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CHAPTER 1 INTRODUCTION

Reliability engineering is fast becoming an essential part of the exper-
tise of engineers, particularly those engaged in the design of complex systems.
It is, in fact, the rapidly increasing gomplexity of systems in all branches
of engineering that is responsible for the awakening of interest in reliability.

Considering the history of reliability, reliability was first recognized
as a pressing need during World War II. The preliminary steps taken were to
establish joint Army and Navy (JAN) parts standards and to set up the Vacuum
Tube Development Committee (VTDC) in June, 1943. At the close of the war,
between 1945 and 1950, several studies revealed some startling results[62]:

1} A Navy study made during maneuvers showed that the electornic

equipment was operative only 30 percent of the time.

2) An Army study revealed that between two-thirds and three-fourths

of their equipment was out of commission or under repairs.

3) An Air Force study conducted over a 5-year period disclosed that

repair and maintenance costs were about 10 times the original cost.

4) A study uncovered the fact that for every tube in use there were cne

on the shelf and seven in transit.

5) Approximately one electronics technician was required for every

250 tubes.
6) 1In 1937 a destroyer had 60 tubes; in 1952 the number had risen to
3,200.

These findings served as an impetus for further investigations. In
this modern day of science, in which complex devices are utilized for military
and scientific purposes, a high degree of reliability is an absolute necessity.
Reliability studies have been further boosted by the requirements of modern
complex systems such as of space research programmes and Air Craft Systems.

In such complex systems, the failure of a part or component results not only

1



in the loss of the failed item but most often also results in the loss of
some larger assembly or system of which it is a part. Reliability evaluation
for such complex systems requires the use of highly analytic techniques in
engineering.

To estimate reliability and to perform reliability calculations, we must
first define reliability.

The RETMAl definition of reliability states: '"Reliability is the prob-
ability of a device performing its purpose adequately for the period of time
intended under the operating conditions encountered." This definition is now
accepted by most contemporary reliability authorities and hence is considéred
to be standard.

It should be observed that the definition stresses four elements, namely,
probability, adequate performance, time, and operating conditions. These four
factors are very significant since each of them plays an important role.

Using this basic definition, we can only calculate the reliability of
simple components constituting complexXx systems.

To determine the reliability of a complex system, the system may be
represented by a reliability logic diagram. Such a diagram shows that which
components in the system must operate failure free for the successful
operation of the system.

Reliability evaluation teﬁhniques will depend upon the nature of this
diagram, as will be seen later.

The system reliability can be defined as the probability of successful

communication between points s (source) and t (terminal).

And system reliability is a measure of how well a system performs or

meets its design objective, and it is usually expressed in terms of the

lRETMA, Radio Electronics and Television Manufacturers Association, is
now known as EIA, Electronics Industries Association.



reliabilities of the subsystems or components. The following terminologies
are defined. A ''part" or "element' is the least subdivision of a system, or
an item that cannot ordinarily be disassembled without being destroyed. A
"circuit" is a collection of parts that has a specific function. A ''component"
then is a collection of parts and/or circuits, which represents a self-
contained element of a complete operating system and performs a function
necessary to the operation of that system. '"Unit'", ''component', and ''sub-
system" are synonymous. A ''system'' can then be characteri;ed as a group of sub-
system especially integrated to perform a specific operational function or functio
Conceptually, the task of determining the system reliability is a simple
one. The method is described by most reliability texts [8],[62]. The general

procedure of determining the system reliability can be described as follows:

Firstly Consider each of the possible states of the system

Secondly Identify which of the states result in successful system
operation

Thirdly Determine the probability of occurrence of each successful state

Finally Add all these probabilities together

The final sum is the system reliability.

All this is possible for small systems but as the system becomes large
or complex the problem one usually faces is computational difficulty and time
consuming. Because of the large amount of work and computer time required to
determine the reliability of a complex system by exact methods, approximate
procedures that consider only a part of the information about system states
are frequently used. Here a complex system may be defined as a system which
cannot be reduced to a series-parallel system. Keeping this in view, in this
study, a thorough discussion of reliability evaluation problems is presented.
The contents include a critical review of evaluation techniques for system

reliability with small/complex, moderate/complex and large/complex systems.



The objectives of this thesis are:

1) to present a critical review and classification of small to large
complex system reliability problems which have been analyzed with
various evaluation techinques;

2). to illustrate the theoretical concepts and the practical formulae
required to solve reliability problems in the analysis and design
of system networks;

3) to do a careful examination of computational procedures of each
technique and provide an insight into its strengths and weakness;

4) to propose the use of multiple attribute decision making (MADM)
methods for determining a suitable system reliability evaluation
technique depending upon the size of the reliability system
configuration.

A state-of-the-art review of the literature related to system reliability

evaluation techniques for complex and large systems is presented in Chapter 2.

The literature is classified as follows:

System reliability models:

Small Complex Systems

Moderate Complex Systems

Large Systems

Chapter 3 describes the detailed reliability evaluation techniques for

the small complex and moderate complex system.

Those methods which can be used for a small/complex system are:

Exhaustive search of successful states

Direct canonical expansion

Probability map method
As the size of the system configuration becomes moderate, such evaluation
techniques as mentioned below may be employed. A symbolic reliability expres-
sion or simplified reliability eipression may be obtained by using the concept

of logical signal relations or the concept of exclusive operator.
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The methods for the moderate complex system can be elaborated as follows:

Probability calculus

Bayes' Theorem

Flow graph method

Parametric method

Algebraic extraction

Fast algorithm

Algorithm for SYMRAP (Symbolic Reliability Analysis Program)

An efficient method for reliability evaluation of a general network

Symbolic reliability evaluation using logical signal relations

In Chapter 4 the evaluation methods for the large systems reliability are
introduced. Those techniques are as follows:

A computer program for approximating system reliability--success paths
and cut sets approach

An algorithm to determine the reliability of a complex system--Minimal
cuts and coherent systems approach

A Boolean algebra method for computing the terminal reliability in a
communication network.

A Monte Carlo method for system reliability calculations
For a large complex system, computer programs provide the set of minimal cuts
and calculates the minimal-cut approximation to system reliability. Based on
minimal path (tie) sets, reliability approximations for a large/complex system
can be obtained. And Monte Carlo method for system reliability evaluation has
been found to be efficient when component reliabilities are sampled by Monte
Carlo method.

In general, the basic problem is to decide what kind of evaluation tech-
nique should be employed depending upon the size and configuration of the system,

All the evaluation techniques employed in the papers surveyed have limited
success in solving some large/complex system reliability evaluation problems.
Few techniques have been completely effective when applied to large system

reliability problems.



Chapter 5 demonstrates the decision making process through the applications
of the multiple attribute decision making (MADM) methods in the selection of
a suitable system reliability evaluation technique for the corresponding system
configuration.

The MADM methods utilized here are:

Conjunctive Constraints

Simple Additive Weighting

Linear Assignment method

ELECTRE

TOPSIS (Technique- for Order Preference by Similarity to Ideal Solution)

To cover all the techniques in a discussion of this sort is practically
an impossibility, since the system reliability evaluation techniques are still
in the process of evolution and we are continually learning more.

We have tried our best to compile and explain all the current and

significant works in this area in a systematic and effective manner.



CHAPTER 2. SYSTEMS RELIABILITY EVALUATION TECHNIQUES FOR COMPLEX/LARGE
' SYSTEMS - A REVIEW

1. INTRODUCTION
In many practical situations, a reliability model has a nonseries-
parallel configuration. Here a complex system may be defined as a system
which cannot be reduced to a series-parallel system.
A network of nonseries-parallel systems ﬁith ten components has
210 = 1024 states. A computer could, of course, evaluate the reliability of
this system in a very short time [36]. But consider a system with twenty
components. The computation becomes coﬁsiderably more difficultland may
even be infeasible with modern day computers [41]. This situation has
promoted considerable research into methods of approximate terminal-pair
rcliability analysis of large systems [13, 36, 41, 52]. 1In this discussion
a large system is defined as a system which has more than ten components.
To analyze the reliability of large networks, algorithms which are efficient-
and which can easily be implemented on a compufer are needed.
A state-of-the-art review of the literature related to system reliabi-
lity evaluation techniques for complex and large systems is presented in
this paper. Tn.Table 2.1,the literature for the different system configura-
tions is separated into the following model sub-categories; small/complex,
moderate/complex and large/complex systems. In Table 2.2,the same literature
-is reclassified to indicate the variety of evaluation techniques utilized.
We have tried to be reasonably completé; those papers not included
were either inadvertently overlooked or considered nﬁt to bear directly on
the topics of this survey. We apologize to both the readers and the

Tesearchers if we have omitted any relevant papers.



Table 2.1.The reference classification for the system reli-

ability evaluation techniques with regard to various system

models.

References

Systems Models

Small Complex
Systems

Moderate Complex
Systems

Large Systems

5, 8, 14, 18, 34, 45,
54, 62

2y D 3y B T3 By 11, 12
13, 14, 16, 18, 26, 27, 28,
32, 33, 34, 36, 37, 38, 39,
41, 42, 45, 47, 49, 52, 53,
53, 625 05, &7

8, 13, 18, 25, 27, 28, 36,
39, 46, 47, 52, 62, 67, 71,
74, 76, 77, 78, 79, 81



Table 2.2.The reference classification for the evaluation techni-

ques employed far systems reliability.

Evaluation Techniques

Referencss

10,

11.

—
(=]

14.

15.

Exhaustive search of
succassful states

Direct canonical expansion

Probability map method
Probability calculus
Bayes Theorem
Flow graph method
Parametric method
Algebraic sxtraction
Fast algorithm
Algorithm for SYMRAP
(Symbolic Reliability Analysis

Program)

An efficient method for reliability
svaluation of a general network

Symbolic reliability evaluation
using logical signal relations

A computer program for approxi-
mating system reliability

An algorithm to determine the
reliability of a complex systsm

A Boolean algebra method for
computing the terminal relizbility
in a2 communication network.

A Monte Carlo method for system reliabi-

lity calculations

Miscellaneous

S, 8, 18, 34, 82

3, 45
5, 14, 34, 45
$, 26, 42, 53

3, 14, 34

2, 3, 8, 34, &7
13, 18, 26, 27, 28, 52, 33; 38

39, 41, 49, 352

2, 6, 14, ls, 28, 37, 38, 41,

8, 9, 25, 36, 46, 52

1, 16, 18, 27, 28, 39, 47, 52,
58, 67

71, 74, 76, 77, 78, 79, 31

b
w
[y
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s
o
-
o
(e
~4
"~
~1
Ul
.
00
o
oo
)



2.

.10

SYSTEM MODELS

In this review, we assume that the reader is familiar with the material

treated in these models. For a discussion of the definitions and formulations

of the basic concepts, see [8, 14, 26, 27, 33, 44, 45, 59, 62, 63]. We now

briefly review each of the models considered in this survey.

2.1.

2.2.

2.3,

4 8

Small Complex Systems

a)

b)

c)

Three components (each component has two states, eg. operating and

failure) of a system with reliabilities R R32, as shown in

13> Ri2°
Fig. 2.1, are connected to form the delta configuration. This can be
transformed into star equivalent~withAreliabilitieé-RIO, RZO’ RSO‘

A nonseries-parallel diagram as shown in Fig. 2.2.Component A feeds

B only, and, in parallel, C feeds D only. However, E can feed either
B or D (can alternate).

A 'bridge network' as shown in Fig. 2.3. E represents a two-way bridging:

element.

Moderate Complex Systems

a)

b)

c)

A communication system with five modes and seven branches (two of

these being interconnecting) as shown in Fig. 2.4,
The network as shown in Fig.2,5,, where branches with reliabilities PS
and P6 are the interconnecting branches.

The ARPA network, shown in Fig. 2.6. where there are 13 different minimal

paths.

Large System

a)

Large Series-Parallel System

The system shown in Fig.2.7 is a relatively complex series-parallel

network.
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Fig. 2.1.Delta-star configuration

Fig. 2,2. An alternate connection



Fig. 2,3, A bridgeAconnection

Fig.2\4. General network [4]
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Fig.2.,5, A general network [48]

g 4 2
X 31
ng Xq X g "
Xgq %
n, Xg n.

e e i e

Fig.2.p. Modified graph of ARPA network [55]

e
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Fig.2.7. System diagram for bounds program [52]
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2.3.2 Large Complex System

a) A reliability network shown in Fig. 2.8 is a ten-component system.
b) The ARPA (Advanced Research Project Agency) computer network shown in
Fig.29is to be evaluated for the terminal reliability between UCLA and CMU.
c) A more connected network is shown in Fig. 2.10.
d) A simple long distance telephone network shown in Fig.2.1lhas 18
(S, T) paths.

e) A complicated boiler safety system is shown in Fig. 2.12.

f) A hypothetical 18-compoﬁ;ﬁts‘5-¢oherent complex system is shown in
Pig. 2.13.
3. STATEMENT OF THE VARIOUS SYSTEM RELIABILITY EVALUATION PROBLEMS
The structure of the system reliability problems that are rele-
vant to our study are stated below and the literature is identified in Table 2.3
Problem 1
To evaluate the overall reliability of a system which cannot be reduced to
a series-parallel model, such as a Delta-Star configuration, an alternate
or bridge type connection, when the reliabilities of the elements are known
(Figs. 2,1-2.3).
Problem 2
To find the simplified reliability expression, the symbolic reliability
expression or the terminal-pair reliability expression of a general net-

work (Figs. 2.6,2.11, 2.12).
Problem 3

To compute the reliability of the system when its configuration is a

moderate size (Figs. 2 ,4-2.6).
Problem 4
To determine the reliability of a large/complex system which requires a

computer program for approximating system reliability from the given reli-

abilities of its elements (Figs. 2.7, 2.8, 2.13).



S=1

Fig. 2.8. Reliability network [36]
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Fig. o o
« 2.10. Topolo i e
gy of a more connected net N



Fig. 211, A simple long distance telephone network [41]

19



20

[¢€] welsAs L3oges zoytoq V - z7°¢ "314

Nynd

Nung

_-——

JINdino -=

)6

"STA

ATV %

A'TY e

A TY

AMIY e

=11 Y0 ™ — ¢'0 e s-ad
: Y 2 -
N[ o 20 el zad
¥°0 duo) 2 1'D 1°a‘d
113 e — 2719 |-
{113 L — 2179
i
S EEURS: § AL R § N

F——— LNdNI




21

Fig.2.13. A hypothetical 18-component s-coherent
complex system [78].
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Table 2.3. Reference classifications with regard to structure of the

various system reliability evaluation problems.

Formulation or Problems

References

Problem 1: System reliability evaluation of Delta-Star,
alternate or bridge type connections (Figs. 2.1 -"2.3).

Problem 2: System reliability evaluation with the simpl-
fied reliability expression, the symbolic reliabilicy
expression or the terminal-pair reliability expression of
a general network (Figs. 2.6y 2.11, 2.12).

Problem 3: Computing the reliability of a system

whose size of configuration is moderate (Figs. 2.4 - 2.5).

Problem 4: Determining the reliability of a large/
complex system which needs a computer program (Figs. 2.7,
2.8, 2.13).

Problem 5: OQbtaining the terminal reliability between a
given pair of nodes in quite large communication net-
works (Figs. 2,9, 2,10).

5, 3, 14, 18, 34, 43,

2, 5,6, 7, 13, 14, 18,
18, 21, 2s, 27
33, 36, 37, 38, 39, 41,

42, 45, 49, 55, 82, &5,

2, 35,5,6,7,8, 11, 12
13, 14, 16, 13, 26, 27,

23, 32, 33, 34, 36, 37,
38, 39, 41, 42, 45, 47,
49, 52, 53, 55, 62, &3,
87

8, 13, 25, 36, 46, 52,
s2, 71, 74, 76, 77, 78,
79, 81

18, 27, 28, 39, 47, 52
57
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Problem S

To compute the terminal reliaﬂility between a given pair of nodes, namely,

the probability that there exists at least one path between these two nodes

in quite large communication networks (Figs. 2,9, 72,10).

4. RELIABILITY EVALUATION TECHNIQUES USED TO DETERMINE THE VARIOUS SYSTEM MODELS

Many algorithms have been proposed but only a few have been effective
when applied to large/complex system reliability evaluation problems.

The literature on the reliability evaluation techniques which are relevant to
this study is classified in Table 2.2,All the evaluation techniques employed
have limited success in solving all of the problems.

Table 2,4 shows those system reliability evaluation techniques employed to
find the overall reliability of corresponding system configurations from Fig. 2.l
through Fig. 2.l3.

For a small/complex system, exhaustive search method, direct canonical ex-
pansion or probability map method can be used. As the size of the system con-
figuration becomes moderate, such evaluation techniques as probability calculus,
Bayes theorem, parametric method, algebraic extraction or fast algorithm may
be employed. A symbolic reliability expression or simplified reliability
expression may be obtained by using the concept of logical signal relations or
the concept of exclusive operator.

For a large/complex system, computer programs provide the set of minimal
cuts and calculates the minimal-cut approximation to system reliability. The
literature on cut set generation techniques for a system which is relevant to
this survey is [9, 15, 17, 24, 57, 83]. Based on minimal path (tie) sets,
reliability approximations for a large/complex system can be obtained. And
Monte Carlo method for system reliability evaluation has been found to be
efficient when component reliabilities are sampled by Monte Carlo method.

In a large communication network, the terminal reliability between a

given pair of nodes can be determined approximately with the aid of a computer.



24

24

Table 2,4, Reliability evaluation techniques used to determine

the example system reliability of Fig.2.lthrough Fig. 2.13.

Small Complex System

Figure Evaluation Method Applicable References Recommended Method
Fig.2.1 1., Exhaustive Search of Successful States 5, §, 18, 54, 62
2. Direct Canonical Expansion. 3, 45
4. Probability Calculus s, 26, 42, 53
5. Bayes Theorem 5, 14
7. Parametric Methed 11, 12, 3&, 52, &2 7
Fig.2.2 1. Exhaustive Search of Successful States 3, 8, 18, 34, 62
2. Direct Canonical Expansion 5, 45
3. Probability Map - 5, 14, 34, 45 3
4. Probability Calculus 5, 26, 42, 53
5., Bayes Theorem 5, 14, 84 5
8. Algebraic Extraction 2, 3, 43
Fig. 3,3 1. Exhaustive Search of Sﬁccesﬁul States 3, 3, 18, 54, &2
2. Direct Canonical Expansion 5, 45
3. Probability Map 5, 14, 34, 45 3
4. Probability Calculus 3, 26, 42, 53
3. Bayes Theorem s, 14 5
6. Flow Graph Method 8, 47, 49
7. Parametric Method 11, 12, 36, 52, &2 7
8. Algebraic Extraction 2, 5, 45
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Table 2,4(Continued) 25
Moderate Complex Sysctem
Figure Evaluation Method Applicable References Récommended Method
Fig. 2.4 1. Exhaustive Search 5, 8, 18, 54, &2
2. Direct Canonical Expansion ‘ 5, 45
4, Probability Calculus 5, 26, 42, 53
S. Bayes Theorem 5, 14 5
6. Flow Grapnh Method 8, 47, 49 5
§. Algebraic Extraction 2, 5, 45
9. Fast Algorithm 2, 5, 6, 34, &7 9
11. An Efficient Method for a General- 2, 6, 14, 16, 28, 37,
Network 38, 41, 55, &5 11
12. Symbolic Reliability Evaluation Using 3, 6, 7, 14, 18, 42,
Logical Signal Relations 45, 47, 33, 63, &7 12
Fig. 2.5 4, Probability Calculus 3, 26, 42, §53
5. Bayes Theorsm 5, 14 3
8. Algebraic Extraction 2, 5, 45
9. Fast Algorithm 2, 3, 6, 34, &7
11. An Efficisnt Method for a General 2, 6, l4, 16, 28, 37,
Network 38, 41, 35, 83
Fig. 2.6 10, Algorithm for SYMRAP 13, 18, 28, 27, 28, 32,

33, 36, 39, 41, 49, 52

11. An Efficient Method for a General 2, &, 14, 16, 28, 37,
Network 38, 41, 35, 55 11
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Figure Evaluation Method Applicable References Recommended Method
Fig. 7 13. A computer Program for Approximating 13, 36, 52, 62 13
System Reliability
14, An algorithm to determine the 8, 9, 25, 36, 46,
reliability of a complex system 62
15. A Boolean algebra method for computing 1, 16, 18, 27, 28,
the terminal reliability in a 39, 47, 52, 58,
communication network 67
16, A Monte Carlo method for system 71, 74, 76, 77, 18,
reliability calculations 79, 81
Large Complex System
Figure Evaluation Method Applicable References Recommended Method
Fig. 8 13. A computer program for approximating 13, 36, 52, 62
system reliability
14, An algorithm to determine the 38, 9, 25, 36, 46, 14
reliability of a complex system 62
15, A Boolean algebra method for 1, 16, 18, 27, 28,
computing the terminal reliability 39, 47, 52, 58,
in a communication network 67
16. A Monte Carlo method for system 71, 74, 76, 77, 78,
reliability calculations 79, 81
Fig, 9 13, A computer program for approximating 13, 36, 52, 62
gystem reliability
14, An algorithm to determine the 8, 9, 25, 36, 46,
reliability of a complex system 62
15. A Boolean Algebra Method for computing 1, 16, 18, 27, 28, 15

the terminal reliability in a
communication network

16, A Monte Carlo method for system
reliability calculations

39, 47, 52, 538, 67

71, 74, 76, 77, 78,
79, 81
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Figure Evaluation Method Applicable References Recommended Method
Fig. 10 13. A computer proeram for approximating 13, 36, 52, 62
system reliability
14. An algorithm to determine the 8, 9, 25, 36, 46,
reliability of a complex system 62
15. A Boolean algebra method for computing !, 16, 18, 27, 28, 15
the terminal reliability in a 39, 47, 52, 58,
communication network 67
16. A Monte Carlo method for system 71, 74, 76, 77,
reliability calculations 78, 79, 81
Fig. 11 10. Algorithm for SYMRAP 13, 18, 26, 27, 28, 10
32, 33, 36, 39, 41,
49, 62
11, An efficient method for reliability 2, 6, 14, 15, 28,
evaluation of a general network 37, 38, 41, 55, 65
13, A computer program for approximating 13, 36, 52, 62
system reliability
15, A Boolean algebra method for computing 1, 16, 18, 27, 28,
the terminal reliability in a 39, 47, 52, 58, &7
communication network
Fig. 12 10. Algorithm for SYMRAP 13, 18, 26, 27, 28, 10
32, 33, 36, 39, 41,
49, 62

11. An efficient method for reliability
evaluation of a general network

13. A computer progtam for approximating
system reliability

15. A Boolean algebra method for computing
the terminal reliability in a
communication network

2, 6, 14, 16, 28, 37,
38, 41, 55, 65

13, 36, 52, 62

1, 16, 18, 27, 28,
39, 47, 52, 58, 67
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References Recommended Method

Fig. 13

13, A computer program for approximating
system reliability

14, An algorithm to determine the
reliability of a complex system

15, A Boolean algebra method for
computing the terminal reliability
in a communication network

16, A Monte Carlo method for system
reliability calculations

13, 36, 52, 62
8, 9, 25, 36, 46,
62

1, 16, 18, 27, 28,
39, 47, 52, 58,

67
71, 74, 76, 77, 78, 16
79, 81
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. Miscellaneous methods for evaluating complex system reliability are a
moment approach [35], a block diagram approach [56], a Bayesian decomposition
method [50], a decomposition method by a Boolean expression [51] and such
methods in [72, 75, 80, 82]. The evaluation techniques found in [1, 10, 60,
61, 64, 73] have been demonstrated to be effective when applied to network

reliability problems.

S. CONLUDING REMARKS

All the evaluation techniques employed in the papers surveyed have limited
success in solving some large/complex system reliability evaluation problems.
Few techniques have been completely effective when applied to large system
reliability problems.

We suggest the following new directions for additional system reliability
evaluation work. First, a generally efficient graph partitioning technique
for reliability evaluation of large, highly interconnected networks should be
found. Second, extend thé single objective problems to include multiple ob-
jective system reliability problems. One of the major reliability problems
in the planning and design of a new system is the development of a system
reliability goal. A reliability goal is the basis fof comparing alternate
system designs and deciding upon an optimal design policy.

A system designef must decide on what trade-offs he can make with the
reliability engineer to achieve the reliability objective. These trade-offs
may involve sacrificing weight, volume, cost or similar parameters in favor
of achieving the prescribed reliability.

To cover all the techniques in a discussion of this sort is practically
an impossibility, since the system reliability evaluation techniques are still
in the process of evolution and we are continually learning more. We
have tried our best to compile and explain all the current and significant

works in this area in a systematic and effective manner.
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This survey is a sequel to our previous literature surveys on optimization
of system reliability [68], on availability of maintained systems [69], and on

system effectiveness models [70].
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CHAPTER 3  EVALUATION TECHNIQUES FOR THE SMALL COMPLEX AND MODERATE COMPLEX
SYSTEMS RELIABILITY
Reliability evaluation techniques have their inherent characteristics
and specific superiorities to solve complex systems reliability problems.

In this chapter, various evaluation techniques are treated to:

1) evaluate the overall reliability of a system which cannot be reduced to
a series-parallel model, such as a Delta-Star configuration, an alternate
or bridge type connection, when the reliability of the elements are known,
2) find the simplified reliability expression, the symbolic reliability
expression or the terminal-pair reliability expression of a general
network;
3) compute the reliability of the system when its configuration is a moderate
size.
In the previous chapter, references for system reliability evaluation tech-
niques have been reviewed. The computational procedures of the evaluation
techniques for the small complex and moderate complex system will be described
in this chapter.
These evaluation techniques are:
1. Exhaustive search of successful states
2. Direct canonical expansion
3. Probability map method
4, Probability calculu§
5. Bayes' Theorem
6. Flow graph method
7. Parametric method

8. Algebraic extraction



30

9. Fast algorithm

10. Algorithm for SYMRAP (Symbolic Reliability Analysis Program)

11. An efficient method for reliability evéluation of a general network

12. Symbolic reliability evaluation using logical signal relations

Among these evaluation techniques, Exhaustive search of successful states,

Direct canonical expansion, and Probability map method are for the small
complex sygtem reliability.. But, as the size of the system configuration
becomes moderate, the pfoblem one usually faces is computational difficulty
and time consuming. So firstly those evaluation methods, having been success-
fully applied for the moderate complex system reliability problems, will be
reviewed, classified, and modified. To cover a comprehensive discussion,
various evaluation techniques will be used to solve various system reliability
problems. Before dealing with each specific evaluation technique to system
reliability problems, the following assumptions are made:

1) All elements are initially operating.

2) The states of all elements are statistically independent. This means
that the failure of one element does not affect the probability of
failure of other elements.

3) Each element may be represented as a two terminal device

4) The state of each element and of the system is either good (operating)
or bad (failed).

5) The nodes of the systems are perfect.
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3.1 Probability Calculus Method in Complex System Reliability
1. Introduciton

In the methods such as Exhaustive Search of Successful States and
Direct Canonical Expansion, the resulting reliability expression is quite
lengthy and requires much computational work for numerical evaluation of

reliability. But this method can avoid the above difficulties.

2. Statement of the Problem and the Computational Procedure

The probability calculus method is bésed on a simple theorem [53]:

PXuY)=PX) +P()-PXnY) (1)

In slight variation of this method, with the minimal cuts, an equation
is derived which gives the system unreliability as a function of the unreli-
abilities of the components; the reliability is obtained by subtracting from
one, A generalization of the above method is by Poincare [42]. Suppose
that the system has m minimal paths. The system reliability is the probabi-
lity that the state which the system is in, characterized as a binary vector,
contains at least one of these minimal paths.

