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1.0 INTRODUCTION

An ongoing concern of the public and of organizations involved with nuclear power

or radiation sources is radiation protection. One specific concern, recognized before

the advent of nuclear power, is skyshine. In the context of this study, skyshine is

defined as directly or indirectly ionizing radiation which scatters in the atmosphere

after leaving its source. While a small, efficient shield can block direct radiation

from a source to a detector or point of interest, skyshine can avoid the shield

entirely and still produce a significant dose at the detector. Even when a direct

dose is present, the fraction of the total dose due to skyshine can be substantial.

Recent events emphasize a need for accurate methods to estimate gamma-ray

skyshine. After accidents at Three Mile Island and Chernobyl, reviews were made

of the techniques used to forecast and estimate the dose to the public and

surrounding land from radiation releases of many types. Soon, low-level radioactive

waste repositories will be built in several states. Effects on the environment will be

a topic of study for every site, and gamma rays are likely to be a large component of

any radiation to reach the surroundings. Gamma-ray skyshine will also be present

at sites for the storage of spent fuel. In these repositories, air or water convection

may be used to carry off waste heat. Air would not shield the fuel as well as water

in storage pools, yet photons from fission products could escape from either type of

repository to the atmosphere. All of these situations call for methods of estimating

exposure rates from gamma rays which reach the point of interest as skyshine.

Another justification for work on this topic is found in the American National

Standard for Calculation and Measurement of Direct and Scattered Gamma

Radiation from LWR Nuclear Power Plants, ANSI/ANS-6.6.1-1987. This



document explains that the activation of 16N in the coolant of boiling water reactors

is a cause for concern. As stated in the standard, "... at a BWR the I6N

contribution to the total measured dose rate is the only significant one that changes

nearly instantaneously with power level variations." This activity in the coolant

depends on water chemistry; at facilities where hydrogen is added directly to the

coolant, its presence may cause the activity to increase severalfold. The gamma

radiation from 16N has been detected inside and outside the containment of several

BWRs, and is documented in the standard. (AN87)

ANSI/ANS-6. 6. 1-1987 also provides reference calculations for simple skyshine

problems, and recommends that comparisons be made between those calculations

and results of computational methods of interest applied to the same problems. The

standard states that dose rates should be found for areas outside a plant (or other

gamma-ray source) which personnel are expected to occupy regularly, such as

construction areas or recreation areas. Heavily populated areas should also be

chosen for study. Also, the standard explains requirements for calculations and

measurement techniques used to obtain gamma ray dose rates, and suggests ways to

treat scattered radiation components of the results. In summary, the standard

provides a reference for those who wish to insure that the methods they use are in

reasonable agreement with other methods, both in technique and in results. (AN87)

These concerns and standards promote the search for accurate estimates of

gamma-ray skyshine dose. Practical benchmark experiments are often accepted as

the best sources of data, but in the case of radiation skyshine, experiments can be

time-consuming and impractical. The alternative sources of data widely accepted

as standard are computer codes. Programs have been developed specifically for

skyshine problems, and other general transport codes may be applied to skyshine



dose estimation. Ideally, an experiment would be performed first to collect data in

a real situation. Next, a code would be executed and the results would be checked

against the experimental data. When the code results agree well with the

benchmark data, the code could then be applied to similar problems with confidence

in its accuracy, and at less cost than an experiment.

Problems and physical geometries simulated by many codes are simple: open

air environments, sources enclosed by a silo or a sphere, free-standing walls, or

buildings defined by four walls and a ceiling. These simple systems allow

computational effort to concentrate on particle transport and dose computation,

instead of geometric problems such as changes in material along a particle's

direction of travel. Also, the simple geometries can be modeled more easily in

practical experiments, so benchmark data should be easier to obtain for comparison.

The numerical methods used in skyshine computer codes include discrete

ordinates transport, line—beam techniques and Monte Carlo methods. While these

codes can be accurate, most are large and computationally intense, making them

difficult to use on a regular basis. One notable exception is the MicroSkyshine

method developed by Faw and Shultis, which may be implemented on a personal

computer and has been shown to be accurate for several practical cases (FaS7).

Another method which requires less computational time and effort applies

point-kernel techniques and buildup factors to estimate gamma exposure. This

approach has been taken by Trubey (Tr61), Kitazume (Ki68) and Roseberry

(RoSO).

The point-kernel technique, or single scatter and buildup method, is modeled

on the basis that each photon scatters once, and only once, as it travels from its

source to a detector. However, a buildup factor is applied along the path of the



photon from the point of scatter to the detector. The volume of air wherein the

photon scatters may be thought of as a "first-collision source" of scattered photons.

Integration over all "source volumes" can provide an estimate of scattered

gamma-ray intensity at the point of interest.

Roseberry applied the point-kernel method to the case of a point source

concealed from a detector by a cylindrical shield, open above the source. A

benchmark experiment in this geometry was performed, and comparison of

experimental data to Roseberry's numerical results proved that the method is useful

and accurate, though conservative (RoSO). A second simple skyshine problem

involves a point source concealed from a detector by a semi-infinite, perfectly

absorbing wall. The point-kernel method is applied to the wall problem in this

work as an extension of Roseberry's solution.

This thesis discusses computational techniques used in past and current codes

for gamma-ray skyshine analysis. R begins with a review of gamma-ray skyshine

studies, most of which have been numerical; one practical benchmark experiment is

also described. Next, the single scatter and buildup model is discussed in depth.

Photon interactions and the use of buildup factors in this scheme are explained, and

an exposure rate equation is derived based on the model. Calculations performed by

Roseberry with the model are repeated, using new data and a different integration

method. The semi-infinite wall problem is also approached with this model,

employing the same data and integration scheme. Finally, the results obtained in

both the silo and wall computations are compared to results of other methods, and

to benchmark data and ANSI standards where possible. This allows conclusions

about the usefulness of the method and the new data presented in this thesis.



2.0 REVIEW OF COMPUTATIONAL SKYSHINE STUDIES

Before a technique of computing skyshine is presented in this thesis, a review of past

work in the field will be useful. Methods which experimenters have found to work

well in the past can be used as a starting point in research; for this work, a

literature review will act as a starting point.

Research on skyshine is reported in publications dating back to the 1950's.

One 1956 report by Zerby (Ze56) explained calculations needed to adjust neutron

flux densities and dose rates to accommodate variations in air density. The

calculations were applied to measurements made at the Tower Shielding Facility,

where a radiation source was suspended in midair and measurements were taken at

a second point in the air. Since the measured dose rates and flux densities contained

a component due to air-scattered radiation, this work could be considered one of the

first on skyshine computation. Note that it is concerned with neutron skyshine,

however.

Zerby's report also demonstrates two common methods of computing skyshine

quantities. Preliminary computations were performed for the experiment using the

Monte Carlo method. The results demonstrated that in nearly all cases, neutrons

which had scattered in air three times or less were the major contributors to

measured dose. (Ze56) The Monte Carlo method became practical with the

introduction of the modern mainframe computer, and is employed in many

particle-transport codes. The conclusion that particles which scatter fewer times

are more important supports the use of the point-kernel method, in which the point

of first scatter is treated as a source for transport to some other point.



All but one of the numerical skyshine studies discussed in this chapter utilize

one of the two techniques named above. Monte Carlo studies will be reviewed first,

followed by a discussion of work based upon single-scatter models and a third

method involving the single-scatter technique. A fourth section will describe a

benchmark experiment and the work associated with it.

2.1 Monte Carlo Studies

An early study of skyshine by Monte Carlo computation is that of Lynch et al.

(Ly58). The program written in the study was for a simple problem: a

monoenergetic line beam of gamma rays (that is, gammas released in one direction

at one energy) from a point source placed in an infinite air medium, with no other

shielding. Flux densities were reported for different source-detector distances,

source energies and beam directions. Tissue dose rates were also computed and

reported.

For comparison purposes, Lynch et al. modified the code to use an isotropic

source and isotropic scattering without energy degradation. Results were compared

to the analytic solution of the Boltzmann equation for the same case, and the

average numerical results were within 15% of the Boltzmann solution; often the

error was much less. Computations of single-scatter flux densities were also

compared to analytical solutions, and similar accuracy was found in these

quantities. For this ideal case, the Monte Carlo method was shown to be useful if

statistical methods were used to compute confidence limits on results.

A much more detailed Monte Carlo code package was prepared by Radiation

Research Associates in 1969 (Ma69; Co69). Instead of gamma-ray skyshine, this

study concentrated on the X-rays and fluorescent light resulting from nuclear



explosions. Comparing this work to that of the ideal, simple geometry of Lynch

et al. demonstrates the advances made in the Monte Carlo method over the decade

between the two reports. The RRA codes computed energy deposition as well as

flux density; the point source strength could be specified as a function of time,

energy, and direction; attenuation coefficients could be made altitude dependent and

energy dependent; and flux density could now be computed over time and over

changes in air density or altitude.

The first code in the package, named ZAP, used random walks to trace the

entire path of each X-ray, scatter by scatter, until its "death." Compton,

photoelectric, and pair production interactions, and some coherent scattering, were

all accounted for, so that both scattering and absorption of the X-ray could be

recorded (Ma69). The second code in the package, PFLASH, received data from

ZAP on the energy deposited by X-rays absorbed in air. Using extensive data on

the physics of fluorescent light production, this conversion code then created

volumetric source terms for fluorescent light to be used by the third code, FLASH.

FLASH computed the fluorescent light intensity at a point detector due to the

volumetric source created by PFLASH. It performed fluorescent light transport by

a backward Monte Carlo method, in which particle histories begin at the detector

and "walk backward" to the source. This method allows angular-dependent

quantities to be computed in less time than by forward Monte Carlo methods, and

also allows time-dependent calculations just as forward calculations do (Co69). In

summary, this study by RRA demonstrates the advances made in the method after

the work of Lynch et al., and the interactions which would be regularly used for

probability calculations in the future.



Neither of the Monte Carlo studies above involved shields or structures of any

sort. Perhaps the first Monte Carlo code to determine the effects of structures on

gamma-ray dose was the SKYSHINE program, later modified to become the more

versatile SKYSHINE-II code (La79). In both programs, a source was enclosed in a

simple building of four walls, a ceiling and a floor. Sections of the walls and ceiling

could be "removed" to collimate the radiation. Since the calculations were based

upon Monte Carlo line-beam data, the code would obtain dose by integrating the

line-beam data over all beams passing through the opening or openings.

The source could be specified as a neutron source, a primary gamma-ray

source or a secondary gamma-ray source, each with a spectrum of emitted energies,

and anisotropic scattering could be treated in the calculations. Using the results of

Zerby and other Monte Carlo studies, the code performed its own computations to

find the air-scattered dose rate at each wall, the floor, the ceiling, and other points

outside the building. This allowed users to study the effects of building design on

radiation dose, whether direct radiation dose or skyshine. In this respect,

SKYSHINE was a milestone in the topic of radiation studies.

The MORSE code has been modified many times, with each version given its

own capabilities to use in certain problems or to receive data from other programs.

The 1984 release, MORSE-SGC/S, is a neutron and gamma Monte Carlo code

which solves both shielding and criticality problems. The physical form of the

system studied is described with combinatorial geometry, a versatile algorithm

which creates region boundaries from planes and conic surfaces. Particle transport

is based upon the Boltzmann equation, and performed by "supergroups," energy

groups made up of smaller energy groups. To reduce the computer memory

required, MORSE-SGC/S separates the entire spectrum of particle energies into



clusters of energy regions. The code performs calculations on particles in the first

cluster, or supergroup, stores the results, then calls in data on the particles in the

next lower supergroup to work with. Both the combinatorial geometry and

supergroups make the code versatile in terms of possible applications and computers

which may be used. (WeS4)

MORSE-SGC/S reports responses to both uncollided radiation and the sum of

direct and scattered radiation. This would suggest that it is ideal for gamma-ray

skyshine analysis. However, work at Kansas State shows the code requires many

gamma-ray histories to estimate the usually low gamma-ray skyshine dose. Also,

MORSE cannot satisfactorily simulate point detectors, since Monte Carlo codes

must use finite volumes, and small volumes receive few particles to count toward

dose. (ShSS) Even with particle weight biasing to reduce the standard deviation of

results, uncertainties on such small quantities could make the results useless. This,

combined with the long run-times required, may make MORSE-SGC/S impractical

for gamma-ray skyshine analysis. Indeed, this argument has been made against the

Monte Carlo method in general as applied to gamma-ray skyshine: The number of

particle histories required to obtain good statistics can be prohibitive. The method

is simple to apply and may be of use for neutron skyshine analysis, but that is not of

concern here.

2.2 Single-Scatter Studies

As cited by Trubey (Tr61), C. H. Bernard first hypothesized in 1953 that the

single-scattered flux density made a good approximation to the total scattered flux

density for gamma rays or neutrons. Because buildup and exponential attenuation



tend to counteract each other, Bernard did not use either. Trubey's work marked

an early application of Bernard's model to gamma rays.

Trubey considered a simple problem, a monodirectional, monoenergetic point

source of gamma rays in infinite air. This is identical to the line-beam problem

used by Lynch et al. (Ly58) for their Monte Carlo research, and the problem was

chosen to allow comparisons with their results. Dose rates computed in this manner

agreed very well with the Monte Carlo calculations; however, flux densities

computed with the single-scatter model were low if the gamma rays backscattered,

that is, if the line beam was directed away from the detector and photons could only

reach the detector by reversing direction. The use of Trubey's results was limited

by the model; any shielding would make the data invalid. Still, as noted by Faw

and Shultis (FaS7), Trubey confirmed that most skyshine dose in these cases is due

to once-scattered gamma rays.

Kitazume (Ki6S) introduced a new single-scatter formula for approximating

gamma-ray dose when a point source and detector are in air above ground. This

formula allowed the point source to be isotropic or monodirectional. Attenuation of

both unscattered and scattered photons was accounted for, and Taylor buildup

factors were applied to once-scattered gamma rays to simulate multiple scatters.

The formula is very general and has proven useful in later work; Roseberry's

formulation (RoSO) was shown to be equivalent to Kitazume's.

Kitazume performed line-beam source calculations to be compared with those

of both Lynch et al. and Trubey. With buildup factors for air unavailable,

Kitazume chose to use factors for water instead. The results compared well with

the Monte Carlo calculations except for low source energies and large

source-detector distances, or low energies and photon beams at large angles from an

10



axis between source and detector. Even this disagreed with Lynch et al. by only

20%. The discrepancies became smaller as source energy increased, while Trubey's

computations without attenuation and buildup yielded poorer underestimates of the

Monte Carlo values as the energy increased. (Ki6S) This makes a strong argument

for the inclusion of both attenuation and buildup in single-scatter calculations;

indeed, their use has become standard.

A notable series of point-kernel programs was developed during the 1960's at

Los Alamos for neutron and photon shielding studies. This series, named QAD,

consists of several codes which compute uncollided flux densities, dose rates and

energy depositions from a volumetric source. While the codes compute only

line-of-sight quantities, the geometries they can use are complex. QAD employs a

combinatorial geometry in which Cartesian, cylindrical and spherical surfaces are

combined to describe the physical system being modeled. The regions may be of

different materials or mixtures of materials. Also, QAD codes can recreate buildup

factors from curves fit to experimental data, and apply them to paths through each

region, regardless of material. (Ma67)

The QAD codes themselves have no use in single-scatter studies. Their

importance lies in the offshoot family of gamma-ray codes known as G3
, which

borrow the very versatile combinatorial geometry routine from QAD (Ma73). The

G 3 codes can group detector responses by source energy or scattered gamma energy,

and can report doubly differential flux densities by energy and direction of the

incoming photons.

G 3 employs the point source and point detector geometry first used by

Trubey, with many of the conventions of single-scatter calculations. At each

scattering point between source and detector, the uncollided flux density is

II



multiplied by the probability of a Compton scatter toward the detector for a photon

of the source energy. Treating the scattering point as a new source, the uncollided

flux density at the detector due to the "scattering source" is calculated and

multiplied by the buildup factor in infinite air for the scattered photon energy. In

running G3
, the user defines scattering "boxes;" for simplicity, scatters occur only at

the center of each box, and resulting quantities are integrated over the volume of

the box.

One sample problem used to test G3 is the same line-beam problem studied

by Lynch et al., Trubey and Kitazume. In comparison to the Monte Carlo results of

Lynch et al, G3 gives results within 10% for most distances, except at the shortest

source-detector distances. (RS85) There are problems which G3 cannot address

well, however; one of these is discussed in the next section. Still, G3 is a useful and

reliable code in some skyshine applications, and it will be used for comparisons in

this work.

2.3 Other Numerical Skyshine Studies

A study recently completed at Kansas State University (Fa87) employs a method

different from both Monte Carlo and single-scatter techniques. The MicroSkyshine

method was first based upon the results of Lampley's SKYSHINE-II line-beam

Monte Carlo code (La79), and the first MicroSkyshine code incorporated a data base

from SKYSHINE-II. The data base contained coefficients of an empirical equation

which had been fit to Monte Carlo results; the MicroSkyshine program interpolated

values of these coefficients to yield gamma-ray response functions continuous over

source energy and direction.

12



The method's simplicity makes it suitable for use on microcomputers, and

MicroSkyshine is now commercially available. This version solves problems

involving a gamma-ray point source inside a cylindrical silo, or a point, line or

plane source of photons behind a semi-infinite wall. Slab shields may be placed

above the source, over the silo or wall. Such simple geometries might be used as

approximations of more complex real situations, such as a I6N gamma-ray source

within a turbine building.

The first version of MicroSkyshine used photon response functions from

SKYSHINE-II; the code was validated against two ANSI-standard reference

problems (AN87) and G3 results for the silo and wall geometries. For the ANSI

problems, the MicroSkyshine geometries were adapted as closely as possible to the

reference problems, though exact replication was not possible. The results from the

code and the ANSI standard were in very close agreement. When compared to

MicroSkyshine values for the simple geometries, G3 values were consistently lower

in cases with a slab shield over the source. A comparison of both codes' results to

benchmark experimental data discussed in the next section (R08O) revealed that G 3

seriously underpredicts in those instances because it cannot account for gamma-ray

scattering and buildup in the slab. The MicroSkyshine responses proved more

accurate, validating the method in these cases. Overall, Faw and Shultis report the

method results are conservative and within 50% of nearly all documented reference

values. (FaS7)

The version of MicroSkyshine available to the public uses an improved set of

response functions developed specifically for the method by Shultis and Faw (ShS7).

The original response functions were developed by Radiation Research Associates

for SKYSHINE-II. The empirical equation for response had been fit to results of
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Monte Carlo computations, and the parameters contained small discontinuities for

adjacent energy groups and directions. The errors, probably from statistical

variations, propagated into the computed skyshine dose of early versions of

MicroSkyshine. The old response functions also led to overprediction of dose for

large source-detector distances, and extrapolation for high energy photons and large

distances could give negative response values.

The new gamma-ray response functions were computed by a point-kernel

formula much like the line-beam dose formula of Kitazume (Ki68), but which also

included a response from annihilation photons created by pair-production positrons

in air. The integration required to arrive at the response functions was

accomplished numerically with Gaussian quadrature. To describe the functions, let

%(E,x,<t>) be the dose at distance x from the source, in air of standard density p ,

resulting from a photon of energy E emitted at an angle <j> from an axis between the

source and detector. These responses, computed by the point-kernel formula, were

fitted to the approximating function

#(E,x,</>) = KE(p/p )i[x(p/p )]b exp[a-cx(p/^
)] , (2-1)

where k is a constant conversion factor, p is the air density, and a, b, and c are

empirical parameters.

Response functions were computed at discrete source energies and beam

directions from the source—detector axis, then fit to this formula, the same empirical

formula as was used with the original Monte Carlo functions. With linear

interpolation, however, the new parameters produce no discontinuities or negative

values, and the new response functions are accurate for source-detector distances up
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to 5000 meters compared with 1500 meters for the SKYSHINE-II response

functions. Besides clearing up the difficulties mentioned in the previous paragraph,

the new photon response functions eliminate small variations in dose as the system

geometry is changed slightly. Most important, comparison with benchmarks shows

the new response functions produce more accurate and realistic results and are in

better agreement with benchmark data than the old results. (Sh87)

2.4 Experimental Work

Although the early paper by Zerby (Ze56), discussed at the beginning of this

chapter, described computations made on experimental measurements of neutron

radiation in air, it does not describe the experiments thoroughly. To this author's

knowledge, only one benchmark skyshine experiment involving point sources has

been documented in detail. This gamma-ray skyshine experiment was performed in

1979 at the Kansas State University Nuclear Engineering Shielding Facility,

sponsored by the Japanese Nuclear Safety Research Association, and documented in

an article by Nason et al. (NaSl).

In the experiment, three 60Co point sources of strength ranging from 10 Ci to

3800 Ci were placed at the axis of a cylindrical concrete silo. A high pressure

ionization chamber for exposure rate measurements, and a sodium iodide detector

for photon energy spectra measurements, were placed at distances up to 700 m from

the source. The three source configurations included a collimator on the open silo to

direct the gammas into a 150-degree cone, and concrete shields of thickness 21 cm

or 42.8 cm over the silo. The thickness of the silo walls prevented much radiation

from leaving the silo horizontally and contributing to measured exposure rates.

Also, a lead and concrete collimator on the Nal assembly removed background
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radiation from the measured spectra. Both of these features, along with background

measurements, allowed the dose and spectra due solely to gamma-ray skyshine to be

determined easily.

Results from both detector systems were corrected for variations in response

with the energy of the incident radiation. These corrections came from calibration

tests and manufacturer's data on the instruments. For comparison purposes,

calculations were performed using DOT, a two-dimensional discrete ordinates

transport code; the cylindrical silo geometry was selected for its reproducibility with

such programs. As a test of the accuracy of the results from both detectors,

exposure rates were computed from the Nal spectral measurements and corrected

from the collimation angle on the detector to a 4ir exposure rate. For nearly all

experimental cases, these exposure rates agreed very well with those from the

ionization chamber. Thus, the experimental results can be used reliably as a

benchmark for predictive methods and as design data for nuclear facilities. (NaSl)

One predictive method which has been tested against these benchmark results

was the subject of a thesis by Roseberry (R08O). The method uses a variation of the

infinite air, single-scatter equation of Kitazume (Ki68), but as Faw, Roseberry and

Shultis point out (Fa86), the addition of the concrete slabs over the silo to the

model and the treatment of the scattering angle as an independent variable are

significant improvements. Roseberry's results compare favorably with 1979

ANSI-standard calculations and the benchmark experiment data, although no

ground-air interface is used and the model overpredicts the experimental results.

Roseberry's method also yields more accurate results than DOT when the silo is

covered by a concrete roof. This example may encourage the use of the benchmark

experimental results to test other programs or designs, since Roseberry easily
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modeled the cylindrically symmetric geometry. Roseberry's model is discussed in

detail in Chapter 3 of this work.

Although experiments to measure skyshine exposure rates are rare,

measurements are often taken in practical situations where direct and scattered

gamma rays are present. In the case of light water nuclear reactors, the direct and

scattered photons from contained radionuclides is one of the many components of

the radiation field on site. To measure these gamma rays, their contribution to the

overall response must be isolated. Time dependence must also be taken into

account. An American National Standard was developed for the calculation and

measurement of such gamma radiation from LWRs in the mid 1970's, and a revised

Standard was issued in 1987. This standard describes what factors are important in

designing a radiation measurement program, the tools available to measure

radiation fields, the techniques of measurement, and how data from them should be

interpreted in light of their limitations. (AN87) These recommendations might

prove useful in future skyshine experiments with regard to experimental setup and

data interpretation, should a benchmark experiment be contemplated.
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3.0 COMPUTATION OF SKYSHINE EXPOSURE RATES
FOR SIMPLE GEOMETRIES

As mentioned in Chapter 2, numerical computation of radiation fields and

doses can be less costly and time consuming than physical modeling with

experimental radiation sources. Of the two common numerical schemes that

were reviewed, the single-scatter and buildup model normally requires less time

and effort to program and execute. In this chapter, the interactions and

assumptions which make up the single-scatter and buildup model are

explained. Next, a general exposure rate equation is presented for the case of

a point source and point detector in air. This equation uses the single-scatter

and buildup model, and was first presented by Roseberry (RoSO) in his thesis.

The remainder of the chapter is devoted to the description of two simple

geometries for which the photon exposures are calculated by this point-kernel

equation. One geometry involves a point gamma-ray source inside an open,

cylindrical silo, with a point detector some distance away outside the silo.

The other geometry separates the source and detector by a wall extending to

infinity on the left, right and bottom, but having a top edge. In either

geometry, a concrete roof slab may be placed over the source.

