
/ CROP RESIDUE GASIFICATION

by

KYLE DEAN DYBING

B. S. , Iowa State University, 1981

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OP SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

19814.

Approved by:

tUt/Ov^d*^/

Major Professor



TABLE OF CONTENTS

A11SD2 t.DDS72

c. Z
Chapter I INTRODUCTION 1-1

Chapter II LITERATURE REVIEW

INTRODUCTION II-l

SINGLE FLUIDIZED BED GASIFICATION II-3

DUAL FLUIDIZED BED GASIFICATION 11-12

DESIGN AND ECONOMIC ANALYSES 11-15

CONCLUSIONS 11-17

REFERENCES CITED 11-18

Chapter III CORN STOVER GASIFICATION

INTRODUCTION III-l

EXPERIMENTAL III-3

Facilities III-3

Procedure III-4

Chemical Analysis III-5

Feedstock III-6

CALCULATIONS ; III-6

RESULTS III-8

Produced Gas Composition III-9

Produced Gas Yield and Heating Value . . III-9

Product Mass Distribution 111-10

Energy Recovery and Carbon Conversion . . 111-10

DISCUSSION III-ll

CONCLUSIONS 111-13

REFERENCES CITED 111-14



Chapter IV SORGHUM STOVER GASIFICATION

INTRODUCTION IV-1

EXPERIMENTAL IV-1

Operating Conditions IV-1

Feedstock IV-2

RESULTS IV-2

Produced Gas Composition IV-3

Produced Gas Yield and Heating Value . . IV-4

Product Mass Distribution IV-4

Energy Recovery and Carbon Conversion . . IV-5

DISCUSSION IV-5

Statistical Model Building IV-7

CONCLUSIONS IV-8

REFERENCES CITED IV-9

Chapter V CONCEPTUAL DESIGN AND ECONOMIC ANALYSIS

INTRODUCTION V-l

DESIGN BASIS V-3

PROCESS DESCRIPTION V-5

ECONOMIC ANALYSIS V-6

Equipment Costs V-7

Total Capital Investment V-7

Operating Costs V-8

Profitability Analysis V-9

DISCUSSION V-10

CONCLUSIONS V-12

REFERENCES CITED V-13



Chapter VI CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS VI-1

RECOMMENDATIONS VI-3



LIST OF TABLES

Chapter III CORN STOVER GASIFICATION

Table

I Regression Models Ill- 15

II t-Values for Corn Stover and
Wheat Straw 111-17

Chapter IV SORGHUM STOVER GASIFICATION

Table

I Regression Models IV-10

II t-Values for Corn Stover and
Sorghum Stover IV-12

III t-Values for Sorghum Stover and
Wheat Straw IV-13

Chapter V CONCEPTUAL DESIGN AND ECONOMIC ANALYSIS

Table

I Equipment List V-1A

II Total Capital Investment V-15

III Operating Costs V-16



LIST OF FIGURES

Chapter III CORN STOVER GASIFICATION

Figure

1. Schematic diagram of the Pilot Plant . . . 111-18

2. Gas Composition vs. Temperature 111-19

3. Minor Gas Components vs. Temperature . . . 111-20

4. Gas Yield and Higher Heating
Value vs. Temperature 111-21

5. Product Mass Distribution vs.

Temperature 111-22

6. Energy Recovery and Carbon Conversion
vs. Temperature 111-23

Chapter IV SORGHUM STOVER GASIFICATION

Figure

1. Gas Composition vs. Temperature IV-14

2. Minor Gas Components vs. Temperature . . . IV-15

3. Gas Yield and Higher Heating
Value vs. Temperature IV-16

4. Product Mass Distribution vs.

Temperature IV-17

5. Energy Recovery and Carbon Conversion
vs. Temperature IV-18

Chapter V CONCEPTUAL DESIGN AND ECONOMIC ANALYSIS

Figure

1. Process Flow Sheet V-17

2. Overall Material Balance Flow Rates . . . V-18

3. Payout Period vs. Fuel Cost with Feed
Cost as a parameter V-19

4. Return on Investment vs. Fuel Cost
for a fifteen year plant life V-20

5. Return on Investment vs. Fuel Cost
for a ten year plant life V-21



ACKNOWLEDGMENTS

The author wishes to thank the following for their help in this work:

Dr. Walter P. Walawender, major professor and overall advisor;

Dr. L. T. Fan, project coordinator and committee member;

Dr. S. J. Clark, committee member;

Dr. R. A. Sundheim, statistical assistance;

Mike Grady, Mike LaFebere, Duane Morey, Cary Skidmore, Ken Jackman,

Bart Peterson, Brent Bell, Tim Bontrager, Deidre Oberle, Evan

Mai, Keith Wagner, and Ahmad Sharifian, technical, experimental,

and analytical assistance;

This work was supported in part by a grant from DSDA/SEA Grant

No. 59-2201-1-2-108-0 and in part by the Kansas Agricultural

Experiment Station, Kansas State University, Manhattan, Kansas.



Chapter I

INTRODUCTION



INTRODUCTION

A need for alternate energy sources is rapidly emerging because of

rising costs and instability in the supply of fossil fuels. Agricultural

wastes represent an ideal source of alternate energy because they are abun-

dant, renewable, and low in sulfur. Furthermore, utilization of agricultural

wastes for energy would help solve the disposal problems associated with

some of them. Possible energy conversion schemes for agricultural wastes

include direct combustion, anaerobic digestion, gasification, liquefaction,

and fermentation. Gasification of biomass in a fluidized bed reactor, which

has been receiving considerable attention recently, is the subject of this

thesis

.

The objectives of this work were: 1) to experimentally study the gasif-

ication characteristics (i.e. produced gas heating value, composition, and

yield) of corn stover and sorghum stover in a fluidized bed reactor; 2) to

compare the experimental results obtained with published results; and 3) to

conduct a conceptual design and economic feasibility analysis for a farm-

scale gasification plant.

A literature review is presented in chapter II. The chapter emphasizes

experimental studies conducted in fluidized bed gasifiers. Economic studies

on biomass conversion are also discussed.

Chapter III presents experimental results for the gasification of corn

stover in a fluidized bed. The effect of reactor temperature on the produced

gas heating value, composition, and volumetric yield is discussed. Energy

recovery, carbon conversion, and mass distribution of the major products is

presented also. A comparison is given between the experimental results

obtained and published results for the gasification of corn stover and wheat

straw.
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Chapter IV presents experimental gasification results for sorghum

stover. This chapter examines the effect of reactor temperature on the

produced gas heating value, composition, and yield, the mass distribution of

the major products, energy recovery, and carbon conversion. A statistical

comparison between the experimental results and published data is also

presented

.

Chapter V presents a conceptual design for a farm-scale fluidized bed

gasification system. The gasifier is designed to provide fuel gas for irri-

gation pumping and grain drying. An economic analysis of the gasification

system is also presented. The return on investment and payout period are

shown graphically with fuel cost and feed cost as parameters.

The major conclusions from this thesis and recommendations for future

work are given in chapter VI.



Chapter II

LITERATURE REVIEW



INTRODUCTION

Substantial efforts have been made over the last decade to develop

alternate energy. Biomass, which consists of agricultural and forest wastes,

and other organic wastes, such as municipal and industrial wastes, are poten-

tial sources of renewable alternate energy. Both biomass and organic wastes

are abundant and usually have a low sulfur content. They also have similar

thermochemical behavior, and consequently, processes for converting biomass

and organic wastes to fuels and chemicals are similar. However, biomass and

many organic wastes have the disadvantage of low energy density, and

currently, many types are not collected and transported to central locations.

There are numerous technical options for converting biomass into fuel

or chemicals. The two general categories for biomass conversion processes

are biochemical and thermochemical. Biochemical processes include fermen-

tation and anaerobic digestion; thermochemical processes include direct

combustion, liquefaction, pyrolysis, and gasification. This literature

review focuses on the gasification process.

In the gasification process, biomass is heated to high temperatures in

an oxygen deficient environment causing a series of physical and chemical

changes resulting in the evolution of volatile products and a carbonaceous

solid residue. The amount of volatiles produced and their composition is

dependent on the following factors: heating rate, temperature, and type of

feed material.

Several types of reactors are used for gasification; they include rotary

kilns, fixed beds, entrained beds, moving beds, and fluidired beds. In a

fluidired bed reactor, gases flow through a bed of particles at a suffi-

ciently high velocity to fluidize the particles but not high enough to

carry them out of the reactor. The fluidired bed has a uniform temperature
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profile, and it can handle fine feed materials that tend to plug the fixed

bed reactor. A comparison of fixed-bed, fluidized-bed, and entrained-bed

reactors for use in gasification is presented by Wen and Cheng (1978) .

Detailed reviews of fixed and moving bed systems are presented by Reed and

Jantzen (1979) and Brink (1981). Raman et al. (1981) have presented a review

of literature dealing with devolatilization and fluidized bed modeling. The

present literature review summarizes some of the experimental work carried

out in fluidized bed reactors. It also summarizes some of the economic

studies focusing on biomass conversion.

In studies of biomass gasification, most investigators are interested

in the composition, yield (mass and volumetric), and heating value of the

gas along with the energy recovery and carbon conversion. The results can

be expressed on an off-gas or produced gas basis. Off-gas includes the gas

produced from the biomass feed along with the fluidizing gas; produced gas

represents only the gas produced from the biomass feed. Gas composition is

generally expressed on a molar or volume basis. Gas yields are normally

reported in volumetric units per unit mass of dry ash- free feed. The base

temperature and pressure are important when the volumetric units are

employed. The base temperature and pressure for all volumetric units

presented in this thesis are 101.3 kPa (1 atm) and 288 K. The higher heating

value of the gas is calculated from the gas composition and the higher

heating value (standard heat of combustion) of the individual components.

Energy recovery and carbon conversion are two frequently reported

results. Energy recovery is the ratio of the higher heating value of the gas

produced per unit mass of dry ash-free feed to the higher heating value of

a unit mass of dry ash-free feed. Carbon conversion is defined as the atoms

of carbon in the gas produced from a unit mass of dry ash- free feed divided
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by the atoms of carbon in a unit mass of dry ash-free feed. Both energy

recovery and carbon conversion provide measures of the effectiveness of the

gasification process.

This literature review reports some of the results of pyrolysis, gasif-

ication, steam gasification, and partial oxidation of carbonaceous materials

in fluidized bed reactors. A major difference between these conversion tech-

niques is the environment within the reactor. Pyrolysis takes place in a

completely inert environment, and gasification is performed in the presence

of controlled amounts of oxidizing agents (oxygen, water, carbon dioxide, or

a mixture of these) . In steam gasification, large amounts of steam are

present inside the reactor. Furthermore, significant amounts of oxygen are

used in partial oxidation. The review is divided into several sections; one

section discusses the work performed in single fluidized beds, and the next

section deals with dual fluidized bed gasification. In the third section,

conceptual designs and economic analyses are presented.

SINGLE FLUIDIZED BED GASIFICATION

One of the earliest studies on thermochemical conversion in a fluidized

bed was carried out by Morgan et al. (1953). They studied distillation of

hardwood in a 0.051 m fluidized bed batch reactor. The bed material was

powdered hardwood, and the fluidizing gas was preheated nitrogen. Charcoal

yield was 327. by weight of the initial charge; liquid yield was 297., and gas

yield was 16% after operating for 30 minutes at 673 K. The remaining 23%

loss was attributed to tar and char accumulation within the sampling train

and inaccuracies in the gas yield measurement.

Bailie and Burton at West Virginia University were the first to initiate

studies on the fluidized bed gasification of biomass and waste in this
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country. Burton's master's thesis (Burton, 1972) reported data obtained from

a 0.38 m I.D. fluidized bed reactor for the gasification of ten different

materials including sawdust, municipal solid wastes, feedlot manure, and

sewage sludge. The bed materials were 100% silica sand or 1007. limestone,

and fluidizing gas was generated by the combustion of methane under starving

air conditions. Burton studied the effect of temperature, over a range of

966 to 1160 K, on the produced gas composition, yield, and heating value for

different feed materials. In the produced gas, H2 composition varied from

23 to 587.; CO composition ranged from 21 to 457.; CO2 composition ranged from

2 to 30%; and CH, composition varied from 3 to 12%. Gas yield increased

with temperature from 0.6 to 1.2 m /kg DAF, and gas heating value varied

from 10 to 17 MJ/m3. Energy recovery increased with temperature from 38 to

91%, and carbon conversion increased from 34 to 97%.