Let Pi, i=1,...,m, be the probability of the ith minimal path; for
example, if the components are statistically independent, Pi would be the
product of the component reliabilities for those components that charac-
terize the ith minimal path. Let R be the system reliability. Then, relia-

bility expression can be written as:

_ m-1
R=3S; -8, +8; ...+ (-1)7's_ (2)
where,
m
Sl = 7 P, i.e.,the sum of the probabilities of the m paths taken
i=1

one at a time.
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S, = the sum of the probabilities of the (g) intersections formed by
taking the minimal paths two at a time.
S, = the sum of the probabilities of the (2) intersections formed by

taking three minimal paths at a time, etc.

Sm = only one term because it is the probability of the intersection of
all paths.
3. Example

In the bridge network case shown in Fig. 2.3,

R = P(S) = P(AB u CD u AED u BEC) (3)
Now,
P(AB) = P_P,; P(AED) = P_P,P_;
P(CD) = PPy;  ~ P(BEC) = PP P
P(AB u CD) = PP+ PPy - PPP P,
P(ABUCD UAED) = PP, + PPy - P.P,P P, +PPP - PPPP
- BPPP #BPPPP
Now,
R = P(AB u CD u AED u BEC)
= PP + PP, +PPP +PPP - papbpcpd - PP P P,
= PPPyPs - PP PP, - PP, + 20 P P PP (4)

In a slight variation of this method, reliability expression could also be
evaluated as;

R=1-[{1 - P(AB)}1 - P(CD)}1 - P(AED) }{1 - P(BEC) }]. (5)
A generalization of the above method can be done by using Poincare's method

(inclusion-exclusion).
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In this example,

Sl = Pan + Pcpd + PanPe + PchPe
S2 = PanPcPd * PanPdPe + PaPhPcPe + PaPcPdPe
+ PchPdPe + PanPCPdPe
S3 = PanPcPdPe + PanPcPdPe + PanPcPdPe + PaﬁchPdPe
S, =PPPP.P

4 "abcde

Substituting the values of S1 through 84 in (2), (4) immediately follows.

4. Conclusions
Reliability expression (4) is equivalent to that obtained by Exhaustive
Search method but is much simpler and requires only 26 multiplications as

compared to 64 in the Exhaustive search case.
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3.2 Bayes' Theorem Applied to Complex System Reliability
1. Introduction

In a complex system where the system elements are not in a purely
parallel or series configuration the reliability can be evaluated by using

Bayes' theorem involving conditional probabilities [14].

2. Statement of the Problem and the Computational Procedure

In solving such problem, a simplified form of Bayes' probability theorem
is used to decompose the complex system into simple substructures. The
theorem states that if A is an event that depends on one of two mutually
exclusive events Bi and Bj of which one must necessarily occur, then the
probability of occurrence of A is given by

P(A) = P(A, given By) - P(B;) + P(A, given Bj) + P(B)) (1)

Let Q5 represent the probability of system failure, R, the probability

k
that component K is good, and Qk the probability that component K is bad.
Then we obtain the following expression for system unreliability,

Q5 = Qs(given K is good) - Rk + Qs(given K is bad) - Qe (2)
The corresponding system reliability Rs is

R, =1 -0Q (3)
The assumption is made that the reliability of tﬁe components are independent

edach other.

3. Example
For applying this theorem to the reliability evaluation of the bridge
network; (see Fig. 2.3) let A be the event of system success; Bi be the event

of branch E being good and Bj be the event of branch E being bad.
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R

P{S} = P(S/E) - P_+ P(S/E) - (1 - P.) (4)

To evaluate P(S/E) and P(S/E), the bridge network has been simplified as

directed networks shown in Fig. 3.2.1 and Fig. 3.2.2 respectively. Figures 3.2.1

and 3.2.2 are purely series parallel networks; therefore, by inspection;

P(S/E)

1}

(Pg + Py = PP (Py + Py = PyPy)

P(3/B) = PP, + PP, ~ P RPP

Substituting these values in (4); the reliability expression is obtained.

4, Conclusion
A simplified form of Bayes' theorem using conditional probabilities can

be used to decompose the complex system into simple substructures.
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p—o OUT

Fig. 3.2.1. System graph with branch E short.

[-S— ! o OUT

Fig. 3.2.2. System graph with branch E open.
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3.3 Flow Graph Method Applied to Complex System Reliability
1. Introduction

A flow graph approach for reliability analysis is applied to the
general case with elements in non-series-parallel combinations. The relia-
bility of networks for elements with open or short failures is analyzed

with flow graphs.

2. Flow Graph Method

In this method, all the branches in the network must be directed.
Therefore, a given graph is decomposed into a number of graphs with all
possible allowed directions of the interconnecting branches.

In a situation where an individual element can fail in either of the
two ways, viz., open circuit or short circuit, the flow graph approach is
very convenient.

Reliability in this method is given by:

R = F0 - Fl + F2 - F3 # oy (1)
where,
FD = Sum of the probabilities of all forward paths.
F1 = Sum of the probabilities of all subgraphs with one loop.
FZ = Sum of the probabilities of all subgraphs with two loops and so
on.
3. Example

Take the example of the bridge network of Fig. 2.3. Element E is an
interconnecting element and cannot be given fixed orientation.

Since element E may be oriented in either direction, two separate
networks with all other elements having their orientation the same, except

that of E being developed are shown in Fig. 3.3.1(a) and (b).



A
In Out
C
(a)
A B
In )PE Out
C D
(b)

Fig. 3.3.1. Directed graphs of the system,

-
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The solution of these two networks by graph theory are found separately.

Its two directed graphs are shown in Fig. 3.3.1. FO, Fl’ F2 can be found

from Figs. 3.3.2, 3.3.3 and 3.3.1 respectively.

FO - Papb ¥ Pcpd * papdpe * Pbpcpe

F1 = Papbpdpe * Papbpcpd * Papcpdpe
+ PanPcPe + PchPdPe

F2 = panPcPdPe + PanPcPdPe

Substituting these values in (1), the following expression is obtained.

R = Pr{AB u CD v AED u BEC}
= Pan + PcPd + PanPe + PchPe - PanPcPd
= PaFPaPe = PaPePyPe = PPLPcFe = PpPePyPy
+ 2PanPcPdPe |

Consider another example of Fig. 3.3.4(a) consisting of three elements which can
either open or short.

The flow diagram for paths of short failures is shown in Fig. 3.3.4(b).
The event of failure of the network due to shorts is

S = 1.2 u 1.3, (2)

The flow diagram for cuts for the consideration of open circuit is given
in Fig. 3.3.4(c). When applying the topological method it is often easier
to write all possible paths; in that case, one can write down the cuts of
a system by finding the paths of the dual network for the original network.
Thus the event of failure due to opens of the elements is

0= 10 U 2030

The open and short events are mutually exclusive; so their probabilities add.
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A B

In out In Tue

C D

A B

E
In o L Out
Out In
D E

Fig. 3.3, Paths of the network.
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Out

Fig. 3.3.3. Subgraphs with one loop.
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a In 1 . QOut
(a)
3
a, e
(b) In > Out
qu
92 93
(c) In. o —— > Out
Q1
qsl s2
(d) o >
E %3 :
In \ E
: :-—-—-c Out
' E 92 93 :
K > 9_ 1
91

Fig. 3.3.4. Network of three elements.
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q=4q, *qy = P{S + 0} = P(S) + P(0)

= (qlquS T 15935 T 915925935

* (@9 *90930 - 910%20%307 -
Graphically the situation is as shown in Fig. 3.3.4(d). Branch 1 of the diagraph
considers the short failures and branch 2, the open ones.
Finally, the reliability of the system is R = 1 - q.
To distinguish between mutually exclusive events and otherwise in a
diagraph we may use dotted lines for the former and firm lines for the latter.
Such a situation is shown in the diagraph of Fig. 3.3.4(d). This approach

will be found very convenient for complicated networks.

4. Conclusions

For large and complex systems (especially non-series-parallel networks)
this approach is quite'straight forward. The method given for the analysis
of networks whose elements can short or open is easy to apply. This method

can also be used directly for any network configuration.

-
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NOTE:
Open and Short Circuit Failures

Consider a simple parallel unit composed of two elements, A and B,
each of which can fail in either of two ways - open failure or short failure.
Since a short in either of the two elements will result in unit failure, the
assumption that individual path failure does not result in unit failure is
not always true.
Reliability of Basic Parallel Configuration
Definition of Failure

For two elements in the active-parallel redundant configuration shown
in Fig. 3.3.5 the unit will fail if 1) either A or B shorts, or 2) both A
and B open,
Since events (1) and (2) are mutually exclusive, the event of failure due
to shorts is

S=ASUBS
The event of failure due to opens of the elements is

0= AOBo
the probability of unit failure is

q=q  +q, =Pls + 0} =P(8) + PO)

5

n

9as © s " ass * Yaotbo
and the reliability is,

Bl - Wl =g I - Bl - G s
Reliability of Basic Series Configurations

The reliability of a series system in which both short-circuit and open
failure are possible is estimated, with a two-element series unit used for

illustration, shown in Fig. 3.3.6.
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A
g
9
B
Fig. 3.3.5. Basic Parallel Configuration.
e
A B

Fig. 3.3.6. Basic Series Configuration.
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The unit will fail if 1) both A and B short, or 2) either A or B opens.
Note that the definition of failure for a two-element parallel unit is‘exactly
the opposite.
The respective events of these two failures are:
S=A8B

s §

0=A UB
0 0

The probability of unit failure is

Q9 =q +q,=P{S+0}=P(S) + PO
= 95%s T %0 T Yo Yaotbo

and the reliability is,

R=1-9q=(1-9,)0E -9, -q,.9,.
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3.4 Parametric Method Applied to Complex System Reliability
1. Introduction
In this approach, probability is treated as a Cartesian point and a
parametric value is attached to it. Using the parametric values, the reli-
ability of any complex structure can be easily evaluated. Evaluation of reli-
ability in single-bridge and double-bridge networks can be done in a straight

forward manner using the delta-star conversion technique.

2. Parametric Method

Let the probability of success of any event be x and probability of
failure be y = 1 - x. And the elements of the system here are assumed to be
in two discrete states, either operation or failure. Introduce the para-

meters ¢ and 6 defined by the relations

y/x = (1-x)/x = y/(1-y).

(11}

tanse

¢
Then

x = 1/(¢+1) and y = 1/(1+cot8) (1)

To evaluate the reliability of complex structures such as bridge networks,
a delta-star conversion technique is introduced. The delta network and the
equivalent star network are shown in Fig. 3.4.1.

One can go to C from A by traversing the series elements A and C in
the star network. In the delta network, there are two parallel paths to
go from A to C, through the element AC and through the elements AB and BC
in series.

Therefore we have

]

(A and C) in series = [(AB and BC) in series] in parallel with AC

(_A " B) " n [(AC n BC) n " _‘l " 1] " AB

(B n C) " 1"t

[AB " AC) n " ] n 1] 11 BC
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(9pp*¢pc) %ac
bp* 9 = T+g

@ac*tpc) %
¢A+¢B= 1+¢

c. o PaB*ac) g
b * o¢ = T+o 2)

Solving (2), we get the following delta-star conversion equations:

bre ¢ $pm @ bp~ P
_ %ac %aB _ ®pc %aB _ *Bc *ac
¢A = "‘"—'—‘—'—"'—l+¢ 2 ¢B = l+¢ ] ¢C 1+¢ (3)

If ¢AB’ ¢BC’ and ¢AE of ‘the delta structure are known, the equivalent
¢A’ ¢B, and ¢C of the star elements can be found using (3). Here the
assumption is that we are dealing with components having a relatively high

value of "x", i.e., ¢ << 1.

3. Example
Example 1 Single-Bridge Network

The network is shown in Fig. 3.4,2(a). .¢1, ¢3, and ¢4 are in delta. The
equivalent star values are ¢a, ¢b’ and ¢c. The reliability is

R = 1/(1+¢g) (4)
where

A PR N

-
[}

919,44 (1+9)

1]

4195/ (1+9)

O
4

= 050,/ (1+9)

=
hi

bp + 05 + 0y



b
2 %y
%3
¢4 ¢ ¢5
(a)
b
o ¢y
—T ¢a n E=ESEEE
qJc C ¢5
(b)
b4
IO ¢a n A d
¢e
(c)
n d
ba be
(d)
a ¢g d
(e)

Fig. 3.4.2. Single-bridge network.
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1

bp = 040,/ (144 +6 ).

In the very high reliability region, ¢g is approximately

R=d
"’

P10y * BP0 * D029, + 9,50c (5)
If element 3 has unit reliability (¢3 = 0), then

by = 0104 * dgbs (6)

The values obtained by the classical method (event space method) and

those by the parametric method are shown in Table 3.4.1 for several examples.

Example 2 Double-Bridge Network
The network is shown in Fig. 3.4.3(a). The network reduction using delta-
star conversion is done as shown in Fig, 3.4.3(b) and 3.4.3(c). The reli-

ability is
R=1/ (.l+¢g3 .

where

ECSTRRIOREN
+ ¢
I+ {¢b+¢2+¢c+¢d+¢5+¢ej f




Table 3.4.1

Single-Bridge Network
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System Reliability

X1, X2, X3, X4, X5 Classical Parametric
) Method Method .
0.999, 0.998, 0.997, 0.996, 0.995 0.9999859 0.9999859
0.99, 0.98, 0.91, 0.9, 0.97 0.9989056 0.9989211
0.98, 0.79, 0.96, 0.81, 0.97 0.9883%14 0.9884202
0.8, 0,91, 0.90, 0.9, 0.88 0.9790449 0.9792424
0.94, 0.93, 0.92, 0.91, 0.9% 0.9868051 0.9869310
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9104
%2 =T+ 3
+ where
¢ = ¢,9./(1+¢)
L =6+ by + 0,
= 1
by = 040,/ (1+9) ]
b, = $505/ (1+4) )
} where
b, = b.bo/ (1+)
w e b= by + b + b
dp = b500/(1+9)

If the values of ¢ are very small, ¢g can be directly written as

Table 3,4.2 gives the values obtained by the classical method and this
parametric method.

From Tables 3.4.1 and 3.4.2, it can be seen that the parametric method yield:

values that are a little higher than those given by the classical method.

4. Conclusions

The evaluation of system reliability using the parametric operator ¢
is simple and straight forward. The cumbersome process of identification
of cut sets in the minimal cut set method or evaluation of probability

corresponding to every conceivable state in the event space method is

ayoided.
The values obtained by the classical method and that obtained by
this parametric method are in close agreement, provided that the approximations

are reasonable,.
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3.4.2

Double-Bridge Network
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System Reliability

X1, X2, X3, X4,
X5, X6 X7s X8: Classical Parametric
Method Method
0.999, 0.998, 0.997, 0.996, 0.9999676 0.9999676
0.995, 0.994, 0.993, 0.992
0.99, 0.98, 0.97, 0.96, 0.9965101 0.9965768
0.95, 0.94, 0.93, 0.92
0.96, 0.95, 0.94, 0.93 0.9863162 0.9865903
0.92, 0.91, 0.%0, 0.89
0.94, 0.93, 0.92, 0.91, 0.9758914 0.9763668
0.90, 0.89, 0.88, 0.87
0.85, 0.85, 0.85, 0.85, 0.9240378 0.9248903
0.85, 0.85, 0.85, 0.85
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Delta-star conversion

Technique: Physical meaning

Power Systenm

LOAD

o~ o

Fig.”§.4.4. Power system

G : Generator
Ll’ Lz, L3: lines which connects Generator and LOAD
L4, L5 interconnector between Generators.

Apply the parametric method to a simple power system as shown in Fig. 3.4.4.
The reliability diagram of the above problem is shown in Fig. 3.4.5(a). The

network reduction proceeds, as shown in Fig. 3.4.5(b)-(e). The reliability is

R=1/(1 .
/(+¢p)
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d¢

(b)

by

!

(d)

¢

Fig. 3.4.5. Network reduction.

8}
(e)




The reliability of lines Ll’ L2, and L3 is 0.996.
The i of interconnectors L4 and L5 is 0.994.

The o of generators Gﬁ, G7, GS is 0.792 or 0.898
The system reliability

0.792

-~
1

0.9910 ° when x

0.9989 when X 0.898

]
i

- 38
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3.5 Algebraic Extraction of Exclusive Terms in Complex System Reliability
1. Introduciton

In order to derive the reliability expression, probability calculus,
Bayes' Theorem, Flow Graph method and parametric method are presented.
But these method become very tedious in case the number of variables is
large. In a general system, the number of elements and hence the number of
variables becomes large in practically all cases. To avoid these limitations,

an analytic method is presented [2, 5].

2. Formulation of the Problem

The method consists in rewriting S in this way that all its terms are
mutually excluﬁive. To do this, paths are first arranged in a manner that the
first path uses fewest literals, the next one more than that and so on. The
first term is taken as it is. The second term is expanded about variables
which have oc;urred in the first, but not in the second; and thus this term is
rewritten such that it is disjoint with the first term. This is repeated

for all the terms.

3. Example

In the bridge-network case, shown in Fig. 2.3,

S = AB u CD v BCE u ADE (1)
Letting AB as it is, and expanding CD about A, we have:

CD = ACD u ACD
Now, ACD is disjoint with AB and expanding ACD about B,

ACD = ABCD u ABCD
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Now, ABCD is contained in AB and ABCE is disjoint with AB. Therefore, dis-

joint portion of CD is:

CD(dis) = ACD u ABCD (2)
Similarly

BCE(Dis) = ABCDE (3)

ADE (Dis) = ABCDE (4)

Substituting (2) through (4) in (1); we have
S(dis) = AB u ACD u ABCD u ABCDE u ABCDE (5)

All the terms here are mutually disjoint. Therefore, reliability expression

directly follows as:
R = PPy * 4P.Pg * Pa%PPg * 9,PpP 93P * P99 P3Pe | (6)

4. Conclusions
The expression (6) is the same as the one derived by other method and
has all the advantages but not the disadvantages of such as probability map

method, etc.
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3.6 Fast Algorithm Applied to Complex System Reliability
1. Introduction

An algorithm is developed to obtain a simplified reliability expression
for a general network. 1In an attempt to simplify the reliability expression,
Hurley [34] used a graphical method. An analytical method has been presented
by Aggarwal, Gupta and Misra [2]. The algorithm described here gives the
simplified reliability expression directly without the intermediate steps

of [2].

2. Formulation of the Problem
If there are m success paths in a general network and their associated

sets are P,,P »P; System success and reliability can be described by

NP S
S = Pl u P2 U ... U Pm (1)
R=p {st=Pp UP,u... U Pm} (2)

The sets p's are not disjoint (mutually exclusive); therefore,

R 2 Pr{Pl} ..+ Pr{Pm} (3)

If the P's are made disjoint --still retaining the property of system success

--reliability is at once known.

The method for making P's disjoint is easy if paths are enumerated in

such a way that the path having fewest branches is listed first and so on.

To select P from PZ’ expand P, about a set K1 (corresponding to

Z’dis 2

a branch Kl) < P. not contained in P, as;

1 2

P, = (P, n X)) v (Py,n Kl) (4)
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Now if (P2 n KlJ c PI; (P2 n Kl) is dropped from further consideration

(because it is already included); otherwise it is further expanded about a
set K2 (corresponding to another branch KZ) and so on.

1f

(P, n Kl) n(By) =2 (5)

subset (P, n Kl) is disjoint with P..
If however (5) is not true, this subset is further expanded about K2
and so on.

Ultimately, we shall find all subsets of P2 which are disjoint with Pl'

Union of all these subsets if P .
, =T 2,dis

nP. = ¢ for all

Similarly, we find P. Jdis 3

i dis for all j such that Pj

i < j. This step is fastest if we first expand Pj about a set which contains
maximum Pj's (i < j), and so on. This corresponds to expanding about a
branch which has occured in Pi‘s most often. Then,
m
Sdis = u P (6)

The reliability is;

m
R = Pr{Sdis } = P_{ : P }

} (7)
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The notations employed here are described as follows:

Ps  dis
Sdis

adjacency

set indicatiﬁg successful operation of branch x.
set indicating unsuccessful operation of branch x.
null set.

reliability of branch x.

unreliability of branch x.

set indicating successful operation of system.
reliability of system: Pr{S}.

number of branches in system.

number of paths in system.

set formed by the intersection of all sets which indicate
successful operation of branches in path i.

vector corresponding to P..

vector EEi for all isj.
i

modification of Ei where 0 in position k is replaced by 1

(indicates that an additional branch k is also successful).

modification of Ei where 0 in position k is replaced by -1

(indicates that branch k is unsuccessful).
subset of Pj such that Pj, dis " Pi = ¢, for all i<j.
modified S such that all terms are mutually disjoint.

intersection (for sets indicating successful operation of a

branch).

3. Computational procedure

The technique discussed in section 2 can be put in the following

procedures.
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Find all m path of the network. This can be done by a number of
techniques.

Define a b dimensional vector Ei (i =1,2,...,m) corresponding to Pi

such that element k of this vector is 1 if the set K o Pi and 0 otherwise.

0]
™~

Define T, = i i=1,2,...,m (8)
Joig :

Pl dis = Py 5 =1 (Initialize) ‘ : (9)

Let j =3 + 1 (10)

{A) If there are any nonzero entries in Tj corresponding to zero entries

in Ej’ record their positions in order of their descending magnitude

-~

in Tj' Let thesg be KI’KZ""’Kr

This ordering helps in getting the minimal expression fast.

(B) Decompose Ej in two components Ej[Kl) and Ejtil). This corresponds

1"
Ej(Kl] and Ej(Kl) are formed by replacing 0 in position K1 in Ej by

to expanding Pj about set K

1 and -1 respectively.

If Ej(Kl) contains 1's in all the positions where there have been

1's in any Ei(i<j); then §j(K1) is DROPPED from further analysis
because it is already included in a previous path. If Ejtil) contains
-1 in any position where there is 1 in E, for all i<j; then gj(Kl) is
RETAINED as a disjoint subset.

If Ej is not dropped and/or gj(Rl) is not retained, then these are

further decomposed about K, and so on, carrying out the dropping

2

and retaining tests at each step. Union of the retained component

of E. is P, v
| j, dis

If j<m, go to step S.



65

7. Apply equation (7) to derive the reliability expressiom.

4. Example

Examgle 1

The bridge network case shown in Fig. 3.6.1 is taken as an example. The

sets associated with the paths in this network are:

P. =AB ; P,=CD ; P, =BCE ; P4 = ADE.

Fig. 3.6.1. A bridge

network ——

Corresponding gi's and Tj's are -

Branches ; a b c d e
§1 =[ 1 1 0 0 0 ]
gz =[ 0 0 1 1 0 ]
§3 =[ 0 1 1 0 1 ]
E, = [ 1 0 0 1 1 ]
Tl = [ 1 1 0 0 0 ]
?2 =[ 1 1 1 1 0 ]
?3 =] 1 2 2 1 1 ]
T, =[ 2 2 2 2 2 ]

~4
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Pl, dis = Py = AB (11)
Consider EZ and TZ; Kl = A, which indicates expansion of P2 = CD about A;
therefore,

§2[A) =1 0 1 1 0]

gzci) = [-1 0 1 1 0 ] Retain ACD

(Disjoint subset)

gz(A) indicates ACD while,gz(ﬁ) indicates ACD. Since ACD ¢ AB, further

decompose about KZEB]. But (ACD) n (AB)

&, therefore it is retained.

Hence,
92, gis = ACD (12)
(ABCD)
E;(BIJA) = [ 1 1 1 1 0 ] DROPPED
(ABCD)
52[B|A) =[1 -1 1 1 0 ] Retain
(Disjoint subset)
§2(B|A) + ABCD while gz(ﬁlAj + ABCD
(since ABCD < AB,)
Drop ABCD
. o _ , BCE SXP30d ., ut D and A
consider E3 and T3 3 Kl =D, K2 = A (. BCDE < CD )
a b c d e
BCDE
EL (D) =[0 1 1 i 1] DROP
_ BCDE
E;(D) =[o0 1 1 -1 1 ] CONTINUE
- (ABCDE)
E;M () =[1 1 1 -1 1 ] DROPPED
E<(D)(A) = [-1 1 1 -l 1 ] Retain
Hence, -
ABCDE (13)

,?3, dis



Consider E4 and T4 : Kl = C, K2 =B

E, (© = [1 0 1 1 1 ] DROP

134(6) = [1 0 -1 1 1 | CONTINUE

§4(C)_(B) = [1 I -1 1 1 | DRoP

EC® = [1 -1 -1 1 1 ] Retain
Hence, .

P, dis ABCDE (14)
Using (7) and (11) to (14) ; the reliability is

o 5
= = = !
Bow PlSquel ™ Brtgly By it =451 Po! Py gie

= AB + ACD + ABCD + ABCDE + ABCDE.

67
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ExamEle 2

The algorithm is illustrated with an example from [2] given in Fig. 3,6.2.

In

Fig. 3.6.2. A General Network

The sets associated with the paths in this network are: P1 = FG; P2 = ADG;

= ABC,; P4 = CEF; P5 = ABEG; P6 = ACDE; P7 = BCDF.

Corresponding Ei's and Tj's are -

Pq

Branches a b c d e £ g
El = [0 0 0 0 0 1 1] FG
E2 = [1 0 0 1 0 0 1] ADG
53 = [1 1 1 Q 0 0 0]
E4 = [ o 0 1 0 1 1 0]
E5 = {1 1 0 0 1 0 1]
EG = [ 1 0 1 1 1 0 0]
E7 = [ O 1 1 1 0 1 0]
Tl = [0 0 0 0 0 1 1]
T2 = [ 1 0 0 1 0 1 2]
T3 = [ 2 1 1 1 0 1 2]
T4 = [ 2 1 2 1 1 2 2 ]
Ts B [ 3 2 2 1 2 2 3]
T6 = [ 4 2 3 2 3 2 3]
T, = [ 4 3 4 3 3 3 3]
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Py, ays P ™ TG (15)
Consider E2 and T2; Kl = F, which indicates expansion of p2 = ADG about F;
therefore,

E,(F) = [1 0 a 1 0 1 1] DROP ADFG

E2(§) =‘{ 1 0 0 1 0 «1 1 ] RETAIN ADEG

(disjoint subset)

Ez(FJ indicates ADFG while EZ[F)‘indicates ADFG. Since (ADFG) c (FG), EZ(F)
is dropped.