The usefulness of a model involving point sources may seem limited for

practical cases involving, for instance, steam lines. However, point sources in

modeling have been endorsed in the American National Standard

ANSI/ANS-6.6. 1-1987. In the modeling of BWR turbine buildings, the

Standard states that the source need not be detailed, and equivalent point

sources may be used, if desired, to estimate dose rate. Source strengths may

be taken from plant specifications; self-shielding of the source may also be

used, but should bo explained or discussed if it is used. (AN87) All these
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points would appear to support the substitution of a point source for more

complex sources in numerical models.

The ANSf standard is also clear on the use of shielding and the

modeling of skyshine: "All significant sources of gamma radiation. ..which are

essentially unshielded relative to air scattering (i.e., shielded on the sides but

essentially unshielded on the top) shall be considered. Sources which arc

shielded only by the outside shield wall of a building should be considered....

All sources of gamma radiation which are located outside of shielded buildings

shall be considered." (AN87) These three situations correspond to the silo

geometry, the wall geometry, and the problem of a point source in an infinite

air medium, respectively. The standard also requires that shielding in any

form must be represented by the model, positioned and oriented correctly with

respect to the source or sources, within the limitations of the numerical

method used. Topography, such as bluffs or buildings acting as shadow

shields, should also be considered, but are not required in the model. (AN87)

The two geometries studied in this work were chosen with the American

National Standard in mind, and can meet several of its requirements, including

those of shielding and (for the wall problem) topography.

3.1 The Single-Scatter and Buildup Model

The model used by both computer codes written for this study is the

single-scatter and buildup model for gamma rays. The method is normally

applied to situations involving point photon sources and point detectors in air.

It can be extended to problems of line, plane and volume sources, but only

with a dramatic increase in computational effort, and no such extension will be
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discussed. Similarly, other media might be used, but the method was

developed solely for air skyshine studies, so only air will be the primary

medium.

Consider a photon leaving a point source and traveling in some arbitrary

direction through an infinite air medium. After traveling some distance, the

photon will suffer an interaction with the air, resulting in one or more photons

or electrons of different direction and energy than the source photon. The

actual result depends on the source photon energy and the energy-dependent,

angular-dependent cross sections of air. The volume of air where the photon

interacts may be thought of as a "first-collision source" of photons and

electrons; in the case of gamma-ray skyshine, only photons are of concern.

The gamma rays which reach the point detector may have scattered

once, more than once, or not at all after leaving the source. It would require

the resources of a Monte Carlo code to trace every photon through every

interaction, and not every gamma ray followed in this manner would reach the

detector. Instead, the photon flux density at the detector can be found

analytically by treating the first-collision source as a point source of secondary

gamma rays, as the name implies. The energy and intensity of the photons

leaving the first-collision source will depend on the direction, energy and

intensity of the gamma rays from the true source, and the cross-sections for

gamma rays in air of interactions which create or scatter photons.

By applying inverse-square attenuation and exponential attenuation, the

uncollided flux density at the detector from the first-collision source can be

found. By also applying a buildup factor for a point source in infinite air, the

total flux density at the detector from the single-scatter source can be
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estimated. In a sense, all photons which scatter for the first time at the

volume of interest and eventually reach the detector are collected together and

computed in one step using buildup, hence the name for the method.

Figure 3-1 shows a simple illustration of the model for a particular

scattering volume. The first leg of the gamma-ray journey involves only

attenuation of photons traveling to the first-collision source; attenuation and

buildup are applied on the second "leg" of the journey, since not all photons

follow this path precisely. If the flux densities or responses at the detector

due to all scattering volumes are added together, the result is an estimate of

the total scattered flux density or detector response. This summation may be

accomplished by expressing the quantity of interest as a function of position of

the scattering volume, and integrating the function over all space for which

first-collision sources have a clear path to the point detector. The total

response at the detector is approximately the sum of the uncollided response

from the point source and this first-collision integral.

The interactions considered at the first-collision source and the

application of buildup deserve much attention, and will now be discussed in

detail.

3.1.1 Interactions Considered

Gamma rays undergo many kinds of interactions in a typical medium.

The three most common interactions, of course, are Compton scattering,

photoelectric interactions, and pair production. Because gamma-ray skyshine is

not concerned with electrons, photoelectric effects are generally neglected; in

these cases, the gamma ray is absorbed entirely and lost at the collision point,
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producing a free electron. The ZAP code (Ma69) did consider photoelectric

effects for X-rays, but it was necessary to track the electrons to their

absorption points to provide the fluorescent light source for the PFLASH and

FLASH codes (Co69). ZAP may be considered an exception to the rule.

The remaining interactions are now discussed in the context of

gamma-ray analysis.

Complon Scattering. The Compton interaction has been used in every

application of the single-scatter and buildup model that the author lias

reviewed, and should be considered a requirement of the method. Compton

scattering depends directly and simply on the position of the first-collision

source through the Compton formula for scattered photon energy and the

Klcin-Nishina cross section. Also, for photons of energies encountered in

common situations (50 kcV to 10 MeV, for instance), Compton scattering

dominates interactions in air by a factor of two or more. This can be seen in

Fig. 3.2, where interaction coefficients in air are graphed for the three primary

interactions. The early Monte Carlo skyshine study by Lynch et at. (Ly58)

involved only Compton scattering; the authors stated that for their interests,

photoelectric interactions were of no use, and all other primary and secondary

processes were negligible by comparison.

The use of the Compton and Klein-Nishina formulas in the model

requires an approximation that free electrons and electrons bound to atoms

possess the same scattering characteristics. This is because the Klein-Nishina

formula is correct strictly for free electrons, electrons not residing in an atomic

orbital. The RRA code ZAP did not make this approximation, and corrected

•_>:i



l.E+1

1.E+0

en
l.E-1

E
o—
c
QJ

O

l.E-2

QJ
O l.E-3

l.E-4

l.E-5

l.E-6r

l.E-7

: III -1-1
1 1 1 |

1 1 TT-n-
'I

1 1—i—

n

-
1 1 T;

\ ;

" \
-

r \
~=

: \ :

^
-

r \
-

\
-

\

1 \ :

\ ***^ -

1 \ /
1 \ / r

: \ / -

I \ / -

\ \

\

"

_ Compton scattering « -

: — - photoelectric effect \ ;

- \ -

_ pair production \ -=

\ \ :

- -~~ -

1 1 1—1 Mill 1 1 l_ 1 -LJ ll i iiii
i i i

l.E-2 l.E-1 1.E+0

photon energy (MeV)

l.E+1

Fig. 3-2. Mass interaction coefficients for gamma rays in air. Data from

(ChS4).

24



the Compton interaction coefficients for electron binding effects (Ma69).

Chilton et al. state that such a correction is not necessary, and the

approximation that all electrons are unbound is quite valid. They point out

that the Klein-Nishina formula fails when the kinetic energy of the recoil

electron approaches its binding energy, a situation found only with low photon

energies and material of high atomic number. At such low energies, however,

the photon is much more likely to undergo a photoelectric interaction than

incoherent scattering, and the error due to the approximation is negligible.

(Ch84) Also, air contains only negligible amounts of high-Z materials, so

recoil electrons in air are not likely to have kinetic energies comparable to

their binding energy. With these facts in mind, the approximation of free

electrons is quite justified, and is used in this work.

Pair Production. The photons resulting from Compton interactions arc

emitted from the point of collision, as are the recoil electrons. In the case of

pair production, however, an electron and a positron are emitted from the

collision point; the positron travels a distance before encountering an electron

and annihilating. Two 0.511 MeV gamma rays are emitted from this point,

and it is these annihilation quanta which are of interest in gamma-ray

analysis.

The choice of whether or not to include the annihilation photons was

first based upon the distance traveled by the positron. For instance, the

Monte Carlo code ZAP included pair production in its calculations. Marshall

el al. stated that pair production positrons are likely to travel no more than

three meters in air before they interact with an electron. Since the distances
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involved in the study were comparable to the earth's radius, the annihilation

was assumed to occur at the site of pair production, with the two photons

emitted back-to-back and isotropically. (Ma69) When pair production is

included in modern codes, the same assumption is made; the MicroSkyshine

code also neglects the distance traveled by the positron in order to include the

annihilation photons in its point-kernel computations (ShS7).

A second and more common consideration is the energy of the source

photons. Pair production has a minimum gamma-ray cutoff energy of 1.02

MeV; photons below this energy cannot induce pair production. The

interaction coefficient is negligible for gamma-ray energies below 1.5 MeV, and

is still a full order of magnitude below the Compton interaction coefficient for

photon energies below 5 MeV (Ch84), as can be seen in Fig. 3-2. For

situations involving «N sources, which most often emit 6.13 MeV gamma rays,

pair production can make significant contributions to skyshine. Other sources

are not as likely to give rise to annihilation photons in this manner.

For this work, it has been decided to neglect pair production effects.

The criterion used to justify pair production in ZAP is not the reason; those

few codes which include the process always ignore the distance traveled by

positrons. Few of the numerical methods reviewed in Chapter 2 or used for

comparisons later in this work account for pair production, so including the

process here would make the comparisons difficult. Although the codes will

underestimate detector responses that would occur in reality, it is necessary

that these comparisons be made without pair production to validate the

method. Pair production can easily be included in the programs if deemed

necessary.
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Other Interactions. Any other interactions which may produce photons

or scatter gamma rays are customarily ignored. For instance, as electrons are

ejected from a nucleus by photoelectric interaction, they leave behind an

excited atom which may emit fluorescence photons. The energy of these

photons is never higher than the binding energy of the photoclcctron. For air,

the fluorescence is in the eV range, far too low in energy to be of interest.

Coherent (Raylcigh) scattering has a negligible effect on the energy or

direction of the photon, and it too is ignored in most shielding work. (Ch84)

The Monte Carlo code FLASH did apply Raylcigh scattering, but was

concerned with visible fluorescent light. For such low-energy photons,

Raylcigh scattering is significant, as arc unusual processes such as refraction by

air molecules and scattering and absorption by aerosol particles (Co69).

Indeed, FLASH incorporated many processes which apply only to visible light

and have no use in gamma-ray skyshine analysis.

Evaluation of interaction coefficients. From the discussion above, it is

clear that only Compton interactions are regularly used in single-scatter and

buildup models. Therefore, the Klein-Nishina formula is often the only

interaction coefficient evaluated, and it may easily be computed for a given

gamma-ray energy. Where pair production is included, tabulated coefficients

have been used (Ma69, Sh87), and interpolation would be necessary for photon

energies not in the tables. This would slow down evaluation of the first-

collision source in some cases.

For situations where no concrete shielding is placed over the point

source, evaluation of the cross sections is simple. Because the photons

reaching the scattering volume (or first-collision source) have their first
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interaction at that point, the cross section is taken at the energy of the source

photons. In cases where shielding covers the gamma source, however, it may

be difficult but sound practice to find the spectrum of uncollided and collided

photons leaving the shield in the direction of the first-collision volume, then

apply a spectrum-weighted cross section at the volume. Roseberry and Shultis

(Ro82) argue that this is not necessary. They state that photons which leave

a thick slab shield are essentially collimated into a beam of uncollided photons

or photons which have undergone small deflections and are nearly unchanged

in energy. Any photons which have suffered collisions and lost energy in the

slab will be attenuated by the atmosphere and can be neglected when

computing exposure rates far from the point source. Roseberry and Shultis

conclude that the Compton scattering cross section still may be evaluated at

the source energy when a concrete shield is present above the source. This

assumption reduces computational effort required by the model and will be

applied in this thesis.

In summary, Compton scattering is the only interaction regularly used in

the single-scatter and buildup model, although some works have included pair

production. This study will consider only Compton scattering at the

first-collision source.

3.1.2 Application of Buildup

To account for photons which scatter more than once, a buildup factor is

applied to the second leg of the gamma-ray path shown in Fig. 3-1. Buildup

has also been employed in a limited fashion in shields over the point source.
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The use of buildup factors requires some assumptions, which will be discussed

here.

Buildup factors commonly available for computations are for point,

isotropic sources in infinite media. In some simulations, such as that used by

Roseberry for the point source in a silo, the air-ground interface is neglected

and an infinite air medium is used instead. This justifies the use of an

infinite-air buildup factor after one scatter, but the approximation results in

ovcrprediction of exposure rates near the ground, since earth tends to absorb

more scattered photons than air. On the other hand, the first-collision source

at the scattering volume is not isotropic, since Compton scattering is biased in

the forward direction. (Fa86) This makes the use of a buildup factor derived

from an isotropic source inappropriate. Still, Shultis and Faw demonstrated

that applying the isotropic buildup factor to the non-isotropic scattering source

introduces only a small error to the results of MicroSkyshine (Sh87). It may

be that this practice in Microskyshine underpredicts the detector response,

compensating for the overprediction from the use of infinite air instead of an

earth-air interface.

When the point source in Fig. 3-1 is collimated upwards but open to the

air, the first-collision volume can correctly be treated as the point of first

interaction for the gamma ray. All buildup can be applied to the second leg

of the photon path, and no buildup need be applied to the path between

source and scattering volume. Roseberry and Shultis proved that the single

buildup factor provided the best results in a point-kernel code, using

benchmark measurements for comparison. (Ro82) If a concrete slab or other

shield covers the collimated source, as in Fig. 3-3, scattering will occur in the
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shield and should be accounted for in some manner. The approach taken by

Roseberry and Shultis is to apply an infinite-medium buildup factor for a

point isotropic source in concrete. The factor is applied over the appropriate

distance through the slab shield, and is evaluated at the gamma-ray source

energy. Further, it is assumed in this approach that all photons leaving the

shield, including those counted in buildup, remain at the source energy. While

the last approximation is not correct, it allows cross sections at the

first-collision source to be evaluated only at the source energy, not several

energies. Roseberry and Shultis show that the use of the second buildup

factor in the concrete shield yields far more accurate results than the omission

of buildup in concrete entirely. Although its use is a rough approximation, it

is "extremely important." (Ro82) Faw and Shultis (Fa87) later stated that

the concrete buildup approximation, combined with attenuation through the

concrete, gave reasonable values of point exposure rates for shield thicknesses

of six mean free paths or less. They could not validate the approximation for

larger shields, however. The approach is studied in detail by Bassett (BaS8).

In summary, to use buildup factors in air between the first-collision

source and the detector, the air-ground interface should be approximated by

infinite air, and the first-collision source should be treated as a point source

with a source strength per steradian equal to the intensity leaving the

differential volume in the direction of the point detector. In cases where a

concrete shield covers the point source, buildup factors may be used in the

concrete, treating all photons entering and leaving the shield as photons at the

source energy. The shield should be of moderate thickness, only a few mean

free paths if possible.
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3.2 The Exposure Rate Integral Equation

With the assumptions of the single-scatter and buildup model outlined above,

an equation for the exposure rate at the detector may now be presented.

Exposure is the response commonly reported when only gamma-ray sources are

present. Formulation of the model was introduced by Kitazume (Ki68) to

evaluate dose rate, with a generic factor to convert flux density to the desired

response, and with the Taylor buildup approximation incorporated into the

formula. Similar analytical equations have been presented in descriptions of

FLASH (Co69) and G3 (Ma73). The derivation for G3 is notably

straightforward, and very much like the derivation to follow, although G3

converts the first-collision source to an equivalent isotropic source.

The exposure rate equation presented here was derived by Roseberry

(R08O) and repeated without proof in the paper of Roseberry and Shultis

(Ro82); in the former reference, it is shown to be equivalent to Kitazume's

formula. The formula is derived here in a brief manner; the reader should

consult the thesis of Roseberry for more detail.

The infinite-air, single-scatter geometries of Fig. 3-1 and Fig. 3-3 are

repeated in Fig. 3-4, with geometric distances labeled. The source and

detector are separated by a distance d along the line of sight; this line will be

referred to as the source-detector axis. Photons leaving the source travel a

distance a through air to reach the first-collision volume, and if a concrete

slab is present, also travel a distance ac through the concrete. The total

distance from the source to the differential first-collision volume dV is labeled

a; the point detector lies at distance b from dV.
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In the absence of a concrete roof, the uncollided gamma-ray flux density

at the first-collision volume dV is given by the simple formula

<P =— exp(-^a)
, (3-1)

4ra2

where S = source strength,

H = linear attenuation coefficient in air for source
photons of energy E.

If a concrete slab is placed over the source, source photons will also be

collimated by the material of the slab. The uncollided gamma-ray flux

density at dV is now

<*° = 4*(a+ae)»
exp(~"a ~^ (

3"2 )

where /ic = linear attenuation coefficient in the roof material
for source photons of energy E.

Recall the assumption that photons reaching the first-collision volume dV have

their first interaction in that volume. As long as this assumption holds, only

uncollided flux density need be used to compute interactions in dV. Also,

recall from Section 3.1.1 that only Compton scattering will be considered in

this work, so the first-collision volume may be properly called a "differential

scattering volume," a more common name in the literature.

The number of photons which reach the differential scattering volume dV

and scatter through an angle S (see Fig. 3-4) into a solid angle of unit

steradian toward the detector may be written as

Sv = 0>N«iV = ^Jll^ exp(-/«a - /lcac ) dV
, (3-3)
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where N = electron density in dV (RoSO)

= (3.0064 x 1023 g-i)
fax ,

and a = differential Compton scattering cross section

= <r(08,E).

The energy of the photon after scattering through an angle 6S depends upon $s

and the initial photon energy E. Using the approximation of free electron

interactions for bound electrons in air, the energy E of a scattered photon can

be related to its initial energy E and the complement /? of the scattering angle

S by the Compton formula (Ch84),

E = gr-S
, (3-4)1+^(1 + cos/3)

where mec
2 is the rest mass energy of an electron. The supplement of the

scattering angle was chosen here, since will be used later as an independent

variable. The cross section itself can be evaluated with the Klein-Nishina

differential scattering formula (Ch84), which appears in dimensional form in

(RoSO) as

a = re 2 A2 I" A 1+A+co:

A
3/3

2
(1+A +cos/3p L

rai+cos/y
'

where re = classical electron radius (Ch84)

= 2.818 :< 10-15 m,

and A = Compton

= mec2/E.

wavelength

sin2/?j
, (3-5)
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The formula is evaluated at the source energy, since it is assumed that all

gamma rays reaching the differential scattering volume are uncollided or have

lost no energy.

Next, the differential exposure rate dX
g

at the detector due to photons

scattering only at dV in a steradian toward the detector may be written as

dXs =
Sv fe E K exp(-,",b) (3-6)

where b = distance in air from the scattering volume to
the detector,

^ = mass energy absorption coefficient in air for

photons of energy E,

/< = linear attenuation coefficient in air for gamma

photons of energy E,

K = energy flux-to-exposure-rate conversion factor (ChS4)

= 1.835 x 10-s R-g-MeV-i.

Substituting for Sv from equation (3-3) produces

SKNo-
dXs =

aA""7
Vf E exp(-/,a -

/Jcac- /,b) dV . (3-7)
47r(a+a c )

2b2 H

This is the uncollided exposure rate at the detector from the first-collision

source; gamma rays which scatter more than once must be accounted for using

buildup factors as discussed in Section 3.1.2.

A buildup factor B accounts for multiple scattering along the path from

the scattering volume dV to the detector. This factor is evaluated at the
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scattered gamma-ray energy E and over the distance b; the scattering volume

is treated as a first-collision source of photons of energy E, located a distance

b from the detector. Another buildup factor B accounts for gamma-ray

scattering in the concrete roof, if one is present. This factor is evaluated at

the source energy E and applied over the concrete path length ac ;
photons

leaving the slab are assumed to retain their energy. The assumption that dV

is the point of first interaction fails when the concrete is involved; the buildup

factor B increases the flux density at the scattering volume, since it is not

solely given by Eq. (3-2).

Correcting the single-scatter exposure rate equation for buildup produces

a new differential exposure rate expression, Eq. (3-8),

a~v — SKNBBtr iu a a (
- . ,,

,

,
s

T~i~,—^ p
E exp(~/,a _ ^ac ~ H dV

-
3^

47r(a + a c )
2b2 H

Integration of Eq. (3-S) over all space V for which photons may scatter

once and travel from source to detector gives the final expression for the total

exposure rate X at the detector,

v f SKNBBu u»„ a ,

Jv M a + a c )^ ^ " eXP(""a
" "^ " "b) dV

-

(3
"
9)

This formula includes attenuation and buildup in a concrete roof over the

point gamma-ray source. For cases where the roof is absent, Eq. (3-9) holds

with ac = and B = 1.

The space V over which integration takes place is dependent upon the

physical problem, whether a silo or a wall is present, for example. Selection
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of proper limits of integration will allow the application of Eq. (3-9) to many

shielding situations. A good choice of coordinate system will also make

evaluation of the integral equation easier. Both of these issues are addressed

in the remainder of the chapter. Section 3.3 applies Eq. (3-9) to the case of

a point source in a cylindrical silo; section 3.4 considers a point source behind

a semi-infinite wall.

3.3 Application of the Exposure Rate Integral Equation to a Silo Geometry

The problem of a point source of gamma rays within a cylindrical silo has

been solved numerically by Roseberry (RoSO), and reported again by Roseberry

and Shultis (RoS2). Their coordinate system and limits of integration will be

repeated here, and improvements made to the computer code used by

Roseberry will be examined.

The problem is illustrated in simplified fashion in Fig. 3-5. A point

source of gamma rays is located at the axis of a cylindrical silo with perfectly

absorbing walls. The top of the silo is open to the air and collimates the

gamma rays vertically into a known solid angle. Alternately, a concrete slab

of thickness t is placed over the silo and point source. A point detector is

located at distance d from the point source, at the same elevation as the

source. The source and detector are below the top of the silo, so that

photons must scatter to reach the detector. In both cases, the medium is

simulated as infinite air; no ground interface is used in calculations.
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J' . air-ground interface

concrete

air-ground interface

Fig. 3-5. Simplified calculational geometry for the case of a point source
within a silo: (a) no overhead shield: (b) overhead concrete roof present.

[From (RoSO)]
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3.3.1 Coordinate System

To integrate Eq. (3-9) over all space in which an uncollided gamma ray

may scatter once and reach the detector directly, a three-dimensional

coordinate system must be selected. For the silo problem, the coordinate

system consists of three angles 0, 6, and e, defined in Fig. 3-6. The angles

and c specify the direction in which a photon leaves the source, while

locates the scattering volume dV along that path. In this system, the

variables a, E and /ien //> depend only on 0. Using this coordinate system

yields the following expressions (RoSO, Ro82):

b = d sin0 csc/3
, (3-10)

ac = t sect csc#
, (3-11)

a = d(cos0 + s'mO cot/?) - ac , (3-12)

and

dV = (a+ac)2 d sin20 csc*/? d0 dO At . (3-13)

For a homogeneous air atmosphere, the application of this coordinate system

to the exposure rate equation, Eq. (3-9), gives the final form (Ro82) of

/?max . <?max

* = ifif L w f- " e L d " b exP(-/ia - ;«b)

--max

j

de B exp(-/(cac ) . (3-14)
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DETECTOR

Fig. 3-6. Coordinate system for the single-scatter model as applied to the
silo geometry. [From (RoS2)]
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Here, use has been made of symmetry in the variable c; since the last

integrand is an even function of e, and eaiu = -
fnlax , the integral from emi „ to

emax may be replaced by twice the integral from to tmax . Also, it has been

assumed that a >> ac ,
so that the distance a is approximately independent of

the angle c For the case of an unshielded source, Eq. (3-14) reduces to

(Ro82)

r
" ^max

" lw L W^E dJB exp(-/ia - ^b) fmax . (3-15)

3.3.2 Limits of Integration

The values of the angles which make up the coordinate system are

limited by the collimation of the silo and the restriction that the source,

detector and scattering volume must form a closed triangle. The outer radius

of the collimator silo is designated r, as shown in Fig. 3-5. To describe the

collimation, the variable h is defined in Fig. 3-5(a) as the distance of the

point source below the outer lip of the collimation silo, where no concrete roof

is present. When a shield is present over the source, as in Fig. 3-5(b), the

distance h cannot be easily defined, since the collimator is no longer atop the

silo. Instead, the minimum value of may be defined to correspond to the

longest gamma-ray path through the concrete shield that does not also pass

through the silo, or the longest path through the shield that makes a

significant contribution to the detector response. (RoS'2) The distance h may

then be computed as r tan0min . Note that r and h depend upon the outer

edge of the silo; in the MicroSkyshine code, for example, the inner dimensions
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of the silo determine r and h, and care should be taken to avoid confusion of

these definitions.