Pyrolysis studies at West Virginia University were extended by Maa and

Bailie (1978) . They studied the pyrolysis of wood cylinders in a fluidized

bed reactor over a temperature range of 713 to 1273 K. The main objective

of their study was to test the shrinking core reaction model that was pro-

posed by them for the pyrolysis of cellulosic materials (Maa and Bailie,

1973) . The reaction times obtained from the pyrolysis of wood in the fluid-

ized bed agreed well with the predicted times calculated from their model

using parameters obtained from an independent TGA study. Their results also

demonstrated that the pyrolysis rate increased with an increase in reactor

temperature.

Researchers at Texas Tech University studied the partial oxidation of

biomass for almost a decade. Halligan et al. (1975) gasified feedlot manure

in a 0.05 m I.D. fluidized bed reactor. The fluidizing gas was a mixture

of air and steam, and the bed consisted of the feed material only. There
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was some question as to the quality of fluidization in the bed because tem-

perature gradients were noted. Over the temperature range of 966 to 1069 K,

off-gas volumetric yield increased from 0.6 to 1.3 m3/kg, and gas heating

value varied from 8.7 to 9.8 MJ/m3 . Energy recovery and carbon conversion

increased with temperature from 23 to 497. and 20 to 507. respectively over

the same temperature range.

Studies on feedlot manure were continued by Beck et al. (1979) who

reported results obtained in a 0.15 m I.D. pilot plant reactor. The opera-

tion of the pilot plant was similar to the bench-scale reactor giving similar

results. Off -gas volumetric yield increased with temperature from 0.36

3/kg at 790 K to 1.15 m3/kg at 909 K, and gas heating value varied from 9

to 12 MJ/m3 . The increase in heating value was attributed to an increase

in the ethylene concentration of the off -gas. Energy recovery and carbon

conversion also increased with temperature from 20 to 60% and 27 to 60%

respectively. An axial temperature gradient as high as 500 K was noted in

the pilot reactor; therefore, the quality of fluidization was questionable.

Results from the gasification of oak sawdust in the same pilot plant

were reported by Beck and Wang (1980). The off-gas yield ranged from 1.1

3/kg at 873 K to 1.3 m3/kg at 1073 K, and the heating value was greater

than 11.2 MJ/m3 for all temperatures. Gasification results for mesquite,

corn stover, and cotton gin trash obtained from the same pilot plant facility

were compared with results from gasification of oak sawdust (Beck et al.,

1981) . The four feed stocks were rated on several different criteria

including operability, produced gas quality, calorific value of gas per

pound of feed, and percentage conversion of the raw feed heating value to

gas heating value. Oak sawdust had the highest rating followed by mesquite,

corn stover, and cotton gin trash respectively.

m
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Epstein et al. (1978) gasified several different crop wastes in a 0.5

m I.D. fluid-bed reactor. The bed consisted of sand, and hot fluidizing gas

was generated from the combustion of natural gas. Results for the gasifica-

tion of corn cobs over a temperature range of 773 to 1273 K were presented

in the most detail. Produced gas yield, reported as a mass fraction of the

feed, increased from 0.17 to 0.60, and tar yield decreased from 0.22 to 0.03.

The gas contained large amounts of CO and H2, and the heating value varied

from 5.4 to 10.9 MJ/m3 .

Howard et al . (1979) at the Environmental Resources Company (ERCO)

investigated the pyrolysis and gasification of biomass in a fluidized bed

reactor. Materials studied included paper, sawdust, corn cobs, municipal

solid waste, woodchips, manure, and several mixtures. They operated their

0.5 m I.D. pilot plant under a variety of experimental conditions including

steam gasification, partial oxidation, combustion, pyrolysis, and steam

partial oxidation. The main objective of their work was to study the

effects of reactor temperature, fluidization velocity, feed rate, static bed

height, and feed particle size on reactor performance. They concluded that

reactor temperature had the predominate effect on reactor performance, and

that the other variables did not have a significant effect on reactor perfor-

mance. In the temperature range between 873 and 1273 K, the gas yield

increased from 0.05 to 0.7 kg of product gas per kg of ash-free feed for all

materials under pyrolysis conditions. They also developed a model to predict

liquid (tar and oil) yield as a function of temperature for the pyrolysis

and gasification of various biomass materials.

Groves et al. (1979) at Texas A&M University studied the fluid-bed

partial oxidation of cotton gin trash in two reactors of different size.

Both were shallow bed reactors and were fluidized with air. Off-gas heating
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value for the smaller reactor, which had a 0.05 m I.D., varied from 4.5 to

8.2 MJ/m for temperatures between 922 and 1144 K. For the larger reactor,

which had a 0.3 m I.D., off-gas heating value varied from 3.4 to 4.3 MJ/m3

for the same temperature range. Energy recovery ranged from 30 to 657. in

the small reactor and 27 to 53% in the large reactor. At a reactor temper-

ature between 1033 and 1144 K, off-gas yield was 1.1 m3/kg and 1.7 m /kg for

the small and large reactors respectively. They also found that the gas

composition was similar in both reactors.

The gasification of rice husks was studied by Chen and Rei (1980) over

a temperature range of 873 to 973 K. They used an electrically heated,

0.05 m I.D. fluidized bed reactor. The bed consisted of fused alumina sand,

and super heated steam was the fluidizing gas. The gas yield increased from

0.38 to 0.55 m3/kg DAF, and the heating value varied from 16.8 to 18.5

MJ/m . Over the temperature range, H2 concentration in the produced gas

varied from 3.6 to 13. 1%; methane varied from 14.4 to 13.57.; CO concentra-

tion varied between 52.2 and 51.17.; and CO- concentration varied from 23.0

and 14.67.. The balance of the produced gas was made up of higher hydrocar-

bons including ethane, ethylene, and propylene.

In Belgium, Schoeters et al. (1981) investigated the gasification of

wood shavings in a 0.15 m I.D. bench-scale reactor. The bed consisted of

sand, and the fluidizing gas was a mixture of air and steam. Experimental

variables in their study were the following: air-factor, steam rate, and

reactor freeboard temperature. The air- factor was defined as the ratio of

actual air flow rate to the air flow rate required for complete combustion

of the feed. At a reactor temperature of 1073 K, off-gas higher heating

value was 4.5 MJ/m3 ; off-gas yield was 2.8 kg/kg feed; and energy recovery

was 607.. They found that an increase in air- factor caused the off-gas
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yield to increase, and the heating value to pass through a maximum. On the

other hand, an increase in the steam rate lowered off-gas yield, heating

value, and energy recovery. Furthermore, freeboard temperature affected

off-gas yield, heating value, and composition. The freeboard temperature

was varied from 25 K above to 150 K below the bed temperature. An increase

in freeboard temperature caused concentrations of CO? and H? to increase and

CO to decrease.

van den Aarsen et al. (1982) studied beechwood pyrolysis in a fluid-bed

reactor. They used nitrogen as the fluidizing gas and electric heaters as

the heat source for the reactor. Gas yield increased from 0.6 m /kg feed at

973 K to 0.8 nr/kg feed at 1273 K. The concentration of CO in the produced

gas varied from 51.2% at 973 K to 45.3% at 1273 K; H
2

ranged from 15.7 to

26.3%; C0
2
varied from 14.1 to 11.2%; and CH^ ranged from 14.1 to 12.4%.

The balance of the produced gas consisted of ethane, ethylene, and propylene,

Energy recovery was essentially constant at 717..

Fluidized bed gasification of wood has also been researched at the

University of Missouri (Lian et al., 1982). Three different reactor sizes

were used to gasify oak sawdust. The diameters of these reactors were 0.15

m, 0.56 m, and 1.02 m. The bed consisted of sand and gravel, and air was

used as the fluidizing agent. Partial combustion of the feed supplied the

heat required for gasification. The combined tar and char yield decreased

linearly with temperature from 6% by weight of dry wood at 923 K to 0.5% at

1073 K. They examined several operating variables including temperature,

wood feed rate, air flow rate, and residence time and concluded that the

ratio of total carbon-to-nitrogen in the dry gas gave the best correlation

of the important variables (carbon concentration, hydrogen concentration,

and higher heating value) for the combined results from all four reactors.
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At Kansas State University, researchers have studied gasification of a

variety of carbonaceous materials in fluidized bed reactors. Walawender and

Fan (1978) reported preliminary results on gasification of feedlot manure in

a 0.23 m I.D. fluidized bed reactor similar to the system used at West

Virginia University. The bed consisted of silica sand and was fluidized by

a mixture of steam and flue gas produced from burning propane under starving

air conditions. For a temperature range of 1000 to 1100 K, the produced

gas yield increased from 0.44 to 1.02 m^/kg DAF. Higher heating value

ranged from 9 to 16 MJ/m , and energy recovery ranged from 18 to 62Z.

Agglomeration of the bed was a serious problem in gasification of manure

discussed by Walawender and Fan (1978) . Agglomeration of the bed occured

after operating the reactor in a reducing atmosphere for about seven hours.

They suspected that alkali salts in the feed reacted with the sand to form

low melting silicates which caused the bed materials to fuse together. It

was observed that fluidization could be re-established after operating the

reactor under oxidizing conditions.

Raman et al . (1980a) continued the study of feedlot manure gasification

in the same pilot plant reactor over a temperature range of 900 to 977 K.

The produced gas yield increased from 0.4 m3/kg DAF at 900 K to 0.62 m3 /kg

DAF at 977 K. The heating value increased with temperature from 12.5 to

3
21.5 MJ/m , and energy recovery increased from 20 to 587,. These results

differed from the preliminary results because limestone was a component of

the sand bed giving improved fluidization by preventing bed agglomeration.

Walawender et al . (1981) tested the effect of limestone as a bed addi-

tive in the steam gasification of manure in a 0.05 m I.D. reactor. Limestone

was found to prevent agglomeration; however, limestone also affected produced

gas composition, yield, and heating value. With limestone added to the bed,
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produced gas concentration of H
2 , C02 , and CO and gas heating value were

independent of temperature at values of 45%, 28%, 15%, and 12.4 MJ/m3

respectively. When the limestone additive was not present, the H2 concen-

tration decreased from 45% at 975 K to a minimum of 38.5% at 1140 K and

increased to 44% at 1370 K; C02 decreased from 33 to 20%; and CO increased

from 17 to 25%. The heating value varied from about 10 to 12 MJ/m3 with a

maximum of 15.4 MJ/m3 at 1150 K. Possible explanations for the differences

in quality and quantity of gas produced when the additive was present were

catalytic influence of the limestone, differences in the quality of fluidi-

zation, or a combination of both factors.

Studies of gasification of feedlot manure at Kansas State University

were extended by examining the influence of fluidizing gas velocity and feed

size fraction. Raman et al. (1980b), using the 0.23 m I.D. reactor, found

that the superficial velocity did not have a significant influence on

produced gas yield, composition, or heating value. Feed size fraction,

however, did significantly affect gasification results. For the same temper-

ature, produced gas yield increased with a decrease in feed size. For

example, yield for the smallest size studied (-14 to +40 mesh) increased

from 0.51 m3/kg DAF at 900 K to 0.81 m3/kg DAF at 1010 K, and for the

largest size fraction (-2 to +8 mesh), yield increased from 0.1 to 0.6 m3/kg

DAF for the same temperature range. Heating value versus temperature plots

for each size fraction were parabolic in shape with the maximum heating

value shifting to higher temperatures with an increase in feed size.

Heating value for the smallest size fraction increased from 18.0 MJ/m3 at

900 K to a maximum of 18.3 MJ/m3 at 910 K then decreased to 14.3 MJ/m3 at

1010 K. For the largest sized fraction, heating value increased from 14.3

3
MJ/m at 900 K to a maximum of 19.8 MJ/m3 at 980 K then decreased to
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12.0 MJ/m at 1010 K. Produced gas composition was also significantly

affected by the feed size; however, the general trend of each component was

similar for each size fraction. They hypothesized that the cellulose

content of the manure was different for the different size fractions because

of segregation. Thus, the differences in gas quality and quantity were

caused by differences in feed material make-up rather than size fraction.

Other materials gasified in the pilot plant facility included cane

(sorghum), sewage sludge, and rubber tires (Walawender et al., 1980).

Heating value and volumetric gas yield were dependent on feed material and

reactor temperature. The gas yield for each feed material increased with

temperature except for sewage sludge which was constant at about 0.5 m3/kg

DAP. Cane had the highest gas yield of the feeds tested. Gas higher

heating value was largest for tires followed by sewage sludge, manure, and

cane respectively.

