(Y)] is given by

E[GS(X)] _ 4 za: { 1 01’6[%'2 + Q(ni — 2)] + 12 O‘i%ag + O(a_l).

h3(u) & [@*?  ni(n; — 1) a’?(a — 1) n?(n; — 1)

Next, we derive the fourth moment of G(Y).

E[GYY)] = E[G:i(Y)+ G3(Y) + Ga(Y))"]

= E[G\(Y) +4GI(Y)G4(Y) + 6GT(Y)GL(Y) + 4G (Y)GI(Y) + Gi(Y)]

+2G1(Y)G5(Y)Ga(Y) + G(Y)G3(Y)]

(
04

+ 4E[GI(Y)G3(Y) +3G1(Y)G5(Y)Ga(Y) + 3G1(Y)G3(Y)GL(Y) + G3(Y)G1(Y)]
+ 6E[GI(Y)G3(Y)
)

T AB[G (Y)GHY) + GAY)GA(Y)] + BlGa(Y)".

(12

E[GH(Y)] = WE[(YM + Yau + Y5,)"]

2

= g B+ AV OV VY Y AV 12V,

+ 12Y1,Y5 Yae + 4Y5, Yoo + 6Y1 Y5, + 12Y1,Y2, Y5, + 6Y5 VS, +4Yi,Y5,

+ 4AYa, Yo + Y.

4
a €€ 12 < 0‘40'4.1/
Y4 _ ij€ij’ i L O(a™3).
o zzlg ni(n; — 1 ] ot ; ni(n; — ny (ny — 1) roe)

B[Y},Yad] = !( Z; Esz€i1> (a(a__l 1)25-@’-)] =0(a™).

it
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3
I mn €€ —1 -

EYaY3 :E - < _i-_i’ = —4
ViaY) (QZ o (a(a_l)Ze e ) Ofa™)
=1 j#j’ r=

1 < !
EY} =FE|— €& | =0
[Ys4] ala—1) i#le € ] O(a™)

3 a
E[Yf&}%a = < ZZnZG;;Gil ) <ailzo¢£i.>

i=1 j£j
O(a™13/*) by condition (2.7.2).

2 a
E[Y2Y5,Ys.] = ( Z ; o 6;;6,1 1 > (a(a——l 5 ZQ-QA) (a i : z;ozﬁi)

i=1 v i

= O(a™"/*) by condition (2.7.2).

2
€;:€ii —1 ‘ o 1 ‘ _
E[YlaYQQaYSa] = ( E E n riil > (a(a—l) E Ei-ﬂ‘/.) (a—l Oéi@-)

i=1 j#j’
= O(a""*) by condition (2.7.2).

a 3 a
—1 1
3 . _ — —
EY;Ys] = E (m E €i-€i'.> (a— 1 2 Oéiﬁi->

2 2
1 o €oi€int 1 a
E[Y2Y2] = E — Yl i€
[ la Ba] (CL . an(nz_1)> (a—l . Qi€ )




2
1 a ng €ii€int —1 a 1 :
ElViYaY2] = E|[= p— D e 2 ai

4!
= (7/2) condition (2.7.2).

2 2
-1 ‘ 1 —
E[Y2Y2] = FE —§ €. § €.
[ 2a 5a] |:<(I(CL— 1) Z €; 61.) ((I 1 2 Oéz€z> ]

= O(a""?) by condition (2.7.2).

E[YMYQI] = [( Zznze;iezil ) (ailzaia') ]

i=1 j#j’
= O(a""*) by condition (2.7.2).