Also (ADFG) n (FG) = &, therefore it is retained. Hence,

= ADF 16
Py, gis = ADFG (16)

Consider E3 and TS;

In
‘11
~
]l
o

E(G) =[1 1 1 0 0 0 1] CONTINUE
E,(§) =1 1 1 0 0 0 =-1] RETAIN
E.(@() =[1 1 1 0 0o 1 1] DROP
E.(G)(F =[1 1 1 0 0 -1 1] CONTINUE

[1 1 1 1 0 -1 1 ] DROP

]

E<(6) (F) (D)

ES[G)(F)(ﬁ] [ 1 1 1 -1 0o -1 1 ] RETAIN

Therefore, P = (ABCG) u (ABCDFG)

3, dis

= (ABC) n (G u DFG) (17)
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Consider E4 and T4 H 1 =

Branches a b c d e £ g
E, (G =[0 0O 1 0 ) 1 1] DroP
34(6) =[0 6 1 0 1 1 -1] Continue
E4(5)(A) =[1 o 1 "0 1 1 -1] Continue
EA(E)LK) = [-1 0 1 0 1 1 =-1] Retain

E4(§)(A)(D) = [1 0 1 1 1 1 -1] Continue

E4(5)(A)(ﬁ) = [1 0 1 -1 1 1 -1] Continue

E@@w®e =1 1 1 1 1 1 -1] prop
E4(§)(A)(D)(§) = [1 -1 1 1 1 1 -1] Retain
34(5)(A)(ﬁ)(n) = [1 1 1 -1 1 1 -1] DROP
Ea(é)(A)(ﬁ)(ﬁ) = [1 -1 ) S | 1 1 -1 ] Retain
P, dis " ACEFG + ABCDEFG + ABCDEFG

= CEFG(A + AB) = CEFG n (A u AB) (18)



Consider E5 and T5 H Kl =
Branches a
Eg(F) = [1
ES(?) = [1
E® @ = [1
EE@® = [1
E,(F)(D)(C) = [1
E((F)D)(C) = [1
Ps 446 ABCDEFG
Consider E6 and T6 5 Kl =
Branches "a
E, (G) = |1
E¢ (G) = [1
E@® @ = [1
E@E = [1

B, @ @ (®) = [1

1]
—

E, (@) (F) (B)

Pﬁ,dis = ABCEDFG

DROP

CONTINUE

DROP

CONTINUE

DROP

Retain

(19)

DROP

CONTINUE

DROP

CONTINUE

DROP

Retain

(20)
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Consider E7 and T7 s K, =2 A, K, s E, K

Branches a b c d
E,(8) = [1 1 1 1
E7(A) = [-1 1 1 1
E7(K)(E) = [-1 1 1 1
E, (&) (E) =[-1 1 1 1
EL (@@ =[-1 1 1 1
E./.(K)(E)(E) = [-1 1 1 1

P = ABCDEFG

Using (7) and (13) to (19) ; the Reliability is :

R=P {8 f
r

ate! = Pplil) P1 4is

72

DROP

CONTINUE

DROP

CONTINUE

DROP

Retain

(21)

= Png + Panqug - PanPc('qg + qdqug)

o PcPePfqg(qa ¥ Paqb) ¥ PanchdPequg

+ PaqucPdPeqfqg + anchquePfq

g

(22)
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The above steps for selecting PS, dis from P3 can be explained in terms of
sets and Boolean operations as follows.
P3 = ABC is expanded about G to give ABCG and ABCG. (ABCG n (Pi) = ¢
(for i = 1,2); therefore it is retained. ABCG cannot be dropped and is
therefore expanded about F as ABCFG and ABCEG.
Now (ABCFG) < (FG), therefore it is dropped. But ABCFG cannot be retained.
So, it is expanded about D as ABCDFGand ABCDFG; the former can be dropped and
the latter can be retained.
4, Conclusions

The algorithm is easy and computationally economical. This is particu-
larly so if the number of paths in the network is large. The resulting ex-
pression (20) in the example 2 is very simple and requires only 32 multipli-
cations for numerical evaluation.

The same example when tried with other known techniques provides a
reliability expression which requires a minimum of 118 multiplications for

numerical evaluation. This algorithm is very effective when applied to

Fig. 2.4 and Fig. 2.5.
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3.7 Symbolic System Reliability Analysis Program (SYMRAP) Applied to Complex

System Reliability.

1. Introduction

In system reliability analysis it is customary to represent the system

by a probabilistic graph G in which each node and each branch (directed or

undirected) has a given probability of being good [41].
This method makes no attempt to generate mutually exclusive events
from the set of paths or cutsets but uses a technique to reduce greatly

the number of terms in the reliability expression.

2. Formulation of the problem

This method depends very much on the systematic arrangement of vari-
ables and their subscripts. Therefore, it is vitally important to define
the notation clearly.

Each branch (directed or undirected) and each node is an element of
the probabilistic Graph G. Let there be a total of y unreliable elements

X X

1: 2? ---:V_Y-
Perfectly reliable elements will be denoted by symbols other than X.

denoted by X

In addition the special pair of nodes under consideration are denoted by

S and T.

Each element Xj is in one of two possible states; good (existence) and

bad (nonexistence). Let there be m paths from S to T, called (S, T) paths,

denoted by Pl, P2, e Pm,
NOTATION
xj Pr{xj is good}
Yj 1 - Xj

1
(x50 X4) L - %y

prime, denotes complement

(1)
(2)
(3)
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o
H
-
o
.,
—
i

Reliability of Pj 4)

el
—
1
av)
]

unrelisbility of P, ' (5)

Pr{P,P.P,} = joint probability that paths P, and Pj

and P, are good (6)

k
4,5,k ok X R (7)

(S, T) terminal-pair reliability

Pr{at least one path from S to T is good}

Pr{P, U P, ... uP} (8)

2

To evaluate the r.h.s. of (8), we use the following theorem on the pro-

bability of the union of m events Al’ Az, . Am:
Pr{Al UA2 UA3 UAm]-
— m —
= [Pr{Al} + Pr{Az} ¥ ey Pr{Am}] <« [1] = m terms

- [Pr{AlAz} # g Pr{AiAj}] + [2] terms
i#j

+ [Pr{AjA A} + Lo+ PRIAAAD] < [g] terms
i#j#k
+ (1™ Pria A, A} < (0] = 1 tern (9)

For the special case m = 2, we have

Pr{Al u A2} = Pr{Al} + Pr{A,} - PI{AIAZ} (10)

Almost every textbook of probability theory [26] proves (10), whereas the
proof of the general case (9) is usually considered an easy extension.

The number of terms in the explicit expression (9) is 2" . 1.



76

Let the events (Al, AZ’ i 305 Am) in (9) be (Pl, P2’ 3 bk Pm), and use

the notation defined in (1) - (8). We obtain the following explicit expres-

sion for the terminal-pair reliability pST [27, 33].

PST = (S, T) terminal-pair reliab.

= Pr{at least one path from S to T is good}

= Pr{Pl U P2 iia U Pm}
m m m m m m
= ) Pr{P;}- ] J Pr{P,nP.}+ )} F § Pr{P.nP,on P}
i=1 i=1 j>i J i=1 j>i k>j o
m
+ - ¥ (-l)m'l Pr{ n P.}
F 1
i=1

=P e Py ¥ e = Py g # Py ¥ o #Pg] + (Py 5 o

i#]

o N e D

+ (P + ... PR
( 1,23 4 s

1,255, usi

(11)

Under the assumption of S-independent element failures, each term in (11)

can be expressed in terms of element probability as follows.

P, =1 xa
) all Xa in path Pj aelP

a; the members of the ith path

P I xa

i,j,k
all Xa in path Pi or ae Pi u Pj u Pk

path Pj or path Pk

(12)

(13)
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Some simplified expressions for terminal-pair reliability are as follows:

P, = probability that P. is good under the condition that
Pig a0 PP PR = 7 Bt By

Pj and Pk are good (14)
TR IR TC S (15)

For the special case of a probabilistic graph G having only 2 paths from S

to T, (11) becomes

Pgp = Py * Py =P =P+ (1 =Py ,/P))P,

Py + (1= Pypy)Py = Py o+ qy p) Py (16)

Observe that (16) achieves a reduction of PST expression from 3 to 2 terms.
By repeated application of such term-reduction technique, simplified expres-
sions for graphs with 1 to 4 (S,T) paths are obtained and given in Table 3.7.1.
The algorithm for generating the reliability expression for the general
case of m paths will be described in the next section in conjunction with
some considerations in digital computer implementation of the method. Observe
the following features in Table 3,7.1.
1. The number of terms in PST is doubled each time the number of paths
is increased by 1.
2. The expression for (k+l) - paths contains all the terms for k-
paths (plus the same number of additional terms).
For the general case of m paths, the explicit expression forPST by
m-1

the present method has 2 terms, which is about half of that contained in

(9), the direct expansion theorem.
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Paths

TABLE 3.7.1

Explicit Reliability Expressions

Reliability Expression

Py

=P Y QP2

=Py T 9 )P2 T U(3P3 T U2,3)P2(3)P3

=P Y QP2 T Y3)P3 T U(2,3)P23)Ps

4

+

G)Ps Y2, mHP2)Ps 7 Y(3,4)P54)Ps

(2,3,4)P2(3,4)P3(4)Pa

78

Number
of
Terms
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This fact alone is not important when m is large. What makes the present
methods useful is that with a suitable technique for generating the sub-
scripts, the great majbrity of terms in PST need not be calculated at all
(see Section 4 ).

From the definition (14), a typical factor Pi in Table 3.7.1 can be

expressed in terms of element probabilities as follows.

Pi(j,k) = Pr{Pi[Pij} = Ixa all Xa in path P, but not in path
Pj and not in path Pk (17)

and if no such Xa exists, then Pigj,k) " 1 and qi(j,k) = 0.
Some simple examples are illustrated with the use of the above reliability

expression.

Example 1. The probabilistic graph G shown in Fig. 3.1.7; the nodes are perfectly
reliable.
Since the graph is series-parallel with respect to terminal-pair (S,T),

we can obtain the following answer by inspection [62]:
pST = XgXg * (xl + X, - x1x2] Xy - XSXSEXI * X, - xlxz) X, (18)

In order to compare the results from various algorithm intended for
non-series parallel networks, we shall disregard the series-parallel struc-
ture, and solve the probability by the general procedure.

There are 3(S,T) paths with the following unreliable elements;

P -X

1 P, « X

140 Py = XXy Poo- XX
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Fig. 3.7.1. A graph with 3 (S, T) paths.

Use the explicit expression for 3 paths in Table 3.7.1. We have, from (12) and

(17)
Py MXpE, 0 Py P Xo¥ys Py W KaXes

-

X

P12y T %10 P13y T *1®ae Pags) T X%y Piqe,m; T Xy
t ] L]
Pgr T X Xy * X XX, + (x1x4) XzXp = XXX, X Xco (19)

The direct application of the new method yields an expression consisting
of 4 terms as shown in (19). This is to be compared with the following result
obtained by the conventional path enumeration method given by (9) which yields

7 terms [33].

Por T X1%g * Xy T Xg¥g 7 Xy Xo¥y 7 X Xg¥yKg - XpXgXXg

+ x1x2x3x4xs (20)

If the exhaustive search of successful states is used, then the answer will

have 17 terms as shown in [33].
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Example 2. The bridge network shown in Fig. 3.7.2; the nodes are perfectly

reliable,

Fig. 3.7.2. A bridge network
Recall that explicit reliability expression for 4 paths in Table 3.7.1.
Pst =P T QP2 T UPs T NU2,3)Ps3)P3 F QP
T 2,0P2)Ps T NUs,4)P304)P

" 9(2,3,4)P2(3,4)P3(4)P4

Py = X1X9» Py = XgXys Py = X XgXy» Py T XgXgX,,

P12) = P1,2/P2 = ¥1X3» Py(3y = Py,3/P3 = Xy Pri2,3) - P1,2,3/Pas

) X1X2X3X4X5 .

X,
ﬁ;3x4x5 2
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s S A e jp = L2
P2(3) 7 P2,3'P3 T Txxx, 3° P14y T P1,4/P4 X E 1’
P = p /p :M = X T =p / = MS =X
1(2,4) 1,2,4"P2,4 7 XX xg 17 Pa4y 2,4'P4 X X X 4’
) / ; X1K2X3X4K5 c q - / i
P1(3,4) T P1,3,4/’P3 4 X KKK X P1¢2,3,4) = P1,2,3,4/'P2,3,4 % %

Since P, is good when Ps and p,are good. Then ql(3’4) = (0 and q1(2,3,4) =0
and the last two terms vanish. The remaining 6 terms lead to the answer

t

. 1 ]
Pgp = XqXp * (X)X5) XgX, + Xy X)XeXy = XXoX XeX,

1 . t
F XXX, = XX, XXX (21)

For this bridge network, the method of [32] also requires 6 terms. The

answer obtained by the Boolean algebra method of [28] has 5 terms as follows:

T 1 1 1 R I
+ X X, X, + X, X X, X, + X XXXy + X XgXcXoX, (22)

A i R

Pt 1%2 1°3%4

However, one is cautioned not to draw conclusions on the merits of
different methods based on just a few simple examples. If we group terms
further, then (21) can be simplified by grouping terms 3 and 4, and grouping
terms 5 and 6. The result is

L | LI |

1
Pgr = XXy * (XXp) XgX, # XoXaX XX, + X X, XXX, (23)

Ex. 3. The probabilistic graph G in Fig 3.7.3:



Fig. 3.7.3. A graph with
unreliable nodes and
branches.

G has both unreliable and perfectly reliable nodes, and has both directed
and undirected branches. The 6 unreliable elements are labeled Xl through

X_. There are two (S,T) paths with the following elements:

6

P1 - leAXZT, P2 - SX3X6X5AX2T.
Therefore,

p:xx p:xxxx p =u=x

1 172 *2 37652 Y1(2) P, 1’
From Table 3.7.1,
]
X, X, + X,X_X_X_X (24)

Pgr = P; ¥ Q(hP2 = X1 %2 T X1 X3%X¥5%;

3. Extension of the Cutset Method to Unreliable Nodes

In the preceding section, we have developed simplified reliability
expressions based on paths. By a dual process, we can also obtain reliability
expressions based on cutsets.

However, in order to handle the case of unreliable branches and nodes,
we need the concept of 'feasible branch-node cutset' (a further generalization

of the mixed cutset in [27]).
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Definition: A feasible (S,T) branch-node cutset of a probabilistic graph
G that can have both directed and undirected branches is a minimal set of
unreliable elements, denoted by C, such that every (S,T) path has at least
one element in common with C. For the sake of brevity, the single word
cutset in here means a feasible (S,T) branch-node cutset.

To illustrate this concept, consider again the graph G shown in Fig. 3.7.3

There

in which the unreliable elements have been labeled X, through X

1 6

are two (S,T) paths with the following elements:

Pl - SXlezT, P2 - SX3X6X5AX2T.

There are four cutsets with elements as follows:

C - x C2 =) XZXS, C3 =2 Xlxsg C4 = K1X6o

The set {XZX } is disqualified as a cutset because it is not minimal. The

3%s
set {A} is disqualified because it contains a perfectly reliable element. Had

node A been unreliable (and labeled X7), then the list would have one more

cutset
CS - X7
Let there be m feasible (S,T) branch-node cutsets Cl’ CZ’ ey Cm. A cutset

Cj is said to be bad if all elements constituting Cj are bad. The same symbol

Cj is élso used to denote the event that the cutset Cj is bad.

NOTATION

g pr{cj } = Pr{C; }is bad (25)

d. L i, (26)



i,j.k j
41,5,k 1-¢ ik
S5T

Pr{C1 u C2 ;

C, are bad

k

(S,T) terminal unreliability

.U Cm}

From (29), it is obvious that

We can let the events (Al, A
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Pr{CiC.Ck} = joint probability that Cutsets Ci and Cj and

(27)

(28)

(29)

Pr {at least one (S5,T) Cutset is bad}

(30)

St Am) in (9) be (Cl, CZ’ sway G

2? m

and use the notation defined in (25) - (29) to obtain an expression for CST’

much the same as we obtain (11) for pST'

The same simplification technique can be used to reduce the number

of terms in C_... A new set of relationships similar to those given in (11) -

ST

(17) and Table 1 will be obtained, the only difference being the following

symbol and word changes.

P .

D -

q =

X -

path -

good -

reliability -

Ex. 4. Xy = 0.8 Xy

¥y
Cutset

bad

unreliability

= 0.95 X

= (.8 x, = 0.85
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Fig. 3.7.4. An example for the Cutset method.

Consider the simple graph G with three unreliable branches and one unreliable
node, shown in Fig. 3.7.4.

There are 3 cutsets;

C; feasible (S,T) branch node cutset of a graph G

From the duals of (12) and (17), we have
€1 % VY30 G T Y4Y3r G537 VoY

. _f1,2 71737 Y1¥372
1(2) c

=y, © = =y
1 1(3) Yo¥s i

2 Y4V3

=23 T CS12.8  Yivo¥ely
23 T ey T Ty W 1@ TG, o T Ty, 1

Recall that (when number of paths are three in Table 3.7.1).

Psr = P1 T Q1 2)P2 T Y (3)P3 T Y1(2,3)P2(3)P3
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by a dual process

Cgp =€ * Gyt 3 - (G 5 ¥ €y 3+ C ) ¥ C 5g
Cc c c
_ 1,2 1,3 1,2,3
bRl Ul ve Tl e T Rl )c2,3
2 3 3
= %2 4% T Y2,5%:)%
' ' o

i

(0.1)(0.15) + (0.9)(0.05)(0.15) + (0.9)(0.2)(0.15)

(0.9)(0.05)(0.2)(0.15)

0.0474
(The sum of (32) and (33) is 1).
By path

P1 = X1X4X2{ P2 = XS

Pp ® B¥%i%as Py =%y

Pi(z) = Pp,2/Py =~ = X%,
1
Pgr = P * Q)P = ¥ %g%p * (XyXX5) xg

(= XXXy + (1 - X1X,X))Xq) (32)

(0.9)(0.95)(0.8) + (1 - 0.9 » 0.95 « 0.8) * 0.85
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0.684 + (1 - 0.684) 0.85

0.9526,

It is easy to verify that the sum of the r.h.s.'s of (31) and (32) is 1.

This method of handling unreliable nodes on a cutset basis generally
increases the number of cutsets. With the path method, the number of (S,T)
paths is the same whether nodes are unreliable or perfectly reliable.

4, Algorithm for Generating the Reliability Expressions.

A careful examination of the terms in each expression of Table 3.7.1
reveals that the variables and subscripts possess a pattern from which we
devise the following algorithm for obtaining the terminal-pair reliability
expression,

The algorithm is given in step by step together with an example.

Consider any probabilistic graph G which has 4 paths from S to T, e.g.,
the graph of Fig. 3.7.2.

Step 0. There are m paths, pl, Py +ees P from S to T in the probabilistic
graph G.

Step 1. Construct a directed gragh 6 with (m + 1) nodes; such that between
any pair of nodes (i,j) in G, 1 < j, there is exactly one branch
directed from i to j.
Then, in the example, é has S nodes; it is shown in Fig. 3.7.5. For
such a simple graph, it is not difficult to find all paths from node

1 to node 5 by inspection.



Fig. 3.7.5. The structure of
G with 5 nodes.

Step 2.

Step 3.

89

5
Find all paths in G from node 1 to node m + 1; there are M, M = 2° ~,

m-1

~

such paths. Designate these paths by Pl, Pz, -——, PM

There are 8 paths with node sequences as follows:

P]_(l = S),

2 -5), Pg(l - 3-5), P(l-4-5),

—
]

Pe(l -2-3-5),P(l-2-4-5),P,(-3-4-5),

2 -3-4-25). (35)

o
oo
~
[
I

For each path Pa with a sequence of nodes (always in ascending

order owing to the structure of G)
1, 1, §, veey k, 2, m + 1
we create a term E: as follows:

P;» if Pa has only two nodes (1 and m + 1),

ta = (33)
B g . .
(-1)7q (1,3,...,k,2) P; (Js--k,2) e Py ()Pg otherwise

where B is the total number of p's and q's in Eq. (33).

Using (33), we obtain 8 terms as follows:
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~ A~

ty =P Ty T )P0

- -~

s © "9102,5P23)P3 Y6 T "Y1(2,4)P2(4)P4’

ty = “91(3,4)P34)P4’ tg - U (2,3,4)P2(3,4)P3(4)P4 (46)
Step 4. The terminal-pair reliability expression is
Per = I3 ta (34)
(Ea; implies the sum over all o for which ﬁl is in é)
Substituting these terms (%1, €2, cees £8) into (34), we obtain the

expression for Pgr as given in Table 3.7.1 for 4 paths.

5. Examples

Table 3.7.2. SYMRAP Results for Example 5

source node

S,

T, terminal node

m, number of paths from S to T 18
U, upper bound of number of terms in Pgr 131 072
Actual number of terms in Pst 160

Computer time (CDC6500) for obtaining Psr
expression 19 -8

Computer time for numerically evaluating Pgr
from expression 0.65 s

Computer time for numerically evaluating Pgr
from network 71 s
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Ex 5. The graph shown in Fig. 2 .11 represents é simple long distance
telephone network. Let's find the reliability expression for the terminal
pair (4,9). Facts about the results; Table 3.7.2 shows the results from SYMRAP.
1. There are 18 (S,T) paths.
A directed expansion (11);
218 _ 1 = 262143

With new method, in the worst case Pgr (34)

M= 2% 2 217 2 131072 terms.

But because of the zero-valued q-factors, the actual number of terms
is only 160,

2. The time required for obtaining the expression is 70 sec on a CDC 6500
computer. This is only slightly longer than 71 sec, the time required
for a numerical case. Once the expression has been obtained, to
substitute numerical values into the expression and find the result
takes only 0.65 sec.

3. In actual practice, the network configuration will remain the same
for a relatively long period of time (say one year). Suppose that
we wish to calculate Pst 100 times during that period with different
element probabilities. The advantage of having an expression is obvious,

79 + 100 x 0.65 = 144 sec.
With numeric input and output only, the same results will require
100 x 71 sec = 2 hrs.

4. Generally speaking, for m > 10 the time required to enumerate the m
paths Or m cutsets is only a very small fraction of the total computing
time. It is advisable to find all paths and all cutsets and determine
which approach to pursue. Unreliable nodes usually make the cutset

method more complicated.
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Example 6. Fig. 2,12 shows the reliability graph of a fairly complicated
boiler safety system [33]. In using any reliability analysis program it
is advisable for the user to do some preliminary simplification that will
greatly reduce the computing time. These include combining series branches
and parallel branches by the usual rules.

If the path method is used, series branches need not be combined.
If the cutset method is used, parallel branches need not be combined.
After such simplifications, the problem is reduced to that of finding Pgr

for the probabilistic graph shown in Fig. 3.7.6.

v

1 2 3
Fig. 3.7.6. Simplified representation of Fig. 2.1Z.

m, no. of paths from S to T, 6
U, upper bound of no. of terms in Pgr> 32
Actual no. of terms in Pgr * 20

Computer time (CDC 6500) for obtaining Pst expression, 0.7 sec

6. Conclusions
With this new method, which also starts with path or cutset enumeration,
can efficiently handle systems of moderate size (viz. system graph having

fewer than 20 paths or cutsets between the (S,T) pair)
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The number of terms in the reliability expression can be far below
i See Section 4) Even though symbolic reliability analysis is not
applicable to large systems, there are many important systems in the real
world that are small enough for the method to be fruitful [32,33].

Many systems have fixed configurations for a long period of time during
which the element probabilities frequently vary. Symbolic reliability analy-
sis performs the difficult task once and for all. For any given set of

element probabilities, -one need only substitute numerical values into the

reliability expression and compute the result.
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3.8 An Efficient Method Applied to Réliability Evaluation of a

General Network.
1. Introduction

The techniques for reliability evaluation depend on the logic diagram
of the system. Many methods have been discussed in the reliability litera-
ture to deal with non series-parallel networks. Some wmethods [16, 28]
usés switching theory to compute the reliability expression. In these
methods AND-OR expressed system-success function is the starting point.
Then, suitably modified minimization techniques are applied to obtain an
expression having all terms mutually exclusive. These techniques of
generating disjéint terms require step by step testing for disjointness.

This efficient method deals with a technique for avoiding this
test, although the number of terms in the reliability expression is the
same as that in [6, 64]. The proposed method also applies to cutsets;
another example is solved to determine unreliability expression for the

network.

2. Formulation of the problem

To represent nodes (branches) in the reliability logic diagram, we
shall use general Terminal Numbering Convention (TNC) [65]. In this con-
vention the numbering of nodes (branches) begins at the source and conti-
nues in such a way that the output terminal of each branch (node) is
assigned a number greater than the number used for its input, taking further
care that each node (branch) is assigned a different number.

Using TNC, the first vertex n, represents the source and the last
vertex n, represents the sink. The notation and assumptions employed

here are as follows:
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all minimum paths from n

95

total number of nodes

node j(j=1 is source)

total number of branches

total number of paths

Boolean negation

Boolean intersection is denoted by juxtaposition
successful and unsuccessful operation of branch Xy
probability of success (Reliability) of branch Xy
1 - P;

system success function

connection matrix

Exclusive operator

terminal-pair reliability; probability that at least
one path from n, to n is successful

1 - R = terminal-pair unreliability

Assumptions

All nodes are perfectly reliable.
Each branch and the whole network each have two states: good or bad.
Branch failures are s-independent.

The network is free from self-loops and directed cycles.

Path Enumeration

The first step in most reliability evaluation techniques is to enumerate

p to my in the reliability block diagram. Refs. [37,

38] show a method to find paths using the connection matrix. The connection

matrix is defined as an analytic correspondence of the system graph and

has a size k x k. An important property of this matrix is: Entry in

nin, position of matrix [C]® gives all paths from n, to nj of size r.
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In a connected graph of k nodes, the largest path will be of size (k-1);
therefore, we can determine all paths in the network if we find [c]r where
r=1,2,...,k-1. The main disadvantage of this method lies in the dif-
ficulty of repeated matrix multiplication. Therefore, a different metﬁod
is proposed based on writing system success determinant |s| from the know-
ledge of the connection matrix [c], and then expanding |s]|.

Example 1. The procedure can be illustrated by the ARPA network of Fig. 3.8.1.

n n n

1 2 3 4 5 6
m[ 0 x x, 0 0 07
n, 0 0 Xg 0 Xy 0 **Entry in ninj position
] = ng| 0 Xg 0 Xg Xg 0 of matrix [c]r (when o
n, 0 0 0 D. X, xgr T =6, ngm, = x6) gives
ng 0 0 Xg  Xg 0 Xg all paths from n. to nj
ng ] 0 0 0 0o 0 0 J of size r.

Algorithm;
1. Write the connection matrix [c] for the

logic graph of the network.

5 4 2
T
X
x8 1
X
n 5 n
6 x7 x3 1
X
9 X2
4_
l'l4 x6 ns

Fig. 3.8.1. Modified graph of ARPA network [55].
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2. Add a diagonal unity matrix [U] of size p x p to the comnection

matrix [c].

n1 n2 n3 n4 ns n6

n1 1 xl x2 0 0 0

n2 0 1 x3 0 x4 0

n 0 X 1 X X 0

- 3 5 6 5
[c] + [U] =

PXp n, 0 0 0 1 X, Xg

nS 0 0 xs t7 1 XB
n6 | 0 0 0 0 0 I

3. a. Remove the column corresponding to n, and the row corresponding to n
in the matrix generated at step 2.
b. Take remaining rows and columns and define the system success

determinant |s| of size (k-1). In this substep, all the algebraic

variables are changed to the corresponding Boolean variables.

XI X2 0 0 0
1 XS 0 X4 0
X 1 X X 0
Is| = 3 ¥ 2 (2)
0 0 1 X7 Xg
0 XS X7 1 XS

4. Expand the determinant ISi using Boolean sum and product operations.

Expand (2) in accordance with step 4:
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S = X1X3X6X7X8 u X1X3X6X9 u X1X3X5X8 U X1X3X5X7X9

U X1X4X8 U X1X4X7X9 v X1K4XSX6X9 U X2X6X7X8

u X2X6X9 u szsxs U XZXSX?XQ u X2X3X4X8

U X,XzX,X-Xg. (3)

Hence 13 different minimal paths are obtained corresponding to the 13
terms in (3).