Crop residues were also gasified in the pilot plant facility. A compar-

ison between corn stover (Raman et al., 1980c) and wheat straw (Walawender

et al., 1983) showed that corn stover gave a higher produced gas yield than

wheat straw, but the gas produced from corn stover had a lower heating

value. Energy recovery and carbon conversion were very similar for both

feed materials. Gas yield for both feed stocks increased with temperature

from 0.38 m3/kg DAP at 830 K to 0.82 m3 /kg DAP at 1020 K with corn stover

and from 0.24 m3 /kg DAF at 825 K to 0.73 m3/kg DAP at 1030 K with wheat

straw. For both feeds, the gas higher heating value was parabolic with

respect to temperature and ranged from 13.0 MJ/m3 to a maximum of 16.5 MJ/m3

at 930 K with corn stover and from 12.5 MJ/m3 to a maximum of 16.3 MJ/m3

at 945 K with wheat straw. Both energy recovery and carbon conversion for

corn stover and wheat straw increased with temperature; energy recovery
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increased from about 30 to 70%, and carbon conversion increased from about

30 to 65% for both feedstocks.

Several studies have also been conducted with a 0.05 m I.D. bench scale

fluidized bed reactor at Kansas State University. Steam was used as the

sole fluidizing gas, and a mixture of sand and limestone was used for the

bed. Feed materials gasified in this reactor included corn grain dust

(Hoveland et al., 1982), alpha cellulose (Walawender et al., 1982), cotton-

wood, and lignin (Singh, 1983). Produced gas yield for corn grain dust

increased from 0.13 m3/kg DAF at 867 K to 0.73 m3 /kg DAF at 1033 K, and gas

heating value varied from 9.4 to 11.5 MJ/m3 . Experiments on alpha cellu-

lose and cottonwood demonstrated that steam, when present in large excess,

has a significant effect on produced gas yield and composition above 940 K.

It was also demonstrated that the water-gas shift reaction was the dominant

gas phase reaction above 940 K for the conditions of the experiments.

DUAL FLUIDIZED BED GASIFICATION

Tsukishima Kikai Company (1974) studied the pyrolysis of municipal

waste in a dual fluidized bed reactor system (as translated by Chen et al.,

1975) . Char produced from gasification in the first reactor was carried to

the second reactor with circulating sand. The char was burned in the second

reactor to supply heat to the sand which was recycled back to the first

reactor. Steam was used as the fluidizing agent in the first reactor which

was operated between 723 and 1123 K. Off-gas yield increased with tempera-

ture from 30 to 85% by weight of the DAF feed. For the temperature range

studied, the H
2

concentration in the off-gas increased from 4 to 35%; CO

decreased from 16 to 12%; CH^ ranged from 5 to 16%; C3Hg increased from 2

to 13%; and C02 varied from 20 to 40%. Traces of H
2
S and NH3 were also
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detected. Heating value of the gas varied from 19 MJ/m3 at 723 K to 18.5

MJ/m3 at 1123 K with a maximum of 27 MJ/m3 at 993 K. Char and tar yields,

based on weight percent of the DAF feed, decreased with temperature from 60

to 6% and 11 to 2% respectively. The advantages of the dual bed system

were reported as: 1) the gas heating value is larger than that found in

single bed reactors because the combustion of char occurs in a separate

reactor, and hence, the combustion gas does not dilute the pyrolysis gas,

2) separation of inorganic materials in the feed is possible, and 3) heat of

pyrolysis in the reactor is distributed evenly; thus, pyrolysis occurs at a

relatively uniform temperature.

The Tsukishima Kikai Company continued experimentation on fluidized

bed gasification of carbonaceous materials (Hasagewa et al., 1979) using

three different gasifier systems. In the first system, a single 0.05 m I.D.

fluidized bed reactor, they gasified municipal solid waste. The bed was

composed of alumina sand, and super-heated steam was used as the fluidizing

gas. Gas yield increased from 0.09 m3/kg at 773 K to 0.8 m3/kg at 1073 K.

The second system consisted of a 0.1 m I.D. gasifier and a fluidized bed

regenerator with sand circulation between the two beds. Gas yield from the

dual bed system was higher than that from the first system using the same

feed. Gas yield increased from 0.3 to 0.7 m3 /kg, and heating value ranged

from 14.6 to 18.0 MJ/m3 over a temperature range of 823 to 973 K. The third

system was a scaled-up dual bed system with a 2 m I.D. gasifier. Organic

sludge from paper and pulp plants, waste plastics, municipal solid waste,

and scrap tires were gasified in this pilot plant. For municipal solid

waste, gas yield was 1.3 m3 /kg, and heating value was 16.5 MJ/m3 at 973 K.

At the same temperature, the volumetric concentrations of Ho, CO, C02 , and

CH4 were 18.5%, 34.6%, 17.0%, and 5.6% respectively, and energy recovery
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was 67%. Carbon conversion was 63%. The gas yield from the scaled-up dual

bed system was larger than that for the other two reactors, but the gas

heating value was similar for all reactors.

Kuester (1979) at Arizona State University used a dual fluidized bed

reactor system to gasify various cellulosic wastes at feed rates up to 11

kg/hr. His reactor was similar to the one used by Tsukishima (1974), using

inert solids for the bed and recycled product gas as the fluidizing gas.

Feed materials tested included kelp residue, paper, and guayule bagasse.

The maximum gas yield obtained was 95% by weight, and product gas heating

value was 18.6 MJ/m . For a temperature range of 873 to 1073 K, the H2

concentration in the product gas increased from 17 to 33%; CO varied from

40 to 55%; CH4 varied from 13 to 17%; C2H^ ranged from 5 to 10%; and C02

varied from 3 to 8%. The produced gas was subsequently converted to liquid

fuels through Fischer Tropsch synthesis.

Feldmann et al. (1981) used a dual bed system to gasify wood. They

used a multi-solid fluidized bed (MSFB) gasifier which consisted of a 0.15 m

I.D. dense-phase fluidized bed reactor coupled with a 1.0 m I.D. fluidized

bed combustor. Operation involved feeding wood and a mixture of steam and

recycled product gas to the dense-phase reactor composed of coarse solids

and fine sand. Fine sand and char were elutriated and transferred into the

fluid-bed combustor where the char was burned with air. The hot sand was

then returned to the dense-phase reactor to provide heat for gasification.

The entrained sand passed through the dense-phase fluidized bed in bubble-

free fluidization. This provided increased heat and mass transfer in the

bed.

They studied the influence of gasifier temperature, wood feed rate,

steam rate, entrained-phase recycle rate, wood particle size, wood moisture
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content, dense-phase particle size, and dense-phase height on reactor

performance. The gasifier temperature was found to be the most important

variable. Conversion was limited by the maximum temperature reached by the

wood and the time for the wood to dry. Thus, wood moisture content also

influenced reactor performance. For a temperature range of 963 to 1171 K,

carbon conversion increased from 30 to 707. for wood with a moisture content

of 207., while carbon conversion reached a maximum of 80% for wood with 6%

moisture. For wood with 20% moisture, energy recovery increased from 257. at

963 K to 707. at 1171 K, and heating value ranged from 15.8 to 17.7 MJ/m3

with a maximum of 18.1 MJ/m at 1116 K. The concentrations of the principal

components of the gas showed little change with temperature. At 1088 K,

concentration of CH4 was 15.67.; H£ was 13.37.; CO was 49.27.; C2H4 was 5.9%;

and CO2 was 15.7%.

DESIGN AND ECONOMIC ANALYSES

One of the earliest groups to perform a conceptual design and economic

analysis on a fluidized bed gasifier was Alpert et al. (1972) at the

Stanford Research Institute. The proposed plant, based on studies by West

Virginia University, was designed to handle 1.23 Gg (1,358 tons) per day of

as received municipal refuse, which corresponded to 0.91 Gg (1,000 tons) per

day of dried refuse. The capital investment was estimated at 11.7 million

dollars for a dual fluidized bed system and 12.5 million dollars for a

single fluidized bed process in 1972 dollars. The break even gas price was

estimated to be $0.43/GJ ($0.45/MMBTU) and $0.55/GJ ($0.58/MMBTU) for the

dual reactor and single reactor systems respectively. The analysis was

based on a 20 year plant life.

Researchers at Kansas State University also studied the economics of
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commercial scale gasification of manure. Engler et al. (1975) examined

manure gasification in a dual fluidized bed process. For a plant processing

3.63 Gg (4,000 tons) per day of manure with a moisture content of 507L, the

gas sales price for a 147. return on investment was estimated to be $0.019/m

($0.53/MSCF) or $1.32/GJ ($1 .39/MMBTU) based on a 15 year plant life and

mid 1974 dollars. The break even gas price was $0.010/m3 ($0.29/MSCF) or

$0.72/GJ ($0.76/MMBTU). For a facility processing 1.81 Gg (2,000 tons) per

o
day of dry manure, the 14% return and break even gas prices were $0.016/m

($0.44/MSCF) or $1.04/GJ ($1 .10/MMBTU) and $0.0074/m3 ($0.21/MSCF) or

$0.52/GJ ($0.55/MMBTU) respectively. They concluded that only large-scale

manure pyrolysis processes could approach the point of commercial viability.

Clark et al. (1978) examined the use of crop residues to supply energy

for irrigation pumping and crop drying. They considered three different

processes to convert crop residue to useable energy; anaerobic digestion,

direct combustion, and fluidized bed gasification. The hypothetical problem

involved fueling three 100 kW irrigation pumps. In 1980 dollars, the

capital cost estimate was between $150,000 and $300,000 for a mass produced

anaerobic digestion system, $250,000 and $500,000 for a mass produced fuel-

bed combustion system, and $129,000 and $240,000 for a mass produced dual

fluidized bed gasification facility. Based on several advantages, including

economics, they concluded that the gasification process was the best process

of the three processes studied.

Loewer et al. (1980) studied the economics of corn grain, cobs, and

stover gasification as an energy substitute for LP gas in corn grain drying.

They determined the break even investment for drying one bushel of U.S. No.

2 corn grain from 257. moisture to 15.57. moisture. They found that as much

as 38.9c and 23.5c per bushel of grain dried could be invested in
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gasification equipment when using cobs and stover respectively.

A conceptual design and economic analysis on a fluidized bed wood gasi-

fier was performed by Lian et al. (1982). The proposed plant would gasify

91 Mg (100 tons) per day of sawdust with a 36% moisture content. The plant

was depreciated over a 15 year period with a 487. tax rate. For a 15% rate

of return before tax, cost of the gas was estimated to be $3.48/GJ

($3.66/MMBTU) in 1980 dollars.

CONCLUSIONS

A review of the literature has shown that a number of groups have

studied the gasification and pyrolysis of a variety of carbonaceous mater-

ials in fluidized bed reactors. All groups have found that reactor temper-

ature is the major factor affecting the gasification process. Their results

show that as the reactor temperature increases, the gas yield increases,

and gas heating value decreases. Furthermore, economic studies on the

gasification of biomass show that gasification is marginally competitive

with conventional energy sources.
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Chapter III

CORN STOVER GASIFICATION



INTRODUCTION

In the United States, approximately 1 .4 x 10 11 kg (154 million tons) of

corn stover was produced in 1981 (Agricultural Statistics, 1982) . If all

this corn stover were collected and gasified in a fluidized bed reactor,

1 1 15
about 1.14 x 10^ MJ (1.1 x 10 BTU) of producer gas could have been

obtained. This would have accounted for 1.4% of the total energy require-

ment for the United States in 1979. However, most of the corn stover is

currently left in the field and returned to the soil. In most cases, about

30 to 40% of the corn stover should be left on the field to protect the

soil from wind and water erosion. Furthermore, any crop residue left in the

field provides a source of organic nitrogen. It could be economical, in the

near future, to utilize the energy potential from the excess crop residues

on a farm scale in certain regions of the country.

Gasification of crop residues such as corn stover, corn cobs, and wheat

straw has been investigated by several groups. Howard et al. (1979) gasi-

fied corn cobs and a mixture of corn cobs and manure in a 0.51 a I.D. fluid-

ized bed over a temperature range of 773 to 1273 K. They found that the gas

yield (weight percent) increased linearly with temperature up to 1173 K

where in levelled out at 60%. Liquid yield decreased rapidly with tempera-

ture to 15% at 973 K and then decreased slowly to 5% at 1273 K. Gasifica-

tion of corn stover in a 0.23 m I.D. fluidized bed reactor was studied by

Raman et al . (1980b). They found that the concentration of H
2

in the dry

produced gas increased from 35 to 41%, and concentration of CO varied from

20 to 29% over a temperature range of 840 to 1020 K. Concentration of CH,

was virtually constant at 10%. The higher heating value of the dry produced

gas increased from 13 MJ/m3 at 840 K to 16.5 MJ/m3 at 930 K and then

decreased to 14 MJ/m3 at 1020 K. Produced gas yield increased from 0.38 to
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0.82 m3/kg DAF over the temperature range studied. They did not report the

mass yield of the produced gas, energy recovery, or carbon conversion.