3
-1 & R
ElY,,Y3] = E € € G
VoY) [((1);> <1a>]

= O(a™'™*) by condition (2.7.2).

u 4
ElYi]=F - a;€;..| = O(a™*) by condition (2.7.2).
=1
Therefore, we end up with
12 &1 otod 4 a2 (740,
E 4 YY) = 2 - i 7
G = 7w ; L? = D =1 T a=DEmm =y | @)
E[GIY)G4(Y)] = —a*ch % (0)E[(Yaa — ta)(Yia + Yoo + Y5a)?]
= Vac,h 7 (0) E[GH(Y)G3(Y)]
|1 o8(7v? —1)o?
= —12 - — :
\/acah (11) ; ad/? n?(nl _ 1)2ni,(ni, _ 1)
a4 9 vioP ot ay
— 12v/ac,h™° :
vac () ; [a3/2(a — 1) n2(n; — V)ny(ny — 1)]
+ O(a™).
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E[GIY)GIY)] = acah ™ (WE[(Yia — ua)*(Yia + Yaa + Y50)’]
= ch (W) E[G5(Y)]

= O(a™).

EGiI(XY)G(Y)] = —Vacih () E[(Yia — u4)’(Yia + Yoa + Ysa)]
= c.h ' () E[G5(Y)G3(Y))]

= O(a™??).
EGI(Y)] = coh (W) E[(Yaa — ua)’]

- a5 )

i=1

EGi(Y)G3(Y)] = —a*h *(u)E[(Yaa — us)(Yia + Yaq + Yza)']
= —a®h (W) E[(Yia — ua) (Y, + 4V Y, + 6Y2YE + 4Y1,Y5),
T YR 4+ 4 Y, 4 12Y2 YaoYae + 12Y1,Y2 Vs

AV Yao + OY2EYZ + 12Y1,Ya Y2 + 6YEYZ + 4Y, Y5,

+ 4Ya Vi + Vi)

o« (ot — B (o o e\
E[(Yia — un)Yii] = E[GZ(MM_(U))) (lzzm)]

i=1 =1 j#£j’
= O(a™?)
3 IR (UA? —k (UA?» Lo ey )
El(Yao —ug)Yi Y] = B ||~ > ni(n; — 1) “\a 2 ni(n; — 1)
=1 i\ i=1 g

*
VR
Q
—~
=1
| | —
—_
S~—
¥ s
ol
ol
~_
| I
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E((Yio —ua)YigYo] =

EKYZM - u4)Y1aY2‘Z] =

E[(Yéla - u4)Y12(z}/éa}/})a]

*
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stz = | (150 - (S

#
1 o AR
<m2€i.6i/_) a—1 : Oéiﬁi.>:|
i1 =1

O(a™'7/*) by condition (2.7.2).

*

E[(Y;la_u4)y23;Y5a] = F

1 =
P O;E;.
=1

oo - o[£ 55 ). (55

*

= O(a""?) by condition (2.7.2).

Bl(Yia —w)YiYaY2] = E [(lz <"; an_(i )))
1

*
N
=}

—
=
[ | —
—_

S~—

o
@I
ol
~__—
*
P

s
|
—

m S

i

L
o
~__
L™

i#i!
= O(a"*?) by condition (2.7.2).

a %—E (;24 B a 2
(1 2 | e —< 1>))) * (a(a & Z)

a 2
1 _
Q€5
a—1+4 ‘
i=1

= O(a™*?) by condition (2.7.2).

E[(Yia —ua)YyYse] = E

*
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B(Yia — ua)YiaYs,] =

*

(

E[(Yi, — u4>}6a}/5?;z] =

Q

1 ) 1 o= €ij€ij
[(EZ n; nz—l )*<E;;nz(n,1))
1

3
Oéigi.
a—1 > ]
=1

- Ola

15/4) y condition (2.7.2)

~

1=

a J/\f—E o} _ @
E[(%§;< m@n(1?>)>k<ﬂall)§;afﬂ>

[

3
1 <
a—1 ;CYZ’EZ‘.> ]

= O(a""*) by condition (2.7.2).
a /\4 — F /\4 a 4
i E )Y -
BlVie —u)¥s] = E [(a ; ni(n; — 1) a—1 ;a,e,.
= O(a™*) by condition (2.7.2).