The limits of integration are related to the silo dimensions by the

following formulas (R08O, RoS'2). Where the source is unshielded,

#min = arctan - . (3-16)

If the silo is shielded, mi „ is defined as mentioned above, with h computed

from min and r.

0max = min{(?r - tfmin ), t -
fi
- arctan[h/(d-r)]} (3-17)

fmax = arccos(sin0m j n cscfl) (3-18)

In Roseberry's original code, the upper limit on 0, the supplement of the

scattering angle, depended on the silo height and the distance of the detector

from the silo. Since the silo material is assumed to be a perfect absorber,

photons were required to rise above the silo before scattering. This

requirement took the following form:

Amx = t - m in - arctan[h/(d-r)] . (3-19)

Note that /3max depends only on the problem geometry, not the variable 6,

since aia is a constant for each geometry of source, detector and silo. The

derivation of these limits is straightforward, and can be found in the thesis of

Roseberry (RoSO).
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In reality, photons from an isotropic source in the silo may reflect off

the interior walls of the silo, then scatter out the top and eventually

contribute to the detector response. This was seen to some extent in

benchmark experiments (RoSO). The use of Eq. (3-19) would not account for

these photons and could result in an underestimate of detector response when

compared to benchmark data. Faw and Shultis (Fa87) simulated the

contributions of gamma rays which ricochet off the silo wall by allowing single

scatters within the silo and computing detector responses from these "inside

scatters," neglecting the shielding of the silo wall entirely. In a sense,

MicroSkyshine uses the silo only to collimate the source photons into a known

solid angle, not to restrict the space in which photons scatter. This

conservative approach has been taken in modifying Roseberry's program for

this work. Photons scattering within the silo and escaping are simulated by

extending the region of integration into the silo, an area not visible from the

detector. The limits on 6 and c remain the same, but the restriction of the

silo wall is removed from Eq. (3-19), so that is limited only by the angle of

collimation, that is, the possible directions of source photons. In this work,

Awx = r - 9m i„ . (3-20)

Photons which scatter within the silo follow a path directly to the detector;

the "perfectly absorbing" silo material is ignored. This approach avoids

possible underestimation of true exposures or dose.
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3.3.3 Numerical Evaluation

The silo skyshine problem was solved numerically by Roseberry (RoSO)

using Eqs. (3-14) through (3-19). The computer code written for this

purpose, SKY, employed triple trapezoidal integration to compute the exposure

rate from an isotropic source emitting one gamma ray per second at a

specified energy. The angle of collimation of the silo and the thickness of an

overhead concrete shield, if present, could be specified. To normalize results,

the areal density between source and detector (distance times air density) was

computed and reported; exposure rates were multiplied by the square of the

source-detector distance and divided by the solid angle of collimation of the

source photons. These normalized exposure rates were displayed versus areal

density for all comparisons.

Part of the work performed for this thesis involved modifications to

SKY. Since the original code was written, improved cross sections and

buildup factors have been published, and improvements have been made in

numerical integration techniques. These data and methods have been

incorporated into a new version of Roseberry's code, and comparisons have

been made to investigate the effects of the changes. These comparisons and

changes will be described in this section.

Numerical Approximations. The program written by Roseberry involved

several approximations made to simplify coding of the exposure rate equation

or to shorten run times (RoSO). Many of these were retained in subsequent

versions of SKY, referred to in this work as SKYS and SILOGP.
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Although the angle has a theoretical lower limit of zero, this occurs

when the scattering volume is infinitely far from the source and detector.

Gamma rays are very unlikely to travel to such a point, and the contribution

to the detector response will be negligible for cases where is small.

Therefore, Roseberry placed a limit on the distance in air through which

photons might travel; the distance over both legs of the journey was limited

to 10 mfp (mean free paths). This places a numerical lower limit on below

which the integrand is approximately zero. For some later versions of SKY,

this limit was increased to 20 mfp, although Roseberry showed that 10 mfp

was adequate for d < 700 m. (RoSO) Following a similar analysis, Roseberry

placed a limit of 15 mfp on the photon path length in concrete. This yields a

numerical upper limit on e, above which the integrand is negligible. In SKY8

and SILOGP, this cutoff value was retained.

Equation (3-14) assumes that the distance a traveled by source photons

is approximately independent of e. To carry through on the assumption, the

concrete distance ac was dropped from Eq. (3-12) within the code SKY,

leaving only and as the independent variables. For problems involving

60Co point sources, Roseberry approximated the emission spectrum of 1.17

MeV and 1.33 MeV photons by two 1.25 MeV photons per disintegration.

This customary approach was proven to change the computed exposure rates

by less than two percent for all configurations studied. (RoSO) Both of these

numerical approximations were also carried over into the revised versions of

the code and problems performed with them.

The MicroSkyshine code (Fa87) allowed photons which first scatter within

the silo to contribute to measured results. As discussed in the previous
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section, a similar approximation has been used in SKY8 and SILOGP.

However, approximations found in other works were not applied in modifying

SKY. One of these, used in G 3 (Ma73), was to "convert" the first-collision

scattering source at dV to an equivalent isotropic source. This would justify

the use of a buildup factor computed for a point isotropic source and solve the

incongruity mentioned in section 3.1.2. However, the source term "conversion"

performed by G3 is to simply multiply the photon flux density leaving the

first-collision source in a unit steradian toward the detector by 4 jr. To find

the flux density at the detector from this isotropic scattering source, the new

source strength must be divided by 4jrb2 . The 4ir terms cancel, and the end

result is identical to Eq. (3-6), where the scattering source term S v is directed

into a unit steradian, and need only be divided by b2 to account for inverse

square attenuation. The conversion does not truly yield an equivalent

isotropic scattering source, and is eliminated in the formulation, so it was not

applied in this work.

Finally, the air density is taken to be constant over all regions in which

gamma rays travel, and the atmosphere is taken to be homogeneous in

composition. Since the distances involved in computations are not likely to

exceed 5000 meters, this is a valid approximation; numerical estimates of

attenuation through an altitude-dependent atmosphere, such as the method

used by ZAP (Ma69), are avoided. For simplicity, the concrete shield placed

over the source is also assumed to be homogeneous. Approximating density

changes in either air or concrete is rarely, if ever, required.

Use of Gauss Quadrature. The original code SKY written by Roseberry

performed its numerical integration of Eq. (3-14) by triple trapezoidal

47



integration. The three regions of integration (over 0, and e) were each

divided into ten regions, with a total of 1100 mesh points at which the

integrand was evaluated. Roseberry found this to be an acceptable mesh size

both in accuracy and in computation time. (RoSO)

Gauss quadrature is commonly known to be more accurate than

trapezoidal integration, and can achieve better results with fewer evaluations of

the integrand than either trapezoidal integration or the use of Simpson's rule.

Some recent computer codes use Gauss quadrature in some capacity, notably

MORSE (We84) and MicroSkyshine (Fa87). Hornbeck (Ho75) comments that

great accuracy is possible without many points, and that Gauss quadrature is

"a very desirable method to use for multiple integration," since fewer

evaluations of the integrands are necessary than with other methods, and less

error accumulates in the outer integral as a result. Details of the technique

may be found in any of the three references above.

In the first modification to SKY, named SKY8, the trapezoidal

integration formulas were replaced by function subprograms and a Gauss

quadrature subroutine. The subroutine used here originated at Sandia National

Laboratory, and performs adaptive quadrature; that is, separate integrations are

performed over successively smaller sections of the entire region of integration

until the change in the result is below a chosen criterion. SKY and SKYS

were applied to two different silo geometries, one with an unshielded,

collimated silo, the other with a concrete shield 21 cm thick over the silo.

The source in both cases was a 6»Co point source, normalized to a strength of

one photon per second. As shown in Tables 3-1 and 3-2, the change in

exposure rates is minimal, less than 2% in all cases. Because the Gaussian
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Table 3-1. Comparison of methods of numerical integration as applied to
the computer code SKY. The exposures are for a 60 Co point source on the
axis of an open silo with a solid angle of collimation of 4.683 sr. Air
density is taken as 1.2 mg/cm3

.

Normalized exposure
[m2 • R/(sr • photon)]

Computed by Computed by
8- point 11- point

Source- detector Areal density Gauss trapezoidal
distance (m) (g/cm2) quadrature integration

25.0 3.0 2.853i'-17'1* 2.832i'-17

37.5 4.5 4.1821'-17' 1 4.152i -17'

50.0 6.0 5.3581'-17' \ 5.3191 -17'

62.5 7.5 6.3671'-17'1 6.32H -17'

75.0 9.0 7.2091'-17 l 7.1571'-17'

87.5 10.5 7.8921'-17 i 7.8361'-17
1

100.0 12.0 8.429('-17 i 8.3691'-17
1

112.5 13.5 8.831)'-17 i 8.7681'-17'

137.5 16.5 9.292('-17 i 9.226('-17*

150.0 18.0 9.377('-17 9.312('-17

162.5 19.5 9.384(-17 9.318( -17
175 21 9.323(-17 9.258( -17
200 24 9.038(-17 8.976( -17
225 27 8.598( -17 8.538( -17
250 30 8.058( -17 8.002( -17
275 33 7.462( -17 7.409( -17
300 36 6.842( -17 6.793( -17
350 42 5.621( -17 5.579( -17
400 48 4.509( -17 4.475( -17
450 54 3.554( -17 3.526( -17
500 60 2.764( -17 2.740( -17
550 66 2.126( -17 2.106( -17
600 72 1.621( -17 1.604( -17
650 78 1.227( -17 1.213( -17
700 84 9.225 -18 9.115( -18
750 90 6.902( -18 6.814( -18
800 96 5.142 -18 5.071( -18
850 102 3.816 -18 3.759( -181
900 108 2.821

2.080(
-IS) 2.777 -18

-18)950 114 -18) 2.045(

2.S53(-17) = 2.853x10-1'
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Table 3-2. Comparison of methods of numerical integration as applied to
the computer code SKY. The exposures are for a 60 Co point source on the
axis of a silo, shielded by a concrete slab of density 2.13 g/cm3 and
thickness 21 cm. Air density is taken as 1.2 mg/cm3

.

Source- detector Areal density
distance () (g/cm2)

25.0 3.0
37.5 4.5
50.0 6.0
62.5 7.5
75.0 9.0
87.5 10.5
100.0 12.0
112.5 13.5
137.5 16.5
150.0 18.0
162.5 19.5
175 21
200 24

225 27
250 30
275 33
300 36
350 42
400 48
450 54
500 60
550 66
600 72
650 78
700 84
750 90
800 96
850 102
900 108
950 114

Normalized exposure
[m2 • R/(sr • photon)]

Computed by Computed by
8-point 11-point
Gauss trapezoidal
quadrature integration

2.412 f-18)
3.516 (-18)

4.460 f-18)

5.236 f-18)
5.847.f-18)
6.308 '-18)

6.634i'-18)

6.84H'-18)
6.9681'-18)

6.9171 -18)

6.8081 -18)

6.652('-18)

6.237| -18)

5.738( -18)

5.200( -18)

4.658( -18)

4.133( -IS)

3.1821 -18)

2.395 -18)

1.773( -IS)
1.298( -18)

9.40S( -19)

6.772 -19)

4.848 -19)

3.454 -19)

-19)2.452
1.737 -19)

1.227 -19)

8.650 -20)

6.037(-20)

2.413 f-18)
3.517 f-18)
4.460.f-18)
5.235.'-18)

5.847i'-18)

6.3081'-18)

6.6341'-18)

6.8421 -18)
6.9701 -18)

6.920( -18)

6.812( -18)

6.656( -18)

6.243( -18)

5.744( -18)
5.208( -18)
4.666( -18)

4.141 -18)
3.189 -18)
2.401 -18)
1.779 -18)
1.302 -IS)
9.444 -19)
6.799 -19)

4.868(-19)
3.469 -19)

2.464 -19)
-19)1.7451

1.233 -19)
8.691

6.119C

-20)
-20)

2.412(- 18) = 2.412xlO" I 8
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quadrature method is known to be more accurate, it has been retained in the

code.

Data Used in Codes. The single-scatter and buildup method requires

two data bases: one of gamma-ray interaction coefficients, the other of

parameters used in computing buildup factors. In SKY, Roseberry employed

attenuation coefficients published by the National Bureau of Standards; the

data are over twenty years old, however, and more recent data can be

obtained from several sources. Buildup was computed in SKY by the Berger

formula, with published coefficients used as the data base. A new formula for

photon buildup known as geometric progression has become popular for

numerical use; although the formula is complex compared to the Berger

approximation, the results agree more closely with experimental and

computational data (Ha83, HaS6). It was decided to bring these two portions

of the code up to date and compare results to determine what changes, if any,

would result in the exposure rates from the modifications.

The first alteration made to SKY8 was the replacement of the Berger

buildup formula by the geometric progression formula of Harima et al. (HaS6).

An early version of the formula (HaS3) was presented as an alternative to

other gamma-ray buildup approximations, which were fit to reported data but

did not reproduce them well. Some buildup formulas deviated as much as

40% from widely-used moments method data; one approximation was cited as

giving negative buildup factors when extrapolated. Harima obtained

coefficients for the first version of the geometric progression from fits to

numerical moments-method results and results of other computer codes.
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Except for lead, the geometric-progression (or GP) buildup factors were well

within 10% of the original data. The coefficients were easily interpolated,

another advantage of the GP method.

The current version of the GP buildup formula (HaS6) was published by

Harima et al. three years later. The authors explain the physical meaning of

each term in this more accurate form, report coefficients for several materials

over different energy ranges, suggest an extrapolation method for large

distances, and recommend parabolic interpolation in energy and distance. The

formula and interpolation scheme were used by Shultis and Faw (Sh87) in

computing response functions for the MicroSkyshine code, and are employed by-

Cain and Trubey (RS86) in a recent version of the QAD program for

microcomputers. It was this revised formula that was included in the modified

version of SKY8, renamed SILOGP.

The GP approximating function for the gamma-ray point-source buildup

factor is defined as (Ha86, RSS6)

B(E ,x)

1 + (b-1) %£
1 + (b-l)x

K ^ 1

K = 1

(3-21)

where

K = cx
a tanh(x/Xk - 2) - tanh(-2)

1 - tanh(-2)

and

(

-apr" 0-22)

E = gamma-ray source energy,

x = source-detector distance in the medium in mean free
paths,
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b,c,a,d,X k = parameters dependent on E and the material of the
medium.

The values for the parameters used in this work are those used in

QAD-CGGP (RS86); the subroutines used to calculate the buildup factors are

identical to those in QAD, with a modification to correct an error in the

parabolic interpolation procedure.

For comparison of buildup, the unshielded and shielded silo geometries

used in testing the Gauss quadrature subroutines were again used. Normalized

exposure rates were computed along a radial from the source out to 950 m
using the Berger buildup formula, and again with the GP buildup formula.

The results are shown in Fig. 3-7. Differences in the buildup are immediately

seen; for the unshielded case, where buildup is only used in air, the normalized

exposure profile computed with GP factors shows less variation over distance

than the Berger-formula exposure profile. The tendency of the Berger factors

to overestimate close to the source is especially evident here. The GP buildup

method was chosen for all subsequent work.

The other change in the data base was an update of interaction

coefficients. The twenty-year-old NBS values used by Roseberry were replaced

by those published in an article by Hubbell (Hu82). This compilation, also

performed for the National Bureau of Standards, contains values of ftfp and

/(en //) for forty elements and forty-five mixtures over the range of 1 keV to 20

MeV. Very little of the data is empirical; the mass attenuation and mass

energy absorption coefficients were obtained from theory, with empirical

adjustments made to nen/p- Values for mixtures were computed from the

elemental data and appropriate weight fractions. Of special note is the

White-Grodstein composition for concrete used by NBS, which differs from the
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Fig. 3-7. Comparison of exposures computed by the computer code SKY8
using the Berger and geometric progression (GP) buildup formulas. The
exposures are for a 6oc point source on the axis of a silo, with and without
overhead concrete shielding.
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composition used for ANSI-standard problems (AN87). This difference was

neglected for later comparisons to ANSI reference results.

Exposure rates were computed with the old and new interaction

coefficients to compare changes in detector response. The same silo problems

were used in this test as were used with the integration and buildup factor

comparisons. Also, since the decision to use the new data was made well

after the GP buildup formula was incorporated, both sets of computations

employed adaptive Gaussian S-point quadrature and GP buildup factors. The

results are presented in Tables 3-3 and 3-4. For the case of an unshielded,

collimated source, the change in the exposure rate due to the change in ftfp

values is less than 2%, even at large distances. This is to be expected, since

Hubbell (Hu82) reported that differences in the data from earlier standard

values are only 5% in the worst cases. For the shielded silo case, the data

from Hubbell produce exposures which are consistently lower, but the change is

less than 3%, even as the source-detector distance approaches 1000 meters.

The final version of the silo skyshine code SILOGP, including Gauss

quadrature, the geometric-progression buildup formula, and new interaction

coefficients, is listed in Appendix A. In Chapter 4 this version will be

compared to other methods and validated against reference data.

3.4 Application of the Exposure Rate Integral Equation to a Wall Geometry

The other problem addressed in this thesis is that of a point source of gamma

rays separated from a point detector by a semi-infinite wall. The wall

geometry is shown in simple form in Fig. 3-8, with distances between the

source, detector, and scattering volume labeled; the Cartesian dimensions which
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Table 3-3. Comparison of mass interaction data used in the computer
code SILOCP. The exposures are for a 6 °Co point source on the axis of
an open silo with a solid angle of collimation of 4.683 sr. Air density
is taken as 1.2 mg/cm3

.

Normalized exposure
[m2 • R/(sr • photon)]

ft/p from ft/p from
Source- detector Areal density Roseberry Hubbell
distance (m) (g/cm2) (Ro80) (Hu82)

25.0 3.0 2.223(-17)* 2.222 (-17
37.5 4.5 3.152-17

) 3.150 (-17
50.0 6.0 3.967(-17 3.965 (-17
62.5 7.5 4. 674 (-17 4.670 (-17
75.0 9.0 5. 277 (-17 5.271 (-17
87.5 10.5 5.782(-17 ) 5.775 (-17
100.0 12.0 6.197(- 17 ) 6.187 -17
112.5 13.5 6.527(-17 ) 6.515 -17
137.5 16.5 6.964(-17 ) 6.948: -17
150.0 18.0 7. 085 (-17 ) 7.067i -17'
162.5 19.5 7.150(-17

(

1 7.130i -17'
175 21 7.165(-17'

1 7.1431 -17'
200 24 7.070(-17'

1 7.0461 -17
225 27 6.847(-17

<

1 6.8211 -17
250 30 6.529(-17 i 6.502|'-17
275 33 6.150(-17 6.122(-17
300 36 5. 732 (-17 5.704( -17
350 42 4.856(-17 4.829( -17
400 48 4.009(-17 3.984 -17)
450 54 3. 243 (-17 3.222 -17)
500 60 2.583-17 2.564 -17)
550 66 2. 031 (-17) 2.015(-17)
600 72 1.580-17) 1.567(-17)
650 78 1.218(-17) 1.208(-17)
,'00 84 9.326-18 9.239 -18)
750 MO 7.092(-18 7.022?-18
S00 96 5. 362 (-18) 5.307(-IS)
850 102 4. 035 (-18) 3.991 -18)
900 108 3. 022 (-18) 2.988 -18)
950 114 2.255(-18) 2.229(-18

2.223(-17) = 2.223x10-11
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Table 3-4. Comparison of mass interaction data used in the computer
code SILOGP. The exposures are for a 6"Co point source on the axis of a
silo, shielded by a concrete slab of density 2.13 g/cm3 and thickness 21
cm. Air density is taken as 1.2 mg/cm3

.

Normalized exposure
[m2 • R/(sr • photon)]

n/p from n/p from
Source- detector Areal density Roseberry Hubbell
distance (m) (g/cm2 ) (Ro80)

'

(Hu82)

25.0 3.0 1.636 (-18)* 1.629 (-18
37.5 4.5 2.309 (-18) 2.299 -18
50.0 6.0 2.891 -18) 2.877 -18
62.5 7.5 3.386 -18) 3.368 -18
75.0 9.0 3.796 -18) 3.775 -18
87.5 10.5 4.128 -18) 4.103 -18
100.0 12.0 4.387 -18) 4.359' -18
112.5 13.5 4.580 -18) 4.549' -18
137.5 16.5 4.795 -18) 4.759i -18
150.0 18.0 4.829 -18) 4.791i -18
162.5 19.5 4.823' -18) 4.7841>-18'

175 21 4.782 -18) 4.74H -18'
200 24 4.617i -18) 4.5741'-18'
225 27 4.3701 -18) 4.3261'-18'
250 30 4.0711'-18) 4.0281'-18'
275 33 3.7431'-18 3.701|'-18'
300 36 3.4051'-18) 3.364('-18
350 42 2.744( -18 2.709( -18
400 48 2.152 -18) 2.123 -18
450 54 1.654 -18) 1.629 -18
500 60 1.251 -18) 1.231 -18
550 66 9.335 -19) 9.180 -19
600 72 6.898 -19) 6.779(-19
650 78 5.054 -19) 4.963(-19
TOO 84 3.677(-19) 3.609(-19
750 00 2.661 -19 2.609

-19) 1.877(

-19
soo 96 1.916? -19)
850 102 1.3741 -19) 1.346(-19)
900

1 08 9.820 -20) 9.613(-20)
950 114 6.996( -20) 6. 845 (-20)

1.636(- 18) = 1.636x10-18
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(a)

° detector

I

* semi-infinite
y' wall

concrete /
shield-^/

(b)

detector

Fig. 3-S. Simplified calculational geometry for the case of a point source

behind a semi-infinite wall: (a) no overhead shield; (b) overhead concrete roof

present.
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locate the source, detector and wall in space are presented in Figs. 3-9 and

3-10. The wall extends downward and sideways to infinity and is of perfect

absorbing material. The point source lies a distance xs from the wall,

measured perpendicular to the wall, and lies a distance y s below the top edge

of the wall. The point detector lies a distance Xd from the wall face and yd

below the wall edge. To measure the "offset" of the source and detector, a

vertical plane is extended from the source through the wall, normal to the

wall. The distance from the detector to this plane, or the "offset," is zj. If

either the source or detector (never both) is above the wall edge, ys or yd is

negative, respectively. The value of zd is taken as positive in the direction

shown in Fig. 3-9.

The source and detector may or may not lie on a line normal to the

wall, and may have different heights with respect to the top of the wall, but

must be separated along the line of sight by the wall. This restriction forces

photons to scatter in air to reach the detector. As in the silo problem, the

source may be open to the air or covered by a concrete shield of thickness t.

The source-detector distance is again designated as d. No ground-air interface

is involved in this problem, for simplicity, and the thickness of the wall is

negligible.

To the author's knowledge, the wall problem has only been addressed

previously by Faw and Shultis (FaS7) using MicroSkyshine. Their coordinate

system differs from the one developed for this work, due to the requirements

of MicroSkyshine. Results of the two methods will be compared in the next

chapter.
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3.4.1 Coordinate Systems

The exposure rate equation which is to be solved for the wall case is

repeated here.

<r _ f
SKNBBa «en a

,
- . „, , ,

To integrate Eq. (3-9) over all space in which a gamma ray may scatter once

and reach the detector directly, a three-dimensional coordinate system must

again be selected. The system of angles used in the silo problem by

Roseberry was chosen first, but produced an extremely large and cumbersome

set of limits, many of which were valid only for certain positions of source

and detector. It was discovered that a simple cylindrical coordinate system

could be applied instead, requiring fewer equations to determine the limits of

integration. Thus the cylindrical system was used in the numerical analysis.

Using the cylindrical coordinate system requires that the source, detector

and wall positions be translated to cylindrical coordinates. By definition, the

source lies at the origin and the point detector is at r = 0, z = d. Only the

edge of the wall is of concern, and it may be described by an infinite line.

The translation begins with the rotation of the Cartesian geometry of Fig.

3-10 into a second Cartesian geometry, in which the source and detector lie

the same distance h below the wall. The rotation is presented in Fig. 3-11,

and its result is shown in Fig. 3-12. The intermediate angles and quantities

are as follows:

6 = arCtan
xs + x'd (3

"23
)
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h = ys cos0 - xs sinfl = yd cos* + xd sin# (3-24)

x^ = xs cosfl + ys 8in0 (3_25)

*
d
= xd cosO - yd sinS (3-26)

The X and Y axes are rotated through an angle to become the X' and \"

axes. Note that the Y' axis lies in the XY plane, which acts as a reference

for the offset zd , and that Y' is perpendicular to the source-detector axis,

which lies in the X'Z 1

plane.