This method has an advantage of not requiring repeated matrix
multiplications, but requires only that one determinant of size (k-1)

be expanded. The method can easily be computerized [55].
(2) Exclusive Qperator

Exclusive Operator E is one that operates on Boolean expressions as follows:

E(X,) = X, (43)

E(Xi) -
ZZ |
Xi; shaded area

E(Xi); unshaded portion

R

Fig. 3.8.2. Venn diagram for E(Xi).

E(Fle... R & E(Fl} u FiE(F) u ... v FlFé A . E(Fm) {4b)
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E(Fl U F2 U owws B Fm) = E(Fl) E(Fz) . E{Fm) (4c)
E(Fl) E(sz
2
Z
<
Fig. 3.8.3. Venn diagram for‘ - Fig. 3.8.4. Venn diagram for
E(Fle) = E(Fl) U ElE(FZJ E(Fl u Fz) = E(FI)E(FZJ

properties (4a) through (4c) can be illustrated graphically by Venn diagrams.
Fig. 3.8.2 represents (4a) on Venn diagram; Xi is shown by the shaded area
while E(Ki] is the unshaded portion.

Fig. 3.8.3 is the Venn aiagram to illustrate (4b) for m = 2, E(Fl) is
the area outside F1 in the universal set while FlE(Fz) is the portion of
F1 which is not included in F,. This concept can easily be extended for

2

Fl, FZ’ ceay Fm'

In a similar manner, (4c) is represented for m = 2 by Venn diagram
in Fig. 3.8.4.

For a particular case when Fi = Xi, for all i, the above relations

simplify to

E(Xlxz - Xm) = E(Xl) U XlE[Xz) U ... U XIXZ Y Xm_lE(Xm)
/ I ] 1
= Xl u XIXZ U oo U X1X2 i xm_lxm (4d)
E(Xl u Xz 0 s5: 1 xm) = E(Xl) E(Xz) . E(ij

XK i X (4e)
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It is obvious from (4d) that all conjunctive terms are mutually disjoint.

Example 2.
For Fl = Kl u XZ and F2 = XIXZ
E(Fle) = E(Fl) u FlE(FZ) ; from (4b)

1]

E[Xl'u XZ) U (Xl u KZ) E(Xlsz

E(XlJ E(xz) u (Xl U X2) E(Xl) u XlE(Xz)

1] 1 1 1]
X.X, u X,X, u X, X

1% 1% 3 from (4d) anq (4e)

3. Computational Procedure

The starting point can be either the system-success function or the
system-failure function. The choice between the two depends on the number
of paths or cutsets. The method consists in applying Exclusive operator
on S, which results in all its terms being mutually disjoint. The paths
are first arranged in ascending order of number of literals.

Recently, Bennetts [16] has used iterative minimization to obtain
S (disjoint) from S. -Nondisjoint pairs Tl’ T2 can be made mutually
exclusive by using non-assigned literals and relative complement of T,
with Tl' This technique of generating disjoint terms require a step by
step testing algorithm for disjointness. This could limit this method
in some cases, but often does not. To avoid this, the following method
is presented.

1. Write down system success function as

$=T,uT,u...uT (5)

2 m
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whére the Ti's represent minimal paths of the network.
Eq. (5) is directly obtained in the process of determining paths by the

method proposed in section 2.

2. For each term Ti, 1<1i<m,
Fi is defined to be the union of all predecessor terms Tl,'TZ, PR Ti-l
in which any literal that is present in both Ti and any of the predecessor

terms is deleted from those predecessor terms, i.e.

F, =T uT,u...uT, |Each literal of T, 1 (6)

In effect, the literals of T.l are assigned the Boolean value of 1 and this
value is substituted in any predecessor term in which they occur. The
resulting function Fi can be simplified using standard Boolean reduction

identities.
3. Use Exclusive operator E (section 2), to get

m
S(disjoint) = T1 122 TiE(Fi) ‘ (7

4. Change all logical variables into their analogous probability variables

to get the reliability expression (all terms are mutually exclusive)

R = S(disjoint) |xi + Py X > gy (8)

If we use source-terminal cutsets instead of paths in a particular system,
then system failure function is obtained and processed similarly to derive
system unreliability expression. The algorithm to generate S(disjoint)

from S is
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1. Set i

1, S(disjoint) = Tl(Initialize)

2. Seti=2

"

3. Obtain Fi; see (4)

4, Generate E(Fi)

5. S(disjoint) S(disjoint) u TiE(Fi]
6. Ifi<m; i<«i+1; go to step 3.

7. Stop

4. Examples
Ex. 3. The ARPA network shown-in Fig. 3.8.1 is used to illustrate the procedure
for deriving the reliability expression. Rewriting (3) after arranging the

terms properly results in

U XXX, u XoX, XX, u XX, K X

S = X X Xg U XXXg U XyXXg U X Xy XoXg U X1 XgXeXg

8 2

U X1X3X5X8 U X2X5X7X9 u X2X3X4X8 u X2X6X7X8 U X1X3X6X7X8

U X XX XoXg U X X XX Xg U XXoX, XXy (9)

On applying steps 2 and 3, the Fi's and E(Fi)'s for i1 =2, ..., 13,
are obtained as shown in Table 3.8.1.

From (8) the reliability expression is
R = p;pPg * PoPsPg(d; * P1dy)
* PoPgPg(dg *+ Pgdsd) *+ PgPp944s)
+ P1P4P7Pg(A5dg * PoAgdg) + P1PzPcPq(d5q, *+ A,P,4-9g)

*+ P1PP:Pg Q54,9 * Pgdyd,9g)
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P,PcP-Pq(q;969g * P19499g]

P,PzP,4Pg(d;d5d¢ * q,95Pgdg)

P,PgP,Pg(A59,49g * 4;93P4d59g) * P1P3PsP7Pgd,9495g

* PyP3PgP7Pg959,969g * P1P4PsPgPg9293974g

+

Example 4.

For the reliability block diagram in Fig. 3.8.5, the cutsets are (xlx

P,P3P4P7Pg91959%9g -

x6x7, XyXeXos X XX, X XgXcXe x2x3x5x7)

\

The system unreliability function is

Sl

Apply the

= xlxz, F, =X

' ' v
6 U x2X3X4 U X1x3x5x6 U

1 1t .
Xlxz U X6X7 U X4X5X

+
-~
T

H

1
2 7’ 4 1 677

t 1 '
Xl + X6(X5

definition of Exclusive operator to obtain

oo
X2I3X5X7

1

' to '
X, + X X, + X.X

576

+ K;J

104

(10)

2!
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Fig: -5:8.5., A general nonseries parallel network.
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1 ]
E(Fz) = Xl ] lez, E(FS) = X?[Xl U KIXZ),

]
E(F,) = XX, U X;X.XX;, E(F) = XXX,

E(FG) X1X4X6 (11)

Use (7), (8), (11); the unreliability expression is

T1 :
i

S(disjoint)}

ncg

T:E(B.)
, 171

]

T, + T,E(F,)} + T,E(F,) + T,B(F,) + T.E(F.) + T.E(F,)

i

4,9, * 9d7(P; * qP,) * q,459¢(PP; * Q;P,P4)

+

4,959, (P{Pg * PyP5dcP;) *+ 91939595P,P4P5

5. Conclusions

For the example 3, (10) contains only 22 terms. The same example -
has been solved by Lin et al. [41] and the resulting expression contains
61 terms.

The only difficulty with the proposed methods seems to be in finding
Fi's corresponding to Ti if i 1is large. As inspection of the terms
occurring in E(Fi) in Table 1 reveals that for the largest path of size
(k - 1), E(Fi] is simply the intersection of complements of remaining

{b - (k - 1)) branches,
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3.9 Symbolic Reliability Evaluation Using Logical Signal Relations
1. Introduction

A method for finding the symbolic reliability expression of a
general network is presented. It is based on the concept of logical signal
relations. The algorithm applies to networks having unreliable nodes
and/or branches.

An important advantage of the method is that it does not require
a prior knowledge of any path or any cutset of the network. Such a know-
ledge is a prerequisite in most other methods of reliability analysis

[55, 67].

2. Formulation of problem

Notation and definitions employed here are as follows:

k total number of nodes
n. node j(j = 1 is source)
' Boolean negation’

Boolean multiplication is shown by juxtaposition

xi(xi) logical success (failure) of branch X5

Nj logical success of node nj

E;E} fusion of nodes n, and n

P, probability of success (reliability) of branch X5
9y 1-p

S(nj) logical presence of the signal at node nj

S system success function; S(nk) for S(nl) = 1

M number of multiplications

A number of additions

Tpas Ty computation time for one addition or one multiplication
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Tc total computation time for the numerical value of system
reliability

R terminal-pair reliability

Ae absolute error

AR absolute error in system reliability R

Source (sink): The branches go from (to) the source (sink) node in the reli-

ability block diagram, and no branch goes to (from) it.

Terminal Numbering. Convention (TNC): To represent nodes (branches) in the

reliability logic diagram, we will use general TNC [65].

Fusion of Nodes: A pair of nodes n, and nj are fused (merged) if the two
nodes are replaced by a single new node such that all branches that were
incident on either n, or nj or on both are incident on the new node.

The logical signal relations for common subnetworks are given in
Table 3.9.1. Each relation is expressed so that its terms are always mutually
disjoint.

In Table 3.9.1, logical relations have been expressed assuming nodes to be

perfect. If the nodes are not perfect, these relations can be used in their

modified form [7].

3. Computational procedure
The algorithm steps are as follows:
1. a. write the logical signal relation for the sink node.
b. successively proceed towards for the sink node using relations in
Table 1. Repeat b until the source node is reached.

Substitute

S(nl) =S, ... ) =1 (1)

where, (n‘1 ...); the fusion of any number of nodes, one of which

is source node nl.



Subnetwork
n, Xy
i i
[, m— > ——)
n. n

1 i P
b
3
5
X n
3 P {

TABLE 3.9.1.

Logical
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signal relations

S(an

S(nﬁ)

1]

S[nj]

S(Ilﬁ)

W

~
»

e
u

s(nl) =

S(nz)
S(n3) =

S(n o3

S(n n

o U

XiS(niJ

XjS{nj) =
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In the expression thus obtained for S(nk) in step 1, replace the logical
variables by the corresponding probability variables to obtain the required
terminal pair reliability expression. This is possible because the terms
in S(nk) are mutually disjoint. If the actual sink node is not perfect,

a perfect logical sink node must be added to the diagram.

EXAMPLE The network is shown in Fig., 3.9.1.

All nodes in this network are perfect.

The basic equation is
' t A
5(35) = XX S(n,) XX, S(ns) U XX, S(nsnd} (2

Using Table 3.9.1 (#4, #5, #7) gives

x7xé S(n,) = XXX XX U XXX XD U X X)X

76t%1%%s Y M1 s Y f2Mts
T 1 1
U X XX XAXe U X X, Xe U XIXX, X ] (3)
' T 1 ] 1
XXy S(ng) =X XJ[X, v X XjXo u X XIXIX, X ] (4)

Using relations #7, #8 of Table 3.9.1 gives
T 1) = 1 ' ' ' t

Substitute (3) - (5) in (2) and apply step 2 of the algorithm; the

symbolic reliability expression is
R = PyPyd5gP7 * 93PpP3P459P7 * Pp94PcP
* P19;P394P5qgP7 * PyP4P5q6P7 * 91PyP4P59cP5

* PoPgly + P195PsPely + P19592P4PePgy
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Source Sink

Fig. 3.5.1. Example of a signal network.
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* P193P4PeP7 * P193P3PgP7 * Q1Pp93P4PgPy

+ Py4,PePy * PoPzP, PPy | (6)

The minimal paths in the network are obtained by writing a Boolean expression
. (T) consisting only of uncomplemented variables from each of the terms in
S(nk) and simplifying it by using the Boolean relation Y u YZ = Y, where

Y and Z are Boolean functions. In this example,

X U X %.3%.%

T=X,X, X, u X,X X, X, v X2Xs 7 1%3%5%4

17477 2737477

u X1X4X5X7 U X214X5X7 U X2X6

u X2K3X6 v X1X3X6 u X1X4X5X6

u X1X4X6X7 U X1X3X6X7

U X2X4X6X7 U X2X3X4X6X7

u lesx?

= X1X4X7 U XZX3X4X7 u X1X3X5X7

U XXXy U XX U Xy XoXg

U x1x4x5x6. (7)

XXX X, XX

f ini :
Hence, from (7) the minimal paths are X XgXos XoXoX Xo, X KoXeXy, XpXeXo,

XoXgs X XgXe, X X XX,
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5. Conclusions 3

To compare the computer time required [3] for the evaluation of numerical
value of reliability from (6), we observe that M = 61 and A = 13. Therefore,
TC = 623 TA‘

For the purpose of error analysis it is assumed that all component reli-
ability values have an absolute error of Ae. For simplicity, all reliability
~values are assumed equal to p, and Ae to be very small.

It is known [3]: .
i) The absolute error in the sﬁm of certain terms is equal to the sum
of the absolute errors in these terms.
ii) The relative error in the multiplication of certain terms is equal to
the sum of the relative errors in these terms. Absolute error, if
desired, can be found by multiplying the relative error with the

product.

Using points i & ii, error in system reliability AR, derived from (6) is

AR

ﬁeﬁs/plps + 3(4/p + 1/q)p4q + 2(4/p + 2/q)p4q2

+

3(4/p + 3/q}p4q3 + (3/p + l/q)psq

3(3/p + 2/Q)p°q° + (2/p *+ 2/Q)p°a’]

+

13

9Ae; if p = 1. _ (8)

These results along with the corresponding results for existing methods are
compared in Table 3.9.2. The proposed method is better than most existing methods.
Although, it is less economical than method [6], it has the advantage of not

requiring all paths of the network.
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Table 3.9.2., Computational time and absolute error comparison.

Method M A TJ/T, AR/Ae Remarks
Exhaustive search 354 58 3598 14 Applicable only for very
method [18] small systems.

Direct canonical ex-

pansion method [45]

Probability calculus 116 28 1188 178 Method useful only if

method [42] ~ number of interconnecting
branches is small.

Bayes 'theorem

method [14]

Flow graph method

[47]

Algebraic methods 46 9 469 5 Requires prior knowledge

[6, 53] ' 39 8 398 4 of paths, method general.

Proposed method 61 13 623 9 No prior knowledge of

paths (cutsets) required.
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3.10 Exhaustive Search Method Applied to Small Complex System Reliability

1. Introduction
This is one of the most primitive but straight-forward technique of
reliability evalution. It is sometimes called as either State Enumeration

algorithm or Event Space method.

2. Statement of the problem and the Computational Procedure

The method consists of listing all possible states; then sorting out

those states in which system is a success; and hence writing the reliability
expression.

The algorithm for the state enumeration method can be briefly stated as

follows :

1) Find the all possible combinations of the states of the units
(operating or failed).

2) For each combination which connects input and output, calculate
the product of the unreliabilities of the failed units and the reliabilities
of the up units.

3) Sum up the products'obtained in step 2. This gives the system

reliability expression.

3. Example
If there are b elements in a network and each element has two states
(operating or failed); then, in all, there are 2b states of the whole system.

For the bridge network of Fig. 3.10.1; there are 5 elements and hence 32 states.
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3
"‘.' A e B e
1 2
& C 4 $- D B

Fig. 3.10.1. A nonseries parallel system.



117

For this network, all combination of the states is shown in Table 3.10.1.

From the table, we observe that there are 16 success states for the system

and hence reliability expression is easily written as:

R qaqbpcpdqe * qaqbpcpdpe+
* qapbpcpdpe * qapbpcpdqe
* PaPpc94Pe * PaPpcPyPe
* papbpcpdqe * pa.Pbpcdee
* panchdqe * PP PyPe
* P AP,

4. Conclusions

PP AP

+

+

+

PaPpdc949%e
PaPpcPgde
PaPpP 4P
PapPcPa%e

(1

The method has a serious drawback in the fact that the number of possible

states of a system rises enormously with an increase in the number of

branches. For a network with just 20 elements, number of all possible states

is over one million.

An almost similar method has been proposed by Brown [18] which also gives

an expression similar to (1).
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3.10.1

Table

The Complete Listing of States

"Giving a

Number

Binary

State

number

path?

A

w w0 IR I A aw 0
000000000008 0000000000889 So00d80d
= 5 R B P B B IS D b D I BRI K D B B B B D D YhY“m_x“m“m

DOO0O = ri QOO DO QO rdsdrd ed ed A el H OO el Ol OO
OrH - OO~ r+HOOD -~ O~ i DO - rd DOl rl OOl il O Dt o O
COMHmMrmOOOOmMmm 0000 MAdm 10000 -"r-d 100
COO0OOmrirdrdml e ed OO DOOOOCOrirdrdrkdeeml e« DO OO
COOO QOO0 mmerdededordedrdedmdrd ed od ol = = O D OO OCOO

COO0O0OODOOOOOOO0 OO i vrirdod st od vd ved v od v v wed v=d =d o=f

e el e v e e e e e N NN NN NN M,
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3.11 Direct Canonical Expansion Applied To Small Complex System Reliability

1. Introduction

Exhaustive search method consists of listing all possible states and then
sorting out those states in which system is a success. To avoid enumerating
the all possible combinations of the states, we write an expression for
system success in terms of paths and then expand it into its canonical

form [45].

2. Statement of the problem and the computational procedure

To evaluate system reliability, determination of all m paths is

necessary. In a simple network, this may be possible by inspection; but
in a general network some systematic method has to be used. Such methods
available are Powers of connection matrix [37, 38, 48], State removal
algorithm [2]}, and Graph theory method [59]. |
With all m paths obtained by above mentioned methods, we expand them

into canonical form.

Special forms of Boolean expressions such as Expanded sum of products

and Expanded product of sums are‘of particular interest here.

In the expanded sum of products, each term contains every variable, either
uncomplemented or complemented. To obtain the expanded sum of products
from a sum of products, the missing variables are supplied in all possible
combinations to each product. Actually, in so doing, following theorem

is used [45],
X = XY + XV (1

As an example, the sum of products



120
ACD + ABD + AC (2)
The first term, ACD, has one missing variable B which is supplied in both
its uncomplemented and complemented form; ACD thus expans into two terms:
ACD = ABCD + ABCD _ (2a)

The term, ABD also expands into two terms:
ABD = ABCD + ABCD (2b)

The AC term has two missing variables B and D.
Two variables can occur in four possible combinations. Therefore, the

term AC expands into four terms:

AC = ABCD + ABCD + ABCD + ABCD (2¢)

The ABCD term has already been obtained by the expansion of the ABD
term and is not repeated.

The expanded sum of products is therefore
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD 2d)

Note, in this case, that the expanded sum of products contains seven of
the sixteen possible combinations of the four variables. Although the
"+ stands for the "inclusive or', the nature of an expanded sum of products

is such that all terms are mutually exclusive.
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3. Example

For the bridge network problem, the event of system success S can be

written as:

S = AB U CD y AED y BEC. (3)

S = ABCDE + ABCDE + ABCDE + ABCDE -
+ABCDE + ABCDE + ABCDE + ABCDE
+ABCDE + ABCDE + ABCDE + ABCDE (4)
+ABCDE + ABCDE + ABCDE + ABCDE

In the canonical expansion, each term corresponds to a particular success
state of the system and reliability expression (5) can be directly written

from (4) by replacing X by Py and X by 9, respectively.

R= Q%PPe%s * 9a%PPaPe * 95PLP94Pe
T UPRPPPe * GaPpP Pyl * PPpAc939,
* PaPpcdaPe * PaPpdcPaPe * PaPpicPgde
T PaPpPcPale * PaPpPcPgPe * P PpPAgPg
T PaPpPelgle * Pa9pPPyPe ¥ Pa%P Pyl

* Pap9.PgPe (5)

4. Conclusions
In this method, the resulting reliability expression is quite lengthy
and requires much computational work for numerical evaluation of reliability.

Even in such a simple example, the expression (5) requires 64 multiplications.
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3.12 Probability Map Method Applied To Small Complex System Reliability.

1. Introduction

A map method is easy to use because the expression to be simplified is
automatically expanded as it is entered on the map, and the prime implicants
can be identified by the visual recognition of certain basic patterns.
However, some practice is required before the user can feel confident in

. the use of maps, particularly when the number of variables becomes large.

2. Statement of the problem

A map method is presented here for combining component - part reliabilities,
or, %n general, for combining probabilities. The type of map used herein
is similaf in form to the truth maps (Veitch diagrams, Karnaugh maps, etc.)
used so extensively in combinatorial studies of Boolean algebra.

The particular map chosen permits a consistent two-dimensional represen-
tation for any number of variables.

A map for n variables contains 2® squares, there being a square on the map
for every possible input combination. A 1 is placed in each square
representing a combination for which an output is desires; a 0 is placed
in each square representing a combination for which no output is desired.
Often, to reduce the writing, the O's are omitted, and a blank square is
understood to represent a no-output combination.

It is assumed that the reader is familiar with truth maps and with

probability (reliability) combinations.

3, Examples
Example 1 The block diagram for a three-part series case is shown in Fig. 3.
12.1. In general, A, B, and C represent three independent events (such

as the proper operations of three independent components). In particular,
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Fig. 3.12.1. A three-part series case.

Fig. 3.12.2. Truth map for a three-part series case.
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the series connection indicates that all three events must occur for the
event of system success, S (such as the proper operation of a three-part
system), to occur.

The Boolean algebra expression for the occurrence of the over-all event is
therefore

S = ABC. (1)

This function is plotted in a truth map in Fig. 3.12.2. Here it is clear that
the over-all event requires the intersection of A, and B, and C for its

occurrence.

In general, each different path through a probability diagram (such as Fig.
3,12.1) is represented by an intersection on the truth map.

Now if the peripheral column and row upper-case letters of the Boolean

algebra truth map are changed to lower-case letteré, we have an ordinary
algebra probability map, as illustrated in Fig. 3.12.3. Here the letters on the
edges represent the probabilities of occurrences of independent events.

Each cell (term) in the map represents a product of these independent
probabilities, and each cell is mutually exclusive of all other cells. It

is then evident that the probability of the event of system success S is

simply

R, = P {S} = abe (2)
That is, we compose the map by filling in (with ones) all cells that
represent complete paths through the reliability block diagram.

The over-all reliability is then the sum of all the (mutually exclusive)

cells containing ones.
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Fig. 3.12.3. Probability map for a three-part series case.

Fig. 3.12.4. A three-part parallel case.



126

Example 2. A three-part parallel case is pictured in Fig. 3.12.4. Here, the
event of system success S will occur if any one (or more) of the independent
events A, B, or C occur. Thus, there are three different complete paths
through the system.

The filling in of path A is illustrated in Fig. 3.12.5 (a) - everything
"under' A. In Fig. 3.12.5 (b), everything "under'" B is filled with ones to
represent the path through B in Fig. 3.12.4. Finally, in Fig. 3.12.5 (c)
everything is filled in "under" C.

The complete map, converted to probability form (lower-case letters) is
given in Fig. 3.12.6.

Taking every filled cell from left to right along the top, then along the

bottom, the over-all probability function is

R, = abc + abc + abc + abc + abc + abc + abc. (3)
However, in this case it would be simpler to '"cover' the single empty cell

instead of the seven filled cells. Thus,

R = abc (3a)
from which

R =1 - abc (3b)
or R=1-(1-2a) (1-b) (1-c¢c) (5c)

Example 3. A simple series-parallel block diagram is shown in Fig. 3.12.7.
The different paths through this diagram are AC, AD, BC, and BD. The filling
in of these paths in the truth map is pictured, step-by-step, in Fig. 3.12.8,

and the resultant probability map is given in Fig. 3.12.9.
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Fig. 3.12.5. Filling in paths in the truth map for a
three-part parallel case. (a) path A, (b) path B,
(¢} path C.
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Fig. 3.12.6. Probability map for a three-part parallel system.

Fig. 3.12.7. A four-part series-parallel case.
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A A
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1
1
D 1 1
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Pty
(a) C (b) C
A A
=, —————
D D
11 ! 1 {11 |
B
1 1
-—-:——-
(c) o (d) C

Fig, 3.12.8. Filling in the paths in the truth map for a
particular four-part series-parallel case. (a) path AC,
(b) path AD, () BC, (d) BD. -

Fig. 3.12,9. Probability map for a particular four part
series-parallel case.
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The over-all reliability Rs can be written from either the nine filled
cells or from the seven empty cells. However, properly composed maps
permit the choice of a variety of useful groupings that lead to simplified
or reduced functional forms.
Taking the given series-parallel case, some compatible groupings are
illustrated in Fig. 3.12.10.

From Fig. 3.12.10 (a), left-to-right by columns,

Rs = abcd + abc + ac + acd (4)

and from Fig. 3.12.10 (b), top-to-bottom by rows.

Rs = abed + abd + bd + bed. (4a)
These expressions, of course, are subject to all the rules of ordinary
algebra such as factoring and substitution. Thus, (4a) can be factored

to give

Rs

1]

ab (cd +d) + b(d + cd) (4b)

(ab + b)(cd + d)

and substitutions can be made to give
Rs = a(l - b)[c(l - d) +d] + b[d + ¢(1 - d)] (4¢)

and so forth.

In Fig. 3.12.10 the top single cell gives EEEE, the right-hand block of four
gives ad, the left single cell gives EEEQ, and the lower block of four gives
bc. However, the cell abcd was used twice in forming the two blocks of four.

Therefore, its second use must be subtracted back out. From Fig: 3:12,10 (e),
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(a) (b)

(c) (d)

Fig. 3.12.10. Some examples of compatible groupings in the
four-part series-parallel case.



132

then,
Rs = abcd + ad + abcd + bc - abed. (4d)

In Fig. 3.12.10 (d) we have chosen to cover the empty cells. The upper-left
block of four gives EE and the four corners give E@. However, we used the

upper-left corner cell abcd twice, so we must subtract it once. Here,

ab + cd - abed (4e)

R
OR
R=1-ab - cd + abcd. (4£)

Example 4.

A nonseries-parallel diagram is shown in Fig. 3.12.11. Here, component A feeds
B, only, and, in parallel, C feeds D, only. However, E can feed either

B or D (can alternate). Any continuous through path allows the system to
operate. Thus, the paths are AB, CD, EB, and ED, and the corresponding
intersections are filled with ones in Fig. 3.12.12.

For the arbitrary selection of cell groupings in Fig. 3.12.12, the eight cell
group gives ab, the four-cell group gives Eég, the three two-cell groups

give a acde, abde, and abcd, and the single cell gives abcde. " Hence,
Rs = ab + acd + acde + abde + abcd + abede. (5)

Example 5.
Another nonseries-parallel case, that of the bridge, is pictured in Fig. 3.12.13.
Here, E represents a two-way bridging element, and the through paths are

AB, AED, CD, and CEB. These intersections are filled with ones in Fig., 3.12.14,
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Fig. 3.12.11. An alternate case.

&
”~ e ™
e ot N,
!
A1 Ol
Ll J \1 1/ ﬂ 1 1 |1 b
(141 ) k 1 1 1/
c o
Fig. 3.12.12. Probability map for an alternate case, with

an arbitrary selection of groupings.
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Fig. 3.12.13. A bridge case.
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Fig. 3.12.14, Probability map for a bridge case, with an
arbitrary selection of groupings.
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In Fig. 14, the arbitrarily selected groupings yield
Rs = ab + acd + abcd + abcde + abcde. (6)

4. Conclusions

A particularly important property for the probability map method is that
all its terms are mutually exclusive because of the nature of loops. The
expression in (6) requires only 14 multiplications for numerical evaluation.
A reduction in the number of computations will increase the accuracy and
computer calculation time will also be reduced.