Therefore, we end up with

E[GH(Y)Ga(Y)]

E[GH(Y)G3(Y)Ga(Y)]

B[G\(Y)G3(Y)Gi(Y)]

ElGs(Y)GI(Y)] =

= a’“c,h™
= ch N (W) E[GL(Y)GA(Y))
= 0(a™%?).

= ach” (W) E((Yia —

=0(a™).

3/2

8(W)E[(Yaa — Us)*(Yia + Yau + Y5a)?]

U4>3(}/1a + Y2zz + }/5a>2]

= coh N ) E[G2(Y)GA(Y))]
= O(a™?).

Vacih™?(0)E[(Yag — ua)*(Yia + Yaa + Ys4)]

= Vah (W) [E(Yia — ua)*Yia + E(Yia — us)*Yau + E(Yaa — ug)*Ys,)).
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O(a™'*%) by condition (2.7.2).
Therefore, we have

E[G3(Y)G{(Y)] = O(a™).

E[GRY)GE(Y)] = a*h*(0)E[(Yaa — ua)?*(Yia + Yaa + Ysa)"]
= —a’h (W) B[(Yag — ua)® (Y, + 4Y,) Y, + 6YL Y5, + 4Y1,Y5,
Yo AYE Ve, 4+ 12Y 2 Yo, Vs, + 121, Y2 Y5,
AV Yaa + 6YAYE 4+ 12Y1,Ya, Y2 + 6Y2 Y2 + 4Y1,Y2,

+ AYa. Y5, + Ya,)l.

e (Bl W) (Fry )

El(Via — w)?YiYa = B li@_?((;)) ( ZZ )

nz—l
=1 j#j’

*
VN
Q
—~
=
| | —
—
S~—
¥ s
ol
ol
~__—
| I
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E[(Yia — u4)2Y1aY2%z]

E[(Yfla - u4>2Y1?:zY:’)a]

E[(Yaa — ua)’Y7, Yo, Y50]

*

Q€5
a—1+%
=1

-1 0 1
(a(a —1) ;q'ei/) * (a —1

O(a™'7/*) by condition (2.7.2).
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E[(na - u4)2yla}/é%1}%a]

E[(Yi, — u4)21615/5a]

E(Yia — ua)*Yi5 Y]

E[(na - u4)2yla}/2a}/52a]

B(Yia — ua)*Y5a Vo)

*

*

*

*

*

R N A TR
(m Z Ei~€i’.) a—1 Z: OéiEZ‘.>

it
O(a~'"*) by condition (2.7.2).

~ ~

a ni(n; — 1)

1=

(%)

O(a=?"*) by condition (2.7.2).

a‘—= nin;—1)

2
1 <~ _
(a_1206i6i.>

O(a™"/?) by condition (2.7.2).

~ ~ 2
BN <O?_E<JZ4)> I €ij€ij’
E _Z * EZ _ iyt

o« (t—E())\ a i
g (§Z<m<m(n>>) (12 =)

i=1

—1 Y
(a(a _ 1) ;Eifi’.) * (a 1 ;OJZ'EZ'.> ]

O(a™*?) by condition (2.7.2).

E lza: (£ (7)) 2* <__12—.—.,

ala—1)

a‘= nin;—1)

2
1
(a_lzl&iﬁi.)

O(a™?) by condition (2.7.2).

181

E lza:(af_E(Uf» :( - Zzz



E[(Yia — wa)?ViaY2] = E (% @ (U?E<U?)>)

*
/N
=)
| | =
—_
i s
iR
L
ol
v
w
[

= O(a""*) by condition (2.7.2).

Bl(Yia - uaY] = E (3i<U§E(U’4>>)

a ‘= ni(n; — 1)

(%)

= O(a "*) by condition (2.7.2).

o - o[£ 2 ()

2

*

i=1

= O(a™*) by condition (2.7.2).
Therefore, we end up with

E[GH(Y)G5(Y)] = O(a™).

EG(Y)GE(Y)Gi(Y)] = —a*Pceh™ (W) B[(Yia — ua)*(Yia + Yaa + Y5a)’]
= c,h (W) E[GL(Y)]
= O(a™3/?).