Also, no statistical analysis was performed on their data. Walawender et

al. (1983) using the same reactor gasified j*hjeatLJL£xaw over a temperature

range of 825 to 1030 K. Produced gas yield increased with temperature from

3
0.24 to 0.73 m /kg DAF, and gas heating value was parabolic with temperature

and ranged from 12.5 to 13.5 MJ/m3 with a maximum of 16.3 MJ/m3 at 945 K.

The concentration of FU in the produced gas increased from 11.6 to 31.5%;

while the concentration of CHa ranged from 10.6 to 12.0% with a maximum of

137. at 950 K. Beck et al . (1981) gasified corn stover in a pilot scale,

countercurrent, fluidized bed reactor. They used a temperature range of

873 to 1073 K and found that off-gas yield varied from 0.8 to 1.5 m3
/kg DAF.

The use of producer gas from crop residue gasification as an internal

combustion engine fuel has been studied by Parke et al . (1981). They

conducted preliminary tests with an internal combustion engine powered by

producer gas obtained from corn stover gasified in a fluidized bed. In

this study, maximum engine power for the producer gas was about 507. less

than maximum engine power for natural gas. In addition, the use of gas

produced from corn cobs in an up-draft gasifier to dry grain has been

researched by DeKalb (Bozdech 1980) . They presently have gasifiers oper-

ating at several plants.

The objectives of this study were to examine the feasibility of gasi-

fing corn stover in a fluidized bed reactor and to determine the effect of

reactor temperature on produced gas composition, higher heating value,

yield, product mass distribution, energy recovery, and carbon conversion.
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EXPERIMENTAL

Facilities

The pilot scale gasifier consisted of the following major components:

1) reactor, 2) feed bin and screw feeder, 3) cyclone separator, 4) venturi

scrubber, 5) afterburner, 6) control panel, and 7) gas sampling system.

Figure 1 shows a schematic diagram of the pilot plant.

The reactor body was made of 330 R stainless steel and had a 0.23 m

I.D. (9 in) which expanded to 0.41 m I.D. (16 in) in the freeboard section.

Hot fluidizing gas was generated in the plenum burner by burning propane

under starving air conditions. Water was also injected into the plenum

burner to help control the burner temperature and to provide additional

fluidizing gas. Gas was distributed through a 3 mm thick perforated distri-

butor plate.

The plate was covered with a layer of limestone gravel. The gravel

was used to prevent the sand bed from percolating through the distributor

plate holes into the plenum. Ninety percent by weight of the bed was silica

sand, approximately 45 kg, with a particle size of -14 to +50 mesh. The

balance of the bed was limestone (-20 to +50 mesh) which prevented agglomer-

ation of the sand (Walawender et al., 1981). Supplemental heating was

provided by the radiant burner, a jacketed heater. Kao-Wool TM blanket

insulation was used to reduce reactor heat loss.

Feed material was introduced just above the sand bed from a pressurized

feed bin by a variable speed screw feeder via a 0.075 m (3 in) diameter

feed pipe. Feeding was aided by a nitrogen purge which prevented gas back

flow and condensation in the feed pipe. A slide valve prevented gas back

flow when the screw feeder was not in use.
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Off-gas and entrained char were sent through a hot cyclone for char

separation and then to a venturi scrubber. There was no appreciable elutri-

ation of sand from the bed. The scrubber quenched the gas and removed most

of the tar. Finally, misty gas from the scrubber was incinerated in the

afterburner.

Pressure was monitored in the freeboard section and the feed bin.

Temperature was monitored in the following locations in the plant facility:

1) plenum burner, 2) radiant burner, 3) bottom of the sand bed, 4) top of

the sand bed, 5) freeboard section, and 6) afterburner. These temperatures

were recorded by a strip chart recorder located on the control panel. Also

mounted on the control panel were rotameters for monitoring the flow of

fuel and air into the burners and controls for the burners and screw feeder.

Gas sample ports were located in both the plenum burner and the off-

gas line. Samples of either fluidizing gas or off-gas were sent through

the sample train and then to the gas chromatograph for monitoring dry gas

composition. The gas sampling train consisted of a tar filter, a condenser

with condensate trap, a cold trap, and a wet test meter. A more detailed

description of the pilot plant facility has been given by Raman et al

.

(1980a) .

Procedure

Experiments were initiated by heating the reactor to the desired oper-

ating temperature with the plenum and radiant burners. Several samples of

the plenum gas were taken by an on-line gas chromatograph. Water content of

the fluidizing gas was calculated from the amount of condensate for a

measured volume of plenum gas. When consistent readings of plenum gas

composition were obtained from the gas chromatograph, the nitrogen purge
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was started. Gas samples were then taken to provide the composition of the

off -gas with purge included. The amount of nitrogen purge was determined

by nitrogen balance between off-gas with purge and fluidizing gas. This

calculation usually yielded a value in close agreement with the rotameter

reading for nitrogen purge gas. Therefore, leaks in the system were minimal.

After feeding of corn stover into the reactor was started, starting

time and flow rates of propane, air, injection water, and nitrogen were

recorded along with the temperature and pressure of each stream. Tempera-

ture change in the reactor was recorded by the strip chart recorder. In

approximately 20 minutes, temperature in the reactor stabilized. Contin-

uous feeding was maintained for approximately one hour, and off-gas samples

were taken during this period. Dry off-gas composition was determined by

the gas chromatograph. The weight of tar collected on the filter and weight

of condensate collected for a measured volume of off-gas were recorded for

calculating the total liquid content of the off-gas. Corn stover feed rate

was determined from the difference between the initial and final weights of

the material in the feed hopper. Samples of the feed and char were reserved

for analysis. Char production rate was determined indirectly by an ash

balance between the feed and char. A more detailed description of the

procedure has been given by Raman et al. (1980a) .

Chemical Analysis

An Applied Automation (optichron 2100) on-line gas chromatograph was

used to determine compositions of the dry fluidizing gas and dry off-gas.

Gas components determined were H
2 , CO, C02 , CH4 , N

2 , 2 , CH C_H
6 , C H ,

C H , and C . A Perkin-Elmer model 240b elemental analyzer was used to

conduct ultimate analyses of the feed and char samples. Moisture and ash
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content of the feed and char samples were determined by standard ASTM

procedures

.

Feedstock

Corn stover used in the experiments was ground in a hammer mill to

pass a 0.64 cm (,hj. in) screen. The average elemental make up of the dry

corn stover, based on 24 samples, was 39.0% Carbon, 5.1% Hydrogen, 44.2%

Oxygen, 1.5% Nitrogen, and 10.3% ash. As-received moisture content of

corn stover was 9.0%. The standard deviation of the elemental composition

was 3.66% for Carbon, 0.58% for Hydrogen, 3.98% for Oxygen, 0.35% for

Nitrogen, 2.18% for ash, and 0.62% for moisture content. Higher heating

value of the feed, calculated by the Dulong formula using average elemental

analysis, was 14.3 MJ/kg DAF (6,130 BTU/lb DAF)

.

CALCULATIONS

Material balance calculations were performed on both the plenum and

reactor sections. First, plenum gas analysis coupled with a nitrogen

balance based on the metered combustion air allowed dry plenum gas rate to

be calculated. The amount of condensate per unit volume of dry plenum gas

was used to calculate the water input rate. Then a material balance on the

reactor section was performed. Dry off-gas rate was calculated from the

analysis of dry off -gas coupled with a nitrogen balance. Condensate rate

was calculated from the mass of tar collected on the filter plus the mass

of condensate per unit volume of dry off-gas. Feed rate was determined

from the weight of feed introduced over the course of the experiment, and

char rate was determined by ash balance between the feed and char. It was

assumed that the amount of nitrogen produced in the reactor was negligible,

and that the plenum gas components did not react in the gasifier. The above
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items allowed the evaluation of the material balance closure.

The produced gas yield, composition, and heating value were determined

from the above information. Produced gas was defined as the difference

between off-gas and the combined flow of plenum gas and nitrogen purge.

Produced gas volumetric yield was calculated from the difference in the

volumetric rates of these streams divided by the dry ash-free (DAF) feed

rate. The basis for the volumetric calculations was 289 K and 101.3 kPa.

Produced gas composition was calculated from the difference between the

components in these streams followed by normalization. Higher heating

value of the produced gas was calculated from produced gas composition and

the standard heats of combustion of the individual gas components.

Energy recovery, defined as the ratio of the higher heating value of

the gas produced per unit mass of DAF feed to the standard heat of combus-

tion of a unit mass of DAF feed, was calculated from the product of the

volumetric gas yield and gas heating value divided by the heat of combustion

of dry ash-free feed. Carbon conversion represents the percentage of carbon

in the produced gas with respect to carbon in the feed. Carbon conversion

was calculated by multiplying the stoichiometric coefficient for carbon

with the amount of gas produced for each component, summing, and dividing by

the amount of carbon in the feed. The mass distribution of the feed into

gas, liquid, and char was calculated from the material balance information

on a dry ash-free basis. Mass of dry produced gas and mass of dry char

were extracted from the material balance, and liquid yield was determined by

difference. Raman et al. (1980a) has given additional details on the mater-

ial balance calculations.
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RESULTS

The main objective of this study was to determine the dependence of

produced gas composition, higher heating value, and volumetric gas yield;

product mass distribution; energy recovery; and carbon conversion of the

gas produced from corn stover on the gasifier operating temperature. Oper-

ating temperature was defined as the average of the freeboard temperature

and the temperature at the top of the sand bed. All experimental data

reported had material balance closures between 85 and 100%.

Statistical Analysis System (SAS) computer programs released by SAS

Institute Incorporated were used to find the "best fit" model for the depen-

dent variables, gas composition, product mass distribution, higher heating

value, produced gas volumetric yield, energy recovery, and carbon conversion

as functions of temperature. First, second, and third order polynomial

models were fitted to the data points. Criteria used to select the best

fitting model were model F-test, parameter significance level, and multiple

correlation coefficient, R2 . Multiple correlation coefficient expresses

the fraction of data explained by the model. All of the models selected

were significant at the 0.004 probability level, and all model parameters

selected were significant at the 0.013 probability level.

The results of the statistical analysis is summarized in Table I.

Dependent variables are noted by y, correlation coefficient by R2 , F-test

value by F-value, and coefficients for the selected regression models by

b0» b
i»

and b?* The analysis was based on 86 data points.
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Produced Gas Composition

The major components of the gas were CO, C0
2 , H

2
, and CH,. All of the

major components were best described by second order polynomials except CO,

which was virtually independent of temperature. Figure 2 shows the concen-

trations of the major components versus temperature. The 95% confidence

limits are also shown for several points. Carbon monoxide varied inversely

with temperature. Concentration of CO decreased from 32.4% at 820 K to

28.4% at 1020 K. Concentration of C0
2
varied from 42.9% at 820 K to 21.3%

at 1020 K and passed through a minimum of 20.7% at 990 K. On the other

hand, the H
2

concentration increased from 11.9% at 820 K to 36.4% at 1020 K.

Concentration of CH varied from 10.9% at 820 K to 10.4% at 1020 K with a
4

maximum of 11.5% at 904 K. The minor gas components which made up the

balance of produced gas were C^, CjH,, and CH,. Concentrations of all

three minor components were best described by second order polynomials.

Pigure 3 shows the concentrations of minor components versus temperature

along with the 95% confidence limits. Concentration of ethylene (C,H.)

varied from 0.7% at 820 K to 3.8% at 1020 K with a maximum of 3.8% at

1016 K. The ethane (C
2
H
6) concentration varied from 0.9 to 0.6% in the

temperature range studied and had a maximum of 1.0% at 892 K. Finally, the

propylene (C^) concentration varied from 1.0% at 820 K to 0.4% at 1020 K

with a maximum of 1.5% at 899 K.

Produced Gas Yield and Heating Value

Figure 4 shows the plot of produced gas volumetric yield and higher

heating value versus temperature along with the 95% confidence limits. The

produced gas volumetric yield varied linearly with temperature. Gas yield

increased from 0.17 m3 /kg DAF at 820 K to 0.74 m3/kg DAF at 1020 K. Higher

heating value for produced gas was best described by a second order
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polynomial. Heating value ranged from 11.7 MJ/m3 at 820 K to a maximum of

15.6 MJ/m3 at 950 K then back to 14.6 MJ/m3 at 1020 K.

Product Mass Distribution

The mass distribution into gas, liquid, and char as a function of

temperature is shown in Figure 5 along with the 952 confidence limits.