But this method is a graphical method and hence it is not easy to use this
technique on computer. Moreover, the method is convenient only if the

number of variables is six or less than six; but become very tedious in case

the number of variables is large.
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Chapter 4. EVALUATION OF THE LARGE SYSTEM RELIABILITY

4.1 A Computer Program Applied to Approximating Large System
Reliability--Success Paths and Cut Sets Approach

1. Introduction

In the last decade, several papers have been written on the subject
of reliability approximations and bounds by using the concepts of success
paths (or tie sets) and cut sets.

Further discussion of bounds and approximations is given by Messingér
and Shooman [46]. Jensen and Bellmore [36] provide an algorithm for
determining the feliability of a complex system in which the components or
elements all have two terminals. Shooman [62] provides further mathemati-
cal background material and an entire chapter on combinatorial reliability.

One of the difficulties associated with obtaining reliability estimates
for complex systems is that of deriving a prediction equation which ex-
presses all possible events of interest. One way to alleviate this diffi-
culty is to obtain a sequence of prediction equations which provide
increasingly closer bounds on the system reliability. A method for doing
this and a computer program for performing the tedious computations are
described here.

2. Formulation of the problem

The success probability of a system, typically called the system
reliability, is defined as the probability of successful function of all
of the elements in at least one tie set or as the probability that all
cut sets are good. A tie set (success path) is a directed path from
input to output as indicated in the simple system in Fig. 4.1.1(b). The tie
sets are (2,5), (1,3,8), [1,4,5]).

A cut set is a set of elements which literally cuts all success
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Fig. 4.1.1. (a) Simple functional logic diagram. (b) Reliability graph
corresponding to functional logic diagram
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paths; that is, it severs the line of communication between input and
output. One is usually interested in the minimal cut set, i.e., the
smallest (minimal) set of elements such that the elimination of any one
element would no ionger make it a cut. In the preceding example, the
minimal cut sets are (1,2), (2,3,4), (5).

The system failure probability (system unreliability) is the
probability that all tie sets have a failure, that is, for each set at
leaét one element fails, or is the probability that at least one cut

occurs, that is, all the elements of the cut set fail.

Hereafter, the cut set will mean the minimal cut set.

Let Ti’ i 1, ..., I, denote the tie sets, I in number.

1, ...,J, denote the cut sets, J in number.

Let C., J
j J

Then, the system reliability R can be expressed as follows:

=)
"

= Pr{T1 # To # guq * Tl}

2

Pr {at least one tie set is good}. (1)

n

Expressed in terms of the cut sets

=
il

= Pr {cl.cz...cJ}

Pr {all cut sets are good, viz., contain at least

one element of the set which is operativel}. (2)

Equivalently, the unreliability is expressed as

1-R*= {Tl'TZ"'Tl}

= Pr {all tie sets have a failure} (3)
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where T} and E} are the

Thus Ti denotes failure
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1]

Pr{C1 - C2 + .. CJ}

Pr{at least one cut occurs} “)

complements of the events Ti and Cj’ respectively.

of at least one item in the ith'tie set, and E}
h

denotes failure of all items of the jt cut.

Bounds can be obtained by using the basic probabilistic inequalities in the

following:

R =

=
n

P}{Tl Y. "rl} < [ priTy} (5)

Thus an upper bound RUi

Ru1

R1

n

n

2

= Pr{T) + T, + ... + T;} > ] Pr{T,}

2
~J BiT, "I b, 14, kel (6)
i<k
and a lower bound RLI to the reliability are
L PriT;} (7)
L Pr{T,} =] Pri{l T} (8)

i<k

In the same manner, another upper bound is obtained

Ry, = & PriT;} — ] PriT, T}

i<k

+ ) Pr{Ti-Tk-’I‘l}, 1<i, k,1<1 (9)
i<k<l1

The last two summations are over all possible combinations of the subscripts

taken 2 at a time, 3 at a time. Similarly, the inequalities (5) and (6) can

be applied to the cut-set form of the equation for unreliability (4) to obtain

1-R=<)} Pr{EE}

or Ril-iPr{Ej}zR

L2 (10)
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and by using two terms

R

R<1-zPr{C}+ I Pr{C.Cm} U3’

j<m ]

1<j,mzJ. (11)

As stated in [46], the bounds based on the cut sets are best in the high
reliability region, and those based on the tie sets are best in the low
reliability region.

Example 1

Consider the reliability graph given in Fig. 4.1.1(b). Assume statistical
independence between items and let the probabilities of success for each of

the items be

I
Hi
I

Pr{l} = 0.93, Pr{2} = 0.86, Pr{3} = 0.92, Pr{4} = 0.95, Pr{5} = 0.98

(pr{T} = 1 — Pr{1} = 0.07, Pr{2} = 0.14, etc)

The probabilities for the ties and cuts are as follows:

Pr{T,} = Pr{2:5} = Pr{2} Pr{5} = 0.8428
Pr{T,} = Pr{1-3-5} = 0.8385
Pr{T;} = Pr{1-4-5} = 0.8658
and
Pr{C;} = Pr{l + 2} = 1 - Pr{1} Pr{2}
=1 — 0.0098 = 0.9902
Pr{C,} = Pr{2 + 3 + 4} =1 - pr{2} Pr{3} Pr{4}

0.99944

Pr{5} = 1 — Pr{5} = 0.98

Pr{Cs}
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Upper and lower bounds for the reliability are obtained by using (7), (8), (9),

(10), and (11), respectively,

ful

z Pr{Ti} = 0.8428 + 0.83849 + 0.86583

2.54712 > 1

not useful, as obviously 1 is an upper bound..

RLl = 0.8428 + 0.8385 + 0.8658 — Pr{1-2-3-5}
— Pr{l1:2-4:5} — Pr{1+3-4-5} = 0,28484
RU2 = 0.28484 + Pr{1-2-3+4:5} = 0.28484 + 0.68504

0.96988 = R

this result being equal to the system reliability,

Ri2

1 -7 Pr{Ej}

1 - (0.07)(0.14)- (0.14)(0.08)(0.05) - 0.02 = 0.96964

Rus

1 - 0.03036 + 0.00024 = 0.96988

where 0.96988 is the system reliability. Hence the bounds RLZ and RU3 are
the preferred bounds in the preceding example, and RUS in this example

saves no computation as it is the exact probability of system success. In
more general problems in which there are J cut sets, the number of terms in
the lower and upper bound computations RLZ and RU3 are J and J(J + 1}/2,
respectively. This is compared to 2J — 1 terms obtained by expanding (4).

In order to perform the computations, a reliability prediction program has
been written to obtain the tie sets from a listing of the items in the system
and their predecessors. Then it obtains the cut sets and the sequence of
probability bounds using only the cut sets until a value of desired precision

is obtained. This program is described in the following section.
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3. Program Description (Refer to the program in Appendix Al)

The bounds for system reliability in the high-reliability region are
obtained from calculations which are based on cut sets (best in high-reliability
reéion]. This-program calculates-ﬁpéer and lower'boundg uéiné the probabilities
of success of each item in the system. It is written in a FORTRAN dialect,
and flow diggrap is given in Fig. 4.1.2.

Input simplicity is one of the features of this program. The user need
only supply the success probabilities and a list of predecessors for each
element in the system. The list of predecessors is established by feeding
to the computer a card for each element. Each card identifies the items in
the system preceding that element in a directed flow diagram. Table 4.1.1 shows
an example corresponding to the reliability logic flow diagram in Fig. 4.1.1(a).

The algorithom is not complex.but is rather a series of simple steps.
These steps in order are: read the list of elements, develop the tie sets,

develop the cut sets, and calculate the bounds.

The success paths (tie sets) are developed by a subroutine called PATH.
The arguments are number of items N in the system, number of success paths
NP found by the subroutine, the array of the success paths IP found by the
subroutine. The list of predecessors is read by the PATH subroutine. After
being printed, the paths are converted to a Boolean array of zeros and ones,
and the cut sets are developed by the procedure given in the following
subsection.

(1) Generation of Cut Sets

A simple procedure using Boolean logic is used for obtaining a matrix
identifying the minimal cuts of the system from the matrix containing the
paths.

Let the path matrix be

P 10101
P=|P,|=[01001
P 10011

w
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The paths are deter-

mined by element number in reverse

order; therefore, the program
corrects the order for output
purposes and forms a Boolean

matrix whereby the paths are the

rows.

Fig. 4.1.2. Flow diagram for computer program:

bounds for reliability [52].



144

Table 4.1.1 List of Predecessors for Example 1, Fig. 4.1.1(a).

Item Predecessors Card Code

1 IN -1

2 IN -1

3 1 1

4 1 1

5 2,34 2,3,4

ouT 5 25
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Where the tie sets are Pl = (1,3,5) (indicated by 1's in columns 2, 3, and 5
of the first row); P2 = (2,5) and P3 = (1,4,5).

Now consider the column vectors (1,0,1), (0,1,0), etc., of the path
matrix P. For a single element to be a cut, it must be in each path, i.e.,
its column vector in P must be the unit vector (1,1,1). Note that element
5 is the only single element cut. In general, if Pc denotes the Cth column
vector of an I-path matrix, and if the elements

Pci =1 for all 4. = 1,2, el
then the corresponding element C is a single element cut. If Pci = 0 for
some i in each column vector, then there are noﬁsingle-element cuts, and one
must proceed to look for two-element cuts.,

For two-element cuts consider for ¢ # d

Pei * Pyy

where the + indicates the logic sum or union. If
PCi + Pdi = 1, Tor all 4 = 1,;2;su51

then elements c and d form a two-element cut. For example, Pp+ P,=1
for all i = 1,2,...,I, and hence elements 1,2 form a cut.
This procedure continues until all possible cuts of order i [ SR,
(n being the number of elements in the system) have been exhausted or until
only unit vectors are obtained in the vector unions as described. At each
Stage all the nonminimal cuts are eliminated by using the following approach.
After a possible cut of order M has been identified, it is checked against
all cuts of order M-1, M-2, ...,1 by using Boolean logic for intersectiom, i.e.,
the AND operation, for the multiplication of two vectors. If the cut of order
M contains a cut of smaller order, the vector product would be equal to the

order of the smaller cut. In this case the cut of order M would be eliminated

because it is nonminimal.
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(2) Output
The output ié brief and easily read. Input probabilities, tie sets,

and cut sets are printed.. Since the calculation for bounds is done by
adding terms to a series with each new term resulting in a new bound, either
lower or upper, the bounds are given at each step with the appropriate last
term shown. For small systems the exact system reliability might be calcu-
lated at the final step.

Computer results for Example 1

The example in Fig. 4.1.1 is used. The path matrix is given by the following:

I 2 3 4 5 Paths

1 0 1 0 1 1,3,5
P= |0 1 0 0 1 255

1 0 0 i 1 1,4,5

and the cut matrix by

1 2 3 4 5 Cuts
0 0 0 0 1 5

C= 11 1 0 0 0 1,2
0 1 1 1 0 2,3.4

The three cuts are thus (5), (1,2), and (2,3,4) as indicated by the 1's in
the corresponding positions in rows 1, 2, and 3. The upper and lower bounds
are obtained as indicated in the previous section. The program results from

the computer printout are shown in Table 4.1.2,

4. Example
The system shown in Fig. 4.1.3 is a relatively complex series-parallel

network. As can be seen, there are many possible success paths through the
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Table 4.1.2. Bounds for System Reliability Example

Circuit Contains S Elements

Element Probability
Numbers of Success
1 0.9300
2 | 0.8600
3 0.9200
4 0.9500
5 0.9800
Tie Sets or Success Element
Paths (3) Numbers
1 25
2 | 135
3 145
Cuts Sets (3) Element Numbers
1 5
2 T 2
3 234
Lower bound is 0.96964E 0 Last term 0,30361E - 1
Upper bound is 0.96988E 0 Last term 0.24541E - 3
Lower bound is 0.95988E O Last term 0.78407E - 6

System reliability 0.96988E 0
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System diagram for bounds program [52].
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system and hand calculation of system reliability would be at best very
tedious.

The reliability of each element is given in Table 4.1.3. As required by the
program, element failures are assumed statistically independent. Some of the
55 tie sets and all of the 10 cut sets are shown in Table 4.1.4 The bounds
program printout is given at the bottom of Table 4.1.4.

As can be seen from the last two lines of the printout, the program
has bounde& the system reliability. Since the upper and lower bounds have
converged to the same value 0.97726, this value is the system reliability

to five-place accuracy.

5. Conclusions

A computer program, which provides bounds for system reliability, is
described. The algorithms are based on the concepts of success paths and
cutsets. A listing of the elements in the system, their predecessors, and
the probability of successful operation of each element are the inputs.
The oufputs are the success paths, the cutsets, and a series of upper and
lower reliability bounds. Two examples are used to illustrate the algorithm

and features of the computer program.



Table 4

.1.3. Probabilities of Success for Each

Element of Example 2.

Circuit Contains 16 Elements

Probability of

Element Numbers Success
1 0.80
2. 0.80
3 0.90
4 0.85
5 0.75
6 0.87
7 0.82
8 0.82
5 0.89

10 0.88
11 0.85
12 0.85
13 0.85
14 0.75
15 0.70
16 0.70
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Table 4.1.4.

Tie Sets and Cut Sets for Example 2.

Tie Sets of Success

Paths (55)

Element Numbers

N O BN N e

55

e i T S S S T S

i Y N N N

5

7
7
7
14
14
10
10

8

9 11
9 12
9 13
15
16
11
12

9 13

Cut Sets (10)

Element Numbers

1 1 2 3
2 1 2 6
3 3 4 5
4 4 5 6
5 9 10 14
€ 7 8 10 14
7 9 10 15 16
8 11 12 13 14
9 7 8 10 15 16
10 11 12 13 15 16
Lower bound is 0.97522E 0 Last term 0.24782E - 1
Upper bound is 0.97738E 0 Last term 0.21627E - 2
Lower bound is 0.97723E O Last term 0.14357E - 3
Upper bound is 0.97726E 0 Last term 0.33038E - 4
Lower bound is 0.97726E O Last term 0.64429E - 6
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4.2 An Algorithm to Determine the Reliability of a Complex System--Minimal
Cuts and Coherent Systems Approach

1. Introduction

The method most often suggested for determining the reliability of a
system is to construct a reliability network, enumerate from the network all
mutually exclusive working states of the system, calculate the probability of
occurrence of each working state, and sum these probabilities. For a
complex system this is not a practical method because there is a very large
number of working states. This computational problem is considerably alleviated
by an approximation technique [25, 46, 62] , which by considering a much
smaller set of states, called the set of minimal cuts, obtains a lower bound
to system reliability. The contribution of this paper is an algorithmic pro-
cedure that generates the set of minimal cuts and determines from it the
minimal cut approximation to reliability. This algorithm is a slight modi-
fication of a general procedure for finding all proper cuts of a linear graph

described with proofs in [15].

2. Formulation of the Problem

Reliability Network

The components of the reliability network all have two terminals.
Each component is bidirectional in that a path from S to t may traverse
it in either direction. Capital letters identify the components as in
Fig. 4.2.1.
Components are interconnected at nodes of the network. Integers
identify the nodes as in Fig. 4.2.1. The set of all nodes is N = (1,2,3,...,n).

Nodes S and t are number 1 and n, respectively. The numbering of all other
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Fig. 4.2.1. ° Reliability network [36].
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nodes is arbitrary. In the course of subseqﬁent discussion, the nodes of
the reliability network will be divided into two mutually exclusive subsets
with node 1 in one subset and node n in the other. The subset of nodes in-
cluding 1 is called X and the subset of nodes including n is called X. So,
XUX = N. |

A simple path from node a to node b in the reliability network is an
ordered set of components such that the first member of the set and no others
has a a$ a terminal, the last member and no others has b as a terminal,
adjacent members of the set have common terminals and no more than two
members of the set have the same common terminal; Thus a simple path from
1l to 8 in Fig. 4.2,1 is ALJD.

A subnetwork is said to be connected if there exists a simple path
between every pair of nodes in the subnetwork. All the reliability net-

works treated here are assumed to be connected.

Reliability Approximation

Because of the large number of states for a complex system the exact
reliability is very difficuit to deiermine. Here a lower bound apprdximation
based on the theory of Esary and Proschan [25] is provided. The approximation is
very'close when component reliabilities are close to unity. This is most
often the case in practice,.

Proschan and Esary's.analysis is based on the concepts of minimal
cuts and coherent systems. These terms refer to the effects of component
failures on the opération of the network. A "coherent system" is defined
by the following four conditions:

1) when a group of components in the system is failed causing the

system to be failed, the occurrence of any additional failure or

failures will not return the system to a successful condition:
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2) when a group of components in the system is successful and the
system is successful, the system will not fail if some of the failed
components are returned to the successful condition:

3) when all the components in the system are succegsful the system
is successful: |

4) lwhen all the components in the system are failed the system is

failed.

If a system fulfills all these conditions, it is a coherent system.

The reliability network described here are coherent systems, hence applicable
to the Esary and Proschan analysis.

A "cut'" is a set of components such that if they fail, the system
will be failed regardless of the other components in the system. An example
of a coherent system is shown in Fig. 4.2.2.

As long as any path through successful components exists between
terminals 1 and 4 of the system, the system is said to be successful. A
component failure opens the path between the two terminals of the component.

The cuts of this system are listed in Table 4.2.1. The failure of any of
the cuts will cause the network of Fig. 4.2.2 to fail.

A "minimal cut"” is defined as a cut in which there is no proper sub-
set of components whose failure alone will cause the system to fail. From
Table 4.5.1, therﬁinimai cuts of-network in Fig.r4.2.2 can easily be recognized.
They are listed in Table 4.2.5 ﬁzgﬁémgiéﬁréﬁ;i;-srﬁgaﬁilities of occurrence,

- The lower bound approximation to reliability depends om the identifi-
cation of all the minimal cuts in the network. Esary and Proschan found |
that a lowér bound to system reliability is the probability that none of the

system's minimal cuts fail.
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Fig. 4.2.2. Example of coherent system
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TABLE 4.2.1

Cuts of the System Between Nodes 1 and 4 of Fig. 4.2.2.

Cut ‘ ' Components in Cut
I A, B
2 A, B, C
3 A, B, D
4 A, B, E
5 A, B,C, D
6 A, B, C, E
7 A, B, D, E
8 A, B, C, D, E
9 D, E
10 C, D, E
11 B, D, E
12 A, D, E
13 B, C, D,
14 A, C, D,
15 A, C, B
16 B, C, D
TABLE 4.2.2

Minimal Cuts Between Nodes 1 and 4 on Fig. 4.2.2,

Minimal Components in Probability of Failure of
~ Cut Minimal Cut Minimal Cut

1 A, B 1,95

2 D, E 4g9p

3 A, C, E 959¢9g

4 B, C, D 9p4c9p
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For the example, this lower bound RLB i £

x[1 - (agagap)]-

This is not the true reliability expression because the failure of minimal
cuts is assumed to occur independently. This is not always true of course
since one component may appear in several minimal cuts.

This relationship cén be written for general systems if the jth minimal
cut is denoted by the set Sj. The members of the jth minimal cut are given
byieSj. |

The lower bound to the system reliability is the probability that none

of -the system's minimal cuts fail or

R, =1 [1- 1 (q.)
LB alljl_ ies, 1]

This is the approximation used here.

3. Algorithm to Determine the Set of Minimal Cuts.

The network of Fig. 4.2.1 is used for illustratiom. fable 4,2.3 lists the
16 minimal cuts of this network. This list is the output of the algorithm
of this section.

The algorithm provides for the construction of a tree. The tree for
the network of Fig. 4.2;1 appears in Fig. 4.2.3, The tree consists of vertices
and edges. Edges are the line segments on thé tree and vertices are the
points. Vertices are given integer indices for identification. The vertex

of the tree indexed 0 is. called the root vertex,
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Table 4.2.3

Minimal Cuts of the Network of Fig. 4.2.1 Specified by the Set

Members of the Set X Components
2 3 4 5 6 7 8 in the cut

Q
=

)
e

AR
x 4 BEI
x CEL
x x DEILJ
AF
AGIJ
x AHIJ
BF1
CFI1
x DF1J
BGJ
X BHTY
CGJ
CHJ
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x x DH
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Minimal cuts of the network are represented in the tree by vertices
that touch only one edge (excluding vertex0). These are called terminal
vertices. For instance in Fig 4.2.3, vertex 20 represents cut AHIJ. The
algorithm assures that every such vertex represents a uﬁique minimal cut
and that every minimal cut is represented by a terminal vertex of the tree.

Edges of the tree take on labels of the form xT or xF. Here x is an
integer representing a node of the reliability network or a member of the
set N. T-and F are used to indicate members of the sets X and X for minimal
cut of the reliability network. To illustrate this, note that on the unique
path from vertex 0 to vertex 20 the labels IT, 2T, 5T, 6T appear. These
labels identify the set X for the cut represented by vertex 20 as [1, 2, 5, 61.
Table 3 will indicate the correspondence between this set X and the cut AHIJ.

The labels 8F, 3F, and 7F also appear on the path from O to 20. Note
that nodes 3, 7, and 8 are included in the set X = [3, 4, 7, 8]. Generally,
the nodes labeled F will not constitute the entire set X. The set X is
found for a terminal vertex by the operation X = N-X.

The tree is constructed sequentially. It initially consists of no
vertices and no edges. The algorithm creates vertices and edges in the
course of its accomplishment. Every time the algorithm generates a terminal
vertex of the tree, a minimal cut has been found and the contribution of the
cut to the unreliability of the network is calculated. The labels are chosen
for the edges of the tree in such a way that for every terminal vertex, the
sets X and X define connected subnetworks (necessary conditions for a minimal
cut).

Associated with each vertex i of the tree are four subsets of nodes of

the reliability network Y ) (e YSi’ and Wi, Y

11’ Y93 Y.., and YSi are defined in

1i’ 21
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following manner.
Find the unique simple path zi that connects the root vertex to vertex i.

Identify the sets Y and YSi according to the following definitions:

147 Yope

Node x ¢ Yli is an edge in the path.,ﬁt.1 is labeled xT.

Node x € YZi if an edge in the path s is labeled xF.

Node x ¢ Y_. if it is in the set N but not in the sets Y.. or Y_..
31 1i 21
A node x will be a member of wi if it is a member of Y3i and if it is

a terminal of a component whose other terminal is in the set Yli'
Initially, the estimate of system unreliability is t;keh as Q0 = 0. This
is modified as minimal cuts are discovered.

The algorithm that generates all minimal cuts between given nodes s and

t will now be described. One should follow the steps of the algorithm on the

example tree of Fig. 4.2.3. |

Algorithm for Determining the Set of All Minimal Cuts of a Network Between

Nodes s and t.

1) Create three vertices for the tree indexed 0, 1, and 2, and edges

(0, 1) and (1, 2) labeled sT and tF, respectively. Let vertices 0 and 1
be scanned and vertex 2 be unscanned. Vertex 0 is called the root vertex.
Go to Step 2).

2) Choose the unscanned vertex with the greatest index and mark it
scanned. If there are no unscanned vertices, the algorithm terminates
for the complete tree has been generated. The vertex chosen will be de-
noted as vertex i. Find the unique simple path 2; that connects the

root to vertex i. Identify the sets Yli’ Y Y.., and wi as defined

23t 3l

above. Choose y, an element of the set wi. If wi has no members go to
Step 71 Construct the subnetwork defined by the set of nodes

'Y4( = Y2i U Y3i - y). Test to see if it is connected. If not, go to

Step 4). If so, go to Step 3).
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3) Create two new vertices indexed k and k+1 where k is 1 greater than

the number of vertices currently in the tree. Vertices k and k+1 are
unscanned. Create two new edges (i, k) and (i, k+l), labeled yT and
yF, respectively. Go to Step 2),

4) The subnetwork defined by Y, is not connected. Find the set of

4

nodes YS that defines the connected subnetwork that includes node t.
If YZi = YS, go to Step 51 If Y2i ¢ Ys, go to Step 6)

5) Create vertex k and edge (i, k) labeled yT where k is one greater
than the number of vertices currently in £hé tree. Determine the set
Y6 = Y4 - Ys. For each number z e Y6 create a vertex of the tree and
an edge labeled =T. If|Y6|is the number of members in the set Y,
vertices k + 1, k + 2, ..., k + |Y6| will be created. Edges (k, k + 1),

(K+ 1, k+2). ..., (k+ |y |-1,k+ [Yﬁl)‘will also be created.

"
Finally, create vertex k + |Y6l + 1 and edge (i, k + |Y6| + 1) labeled
yF. Go to Step 21

6) Create one new vertex indexed k and an edge (i, k) labeled yF.

Go to Step 2)

7) A minimal cut has been generated at this step. The set Xi for the

cut is Xi = Y,, and Ki =N-Y The components in the minimal cut are

1i 1i’
those that have one terminal in the set X and one in the set X. Let
these components be the set S. Find the probability of failure of the

minimal cut:

Include this in the system unreliability estimate:

G =y 9 - Qy %
where inl is the unreliability estimate before the discovery of this

cut.

To generate more minimal cuts, go to Step 2.
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A detailed proof of the algorithm appears in [4] and [7]. Roughly:
speaking, the algorithm sequentially generates [Step 2] the sets X and

X (represented by Y.. and YZi’ respectively, in the algorithm). The choice

13,
of a member of wi for expanding the set X guarantees that the subnetwork
defined by set X is connected. This fulfills the first requirement for a
minimal cut. Each subnetwork thus generated also defines a complementary
subnetwork that includes t but not s (the network defined by Y4).

At every step this subnetwork is fested.[Steﬁ 2) to see if it is connected
(the second requirement for a minimal cut). If it is, the generation pro-
cedure continues with Step 3). If it is not connected and if if includes
no members already assigned to X, then that part of the subnetwork not in-
cluding t is joined to the subnetwork including s [Step 5. If it includes
a node already assigned to X that avenue of expansion for the set X is
closed [Step 6)]. Step 4}decides which of these alternatives is to be taken.

If at some point in the generation process the set X cannot be expanded
in such a way to guaranﬁee that the subnetwork defined by X is connected
(the way is blocked by nodes already assigned to X), then the process stops
momentarily for a minimal cut has been generated. The unreliability of the
network is modified [Step 7) to include this minimal cut, and the process
returns to Step 2 to continue its search for more minimal cuts.

The absence of unscanned nodes signals termination of the algorithm.

- 4, Space-Saving Modification

The algorithm is designed to generate the entire tree and maintain it in
the core memory of the computer. In the computer program implementation of
the algorithm, a great deal of space in the core memory of the computer
must be set aside to keep all the information concerning the vertices,

edges, and labels of the tree.
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A very siﬁple modification to the algorithm is possible that at any
point in the generation process allows one to keep only that portion of the
tree that is necessary to discover the set of minimal cuts that have not
yet been generated. |

The modification takes place in the first paragraph of Step 2):

2) Choose the unscanned vertex with the greatest index. Let
this be i. Discard those vertices in the tree with indices
greater than i. Mark vértex i scanned. If there are...

The algorithm tgen continues as before.

With this change the next vertex of the tree to be generated is
indexed 1 + 1. At no time in the generation process will there be more
than 2n vertices in the tree.

Note that no minimal cuts are lost by this process because all the
vertices discarded have been previously scanned.

Of course in the discard process, terminal vertices representing cuts
are also discarded. Since the probability of occurrence of each cut is
included in the system unreliability as the cut generated, this does not
affect the value of the reliability approximationT

With this change, the process of cut generation is practically limited
only by the computer time one is willing to expend, while without this

change the process is limited by the core size of the computer.