The second step of the transformation is another rotation of Cartesian

axes. The X' and Z axes are rotated through an angle J to become the X"

and Z" axes, as shown in Fig. 3-13. The axis Y 1

remains unchanged, and is

identical to the Y" axis. The angle f is defined such that the source-detector

axis is parallel to the X" axis, and is given by

( = arctan
,

z

| , . (3-27)x
s
+ x

d

The result of this second rotation is shown in Fig. 3-14. The new quantities

are defined by

x
s
= x

s
sec^ ' (3

"28
)

*
d

' = x
d

sec ^ • (3-29)

Note that x^ + xjj = d. Here, x^ represents the distance along the

source-detector axis from the source to the top of the wall, while xjj is the
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distance from the detector to the top of the wall. These two quantities

directly affect limits of integration, as will be shown later.

Finally, the cylindrical coordinate system (r,0,z) is superimposed on the

third Cartesian system (X", Y", Z") in Fig. 3-15. The cylindrical polar axis

is taken as the source-detector axis, with the point source located at the

origin of the system and the detector at z = d. The radial coordinate r of

the scattering volume dV is measured from this axis. The polar axis is

parallel to the X" axis, hence the polar coordinate z is taken as positive in

the positive x" direction. The quantities r and <j> are defined in a plane

parallel to the Y"Z" plane, with the positive Y" axis acting as the =

direction. The angle <j> is measured using the right-hand rule about the X"

axis. Since the Y 1 and Y" axes are equivalent, Y' is normal to the

source-detector axis, and the X'Y 1

plane acts as a reference for the offset z&,

it is concluded that the reference plane for <j> must include the source-detector

axis, and must intersect the zj reference plane to form a line perpendicular to

that axis.

The complement of the scattering angle is still required, since the

Compton scattering parameters depend upon it. Given the cylindrical

coordinates (r,0,z) of the scattering volume, may be found. From Figs. 3-8

and 3-15,

= arccot
Y
- + arccot ^ . (3-30)

Other quantities can be obtained from the Pythagorean theorem:
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/(£

= f.

(3-31)

ac (3-32

The element of volume is

dV = r dr d<j> dz . (3-33)

The development of an accurate formula for the path length ac in

concrete is complicated, because the concrete slab may be skewed with respect

to the source-detector axis and the cylindrical coordinate system. Figure 3-16

illustrates the components of the path length ac , taken as XYZ components

because the concrete shield is parallel to the XZ plane. To obtain ac , the

cylindrical components must be transformed "backwards" to the original

Cartesian system. Figures 3-10 through 3-15 will be useful at this point.

Given the cylindrical coordinates (i,<j>,z) of the scattering volume dV, its

Cartesian coordinates in the X"Y"Z" system are

w
x = 2

- (3-34)

w£ = r costj)
, (3-35)

w^ = r sin<?> . (3-36)
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If a Cartesian coordinate system is rotated about its origin to produce a

second system, the coordinates of one point in both systems are related to one

another by the following system of equations:

x = A*x' + A yy' + Azz'

y = ih*' + W' * W (3-37)

z = %x' + vyy' + i/zz"

where

(x,y,z) = coordinates of the point in XYZ space,

(x',y',z') = coordinates of the point in X'Y'Z' space,

(Ax ,yux,^x) = direction cosines of the X' axis (not the
X axis) with respect to the XYZ coordinate
axes.

This system of equations will yield the coordinates of dV in the X'Y'Z'

system, which was rotated about the Y' axis through an angle f to produce

the X"Y"Z" axes. With A x = cos?, Ay = 0, and Az = -sin?, for example,

Similarly,

w^ = z cos? - r smtj> sin?

w' = z sin? + r sin<j> cos?

(3-38)

(3-39)

(3-10)
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The same operation can be performed with Eqs. (3-37) through (3-40) to find

the coordinates of dV in XYZ space.

wx = z cos? cos0 - r (sintj) sin? cos0 - cos(* sin#) (3-41)

wy = -z cos? sin0 + r (sin^ sin? sinfl + cos<p cos*) (3-12)

w2 = z sin? + r sin0 cos? (3—13)

With this example, we can now determine ac , the concrete path length.

Because ac lies on a line from the source (the origin) to dV, its components

a
c,x'

a
c,y

and a
c,z

are Proportional to the components wx , wy , and w z .

Further, the Y component must always be equal to t, the concrete shield

thickness. So, we may define the components of ac as the coordinates of dV,

normalized to a Y-component of t. Define

a
c,x

= tw*/wy i (3-44)

a
c.z

= tw*/wy . (3-45)

using Eqs. (3-41) - (3-43). The concrete path length is then given by

ac=
[

a
c,x

+ a
?,z + t2]* (3-46)

Finally, with the Compton scattering quantities defined by Eqs. (3-4)

and (3-5), the exposure rate equation (3-9) may be expressed as an integral

over r, z and <j>.
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^max Zmax

* = f^ I
dr r

(
dz 71 ^f * E exp(-^b)

d^ exp(-/ja - /<cac ) (3-47)
^min (a+a c )

2

Unlike the equation for the silo geometry, this does not approximate the path

length a as independent of the inner variable. For the case of an unshielded

source, ac = and the integrands show no dependence on <j>. Equation (3-47)

then reduces to

rmax zmax

X = jEJ
[

dr r
f

dz -5- &a a E exp(-pa-pb)
J rm in

J Zm j n a2 b 2 "

• (<ZWx - 0min) (3-48)

In this coordinate system, the variables a, E and /*en //> (itself a function

of E) again depend on 0, but now depends on the cylindrical coordinates r

and z. As a result, those variables move from the outer integral to an inner

integral and must be evaluated more often. This disadvantage of the

cylindrical system is offset by the relative simplicity of the integration limits,

which are presented next.
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3.4.2 Limits of Integration

The limits of integration in Eq. (3-47) are best understood with the aid

of Fig. 3-17. The scattering volume dV must always lie at a position which

is visible to the source and the detector; this is a requirement of the

single-scatter model. The union of the regions which are visible from the

source and from the detector is the shaded area labeled the "scattering zone"

in Fig. 3-17. This volume of space extends infinitely into and out of the

page, as the wall does. The differential scattering volume dV is restricted to

the scattering zone, thus integration takes place over this volume.

Limits on r. In Fig. 3-18, the system is oriented so that the scattering

zone may be viewed in the cylindrical coordinate system. From this view,

limits on r are easily deduced. Recall from Section 3.4.1 and Fig. 3-14 that

the source and detector are both a distance h below the wall in the X"Y"Z"

coordinate system. The edge of the wall marks the closest approach of the

scattering zone to the source-detector axis, therefore rmin = h.

The upper limit of integration over r in fact approaches infinity, since a

gamma ray could, in theory, travel an infinite distance, undergo a Compton

scatter of 180°, and return again to the detector. As with the numerical

solution of the silo problem, however, contributions from scattering volumes

very far from the detector are negligible, and a cutoff criterion is necessary.

The criterion selected by Roseberry for the SKY code, mean free paths

traveled by the photon in air, is satisfactory.

Let rmax be chosen such that for all values of r > r„, ax , a photon must

travel a distance in mean free paths greater than the chosen cutoff value Mcut .
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Referring to Fig. 3-4, the distance traveled by the photon in air is /« +
'fib.

Since the attenuation coefficient of air increases as photon energy decreases

over nearly all energies of interest, /i < /"». Define the path length function M
as

M(z) = /<a + fib x ft [ [
r2+z2]' +

[
rs + (d-z)*]*] . (3-49)

If M equals the cutoff value M cut , then the actual mean free path distance in

air, //a + fib, will exceed M cut , since fib < 'fib. Defining rmax in terms of M
instead of M cut is a conservative choice, insuring that all scattering volumes

for which the path length is below Mcut are included in the integration.

By the first derivative test, M is minimum at z = d/2 for constant r.

If the minimum value of M for constant r is Mcut , the minimum mean free

path length in air for that value of r must be greater than Mcut , since 'fib >

fib. This value of r may be taken as rmax . Substituting z = d/2 and M =

M c ,,t,

Mcut — \i V + (d/2)2 +
j

r2 + (d - d/2)'< (3-50)

rmax =
[j]

[(Men//*) 2 - d»l .

This formula is used in the numerical analysis for the wall case.

(3-51)

Limits on z. The limits on z and <j> are strongly dependent on the

source and detector locations as measured from the wall. The possible

combinations of source and detector positions with respect to the wall may be
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divided into three categories. These categories, shown in Fig. 3-19, are

visualized best in the X"Y"Z" frame of reference, with the source-detector axis

horizontal. They are:

(1) The wall lies between the source and detector, and is not directly

above either. This occurs only when x" > and x'j > 0.

(2) The wall extends over and above the source in the Y" direction; in

the XYZ system, the detector is much farther below the top of the

wall than the source. In this case, x" < 0.

(3) The wall extends over and above the detector in the Y" direction;

in the XYZ system, the source is much farther below the top of

the wall than the detector. In this case, x'\ < 0.

The second and third cases may be useful in modeling situations where a

source and detector are at the base of a cliff and top of the cliff, or at the

base and roof of a tall building.

For a specific value of r, the scattering volume dV will lie on the surface

of a cylinder of radius r about the source-detector axis. If any portion of the

cylinder lies within the scattering zone of Fig. 3-17, that value of r lies within

the limits of integration. Some examples are illustrated in Fig. 3-20. The

smallest useful cylinder, of course, has radius rmi „ = h. For a cylinder of

radius r > h, the values of z between which the cylinder intersects the

scattering zone correspond to the analytical limits of integration for z. The

problem is therefore reduced to locating the intersection of the cylinder and

the two half-planes bordering the scattering zone. Restrictions on z based on

the mean-free-path cutoff M cut will also be required.
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Scattering

Zone

F'f I ,, ,

C -vlmdncal surfaces used to determine limits of integration on z:
(a) the wall lies between the source and detector, but is above neither; (b) the
wall extends over and above the source; (c) the wall extends over and above
the detector.
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To begin, consider the first geometry (x£ > 0, x^j > 0) illustrated in

Fig. 3-20. At z = z min , the cylinder contacts the scattering zone at only one

point: the half-plane above the source, which passes through the top edge of

the wall and defines the space visible from the detector. The radial r will be

perpendicular to this half-plane at z = z min , since r defines a circle which is

tangent to the plane. This fact can be utilized to compute zmi „. A skeletal

geometry, with only the wall edge, half-plane above the source, and the

source-detector axis, is shown in Fig. 3-21. From this figure, Eq. (3-29) and

the identity d = x" + x,,

a = arctan = arctan K- , (3-52)
x£ cos?

x
d

v ;

p = (d-z) cos? tana = h(d-z)(cosf)/xi
, (3-53)

T = */2 - <f . (3-54)

tan* = MS = h ,, ...
seC7

x^ esc?
(3_55)

and

r = p cos# = h
(
d-z

)
cos ^ ,

f
,

,fi1

(h2sin^ + x^i
' (3-56 '

Rearranging Eq. (3-56) to produce z as a function of r, an expression is

obtained for the lower limit on z.

r(h2sin2? + xtf*
d

rTcos^ (3-57)
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Figure 3-22 shows a similar skeletal geometry for the half-plane above the

detector, which marks the space visible from the source. At z = zmax ,
the

cylinder in Fig. 3-20(a) intersects this half-plane at only one point. By

identical analysis, the value of z on the detector side, zmax , is given by

r(h2sin2£ + x'2)*
Z = hcos^ (3-58)

For all r such that a radial of length r exists normal to the half-plane

above the source, Eq. (3-57) gives the value of z„, in . If $f 0, however, there

can be values of z for which no radial from the axis to the scattering zone is

perpendicular to the half-plane above the source, because the half-plane does

not extend to those values of z. Figure 3-23 demonstrates that all radials

which are normal to the half-plane lie in a plane of their own. The

important value of r is that value for which the radial is normal to the

half-plane at the edge of the wall. For larger r, Eq. (3-57) yields zmin . For

smaller r, the radial at (r,z) which contacts the half-plane at only one point

does so at the top of the wall, and this fact must be used to find zmi „. The

same argument applies to Eq. (3-5S); if r is greater than or equal to the

length of the radial which reaches the edge of the wall and is normal to the

half-plane over the detector, Eq. (3-5S) produces zm. Otherwise, zmax is

determined differently.

Figure 3-24 presents a typical radial of length r, at axial position z,

which ends at the top of the wall. The radial acts as the diagonal of a box,

and its length may easily be computed. From the figure,
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t°- = W + [(
x« - z ) cos^j

2

+ [(xj-*) cos? tan7? . (3-59)

Using Eqs. (3-28) and (3-54) and the identities tan7 = cot(7r/2 -
7) and

1 + C0t2£ = csc2£,

r2 = h2 + (x^ - z cos?) 2 cstff . (3-60)

To add the requirement that the same radial must be normal to the

half-plane over the source, Eq. (3-57) is substituted into Eq. (3-60); the result

is the minimum value of r for which Eq. (3-57) equals zmi „.

r = fej
[
h2 sin?? + (^jq*. (3^!)

Substituting Eq. (3-5S) into (3-60) yields the smallest radial distance r for

which Eq. (3-58) equals zmax .

r = |r [h« sirff + (j^rf. (3^2)

For instances in which r is less than one or both of the criteria above,

Eq. (3-60) may be used alone to find the appropriate limit on z. By solving

for z without the use of Eqs. (3-57) or (3-58), the restriction that the radial

be normal to a half-plane is lifted. Equation (3-60) has two solutions for z,

roots of a quadratic.
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zi =
fx'

- sin? (r2 - h2)*l sec?

z2 = \x'
g

+ sin? (r2 - h2 )'l sec?

(3-63)

The smaller of the two roots corresponds to z ra iii; the larger corresponds to

zmax . Either or both may be used as a limit, as the geometry demands.

To summarize the analysis to this point: The limits on z are piecewise

functions, with the point of changeover dependent on r. For the case of x" >

and x", > 0,
a '

[h2sin2? + («£)*]*
d - r c ..., S

(
r >

n
[h2s in2? +

(x.)2]:~ll cos?

min (zi,Z2)
, otherwise.

(3-64)

[h2sin2? + (x')2]<

h cos?

max (zi,Z2)

r > |r [l>2sin2? + (x')2J*

otherwise.

(3-65)

The second and third geometry cases in Figs. 3-19 and 3-20 may now

be discussed. In the second class of problems, where x" < and x'j > 0,

both half-planes bordering the scattering zone lie above and behind the point

source in the cylindrical frame of reference. The guidelines for determining

Zuin are the same as for the first class of problems, since the half-plane on
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which z„,i n depends still extends above and behind the source in these cases.

The guidelines for determining zmx , however, must be changed. When z =

Zmax, the cylindrical surface of radius r intersects the scattering zone at only

one point. As shown in Fig. 3-20(b), this point is the very tip of the wedge-

shaped scattering zone, which is also the top of the wall. The radial r and

its position z are thus governed by Eq. (3-60), and zm&x equals the larger of

its two solutions in Eq. (3-63). Figure 3-20(c) presents the case of x" > 0,

Xj < 0, wherein both half-planes extend behind the detector. By analogy, we

find Zuin is always the smaller of the solutions to Eq. (3-60), while zma*

follows the same guidelines as in the first class of problem geometries.

Computing limits of integration on z using only the half-planes bordering

the scattering zone will lead to inefficiency; on occasion, much of the cylinder

of radius r between these values of z will lie further from the source and

detector than a practical value of the path length cutoff M cut . An example is

that of large source-detector distances and a relatively short wall. Integrating

over this space yields a negligible response, and therefore is unnecessary.

Alternate limits of integration over z based on the path length cutoff M cu t

will avoid this wasted effort.

Figure 3-25 illustrates an approximation for useful limits on z using the

mean free path cutoff. Since the total path length traveled by a photon is

restricted to M cut mean free paths, the photon must scatter within the

ellipsoid shown. Recall that in two dimensions, the sum of the distances from

any point on an ellipse to both foci is a constant. In the figure, this distance

is R, + R 2 . By equating this constant sum to the cutoff distance Mcu t/7< for

photons at the source energy, and rotating the ellipse about the
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o*b=Mcut/#

source-detector

axis

El I ipse rotated

about axis

Fig. 3-25. Alternate limits of integration over
mean-free-path cutoff.

z, based on the
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source-detector axis, an ellipsoid is created with major axis of length Mcut//<

and minor axis of length 2r„,ax . This ellipsoid may be used to restrict the

range of integration of z to useful values.

In the cylindrical coordinate system, the source rests at the origin, and

the detector lies at r = 0, z = d. The center of the ellipsoid then lies at

r = 0, z = d/2. The analytic equation for the two-dimensional ellipse is

(z-d/2) 2
,

(r-0)2
t

(IW2/0» t*
(3-66)

If r is known, Eq. (3-66) yields two solutions for z:

Mem
L
rmax,

(3-67)

Turning to the three-dimensional case, if r is known, the differential scattering

volume dV will lie on a cylinder of radius t about the source-detector axis for

any z and <j>. The intersections of this cylinder with the ellipsoid mark upper

and lower limits of z required by the mean free path cutoff. The limiting

values correspond to Eq. (3-67), since the cylinder and ellipsoid are invariant

in <p.

cut _ d

m i n 2
Mcut

2/j 1 max J

(3-68)

cut = d Mem
max 2 27T

1
- —

r

(3-69)
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The limits obtained with the cutoff value should be compared to the

limits on z obtained using the half-planes bordering the scattering zone.

Using the two requirements that photons must collide with air volumes in the

scattering zone and travel less than Mcu t mean free paths, the larger of the

two values of zm in should be used, and the smaller of the two values of znax

should be applied.

The final form for the limits of integration over z is similar to Eqs.

(3-64) and (3-65). The lower limit zm j„ may be found by Eq. (3-57) only if

x'l > 0; comparing the three types of source-detector geometries will make

this evident. If x^ < or the radial coordinate r is smaller than its criterion

of Eq. (3-61), zm i n will be the smaller of zi and Z2, given by Eq. (3-63). If

the value zm
"
n

from the mean free path cutoff analysis is larger in any

instance, it becomes zm in instead. The upper limit follows similar guidelines

involving x". For all possible cases, then, the limits of integration over z are

expressed by the following formulas.

where

zm i„ = max (z
geom

z
cut

)mi n' (3-70)

geom _

h2sin2f+ (xl)2
d - r '

u °c . xl > and r > \n cosf d - xi

min (zi,Z2) , otherwise,

h2sin2^+(x^)2

(3-71)

and
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where

cut _ d

min 7

nin fzSf°» , z
cut

] ,

[ max ' maxJ '

(3-72)

(3-73)

geom

h2sin2£+(x')2
1

hcos^ '

x
s > ° and r * 3T

ha«»2^) 2

max (zi,z 2 ) , otherwise,

(3-74)

and

ut _ d M cut» ~ * + %z
c

max -L_l (3-75)

The quantities zj and z2 are defined by Eq. (3-63). In a case where the

source and detector are not offset, z = 4 = 0, and the limits simplify greatly.

Zmin (?=0)

*
[

x
s

rx
d .cut

T" z
min| '

x
d > °

|x
s '

zmin '
otherwise

(3-76)

Zmax (£=0)

:'
' s

z
cut

l

h ' maxj "s

l

x
s Cx] '

otherwise

(3-77)
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Because the restrictions on r simplify to r > h, and Tm
-

ln = h, they may be

removed entirely.

Limits on
<f>.

The limits of integration over <p may also be different for

each of the three types of source—detector arrangements in Fig. 3-19. The

three cases will be considered separately, then combined to produce a single

set of equations for m in and ipmax- As will be shown, the region of

integration in 4> can sometimes be composed of two regions, with a finite set

of values of <j> between them wherein the integral is invalid.

First, consider the case where x" > and x'l > 0, Fig. 3-19(a). For

known r and z, the scattering volume dV may reside anywhere on the

perimeter of a circle of radius r, with center at distance z along the axis from

the point source. Some examples for each type of source-detector arrangement

are presented in Fig. 3-26. Only the arc of the circle which lies in the

scattering zone may be included in the integration. Thus, the values of <j>

which border the arc are the integration limits.

Figure 3-27 is a skeletal geometry in which a radial r at position z

contacts the half-plane over the point source, but may or may not be

perpendicular to the plane. Two radials of length r at two azimuthal angles <p

are possible solutions; one corresponds to
<t>min , the other to $max . It is

possible to employ the length of perpendiculars m and n in computing the

limiting angles. Recall that
<t>mi „ and <^max are measured from the plane

formed by the Y" axis and the source-detector axis (see Fig. 3-15). Also, m,

n and the reference plane are all normal to the X'Z' plane. Therefore, m

or,



scattering zone

scattering zone

x d
"40

(c)

Elevation views, X'Y' plane, £= 30°

Fig. 3-26. Cylindrical surfaces defining limits of integration over tp for
known r and z: (a) the wall lies between the source and detector, but is

above neither; (b) the wall extends over and above the source; (c) the wall
extends over and above the detector.
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and n form angles <j>min and <Vax with the two radials, respectively, which

form the same angles with the <j> reference plane.

From the figure, note that <j>miB < o.

cos^mjn = m/r
, (3-78)

cos<zW = n/r
, (3-79)

(d-z) cos? + r sm0min sin? ' (
3_8°)

(d^) cos? + r sin0„ax sinf
'

(
3_81

)

Combining these with Eq. (3-52) results in a single formula, which may be

solved for either limiting value of <j>.

h _ r COS^lim
xj (ct^J cos? + r sin^lim sin?

"

t
3"8 '

2
)

The two solutions stem from the presence of cos&b, in the numerator and

sin0iim in the denominator; rearranging Eq. (3-82) yields

h[(d-z) cos? + r sm0lira sinfj/x^ = r [1 - sto?&to]* . (3-83)

Solving for the limits yields

sin«Slim = ^±^
, (3-S4)

where

yi = - h2 sin? (d-z) cos?
, (3-85)



S = {(n#»[(j#» + (h sinf)2] - [h *-, (d-z) cosfl*}*, (3-86)

and

* = t[(^)s + (h ring*] .

(3
_87)

The minimum
<f>

is found by subtracting a in Eq. (3-84); maximum <j> is

found by adding S.

This same analysis may be performed for radials which contact the

half-plane above the detector. The values of <j> at which the circle of radius r

and axial position z intersect this half-plane are stated without proof, but are

arrived at by the same logic.

sin^lim = S
%

S
(3-88)

where

31 = h2 z cos£ sin£
,

(
3_89

)

* = {(«#' [(xps + (h sin£)2] - [hzx; cosfp}', (3-90)

and

Sf= r [(x .)2 + (h sinm .

(3
_91)

The lower limit of <j> is obtained by subtracting g from <2, the upper limit by

adding it.

Equations (3-84) through (3-91) are valid only so long as the circle

described by r and z intersects the half-plane with which the equation is

derived. In Fig. 3-26(a), one circle at z, straddles the two half-planes,

entering the scattering zone through one and leaving out the other. From this

case, it may be concluded that a change in expressions for </>min and ^ax
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occurs over the range of z. These switches occur at values of z where the

circle intercepts the top of the wall; for smaller z values, Eq. (3-84) is used,

while Eq. (3-88) gives the limit on <p for larger z. Furthermore, the z

coordinates for which the radial intersects the top of the wall have been given

previously as Eq. (3-63). It can be shown that
<t>min changes from Eq. (3-S4)

to Eq. (3-88) at z = z t , and that «W switches form at z = z2 .

To summarize the previous discussion, in which x" > and x'j > 0, the
s d

expressions for the limits of integration on <j> take on one of two different

forms, according to the value of z and Eq. (3-63). For the class of problems

in which i" > and x", > 0,

arcsin [(^-J^/tS] , z < zi

(3-92)

arcsin [{&-«)/% , z > Zl

arcsin [(M-S}/^[ , z < z2

(3-93)

arcsin [(&+g)/% , z > zj .

The limits above are displayed versus z in Fig. 3-28 for three different

source-detector geometries of this type. The angle (, is different for each case,

but short computations will show that zi always marks the z coordinate at

which <j>min changes formulas, and z2 always acts as the point of change for

0max- Note that the limits on <p are parabolas when plotted versus z;

expressed another way, the intersection of a cylinder of radius r and a

half-plane bordering the scattering zone forms a parabola on the curved surface

of the cylinder. The intersections of the two parabolas formed by the two
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F
\°-' u~

2̂ ' Limits of integration over <? for source-detector geometries in
which the wall extends above neither source nor detector. In all cases, x" and

ii
s

x
d

are positive; x s = xd = ys = yd = 5 m, r = 7 m. Note the parabolic

shape of the curves.
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planes lie at zi and Z2, and the area enclosed by the parabolas is the region of

integration over z and <j>.