Gas mass percentage was directly proportional and liquid mass percentage

was inversely proportional to temperature. Char mass percentage was inde-

pendent of temperature. Gas mass percentage increased from 252 at 820 K to

647. at 1020 K; whereas, liquid mass percentage decreased from 68 to 297,

over the temperature range studied. Char mass percentage was constant at 7%,

Energy Recovery and Carbon Conversion

Energy recovery was defined as the ratio of the higher heating value of

produced gas to the standard heat of combustion of the DAF feed. Energy

recovery varied linearly with temperature. Figure 6 shows energy recovery

as a function of temperature along with the 957. confidence limits. Energy

recovery increased from 14.9% at 820 K to 81.0% at 1020 K. Energy recovery

continued to increase after 955 K despite the drop in higher heating value

of produced gas because the produced gas volumetric yield continued to rise.

Carbon conversion was defined as the percentage of carbon in produced gas

relative to the carbon in feed. The plot of carbon conversion versus

temperature is also shown in Figure 6 along with the 95% confidence limits.

Carbon conversion was directly proportional to temperature and increased

from 20% at 820 K to 63% at 1020 K. The increase in carbon conversion was

also a direct result of the continuous increase in produced gas yield.
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DISCUSSION

The results for corn stover from this work are compared to those for

corn stover obtained by Raman et al. (1980b) and for wheat straw obtained

by Walawender et al. (1983). The produced gas higher heating value obtained

in this work is in agreement with that obtained by Raman et al. (1980b); but

the produced gas volumetric yield in the former is slightly lower than that

obtained in the latter. However, the data of Raman et al. (1980b) have a

large standard deviation (±0.26 m3/kg DAF) while the present data, which

have a relatively small standard deviation of 0.06 nr/kg DAF, lie within

the bounds of the data of Raman et al. (1980b). The CH, concentration in

the produced gas is similar, but the H2, CO, and CO, concentrations are

different. Concentration of H£ is significantly lower at the low tempera-

tures and slightly lower at high temperatures compared to the results of

Raman et al. (1980b); whereas, concentration of CO2 is higher at low temper-

atures and lower at high temperatures. Concentration of CO was always

higher. Differences in the results could be due to differences in feed

material composition and/or the method of gas analysis. Energy recovery

and product mass distribution for the data of Raman et al. (1980b) were

reported by Walawender et al. (1983). Energy recovery is similar; however,

the produced gas mass percent is larger, and liquid mass percent is smaller

than the present work, especially at higher temperatures. The char mass

percent is similar.

Regression models for the data of this work are compared to those for

wheat straw found by Walawender et al. (1983). Regression models for the

produced gas volumetric yield, higher heating value, and mass distribution

(gas, liquid, and char) are not significantly different at the 57. probabil-

ity level. Also, regression models for the concentrations of C0
2 and CH4 in
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the produced gas are not significantly different. Regression lines for

energy recovery are significantly different at a 1% probability level,

possibly because the heats of combustion for corn stover and wheat straw

are different (14.3 and 14.8 MJ/kg DAF respectively). Energy recovery for

corn stover is lower at low temperatures and higher at temperatures above

910 K. Since the variance and degrees of freedom are different for corn

stover and wheat straw, Satterthwaite's adjusted t-test (Snedecor and

Cochran, 1980) has been used to test slopes and intercepts of the regression

models. The calculated t-value for each test is presented in Table II.

The major gas components H2 and CO could not be tested because models for

corn stover are of different order than models for wheat straw. In the

case of H2, the quadratic fit was better than the linear fit for corn stover

data. When the linear fit is used for corn stover, the regression lines

are not significantly different. The CO concentration exhibited the most

experimental variability in the data compared to the other major gas compo-

nents for both corn stover and wheat straw. Wide scatter in the data points

could be the reason that the regression models for CO are different for

corn stover and wheat straw.
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CONCLUSIONS

Corn stover was gasified in a 0.23 m I.D. fluidized bed reactor. Gas

yield, energy recovery, and carbon conversion increased with increasing

reactor temperature; whereas, liquid yield decreased with increasing reactor

temperature. Concentration of hydrogen in the produced gas increased while

concentrations of carbon monoxide and carbon dioxide decreased with

increasing temperature. Concentration of methane in the produced gas passed

through a maximum of 11.57. at 904 K. Higher heating value of the produced

gas passed through a maximum of 15.6 HJ/xtr at 950 K. Produced gas volu-

metric yield increased from 0.17 to 0.74 m^/kg DAF as temperature increased

from 820 to 1020 K.

Produced gas volumetric yield, higher heating value, energy recovery,

and CH^ concentration from corn stover gasification results are similar to

the results obtained by Raman et al. (1980b) for gasification of corn

stover. However, the results for H2, CO, and CO2 concentrations in the

produced gas are different from theirs. Finally, the results for corn

stover gasification agree with the results obtained for wheat straw gasifi-

cation by Walawender et al. (1983). Results for produced gas volumetric

yield, mass distribution (gas, liquid, and char), higher heating value, CO2

concentration, and CH, concentration are not significantly different at the

57. level of probability. Regression lines for energy recovery are signifi-

cantly different at the 17. probability level.
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Table II

t-Values for Corn Stover and Wheat Straw

C
. 05,50 " 2 ' 01

'.01,50 " 2 ' 68

Parameter Value
Dependent
Variable

Gas Yield (m
3
/kg)

Higher Heating

Value (MJ/m
3

)

Corn Wheat Calculated
Stover Straw t-Value

-2.170 -1.708 -1.37

0.002851 0.002362 1.39

79.4 -216.5 0.97

0.4083 0.4943 -1.05

-2.138 x 10"
-4

-2.627 x lO"
4

1.13

Produced Gas

Composition (mole %)

Hi

CO.

CH,

Energy

Recovery (%)

Product Mass
Distribution (%)

Gas

Liquid

-86.91 -68.96

0.1237 0.09748

796.7 633.2

-1.512 -1.268

7.634 x 10"
-4

6.66 x 10~

-57.39 -92.81

0.1524 0.2188

-8.432 x 10"
-5

-1.141 x 10

256.0 -151.8.

0.3304 0.2177

-4

Char

-140.6

0.2015

233.9

-0.2015

6.71

-135.4

0.2024

224.8

-0.1992

7.43

-1.46

2.02

0.69

-0.58

0.44

0.70

-0.62

0.52

-2.81

2.91

-0.15

-0.03

0.27

0.06

-0.28

The linear equation for Corn Stover was used instead of the second
order equation.
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Chapter IV

SORGHUM STOVER GASIFICATION



INTRODUCTION

Considerable effort has been made over the past ten years to develop

biomass energy resources. Sorghum stover is one such source of biomass.

Approximately 2.2 x 10 ° kg (24.3 million tons) of sorghum stover is

produced annually in the United States with about 27% of this amount being

grown in Kansas (Agricultural Statistics, 1982) . Sorghum stover alone

would not play a major role in the energy picture; however, all of the crop

residues added together constitute a substantial amount of energy.

This study reports on the gasification of sorghum stover in a fluidized

bed. One objective of this study was to determine the effect of reactor

temperature on produced gas composition, higher heating value, yield,

product mass distribution, energy recovery and carbon conversion. A second

objective was to compare the gasification results with results from gasifi-

cation of wheat straw (Walawender et al., 1983) and corn stover (Chapter 3)

in the same reactor.

EXPERIMENTAL

Operating Conditions

The experimental facilities, procedure, and calculations are the same

as discussed in Chapter III. The reactor was operated over a temperature

range of 740 to 1020 K. The gas superficial velocity varied from 0.29 to

0.51 m/s.
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Feedstock

Sorghum stover used in the experiments was ground in a hammer mill to

pass a 0.64 cm (1/4 in) screen. The average elemental make up of the dry

sorghum stover, based on 23 samples, was 35.4% Carbon, 4.7% Hydrogen, 46.7%

Oxygen, 2.2% Nitrogen, and 11.0% ash. As-received moisture content of

sorghum stover was 8.2%. The standard deviation for the elemental compo-

nents was 2.88% for Carbon, 0.37% for Hydrogen, 3.55% for Oxygen, 0.64% for

Nitrogen, 1.05% for ash, and 0.84% for moisture content. The higher heating

value of the feed, calculated from the Dulong formula using the average

elemental analysis, was 11.7 MJ/kg DAF (5,028 BTU/lb DAF)

.

RESULTS

The main objective of this study was to determine the effect of temper-

ature on the gas composition, product mass distribution, higher heating

value of the gas, produced gas volumetric yield, energy recovery, and carbon

conversion for the gasification of sorghum stover. The temperature used in

the figures to follow was the average of freeboard temperature and the

temperature at the top of the sand bed. The data presented here had mater-

ial balance closures between 87 and 110%.

Statistical Analysis System (SAS) computer programs released by SAS

Institute Incorporated were used to find the "best fit" model for the depen-

dent variables; namely gas composition, product mass distribution, higher

heating value, produced gas volumetric yield, energy recovery, and carbon

conversion as functions of temperature. First, second, and third order

polynomial models were fitted to the data points. The criteria used to

select the best fitting model were model F-test, parameter significance

9
level, and multiple correlation coefficient, R . The multiple correlation
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3

coefficient expresses the fraction of data explained by the model. All of

the models chosen were significant at the 0.0001 probability level, and all

model parameters chosen were significant at the 0.01 probability level.

The results of the statistical analysis are summarized in Table I.

2
The dependent variables are noted by y, the correlation coefficient by R

,

F-test value by F-value, and coefficients for the selected regression models

by bg, bi , b£, and b^. The number of samples used to fit the regression

models was 107.

Produced Gas Composition

The variations in the concentrations of H2, CO, (XK, and CH, with

temperature are shown in Figure 1. The 95% confidence limits are also shown

at several temperatures. These four components comprised approximately 95%

of the produced gas. Three of the components (H2, C0o> and CH/) were best

described by second order polynomials; the CO concentration was best

described by a third order polynomial. Concentration of CO did not vary

appreciably and ranged from 29.6% at 750 K to 25.5% at 1020 K with a minimum

of 25.0% at 855 K. The CO2 concentration decreased with temperature from

53.0% at 750 K to 20.0% at 1020 K. Concentration of H2 , on the other hand,

increased with temperature from 7.3% at 750 K to 37.4% at 1020 K. Concen-

tration of CH^ did not vary appreciably and ranged from 8.6 to 10.2% with a

maximum of 10.5% at 946 K. Minor components of the produced gas were

ethylene (C^H^) , ethane (C-H,) , and propylene (CX). Variations in the

concentrations of minor produced gas components with temperature are shown

in Figure 2 along with the 95% confidence limits. Ethylene and propylene

concentrations were both best described by second order polynomials;

ethylene concentration increased from 0.4% at 750 K to 3.9% at 1020 K.

Propylene concentration varied from 0.54 to 0.44% in the same temperature
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range with a maximum of 1.4% at 881 K. Concentration of ethane decreased

linearly with temperature from 1.47. at 750 K to 0.7% at 1020 K.

Produced Gas Yield and Heating Value

Figure 3 shows the variations of the produced gas volumetric yield and

higher heating value with temperature along with the 95% confidence limits.

Volumetric yield and higher heating value were best described by second and

third order polynomials respectively for the temperature range of 750 to

1020 K. Gas volumetric yield increased from 0.19 to 0.91 m /kg DAF. Higher

heating value varied from 9.97 to 13.96 MJ/m passing through a maximum of

14.90 MJ/m3 at 960 K. The arithmetic average heating value was 13.36 MJ/m
3

for the entire temperature range.

Product Mass Distribution

The variations in the mass distribution of dry ash-free feed into gas,

liquid, and char with temperature are presented in Figure 4 along with the

95% confidence limits. Over the temperature range of 750 to 1020 K, gas

mass yield increased linearly from 21.9 to 71.9%. Char mass yield decreased

slowly with temperature from 750 to 850 K and was virtually constant for

temperatures above 850 K. This trend was not noticed in the results for

corn stover gasification; however, reactor temperature for corn stover

gasification was never less than 820 K. The devolatilization of sorghum

stover was not complete in the low temperature range of the experiments.

Hence, the amount of char diminished with increasing temperature. The char

yield decreased linearly from 13.4% at 750 K to 9.7% at 850 K and then

remained constant at 9.7%. Antal et al. (1978) obtained similar results.

They stated that pyrolysis occured up to 873 K. Above 873 K, only cracking

and reforming of the volatile matter occured. Because liquid yield was
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determined by difference, it also had a break point at 850 K. Liquid yield

decreased linearly with temperature from 64.67. at 750 K to 49.8% at 850 K

and then decreased linearly to 18.3% at 1020 K.