5. Computational Considerations and Conclusions
The minimal cut generation algorithm has been programmed for the IBM
7094 computer in FORTRAN IV, For the system reliability application, the

algorithm with the modification of the last section is of primary interest.
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The time required for the program cannot be measured entirely in terms of

the number of nodes in the network n.

Depending on the cdnfiguration of the network the number of minimal
cuts between two nodes varies fromn - 1 to 2n-2. There are n - 1 cuts
if the network is a simple chain and s and t are at the ends of the chain,
and 2n-2 cuts if there is a component between every pair of nodes. For n,
any reasonable number, this is a very great range. The program with the
modification handles probleﬁs having up to 125 nodes at the lower bound and
problems having perhapé 20 nodes at the upper bound. The lower bound case
is space limited and the upper bound case is time limited. It would take
the algorithm about one hour to generate 218 minimal cuts.

Table 4.2.4 shows the cut generation time for several randomly generated
reliability networks. These times do not include the time required to
calculate Qi for each cut. Of course, the time depends strongly on the number
of cuts to be generated.

The space requirement of the program is determined not by the number
of cuts it may generate but by the number of nodes in the network. The
primary space consumer of the FORTRAN IV program that implements this algorithm
is an n x n binary matrix in which a 1 in cell (i,j) indicates the presence
of a component between nodes 1 and j and a 0 indicates its absence. The
maximum dimensions on this matrix have been 125 x 125. Other methods of
storing the matrix trade space efficiency for time efficiency, and since
time is the limitation for most networks of interest, there has been no stimulus
to provide a more efficient storage scheme.

This paper has presented a technique for very rapidly enumerating the
minimal cuts and hence determining a lower bound to the reliability of networks

consisting of bidirectional components. Typical of such networks are commu-

nications and relay networks. The methods are extendable to unidirectional
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TABLE 4.2.4

Computation Time for Cut Generation

Number of Number of Number of Total time  Average Time
Network Nodes Components Minimal Cuts (seconds) per Cut (ms)
1 10 45 256 Lo 6.0
2 12 66 1024 6.0 5.9
3 13 20 54 0.7 13.0
4 14 19 29 0.5 17.2
5 20 27 1250 21.5 17.2
6 Z

22 31 3255 62.4 19,
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components with some modifications. The algorithm has been programmed for
a digital computer and is very efficient. The practicality of the methods

depends, however, on the number and interconnection pattern of the components.
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4.3 A Boolean Algebra Method for Computing the Terminal Reliability in a
Communication Network
1. Introduction
An efficient algorithm for the analysis of unreliable communication
networks is proposed. Here a communication network will be represented by
an oriented graph with weighted arcs and unweighted nodes. The nodes represent
stations, assumed to be completely reliable; the weighted arcs represent
direct unreliable connections, that is, connections which are available on
the average only for a given percentage of time. The weight assighed to
each arc is its probability of existence and is also known as arc reliability.
This kind of probabilistic graph may be a meaningful model for some communi-
cation networks.
We assume that there does not exist any correlation between failures of
different links and that the arc reliabilities are constant during the time

interval in which the reliability of the network is being examined.

2. Review of the Existing Methods
Let us consider the four-node graph represented in Fig. 4.3.1(a), where the
probability Pij of existence of the arc (i, j) is given. Suppose we want
to compute the terminal reliability between vertices 1 and 4. For each
arc (i, j) of the graph, we can now define a stochastic variable Xij having

{0, 1} as definition domain. The statistic distribution of Xij’ is, of course,

1]

P(Xij

P(X;; = 1) = P,

0) =1-P,, =aq..

it
1]

Having S binary stochastic variables, 25 = 32 elementary events have
to be considered. Each event corresponds to a subgraph of the given graph.
For instance, the event

E={X,=1, X,=0, X, = =1, X,, = 1} (1)
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corresponds to the subgraph in Fig. 4.3.1(b). Event probabilities are easily

computed since all variables are independent by assumption. For example,

Pg = P15 " Qp3 * Ay3 " Pyy " Py

Since we are interested in computing the terminal reliability between nodes
1 and 4, an event is considered favorable if at least one path exists in its
subgraph from node 1 to node 4. For instance, the event E in (1) is favorable.

As a comsequence, a binary function F can be defined which associates with

each event a value 1 or 0 according to whether or not it is favorable.

In Fig. 4.3.2(a) we show a Karnaugh map defining function F for our graph

in Fig. 4.3.1(a). Event E corresponds to the shaded square. The terminal reli-
ability is, by definition,

p= I P ©)

Thus in our example from Fig. 4.3.2(a) we get
P = q;,P13993924P34 * 912P13923P24P34

*P1oP13923924P 34 T P1oP13923P 24P 34

*P12P13%23P24934 * P12913923P24P34
*P1293%923P24%4 T 912P13P23%24P 34
*A12P13P23P24P 34 T N12P13P23P 24 %54
*P12P13P23%24P34 ¥ P12P13P23P24P 34

*P1oP13P23P2a%%4 T P12913P23%924P 34
£33

P12%3P23P24P 34 T Pr2%13P23P2a%34
As we have just shown, it is very easy to compute the probability for each
connecting subgraph, but, unfortunately, the number of these subgraphs in-

creases very rapdily with the number of arcs.
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Fig. 4.3.2. (a) Karnaugh map defining the binary function for
graph in Fig. 1(a). (b) Set of nonoverlapping implicants
covering the Karnmaugh map.
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The second method described in the literature [39] considers larger
events, corresponding to the simple pathsl between the terminal nodes. For
instance, consider the simple path (1, 2, 4) in Fig. 4.3,1(a); the (non-
elementary) event
E' = {Xl2 =1, X24_= 1}

can be associated to it. We will have

Pgi = Py« Py

while the corresponding implicant X will cover the eight masked

12X24
in the Karnaugh map of Fig. 4.3.2(a).

By considering all simple paths between nodes 1 and 4 we completely
cover the Karnaugh map i.e., we take into account all the events which
- contribute to the computation of the ﬁerminal reliability.

Unfortunately, these new events, the simple paths, are no longer dis-
joint and the terminal reliability is given by the probability of the union
of the events corresponding to the existence of the paths. This can be com-
puted by applying the inclusion and exclusion principle but the expansion of
the union becomes a very difficult task.

To apply the second method to our example we need all simple paths
between nodes 1 and 4 in Fig, 4.3.1(a) that can be found here.by inspection:
path 1:1,2,4 path 2:1,3,4

path 3:1,2,3,4  path 4: 1,3,2,4

The corresponding probabilities are
Py = PyoP -
& R Py = PyzPzy

Pz = P12P73Pxn Py = P13P23Pyy

1 s . . .
A patn is called simple if no node is traversed more than once.
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We also have to compute the following joint probabilities:

Py 2 *

P12P13P24P34 P13 = P12P23PasP3s P1,4 = P12P13P23P24

Py,3 = P12P13PasPay Po 4 = P13PasPasPag Pz 4 ™ P12P13P23PoyPay

pl’213 ) pl,2,4 ) pl:3:4 - p2:3;4 ) P12P13p23p24p34
P1,2,3,4 = P12P13P23P24P3y
The desired terminal reliability is given by the following formula:

p=ZILp. - L p..+ L p.. - P. -
i 1 i,j 1] i,j,k 1:3:k 1:J:k9h

Modifications of the previous methods are presented in [18, 47, 52].

3. Representation of a Set of Simple Paths as a Boolean Sum of Disjoint Products

We can see that the two methods presented in previous section are similar,
but start the solution procedure from two different forms of the same Boolean
function F. Both forms are sum of Boolean products; the difference is that in
the first form the Boolean products represent all the elementary events
(obviously disjoint), while in the second case they represent nondisjoint
implicants.

The complexity of these methods is caused in the first case by the large
number of elementary events and in the second case by the difficult compu-
tation of the probability of the sum of nondisjoint events. It is-clear
that a more efficient method should avoid the difficulties previously seen
by representing the Boolean function F with a sum of nonelementary disjoint
products, where the number of these products is therefore not so large.

This corresponds to covering the Karnaugh map by nonoverlapping im-
plicants and can be obtained, as shown in Section 4, by performing simple

algebraic operations on the initial form obtained from the set of all simple

paths.



175
Once the desired Boolean form is obtained, the arithmetic expression
giving the terminal reliability is straightforwardly computed by means of

the following correspondences:

X.. > D..
ij plj

X..* q..

*1j 7 45
Boolean sum - arithmetic sum

Boolean product + arithmetic sum (4)

Let us consider the graph in Fig. 4.3.1(a). On the Karnaugh map in Fig. 4.3.2(a)

we can easily find by inspection a set of nonoverlapping implicants [marked in Fi

4.3.2(b)] which give the following disjoint form for the Boolean function F:

- X %
o= X 0Xop * R10%1a%ss + XX akouXgy + XX 5%00%, Koy (5)

+ X R sX R, Xy

Notice that the terms in (5) are only five (and simpler) instead of sixteen

as in (3). By translating (5) according to (4), we obtain
P = P1oPoy * A12P13P34 * P1oP1zdpsPsy * 912P13P23P24 34 (6)
* P12913P23924 P34

This formula gives us a very simple expression to compute the terminal reli-

ability between node 1 and 4.

4. Computational Procedure
The solution of our original problem is now reduced to finding a sum
of products for the Boolean function F in which all terms are disjoint.

This computation is schematically described by the following Algorithm A.
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Algorithm A

Step 1: Let S be the set of all simple paths between the terminal nodes.

Construct a Boolean sum of products f, where each product corresponds

to a path ¢ S and whose factors are exactly the noncomplemented vari-

ables corresponding to the arcs in the fath.

Let P = 0.

Step 2: If_f has no terms, stop.

Step 3: Select any term A of £.

Step 4. Let A' be the arithmetic monomial which is equivalent to

A according to (4).

Let P = P + A'.

Step 5: Let £+« A - f and reduce f to a sum of products.

Go to Step 2.
Let us apply this algorithm to our example:

Step 1:

£= XpoXoy * Xyg¥ay ¥ XppXogXay + X 5X50Xy P = 0.

Step 2: f has at least one term.

Step 3: A = X12X24
. b= =
Step 4: A' = PPy, P = PPy
Step 5:
B2 X%y, o (Xpg¥gy + X X ke, + X 3X0X))
= Ry # R0 0 (XpgXsy + XpXogXey + X X00X0 )

= XpoXpaXay X ko Xgy v X X2 Xo Xay + XX X0 2Xs )

Step 2: f has at least one term

Step 3: A = X12X13X34
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Step 4:

A" = q1,P13P3s P = PioPoy * Ay5P 3P

and so on until the final result is obtained.
P = P1oPas T U2P1sPaa T P1oP13Y24Pss T U12P15P23P24 %54

* P12%993P23%4P34

Note:

At Step 3 the selection of the implicant A can be performed‘according
to different criteria. A very good one could’be to choose the implicant
whose probability is maximum.2 That gives as a result an algorithm with
the fastest convergence but requires at each iteration the computation of
the probability corresponding to all terms of the Boolean form.

Other criteria are to select the implicant with the minimum number of
factors (as we did in the example) or the minimum number of complemented
factors. The latter takes advantage of the fact that the q; are always
{(at least in the communication networks) much smaller than the P; and thus
it works very often as the maximum probability criterion.

Another important remark about Algorithm A concerns the simplification
of the Boolean form f computed in Step 5. The simplest way of reducing f to

a sum of products consist of applying the well-known identity

XIXZ = Kl + Xz

for computing A and then using distributivity.

2This criterion is clearly not applicable if the result must be given in

symbolic form,
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However, the resulting sum may be very clumsy, so that some form of

simplification may be convenient. If F is the Boolean function represented
by £ (which changes at every step), we can proceed in one of the following
ways.

1) Absorption Law: Erase all the terms which imply some other term

of £.

2) Prime Implicant Form: Starting from f and using the consensus

algorithm generate all prime implicants of f£.

3) Irredundant Form: Select a set of prime implicants covering F such

that no one of them is redundant.

4) Minimal Form: Select a set of prime implicants covering F and having

the minimal total number of factors.-

Note that the initial form of f (obtained from the set of all simple
paths) is minimal since it contains only essential prime implicants.

The more sophisticated the selection criteria and the simplification
methods are, the simpler the final expression for P‘should be. .However, this
is only an heuristic rule: the problem of finding an optimal expression for
P (for instance in the sense of minimal number of multiplications) is probably

very difficult.
Algorithm B (Approximation Techniques)

When we want to compute the exact value of the terminal reliability in
quite large networks, we must face the large amount of computations required and
there is no way to avoid it even applying the method previously discussed. More-
over, in many applications it is enough to know an approximate value; for in-
stance, in network synthesis the terminal reliability is assumed as a measure
of the efficiency of a given topology and it is evaluated many times in an

optimization procedure.
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If we examine Algorithm A, we notice that at each iteration the current

value of P is increased by a positive quantity corresponding to the probability
of the selected implicant. This means that at each iteration the procedure
gives an estimate with positive error of the terminal reliability. We call
erToT € the difference between the exact value of the terminal reliability
and the current value of p at the ith iteration. By definition, ei is non-
negative and monotonically decreasing with i.

Knowing the value of the error or at least an upper bound of it, we
could evaluate how good the current estimate of the terminal reliability is
and then implement a technique which stops the Algorithm A when the required
precision is achieved.

An approximation technique is described in the following.

Step 1: Let S be the set of all simple paths between the terminal nodes.
Construct a Boolean sum of products £, where each product corresponds
to a path ¢ S and whose factors are exactly the noncomplemented vari-
ables corresponding to the arcs in the path.

Let P = 0
Step 2: Let h =0
Step 3: If f has no terms, stop.
Step 4: Let f* = £ + h, Transform from f* into an arithmetic form
f' using correspondences (4). Evaluate f' using the given probabilities,
If this value Ri does not exceed a given error ¢, stop.
Step 5: Select any term A of f.
Step 6: Let A' be the arithmetic monomial which is equivalent to A
according to (4).

Let P =P + A',
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Step 7: Let g+ A * f and reduce g to a sum of products. Represent g

as the sum of two functions g = g' + g'" such that g' contains exactly

all terms of g with a number of complemented variables smaller than a

given threshold T and g" all the other terms. Let f = g' and h = h + g".

Go to Step 3.

The desired upper bound to the error e, is given by the residue Ri
defined at the ith iteration of the Algorithm B as the value of the arithmetic
expression obtained transforming f* according to (4). (Sée Step 4.)

As the implicants of f* are not disjoint we have

R. > e., Vi. |

i &
An important property of Algorithm B is described by Theorem 1.

FTheorem 1
The polynomial P computed by Algorithm B contains exactly all terms of
polynomial P computed by Algorithm A which have a number of g-variables
smaller than the threshold T.
Proof: It is easy to verify that during the multiplication performed in
Step 7, every term of f generates only terms with a number of complemented
variables not smaller than its own. Therefore, terms which have been
erased from f in Algorithm B cannot generate in Algorithm A terms with
a number of complemented variables smaller than T.
Taking into account that usually the values of g-variables are much
smaller than the values of p-variables (q = 0.0l ¢+ 0.1 p = 0.9 + 0.99),
meaning of Theorem 1 is that the terms computed by Algquthm B are the
usually exactly the largest terms among those computed by Algorithm A.
The preceding statement allows us to believe that the approximation
technique converges quite rapidly. This is corroborated by the experimental
results shown in section 5.
It is interesting to observe that Algorithm B can stop either at Step 3

or 4. If it stops at Step 4, the constraint on the error is satisfied;
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otherwise, it is necessary to repeat the procedure assuming a higher value
of T.
Given an error ¢, the optimum value of T is the minimum which let the
Algorithm B stop at Step 4. In fact in that condition Algorithm B is as fast
as possible.
5. Examples
A computer program implementing Algorithms A and B has been written in
FORTRAN IV on an IBM 360/67 computer. A block diagram of this program is
given in Fig. 4.3.3.
After reading a matrix specifying graph topology and arc probabilities
(with information about directedness of arcs), the program simplifies the
graph as much as possible using the series-parallel reduction shown in Fig.4,3.4,
The path finding algorithm is then applied. In this algorithm a path
is represented as a sequence of nodes and therefore a conversion to the
"set of arcs' representation is necessary in the following stage. In this
stage the Boolean variables xij are also created. The rest of the program
follows Algorithms A and B in detail.
This program has been applied to the computation of the terminal reli-
ability between UCLA and CMU in the ARPA computer network shown in Fig. 4.3.5.
The program was completely executed in 112s. The network after series-
parallel reduction is shown in Fig. 4.3.6 and all simple paths in the vertex
and arc representation are listed in Fig. 4.3.7(a) and-(b],resééc;ively.
The 53 final disjoint terms are shown in Fig. 4. 3.8 where a + t_) in régi
k and column (i,j) appears as a factor.
Finally, the upper and lower bounds given at different iterations of
the algorithm in the case of arc reliability 0.9 and 0.99 are shown in

Table 4.3.1.
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Fig. 4.3.4., Example of series-parallel reduction.
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TABLE 4.3.1. The upper and lower bounds given at different
iterations of the algorithm [28].

Number of terms P = .9 . g p = .99
represented in the P P = ,912911 (Exact Value ) P = .999443 (Exact Value)
polynomial Fform Lower bound to P Upper bound to P Lower bound ta P Upper bound to P

13 - 890595 +96213% .999382 999638

24 904461 © .936912 «999427 .99953§

3 .9101%7 .915520 .939443 .999445

36 «911304% «91l4429 999443 +9994uy

42 +312640 -912912 999443 999443

48 «912776 ! .912911 - +399443 999443

53 912911 1 — .999443
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In much more complicated example specified in Figs. 4.3. 9 through 11,
the program did not find the exact probability expression after 10 min of
computation time.

In this case Algorithm B (with T = 3 and T = 4) gave the approximate
results shown in Fig. 4.3.12. The computing times were 99s for T = 3 and
546s for T = 4,

The numerical results (computed using double-precision arithmetic) for
different arc feliabilities (0.9, 0.99, 0.999) and threshold T = 4 are. shown
in Table 4.3.2. Note that a meaningful bound is obtained for p = 0.999 and

p = 0.99 while p = 0.9 gave an upper bound larger than 1.
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Fig. 4.3.9. Topology of a more connected network [28].
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Fig., 4.3.10. Network of Fig. 4.3.9 after series-parallel reduction.
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Final disjoint terms pertaining the terminal reli-

ability between vertex 10 and vertex 11 in the network of Fig.
The terms over the continuous
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Two algorithms were developed for determining symbolic expressions giving
an exact and an approximate vlaue for the terminal reliability in a probabilistic
network. These algorithms reduce the problem to the computation of a disjoint
form of a Boolean function f, defined by the set of all simple paths between
the initial and the final node.

The number of variables of this function is the number N of arcs in the
network. Since each step of the algorithms computes a disjoint implicant of
function f, the number of steps is Eounded by the number m of fundamental pro-
ducts of f. Actually, these algorithms trade off the number of steps with the
complexity of the single step by applying the concepts of Boolean algebra
which is largely used in many fields (like switching and coding theory) for
dealing with this kind of problem.

It is pointed out that the reduction of the number of steps is important
even without regard to the complexity; in fact, the number of steps is equal to
the number of terms in the final symbolic expression, and thus a smaller number
of.steps implies a more concise;fbrm'of the terminal reliability. Of course
this is particularly important when this form must be evaluated for a number

of different sets of values for the arc reliabilities.
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4.4 Efficient Evaluation of System Reliability by Monte Carlo Method

1, Introduction

It presents a new Monte Carlo method for calculating the reliability
of a large complex system represented by a reliability’block diagram or by a
fault tree. The usual term-wise calculation.(cut or path sets) becomes im-
practical for large systems since the reliability involves a large number
of terms. |

Although several approximations.have been proposed, they yield only lower
and upper bounds of the reliability.

When the crude (straight forward) Monte Carlo method is used, a large
number of trials is required to obtain reasonably precise estimates of the
reliability.

Mazumdar [81] proposed a Monte Carlo method with variance-reducing tech-
niques [74] in order to decrease the variance of the Monte Carlo estimates of
the reliability. There is, however, no guarantee that the method always reduces
the variance. |

‘In here, a better Monte Carlo method is obtained by applying variance-

reducing techniques.

2., Statement of the Problem
Assumptions :
1) The system has k components, numbered 1,...,k.
2) Each component is either functioning or failed.
3) States of components are s-independent.
4) The system is either functioning or failed. The system is s-coherent.

S) Some path & cut sets are known.



197

Notation
X; . component state (r.v.)
-1 1, if component i is functioning, (2.1)
) 0, otherwise.
X (xl,...,xk) is a component state vector.
b (bl,...,bk) is a sample vector of x.
¢ (x) s-coherent function of x
1, if system is functioning, (2.2}
) 0, if system is failed.
N sample size.
The elimination of trivial components gives the inequality,
x ,
0 Prix=b}= T Pr{ix. =b;} <1 (2.3)
i=1 i i

1

The problem is to calculate the system reliability,

R = Prie(x) = 1} (2.4)
= I ¢(b)Pr{x = b} (2.5)
= E, {¢6(x)} (2.6)

Crude Monte Carlo Method

Generate N s-independent samples Cl,.., CN of x. Evaluate R by the
s-unbiased binomial estimator Rc (the subscript c¢ stands for "crude'),
N

Re = N1 I 4(C) (2.7)
v=1

var {Rc} = N"IR(1 - R) (2.8)
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3. New Monte Carlo Method
Let ¢L and ¢u be two binary functions satisfying (3.1) and (3.2).

9. (®) < ¢(b) < ¢,(b), for all b. (5.1

6, () 20, oy(b) =1 (5.2)

For any given i, 0 < i < k and (bl,...,bi) define

RL,i(bl""’bi) = z ¢L(b)Pr{x = b}, (3.3)
i+l, ,bk

Ut P L o 87 g 6, (b)Prix = b}. (3.4)
bi+1, ,bk

RL’i and Ru’i‘ are used to generate random samples in the new Monte Carlo

method. ¢L’ ¢u’ and RLfi Ru’i can be obtained by the method given in
Section 4.

RL 0 and RU g are the reliabilities of the system represented by 2

and ¢U’ respectively, and are abbreviated respectively by RL and RU' The
following inequalities hold:
) 0 <R <R<R; <L, © (3.5)

If the equality RU = RL holds, then R = RL = RU and the problem is trivial;
R can be obtained without the use of the Monte Calro methods. In the

discussion that follows we assume the inequality

R, - R >0 (3.6)
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Apply the straight-forward control variate method [74] to (2.5); we have

R =2 [¢(b) - ¢L(b)]Pr{x = b} + ¢L(b)Pr{x = b} (3.7)
b b
=3I [o(b) - ¢L(bIPr{x = b} + R, (3.8)
b

We now consider generating the random samples with probability different
from Pr{x = b} according to the imfortance sampling method [74].
Define the sets
{ble(d) - ¢.(b)

X 1} (3.9)

1]
n

<
1]

{bfg,(b)- ¢, (b) = 1} - (3.10)

Using (3.6) and since XeY, we rewrite (3.8) as follows:

-
[}

T [4(b) - ¢L(b)]Pr{x = bl + R

beX L

[R, - R ] bEY [6(b) - ¢, (B)]Pr{y = b} + R, (3.11)

where y = [yl,...,yk)e Y is a random vector and
Pr{y = b} = Pr{x = B}/ [Ry - R] (3.12)

Since ¢L(b) = 0 for all beY, we rewrite (3.11) as follows:

-
|

= [Ry - R L

(1 I ¢(b)Prly = b} +R
beY

[}

[Ry - Ry] + E{e(y)} + Ry (3.13)
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The new Monte Carlo method is obtained from (3.13). Generate N s-independent
samples Sl,...,SN of y. Evaluate R by the s-unbiased binomial estimator
ﬁN (the subscript N stands for "New'):

R - N
%ENIWU'%IﬁIM%)+% R (3.14)

4...,S  can be generated easily by the method given in Note 1.

5

N
The following theorem shows that the new Monte Carlo method estimates

the reliability with a smaller variance than the crude Monte Carlo method
does.
Theorem: Let ¢L and ¢U satisfy (3.1) and (3.2). Assume RU - RL > 0 as in

(3.6). Define ﬁN as is (3.14). Then,
Var{RN} = N-I(RU - R)(R - Ry) (3.15)

< var{R } = NR(L - R (3.16)

This theorem is proved in Note 2.

4.1 (g0 Rpsy)

Take some, say m, path sets P . PIli of the s-coherent structure ¢.

1)
Define
m
=1- -
¢, (b) ) i~ B ] (4.1)
j
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As shown in Note 3, ¢L(b) satisfies (3.1) and (3.2). Obtain a reliability

function hL of ¢L by the method of Note 3. The value of R of (3.3) can

L’1i
be calculated by

R .(b

L,i "bi)

12"

..bi ,Pr{xi+l = l},...,Pr{xk =1} x

i
I Pr{x, =b_} (4.2)

Note 3 refers to the more compact type ¢L and hL.

4.2 (0 Ry )

Take some, say n, cut sets Kl""’Kn of ¢
Define
n
¢U(b) = n [1- I (1-5b.)] (4.3)
. . i
j=1 JEKj

In the same way as in 4.1, we see that ¢  satisfies (3.1) and (3.2)

u

Obtain a reliability function h_ of ¢U by using (C.1). The value of

U
Ry»; ©of (3.4) can be calculated by
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...,bi,Pr{xi+l = l},...,Pr{xk = 1}1)x

i
I Pr{x, = b} |, (4.4)

S. Numerical Example

The system is represented by the reliability block diagram in Fig. 4.4.1,

The reliabilities of the components are Pr{xi 1} = 0.9 for i = 1,...,18.

Let us take the path sets (m=6)

B, {2,15}, P, = {3, 16}, P, = {4, 17}

P, {1, 6, 14}, PS = {5, 11, 18}, P6 = {1, 7, 15},

and the cut sets (n=1)

K, =11, 2, 3, 4, 5},

then

3,(b)

= hU(b) =1-(1-b)0 - bz)(l - gi)(l < by JAT - bs). (5.1)
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Ly
<%

it

Fig. 4.4.1. A hypothetical 18-component S-coherent complex system [78].
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The identity of (C.1) yields

¢, (0) =h; (b) =1 - (1bgb 31 -byb )1 - bcb b o)
x | by(1 = by J[by (1 - b,)(1 -b) + (1-b)]
+ (1 -b)( - bzbls)] ‘ | (5.2)

The results are clearer in terms of the'system failure probability. From

(5.1) and (5.2), we obtain

L = 368 x 10'6,

1- R, 5

10 x 107 . (5.4)
The inequality of (3.5) ensures that the system failure probability 1 - R
6

1 -R (5.3)

It

lies in the interval [10 x 10, 368 x 10-6]. The reliability R is the

sum of 218 = 262144 terms. The termwise calculation gives the exact system

failure probability

1-R=29.1x 10°°. (5.5)

We see from (2.8) and (3.15) that the estimators 1 - Rc and 1 - RN with
6

N = 3000 have standard deviations of 98.5 x 10™° and 1.47 x 10-6, respec-

tively.
The standard deviation of 1 - RN is much less than the standard deviation

of 1 - Rc’ and also much less than 358 x 10—6, the length of the interval

6

[10 x 107", 368 x 10"6] of the failure probability obtained from (3.5). Fig.