BGIY)GIY)] = acsh™ *(WE((Yie — ua)*(Yia + Yaa + Y5a)’]

= ath_u(u)E[(Y% - u4)4(Y12a +2Y1,Y2, + Y22a +2Y1,Y50 + 2Y20 Y5, + Y52a>]

o« (—E(eV\ /1y o e\
sv-w - | (15 UG (158 e

i=1 j#j’
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socamiont - | (1) (155 )

= O(a™®)
E[(Yaa — ua)'Y2] — E[GZ(:@E(E))) (a(a__l 1);”
= O(a™)

1 <
a— 1 . Q€
=1

Bl(Yaa = wa)YauYsa] = B [(é g <U;Lz(7f(jz)>>) ’ (a(a__l 1) ;Ei.al)

(i)

= O(a"'"*) by condition (2.7.2).

4

vt o[£ ) (25

=1

= O(a""?) by condition (2.7.2).
We obtain

EG3(Y)Gi(Y)] = O(a™).
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ElG3Y)G.(Y)] = a**c,h (W) E[(Yia — ua)*(Yia + Yoo + Y5,)*]
= &’ Pc,h 2 (W) E[(Yig — ua) (Y], + 3Y2 Yo + 3V1,Ye, + Yoy + 3Y2Y3,

a

+ 6Y14Ya0Ysa + 3Y2 Yaq + 31, Y2 + 3V, Y2 +Y2E)).

e (B e
El(Ya —u)Vi] = B (éZ(m%(U))) GZZm)

i1 i=1 j#j’
= O(a™)
B (19 e Y
E[(Yia —ua)'Yi,Yas] = E || = : : a o
[( 4a U4) la Qa] (a p nl(nl — 1) ) * < ;#jl ni(nl — 1)
-1 Y
(e
= O(a™)
E[(Y — U )4Y Y2] = F lza: <O/—}_E <(;})> 4* lza: N _eijeij’
4a 4) 4lat2q a = nz(nz — 1) a‘= o nz(nl - 1)
1 < i
* — €€y
(a(a -1) P ) ]
= O(a™®)

- /\4 a n;
E[(Yin —u) VieYaudsd = B || 23 3>) *(3 Z_>

*
VR
Q

~—~

=

[ | —
—_

N—

NE
ol

ol

: -
*
N
)

| | —
—_
1 s
o

£

ol
N—— <

i
O(a™'"*) by condition (2.7.2).

El(Yia —ua)'Yg] = E (EZ@WE(;))) (<_—_11>Z>
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E[(Yia — u4)4Y12aY5a]

E[(Yia — U4)4Y1aY:52a]

E[<Yzla - u4)4y22ay5a]

E[(Yia — u4)4Y2aYBQa]

B|(Yia — ua)'Vz,]

*
/N
s
|
—_
MR
L
o

! ! .
- 1 2 : 2 : ij €ij
(a n;(n; — 1) * e~ £ 1, (n; — 1)
i=1 i=1 j#£j’

*
VRS
s
| | =
—_
T s
MR
L
ol
S~
(Y]
(I

= O(a?) by condition (2.7.2).

(@) e Y
o (%Zl( m(ni(U))) *(aw—ll).za'a")

1=

(%)

= O(a"?"*) by condition (2.7.2).

« (d-r())) [ @
= F (i <nl(nz(1>>>) *(a(a—ll)zgi'a/)

i=1 i

2
1 _
a—1+4 i
=1

= O(a""/?) by condition (2.7.2)

*

S]

O(a™'9’*) by condition (2.7.2).
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Therefore we obtain

E[G3(Y)G4(Y)] = O(a™?).