The second and third types of source-detector geometries may be solved

with the knowledge obtained above. Figures 3-26(b) and (c) show how four

values of <p may be required to describe the scattering zone for constant r and

z. The cylinders of radius r sketched in Fig. 3-20 still form parabolas with

the half-planes bordering the scattering zone, but both parabolas open in the

same direction. As before, the area enclosed by the parabolas acts as the

region of integration, and the limits are described by Eqs. (3-84) through

(3-91). (In the case of xjj = or x^j = 0, when the top edge of the wall lies

directly over the point source or point detector, respectively, the cylinder and

one of the half-planes intersect to form a line instead of a parabola. The

region of integration is still the area between the intersecting curves.)

Figures 3-29 and 3-30 are plots of the intersection of a cylinder with

two half-planes for x^ < 0. In Fig. 3-29, the larger parabola on the left is

the intersection with the lower half-plane, such as in Fig. 3-20(b). The

parabola formed by the upper surface nests within it, and splits the valid

values of
(f>

into two regions past its apex in the positive z direction. In the

situation which created Fig. 3-30, the source-detector axis is strongly skewed,

i.e., the offset of the detector from the source is relatively large. The

parabola on the upper half-plane is skewed as a result; its apex does not lie

between the arms of the lower parabola, thus the apex is not shown in the

figure. Still, the area between the two curves is the region of integration over

z and 4>. To find the limits on <j>, then, the values of z at which the curves

intersect are needed, and the z and <j> coordinates of the apex of the inner

102



90.

60.

30.

0.0

-30.

-60.

-90.

-i
1

1 r -i
1 1 r

^max,2

-1 I I

-11. -10. -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0

z (m)

Fig. 3-29. Limits of integration over (J in a source-detector geometry for
which the wall extends over the source and the § integral breaks into two
integrals over separate regions. In the case shown, x s

= xa = vs
= 5 m, yd= 25 m, Zd = 2 m, and r = 9 m.
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Fig 3-30. Limits of integration over <J in a source-detector geometry for
which the wall extends over the source, but the <5 integral does not split into
two separate regions. In the case shown, xs

= xd = y* = 5 m, vd = 25 m,
2d = 20 m, and r = 9 m.
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parabola are required. The same conclusion can be drawn from the case of x|i
d

< by analogous arguments.

Many of the expressions necessary have already been derived with the

case of Xg > 0, x^j > 0. Figure 3-31 is a skeletal geometry used in finding

the z and <j> coordinates of the apex on the upper half-plane. An imaginary

circle of radius r about the axis in the IJKL plane would contact the

half-plane in one point; therefore the radial r is normal to this half-plane,

defined by the point detector and top edge of the wall M < 0). Since the

radial is perpendicular to the surface, one would expect the result to be

similar to the analysis in Fig. 3-21, the result of which is Eq. (3-57). Indeed,

the only difference is a change of sign:

r [(x!,)2 + h2 sin2£]*

Zapex = d + jfT^ , x^ < . (3-94)

The azimuthal angle is still given by Eqs. (3-84) - (3-87); because the two

values of (/> converge, we have

sin^apex = (**/*) I, _ , , x" < . (3-95)
^apex

The results for the case of x^ < should now be obvious, and so are

presented without proof.

r [(x')2 + h2 sin2£]'

Zap« =
h cosf •

x
s < ° < 3

-96 )
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Sin^apex = (&/tf\. _ . , x" <
, (3-97)

a — ^apex s

where 3 and .^are given by Eqs. (3-89) and (3-91), respectively.

These quantities are used in comparisons to determine if the azimuthal

integral over <j> will break into two regions, and if so, over what region of z it

does so. Two criteria may be deduced from Figs. 3-29 and 3-30.

(1) The z coordinate locating the apex of the inner parabola, z apex ,

must lie between the limits of integration for z.

(2) The /)> coordinate </>apex of this point must lie between the <j> values

of the outer parabola at zaPex-

If both conditions are met, the azimuthal integral will split into two regions;

if not, the integral remains one.

The values of zi and z2 perform a slightly different function than for the

first class of geometries, where x^ > 0, x^j > 0. As before, they mark

endpoints of the region of z where Eq. (3-84) or Eq. (3-88) is valid. When

Xg < 0, however, and the phi integral splits into two regions, both formulas

may only be used for values of z smaller than zi or z2 ; the half-planes do

not exist above these values of z within a distance r of the source-detector

axis. In Fig. 3-29, for example, the negative values of
<f>

which mark the

integration limits converge at z = Zl and do not exist for higher values of z.

The two upper values of tj> are only useful for limits of integration when

Zapex < z < zo. One would correctly anticipate the figure to be reversed if x'j

< and the phi integral splits. Then, the two lower values of <j> can be used

as limits if z! < z < zaPex, and higher azimuthal angles may be used if z3 < z

< zapex. In the earlier discussions, the two equations for
<t>m

-m were used as

limits only on opposite sides of zi, and so on.
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If the phi integral does not break apart, as in Fig. 3-30, the values of zi

and Z2 have mixed roles. In the figure, for example, x" < 0; zi marks the

point at which the lower limit of
<f>

switches formulas. The lower azimuthal

angle found by Eq. (3-84) gives way to the higher angle from Eq. (3-88) as z

increases. The parabola created by the intersection of the cylindrical surface

and the upper half-plane [for example, see Fig. 3-20(b)] has its apex well

outside the region of integration, and consequently only one leg of that

parabola is used for limits on 0. This leg defines </>mm for z\ < z < zo. The

offset Zd of the detector is positive in the geometry which produced the figure;

if zd were -20 instead of +20, the opposite leg of the upper parabola would

be used alone to define fimBX over part of the range of z. The analogies to

the case of x|j < should be clear; Eqs. (3-84) and (3-88) map parabolas

open to the left, and only one leg of Eq. (3-84) is used over the range of z.

(Each plot of
<f>

versus z is for constant r.)

This discussion of the phi limits for cases when the scattering zone is

not between the source and detector is presented in an organized fashion in

Table 3-5. The examples have concerned source-detector arrangements in

which Xg < 0; analogies to x^j < are easily made, and may be understood

more easily with the help of the table. The formulas for ij>, zapex and ape*

are repeated here in the notation of the table.

sin^! = (^-3)1$ (3-98)

simfo = (^r$)/tf (3-99)

sin^3 = (&-Z)ISf (3-100)
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sin^ = (m-S)/? (3-101)

where

^ = - h2 sin£ (d-z) cos?
, (3-102)

* = {(™d )
2[(x

dP + (h sinf)S] - [h x
d

(d-z) cos£]2}>, (3-103)

9 = r[(x
d
)2 + (h 8in0»]

, (3-104)

* = h2 z cos £ sin?
> (3-105)

9 = {(rxp^
[(x ')2 + (h sin0 2] _ [hzx ,

cos?]2} i
( (3

_106)

and

9= r [(x;)2+ (hsinfl*] . (3-107)

r [(*£)» + h2 sin2£]*
z
apex,l - ITc^sI '

x
s
< °

C 3
"108

)

t [(x
d
)2 + h2 sin2?]'

z
apex,2 " d + E-co^ x

d < ° (3-109)

Hpex,l = ^/^
z = z

x
s
< (3-HO)

apex,l '

5

SinVx,2 " *^*li = z •

x
d < °

t
3"111

)

apex,2

In summary, Table 3-6 lists limits of integration over the azimuthal

angle
<f>

for all possible source-detector geometries and known values of r and

z. The notation is the same as that of Table 3-5. It is assumed that the

limits are not evaluated at r = rBin , which is a trivial case; otherwise, the

limits hold for all r and z.
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The patterns inherent in the integration limits may be seen in Figs. 3-32

through 3-34. In each graph, limits of integration on <j> are plotted versus z

for a given source-detector geometry and increasing values of r. The graphs

are, in fact, contour plots of the intersection of a cylindrical surface of radius

r with the boundaries of the scattering zone. Given the radius r, the

differential scattering volume for a gamma-ray must lie on the surface of the

appropriate cylinder; the contour plots describe the section of each cylinder

within the scattering zone, thus the area of integration. Fig. 3-20 illustrates

this concept well.

3.4.3 Numerical Evaluation

The semi-infinite wall skyshine problem discussed in this work is solved

numerically by the computer code WALLGP, listed in Appendix B. This

FORTRAN program calculates the exposure rate, kerma rate or dose

equivalent due to an isotropic point source emitting one photon per second.

The locations of the point source and point detector with respect to the wall

are specified in the input; if a concrete shield is involved, its thickness and

density are also read by the input routine. Results are presented as response

per photon, and also as response per photon multiplied by the square of the

source-detector distance. The second quantity is sometimes preferred for

comparisons, since it varies less with distance. Because the interaction

coefficients of Hubbell (Hu82), the geometric-progression buildup factor formula

(Ha86, RSS6), and the adaptive Gaussian quadrature all proved successful in

the SILOGP code for the silo problem, all these features were employed in

WALLGP. Some approximations made by Roseberry (RoSO) were also tested
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Fig. 3-32. Contour plot of the limits of integration in the wall geometry for
increasing values of the radial coordinate r. The source and detector lie in a
plane normal to the wall; xs = xa = ys

= yd = 10 m.
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Fig. 3-33. Contour plot of the limits of integration in the wall geometry for

increasing values of the radial coordinate r. The source and detector are offset

by Zd = 5 m; the wall extends over neither source nor detector. xs = Xd =
y« = yd = 10 m.
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in WALLGP, along with approximations unique to the wall geometry. Their

usefulness is discussed as the final topic of this chapter.

In all calculations performed by the code WALLGP, air density is taken

to be constant throughout the system. This is assumed in many computer

codes, and since most physical problems considered in this work have less than

2000 m separating the source and detector, the assumption seems valid.

Uniform density of the concrete shielding is also assumed for simplicity.

For a variety of source energies and source-detector arrangements,

detector responses were computed using double precision and single precision

versions of WALLGP. To three significant digits, no differences were found

between results of the two programs. Although single-precision computations

require shorter computing times and fewer resources, double precision results

are more accurate in most applications. It was decided to employ double

precision in the final version of WALLGP, for the advantage of accuracy.

One assumption made by Roseberry to simplify the computer code SKY

was not made in the code for the wall skyshine geometry. Roseberry

approximated the path length a traveled by source photons in air as the total

path length a from the point source to the scattering volume dV. In the

absence of a concrete shield over the source, a = a, and the assumption is

correct. If a concrete shield is present, the assumption can introduce error,

especially in instances when the differential scattering volume lies close to the

source. The effect is to lower the computed detector response by artificially

reducing the uncollided flux entering dV. Since Roseberry's code included the

assumption, yet overestimated the results of a benchmark experiment (RoSO),

the approximation was justified in SKY.

Mi,



In this work, a more rigorous approach has been taken. In the absence

of a concrete shield, the distance a along the first leg of the gamma-ray path

is independent of the azimuthal angle
<t> (analogous to the angle e in the silo

geometry). Further, every integrand of Eq. (3-47) is independent of the

azimuthal angle, and the innermost integral over d0 equals the integrand times

the difference in limits. If a shield is present, a is dependent on tj> through

Eqs. (3-32) and (3-46), since the distance ac through the roof is nonzero. In

the code WALLGP, Eq. (3-32) is used as written if the geometry involves a

shield; thus, the approximation of Roseberry is not used. If no shield is

involved, WALLGP computes a as part of the z integrand and uses Eq. (3-32)

with ac = 0, as Roseberry did for all cases.

An important input parameter to the wall program is the photon path

length cutoff value in mean free paths, variable CUTMFP. Gamma rays

which must travel farther than the cutoff value to reach the detector are

ignored in computation of response. Also, the cutoff value is used to compute

limits on the integration variables r and z via Eqs. (3-51), (3-68) and (3-69).

Roseberry (Ro80) chose ten mean free paths in air and fifteen mfp in concrete

as cutoff values. In WALLGP, a single value is compared against the mean

free paths in air and concrete traversed by a photon, avoiding double

standards.

To find a suitable value of the cutoff, exposure rates were computed for

fourteen different source-detector arrangements, listed in Table 3-7. The test

cases were selected from reference problems described in Chapter 4; exposure

rates were found using cutoff values of 10, 20, 30, and 40 mean free paths.

The results, presented in Table 3-8, point toward a cutoff of 40 mean free
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!^ameter
PSted ^ ^T" 4

'

and are Stuped accortinfto theparameter which varies between cases.

Source
-

Test
case

energy
(MeV)

6.2
6.2
6.2

to

40

400
750

Xd
(m) (m) (m)

0.00001
0.00001
0.00001

Zd
(m)

t

(m)
/'cone
(g/cm3)

Pair
(mg/cm3

)

1

2

3

40
400
750

0.00001
0.00001
0.00001

1.22
1.22
1.22

4
5

6

7

6.13
6.13
6.13
6.13

1

1

1

1

9
799

9
799

0.7
0.7
0.7
0.7

0.7
0.7
0.7
0.7

0.3
0.3

2.13
2.13

1.25
1.25
1.25
1.25

8

9

10

0.1
1.0

10

500
500
500

500
500
500

0.00001
0.00001
0.00001

0.00001
0.00001
0.00001

1.25
1.25
1.25

11

12
1.25
1.25

3

3
100
100

3.0
3.0

3.0
3.0

10

300
0.1

0.1
2.35
2.35

1.2

1.2

13

14

1.25
1.25

3

3
100

100
3.0
3.0

3.0
3.0

10
10

0.01
1.0

2.35
2.35

1.2

1.2
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Table 3-8. Behavior of detector responses computed by WALLGP with
changes in the mean free path cutoff value. The test cases are
described m detail in Table 3-7. All computations were performed usin»
a convergence criterion of 17. difference between successive evaluations
oi the exposure integral.

Normalized exposure
(R/photon)

10 mfp 20 mfp 30 mfp 40 mfp
Test case cutoff cutoff cutoff cutoff

9.004(-20)

1.134(-21)
7.806(-23)

6.512(-20)
1.134(-21)
7.118(-23)

1 1.003 (-19)
2 1.134(-21
3 7.113(-23)

4 8.323(-20) 8.323(-20) 8.168(-20) 8.323(-20)
5 1.050-23 1.084-23 1.084-23 1.085-23
6 1.358(-20) 1.358(-20) 1.342-20) 1.358(-20
7 1.209 (-24) 1.657(-24) 1.662 (-24) 1.657(-24)

8 0*_ 8. 571 (-28) 1.377 (-27) 1.382 (-27
-23

710(-22

9 1.274(-23) 1.399(-23) 1.400-23) K400
10 6.724(-22) 6.708(-22) 6>92(-22) 6

H 3.826(-21) 3.827(-21) 3.827(-21) 3.827( 21
12 4.678(-22) 4.719(-22) 4i720(-22) 4.718(-22

}3 8 992(-21) 9.071(-21) 9.135(-21) 9.173(-21
14 ° b 4.107(-26) 4.168-26) 4.162-26

*1.003(-19) = 1.003x10-19
"Source- detector distance in mean free paths is larger than cutoff
value; WALL performs no calculations.
^Concrete shield thickness in mean free paths is larger than cutoff
value; WALL performs no calculations.
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paths as the optimum value. Note that a cutoff of 10 mfp with 100 cm of

concrete overhead eliminates all contributions to detector response; one meter

of concrete corresponds to over 13 mean free paths for a 1.25 MeV photon.

Similarly, if the source-detector distance equals 1000 m, it becomes physically

impossible for a 0.1 MeV gamma ray to travel only 10 mfp and reach the

detector; 1000 m in air corresponds roughly to 18.5 mfp for these photons.

Larger cutoff values will avoid this problem and allow computations for larger

source-detector distances. On the other hand, the geometric progression

buildup factors used in the code only extend to 40 mean free paths (RS86), so

longer distances must be eliminated from consideration. The criterion of 40

mfp keeps as many dose contributions as possible in computations, and holds

the computations to conditions for which the buildup data are valid.

The first test case, however, shows that CTJTMFP is not the only

variable important to convergence; computed exposure actually decreases in this

case as CUTMFP increases. Another cause for concern is the Gauss

quadrature used to integrate Eq. (3-47). Gauss quadrature is normally not

recommended for integration of ill-behaved functions or functions with

discontinuous derivatives. An advantage of the adaptive Gaussian quadrature

subroutine used in this work is its ability to work with such functions.

Figures 3-32, 3-33 and 3-34 demonstrate that the limits of integration on d>

are not at all smooth, so that the exposure rate integral equations for the wall

geometry can be expected to "misbehave" over the range of z. The

quadrature routine used here can account for such behavior if sufficient

accuracy is requested by the calling program. Therefore, tests were run to

determine a sufficient value of the user-supplied error parameter DEL. The
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value of the integral computed by the quadrature routine will have a

maximum error of DEL times the true value of the integral being evaluated.

Table 3-9 presents exposure values computed by WALLGP for most of

the geometries presented in Table 3-7, with DEL ranging from 0.05 to 0.001.

The differences in detector responses computed with error criteria of

DEL = 0.01 and DEL = 0.001 are nearly always a fraction of one percent.

The differences are larger for short source-detector distances, such as in test

cases 1, 4 and 6. Case 1, in which the source and detector are 80 m apart

and nearly on a line of sight, requires 0.1% error for accurate results (compare

with Table 3-8). Alternately, a smaller value of MFPCUT in such instances

may help, but is not recommended.

Though 0.1% accuracy may be desirable, values of DEL = 0.001 can

result in impractical computation times in most instances. For normal

calculations, it is suggested that DEL = 0.01 be entered as the error

parameter; this will produce accurate answers in a reasonable time. For

source-detector distances below 100 m, especially with low walls, DEL = 0.001

will be necessary.

In summary, it was assumed in the wall skyshine code that photons

which travel more than forty mean free paths in air and/or concrete produce a

negligible response at a point detector. Unlike Roseberry's silo method, the

wall method computes the distance traveled by a source photon in air exactly.

Double precision computations were found to be accurate, as was a

requirement of 1% error in the integration routines. The final version of the

program WALLGP is listed in Appendix B; results of validation tests are

presented in the next chapter.

121



Table 3-9. Behavior of detector responses computed by VALLCP with
changes in convergence criteria. The estimated error equals the product
oi the convergence parameter DEL and the computed detector response; the
value ot DLL in each case is the percent error expressed as a decimal.
The test cases are described in detail in Table 3-7. All computations
were performed using a mean free path cutoff value of 40 mfp

Test 57.

case error
27.

error

Normalized exposure
(R/photon)

17.

error
0.57.

error
0.27.

error
0.17.

error

11

12

6.113(-20) *6.393(-20) 6.512(-20) 7.777(-90)
1.287(- 21) 1.1301 -21) 1.1341-21) 1.1341-21)
7. 006 (-23) 6.994(-23) 7.118(-23) 7.124(-23)

8.346(
1.084?
1.3601
1.772

8 1.382
9 1.319

10 6.757

3.836
4.709

•20)

-23)

20)
24)

27)
23

22)

21

22

8.346(
1.085
1.3581
1.6691

382(
390
729

(

827
718

8.806(-20) 9.158(
1.134-21) 1.1341
7.1211-23) 7.1211

20) 8.323(-20) 8.294(-20) 7.933(
23) 1.0851-23) 1.083-23) 1.080
20) 1.3581-20 1.3571-20 1.322
24) 1.657(-24) 1.657(-24) 1.656(

27) 1.382(-27) 1.377(-27) 1.376(
23) 1.400-23) 1.399-23) 1.399(
22) 6.710(-22 6.743(-22 6.744(

20)
21)

23)

3.827(-21) 3.822(-21) 3.820
4.718(-22) 4.709(-22) 4.709

•20) 7.867(-20)
23) 1.079 (-23)
•20) 1.322(-20)
•24) 1.657(-24)

27) 1.376(-27)
23) 1.3981-23)
22) 6.726(-22)

21) 3.8201-21
22) 4.709(-22

*6.113(-20) = 6.113x10-20
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4.0 RESULTS AND VALIDATION OF THE CODES DEVELOPED IN

THIS WORK

A necessary step in the development of a numerical model is comparison of its

results to real data from the physical system being modeled, or to results

accepted as correct by authorities in the field. The numerical models for

gamma-ray skyshine analysis presented in the previous chapter will now be

validated by comparisons to standards and results from other computations.

In the case of the silo geometry modeled by SILOGP, benchmark experimental

data will be presented for comparison, but no such data are available for the

wall geometry modeled by WALLGP.

The American National Standard which addresses skyshine measurements

and computations includes reference calculations for this purpose. One of the

reference problems involves a point isotropic source of «N gamma rays sixty

feet above an air-ground interface. Detectors are placed along the ground at

specific distances from the source, and dose rates are reported along the range

of detectors. (AN87) While the problem does not involve either a silo or a

wall shielding the detector, both SILOGP and WALLGP can model situations

approaching the problem. By using an open silo with a full angle of

collimation of ISO
,

or a wall of very small height between source and

detector, the two codes can approximate the open point source and produce

results comparable to the ANSI reference calculations. A second ANSI

reference problem places the ^N source inside a rectangular concrete building

without a roof. The detector response in this problem is likely to be

dependent upon the solid angle into which source photons are collimated. The
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cylindrical silo of SILOGP would simulate the rectangular building better than

a single wall, but would still introduce error through incorrect collimation.

Therefore, only the first problem will be used for reference in this work.

A problem similar to the ANSI reference calculation was used in the

validation of MicroSkyshine (Fa87,Sh87) and may also be used to advantage

here. Air kerma buildup factors were determined from moments-method

calculations by Chilton et al. (Ch80) These widely-accepted buildup factors

were manipulated to give exposures due to a point source in infinite air

emitting photons only in a hemisphere of directions; this hemisphere lies above

a plane containing the source and detector. This 2* problem is easily

approximated by the MicroSkyshine code, and exposures computed by that

code were compared against the results inferred from the buildup factors of

Chilton et al. Both SILOGP and WALLGP can approximate the same

geometry, and this problem will be solved with both codes as another test of

their accuracy.

Experimental data reported by Nason et al. (Na81) and Roseberry (R08O)

from the KSU benchmark skyshine experiment will be compared to results

generated by SILOGP for the geometry and conditions of the experiment.

Roseberry cited results of the transport code DOT, which others prepared for

the study; since this code is in use today, those computed exposure rates will

also be compared to SILOGP values. Finally, WALLGP and SILOGP will be

tested extensively against the MicroSkyshine program for microcomputers, in an

attempt to validate all three codes. The MicroSkyshine tests will include

variations of geometry parameters as well as benchmark and reference

problems.
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4.1 Comparison of SILOGP to Other Methods and Benchmark Data

The code SILOGP, which solves the problem of a point source inside a

collimating silo, will be tested first. Data from seven sources were selected to

validate SILOGP; four problem geometries were studied, and observations were

made of changes in detector response with chosen parameters. One of the four

systems is that of the benchmark skyshine experiments reported by Nason et

a/., for which measured responses and responses computed by the code DOT

3.5 are available (RoS0,Na81). A similar configuration was used in the

validation of MicroSkyshine, one that is identical to the experimental

conditions except for changes in material properties (FaS7, Sh87). The third

problem is a standard from ANSI/ANS-6.6. 1-1987, Reference Problem LI.

(AN87) The fourth problem, also presented in references on the MicroSkyshine

code, is the 2t problem for which buildup factors of Chilton et al. (Ch80)

were used to predict exposure rates. The last two problems do not involve

silos or shielding, but are useful in testing the behavior of SILOGP in the

limiting case of 2w geometry.

4.1.1 Comparisons to Benchmark Study

The skyshine benchmark experiment (Na81) described in Chapter 2

provides physical data to test the accuracy of SILOGP. In the experiment,

one of three e°Co po jnt sources was p iaced on the ^^ of a cylindrical

concrete silo. Wedges atop the silo collimated the photons into a cone with a

full angle of 150.5°, and with the point source at the apex of the cone.

Exposure rates were measured and recorded at distances up to 700 m from the

source. A sodium iodide spectrometer measured the differential energy
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spectrum of scattered photons over the same distances, and these results were

converted to exposure rates to confirm the values measured directly. In other

cases, the collimator was replaced by a concrete shield over the source, either

21 cm thick or 42.8 cm thick. Similar measurements were taken under these

conditions and recorded. Air density during each source exposure was

computed from atmospheric data taken at the time of measurement.