4,4.2 shows the results of the new and crude Monte Carlo methods. For

N = 3000, we have

1 - Ry =27.9x10°°, 1 - ﬁc = 0.0 (5.6)
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Crude Monto Carlo

0.0 p—o=0-0=—o el i -__;7

10 ——— —

95 percent Upper Limit

New Monte Carlo

)

[
((#]
-

=
= 30\‘5' B g, 5 O
E? Exact Failure Probability
7|
£
a
£
o
&
[=9
8 40 95 percent Lower Limit
é ——
‘
m -
368 . . .

Sample Size

N

Fig. 4.4.2. Result of New and Crude Monte Carlo Methods [78].
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Rc gave the zero failure probability since all the samples ¢{Cv), v =1l,...,
3000, became 1 (unity).
Figure 2 includes the 95 percent upper and lower s-confidence limit of

1 - R5 for different values of N,

6. Conclusions
It is proved that the new Monte Carlo method gives a reliability
estimate with a smaller variance than that of the crude Monte Carlo method.

Note 1: Generation of Samples Si""’SN'

Pr{y = b} is represented as
Pr{y = b}=Pr{y, = b} Priy, = bzlyl = b} x ...
X Pr{yk = bk|y1 = b,y ® bk-l} . (A.1)
This identity shows that the generation of sv = (Sl,u""’si,u""’sk,u)
is reduced to the sequential generation of s seve3S:  5ee.,S with
l,\) i,v k,\)

the probabilities Pr{yi]yi =s },1i=1,...,k, respec-

 ETARAEL L ) Sl W EO0

tively.

Denote (yl,...,yi_l) and (s , respec-

i-1,v

have already been

l,v""’si-l,v) by Yi-l and S.

tively. Assume that the first (i - 1) elements Si 1 g
]

generated. Assume further that we can calculate the value of Pr{yiiYi 1

= si—l,v} for y; =1 and 0. Then, element i,s; » can be generated by

using a random number with rectangular distribution between 0 and 1 [74].

We give now the method of the calculation of Pr{inYi 1 =85 J The
- -1,
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following identity holds:

Pr{Y, , = S, »Ys 1t
} 1-1 l“'l,'\) I {A'z)

11}

Priy.|Y. . =8,
ithi-1 i-1,v -
Prlls ™ g,

Therefore, using (3.3), (3.4), and (3.12), we obtain

Ry, Gian,ve Y0 - B Gy, V)

Pr{yi]Yi_l = Si-i,v} = ” W ) (A.3)
LI R L 1T
The probability Pr{yi]Yi_l =8, ; .} can be calculated easily by (A.3),
(4.2) and (4.4).
Note 2 : Proof of Theorem
Var{RN} = Va.r{RN - RL} (B.1)
< N
= Var |N z (RU - RL)¢{5 ) . (B.2)
v=1
(B.2) is the variance of the arithmetical mean of N i.i.d. samples of
(RU - RL)¢(y]. Hence, we have
& _oa-1
Var{Ry} = N°° var{R; - R )¢(»)} (B.3)

= | 2.2
= NTE (R - R}

] N'I(Ey{RU - rROsMBH? . ' (B.4)
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Since the value of ¢(b) is either 0 or 1, the identity,

4°(b) = 6(») (8.5)

holds. Using (4.13) and (B.5), we have
Ey{{RU - RL)¢(Y)} =R - RL | (B.6)

2.2
EAR, - RDTTMT = Ry - RY) R - R (B.7)

The substitution of (B.6) and (B.7) into (B.4) yields (3.15).

The variances of (2.8) and (3.15) give

= S
Var{RC} - Var{RN} =N "[R(1 - RU) + RL(RU - R)] , (B.8)
yielding (3.16) by (3.5].
Note 3 : ¢L and hL.
Suppose ¢L(b) = 1. Then, from (4.1), at least one path set among Pl""’Pm

is functioning. Hence @(b) = 1, resulting in (3.1). (3.2) is satisfied
by (4.1).

The following identity holds for any binary function g(b) [71].
£(b) = b;2(1;,b) + (1 - b,)z(0,,b), - (c.1)

where the symbol (-i,b) denotes (bl,...,b b ...,bk).

i-17 2 Ti+l’
From repeated applications of (C.1), we can rewrite (4.1), obtaining

the reliability function hL:

el

m
o, (b) =1 - jzl L, (b) = hy (b), (C.2)
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where each argument bi appears at most once in each polynomial Lj[b).
Example 1 Suppose m = 3; P1 = {1,2,3}, P2 = {2,3,4}, and P:5 = {3,5,6}, Using

(C.1) we have

¢, () = 1 - (1 - bybyby) (1 - bybb) (1 - bbcb) (C.3)

1= byl - bby) (1 - byb,) (1 -bgb) - (1 -b) (C.4)

1-bb (l-b) (L=-b) (1-bcb)

(1 - bz) b3 (1 -'bsbﬁ) - (1 - b3) {C3)

h; (b) . (C.6)

If necessary, we can obtain more compact type ¢L and hL by replacing some
factors by 1 (unity). This is illustrated by the following example.

Example 2 If we replace (1 - b2b4) by 1 in (C.4), then we have
¢L(b)3_l - bs(l - blsz (1 - b5b6) - (1 - bS) (C.7)

We can use the r.h.s. of (C.7) as compact type ¢L and hL because of

the inequality of (C.7).
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CHAPTER 5  SELECTION OF A SUITABLE RELIABILITY EVALUATION TECHNIQUE
BY MULTIPLE ATTRIBUTE DECISION MAKING METHOD

1. Introduction

The problem of a reliability analysis of a complex system has generally
been of considerable interest. Although there are sevéral methods which
can be used in evaluating the complex system reliability; it is not easy
to analyze relevant alternative methods for their capability. The multiple
attribute decision making (MADM) methods are for evaluating and selecting
a desired alternative from a sﬁall, explicit list of alternatives [89].

The evaluation and selection of a system reliability evaluation tech-
nique is a multiple criteria decision making process. The criteria are
often in conflict with each other, and the ﬁeasurements of their attributes
are nonhomogeneous, That is, such important criteria as total computational
time, accuracy of the solution, ease of use of the method, ease of under-
standing the logic of the method, etc., arise,

The purpose of this paper is to demonstrate the decision making process
fhrough the applications of the MADM methods in the selection of a suit-
able system reliability evaluation technique for the corresponding system

configuration.

2. Formulation of the Problem

ALl problem solving must begin with establishing goals (objectives) [90].
And the objectives should be nonconflicting, coherent, and logical as a set.
One way this may be achieved is to hierarchically derive the goals from some

supergoal. We will follow the hierarchical goal structure approach [88, 89, 94]
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Essentially we are trying to depict the worth relationships between
overall performance objectives and successively lower levels of increasingly
more specific performance attributes relevant to the selection of a specified
alternative designed to achieve a given policy.

To render the discussion concrete, let us take a general evaluation
technique in the system reliability problem. A system reliability evaluation
technique may be evaluated through the following measures of performance:

1) CPU - time on a computer

2) Accuracy of the solution with respect to the error in the component

values and system reliability expression.

3) Ease of understanding the logic of the technique

4) Ease of use of the technique

After generating a hierarchical tree of overall objective and the attribute
a next logical step is to select a unit of measurement of physical performance
for each lowest-level attribute on the tree. Selecting physical performance
measures must be done judgmentally.

Consider a communication system with five nodes and seven branches
(two of these being interconnecting) shown in Fig. 5.1. It is assumed that
all the nodes are perfectly reliable. There are nine feasible methods
which can be employed to evaluate the reliability of this general network.
These alternative methods are as follows:

Exhaustive Search

Al:

A,: Direct Canonical Expansion '
AS: Probability Calculus

A4: Bayes' Theorem

AS: Flow Graph Method

AG: Algebraic Extraction

A_: Fast Algorithm
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Fig. 5.1,

A General network.

212

Out
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AS: An Efficient Method for a General Network

AQ: Symbolic Reliébility Evaluation Using Logical Signal Relations
As mentioned above, the alternatives will be examined by applying four
major criteria. All the information of nine methods available [3, 5, 6, 7,

8, 55] are summarized in Table 5.1.

Note 1: Let m be the number of multiplications required
Let a be the number of additions required
Let Tm be the time for one multiplication on computer
Let Ta be the time for one addition on computer

Let Tc be the total computational time

In a typical Digital computer [95], Tm is about ten times more than
T . (In IBM 1620, T = 12,512 usec, while T = 1,200 usec}. Using T =10 T,
a m a T m a
total computational time Tc will be (10m + a) Ta' That is,c/Ta is equal to
(10m + a).

In case, m = 354 and a = 58, Tc = 3598 Ta

Note 2: The error analysis of any complex mathematical expression is based
on the following theorems [95].

a) The absolute error in the summation (subtraction) of certain terms

is equal to the summation of the absolute error in these terms

b) The relative error in the multiplication of certain terms is equal

to the summation of the relative error in these terms.

Iﬂ the"analysis, it is assumed that all component reliability values have
an absolute error of ae. All unreliability values (q's) are also therefore
having an absolute error of Ae. For simplification, all reliability (or
unreliability) values may be assumed equal to p (or q). It is further

assumed that the value of the error Ae is quite small.



214

¢ 410N 01 J9jsy
T HION 031 JI2F9Yy

*C
=

Ao
3INOTIITp o8rvaone Aseeo ofvaone -TIFTP

ITODTIFTIP Ind 3N 31nod
AI1oA -TFFTP -TIITp oFvione -1JFIp oFrIoAe

6 1 14 14 8.1

€9 86% 86¢€ 86¢< 8811

3o

Aseo oFevrone osfexsne -1IFTP

BLT 8.1

8811 8811

Ases

Aseo

14!

265¢%

Aseo
AI9A

14!

(21noT3ITP AI00

+ Lsea Aaon) vy.

ash 031 Aseg
(3mmor3gIp AI9A

+ Aseo Akmbumx
21307 9yl puels
-I2pun 031 Aseq

s
z v
X ‘Aoeanooy

Tx

SWTI] TERUOTIRL

[ 865¢ -ndwo) TE1O0]

by By b & Ty

T
Y

Py "y

SOATIBUIDITY

ey

ly

C

X seIngrily

WSTQOIJ UOTIDOTOS POY1SW uoriIenieag AJITTGRI[oY walsAg oyl

"I°S HI8VL



215

Using above theorems for reliability expression by A6 and A7;

3 2
Ap = 4, [(2/p)p° + 2(3/p + 1/Q)p’q + 2(4/p + 2/)p’q
2
v (3/p + 2/@)p°° + 3(4/p + /p*e’]
or
AR = Ae (2p + 2p3 + 6p2q + 8p3q2 + 4p4q + 3p2q2 + 2p3q - 12p3q3 + 9p4q2)

In the high reliability region (p = 1); this error is approximately given 'as:

Ap = 4,

where, AR Absolute error in system reliability

&e Absolute error in component reliability

3. Application of MADM methods

As to which method(s) we should use, the selection of MADM method(s)
itself is a MADM problem. We suggest a general choice rule represented
by a tree diagram in Fig. 5.2(a)[89]. . Through those various situational
judgments, some MADM methods--conjunctive constraints, simple additive
weighting, linear assignment method, ELECTRE, and TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) are utilized for the
solution of the reliability evaluation technique selection problem. This
pféblem has nine alternativeé with four attributes. First some transformations
of qualitative (fuzzy) attributes to quantitative ones are given in order
to use the method of simple additive weighting, ELECTRE, and TOPSIS, then

solutions by several methods are illustrated.



Ql: Is the purpose optimizing
rather than satisficing?
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/es

N\

Q2: Are the dominated alterna-

tives screened?

Yes

Q3: Are there multiple decision

makers with conflicting

preferences?

YEB \Ijo
Q4: Will the results of implementing
the alternatives be determined by
only the best(or worst) attributes]?
A \es

Q5: 1Is the decision maker familiar

with attributes rather than

alternatives?

’///;es \\\\\fo
Q6: What is the salient feature Q7: What is the salient feature
of preference information for of preference information for
____attributes? allssmﬁu_es?
|
pairwise pailrwise
cardinal MRS preference proximity

Fig. 5.2(a). MADM method specification chart [89].



.ﬁ@wu Supyeu uorsTI2P Ingriilze STdIITnE Jo3 spoylew jo Awouoxel ¥ *(q)z°S 314

IUFod TeIPLI YITA SAH TI°T°€

~3ITEg JO JI9pIQ Z'€

217

2ATIPUIDITY UO
UOTIBWIOJUL ‘€

MVS °AT30BI®IUL g°[°€ ERliCRENCR ¢
dVANIT T°T1°€ 9STMITed 1°¢

uorIN}EIsqng Jo
938y TPUTIIBH %°¢

S3J09pER1L TEOTUYDIIBISTH T[*'L°T

SISdOL S°€°T
AYLOATI H°€°¢
Suray3rem TeUTpae) ¢°¢

SATITPPV [EOTUYDIBISTH €°€°T
g
SutaySToM SATITPPY STdWES Z°€'¢ UENER
1°€°¢

2INQTAIIV U0 UQESTId
poyla JuemudTSSy ABSUT] HOMMMEQMMQH - muzMﬂwuum

aTdTITNK

POUISH UOTIBINWIDG

£°z¢°¢
uoTJBUTWITH [ETIUsnbag g°z°¢ TeUIpIQ 2°¢
Aydea8oorx®] 1°C°T

sjureilsuo) 2aTI2un{uo) Z*
1

ADT] pIEpUB] .
sjuieilsuo) aAFIdunfisI(q L n pis38 TS

Xewlxel] ¢€°1°1
UTWEXel Z°1°1
aouruTWOg [°1°1

uopIBUIOFUL ON i

EENET
SpouIsR 3O UOTIEWIOZUT JO. UOTSTO9( oYy3 WOy

sesse[) aole ‘III sinjeoj JUSF[ES ‘Il  UOFIBWAOJUY 3O 94Ky ‘T




218

3.1 Transformation of Attributes

Qualitative attributes are quantified using the bipolar scale as shown
in Fig. 5.3. Some qualitative attributes such as 'ease of use'’ or 'ease of
understanding' need empirical judgments.

Next the quantitative attributes with different units are converted
into comparable scale. A simpler procedure is to divide the outcome of a
certain criterion by its maximum value, provided that the criteria are
defined as beﬁefit criteria (ghe larger Xj’ the greater preference); then

the transformed outcome of Xi. is .,

X, .
L. o= L]
] X.*
J
where X* = max X.. (1)
J i 1)

Since all the qualitative attributes (Ks, X4J have been transformed into the

benefit scale, cost attributes (Xl, Xz) are also changed into benefit scale

using
1/X. . m}n Xij X min
r.. = 2 m = —d (2)
) max (1/X..) X, . p
5 ij ij ij

The comparable numerical decision matrix becomes

Xl X2 Xs X4

( 1
Al 0.11 0.29 0.9 0.3
A2 0.11 0.29 0.7 0.5
AS D.34 0.02 0.7 0.5
A4 0.34 0.02 0.5 0.7
D= As 0.34 0.02 0.3 0.3
A6 1 1 0.5 0.5
A7 1 1 0.3 0.7
AS 1 1 0.3 0.5
A 0.64 0.44 0.1 0.3

9 )
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—— &
4 .9 very easy
q W7 easy
N average

4 3 difficult

4 .1 very difficult

Fig. 5.3. Bipolor scale for the qualitative attributes.
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3.2 Solution by the Conjunctive Constraints

In conjunctive decision making, all the standards must be met.
Hence, standards will be set and then increased or decreased in an
iterative fashion until only one alternative meets all of the standards.

This solution is very simple because it requires little complicated analysis.

‘Iteration #1:

The decision maker will take any alternatives which possess the
following properties:

1. Total computational time at most 1010

%
2. Accuracy at most 10
X2 (= AR/AG]
3. Ease of understanding at least average
XS
4, Ease of use at least average
4
Property Alternative possessing that property
1 A 6 A7 A 3 A
2 A 5 A7 AS Ag
3 Al AZ AS Aﬁ A.6
4
A A A A6 A7 Ag

It can easily be seen that only A6 possesses all of the four properties.

Hence select A6 (Algebraic extraction method).
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3.3 Solution by Simple Additive Weighting Method

This method [86, 87, 91] takes an alternative which has the maximum
weighted averages. The DM assesses the weight using the given hierarchical
structure of attributes. First he assesses the weight about the four major
classes, then he judges within each class. The complete assessment is given
in Fig. 5.4.

With the assessed weight and the comparable attribute values given in

the D matrix, the weighted average values for the alternatives are:

4
= ;= P A = -

Al jfl ijIJ 0.361 6 0.75

A7 = 0,77
A2 = (0,381

AB = 0.69
AS = (0,396

Ag = (.39
A4 = 0.416
As = 0,256

therefore, A7 (Fast algorithm) is selected,

3.4 Solution by Linear Assignment Method

This solution [85] employs a linear compensatory process for attribute
interaction and combination. In the process only ordinal data, rather than
cardinal data, are used as the input. And the qualitative attributes do
not need to be scaled. The alternatives are ranked as shown in Table 5.2.

Now, let us define a product-attribute matrix I as a square (9 x 9)
nonnegative matrix whose elements Hik represent the frequency (or number)
that Ai is ranked the Kth attributewise ranking. For the different weight
W= (wl, Wys W, w4) = (.3, .2, .2, .3), egch entry of I matrix is the sum
of the weights of all of the entries with that ranking for that alternative.

This is shown in Fig. 5.5.
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Fig. 5.4. Assessment of attribute weights.



223

TABLE 5.2. Ranking of Alternatives
pry——

% . X, (W,) X, (W) 5 (W) X, (W)
Rank 141
1st A6, A7, Asq AG’ A7, AB Al A4, A7
2nd LA

3

aed AyrRsafgsig
4th Ag Ag A4’A6
S5th AB’A4‘ 5 AI’AZ
7th Ag,ApLA AL AgAg
8th Al’Az
gth A




For the different weight w = (wl, wz, Wes w4] = (.3, .2, .2, .3), I matrix becomes
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Product-attribute matrix i

5.5,
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224



2243

9T
£90°
L90"

ST

ST

£90°

L90°

££¢
£90°
L90"

ST”

ST’

L90"

L90°

gees”

L91°

9LT"

(penuTjucd) I XTIIBW 9INQLAIIV-1INPOI]

[AAN

SLO°

L9T°

SLT”

SLT

SLO°

SLT®

SLTT

SLL®

SLO”

SLT°

v’

L9T°

ve”

SLT®

SLT®

Lot”

L1E"

L9T"

£91°

L1%”

L9T"

ST®

S°s 314



225

The larger Hik indicates the more concordance in assigning Ai to the

Kth overall rank. Hence the problem is to find Ai for each K, K=1,2,...,8

which maximize

I
1

[ o B Ue}

Koy ik

Let us define permutation matrix P as (9 x 9) square matrix whose element

Pik =1 if Ai is assigned to overall rank K, and Pik=O otherwise. The

. linear assignment method can be written by the following LP format,

9 9
max I r mo.. P,
i=1 k=1 K ik
9
s.t I P, =1, i=1,2,...,9

k=1 ik

9

‘E Pik =1, k =1,2, 9
i=1

P., >0, vi,k
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The solution (by computer output; refer to Appendix 2) is

P . =

61 = 1
P, = 1
Pys = 1
Pgy = 1
Py = 1

p36

PS?

P)s

Pig

the

=1

1

1

1

others are all zero.

The optimal permutation matrix P* is -

= >
1

~N O U B N

P‘k

L]
P P P 2

o

=
w0
I

That is, the final ranking of (AG’ A?’ AS’ Ag, A

obtained.

1st

o O O = O O O O ©

2nd 3rd
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0

4th

- O O O O O O o O

Sth 6th 7th 8th 9th

O O o O O - o o ©
o O O O = O Q O <
O O O O O © O o
o O O O O O O O e

4° AS’ AS, Az, Al) is
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3.5 Solution by ELECTRE (Elimination et Choice Translating Reality) Method

This method [92, 93, 96] uses the concept of 'Outranking relationship'.

Outranking relationship of Ak - A2 says that even though two alternatives

k and % are nondominated each other mathematically, the DM accepts the risk

of regarding Ak as almost surely better than Al [97]. Through the successive

assessment of outranking relationship of the other alternatives, the dominated

alternatives by the outranking relationship can be eliminated. ELECTRE ‘sets

the criteria for the mechanical assessment of the outranking relationships.

The ELECTRE method takes the following steps:

1. Calculate the normalized decision matrix:

!

.6463
.6463
.2134
.2134
.2134
L0715
.0715

0715
.1119

=
—

P
AN B MY, I SR ¥ S N

o o O O O O o o o

e

2. Calculate the weighted normalized decision matrix:

V = RW

.6463
.6463
.2134
.2134
.2134
.0715
.0715
0715

> _‘J:P O‘ZP m)? _hlh‘ MP N:D' ._:P'

oo
o o © O O O o o o

P
o
r

L1115

X,

0.0453
0.0453
0.5758
0.5758
0.5758
0.0129
0.0129
0.0129
0.0291

0.0453
0.0453
0.5758
0.5758
0.5758
0.0129
0.0129
0.0129
0.0291

0.
0.4366
0.4366
0.3119
0.1871
0.
0
0
0

o o O o ©O o o o o

%3

5614

3119

.1871
.1871
.0624

.5614
.4366
L4366
.31189
.1871
.3119
.1871
L1871
.0624

%4

0.2
0.3333
0.3333
0.4667
0.2
0.3333
0.4667
0.3333
0.2

—

. 3333
.3333
. 4667

.3333
.4667
.3333

o 0 O 0 o0 o o o o
N

0.3 0 0 0
0 0.2 0 O
0 0 0.2 0
0 0 0 0.3
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1 2 3 4
= A C0.1939 0.0091 0.1123 0.06 7
A, 0.1939 0.0091 0.0873 0.10
Ag 0.0640 0.1152 0.0873 0.10
A, 0.0640 0.1152 0.0624 0.14
A 0.0640 0.1152 0.0374 0.06
A 0.0215 0.0026 0.0624 0.10
A, 0.0215 0.0026 0.0374 0.14
Ag 0.0215 0.0026 0.0374 0.10
Ay L0.0336 0.0058 0.0125 0.06 |

Recall that Xl and X2 are cost attributes, and X

3. Determine concordance and discordance set:

3 and K4, benefit attributes.

The concordance set Ckl of A and A is composed of all criteria for which

Ay is preferred to Az. i Gy

Cp = {lekj 3_X£j} and the discordance set is D, = {jlxkj < ng}

=J -Gy

€, = {1, 2, 3} D12 = {4}

€5 = {2, 3} Dyg = (1, 41
Ciq = 12, 3} Dyy = {1, 4}
s = {2, 3, 4} D, = {1}

Cig = 13] D = {1, 2, 4)
Cl? = {3} D), = {1, 2, 4}
s = {3} D.g = {1, 2, 4}
C19 = {3, 4} D19 = {1, 2}
C21 = {1, 2, 4} D21 = {3}

C,y = {2, 3, 4 D, = {1}

Chy = (2, 3 D,, = {1, 4}
C,e = {2, 3, 4} D, = (1}

Cop ™ {3, 4} Dy = {1, 2}
Cpp = {3} D,, = {1, 2, 4}
028 = {3, 4} D28 = {1, 2}
Co= 13, 4] D,y = {1, 2}
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{2}
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i,
{1,
{1,
{1,
{2,
{2,
{3}

{1,
{1,
{1,
{1,
{2,
{2,
{3,
{3,
{1,
L,
{1,
{1,
{3}
{3}
{3}
{4}

{4}

3}

2}

2}
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3%

4}

4}

3, 4}
4}
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13
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{1,
il
{1,
{1,
{1,
1,
{1,
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£1,
{1,
{1,
{1;
{1,
by
{1,
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{1;
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Calculate the concordance matrix

jeC

jeC

14

13

W

W

1

1

+w, +w, =0.3 + 0.2+ 0.2

2 3

+ w3 = 0.2 + 0.2

i

=E === === === == ==

U D O O O U oo oo
W OW WO W W W W W e 00 e e 0 e o 00 ~1 o~ =~~~ =1~ =)
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0.7

0.4

{3}
{3}
{3}
{3}

{3}

{3}
{3}
{3}
{3,

{3}
{4}

{3}
{3,
{3,
{3,
{3}
{1,
{1,
{1,

4}

4}
4}
4}

2, 3, 4}
2y 35 4}
2, 3, 4}
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then the concordance matrix is,

B

Calculate the discordance matrix.

An element d

12

31

O 0 ~N U B N e

ki

21

13 ~

—— 0.

0.6
0.6
0.6
0.8
0.8
0.8
0.8

k&

o O O o o o o
U1 00 G0 00 W OV oo

7 0.4

o o o O o O
o o Q ©o W G

0.4
0.4
0.7

0.5
0.7
0.8
0.5
0.5

=

0.2
0.5
0.5
0.5

0.8
0.8

|

o © O o o o

0.2
0.5
0.5
DS
0.2

~N N NNN

of the Dx matrix is obtained as,

max
JeDip | vy - Vsl
max
jed lvkj - vzj i
0.04 o
0.04 -
0.025
0 04 = 0.625
0,1299

max {0.1299, 0.1061, 0.025, 0.04}

0.1061

= 0.1299

= 0.8168

0,1299

0.1299

1

- = = O © © O O
L R ¥ T ¥ 5 T ¥ s R ¥ |

|

231
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0.1299 -1
14 © Tmax {0.1299, 0.1061, 0.0439, 0.08}

0.1061

1% o109 = 0-8168

i _ = 0.1299 .

15 max {0.1299, 0.1061, 0.0749, 0}

_ 0.1061 _

d51 = Gizo9 — = 0-8168

i = . 0.1724 3

16 max 10.1724, 0.0065, 0.0499, 0.047]

4 = 0.0499 _ 4 904

61 0.1724 .

etc.,

The discordance matrix is,

1 2 3 4 5 6 7 8 9
D = 1 [— 1 i 1 1 1 1 1 1]

2 625 — 1 1 1 1 1 1 1
3 {.8168 .8168 — 1 o 1 1 1 1
4 | .8168 .8168 .6225 — 0 1 1 1 1
5 8168 .8168 1 1 — 1 1 1 1
6 | .2894 ,1444  ,2211 .3552 O — 1 0 0
7 | .4345 ,2894  .4432 .2220 O 625 — 0 0
8 | .4345 ,2894  ,4432 ,3552 O 1 1 == 0
9 | .6226 .4666 .6837 .7313 .2276 1 1 1 — |

6. Determine the concordance dominance matrix: if we take the threshold

value of Cg 23S the average concordance index, then

L

(.7 + .4+ .4+ 20 + .5 +,8) 43,5
9 x 8 72

= (0.6042

c =

P kil



The concordance dominance matrix is,

1 2 3 4 5 6
o e .

1 [~ 1 0 1 0
2 1 - 1 0
3 0 1 - 1 1 0
4 0 0 1 - 1 0
5 0 0 0 0 - 0
6 1 1 i 1 1 -
7 1 1 i\ 1 1 1
8 1 1 1 0 1
9 |1 o 0 0 1 0

7. Determine the discordance dominance matrix:

the average discordance index, then

(1L + 0.8168 + -+ + 1) _ 49,4266

9x8 72

o
I

The discordance dominance matrix is,

1 2 3 4 5 5

G=1 [— o0 0 0 0
2  R— 0 0 0 0.