E[Gl (X)Gg(l)] = _a2h_10(u)E[(Y4a - u4)3(yla + Yo, + Y5a)4]
= —a’h (W) E[(Yia — ug)’(Yiy + 4Y7) Yaq + 6Y1 Y5, + 4Y1,Y5,
+ Y AR Ve, 4 12V Yo Vs + 12Y1,Y2 Y5,

+ 45 Ysa + 6Y(, Y5, + 12V16YaaYs, + 6Y5, Y5, + 4Y1a Y5,

+ A5 Y, + Y5,

~ 3
3y -4 IS (U?_E<U?)> I~ Eij€iyt '
Bl(Yia —uwa)’Yy,] = E P e —1 Ezzn—)

~ ~ 3
313 RS (U?_E< )) I~ €€y ’
El(Yig —ua)’Y(, Yoo = E P 1 * 4 1 —)

*
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Q
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S
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—
S~—
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ol
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v
| I— |

~ ~ 3
" 2
E[(Yio —ua)’Y2Ys] = E 15:(0’4_E<”?)) (LSS Gty
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(i~ w)ViVi] = E (% a <U’4]_5<(f;)>)

E[(Yig —u1)®Ys) = E (li <Ui —E (UZ>>)

1 a (%—E(O’
El(Yia - ua)*YiYs] = E |23 —

)

E[(Via — w)*Y2YoYad = E (1i<”?_E<ﬁ>>)

*

a = n;(n;

_]_ @ o 1
<a(a — 1) ;6,;.62‘/.> k <a 1

= O(a™'"*) by condition (2.7.2).

E[(Yia = u)*Y1aY5,Ysa] = B (12 <U4_E_<T;>>)

*
N
Q
~—~
S
[ ] —
—
N~—
(7=
o
al
v
V)
IS
| |~
—_

= O(a™?"*) by condition (2.7.2).
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E[(Yia — u4)3y23:1Y5a]

E((Yia — ua) Y, Y5,]

E[(Y;la - u4>3ma}6a}%2¢¢]

E((Yia — u4)*Y3, Y5,

E[(Yi, — u4>3Y1aY:5?;]

*

*

*

*

*

o (1 )

(3
0 — 1L
O(a‘21/4) by condition (2.7.2).
a E ’
[ ) (o5
(a i 1 ;aﬁi) ]

O(a™*?) by condition (2.7.2).

~ ~
1 (O’i—E(O'»
E -

~1 = 1
<—a(a — 1) Z EZ'.Q/') * <a — 1 :
i#£d/ i=1

O(a™%?) by condition (2.7.2).

E (%z(m(m(l)))) *(—a( —

1=

Ehal

O(a""?) by condition (2.7.2).

G

a ni(n; — 1)
RN ’
(a 1 ZOQE@>
i=1

i=1
O(a™'%) by condition (2.7.2).
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E[(Kla_u4)3}/éa}/5?:z] = F

SN

| =

=1

a 3
* 1 Q€5
a— 13

= O(a™*) by condition (2.7.2).

i

a‘= ni(n;—1)

E[(Y4a . U4)3Y:5%1] - E li <Ui - F <0z>> (a i - iilaigi')

= O(a™®) by condition (2.7.2).
Therefore, we end up with

E[Gi(Y)G3(Y)] = O(a™?)

EIGYY)] = a®h™"(w)E[(Via — ta)* (Yia + Yau + Ysa)']
= W2 (W) B[(Yie — ua) (Y + 4V Y, + 6YRYE + 4Y,,Y5,
+ Yo H4AYR Vi, 4+ 12Y2 Yo, Y0 + 121, Y Vs
+ AV Yse + OV YZ, 4 12Y1,Yau Ve, + 6Y5, Ve, +4Y1, Y5,

+ 4Ya,Ys, + Y5l
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[(4 U4) 1a] Z 1 <CL' ))
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43,3 1 ¢ (U?_E<J )) Lo Gy
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E[(Yia — u4)4Y1aY2%z]

E[(Yfla - u4>4Y1?:zY:’)a]

E[(Yaa — ua) Y7 Yo, Y50]

*

*

Q€5
a—1+%
=1

(5 Sy

-1 0 1
(a(a —1) ;q'ei/) * (a —1

O(a™2"*) by condition (2.7.2).
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“ %—E &} * a n;
El(Yig —u)' V1, Y5 Ysa] = E (él < 2(1)>)) *<éz_:zn

*

R N A TR
(m Z Ei~€i’.) a—1 Z: OéiEZ‘.>

it
= O(a"*/*) by condition (2.7.2).