Final exposure rates were corrected for the energy and directional

sensitivity of the ionization chamber. For comparisons, all reported exposure

data were multiplied by the square of the source-to-detector distance, divided

by the solid angle of collimation formed by the silo, and normalized to a

source strength of one photon per second. This compensates for inverse-square

attenuation and reduces the range of values required by graphs. To account

for variations in air density between measurements, these normalized exposure

data were plotted against the areal density, the product of the source-detector

distance and the air density.

Three comparison runs of SILOGP were performed, one for the open silo

and one for each of the shielded source configurations. The 1.17 MeV and

1.33 MeV photons emitted by 60Co were approximated by 1.25 MeV photons,

a common practice in numerical work. A representative air density of 1.12

mg/cm3 was chosen, close to many of the air densities reported during the

benchmark experiments. Where a concrete shield was required, the measured

density of 2.13 g/cm^ reported by Roseberry (RoSO) was input to the code.

The results of SILOGP are compared with the experimental results in

Fig. 4-1. Notice that SILOGP underpredicts the experimental results below 30

g/cm? (270 m) in all configurations. Roseberry attributed a similar problem
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with SKY to direct penetration of photons through the concrete silo walls in

the experiment. Since SKY did not account for direct penetration, Roseberry

expected underprediction below a source-detector distance of 200 m, especially

where the source was shielded. (R08O) SILOGP, however, artificially increases

response by allowing photons to scatter in the air within the silo and travel in

air directly to the detector, "through" the silo walls. This approximation

could compensate for the direct penetration, but it was introduced to simulate

photons which scatter for the first time within the confines of the silo, then

escape and contribute to dose at the detector. This is separate from the

direct penetration suggested by Roseberry. Other non-ideal effects may be

present in the physical situation, such as reflection of photons off the silo

walls and floor (and roof, if one is present) before they leave the structure;

Roseberry indicated that gamma rays could even scatter within the source

material or within the stainless steel source containment used in the

experiment (RoSO). Most of these phenomena would degrade the photon

energy spectrum and increase the detector response close to the silo. Despite

the approximation, SILOGP still underestimates the detector response close to

the silo, suggesting that the approximation cannot compensate for all these

effects.

The code SILOGP overpredicts the experimental results for areal densities

above 30 g/cm2 in all cases. One likely cause for this is the uncertainty

introduced by applying an infinite medium buildup factor for an isotropic point

source on the second leg of the photon path. Recall from the previous

chapter that soil tends to absorb more scattered photons than air, so that the

use of an infinite-air buildup factor where an air-ground interface exists will
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cause overprediction of detector response near the ground. The uncertainty

increases with distance from the source, as it did with the SKY code (RoSO).

Another uncertainty is introduced by the use of a buildup factor for an

isotropic point source with the anisotropic scattering source. The actual

scattering distribution at the differential volume dV is biased in the forward

direction, with fewer gamma rays scattering back toward the source. The

number of photons scattering toward the detector, however, is the same for the

actual anisotropic scattering source and the isotropic source implicitly assumed

in the use of the buildup factors. If the photon must scatter through a large

angle (i.e., if is small), the isotropic source will probably have a smaller

total strength than the true scattering source, since the anisotropic scattering

source is weaker in backward directions. Conversely, if the photon scatters

through a small angle (i.e., is large), the assumed isotropic source is

stronger than the actual scattering source, and the use of the buildup factor

will probably result in overestimates of detector response. This would help to

explain why SILOGP overpredicts experimental results for long source-detector

distances; most photons which contribute to dose in these instances would

undergo small-angle scatters. SILOGP shares this approximation with

WALLGP, MicroSkyshine and G3; MicroSkyshine exhibits the same tendency in

Fig. 4-1, supporting this argument.

Overall, the computed results agreed best with the benchmark data for

the open silo, ranging from 25% underprediction to 36% overprediction. Cases

involving concrete shields did not agree as well with experiment, but in all

problems, SILOGP underpredicts at short distances and overpredicts at long

distances. The typical deviation of SILOGP from experiment was 20% for the
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case of the open silo, 40% for the case of a 21 cm overhead shield, and 30%

for the case of a 42.8 cm overhead shield.

After the benchmark study, the discrete ordinates computer code DOT
was applied to the benchmark problems to test its effectiveness in skyshine

studies. While SILOGP is a special-purpose code tailored to this point-source

skyshine problem, DOT is more general, incorporating more complex sources

and geometries. Both are mainframe codes, but the discrete ordinates

approach of DOT requires much more expense and computer resources than

the point-kernel method of SILOGP or any other code discussed in this

chapter. Normally, DOT is used only for major design problems or benchmark

calculations, such as the ANSI Standard Problems or the KSU experiment

discussed here.

Roseberry (RoSO) reports that DOT computations performed using 39

energy groups closely matched measured exposure rates past 200 m from the

source in an open silo. Computations were also performed with 10 energy

groups for all configurations, shielded and unshielded. These results

consistently underestimated the benchmark measurements beyond a detector

position of 30 g/cm? from the source. Nason (Na79) tabulated the results and

concluded that neglect of the air-ground interface in the DOT runs led to this

underestimate, which averaged 10% but was as much as 20% at times. Since

SILOGP also neglects ground effects, a comparison may be made between the

discrete ordinates method and the single-scatter method.

Figure 4-1 also compares SILOGP results with the DOT results reported

by Nason. The two programs agree well where no overhead shield is involved;

note that these DOT results were obtained with 39 groups. Where a shield is

130



present, a large difference can be seen: 10-group DOT results underpredict

benchmark measurements over most of the region of interest, while SILOGP

overpredicts. Calculations using 39 groups were not performed with DOT for

these cases, though the finer energy structure might have yielded better

results. From a conservative view, the single-scatter method would be

recommended over discrete ordinates calculations with a coarse energy grid.

Close to the silo, the reverse would be true. The discrete ordinates method

might also yield better accuracy with a finer energy structure. The

advantages of DOT are offset by its extreme cost and high demand on

computer resources, however, so that the single-scatter method might be the

first choice in actual practice.

Figure 4-1 includes results of the microcomputer program MicroSkyshine

for the benchmark experiment. While the code agrees well with benchmark

results, the conditions used by MicroSkyshine are not identical to those of the

experiment. The MicroSkyshine program will be reviewed alone in a later

section, with comparisons to SILOGP made under the conditions of

MicroSkyshine.

4.1.2 Comparisons to ANSI Standard

The American National Standard ANSI/ANS-6.6.1-19S7 (ANS7) provides

four sets of reference calculations for the validation of measurement methods

and numerical techniques. One of these, Reference Problem 1.1, was solved by

SILOGP to allow an assessment of its accuracy in the limiting case of 2w

collimation. As with any ANSI Standard, the conditions of the problem are

very specific, so that they may be reproduced closely by the method being
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tested. The Standard recognizes that methods are unique; some programs

which estimate exposure or dose, for example, cannot separate direct and

scattered components in their output. Thus, the Standard recommends that

methods be documented, and recommends that assumptions or changes in

computer codes which are made to solve the problem be discussed.

In Reference Problem 1.1, illustrated in Fig. 4-2, an isotropic point

source of 6.2 MeV gamma rays is placed 60 feet (18.3 m) above the ground,

in open air. An imaginary axis runs normal to the ground and through the

source, which emits one photon per second. Detectors are placed 3 feet

(0.91 m) above the ground, at distances from the source axis between 200 feet

and 5000 feet (61 m and 1500 m). Air in the problem has a mass density of

1.22 mg/cm3, with an atomic number density of 1.07x10" atoms/cm' of

oxygen, 4.02x10" atoms/W of nitrogen. Dose rates should be computed in

units of rad(air)/year, with one year assumed to be 8766 hours.

Since no experimental measurements were available, seven computer codes

were selected by the Standards Working Group, and their results for the

problem are given as reference values. The methods used include Monte Carlo

(OGRE, COHORT II), discrete ordinates transport (DOT-II), the point-kernel

method (G3, QADMOD, SKREEN), and integration of parametric air-

scattering data (SKYSHINE). Different assumptions were made in each code,

and different data libraries were used, but the results agreed with each other,

well within an order of magnitude (AN87, Fa87).

As SILOGP solved this problem, the point source was placed at the top

of the silo on its axis, forming a full angle of collimation of 180°. This

simulated a source and detector placed at the same height from a ground-air
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interface with no structures in the vicinity. Since the source and detector of

the ANSI reference problem are not the same distance above the ground, the

line-of sight source-detector distance in the true problem ranges from 208 feet

(63.4 m) to approximately 5000 feet (1500 m), not from 200 to 5000 feet

exactly. SILOGP computed air kerma starting at 63.4 m from the source and

extending to 1500 m; responses are displayed against the horizontal distance

measured along the ground, as required by the Standard, not against the true

source-detector distance. Because the ground is treated as air by SILOGP

and by several of the codes in the Reference, the air-ground interface can be

made parallel to the source-detector axis without introducing error to the

results of SILOGP. Also, SILOGP can compute only exposure, kerma, or dose

equivalent response. Air kerma is a very good approximation to absorbed dose

in air, thus it was used.

In Fig. 4-3, results of SILOGP are compared to the ANSI reference

data, and to results of the MicroSkyshine code for Reference Problem LI.

Both programs are in excellent agreement with the reference data and with

each other in this limiting case of 2tt geometry. Of the reference programs,

the closest agreement to SILOGP seems to be with the results of the code

SKREEN; since both use a point-kernel model, this is not surprising.

SILOGP also comes close to the results of G3 at larger distances, and to

COHORT II. SILOGP imitates MicroSkyshine most, however; the two codes

will be compared extensively later in this section.
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4.1.3 Comparisons to Buildup Factors in the 2jt Problem

One of the tests used to validate MicroSkyshine (Fa87, Sh87) resembles

the ANSI Standard problem but uses buildup factors developed by Chilton,

Eisenhauer and Simmons (ChSO) from moments-method calculations. In this

inventive benchmark calculation, photons are emitted from a point source into

a solid angle of 2n steradians. The exposure rate at a point detector due to

scattered photons only is determined from the infinite medium buildup factors

of Chilton et al. in a straightforward manner.

Consider an isotropic point source emitting S gamma rays of energy E in

infinite air, and a point detector located a distance r from the source. The

total response at the detector is an elementary computation:

D = S* gfrF) BM (4-1)

where

91 = response function (response per unit fluence) for photons of energy
E,

H = total attenuation coefficient of photons of energy E,

B(/«r) = infinite medium buildup factor for photons of energy E at /a mean
free paths from the source.

This total response arises from both uncollided and scattered photons. The

component from uncollided gamma rays is

Do = S^_ex£^ri
(4
_
2)

Therefore, in infinite air, the response at the detector due to scattered photons alone
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is the difference in these quantities:

D" = S«exp
i

(-^) [BW _ 1]| M)Ti\

However, MicroSkyshine and SILOGP (and VVALLGP) are limited to studying the

half-space above an air-ground interface. Suppose the point source emits photons

in only a hemisphere of directions on one side of a plane, with the source and

detector residing in the plane. The detector response for scattered gamma rays in

this case would be exactly half the response for the point isotropic source. The

result for the 2jt geometry, therefore, is

DL = Sa^r) [BM-i]. M)

Since SILOGP computes only the scattered response, and is restricted to the 2w

geometry, this formula is of interest to us.

The reference calculations for this problem were performed using Eq. (4-A),

air kerma buildup factors of Chilton et al. (ChSO) and the attenuation data of Storm

and Israel (St67). Exposure rates were computed, thus the response function for

exposure was substituted for Si (see section 3.2 of this work). Although the buildup

factors are based on air kerma, Chilton et al. state: "The air kerma data can be used

for exposure buildup factors to a close approximation, as long as bremsstrahlung is

negligible, a matter that. ..is questionable at the higher energies." (ChSO) These

benchmark calculations are for source energies from 0.1 to 10 MeV and distances out

to 2500 m from the point source. Buildup factors are available for 15 MeV photons,
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but were not used in the reference calculations, probably because of the warning

quoted above.

The reference results are presented in Figs. i-i and 4-5 as individual data

points, along with SILOGP and MicroSkyshine results for the same problems. The

agreement of SILOGP with the buildup results is excellent over the range of photon

energies and distances considered. Except for exposures from 0.1 MeV photons

beyond 600 m from the source, the SILOGP results are consistently within 15% of

the buildup values. The improved version of MicroSkyshine, by comparison,

overestimates the buildup results past 1000 m, at all energies (Sh87); comparison of

Figs. 4^1 and 4-5 will demonstrate this.

MicroSkyshine and SILOGP both underestimate the reference results for 0.1

MeV photons past 600 m. One possible, though unlikely, cause is that both

SILOGP and MicroSkyshine use the geometric-progression buildup formula of

Harima et al. (HaS6). For air, however, the GP coefficients are based on the same

data from Chilton et al. as was used in the reference calculations. The maximum

deviation of the geometric-progression fit from the data is less than 3% (RS86) over

a range of 40 mfp, or about 2000 m. While the fit itself may not be to blame, it is

possible that some other influence related to the buildup calculation created the

discrepancy. An error or uncertainty in the reference calculations themselves may

also be responsible; the cause is not obvious at this time.

4.1.4 Comparisons to MicroSkyshine

The MicroSkyshine code (FaS7, ShS7), developed for microcomputers, is

applicable to many problems involving skyshine from a point gamma-ray source.

Among the problems which it solves are the two simplified geometries studied in
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this work: the point source on the axis of a cylindrical silo, and the point source

behind a semi-infinite wall. The author knows of no other codes which solve these

identical problems, save those of this thesis. Thus, a comparison of the results of

MicroSkyshine and SILOGP is mandatory.

Differences should be expected when comparing results of the two codes.

MicroSkyshine is a general purpose program intended for complex photon sources

and geometries; by preparing this line-beam code for microcomputers, the

developers exchanged precision for speed of results. It should be emphasized that

MicroSkyshine has purposely been made conservative (Sh87), since it is intended for

general problems in industrial design. Of all the codes reviewed here,

MicroSkyshine is also the least expensive to use. SILOGP, by comparison, is a

special-purpose point-kernel code for mainframes which is expensive to use but does

not intentionally overpredict detector response and does not sacrifice precision.

These facts should be kept in mind as the reader reviews this section.

The first source-detector arrangement of interest is nearly identical to the

benchmark problem performed at the KSU Shielding Facility (NaSl). A 60Co point

source is placed on the axis of a cylindrical silo; the source and the edge of the silo

form a line at an angle of 75.25° from the axis of the silo, so that the full angle of

collimation is 150.5". The 60Co source is approximated by a source which emits

1.25 MeV photons. Exposures per photon are computed at distances out to 700 m
from the source, and normalized in the same fashion as the benchmark data.

Calculations are also performed with concrete shields of thickness 21 cm and 42.S

cm over the silo. The major difference between the MicroSkyshine problem and the

benchmark experiment is in material densities. While Roseberry (RoSO) reported no

air densities during the benchmark experiments above 1.21 mg/cm3, the
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MicroSkyshine calculations were performed using an air density of 1.25 mg/cm3

(Fa87). The concrete shields used in the experiment had a reported density of 2.13

g/cm3 (RoSO), yet calculations performed in the MicroSkyshine validation employed

2.32 g/cm3 as the concrete density. The differences are not explained in the

MicroSkyshine reference; to eliminate disagreement due to differences in material

densities, it was decided to perform SILOGP calculations with the densities used in

MicroSkyshine.

The results of SILOGP and MicroSkyshine for this problem are displayed in

Fig. 4-6. Also shown are the results of the point kernel code G3
, as reported by

Faw and Shultis (FaS7) for the same problem geometry. The code G 3 employs the

same point-kernel model and approximations as SILOGP (and VVALLGP), but is a

general purpose program for design work, and somewhat expensive to run. The

specialized codes of this work may be preferable, as G3 uses a combinatorial

geometry (RS85) which is very difficult to use. The tendency of G3 to underpredict

where a concrete shield is present is made obvious in the plot.

SILOGP yields a lower estimate of exposure than MicroSkyshine for

source-detector distances under 500 m (60 g/cntf); the codes agree very well for

larger distances. In the worst cases, SILOGP results are less than 70% of the

MicroSkyshine estimates. Both programs account for photons which scatter within

the silo before leaving it; although this is cited as a major approximation of

MicroSkyshine, it cannot be to blame for the discrepancy. MicroSkyshine includes

pair production photons in the dose, while SILOGP does not; however, because the

gamma rays from «0Co are not far above the pair production threshold, this is not a

likely cause either.
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A similar disagreement between SILOGP and MicroSkyshine is evident in the

preceding discussion of the moments-method 2w problem. MicroSkyshine computes

higher exposure rates than SILOGP for all the problems in Figs. 4-4 and 4-5,

especially past 1000 m. Since the two geometries involve different angles of

collimation, it was decided to compare the responses computed by the codes over a

larger range of collimation angles. Any tendencies shown in this parametric study

could help to explain the discrepancies seen in other problems. For a point source of

1 MeV photons on the axis of an open silo, in air of density 1.25 mg/cm3, the

exposure per photon was computed by both codes at a detector 400 m from the

source. Collimation angles formed by the silo ranged from 179.999° (approaching

the 2tt problem) to 1° (approaching a line beam directed normal to the

source-detector axis). The results are presented in Table 4-1. The difference in

results decreases as the collimation "opens up"; for the case approaching a

line-beam source, the SILOGP result is 15% lower than that of MicroSkyshine, but

for the 2x case, the difference is only 9%.

An important clue to the cause can be found in the second KSU report by

Shultis and Faw on MicroSkyshine (Sh87). The MicroSkyshine method employs

line-beam response functions, evaluated at selected gamma-ray energies and beam

angles from the source-detector axis. The response functions were computed by a

point-kernel formula similar to Eq. (3-9) of this work, but including pair

production in the evaluated response. A formula involving three parameters was fit

to these response functions, and by interpolating the parameters, the response

functions can be evaluated continuously over energy and beam angle. This formula,

not the point-kernel equations which generate the response functions, is evaluated

by MicroSkyshine in computing exposures or doses; it is identical to the parametric
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Table 4-1. Comparison of detector responses computed by the codes
MicroSkyshine and SILOGP with changes in collimation angle. Values of
exposure per photon are presented for a point source of 1.0 MeV photons
placed inside an open silo of radius 1 m. The detector lies 400 m from
the source in each case, on a line normal to the silo axis. The height
of the silo above the source defines the angle of collimation. Air
density is taken as 1.25 mg/cm3. All SILOGP results were obtained using
a convergence criterion of 17..

Full angle Normalized exposure (R/photon) Percent
"Jo, of difference
height collimation Computed by Computed by from Micro-
(m) (degrees) MicroSkyshine SILOGP Skyshine

0.00001 179.999
0.01 178.854
0.1 168.6
0.7 110
1.0 90
5.0 22.62

114.589 1

2.8531'-21)

2.7251 - 21")

1.9291'-21)

2.9411 -22)

1.5241 -22)

6.160( -24)

1.179( -26)

*2.853(-21) = 2.853x10-21

- 8.7
- 9.1
-10.0
-13.6
-13.9
-14.3
-15.0
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fit used in the SKYSHINE-II program, the industry-standard mainframe code at

the time MicroSkyshine was created (FaS7, Sh87).

In the MicroSkyshine report, Shultis and Faw report the deviations of the fits

from the doses computed by the point-kernel method. The mean absolute deviation

(MAD) and maximum deviation of the fit over the range of source-detector

distances are tabulated in the report for each energy and beam angle, and patterns

are evident. For the gamma-ray energies above 1.5 MeV, the MAD peaks at about

10% at an angle of 75° or 85°, decreasing as the angle increases or decreases from

this direction. At 1.5 MeV, the MAD of the parametric fit increases with the beam

angle to 11% at 75°, decreases as the beam angle increases, then rises again; as the

beam approaches the direction opposite the source-detector axis, the formula can

deviate from the computed response as much as 50%. At 0.75 MeV, the MAD
reaches a maximum at a beam angle of 85°, then remains at this level; the

three-parameter formula typically deviates by 12 or 13 percent, sometimes by as

much as 35% above the point-kernel results. Below 0.75 MeV, the fit deviates even

more from the computed response, fits worst at angles as low as 25° or 35°, and can

be as much as 45% above the point-kernel values. Data computed over a

source-detector range of 2500 m or more produced each set of coefficients, and the

report states that the fit is almost always worst when the detector is closest to the

source.

In Figs. 4-4 and 4-5, the greatest disagreement between SILOGP and

MicroSkyshine occurs between 0.1 and 1.0 MeV, where the parametric fits of the

latter code are most inaccurate. In Fig. 4-6, the discrepancies between

MicroSkyshine and SILOGP are worst below 60 g/cm*, or 480 m; compared to the

2500 m range of the fits, this is close to the source, and the poor fit by
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MicroSkyshine close in would help to explain the disagreement. If the point-kernel

results of SILOGP are nearly equal to the point-kernel results to which the

MicroSkyshine formulas are fit, this disagreement would be entirely due to the

uncertainties produced by the fit.

The pattern seen in Table 4-1 can also be explained by the deviation between

the fitted response function of MicroSkyshine and the computed doses upon which it

is based. In the table, 1 MeV photons are collimated through angles from 1° to

180°, with the discrepancy between SILOGP and MicroSkyshine decreasing with

increasing collimation angle. The uncertainty in the MicroSkyshine function fit for

beam angles less than 90° is likely to fall below that at 90° if the source photons are

between 0.75 MeV and 1.5 MeV; also, the interpolation between these energies

would produce the largest uncertainty in the computed dose at large beam angles,

those above 90°. A one-degree collimation angle in MicroSkyshine would include

only line-beams at an angle of 90° to the source-detector axis, while a 2tt problem

would include the beams at smaller and larger angles. Assuming photons which

leave the source in directions toward the detector have more bearing on the detector

response than photons heading away from the detector, it would be possible for the

differences between the fitted function results of MicroSkyshine and the "true"

results of the moments-method doses to decrease as the collimation angle increases

and the function is evaluated at larger and smaller angles. This is the same trend

shown in the last column of Table 4-1.

In summary, because the uncertainties of the line-beam gamma-ray response

functions created for use in MicroSkyshine show the same behavior as the differences

between MicroSkyshine and SILOGP, this author concludes that the inaccuracies of

those functions are responsible for their disagreement. It is possible that a function
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which reproduces the original dose data more faithfully would produce results more

in line with SILOGP, since the dose data were obtained with a point-kernel

calculation very similar to the methodology of SILOGP.

4.2 Comparison of WALLGP to Other Methods

The remainder of the chapter will concentrate on WALLGP, the code produced

specifically for this thesis. No benchmark experiment has been performed for the

problem of a gamma-ray source behind a perfectly absorbing wall, so a definitive

validation of the results of WALLGP is not possible. It is possible to test the

accuracy of the code in the limiting case of a 2w geometry; the ANSI Standard

problem and the 2w benchmark calculation prepared by Faw and Shultis (Fa87,

Sh87) can be compared to WALLGP results for a geometry involving a very low

wall, nearly a 2x solid angle of collimation for source photons. The ANSI Standard

problem could be considered important in validating WALLGP, but it does not

involve a wall, the physical arrangement WALLGP was intended for.

MicroSkyshine is the only other code known to this author which can predict

detector responses from sources concealed behind a semi-infinite wall; WALLGP

and MicroSkyshine will be compared extensively in this section. WALLGP will be

applied to many of the problem geometries presented in the MicroSkyshine

documentation (Fa87, Sh87), since results are readily available for the latter code.

Differences in the codes will also be analyzed as functions of source photon energy,

overhead shield thickness, and wall height; this parametric study may help to

explain differences in computed exposures and doses, just as the studies for SILOGP

did.
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4.2.1 Comparisons to ANSI Standard

In the extreme case of an unshielded, uncollimated source geometry, ANSI

Standard Problem 1.1, which was described in section 4.1.2, is available for

comparisons with WALLGP. This configuration of source and detector is an

extreme case, not one for which WALLGP was intended, but it can verify the

single-scatter model upon which the code is based. Limiting cases are often

excellent tests of the accuracy of a program and its underlying theory; other codes

have been adapted to a problem involving only a point source and point detector for

such tests, although the codes were meant for more complex situations (Ma69).

To approximate a point source in infinite air with the semi-infinite wall

problem, the wall must be effectively removed from the geometry; the source and

detector should be placed so that the line of sight between the two would graze the

top of the wall. This would be similar to placing the source and detector on the

ground with only infinite air above. SILOGP could effectively remove the

obstruction by placing the source and detector at the level of the silo opening.

WALLGP cannot accomplish this, however, because some limits of integration are

inversely proportional to the height h of the wall above the source-detector axis;

when the source-detector axis rests on the wall edge, the limits are no longer valid.