Energy Recovery and Carbon Conversion

Figure 5 shows the variations in both energy recovery and carbon

conversion as functions of temperature along with the 957. confidence limits.

Energy recovery was best described by a linear function of temperature.

Energy recovery increased from 4.77. at 750 K to 103% at 1020 K. The low

values for energy recovery at low temperatures are caused by high CO..

concentration, low ^ concentration, and low gas yield. Gas yield and

heating value for sorghum stover were similar to those for corn stover;

however, the heat of combustion of sorghum stover was significantly smaller

than that of corn stover. The small heat of combustion for sorghum stover

caused the energy recovery to be large. This was evident at high tempera-

tures. Carbon conversion also increased linearly with temperature from

17.4 to 73.8% over the same temperature range.

DISCUSSION

The results for the sorghum stover data agree quite well with the

results for other crop residues gasified in the same reactor. A t-test is

used to compare the regression model parameters for sorghum stover with

their counter parts for wheat straw (Walawender et al., 1983) and corn

stover (Chapter III). Satterthwaite 's adjusted t-test (Snedecor and Cochran,

1980) has been used to calculate the t-values because the variance and

degrees of freedom for each data set are different. Regression model param-

eters and calculated t-values are presented in Table II and Table III.

Regression model parameters for H
2

and CH4 concentrations in the
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produced gas, carbon conversion, and energy recovery for sorghum stover are

not significantly different from respective regression model parameters for

corn stover at the 5% probability level. Thus, the lines for these vari-

ables lie within the variance of the respective lines for the two feed-

stocks. Also, regression models for the product mass distribution (gas,

liquid, and char) are not significantly different at the 5% probability

level. The regression models used in the t-tests for sorghum stover char

and liquid mass yields are based only on temperatures greater than 850 K.

Regression models for CO2 concentration are significantly different at the

17. probability level. The decrease in CO2 concentration with increasing

temperature between approximately 820 and 930 K for sorghum stover is less

than that for corn stover; however, the general trends are similar for each

feed. Regression models for the produced gas volumetric yield, higher

heating value, and CO concentration for sorghum stover are of different

order than the models for corn stover. The quadratic fit for volumetric

gas yield is better than the linear fit for the sorghum stover data. When

the linear fit is used for the sorghum stover data, the slopes for the

regression models for the two feed materials are not significantly differ-

ent at the 57. probability level.

The present data are compared with the wheat straw data of Walawender

et al. (1983). Regression models for the product mass distribution (gas,

liquid, and char) and CH^ concentration of the present work are not signif-

icantly different at the 57. probability level from the wheat straw data of

Walawender et al. (1983). Again, the regression models used in the t-test

for sorghum stover char and liquid mass yields are based only on the data

obtained in the temperature range of 850 to 1020 K. In the case of CO,

concentration, the intercept and first order parameter with respect to
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temperature are not significantly different, but the second order parameter

is significantly different at the 57. probability level. Also, the CO

concentration and energy recovery regression models are significantly

different at the 17. probability level. In the case of energy recovery, the

energy recovery for sorghum stover is always larger and increases with

temperature at a significantly greater rate than that for wheat straw, the

regression models for sorghum stover gas volumetric yield, higher heating

value, and Uj concentration are of different order from those for wheat

straw; thus, they could not be compared statistically. When linear fits

for volumetric yield and H
2

concentration are used for the sorghum stover

data, regression models for both feed materials are not significantly

different at the 57. probability level.

Statistical Model Building

The gasification of biomass is a complex process dependent upon many

factors including temperature. Therefore, the stepwise model building

procedure was used to attempt to identify additional factors affecting the

produced gas composition, volumetric yield, higher heating value, and mass

distribution. A simple linear model was used with reactor temperature,

superficial gas velocity, moisture content of the feed, and carbon content

of the feed as the independent variables. Later, temperature squared and

temperature cubed were added as independent variables. Of the independent

variables used, temperature had the most profound effect on the dependent

variables. No distinct trends among the other independent variables was

observed; however, there was a large amount of variability in the data with

respect to the other independent variables tested because the experiments

were not specifically designed for model building.
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CONCLUSIONS

Sorghum stover was gasified in a 0.23 m I .D . fluidized bed reactor

over a temperature range of 750 to 1020 K. Produced gas volumetric yield

increased from 0.19 to 0.91 m3/kg DAF, and gas higher heating value varied

from 9.97 to 14.9 MJ/m^. The H2 concentration in the produced gas increased,

and CO2 concentration decreased with increasing temperature. Methane

concentration stayed close to the average value of 10.0%. Energy recovery,

carbon conversion, and gas mass percentage all increased linearly with

increasing temperature; liquid and char mass percentages both decreased

linearly with increasing temperature from 750 to 850 K. Above 850 K, liquid

yield decreased with increasing temperature, but char yield remained

constant.

Results for sorghum stover are statistically similar to those for corn

stover and wheat straw. In comparison with corn stover, regression models

for the concentrations of H2 and CR, in the produced gas, carbon conversion,

energy recovery, and product mass distribution (gas, liquid, and char) are

not significantly different at the 57. probability level. In comparison

with the wheat straw data obtained by Walawender et al . (1983), regression

models for the concentrations of CO2 and CR, in the produced gas and product

mass distribution (gas, liquid, and char) are not significantly different.
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Table II

t-Values for Corn Stover and Sorghum Stover

t
.05, 80

= 1 .99 t
.01,80 " 2 ' 64

Parameter Value
Dependent Corn Sorghum Calculated
Variable Stover Stover t-Value

Gas Yield1 (m
3
/kg) b

o
-2.170 -1.816 -2.22

b
l

0.002851 0.002564 1.64

Produced Gas
Composition (mole %)

H
2

b
o

b
l

b
2

-386.5

0.7780

-258.0

0.5316

1.51

1.31

-3.563 x 10'
-4

-2.373 x 10"
-4

-1.16

co
2

b
o

796.7 300.0 5.82

b
l

b
2

-1.512

7.634 x 10"
-4

-0.4818

2.032 x 10"
-4

-5.81

5.75

CH,
4

b
o

b
l

b
2

-57.39

0.1524

-32.62

0.09108

-0.98

1.10

-8.432 x 10"
-5

-4.814 x 10"
-5

-1.19

Energy b
o

-256.0 -268.6 0.70

Recovery (%) b
l

0.3304 0.3644 -1.71

Carbon b
o

-158.6 -139.4 -1.05

Conversion (%) b
l

0.2175 0.2090 0.43

Product Mass
Distribution (%)

Gas b
o

b
l

-140.6

0.2015

-117.0

0.1852

-1.66

1.05

Liquid b
o

b
l

233.9

-0.2015

207.2

-0.1852

1.29

-0.73

Char b A 6.71 9.73 -0.94

The linear equation for Sorghum Stover was used instead of the
second order equation for comparison.

2 tThe regression model parameters for temperatures greater than 850 K
were used for Sorghum Stover.



Table III
t-Values for Sorghum Stover and Wheat Straw

*. 05,50 " 2 - 01
'.01.50 = 2 ' 68

IV- 13

Parameter Value
Dependent
Variable

Sorghum
Stover

Wheat
Straw

Calculated
t-Value

Gas Yield
1

(1ii /kg) b
o

-1.816 -1.708 -0.33

b
l

0.002564 0.002362 0.59

Produced Gas
Composition (mole %)

«2 b
o

-75.61 -68.96 -0.58

b
l

0.1143 0.09748 1.39

co
2

b
o

300.0 633.2 -1.78

b
l

b
2

-0.4818 -1.268 1.97

2.032 x 10~4 6.66 x 10~4 -2.19

CH
4

b
o

-32.62 -92.81 1.29

b
l

b
2

0.09108 0.2188 -1.28

-4.814 x 10"5 -1.141 x 10~4 1.25

Energy b
o

-268.6 -151.8 -3.17

Recovery (%) b
l

0.3644 0.2177 3.78

Product Mass
Distribution (%)

Gas b
o

-117.0 -135.4 0.56

Liquid

b
l

b
o

0.1852

207.2

0.2024

224.8

-0.49

0.26

Char

b
l

-0.1852 -0.1992 0.08

bn 9.73 7.43 0.69

The linear equation for Sorghum Stover was used instead of the
second order equation for comparison.

2 .

The regression model parameters for temperatures greater than 850 K
were used for Sorghum Stover.
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Chapter V

CONCEPTUAL DESIGN AND ECONOMIC ANALYSIS



INTRODUCTION

Energy is very essential to agricultural productivity. The high cost

and fluctuating supply of energy, especially at critical times, has prompted

research into alternate energy sources for agriculture. Irrigation pumping

and grain drying constitute a major portion of the energy use in agricul-

ture. Eleven states consume 89% of the energy used for irrigation with

Texas, Nebraska, Kansas, and Arizona being the top four in energy use (Clark

et al., 1978). The major crops being irrigated are corn, grain sorghum,

cotton, alfalfa, and wheat in decreasing order. Furthermore, grain drying

uses a substantial amount of energy with corn drying making up the largest

part of the energy use.

Most irrigation pumps and grain dryers are fueled by natural gas.

Producer gas, made from the gasification of crop residue in a fluidized bed

reactor, offers an alternative to natural gas. Parke et al . (1981) has

demonstrated that the technology for operating an engine with producer gas

from a fluidized bed exists. The purpose of this chapter is to present a

conceptual design and feasibility analysis for a farm-scale fluidized bed

gasifier for producing fuel for irrigation pumping and grain drying.

Alpert et al. (1972) at Stanford Research Institute examined a hypo-

thetical fluidized bed plant to gasify 1.23 Gg (1,358 tons) per day of as-

received municipal waste. The capital investment was estimated at 11.7

millon dollars for a dual fluidized bed system and 12.5 million dollars for

a single fluidized bed process in 1972 dollars. These capital investments

convert to $36,600 and $39,300 per MMBTU/hr output for the dual and single

fluidized beds respectively. Break even gas price was estimated at that

time to be $0.43/GJ ($0.45/MMBTU) and $0.55/GJ ($0.58/MMBTU) for the dual

reactor and single reactor systems respectively. These costs were based on
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a 20 year plant life.

Engler et al. (1975) at Kansas State University studied the economics

of commercial scale manure gasification in a dual fluidized bed. Break

even gas price was estimated to be $0.010/m3 ($0.29/MSCP) or $0.72/GJ

($0.76/MMBTU) for a plant processing 3.63 Gg (4,000 tons) per day of manure

with 50% moisture and $0.017/m3 ($0.47/MSCF) or $1.17/GJ ($1 .23/MMBTU) for

a facility processing 0.91 Gg (1,000 tons) per day of manure. A substantial

drop in gas price was obtained if dry manure was used. Cost estimates were

based on 15 year plant life and mid 1974 dollars. The total capital invest-

ment was estimated to be 14.9 and 6.5 million dollars for the 3.63 Gg and

0.91 Gg per day plants respectively. This converts to $22,000 per MMBTU/hr

output for the large plant and $38,000 per MMBTU/hr output for the small

plant. They concluded that only large scale manure gasification processes

could approach the point of commercial viability.

Economic analyses on the use of fuel derived from crop residues to

supply the energy needs for irrigation pumping and grain drying was per-

formed by Clark et al. (1978). The hypothetical problem involved fueling

three 100 kW irrigation pumps. The capital cost estimate for a mass

produced, dual fluidized bed facility was estimated to be between 129 and

240 million dollars in 1980 dollars. This converts to $40,000 per MMBTU/hr

output. In a comparison between anaerobic digestion, fuel-bed combustion,

and fluidized bed gasification, they concluded that fluidized bed gasifi-

cation was the best process to provide fuel for irrigation pumping and grain

drying.

Loewer et al. (1980) studied the economics of corn grain, cobs, and

stover gasification as an energy substitute for LP gas in corn grain drying.

They determined the break even investment for drying one bushel of U.S.
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No. 2 corn grain from 257. moisture to 15.57,, moisture. They found that as

much as 38.9c and 23. 5c per bushel of grain dried could be invested in

gasification equipment when using cobs and stover respectively.

A conceptual design and economic analysis on a fluidized bed wood

gasifier was performed by Lian et al. (1982). The proposed plant would

gasify 91 Mg (100 tons) per day of sawdust with a 36% moisture content.

The total capital investment was estimated to be $874,800 in 1980 dollars.

This converts to $25,700 per MMBTU/hr output. The plant was depreciated

over a 15 year period with a 48% tax rate. For a 157„ rate of return before-

tax, cost of the gas was estimated to be $3.48/GJ ($3 .66/MMBTU)

.

DESIGN BASIS

The reports published so far have been based on assumed material

balances from limited experimental data. The conceptual design presented

in this chapter is based on extensive experimental results for corn stover

gasification in a pilot-scale fluidized bed reactor (Chapter III).