~ ~ 4
E[(na_u4)41/-23;5/5a] - B lza:(Uf—E(U;‘l>> *< —1 Xa:gi-gi

a‘= nn;—1)

(50

= O(a=%/*) by condition (2.7.2).
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a n;(n; — 1)

L (@)Y 1
BlVia - u)V2Y2] = E|[23 *(—Z ety

=1

2
1 <~ _
(a_1206i6i.>

= O(a?) by condition (2.7.2).

*

Bl(Yia — ug)ViaYauY2] = E (li@E((’?))) *G; et

a‘= nin;—1)

—1 Y
(a(a _ 1) ;Eifi’.) * (a 1 ;OJZ'EZ'.> ]

= O(a""/?) by condition (2.7.2).
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= O(a"'"?) by condition (2.7.2).
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E[(na—U4)4Y1aY5?;] = E

Q|

~ ~ 4
a (O’;l —F <Uf)> (1 a n; €ijcijt )
> S sppptin
i=1 i 1 a ' ni(n; — 1)

ni—1) i=1 j#j

a 3
1 QG E;.
a= 13

= O(a""*) by condition (2.7.2).

*

N ~ 4
E[(Yia —us)YaoYs)] = E 2i (Uf - (024)> * ( ! i@-@h)

a 3
1 Z _
<a ] - OéiGi.>

= O(a"%/*) by condition (2.7.2).

*

~ ~ 4
vy~ o] (15 OEEY (1 gy
Bl(Yig —u)'Ys,] = E az a—liz:;aiei'

i1 nl(nl — 1)
= O(a™®) by condition (2.7.2).
Therefore, we end up with
EG3(Y)] = 0(a™)

Thus, the fourth moment of G(Y), E[G*(Y)] is given by

12 |1 olo’ 4 a’oto?
EG4 Y = J— vt i v
[ (_)] h4(ll) ; a2 nz(nz - 1)ni/(ni/ — 1) + (a — 1)2 nz(n, — 1)712/
~| 1 ol (v — 1o 2 viodoha;
— 48/ach (U J :
Vel 2 [/ W = ey = 1) @%a = 1) 2w — Dy (g — 1)

+ O(a™).

Let ¥, k§, kS, and £, be the first four cumulants of G(Y). Then using the first four

2a°

moments, we obtain the cumulants as follows:

Ko = EG(Y)]

1 1
%[“?1 + "951]1]
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where k7, and k] are defined in equations (2.3.2) and (2.7.5) respectively.

kS, = E[G*(Y)]—{E[GXY)}

(K85 + 2c.h™" (w) (89; + &71)] + Oa™").
where k35 is defined in equation (2.7.5).

K, = BG°(Y)] - 3E[G*(Y)E[GY)] + {E[GY)]}

= 1[“33“‘“33]"‘0( D)

Vva
where k%, and k%3 are defined in equations (2.3.2) and (2.7.5) respectively.
W = PG - 4BCY)EGY)] - 3 {BIG (X))} + 2B {BGY))

- 6{ElGY)]Y
= O(a™).

Using the cumulants, we now proceed to obtain the characteristic function of G(Y). Let x¢

be the characteristic function of G(Y). Then,

WP | o o))
a5 T 24}

xg(t) = exp {Hﬁ(lt) + mg*; + /£3G

1 , it)?

- easp[% (o 13 00 4 {1 20+ 20 )ty ) O

1 ., (it)?
+ 7 {K5s + rS3} —— + O(a” Yl

tQ 1 g g1 ; 1 g2 -1 g g1 (it)2

= e:pp(—E)exp[% {11 + K11} (1) + ﬁ {“22 +2ch™ (u)(K1; + “11)} 9

1 (it)3 _
+ %{n§3+/@§§ 6 +0(a™)).