The point source in open air must be approximated by a source barely hidden from

the detector by the wall. For all WALLGP validation runs, the point source and

detector lie .01 mm below the edge of the wall. All other problem specifications are

adhered to, such as the photon source energy of 6.2 MeV and the air density of 1.22

mg/cm3. A cutoff value of 40 mean free paths was used, and the convergence

criterion DEL was set to produce an answer with estimated error of 0.1%.
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The source and detector of the ANSI reference problem are not the same

distance above the ground, recall; air kerma responses have been computed by

WALLGP using the true source-detector separation distance, then displayed

against the horizontal distance from the detector to a point directly below the

source. It was again assumed that the direction of the surface between the air and

the ground makes no difference in the comparison, since the ground is treated as air

by WALLGP and by several of the ANSI codes.

The doses predicted by WALLGP for the ANSI Standard Problem are shown

in Fig. 4-7 against the ANSI reference data and the results of MicroSkyshine. The

agreement with the Standard is excellent, except for the closest detector points,

those within 100 m of the ground point below the source. The error criterion of

0.1% is not adequate at this close range; recall from Chapter 3 that the error

criterion must be selected carefully in this region. Here, increasing the cutoff adds

negligible values of exposure and complicates the evaluation of the integral exposure

rate equation. Beyond 100 m, the results of WALLGP are nearly identical to those

of SILOGP presented earlier; this is to be expected, since both use the same

point-kernel model, and the same equation is integrated over nearly identical

regions in both programs. The estimates made by MicroSkyshine and WALLGP are

almost a single curve beyond 100 m of the ground point below the source. This too

was evident with SILOGP, and validates both the point-kernel model and the

line-beam response function method for ANSI Standard Problem 1.1.

4.2.2 Comparisons to Buildup Factors in the 2jt Problem

The lit problem developed by Faw and Shultis (Fa87, ShS7) for testing

MicroSkyshine can be modeled exactly by SILOGP, but not by WALLGP; as with
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the ANSI Standard problem, the line-of-sight of the source and detector must be

blocked by the wall for the limits of integration used by WALLGP to be valid. The

problem is described in section 4.1.3, and involves a point source and point detector

resting on an air-ground interface. By definition of the 2ir problem, photons must

leave the source in the direction of the air. To create as closely as possible the

hemisphere of directions in which photons leave the source, the height h of the wall

above the source-detector axis is made a small "epsilon" value, .01 mm. Exposure

rates are computed out to 2500 m from the source, for photons of energies ranging

from 0.1 to lOMeV.

The results of WALLGP are compared to the moments-method reference

values in Fig. 4-8. At all energies except 0.1 MeV, WALLGP fits the reference

points closely; where percent differences can be judged, WALLGP comes within 15%

of reference values. The program underpredicts the dose computed by buildup

factors at the lowest energy, 0.1 MeV; as stated in the validation of SILOGP, the

cause of this disagreement is not obvious. As expected, SILOGP and WALLGP

produce nearly identical curves in Figs. 4-4 and 4-8, because the two programs

employ the same model and integrate the same formula over nearly identical regions

of space. Based on the results for the ANSI Reference Problem and the 2tt

geometry, WALLGP and SILOGP are valid for use in 2ir configurations where

photons are uncollimated or nearly so, that is, where a silo or wall barely blocks the

source from the detector and photons travel in nearly all directions from the source

above ground.
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4.2.3 Comparisons to MicroSkyshine

The remainder of this chapter is concerned with MicroSkyshine and

WALLGP, and their computed responses for a variety of problems. The author

knows of no other computer codes which address the ideal problem of a semi-infinite

wall between source and detector; it is natural that the two codes be contrasted over

a wide range of source-detector configurations. Most of the work presented here is

in the form of parametric comparisons, discussions of how results change with shifts

in problem parameters. Since the two codes do not share certain assumptions,

differences will be evident; the parametric comparisons are intended to demonstrate

the causes for disagreement.

The first problem of this set was chosen from the reports on MicroSkyshine

(Fa87, Sh87) and is the class of problem WALLGP is most concerned with. In this

situation, a "SN point source, emitting 6.13 MeV gamma rays, is one meter from the

face of a semi-infinite wall of shielding material. A point detector is placed on the

other side of the wall, at distances up to 800 m from the source. Both the source

and detector are 0.7 m below the top edge of the wall, as measured parallel to the

wall face, and the axis between the source and detector is perpendicular to the wall.

For one case, no shielding is above the source, and in the second, a concrete shield

30 cm thick rests on the top of the wall and extends over all space on the source side

of the wall. The air medium has a density of 1.25 mg/cm3, while concrete shielding,

if used, has a density of 2.13 g/cnA For purposes of accuracy, the problem was run

by WALLGP using a mean free path cutoff of 40 mfp and an error criterion of 0.005

(0.5% error in the result).

The dose estimates obtained from MicroSkyshine and WALLGP are

illustrated in Fig. 4-9. The results of the single-scatter code G3 are also shown. As
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mentioned in the MicroSkyshine report (Fa87), G3 cannot account for buildup

effects in the overhead shielding, and seriously underpredicts the detector response

in all cases involving overhead shielding. This is evident in the figure, where G3

results for the case of 30 cm of overhead shielding are below values of both

MicroSkyshine and WALLGP. The point-kernel code WALLGP consistently

computes a significantly lower exposure than MicroSkyshine over the entire

measurement baseline; since MicroSkyshine is intentionally conservative, this is not

surprising. The difference of WALLGP ranges from 20% below MicroSkyshine

results at the extreme distances to 50% below MicroSkyshine at a source-detector

distance of 100 m. The presence or absence of the concrete shield does little to

change this disagreement, suggesting that it is not involved.

Three causes for the disagreement are evident. The first was discussed in the

comparisons of SILOGP and MicroSkyshine, but did not cause difficulties with

SILOGP. To account for photons which scattered from the walls of the silo during

the benchmark experiment and contributed to measured dose, MicroSkyshine uses

the silo, walls, or other shielding only to collimate the photon source. Only line

beams which do not pass through the silo or wall are included by MicroSkyshine in

computing dose; response from the entire beam is included, even from those photons

which would scatter behind the wall or within the silo and pass through the

obstruction to reach the detector (FaS7). SILOGP makes a similar approximation

to produce results closer to the benchmark measurements. WALLGP does not

compute dose using gamma rays which must pass through the wall, however;

photons which scatter from the wall face are much less likely to contribute to

detector dose than photons which reflect from the back of the silo, and the

approximation is not as helpful. Figure 4-10 is a graphic comparison of the
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scattering zone of WALLGP with the approximated scattering zone of

MicroSkyshine, showing the areas behind the wall where the photon is allowed to

scatter for the first time. MicroSkyshine's overpredictive results should be higher

than those of WALLGP, since MicroSkyshine makes the approximation in all

problems, including the wall case.

The second cause of disagreement is pair production. MicroSkyshine has

included annihilation photons in its response functions (Sh87), while WALLGP
ignores pair production. For 6.13 MeV photons, the pair production cross^ection is

not negligible, and WALLGP can be expected to underestimate the detector

response to a ">N source. The third possible cause for a difference in results from

WALLGP and MicroSkyshine is the deviation of the fitted response function curves

used in MicroSkyshine from the point kernel data used to produce the fits. Shultis

and Faw (Sh87) report adequate fits with the coefficients at 5.5 MeV and 6.5 MeV,

from which responses to 6.13 MeV photons are computed; the largest deviation of

the fitted formulas from the data is under 17%. If the formulas tend to overpredict

the original point-kernel data, and those data agree well with the point-kernel

results of WALLGP, this would combine with the inclusion of pair production to

widen the disagreement of the two codes. MicroSkyshine would be likely to

overpredict, while WALLGP, because of its neglect of pair production,

underpredicts.

The next comparison between the two programs is presented in Table 4-2.

The source, detector and wall are configured as they were for the problem of Fig.

4-9, except that the detector remains at 400 m from the source, and the energy of

source photons is varied from 1.0 to S.O MeV. The two programs diverge as the

source energy increases, and at S MeV, MicroSkyshine reports almost double the
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Table 4-2. Comparison of detector responses computed by the codes
MicroSkyshine and WALLGP with changes in source energy. Values of
exposure per photon are presented for a point source placed 1 m behind a
semi- infinite wall and 0.7 m below the top of the wall. The detector
lies 399 m from the wall face opposite the source, and 0.7 below the
top of the wall. The source- detector axis is normal to the wall. Air
density is 1.25 mg/cm3

; concrete density is 2.13 g/cm3
. All WALLGP

results were obtained using a convergence criterion of 17, and a cutoff
distance of 40 mfp.

Source energy
(MeV)

Normalized exposure (R/photon)

Computed by
MicroSkyshine

Computed by
WALLGP

Percent difference
from MicroSkyshine

No overhead shield

1.0
2.0

3.0

4.2041'- 22)

4.7851'-22)

4.7551 -22)

4.732( -22)

4.7461 -22)

4.823( -22)

4.854( -22)

4.888( -22)

3.6061'-22)

4.0111 -22)

3.8161 -22)

3.4971 -22)

3.204( -22)

2.936( -22)

2.715( -22)

2.493( -22)

-14.2
-16.2
-19.7
-26.1
-32.5
-39.1
-44.1
-49.0

30 cm concrete shield

1.0

2.0
3.0
4.0
5.0

G.O

7.0
8.0

1.264 (-23)
3. 497 (-23
5. 046 (-23
6.067(-23)
6.676(-23)
7.420(-23)
7.746-23
8.017(-23

1.0711 -23)

2.7951 -23)

3.9251'-23)

4.4791' 23)

4.656( -23)

4.616( -23)

4.462( -23)

4.248( -23)

-15.3
-20.1
-22.2
-26.2
-30.3
-37.8
-42.4
-47.0

*4.204(-22) = 4.204x10-22
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exposure that WALLGP computes. One obvious reason is pair production:

MicroSkyshine includes annihilation photons, WALLGP does not. The uncertainty

in WALLGP would be expected to increase as energy and the pair production

cross-section increase. The effects of the "transparent wall" approximation made

by MicroSkyshine are difficult to judge; the energy dependence of the dose due to

photons which "pass through the wall" is not known. The third cause of

disagreement, the deviation of MicroSkyshine's fitted response functions from the

point-kernel data, may have an influence; the fits improve, however, as source

energy increases, while the agreement of WALLGP and MicroSkyshine does not

improve. The author feels that in this problem, WALLGP shows a serious

deficiency in not including pair production. In its current form, it should be used

with caution at higher source energies.

Another problem parameter which greatly affects dose from the source is the

height of the wall between source and detector. WALLGP and MicroSkyshine were

applied to a series of problems identical to those in Table 4-2, except that the

source photons are restricted to 1 MeV, and the height of the wall above the source

and detector is varied from 0.01 mm to 200 m. The exposures per photon computed

by MicroSkyshine and WALLGP are compared in Table 4-3. The source energy of

1 MeV was chosen to eliminate errors in WALLGP from pair production. As would

be expected, disagreement is largest for the highest walls because WALLGP does

not include photons which scatter behind the wall. For the 200 m wall results,

MicroSkyshine responses are nearly two orders of magnitude above those of

WALLGP. Where the wall height is negligible, there are much smaller differences

in the computed exposures; the disagreements are less than 15%, smaller than some

deviations of the fitted response functions in MicroSkyshine. The prominent cause
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Normalized exposure (R/photon)

Wall height Computed by Computed byW MicroSkyshine VALLGP

No overhead shield

0.00001
0.01
0.1
0.7
1.0
5.0

10.

50.

100.

200.

30 cm concrete shield

2.861 f-21)
2.736''-21)

1.9771 -21)
4.204|'-22)

2.7611 - 22
s

t

9.903( -23)
8.754( -23)
7.069 -23)
6.603 -23)
6.427 -23)

2.608 f-21)
2.492.'-21)

1.7661'-21)

3.6061'-22)

2.3131 -22)

6.840( -23)

4.984( -23)
1.341( -23)
3.779 -24)

3.456(-25)

Percent difference
from MicroSkyshine

- 8.9
-10.7
-14.2
-16.2
-30.9
-43.1
-81.0
-94.3
-99.5

0.00001
0.01
0.1

0.7
1.0

5.0
10.

50.

100.

200.

1.344 (-23)
1.344 (-23)
1.344 (-23)
1.264(-23
1.087 (-23
3. 736 (-24)
2.955(-24)
2. 531 (-24
2. 250 (-24)
2.080(-24

1.157 f- 23)
1.157.(-23)
1.155i'-23)

1.0711 -23)
9.0621'-24)

2.987('-24)

2.142( -24)
7.714( -25)
2.675( -25)
2.951 -26)

-13.9
-13.9
-14.1
-15.3
-16.6
-20.0
-27.5
-69.5
-88.1
98.6

*2.861(-21) = 2.861x10-21
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of disagreement in these cases is the following approximation made by

MicroSkyshine: gamma rays which undergo their first interaction behind the wall

from the detector contribute to measured dose, and the contribution may be found

by treating the interaction point as a source of scattered photons and ignoring

shielding effects of the wall.

Finally, Table 4-4 presents the results of WALLGP and MicroSkyshine for 23

configurations, grouped according to the parameter which varies from the base value

shown in the first line. The purpose of this compilation is to describe the behavior

of the responses as each aspect of the situation changes. For instance, as the

detector is moved parallel to the wall, zd increases; the source^letector separation

increases, and both codes compute decreasing absorbed dose rates, as one would

expect. As ys or yd increases, the wall presents more shielding and decreases the

solid angle of directions from the source or detector which are not blocked; both

MicroSkyshine and WALLGP report decreasing absorbed doses as these quantities

increase. Both programs also confirm that increasing overhead shield thickness

substantially reduces dose, as one would expect after reviewing the results of the

benchmark experiment.

The two codes disagree on the behavior of detector response with changes in

source energy. As the energy of source gamma rays increases, MicroSkyshine

predicts response will drop until the pair production effect becomes noticeable, then

predicts an increase in dose as photon energy and („/„)„„ increase. WALLGP,
which considers only Compton scattering effects, computes responses which

continuously decline with increasing source energy and a dropping Compton

cross-section. Table 4-2 reveals similar patterns for a different geometry; in this

case, as then, WALLGP is proven to be flawed at higher energies because it neglects
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Table 4-4. Parametric study of detector responses computed by the codes
MicroSkyshine and WALLGP. Values of air kerma are presented for changes
in source energy, position of source and detector, thickness of the
overhead concrete shield, and air densitv. In all cases, concrete
density is taken as 2.35 g/cm^ . Percent differences are the difference
of VALLCP values from MicroSkyshine results.

Normalized air kerma
(rad/photon)

E xs xd ys yd zd t piir %
(MeV) (a) (m) (n>) (a) (a) (m) (g/cm3) MicroSky. VALLGP diff.

1-25 3 100 3 3 10 0.10 1.2 6.050(-21)* 3.3364(-21) -44.9

1.25 3 100 3 3 0.10 1.2 6.081(-21) 3.3531(-21) -44.9
1.25 3 100 3 3 30 0.10 1.2 5.813-21 3.2123-21) -44.7

6.081(-21) 3. 3531

(

-21)

5.8131 -21) 3.2123 -21)
3.931 -21) 2.2402 -21)

5.945(-22) 4.1111(-22)

1.25 3 100 3 3 100 0.10 1.2 3.931-21 2.2402-21 -43.0
1.25 3 100 3 3 300 0.10 1.2 5.945(-22) 4.1111(-22) -30.8

2.25 3 100 3 3 10 0.10 1.2 5.001(-21) 3.1514(-21) -37.0
5.25 3 100 3 3 10 0.10 1.2 4.415-21) 2.1763-21 -50.7
7.25 3 100 3 3 10 0.10 1.2 4.635(-2l) 1.7481(-21) -62.3

1.25 3 100 1 3 10 0.10 1.2 9.737(-21) 6.0801(-21) -37.6
1.25 3 100 10 3 10 0.10 1.2 3.178(-21) 1.4633(-21) -54.0

1.25 3 100 3-1 10 0.10 1.2 6.416(-21) 3.4972(-21) -45.5
1.25 3 100 3 1 10 0.10 1.2 6.230-21 3.4226(-21) -45.1
1.25 3 100 3 10 10 0.10 1.2 5.454(-2lj 3.010S(-2lj -44.8

1-25 3 10 3 3 10 0.10 1.2 4.853(-20) 2.6189(-20) -46.0
1.25 3 1000 3 3 10 0.10 1.2 1.969(-25) 1.8563(-25) - 5.7

1.25 1 100 3 3 10 0.10 1.2 3.218(-21) 1.7680.-21) -45.1
1.25 10 100 3 3 10 0.10 1.2 9.263-21 5.2014-21 -43.

S

1.25 100 100 3 3 10 0.10 1.2 2.85S(-21) 1.7330(-21) -39.4

1.25 3 100 3 3 10 0.10 1.1 5.856(-21) 3.2403(-21) -44.7
1-25 3 100 3 3 10 0.10 1.3 6.189(-2l) 3.4152 (- 21) -44.8

1.25 3 100 3 3 10 0.0 1.2 1.449f-20) 8.40S8(-21) -42.0
1.25 3 100 3 3 10 0.01 1.2 1.402-20) 7.3479-21) -44.0
1-23 3 100 3 3 10 1.00 1.2 5.1S0(-26) 3.6336-26) -29.9

*6.050(-21) = 6.050x10-2'

163



pair production. MicroSkysliine is more likely to predict the true response in such

situations, although it can overpredict because of the "transparent wall"

approximation mentioned earlier.

Another pattern revealed by MicroSkyshine and WALLGP occurs as xs is

changed, as the source is moved toward or away from the wall. The highest dose

occurs when the source is located 10 m from the wall; moving the source to a

position 3 m or 1 m from the wall reduces the dose, because the "shadow" cast by

the wall in the direction of the detector has been enlarged. In the other direction,

moving the source out to 100 m from the wall also reduces the dose, but by

attenuation, not by the shielding effect of the wall. Both programs behave properly

in this set of problems, in a manner which makes intuitive sense.

The behaviors of the results of the two programs are similar in the parametric

comparisons, but the values themselves are significantly different. Typically, the

MicroSkyshine results are one and one-half to two times the doses computed by

WALLGP. For most of these cases, pair production is negligible; the lack of fit of

the response functions used by MicroSkyshine is not enough to help explain the

discrepancy. The wall height is small compared to the source-detector distance, yet

the MicroSkyshine approximation of scatters behind the wall could be a cause of

disagreement. There may be other factors contributing to the difference, also; the

point-kernel calculations which produced the MicroSkyshine response functions may

differ markedly from the calculations performed by WALLGP, not as assumed.

In summary, both MicroSkyshine and WALLGP are likely to be inaccurate in

estimating detector responses to a point source of gamma rays behind a wall.

MicroSkyshine computes dose from photons which scatter behind the wall from the

detector, neglecting the shielding effects of the wall and applying buildup to a direct

164



path from the scattering volume to the detector. While this approach in a silo

simulation compensates for photons which reflect from the interior walls of a silo as

their first scatter, it may not be appropriate in the wall geometry. Gamma rays

which reflect off the wall in a real situation will be directed away from the detector

and should contribute little to measured dose. WALLGP should not be trusted in

cases involving photon sources of moderate or high energies, for it neglects pair

production, and annihilation photons are substantial for situations involving

high-energy photons, such as >*N sources. If a wall in a real situation does not

absorb source photons well and the MicroSkyshine approximation is appropriate,

WALLGP will underestimate still further, since it only considers dose from

photons scattering in full view of the detector.
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5.0 CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The two goals of this work center on the two computer codes written for

gamma-ray skyshine analysis. The first objective was to test modifications made to

the point-kernel code of Roseberry, which computes the exposure or dose from a

point gamma-ray source placed within a collimating silo. The second goal was to

validate a similar code written for the ideal problem of a point gamma-ray source

placed behind a semi-infinite wall. While SILOGP and WALLGP are based on the

same point-kernel skyshine model, SILOGP appears to be much more reliable in the

cases studied and agreed more closely with silo geometry reference values and other

skyshine codes. Benchmark experimental data for the wall problem are not

available, so that a definitive comparison cannot be made for WALLGP as it was

for SILOGP. Yet, deficiencies are obvious in the code for the wall problem.

The first code, SILOGP, involved three major changes from Roseberry's code

SKY, along with an approximation intended to correct for a non-ideal experimental

condition. A Gauss quadrature routine and updated photon interaction data were

slight improvements over SKY; the geometric-progression buildup factors which

were introduced made a noticeable change in results, and are widely regarded as

more accurate. To account for photons which can scatter within the confines of the

silo before leaving it, the upper limit of integration over the supplement of the

scattering angle was altered to simulate such photons in the dose computations.

SKY did nothing to imitate this interior scattering.

In comparisons to the benchmark experiment, this revised point-kernel code

gave results with accuracy comparable to other numerical methods tested. Its best

performance is for those geometries involving wide angles of collimation, where the
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source is relatively near the top of the silo. The ANSI Reference Problem and the

2k problem of Faw and Shultis (FaS7) were examples of this, and proved that the

model upon which the code is based is sound in this extreme case. Close to the

source silo, the results of the code SILOGP should not be relied on, since it regularly

underpredicts there. The approximation made to simulate scattering within the silo

did not correct this problem entirely; the new geometric progression buildup factors

may make the underprediction worse than it was with SKY. Farther from the source

silo, SILOGP overpredicts, but within the range of distances considered, the

difference is not extreme, and a conservative approach would demand overprediction

rather than underprediction. In the presence of an overhead concrete shield,

SILOGP produces more reliable results than many codes, because of the buildup

approximation in concrete first made by Roseberry.

One improvement which can yet be made to this code is the inclusion of pair

production interactions. While SILOGP did not show a tendency to underpredict

where high^nergy source photons were involved, the pair-production effect should

be added for completeness, and the process can be added to the code easily. A
second possibility suggested by Roseberry (RoSO) is that new buildup factors be

computed for anisotropic sources, or for detectors at or near an interface between

the air and the ground. All buildup factors currently available are for isotropic

point sources and point detectors in infinite media only. While Shultis and Faw
(ShS7) claim that adapted buildup factors are not necessary, such data would be

well suited for this application and might reduce the overprediction of SILOGP at

large distances. The computations required are beyond the scope of this work,

however, and not a priority.

Ifi7



WALLGP yields very reliable results in problems involving very low walls,

such as the ANSI Standard Problem. As with SILOGP, the agreement of WALLGP
with reference values validates the underlying theoretical model in the limiting case

of 2w geometry. There appears to be no tendency to overpredict or underpredict

with distance, as there is with SILOGP; the results for sources shielded by overhead

concrete are not seriously off, as they tend to be with G». Still, with no

experimental results available for comparisons, no definitive conclusions can be

drawn for the problems WALLGP is intended for: a point source of gamma rays

separated from detectors by a wall of shielding material of non-negligible height.

One difficulty in WALLGP made evident in this work involves the numerical

integration of the exposure equation. The code encounters problems when the

source and detector are relatively close together; it was discovered that increasing

the mean free path cutoff criterion will lower the resulting estimate of detector

response significantly. SILOGP shows no such difficulty, although it uses the same

quadrature subroutine. The probable cause of this is the cylindrical coordinate

system chosen for WALLGP; SILOGP uses a different coordinate system, based

entirely on angles. Although the two codes integrate the same exposure rate

equation, the different coordinate systems require terms to be placed in a different

order, and the expressions integrated by SILOGP and WALLGP take on different

forms.

Figure 5-1 presents the values of the 0, 6, and t integrands evaluated by

SILOGP over the regions of integration, for a typical problem. Gauss-Legendre

quadrature can easily integrate over these functions, and the adaptive quadrature

used by SILOGP should simply refine the estimate of the areas under these curves.

Figure 5-2 presents the values of the r, z and integrands evaluated by WALLGP
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relative value of independent variable

Fig. o-2. Normalized graphs of the functions integrated bv WALLGP. Each
integrand is plotted for a single source-detector geometry. The abscissa of each
integrand curve is normalized to a value of zero for the minimum value of r,zort)
and a value of one for the maximum value of the variable. The value of the
integrand is normalized in the same manner. The innermost integration is over the
angle 6; this integrand is presented for a constant value of r and z. The middle
integrand, dependent upon z, is graphed for constant r. The outer integrand is
dependent only upon r.

170



over their regions of integration. The r integrand asymptotically approaches zero

quickly, and this outer integral could present problems for conventional

Gauss-Legendre quadrature if the upper limit were extended too far. The adaptive

Gauss quadrature in use here performs separate integrations over successively

smaller sections of the entire region of integration until the change in the overall

result is below the chosen level. It is conceivable that even this method would

underestimate the integral; if the upper limit is extended too far, the large values of

the integrand at low values of r could be ignored or not accounted for properly.