Sizing of the farm-scale gasifier is based on the irrigation require-

ments for a 480 acre farm yielding 11.31 m3/ha (130 bu/acre) . The net crop

water required for irrigation pumping is 0.46 m (18 in) . A water use effi-

ciency of 707. and a pump efficiency of 75% are assumed. Three irrigation

wells are used to supply the water required; each well has a 100 kW engine.

A 25% engine efficiency and a 67% gasification efficiency are used. The

gasifier will also be used to supply heat for drying corn from 25% to 15%

moisture. The system will be operated 1404 hours for irrigation pumping

and 311 hours for grain drying a year.

The corn stover feed for the gasifier will be collected from the field.

The residue yield is assumed to be 1 kg of residue per kg of grain (1 lb
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residue per lb grain) . It is assumed that as much as 757. of the available

corn stover can be collected, and that the storage loss is 15%.

Qualitatively, the overall gasification reaction is as indicated below:

Heat
Corn Stover 3^> Gas + Tar + Char + Water

The process heat requirements are supplied by the combustion of tar and

char. The amount of char produced from gasification is constant, and the

amount of tar produced decreases with increasing temperature. In the pilot

plant studies, the composition of corn stover, char, and tar are determined

from elemental analyses. Gas composition is determined from gas chromato-

graph readings. Flow rates of feed, gas, and char are determined from the

experimental measurements and calculations. This data is presented in

Chapter III. An elemental balance, based on the pilot plant data, is

performed to determine the quantities of tar and water. The resulting

empirical stoichiometric relations for gasification, char combustion, and

tar combustion are given below:

Corn Stover C3.64H5 ,71°3.06N0.115—^~0.544 C0
2 + 0.764 CO + 0.875 H2

Gasification
+ 0.288 CH4 + 0.095 C2H4 + 0.022 C2H6

+ 0.027 C
3
H6 + Char + Tar + 0.674 H

2

Char C0.476H0.182°0.0464N0.0065 + °'5 °2 0.091 H2
Combustion

+ 0.476 C0
2
+ 0.0033 N2

Tar C1.25H0.605°0.487N0.108 + X ' 66 °2 0.303 H2
Combustion

+ 1.25 C0
2
+ 0.054 N2

The above stoichiometry is used to conduct the energy balance on the

reactor and to determine the char and tar requirements for the process to be
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self sustaining. Standard heats of combustion for corn stover, char, and

tar are calculated using the Dulong formula; they are 14.3 MJ/kg DAF (6,130

BTU/lb DAF), 30.8 MJ/kg DAF (13,200 BTU/lb DAF), and 18.4 MJ/kg DAF (7,900

BTU/lb DAF) respectively.

A reactor temperature is selected, and the amount of tar produced is

calculated. Then an energy balance is performed on the reactor to deter-

mine if the appropriate amount of tar is present to satisfy the energy

needs. Iterations are conducted to find a suitable operating temperature.

PROCESS DESCRIPTION

A process flow diagram for the conceptual farm-scale gasifier system

is shown in Figure 1. Major components of the system are air compressor,

gasifier, heat exchanger network, and fiber bed filter. The gasifier

produces approximately 32,600 m3/day (1.15 MMSCF/day) of gas having a higher

heating value of 3.77 MJ/m3 (101 BTU/SCF) from 10.9 metric tons (12 tons)

of dry ash-free feed per day.

Ground corn stover is conveyed into the storage bin (V-l) which is

large enough to hold about two days' supply of feed. The corn stover is

transferred to the feed hopper (V-2) by a bucket elevator (CV-1) and is fed

to the reactor (R-l) by a screw feeder. The hopper (V-2) contains enough

feed for approximately five hours.

The reactor (R-l) consists of a bed of fluidized sand which is main-

tained at 978 K (1300 F) and 55 kPa (8 psig) . Heat required for gasifica-

tion is supplied by burning recycled tar in the plenum section of the

reactor and char in the lower portion of the reactor. The plenum section

is maintained at 1644 K (2500 F) and 69 kPa (10 psig) by injection of recy-

cled water. The air compressor (C-l) supplies air needed for combustion of
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tar and char, and the combustion gases together with the injected water

provide sufficient flow rate to fluidize the sand bed.

Off-gas is sent to a cyclone (CY-1) to remove entrained ash. Ash is

collected in a hopper (V-3) large enough to hold approximately two days'

production of ash. Then, off-gas is sent through a series of three heat

exchangers. Heat exchanger E-l is an air cooled exchanger which reduces

the gas temperature to 644 K (700 F) . Heat exchanger E-2 reduces the

temperature of the off-gas to 422 K (300 F) . Tar condenses inside this

exchanger and is recycled back to the plenum burner. Water is condensed in

heat exchanger E-3 and is recycled back to the plenum burner. This heat

exchanger reduces the off-gas temperature to 325 K (125 F) . Finally, the

off-gas is sent to a fiber bed filter (F-l) to remove any tar mist before

off-gas is sent to the irrigation pump engines.

The overall flow rates into and out of the gasifier plant are given in

Figure 2. The recycle flow rates are also given in this figure.

With the exception of the electric power for the compressor and pumps,

no additional energy is required after start-up. The energy input into the

process is less than 0.1% of the energy in the product gas.

ECONOMIC ANALYSIS

The preceding conceptual design has been used to evaluate the capital

investment, operating costs, and profitability for a farm-scale gasifier.

All monetary values are based on third quarter 1983 dollars unless stated

otherwise

.
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Equipment Costs

Equipment costs are presented in Table I. The major items of equip-

ment are the reactor (R-l), compressor (C-l), and fiber bed filter (F-l)

.

All equipment costs except for the costs of the tar storage tank (V-4)

,

water storage tank (V-5) , and fiber bed filter (F-l) have been estimated

using data and techniques reported by Guthrie (1969) . Costs for storage

tanks V-4 and V-5 have been estimated by means of a procedure reported by

Peters and Timmerhaus (1980) . Both sets of costs have been converted to

third quarter 1983 dollars by using Marshall and Stevens Installed-Equip-

ment Indexs. Price of the fiber bed filter (F-l) has been obtained from a

direct price quotation from a vendor. A stand-by filter is included so

that the gasifier does not have to be shut down for filter cleaning.

Total Capital Investment

The total capital investment has been evaluated to be $112,000.

Details for the total capital investment are presented in Table II. These

estimates have been calculated by a procedure similar to one reported by

Peters and Timmerhaus (1980) . All direct and indirect costs have been

estimated as percentages of the carbon-steel purchased equipment cost esti-

mate except the cost of piping. The piping cost estimate is based on the

actual purchased equipment cost estimate. The carbon-steel equipment cost

estimate has been calculated by assuming that all items of equipment are

made of carbon-steel; it has been evaluated to be $75,000. The percentages

used are smaller than those reported by Peters and Timmerhaus (1980) because

the gasifier is a small and close coupled system that can be factory assem-

bled. No buildings, yard improvements, service facilities, or land will be

required.

A contingency of ten percent of the total direct and indirect costs is
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used. The mass produced cost for the gasifier system is assumed to be 60%

of the fixed capital investment. The contractor's fee is set at ten percent

of the mass produced cost.

Operating Costs

Estimates of the annual operating expenses are presented in Table III.

These costs have been estimated using information from Peters and

Timmerhaus (1980) . Parameters affecting the total product cost are feed

cost and gasifier service life. Feed material cost is assumed to range

between $11 and $44.1 per metric ton ($10 and $40 per ton). Approximately

907 metric tons (1,000 tons) of corn stover are gasified per year. Plant

service life is selected as ten and fifteen years, and straight line depre-

ciation with no salvage value was used.

Operating labor cost has been calculated assuming two man hours per

day at a cost of eight dollars per man hour. The cost of utilities has

been determined from an estimate for the work load of the compressor, pumps,

and motors. The cost of electricity is taken to be $0.055/kWh. Mainten-

ance and repairs, operating supplies, and insurance have been estimated to

be 37., 0.5%, and 1% of the total capital investment respectively. Water

from the irrigation wells will be used for cooling water and then will be

returned to be used for irrigation; hence, cost for cooling water is negli-

gible. The costs associated with direct supervision and overhead are also

neglected. Calculations are on a before-tax basis; thus, taxes are not

included. The annual operating expenses have been estimated to be $15,900

plus feed material cost and $19,600 plus feed material cost for a 15 year

and 10 year plant life respectively.
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Profitability Analysis

For this preliminary study, only the simpler method of determining

profitability is used. Discounted cash flow or present worth could be used

for a more in-depth profitability study. Profitability of the gasifier is

dependent upon operating cost and fuel savings. Fuel savings is defined as

the amount of energy replaced in one year multiplied by the fuel cost. The

range used for fuel cost is $3.8 to $9.5 per GJ ($4 to $10 per MMBTU)

.

Approximately 7,200 GJ (6,800 MKBTU) per year are replaced for irrigation

pumping and grain drying. Net savings is defined as fuel savings minus

operating cost.

Payout period as a function of fuel cost for different feed costs is

shown in Figure 3. Payout period is defined as the length of time to

recover the depreciable capital investment in the form of cash flow to the

project. Cash flow is defined as net savings plus depreciation. For the

before-tax basis used, payout period is independent of plant life. As

expected, payout period increases with increases in feed material cost

and/or decreases in fuel costs. For a payout period of seven years, a fuel

cost of $4.7, $6.2, $7.6, and $9.0 per GJ is required for a feed cost of

$11, $22, $33, and $44 per metric ton respectively. This converts to a

fuel cost of $5, $6.5, $8, and $9.5 per MMBTU for a feed cost of $10, $20,

$30, and $40 per ton respectively.

Return on investment as a function of fuel cost for different feed

costs is shown in Figure 4 for a 15 year plant life and in Figure 5 for a

10 year plant life. Return on investment is defined as the net savings

divided by the total capital investment and multiplied by 100. A before-

tax basis is used for the return on investment.. An increase in feed cost

or a decrease in plant life decreases the return on investment for a given
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fuel cost. A decrease in fuel cost also decreases the return on investment,

For a seven percent be fore- tax return on investment on a plant with a 15

year life span, the fuel cost must be $4.7, $6.1, $7.5, and $8.9 per GJ for

a feed cost of $11, $22, $33, and $44 per metric ton respectively. This

converts to fuel costs of $5, $6.4, $7.9, and $9.4 per MMBTU for feed costs

of $10, $20, $30, and $40 per ton respectively . On a break even basis,

fuel costs must be $3.6, $5, $6.4, and $7.8 per GJ ($3.8, $5.3, $6.8, and

$8.2 per MMBTU) for respective feed costs of $11, $22, $33, and $44 per

metric ton ($10, $20, $30, and $40 per ton) for a plant life of 15 years.

The fuel cost is $0.47/GJ ($0.5/MMBTU) higher for a plant with a ten year

service life for a given feed cost and return on investment.

DISCUSSION

The cost of the gasifier system is comparable to the costs reported

by Electric Power Research Institute (EPRI) (1983) . They have reported

total capital investments for three different wood gasifiers presently

available to be between $20,000 and $25,000 per MMBTU/hr output ($19,000

and $23,700 per GJ/hr output) in mid-1982 dollars. The cost for the concep-

tual design has been estimated to be $28,000 per MMBTU/hr output ($26,600

per GJ/hr output) in third quarter 1983 dollars. This amount is only

slightly larger than those for the wood gasifiers. Cost of feed material

is also similar to that reported by EPRI (1983) for wood. They have given

a range for feed cost from $1.9 to $2.4 per GJ ($2 to $2.5 per MMBTU). The

range of corn stover cost of $11 to $33 per metric ton ($10 to $30 per ton)

converts to $0.95 to $2.8 per GJ ($1 to $3 per MMBTU).

One of the reasons that the gasifier discussed in this chapter has a

high capital cost to energy output ratio is because the gasifier has been
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designed to produce a small amount of energy, 4.2 GJ/hr (4 MMBTU/hr)

compared to 26.3 GJ/hr (25 MMBTU/hr) for the wood gasifiers. It also has a

low operating factor (approximately 2.5 months per year) which acts to limit

the profitability. Increasing the operating factor will improve the econom-

ics of the process. This could be done by using the producer gas to make

liquid fuel in the off season. This requires an addition feed source

because irrigation pumping and grain drying uses about 907. of the available

corn stover based on 757. removal from the field and 157. storage loss.

However, a variety of feed sources are possible. For example, manure,

wheat straw, or wood could be gasified in the same reactor.

Slight modifications could be made in the conceptual design. One

change would be to use off-gas to preheat the air fed to the plenum burner.