3 0 0 = 0 1 0

4 0 0 1 — 1 0

5 0 0 0 0 - 0

6 11 1 1 i —

7 1 1 1 i 1 1

g8 |1 1 1 1 1 0

9 1 1 0 0 1 0

- O O o o o

= = O O O O ©

the value of

= 0.6865

o

O o o o ©

[#.9]

- = o O © O O
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H o= = O O O O O

d is taken as

w

- -~ - O O O © O
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8. Determine the aggregate dominance matrix; Combine matrices of F and G,

the aggregate matrix is obtained as,

12 3 4 5 6 7 8 9

E= 1 [— 0 0 0 0 0 0 0 0]
2 1 — 0 0 0 0 0 0 0

3 0 0 — 0 1 0 0 0 0

4 0 0 1 — 1 0 0 0 0

5 0 0 0 0 — 0 0 0 0

6 1 1 1 1 1 - 0 1 1

7 1 1 1 1 1 1 — 1 1

8 1 1 1 0 1 0 0 - 1
9 |1 o 0 0 1 0 0 0o —]

9., Eliminate the less favorable alternatives; the E matrix renders the

following over-ranking relationships;

2 ™ 6~ "M 77 s~ M
Ay > A Ag > A, A, > A, Ag ~ A,
A, > A Ag > A A, > A Ag > A,
A, ~ A Ag ~ A, A, > A, Ag > Ag
R * oy By + A Ag > Ag
Ag > Ag > A Ay + A
Ag > Ag A, > Ag Ag > Ag
by * 0y

AL+ A -+ A A

A7+A6¢A4<: Ag
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We can see that either A7‘+ Aﬁ - AS relationship or A7 e AG < A4 hold
predominantly. Also some other relations can be identified partly. But
we cannot tell the streamlined relation.

By tightening the threshold value: (Steps 1 to 5 are the same as before)

¢ increased to 0.8, d lowered to 0.3

6. The concordance dominance matrix becomes:

]

F= 1 [— © 0 0 0 0 0 -0
2 1 - 0o o 0 0 0 O
3 0 1 — ¢ 1 0 0 o0 0 .
4 0 o1 - 1 0 0 0 O
5 0 o 0 0 — 0 0 0 o0
6 1 1 1 0 1 - O 1 1
7 1 1 1 1 1 1 — 1 1
8 1 1 1 0 1 1 0 - 1
9 1 0 0 0 1 o0 0 —]

7. The discordance dominance matrix is

G=1 [—- 0 0 0 0 0 0 07
2 0 - 0 0 0 o 0 0 0
3 o 0 — 0 1 0 0 0 0
4 0 0 0 - 1 0 0 O O
5 0 6o 0 0 - 0 0 0 o0
6 |1 1 1 0 1 - o0 1 1
7 0 1 0o 1 1 o - 1 1
8 0 i1 0o o0 1 o0 o - 1
g Lo o o 0 1 o0 0 —_




8. Determine the aggregate dominance matrix;

E= 1 [— 0 0
2 o -
3 o o -—
4 o 0 o0
5 {0 0 ©
6 |1 1 1
7 o 1 o0
8 o 1 o
9 o o o

9. The E matrix renders the following overranking relationships;

o oo O

o O = O O

- - o ©
| © ©o © o ©

e e T =
o o O

+ A
+ A
+ A
+ A
+ A
+ A

N

O e 1 W

By the graphical representation,

We can easily see that

A and A

6

7

o o o O O ©O
-~ © O O O ©
= == O O o O O

(=]
|

o
I

A7 - A2 A8

A > A 4 Ag

Bop ¥ By Ay

A, > Ag

Ay ™ Ay Ay
A

A6 As—-n-r A5

3?:9‘ =*dy

7?A———)A

A—-FA

- A

dominate others,

2

5
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3.6. Solution by Technique for Order Preference by Similarity to Ideal Seolution
(TOPSIS)

TOPSIS [89] considers the distances to both the ideal and the negative-
ideal solutions simultaneously by taking the relative closeness to the ideal
solution. It is shown that the simple additive weighting (SAW) is a special
case of TOPSIS. A favorable reliability evaluation technique will be selected

after a series of successive steps of TOPSIS.

1. Calculate the normalized decision matrix.

A, [ 0.6463 0.0453 0.5614 0.2 ]
R= A, 0.6463 0.0453 0.4366 0.3333
A 0.2134 0.5758 0.4366 0.3333
Ay 0.2134 0.5758 0.3119 0.4667
A 0.2134 0.5758 0.1871 0.2
Ag 0.0715 0.0129 0.3119 0.3333
A, 0.0715 0.0129 0.1871 0.4667
Ag 0.0715 0.0129 0.1871 0.3333
Ag | 0.1119 0.0291 0.0624 0.2 |

2. Calculate the weighted decision matrix;
Assume that the relative importance of attribute is given by the DM
as w = (wl, W We, w4) = (0.3, 0.2, 0.2, 0.3). The weighted decision matrix

is then
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1 2 3 4
V= A ~ 0.1939 0.0091 0.1123 0.06 |
A, 0.1939 0.0091 0.0873 0.10
A 0.0640 0.1152 0.0873 0.10
A, 0.0640 0.1152 0.0624 0.14
A 0.0640 0.1152 0.0374 0.06
Ag 0.0215 0.0026 0.0624 0.10
A, 0.0215 0.0026 0.0374 0.14
Ag 0.0215 0.0026 0.0374 0.10
Ay | 0.0336 0.0058 0.0125 0.06 _

3. Determine the ideal and negative-ideal solutiomns:

Two artificial alternatives A* and A are defined as

* = 3 3
A (m:.r.n Vil’ min ViZ’ max Vi.’:" max ‘v’i 4]
i 1 i i
= (0.0215, 0.0026, 0.1123, 0.14)
A" = (max Vy,, maxV,,, minV,5,  minV,,)
i i i i
= (0.1939, 0.1152, 0.0125, 0.06)

4, (Calculate the separation measures:
The separation between each alternative can be measured by the n-
dimensional Euclidean distance. The separation of each alternative to

ideal one is then given by

7
S. . =‘//z .. - V)2, i 8 1,2, 00049
1 2 1J J
ji=1
S, = 0.1902, S,u = 0.1303 S, = 0.0749
S,, = 0.1789 Sc. = 0.1628 Sgu = 0.0849
Sg. = 0.1293 Sgu = 0.0640 Sgu = 0.1285
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% 2
s. = VI (V.. -vV)?, 1= 1,2,,.00,9
i- je1 1 j
L = 0.1457 5,. = 0.1605 S,_ = 0.2223
s, = 0.1358 S._ = 0.1323 Sg_ = 0.2112
5, = 0.1551 5, = 0.2156 S,_ = 0.1941

5. Calculate the relative closeness to the ideal solution:

The relative closeness of Ai with respect to A* is

Cpu =Sy /(Sy. *+ Sy ) = 0.4338

Cpe = 0.4315

Cp = 0.5454

Cye = 0.5519

Co. = 0.4483

Cge = 0.7711

C,, = 0.7480

Cgs = 0.7133

Cgu = 0.6017 ‘

It is clear that Ci* =1 if Ai = A* and Ci* = 0 if Ay = A”. An alternative

Ai is closer to A* as Ci* approaches to 1.

6. Rank the preference order: According to the descending order of Ci*, the

preference order is:

Ags Bgi Bga-Bgs Bgs Bey Aoy Aps Ay

4. Comparison of results by the MADM methods

To select a suitable reliability evaluation technique, such MADM methods
as the Conjunctive Constraints, Simple Additive Weighting Method, Linear
Assignment Method, ELECTRE Method and TOPSIS are employed. Comparison of
results by these methods is shown in Table 5.3,
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5. Concluding Remarks

As Table 5.3 shows, A6 (Algebraic Extraction method) appears to be most

favorable alternative when Conjunctive Constraints, Linear Assignment Methdd,
or TOPSIS are applied, while Simple Additive Weighting and ELECTRE recommends
A? (Fast Algorithm) as a most favbrable one. It can easily be seen that Aﬁ
or A7 (Fast Algorithm is just the extension of Algebraic Extration method i.e.,
Aﬁ) is selected as a desirable method in this problem.

The goals (or objectives) of the system reliability evaluation techniques
may be: a) Computational time saving on a computer, b) Accuracy of the
solution, c) Ease of understanding the logic of the technique, and d) Ease of
use of the technique. These goals (or objectives) are often in conflict with
‘each other. As a result the solution to the multicriteria decision problem
is a compromised one, not necessarily an optimum one. In general the basic
problem is to decide what kind of evaluation technique should be employed
depending on the size and configuration of the system., The selection of a
particular evaluation method will depend upon the degree of achieving the
Criteria (objectives) mentioned above, and the compromises required.

The use of MADM methods are demonstrated through the evaluation and
selection of a system reliability evaluation technique from several alternatives.

The procedure can be applied to the selection of relevant evaluation technique

for the other system configurations in systems reliability.
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APPENDIX Al

The appendix contains:
1. The computer program which provides bounds for approximat-
ing large system reliability
2. The outputs of the ﬁrogram for approximating system
reliability of'the reliability graph given in Fig. 4.1.1(b),
which consilst of the success paths, the cutsets, and a

series of upper and lower reliability bounds.

To become familiar with the input procedure, refer to Section 4.1.
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* ANALYSIS OF PATHS AND CUTS =*

DIMENSIGN IP{100420),1IC(20420}
DIMENS IGN IUN(20),IB1{20),BOUNDI20),PROB(2C),I0(20])
1 READ {5,1500,END=S99])N
LERU ARRAYS
D0 402 1=1i,420
IUNLI)= @
ig(i) =0
BUUND{I} = Qe
PROB(LI) = 0.
DO 401 J=1,20
IC{ds1) = O
401 IP{JsI) = O
DO 402 J=21,100
402 IP(JsI) = 0O
READ 1510y (PROB{I) I=1,N), EPSLOM
PRINT 1000+Ns(I,PROB(I),I=1,N)
CALL PATH(NsNP,IP)
PRINT 1GLO NP
DO 450 I=14NP
DO 400 J=1,20
400 JUNC(J) = 0
DO 430 Jd=1,+20
K = IP{I,J)
IF{ K J430+430:+410
410 IF{K-25)4204430,430
420 ITUN(K) = 1
430 CONTINUE
DU 440 J=1,20
440 [P(I,4) = IUNI(J)
450 CUGNTINUE
DO 4 1=14NP
K=0
DO 3 J=1,N
IF(IP(Isd))34342
KR=K+1
IG{K)=d
CONTINUE
PRINT 1020 414(100Jd) sd=14K)
CONT INUE
DG 10 I=1,20
DG 10 J=14 20
10 IC{Isd) = 0O

L

k% CETERMINE SYSTEM CUTS
FAF CHECK FOR SINGLE ELEMENT CLUTS

K=1

DO 30 J=1,N

DG 20 I=1,NP

IF(IP(I5sJ))30,30,20
20 CONTINUE

IC(Ksd) = 1



K=K+ 1
30 CUNTINUE 231

T CHELK FOR DOUBLE ELEMENT CUTS

Ni=N~-1
IF{N1)571s571s31
31 DU 90 I=1,N1
Ii=1+1
DC 90 J=11yN
I DUM=0
DU 40 L=1; NP
ITRICK=MINO(IP(L, I})+IP({L,J}sl)
IDUM=IDUM+ITRICK
40 CUNTINUE
IF(IDUM-NP) 90,50,90
50 IC(KsI)=1
IC(Ksdl=1
Ki=k-1
IFLKL)Tie71y51
51 DU 70 L=1,K1
DU 60 M=14N
IDUM=MINO(IC(K M}=IC(L,M)s1])
IF{ IDUM)} 60 +60,480
60 CONTINUE
TO CONTINUE
Ti K=K +1
GO TO 90
80 IC{K:I1)=0
IC(Ked)=0
90 CGNTINUE

&k CHECK FOR TRIPLE ELEMENT CUTS THAT ARE MINIMAL

Ne=N-2
IF(NZ}5T14571,91
91 DG 180 I=14N2
Il=1+1
UG 180 J=11.N1
12=4+1
DU 180 L=1I24N
I10UM=0
D0 120 M=1,NP
ITRICK=MINO((IP(M,I)+TIP(M,J))+IP(¥M,L),1)
IDUM=IDUMT+ITRICK
120 CONTINUE
IF(IDUM-NP)1804+130+180
130 DO 135 II=1,N
135 1C(K,114 = O
IC{Ks1)=1
IC(Kyedl=1
1C(KsL)=1
Ki=K-1
IFLKL)LTL,171,131
131 DL 170 M=1,K1
iDUM=0
JDUM=0
OG 140 IJd=1,4N



ITRICK=MINO(ICIMsTJ)*IC(KsIJ) 1) 252
IDUM=IDUM+ITRICK
JOUM=JDUM+ICIM,IJ)
140 CUONTINUE
IF(IDUM=-JDUM)170,150,170
150 ICIKy1)=0
IC(KeJ)=0
IC(K,L)=0
GG 7O 180
170 CONTINUE
171 K = K+1
180 CONTINUE

C #*%% CHECK FOR FOUR ELEMENT CUTS

C

N3=N=3
IF(N3)5T71,:571,181

181 DO 510 I=1,N3
Il=1+1
DO 510 J=I1,N2
iZ=J+1
DG 510 KK=1IZ4N1
I3=KK+1
DU 516 L=134N
1DUM=0

DU 460 M=1,NP
ITRICK=MINO({IP(M,I)+IP(MsJ) )+{IP(M,KKI+IP(M,y4L)),1)
IDUM=IDUM+ITRICK
460 CUONTINUE
IFCIDUM-NP })5104470,510
470 IL(Ka1)=1
1C{Kyd)=1
IC(KsL)=1
IC{KsKK)I=1
Kl=K-1
IF(KL1) 501,501,471
471 DG 500 M=1,K1
iDUM=0
JOUM=0
DU 480 IJ=1,N
ITRICK=MINO(ICIM,IJ)*IC(K,IJ)},1)
10UM=10UM+ ITRICK
JOUM=JDUM+IC(M,1J)
480 LONTINUE
IF(IDUM-JDUM) 500,490,500
490 IC(KsI)=0
IC(KkysKKI=0
IC(KsJ)}=0
IC(KeL)=0
GU TO 510
500 CONTINUE
501 k=K+1
510 CONTINUE

C %% (HECK FOR FIVE ELEMENT CUTS

Né= N4
IF(N4) 571,571,511



OOO0

511 DG 570 I=1,N&
Il=1+1 253
DU 570 J=114N3
12=J+1
DG 570 KK=I2,N2
I3=KK+1
DO 570 L=I3,N1
I4=1+1
DO 570 MM=I44N
1DUM=0
DO 520 M=1,MNP
ITRICK=MINO(((IP{MyT)+IP(MyJ))+IP(MyKK)II+({IP(M,L)+
LIP(MoMM)}41)
I1DUM=IDUM+ ITRICK
520 CONTINUE
IF{ IDUM=NP )570,530,57C
530 IC(KsyI)=l
IC(KsJdi=1
IC{K,L)=1
ICUK.KKI=1
ICIKsMM)=1
Kl=K-1
IF(KL) 561,561,531
531 DO 560 M=1,K1
IDUM=0
JDUM=0
DO 540 IJ=1,4N
ITRICK=MINO(IC(M,TJ)*IC(K,IJ) 1)
1DUM=1DUM+ ITRICK
JOUM=JDUM+IC (M,1J)
540 CONTINUE
IF(IDUM—-JDUM) 5604 550,560
550 IC(K,I)=0
I1C{Ksd)=0
ICIKsLI=0
IC{K,KK)=0
IC(KsMM)=0
GG TG 570
560 CUNTINUE
561 K=K+1
570 CONTINUE

%%  ALL MINIMAL CUTS FIFTH ORDER OR LESS HAVE BEEN
DETERMINED ek

57L NC = K - 1

PRINT 1030 ,NC

DO 195 I=1i,sNC

K=0

DG 190 J=1,.N

IF(IC(1+4141190,190,185
185 K=K+1

1CG(Kl=J
190 CONTINUE

PRINT 102041,{1I0(J),J=1,K)
195 CONTINUE

SYSBD = 1.0

DG 370 I=1¢NC



OO0

iMi = I-1
IF({IM1)201,2014196
196 DU 200 k=1,IM1
200 IBI(K) = K
201 NM = INCOE(NC,I)
1J = IMl
BUUND(I) = 0.0
IF{NM) 321,321,202
202 DO 320 J=1,NM
K =1
IF{1J-8C) 250,210,210
210 IK = I-K
IFCIB(IKI-(NC-K))230,220,220
220 K = K+1
GU TU 210
230 Ib(IK} = 1B(IK) + 1
IF(I-IK)241,231,221
231 DU 240 JI=1IK,I
240 IB{JI+1) = IB(JI) + 1
241 1Jd = [B(I-1) + 1
GL TO 260
250 1IJd = lJd + 1
260 DO 270 Ji= 14N
270 TUNLJI) = IC{1IJ.JI)
IF(IML)291,+291,271
271 DG 290 Ji=1,IM1
N1 = IB(J1)}
DO 280 IK=1,N
280 IUN(IK) =MINO(IUN(IK)+IC{(N1l,IK),1}
290 CONTINUE
291 PR = 1.0

%% CALCULATE EVENT PROBABILITY

0G 310 IK=1,N

IF(IUN(IK]))310,310,300
300 PR = PR*¥(1l.0-PROB(IK))
310 CONTINUE

BGUND(I) = BOUND(I) + PR
320 CONTINUE

Fodkeak PRINT BOUNDS (UPPER OR LOWER) AND TEST FOR
CCNVERGENCE ok

321 11 = MOD(I.2) + 1
SYSBLD = SYSBD + BCUND(I)*{-1.0)**(II-1)
GO TO (340,4330),11
330 PRINT 2010,SYSBD,BOUND(I)
GO TO 350
340 PRINT 2020 ,SYSBD,BOUNC(I)
350 1IF(1-1)370+370,360
360 IF{ABS{BOUND(TI)-BOUNCH(I-1))-EPSLON}1,1,370
370 CONTINUE
PRINT 2030,SYSBD
380 GG TO 1

1000 FORMAT(57TH- B O UNDS FOR SYSTEM RELI



255

IA B I LI TY//TXs16HCIRCUIT CONTAINS,I3,9H ELEMENTS//
Z1LXs THELEMENT 15X 11HPROBABILITY /11X THNUMBER,16X 311HOF
3 SUCCESS//(I15,F26.4))
1010 FORMATI(///TX2THTIE SETS COR SUCCESS PATHS (s1I3:2H )//
112X y4HPATH ¢5Xy ISHELEMENT NUMBERS/)
1020 FURMAT(IL5,8%,1615)
1030 FORMAT(///TXs 9HCUT SETS(,1I3:2H })
2010 FORMAT(L6HOLOWER BOUNL IS sE11.5.5X, 10HLAST TERM sE11.5]
2020 FURMAT(16HOUPPER BOUNE IS sE1l<5+s5Xs10HLAST TERM 4E11l.5]
2030 FORMAT (20HOSYSTEM RELIABILITY ,El2.5)
1500 FUGRMAT(1015)
1510 FORMAT(8E10.4%)
999 STOP
END
FUNCTIUN INCOE{NgM)
AN=N
AM=M
ALN=ALOG(AN)
ALM=ALGG{AM)
M= =1
IF(NMI15:15,5
5 DU 10 K=14NM
AK=K
ALN=ALN+ALOG(AN—-AK)}
ALM=ALM+ALOG (AM-AK)
10 CONTINUE
15 TERM = EXP(ALN-ALM)
INCOE = TERM#+0.1
RETURN
END

SUBROUTINE PATH {NECP.IMAX,L)
UIMENSION ITABLE(25,S),IPRED({9),L(100,20)
00 100 I=14100
DG 100 J=1,20
100 L{Isd} = 0O

JB = NEQP + 1
DU 4 i=1,JB
READ 2, 1ACTIVs IPRED
DO 4 Jd=1,9

4 ITABLELIACTIVsJ)=1IPREDILJ}
J =1
IMAX = 1
L(lrl] =

6 Jd=dJd + 1
iC = 0
ICOUNT = 0
OO0 12 I=1,1IMAX
IF{Ll{LIsd-1))7,748

7 1IC =1C + 1
GG TO 12

8§ K= L{1,4d-1)
M= 1
L{l,d) = ITABLE{K M)

9 M =M+ 1
IF(ITABLE(KsM))10,412,10

25



10

11

1e
i3
14

ICGUNT = ICOUNT + 1
KBC = IMAX + ICOUNT
DO 11 KK=1.,J
LIKBL o KK} = LII KK)
L(KBCydJd) = ITABLE(K,M)
GO0 T0 9

CONTINUE

IF(IC-IMAX }13:14,14
IMAX = IMAX + ICOUNT
GU TO 6

RETURN

FUGRMAT (1015}

END

256



B CUNDS FOR SYSTEMM

CIRCUIT CONTAINS 5 ELEMENTS

ELEMENT
NUMBER

LS L S VAR S

TIE SETS OR SUCCESS PATHS

PATH ELEMENT NUM
1 2
2 1
3 1

CUT SETS{ 3 1}

1 5
2 1
3 2

LOWER BOUND IS 0.96964E 00
UPPER BOUND IS 0.96989E 00
LOWER BOUND IS 0.96989E 00

SYSTEM RELIAGILITY 0.S6989E 00

PROBABILITY
OF SUCCESS

0.9300
0.8600

0.9200
0.9500

0.98300

t 3 )

BERS

5
3 5
4

2
3 4

LAST TERM Q0.30360E-01
LAST TERM 0.2464J)E-C3

LAST TERM 0.78400E-06

257
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APPENDIX A2
COMPUTER OUTPUT TFOR LINEAR

ASSTIGNMENT METHOD



259

EXECUTCR. MPS/260 V2-M11

SECTION 2 — COLUMNS

MUMBERP  JCOLUMNe AT ce«AQTIVITY.eo oo INPUT CCSTes ooLOWER LIMIT. <.UPPER LINMIT

29 °11 LL . « 200430 . NCNE
21 P12 LL . . . NCNE
22 P13 LL . . . NONE
23 Pl4 LL . . . NONE
24 915 LL . » 10000 . NCNE
25 P1lé LL . .10000 . NCMNE
26 =17 LL - -1000Q0 . NCNE
27 213 B85 » « 25000 . NCNE
22 P19 83 1.20000 +25000 . NCNE
29 P21 LL . B . NCNE
32 r22 LL . . 10000 « NCNE
31 223 ki . « 17500 . NCNE
22 924 L . +C7500 . NONE
33 9225 LL . «175090 . NCNE
34 B264 LL . 17590 . NCNE
as  pa27 LL - . . NCNE
36 228 85 1.00J00 +.15000 . NONE
A 37 P29 LL . «15000 . NCNE
33 9231 LL - . N NCNE
i 232 LL . . 10300 . NONE
<3 P33 i . «17500 « NCNE
41 P34 LL « .£7500 . NONE
42 225 Lk . . 17500 . NGME
43 9238 8s 1.0G300 . 17500 . NCNE
44 037 33 . « 16700 . NCNE
A 45 P33 LL . L6700 . NCNE
A 46 P39 LL . «C670Q . NCNE
47 D4l a5 . « 15000 . NCNE
A 48 P&2 LL . 15000 . NENE
45 P43 LL - . . NCNE
50 P44 LL . « 10000 . NCNE
51 945 33 1.00000 . 20000 . NCNE
52 248 LL . . 10000 . NCNE
S3 247 335 . 16700 . NCNE
A 54 Pag LL B .$56700 . NCONE
A 55 249 LL . «CET700 . NONE
56 251 LL . . . NCNE
iT P52 LL - . . NCNE
%9 P53 LL . - o NCNE
59 234 LL . . . NENE
A0 PSH LL - «10000 . NGNE
el 254 LL . . 16700 . NCNE
52 257 35 1.00000 .23300 . NGNE
&3 P83 BS N «2330Q . NCNE
44 P%9 LL . «147Q0 . NCNE
65 Psl 35 1.u00G0 «16700 . NGNE
4 54 P62 LL . « 16700 . NGNE
L) 4T P63 LL . « 24200 . NGNE
48 PhA4 LL . 17540 . NCNE



260

EXECUTCR. MPS/380 V2-M11

NUMBER L COLUMNe AT e ALTIVITYawo <oINFUT CGSTu.e +<LCWER LIMIT. ..UPPER LIHIT.

49 P65 LL . 17500 . NCNE
70 P&s LL . .07500 . NCNE
L P&7 LL - . . NCNE
12 Pe8 - . . . NCONE
Ta 289 LL . . B NONE
T4 P71 35 . .2176¢C . NCNE
7% Pr2 as 1.60000 .21700 . NCNE
Ta P73 LL . 16700 . NCNE
77 P74 LL B . . NCNE
73 PTS LL . . . NCNE
79 P75 LL . 06700 . NONE
3¢ 277 LL . .C6700 . NGNE
21 978 LL . .£a73¢ . NCNE
32 279 LL . . . NCONE
Az 231 3s . «18700C . NONE
34 DPR2 LL . . 16700 . NONE
3s 283 as 1.uG000 «242G0 . NCNE
36 9234 LL . .07500 . NCNE
37 P35 (S . .G7500Q . NCNE
38 286 LL . . 142040 . NCNE
39 P37 LL . .C6700 . NONE
30 P88 LL . .Ca870Q . NCNE
21 289 LL . - . NCNE
a9z P4gl LL . . . NCNE
93 poz LL - . . NCNE
94 P93 LL . . . NCNE
95 PS4 38 1.3G0uC . 50000 . NENE
9§ PSR LL . N . NCNE
3T Pss LL . . . NCNE
38 997 LL . « 10000 - NCNE
39 299 LL . -1000¢ . NCNE
1ng P29 as - .20090 . NGNE
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The traditional way of calculating the reliability of a system is to
break the system into series and parallel subsystems, calculate the sub-
system reliabilities, and then combine these through series or parallel
formulations to yield the total system reliability. This method is not only
unsuitable for computer programming, but also it cannot treat non-series-
parallel systems such as those which have bridge type conmnections. A com-
plex system may be defined as a system which cannot be reduced to a series-
parallel system. |

‘The purposé of this thesis is to present a critical review and class-
ification of small to large complex system reliability problems which have
been analyzed with various evaluation techniques; to illustrate the theoretical
concepts and the préctical formulae required to evaluate systems reliability
in the analysis and design of system networks; to investigate the computational
procedures of each technique and provide an insight into its strengths and
weakness; and to use multiple attribute decision making (MADM) methods for
determining a suitable system reliability evaluation technique depending
upon the size and configuration of the system.

This study analyzes ana describes the general techniques related to
the evaluation of complex and large system reliability. System models

dealt here are small complex, moderate complex and large systems.

- . -
e .

A state-of-the-art reviéﬁ of the literaturé related to system reliability
evaluation techniques for the complex and large systems is presented in Chapter
2. Chapter 3 describes the system reliability evaluation techniques, which
can evaluate the reliability of small complex and moderate complex system
configurations. In Chapter 4, the evaluation methods for the large systems
reliability are introduced and a general computer program together with de-

tailed computer diagram is supplemented.



In the above chapters, literature published on system reliability evaluation
techniques is classified and'critically reviewed. In general, the basic
problem is to decide what kind of evaluation technique should be employed
depending upon the size and configuration of the system. Chapter 5 demon-
strates the decision making process through the applications of the multiple
attribute decision making (MADM) methods in the selection of a suitable system
reliability evaluation technique for the corresponding system configuration.

All the evaluation techniques employed in the papers surveyed have
limited success in solving some large/complex system reliability evaluation
problems. Few techniques have been completely effective when applied to

large system reliability problems.