By Taylor series expansion, we obtain
t? 1 (it)?

xalt) = eap(—g)ep[l+ 25t + wdi)(if) + (55 + 2ch™ (w) (], + w1)) =5
+ (15 W 4 o)
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Applying the inverse fourier transform, we obtain the pdf of G as,

fole) = / " ittt

(e o]

0 X t2 1 't2
_ / e eap(—D)eapll + —=[(x8) + K2 (it) + (K + 20k (w) (2, + n22)) D

o 2 Va 2
(s ) ) 1 o
_ 1 g g1 g2 —1 g g1 Hy(x)
= ¢(z) + %[(“11 + K11)Hi () + (k33 + 2¢h™ (U)(k{;, + ’411))7

. Hs(x
+(%ﬁ+&)ﬁ>

J¢(x) +O(a™).

where Hy(z), Hy(z), Ho(z), and H3(x) are Hermite polynomials. We now obtain the cdf of
G as;

Fole) = / fou)du

Hi(x)
2

= D) — (k) + A8 Ho(x) + (52 + 20k (u) (Y, + 22)

\/a
Hy(x)

+ (K8 + r53) —5—o(@) + O(a™)

— B(x) + %@‘;“uw(x) +0@™).

where

a, 1 1 2 - 1 1
(@) = =[(sh + w11 + (85 + 2ch™ () (6] + A1) + (55 + £§3) (2% — 1))

194



Chapter 3

Summary and Contributions

3.1 Summary

In summary, we have described a test statistic suitable for bootstrap inference in ANOVA
with a large number of treatment levels and small replications. The first part of the dis-
sertation establishes the bootstrap inference in both one- and two-way ANOVA for a large
number of treatment levels with small replications for skewed and heteroscedastic variances.
Theoretical results show that the bootstrap inference based on asymptotically pivotal s-
tatistic has the same type I error accuracy as bootstrap inference based on non-pivotal
statistic and the test based on limiting distribution of the test statistic. In the second part
of the dissertation, we proposed an asymptotically pivotal statistic and a new test based on
asymptotic expansions for one-way ANOVA with a large number of factor levels and small
replications under heteroscedastic variances and skewed data. Theoretical results demon-
strate that the type I error-rate of our asymptotic expansion of pivotal statistic has a better
accuracy up to order O(a™'). The connection between the test based on our asymptotic
expansions and the bootstrap test has been demonstrated.

Numerical results show that the test based on our asymptotic expansions outperforms the
bootstrap test and the test based on limiting normal distribution for both heteroscedastic
and homoscedastic data in terms of type I error-rate and power. While the bootstrap test

based on asymptotically pivotal statistic has better type I error accuracy in the classical large
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sample sizes but small number of treatment levels, it is not the case in our current setting of
a large treatment levels with small replications. Moreover the bootstrap test requires more
time due to the its resampling nature. Another limitation of the bootstrap test is the use of
biased estimates in computing population parameters such as the population skewness. For
one-way ANOVA with a large number of factor levels and small replications, we recommend

to use our test based on asymptotic expansions.

3.2 Contributions of the dissertation

Established bootstrap inference in ANOVA for a large number of treatment levels with

small replications for skewed data under heteroscedastic variances.

e Demonstrated a criteria to determine a suitable test statistic for bootstrap test in high

dimensional ANOVA.

e Derived the theoretical type I error accuracy of Akritas and Papadatos (2004) and
Wang and Akritas (2006) in one- and two-way ANOVA, respectively.

e Proposed a test statistic which is asymptotically pivotal.

e Improved the order of approximation by deriving the Edgeworth expansion of the test

statistic up to order O(a™').
e Proposed a new rejection region through Cornish-Fisher expansion of quantiles.

e Derived the type I error-rate of the proposed new test.
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