Trade off between the price of a gas-gas heat exchanger and increases in

gasification efficiency exists. Gasification efficiency increases because

the reactor temperature is increased since less tar needs to be burned in

the plenum. The increase in reactor temperature will increase gas produc-

tion, and thus, gasification efficiency. Furthermore, the air flow rate

will decrease, and the heating value of the off -gas will increase because

there will be less nitrogen present. Consequently the compressor size will

decrease also.
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CONCLUSIONS

The conceptual design and economic feasibility study for a farm-scale

fluidized bed gasifier has been conducted. The gasifier produces approxi-

mately 32,600 m3 /day (1.15 MMSCF/day) of gas having a heating value of 3.77

MJ/m3 (101 BTU/SCF) from 10.9 metric tons (12 tons) of DAF corn stover a

day. The producer gas will be used to fuel three 100 kW irrigation pumps

and to dry grain. The fluidized bed reactor will be operated at 978 K

(1300 F) and 55 kPa (8 psig) . Except for the electricity needed for the

compressor, pumps, and motors, the reactor is virtually energy self-suffi-

cient.

Total capital investment for the gasification system has been estimated

to be $112,000 in third quarter 1983 dollars. For a before- tax payout

period of seven years, fuel costs of $4.7, $6.2, $7.6, and $9 per GJ are

needed for feed costs of $11, $22, $33, and $44 per metric ton respectively.

Break even fuel costs have been estimated to be $3.6, $5, $6.4, and $7.8

per GJ for feed costs of $11, $22, $33, and $44 per metric ton respectively

for a gasifier with a 15 year service life. The fuel cost is $0.47/GJ

higher for a plant with a ten year life span for a given feed cost and

return on investment. The gasifier appears to be competitive with propane

gas and new natural gas; however, the gasifier is not competitive with old

natural gas.
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Table I

Equipment List

Name Symbol Size Cost

Reactor Shell

Refractory

R-l 1

1

.22 m dia by 1.83 m

.83 m dia by 1 .83 m
32.71 m

bed
freeboard

14 000

3 600

Air Compressor C-l 12.74 m3/min at 69 kPa 16 800

Cyclone CY-1 42.5 m3/min ss 7 000

Tar Injection Pump P-l 0.11 m3/hr ss 3 200

Water Injection Pump P-2 0.04 m3 /hr ss 2 100

Air-Cooled Exchanger E-l 9.29
2

m ss 1 500

Tar Condenser E-2 6.50
2

m ss 3 300

Water Condenser E-3 8.36 m2 ss 3 400

Water Pumps
Tar condenser
Water condenser

P-3
P-4

4.86
2.52

m3/hr
m3 /hr

bronze
bronze

2 000
1 800

Storage Tanks
Tar
Water

V-4
V-5

0.28
0.15

m3

m3
ss

ss

2 900
2 200

Ash Bin V-3 6.37 m3 400

Feed Hopper V-2 14.16 m3 800

Storage Bin V-l 133.8 m3 5 700

Screw Feeder CV-3 .15 m dia i by 1.52 m ss 6 600

Elevator CV-1 9.14 m 1 800

Ash Conveyor CV-2 1.52 m 3 600

Fiber Bed Filter F-l 12.74 m3/min 12 900

$95 600

ss denotes stainless steel
prices are based on third quarter 1983 dollars
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Table II

Total Capital Investment

Direct Costs

Purchased Equipment 100% PE 95 600

Installation 15% CSPE 11 400

Instrumentation & Controls 10% CSPE 7 600

Piping 5% PE 4 800

Electrical 3% CSPE 2 300

Indirect Costs

Engineering 40% CSPE 30 300

Construction Expenses 3% CSPE 2 300

Direct and Indirect Costs 154 300

Contingency 10% Direct & Indirect Costs 15 400

Fixed Capital Investment 169 700

Mass Production Discounted 40% 101 800

Contractor's Fee 10% 10 200

Total Capital Investment $112 000

Costs are in third quarter 1983 dollars
CSPE denotes carbon-steel purchased equipment



Table III
Operating Costs

V-16

Raw material Corn Stover

Operating Labor

Utilities

Maintenance & Repairs

Operating Supplies

Insurance

Depreciation

$11 - 44/metric ton

2 man hours/day @ $8/hr 1 200

38 200 kWhr @ $0.055/kWhr 2 100

37. TCI 3 400

0.5% TCI 600

1% TCI 1 100

15 year plant life 7 500

10 year plant life 11 200

Total Operating Cost
15 year plant life

10 year plant life

$15 900 + feed cost

$19 600 + feed cost

Costs are in third quarter 1983 dollars
TCI denotes Total Capital Investment

'
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Figure 2. Overall Material Balance Flow Rates.
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Chapter VI

CONCLUSIONS AND RECOMMENDATIONS



CONCLUSIONS

Corn stover and sorghum stover were gasified in a 0.23 m I .D . fluidized

bed reactor. The temperature ranges studied were 820 to 1020 K for corn

stover and 750 to 1020 K for sorghum stover. The effect of reactor temper-

ature on produced gas volumetric yield, composition and higher heating

value was studied. The mass distribution of the major gasification

products, carbon conversion, and energy recovery were also evaluated.

For corn stover, gas yield, energy recovery, and carbon conversion

increased with increasing reactor temperature; whereas, liquid yield

decreased with increasing reactor temperature. Produced gas volumetric

yield increased from 0.17 to 0.74 m3 /kg DAF feed in the temperature range

of 820 to 1020 K. Higher heating value ranged from 11.7 to 14.6 MJ/m3 with

a maximum of 15.6 MJ/m3 at 955 K. Hydrogen, carbon dioxide, carbon

monoxide, and methane made up over 907. of the produced gas. Concentration

of hydrogen in the produced gas increased, and concentration of carbon

dioxide decreased with increasing reactor temperature. Methane concentra-

tion was almost constant at 11.3%.

For sorghum stover, produced gas volumetric yield increased from 0.91

m3 /kg DAF feed at 750 K to 0.91 m3/kg DAF feed at 1020 K. Produced gas

higher heating value varied from 9.97 to 14.0 MJ/m3 with a maximum of 14.9

MJ/m3 at 960 K. The produced gas consisted mainly of hydrogen, carbon

monoxide, carbon dioxide, and methane. Hydrogen concentration in the

produced gas increased, and carbon dioxide concentration decreased with

increasing temperature. Methane concentration was virtually constant at

10.0%. Energy recovery, carbon conversion, and gas mass yield all

increased linearly with temperature.
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Regression model parameters for the dependent variables (i.e. produced

gas yield, composition, and heating value) for corn stover are compared to

the respective model parameters for sorghum stover using a t-test. Regres-

sion model parameters for hydrogen and methane concentrations in the

produced gas, produced mass distribution (gas, liquid, and char), carbon

conversion, and energy recovery are not significantly different at the 5%

probability level. Thus, these lines are within the 957. confidence limits

of the respective line for the other feedstock.

A conceptual design and economic feasibility study for a farm-scale

fluidized bed gasifier is conducted. The gasifier is designed to produce

approximately 32,600 m^/day (1.15 MMSCF/day) of gas having a heating value

of 3.77 MJ/m3 (101 BTU/SCF) from 10.9 metric tons (12 tons) of DAF corn

stover per day. This gas will be used to fuel three 100 kW irrigation

pumps and to dry corn grain. The reactor is operated at 978 K (1300 F) and

55 kPa (8 psig) . Except for the electricity needed for the compressor,

pumps, and motors, the reactor is virtually energy self-sufficient. The

char and tar produced from gasification are burned to supply the energy

requirements for gasification. Total capital investment for the system is

estimated to be $112,000 in third quarter 1983 dollars. For a before-tax

payout period of seven years, fuel costs of $4.7, $6.2, $7.6, and $9 per GJ

are needed for feed costs of $11, $22, $33, and $44 per metric ton respec-

tively. Break even fuel costs are estimated to be $3.6, $5, $6.4, and

$7.8 per GJ for feed costs of $11, $22, $33, and $44 per metric ton respec-

tively for a gasifier with a 15 year service life. The process appears to

be competitive with propane gas and new natural gas, but it does not appear

to be competitive with old natural gas.
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RECOMMENDATIONS

A simplified statistical model building procedure was attempted to

describe the gasification data. The stepwise model building procedure was

used in an attempt to identify additional factors affecting produced gas

composition, volumetric yield, higher heating value, and mass distribution

of the major gasification products. A linear model was used with reactor

temperature, superficial gas velocity, moisture content of the feed, and

carbon content of the feed as the independent variables. Later, tempera-

ture squared and temperature cubed were added as independent variables. Of

the independent variables examined, reactor temperature had the most signif-

icant effect on the dependent variables. Some dependence upon other inde-

pendent variables was indicated; however, because the experiments were not

specifically designed for this model building approach, the results were

not conclusive. The model building approach should be extended in order to

develop a model for the gasification of biomass from which predictions can

be made. Properly designed experiments are needed preferably for a bench-

scale reactor where the independent variables are easily controlled.

Additional independent variables such as cellulose content of the feed,

reactor water to feed ratio, residence time, and parameter interaction terms

could also be examined. Furthermore, models that are more complex than the

simple linear model should be tested.

Modifications to the conceptual design should be considered. One such

change is to use the off-gas to preheat the air fed to the plenum burner.

A trade off between the price of a gas-gas heat exchanger and increased

gasification efficiency exists. Gasification efficiency will increase

because reactor temperature will be increased since less tar will need to
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be burned in the plenum. The increase in reactor temperature increases gas

production, and hence, gasification efficiency. Furthermore, the air flow

rate will be decreased; thus, the heating value of the off-gas will

increase because it will contain less nitrogen. In addition, compression

requirements will be reduced.
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Corn stover and sorghum stover were gasified in a 0.23 m ID fluidized

bed reactor. The temperature ranges studied were 820 to 1020 K for corn

stover and 750 to 1020 K for sorghum stover. The effect of reactor temper-

ature on the produced gas volumetric yield, composition and higher heating

value was studied. The major product mass distribution, carbon conversion,

and energy recovery were also determined.

For corn stover, gas yield, energy recovery, and carbon conversion

increased with increasing reactor temperature; whereas, liquid yield

3decreased. Produced gas volumetric yield increased from 0.17 n /kg DAF

feed over the temperature range studied. Higher heating value ranged from

3 311.7 to 14.6 MJ/m with a maximum of 15.6 MJ/m at 955 K. Hydrogen, carbon

dioxide, carbon monoxide, and methane made up over 90% of the produced gas.

The concentration of hydrogen in the product gas increased, and the con-

centration of carbon dioxide decreased with increasing reactor temperature.

Methane concentration was virtually constant.

For sorghum stover, produced gas volumetric yield increased from

0.19 m
3
/kg DAF feed at 750 K to 0.91 m

3
/kg DAF feed at 1020 K. Produced

3gas higher heating value varied from 9.97 to 14.0 MJ/m with a maximum of

3
14.9 MJ/m at 960 K. The produced gas consisted mainly of hydrogen,

carbon nujnoxide, carbon dioxide, and methane. The hydrogen concentration

in the produced gas increased and the carbon dioxide concentration

decreased with increasing temperature. The methane concentration was

virtually constant. Energy recovery, carbon conversion, and gas mass

yield all increased linearly with increasing temperature. A statistical

t-test showed that experimental results obtained from the gasification of

sorghum stover were statistically similar to results for corn stover and

wheat straw.
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A conceptual design and economic feasibility analysis for a farm-scale

fluidized bed gasifier is conducted. The gas is to be used as an alternate

fuel for irrigation pumping and grain drying. The gasifier is designed to

produce approximately 32,600 m^/day (1.15 MMSCF/day) of gas having a

heating value of 3.77 MJ/m3 (101 BTU/SCF) from 10.9 metric tons (12 tons)

of DAF corn stover per day. Total capital investment for the system is

estimated to be $112,000 in third quarter 1983 dollars. Payout period and

return on investment are calculated for different values of feed cost, fuel

cost, and gasifier service life. Feed cost ranges from $11 to $44 per

metric ton and fuel cost ranges from $3.8 to $9.5 per GJ. For a before-tax

payout period of seven years, fuel costs of $4.7, $6.2, $7.6, and $9 per GJ

are required for feed costs of $11, $22, $33, and $44 per metric ton respec-

tively. On a break even analysis ( be fore- tax) , fuel costs are estimated to

be $3.6, $5, $6.4, and $7.8 per GJ for respective feed costs of $11, $22,

$33, and $44 per metric ton for a gasifier with a 15 year service life.

The fuel cost is estimated to be $0.47/GJ higher for a reactor with a ten

year life span.