Two approaches might be taken to alleviate this problem. The first is to

abandon the cylindrical coordinate system in favor of the angular coordinate system

used in SILOGP. The limits of integration for the wall geometry were developed

first in the angular coordinate system, but proved to be very cumbersome and

dependent on many variables in the source-detector geometry. Using the angular

system may provide integrals like those in SILOGP, expressions easier to integrate

using Gauss-Legendre quadrature. The second option is to complement the

quadrature weights and zeros in the current program with weights and zeros from a

different method. For instance, Gauss-Laguerre quadrature approximates a given

function using Laguerre polynomials, which are variations of exponential functions

(Sh88, Ho75). Ideally, the innermost integrals over <t> and z would be evaluated

using weights and zeros from Legendre polynomials, then the outer r integration

would be performed with Laguerre weights and zeros. This may prove to be the

more efficient option, if further study of the program is conducted.

The MicroSkyshine code provides most of the data for comparisons with

WALLGP, and any weaknesses in MicroSkyshine, such as the errors in parametric

fits to reference data, make judgments of the accuracy of WALLGP difficult. One
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obvious shortcoming of the present work pointed out by MicroSkyshine is the

neglect of pair production from high-energy gamma rays. Although most of the

codes used for comparisons did not compute dose from annihilation photons,

MicroSkyshine results show that the decision to exclude them could ruin computed

results in the event that pair production dominates photon interactions. The author

strongly recommends that pair production be included in WALLGP for future work,

to improve computed responses from sources of high-energy photons.

Data on the wall geometry are rare, and more studies of this problem may be

beneficial. A benchmark experiment involving a gamma-ray source behind a wall

would provide the best comparison by far, and could reveal other problems in

WALLGP beyond those of pair production and the integration method. For

example, it could show the importance of gamma rays which penetrate the shield

wall, and perhaps validate the "transparent wall" approximation of MicroSkyshine.

Because experiments of this type are rare and expensive, use of widely accepted

numerical data will probably be necessary.

In summary, SILOGP and WALLGP should both be modified to include pair

production, and the method of integration in the code for the wall problem should

be reconsidered. This author feels that SILOGP is accurate and useful for the

prediction of dose from a point gamma-ray source, but that WALLGP should not

be relied upon, and that modifications to WALLGP and more conclusive

comparisons should be performed before it is used in practical situations.
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APPENDIX A

The Computer Program SILOGP Developed in this Work

for the Problem of a Point Gamma-Ray Source in a

Cylindrical Silo

(Some subroutines required by this program are in Appendix C.
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c

C SILOGP FORTRAN, V. 2.6, AUGUST 1988
C

c

C The program SILOGP calculates the dose rate from a point isotropic
C gamma ray source cottimated into a cone about the vertical and
C shielded by an overhead concrete slab.

C

C The method is documented in the paper "Point Kernel Calculation of
C Skyshine Exposure Rates," Nucl. Sci. Engg., 80, 334-338 (1982), by
C M. L Roseberry and J. Kenneth Shultis. The program was written by
C M. L. Roseberry, (M.S. thesis, Kansas State University, 1980) and
C revised by R. E. Fau, 1985, and D. L. George, 1987-88.

C

C SILOGP integrates the singly scattered gamma-ray fluxes over a
C spatial region encompassing up to 40 mean free paths in air for the
C total path length, including both air and a concrete shield. Inte-
C gration is performed by triple Gaussian quadrature, using an adaptive
C method of integration. Interaction coefficients are taken from
C Hubbell, J. H., "Photon Mass Attenuation and Energy-Absorption
C Coefficients from 1 KeV to 20 MeV," Int. J. Appl. Radiat.
C Isot., 33, 1269-1290, 1982. Gamna-ray exposure buildup
C factors are evaluated using the geometric progression fitting
C function and data as reported in Harima, et al., "Validity of
C the Geometric Progression Gamma-Ray Buildup Factors," Nucl.
C Sci. Eng. 94, Sept. 1986. Log-log interpolation is used for
C buildup factors and interaction coefficients. Conversion factors
C for prescribed dose equivalents are taken from standard
C ANSI/ANS-6.6. 1-1977.

C

C The upper limit on source energy is 10 MeV. An error state arises
C if energies of scattered photons fall below 0.02 MeV.
C

C In version 2.6, all geometry data is received from input files. The
C first record of the file lists source energy, angle of collimation,
C concrete thickness, and concrete and air densities. The remainder
C of the file consists of an unformatted list of source-detector
C distances (m). Data output is via the console and a named output
C file. Integration is performed with an error tolerance of 2X, and
C cutoff values for distances in air and/or concrete are 40 mfp.
C

C Results are given as the dose rate per unit source strength,
C multiplied by the square of the source-detector distance (m)
C and divided by the specified full-angle of collimation (sr).
C

C The following subprograms must be linked for execution:
C

C SILOGP THE MAIN PROGRAM

C RESG GAMMA RAT RESPONSE FUNCTIONS
C GMUHUB GAMMA RAT INTERACTION COEFFICIENTS
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C BUGP BUILDUP FACTORS (GEOMETRIC PROGRESSION FORMULA)
C GAUS8 >

C GAUS9 } GAUSSIAN QUADRATURE ROUTINES
C GAUS10 >

C

C THE FOLLOWING INPUTS ARE REQUIRED FROM THE INPUT FILE:
C

C FIRST RECORD:

C E SOURCE ENERGT <MEV)

C DANG FULL ANGLE OF COLLIMATION (DEG)
C T CONCRETE THICKNESS (M)

C RC CONCRETE DENSITY (G/CM|3)

C RAA AIR DENSITY (MG/CM|3>

C NRESP TYPE OF RESPONSE FUNCTION:

C 1 = EXPOSURE

C 2 = AIR KERMA

C 3 = WATER KERMA

C i - ANSI PRESCRIBED DOSE EQUIVALENT
C SUBSEQUENT RECORDS:

C D SOURCE-DETECTOR DISTANCE (M)

C

C

c

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION X(20)

CHARACTER*6« FNAME

CHARACTER*64 A<8)

EXTERNAL TING3

C0MMON/S1/T,CMU,E/S2/THS,D,US,ES,U/S4/THA,B,KLUNK/S5/NAA,

»NBB,RA,PI,CON,III

DATA A/' Exposure', 'Air Kerma', 'Water Kerma', 'Dose Equivalent',
S'(m|2 R/sr)',2*'(ni|2 rad/sr)', '(m|2 rem/sr)'/

PI=DACOS(-1.0D0)

C

C Read Input Data

C

C WRITE(*,100)

C 100 FORMATC INPUT FILE NAME - ')

C READ(*,101) FNAME

C 101 FORMAT(A)

C OPEN(8,FILE=FNAME)

OPEN(8)

C WRITE(*,102)

C 102 FORMATC OUTPUT FILE NAME - ')

C REA0<*,101) FNAME

C 0PEN(9,FILE=FNAME,STATUS='UNKN0UN')

OPEN<9, STATUS-'UNKNOWN
'

)

READC8,*) E, DANG, T, RC, RAA, NRESP

IF (NRESP. E0.1) THEN

NAA 1



180

NBB - 1

ELSE IF (NRESP.E0.2) THEN

KM • 2

NBB • 1

ELSE IF (NRESP.E0.3) THEN

NAA • 2

NBB > 2

ELSE

NAA = 3

NBB 1

END IF

Calculate Angles of Collimation

RANG

STER

OANG*PI/180.DO

2.00*PI*(1.D0-DCOS(l!ANG/2.D0>)

Begin Writing Output

WRITE (9,109) E, DANG, STER, RAA.T.RC

WRITE (*,109) E, DANG, STER, RAA.T.RC

FORMATC CALCULATION OF SKYSHINE GAMMA RAY NORMALIZED RESPONSE',//

F8.3,/,4' Photon Energy (MeV)

4' Full Angle of Collimation (deg) ',F8.3,/,

4' Solid Angle of Collimation <sr> ',F8.3,/,

4' Air Density (mg/cu.cm) ',F8.3,/,

4' Concrete Thickness <m> ',F8.3,/,

4' Concrete Density (g/cu.cm) '.F8.3,/)

WRITEC9.110) A(NRFSP),A(KRESP»4)

USITE<*,110) A(NRESP>,A(NRESP+4)

FORMATC SOURCE-DETECTOR AREAL DENSITY NORMALIZED ',A,/,

4' DISTANCE (M) (G/CM|2) ',A,/)

Initialize Parameters in MKS Units

RC = concrete density, g/m**3

CMU = attenuation coefficient of source photons in concrete, 1/m

RA = air density, g/m**3

U = attenuation coefficient of source photons in air, 1/m

THS = minimum value of theta allowed by collimation

RC=RC*1.00»0o

CMU=GMUHUS(E,1,3)*RC*1.D-4

RA=RAA*1. 00*03

U=GMUHUBCE,1,1)*RAM.D-4

THS=(PI-RANG>/2.00

BMAX=PI-THS

KUMC*0

Read Input Data for Source-Detector Distance (m)
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20 READ <8,*,END=11)

C

C Conversion factor * electrons per gram of air * source-detector
C distance • air density / (2*pi) / solid angle of collimation
C

C0N=4 . 7848D*22*D*RA/STER

C

C BHN = minimum value of beta determined from mean free path cutoff
C

BMN=BMIN(RA)

IF (BMN.LT.BMAX) THEN

CALL GAUS8CTING3,BMN,BMAX,2.D-02,XSUH,IERR3>

ELSE

KLUNK=4

XSUH=O.0D0

END IF

IF (IERR3.NE.1) KLUNIC=3

DM=D*RA/1.0O 04

C

C Urite Output

C

WRITE(\H1) D,DM,XSUM,ICLUNK

WRITE(9,111) 0,DM,XSUH,KLUNIC

111 FORMAT(F8.2,10X,F8.3,7X,E10.4,7X,'ERROR CME:',I2)
GO TO 20

11 STOP

END

C

C FUNCTION TING3 EVALUATES THE BETA (SCATTERING ANGLE) INTEGRAND
C

FUNCTION TING3CAUG)

IMPLICIT REAL*8 (A-H.0-2)

EXTERNAL TING2

COHHON/S1/T,CMU,E/S2/THS,D,US,ES,U/SVTHA,B,KLUNIC/S5/NAA,

SNBB,RA,PI,CON,III

ES=SCATEN(E,AUG)

UEN=RESG(NAA,NB8,ES,ni)*1.D-4

US=GMUHUB(ES,
1 , 1 )*RA*1 .D-4

SIG=S1GMACE,AUG)

THL=PI-THS

IF (THL.GT.(PI-AUG)) THL=PI-AUG

B=AUG

CALL GAUS9(TING2,THS,THL,2.D-02,TANS2,IERR2)

IF (IERR2.NE.1) KLUWC=2

PARTN=SIG*UEN*TANS2

TING3=C0N*PARTN

RETURN

END

C

C FUNCTION TING2 EVALUATES THE THETA INTEGRAND
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c

FUNCTION TING2 (THET»>

IMPLICIT REAL*8 (A-H.0-2)

EXTERNAL TING1

COMMON/S1/T,CMU,E/S2/THAS,D,US,ES,U/S4/THA,B,iaUNIC

AR=D*(DCOS(THETA)*OSIN(THETA)/DTAN(B))*U

BR=D»DSIN(THETA)/DSIN(B)*US

EP=EPF(THETA)

THA=THETA

CALL GAUS10(TING1,0.D»00,EP,2.D-02,TANS1,IERR1>

IF (IERR1.NE.1) KLUNK=1

TING2=BUGP(1,ES,BR,IERR)«DEXP(-AR-BR)»TANS1

RETURN

END

C

C FUNCTION TING1 EVALUATES THE EPSILON INTEGRAND

C

C

FUNCTION TING1 (EPSILN)

IMPLICIT REAL*8 (A-H.O-2)

COMMON/S1/T,CMU,E/S2/THAS,D,US,ES,U/S4/THA,B,iaUNIe

AG=T*CMU/DSIN(THA)

A=AG/DCOS(EPSILN)

TING1=BUGP(3,E,A,IERR)*DEXP(-A)

RETURN

END

C

C FUNCTION EPF(THA) CALCULATES THE UPPER LIMIT ON THE EPSILON INTEGRAL
C THA = THETA VALUE IN RADIANS

C FUNCTION EPF LIMITS EFP SUCH THAT THE CONCRETE PATH LENGTH <OR= 40

FUNCTION EPF(THA)

IMPLICIT REAL*8 (A-H.0-2)

C0MM0N/S1/T,SMU,E/S2/THSM,D,US,ES,U

A=OSIN(TNSM)/DSIN(THA)

IF (A. GE. 1.000) GO TO 10

EP=DACOS(A)

TEST=T*SMU/DCOS(EP)/DSIN(THA)

IF (TEST.LE.40.0DO) GO TO 15

A=TEST*DCOS(EP)/40.0O0

IF (A. GE. 1.000) GO TO 10

EP=DACOS(A)

GO TO IS

10 EP=0.0O0

15 EPF=EP

RETURN

END

C

C FUNCTION SCATEH(E.B) CALCULATES THE SCATTERED GAMMA ENERGY
C IN MEV AFTER A SINGLE SCATTER.

C E = THE UNSCATTERED GAMMA ENERGY IN MEV



183

C I = THE SUPPLEMENT OF THE SCATTERING ANGLE UITH RESPECT TO

C THE INCIDENT PHOTON DIRECTION, IN RADIANS

C

FUNCTION SCATEN (E,B>

IMPLICIT REAL*8 (A-H.O-Z)

SCATEN=E/(1.OD0-»E/.511003400*(1.O00+OCOS(B))>

RETURN

END

C

C FUNCTION SIGMA(E.B) CALCULATES THE KLEIN-NISHINA CROSS-

C SECTION IN M**2

C E = THE UNSCATTERED GAMMA ENERGY IN MEV

C I = THE SUPPLEMENT OF THE SCATTERING ANGLE UITH RESPECT TO

C THE INCIDENT PHOTON DIRECTION, IN RADIANS

C

FUNCTION SIGMA (E,B)

IMPLICIT REAL*8 (A-H.O-2)

AL=.5110034D0/E

P=1.O00*AL»DCOS(B>

SIGMA=3.970387D-30*AL**2/P"2«(AL/PtP/AL-DSIN(B>"2>

RETURN

END

C

C FUNCTION BMIN(R) ESTIMATES THE VALUE OF THE SCATTERING ANGLE FOR

C WHICH THE TOTAL AIR PATH LENGTH IS 40 MFP

C R = AIR DENSITY IN G/M**3

C

FUNCTION BHIN(R)

IMPLICIT REAL»8 (A-H.O-Z)

COMMON/S1/T,CMU,E/S2/THAS,D,US,ES,U/S4/THA,B,ICLUNIC

PI=OACOS (-1.0D0)

DB=PI/180.000

B=2.000*DB

DO 10 1=1,89

AG=SCATEN(E,8)

TEST=0*(U/DTAN(B)»GMUHUB(AG,1,1)*R'1.D-4/DSIN(B>>

IF (TEST. LE. 40.00) GO TO 20

B=B*DB

10 CONTINUE

DO 15 1-1,89

AG=SCATEN(E,B)

TEST=D*GMUHU8(AG, 1 , 1 )*R*1 .D-4

IF (TEST. LE. 40. DO) GO TO 20

B=B*DB

15 CONTINUE

WRITE (9,5) D,E

WRITE (*,5) D,E

5 FORMAT (5X,'THE FUNCTION TO FIND THE MINIMUM VALUE OF BETA',

A ' FAILED. DETECTOR - SOURCE DISTANCE IS',F7.2,' SOURCE',

B ' GAMMA ENERGY IS',F6.3>
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20 BHIN=B-DB

RETURN

END



APPENDIX B

The Computer Program WALLGP Developed in this Work

for the Problem of a Point Gamma-Ray Source Behind a

Semi-Infinite Wall

(Some subroutines required by this program are in Appendix C.

1S5



186

c

C WALLCP FORTRAN, V. 2.5, 8/8/1988
C

c

C IHE PROGRAM WALLGP CALCULATES THE DOSE RATE FROH A POINT ISOTROPIC
C GAMMA RAY SOURCE SHIELDED BY A SLAB OF PERFECTLY ABSORBING
C MATERIAL.

C

C UALLGP INTEGRATES THE SINGLY SCATTERED GAMMA-RAY FLUXES OVER A REGION
C OF SPACE ENCOMPASSING A SOURCE, DETECTOR AND SEMI-INFINITE SLAB OF
C PERFECTLY ABSORBING MATERIAL BETWEEN THE TWO POINTS. INTEGRATION
C IS PERFORMED BY TRIPLE GAUSSIAN QUADRATURE, USING AN ADAPTIVE METHOD
C OF INTEGRATION.

C

C INTERACTION COEFFICIENTS ARE TAKEN FROM TABULATIONS IN

C HUBBELL, J. H., "PHOTON MASS ATTENUATION AND ENERGY-ABSORPTION
C COEFFICIENTS FROM 1 KEV TO 20 MEV," INT. J. APPL. RADIAT. ISO!.,
C 33, 1269-1290, 1982. GAMMA RAY EXPOSURE BUILDUP FACTORS ARE
C EVALUATED USING THE GEOMETRIC PROGRESSION FITTING FUNCTION AND
C DATA AS REPORTED IN HARIMA, ET AL., "VALIDITY OF THE GEOMETRIC
C PROGRESSION GAMMA-RAY BUILDUP FACTORS," NUCL. SCI. ENG. 94,
C SEPT. 1986. LOG-LOG INTERPOLATION IS USED FOR BUILDUP FACTORS
C AND INTERACTION COEFFICIENTS. CONVERSION FACTORS FOR PRESCRIBED
C DOSE EQUIVALENTS ARE TAKEN FROM STANDARD ANSI/ANS-6.6. 1-1977.
C

C THE UPPER LIMIT ON SOURCE ENERGY IS 10 MEV, DUE TO LIMITED
C ATTENUATION DATA. THE BUILDUP FACTORS ARE VALID OUT TO 40 MEAN FREE
C PATHS.

c

C DATA INPUT IS ENTIRELY VIA AN INPUT FILE, WHICH PROVIDES A LIST OF
C POSITIONS Of SOURCE AND DETECTOR WITH RESPECT TO THE WALL (M),
C SOURCE ENERGY (MEV), AIR DENSITY, CONCRETE DENSITY WHEN NEEDED, AND
C RESPONSE FUNCTION REQUIRED. OUTPUT IS VIA A NAMED FILE. RESULTS
C ARE GIVEN AS THE DOSE RATE PER UNIT SOURCE STRENGTH.
c

C VERSION 2.5 IS INTENDED TO BE RUN BY AN IBM CMS EXEC FILE CONTAINING
FILEDEFS, INSTEAD OF REQUESTING NAMES FOR INPUT AND OUTPUT FILES FROM

C THE TERMINAL. ALL QUERIES TO THE TERMINAL HAVE BEEN DISABLED. UNIT
C 10 RECEIVES ONLY OUTPUT DATA, WITHOUT HEADINGS, IN A FORM SUITABLE
C FOR USE BY PLOTTING PROGRAMS.

c

C ALSO, VERSION 2.5 PLACES A MEAN- FREE-PATH RESTRICTION ON THE
C LIMITS OF 2; THIS AVOIDS WASTEFUL EVALUATION OF FUNCTIONS IN AREAS
C OF SPACE MORE THAN CUTMFP FROM THE DETECTOR OR SOURCE.
C

C THE FOLLOWING SUBPROGRAMS MUST BE LINKED FOR EXECUTION:
C

C WALLGP THE MAIN PROGRAM

C RESG GAMMA RAY RESPONSE FUNCTIONS
C GMUHU8 GAMMA RAY INTERACTION COEFFICIENTS (HUBBELL)

C
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C BUGP BUILDUP FACTORS (GEOMETRIC PROGRESSION FORMULA)
C ZLIM )

C PHSPLT > LIMITS OF INTEGRATION

C PHILIM )

c PHI FUNCTION USED BY PHILIM

C GAUSS }

C GAUS9 ) GAUSSIAN QUADRATURE ROUTINES

C GAUS10 }

C ERTRAP SUBROUTINE TO END CODE IF GEOMETRY ERROR OCCURS
C

C THE FOLLOWING INPUTS ARE REQUIRED FROM THE INPUT FILE:
C

C E SOURCE ENERGY (MEV)

C XS SOURCE-WALL DISTANCE NORMAL TO THE WALL (M)

C XD DETECTOR-WALL DISTANCE NORMAL TO THE WALL (M)
C YS SOURCE DISTANCE BELOW TOP OF WALL (M) (-VE IF ABOVE)
C YD DETECTOR DISTANCE BELOW TOP OF WALL (M)

C ZD OFFSET OF DETECTOR FROM AN AXIS NORMAL TO WALL THRU
C SOURCE (M)

C T THICKNESS OF CONCRETE SLAB ABOVE SOURCE AND WALL (M)
C RC DENSITY OF CONCRETE (G/QT3)
C RAA DENSITY OF AIR (MG/CN

-

3>

C NRESP RESPONSE FUNCTION DESIRED:

C 1 EXPOSURE (R/S)

c 2 AIR KERHA (RAD/S)

C 3 WATER KERMA (RAD/S)
C 4 DOSE EQUIVALENT (REM/S)

C DEL ABSOLUTE ACCURACY DESIRED IN INTEGRATION ROUTINES
C CUTMFP MAXIMUM MEAN FREE PATH DISTANCE USED IN COMPUTATIONS
C (CONTRIBUTIONS FROM PHOTONS TRAVELING FARTHER ARE
C IGNORED; 40 MFP ABSOLUTE MAXIMUM)
C

c

C INITIALIZATION

c

IMPLICIT REAL*8 (A-H.O-Z)

LOGICAL*1 BREAK, CFLAG

CHARACTER'64 FNAME, A(8)

EXTERNAL TING3

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD

COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2

COMMON/S1/T,CMU,E,U/S2/DEL/S3/NAA,NBB,RA/S4/AR, BR, CR, CUTMFP
COMMON/S6/CFLAG

DATA A/'Exposure','Air Kerma', 'Water Kerma', 'Dose Equivalent',
»' (R/S)

'
,2" (RAD/S)

'

,
' (REM/S) '/

PI=DACOS(-1.OD0)

C

C READ INPUT DATA

C

C URITE(*,100)



188

C 100 FORMATC INPUT FILE NAME - ')

C REA0(*,101) FNAKE

C 101 FORHAT(A)

C OPEN(8,FILE=FNAME)

0PENC8)

C WRITE(*,102)

C 102 FORMATC OUTPUT FILE NAME - )
C READC*,101) FNAME

C OPEN(9,FILE=FNAME,STATUS='UNKNOW«')

OPEN (9 , STATUS^ UNKNOWN '

)

C URITE(*,103)

C 103 FORMATC PLOT DATA FILE NAME - ')

C READ<\101> FNAME

C OPENdO.FILE^FNAME.STATUS^'UNKNOUN')

OPENdO.STATUS^'UNKNOUN')

20 READ<8,\END=11) E,XS,XD,YS,YD,ZD,T,RC,RAA,NRESP,OEL,CUTMFP
IF (NRESP.E0.1) THEN

NAA 1

NSB • 1

ELSE IF (NRESP.E0.2) THEN

NAA = 2

NBS 1

ELSE IF (NRESP.E0.3) THEN

NAA 2

NBB 2

ELSE

NAA = 3

NBB • 1

END IF

CFLAG=.TRUE.

ECHO INPUT

WRITEC,*)

WRITE<9,*) '
,

WRITE (9,109) E,RAA,RC,CUTMFP,DEL*100.

WRITE (*,109) E,RAA,RC,CUTMFP,OEL*100.

109 FORMATC CALCULATION OF SKYSHINE GAMMA-RAY NORMALIZED RESPONSE',//
&' Photon Energy (MeV)

S' Air Density (mg/cu.cm)

&' Concrete Density (g/cu.cm)

&' Mean Free Path Cutoff Criterion .

&' Percent Error of Result

WRITE(9,110)

WRITE(»,1I0)

110 FORMATC X(S) X(D) Y(S)

'/.
' <"» (m) (m)

WRITE(*,111) XS,XD,YS,YD,ZD,T

WRITE(9,111) XS,XD,YS,YD,2D,T

111 FORMAT(6(F8.2,2X),/)

',F8.3,/,

',F8.3,/,

'.F8.3,//,

\F8.3,/,

',F8.3,/)

Y(D)

(m)
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IF (E.GT.10.) THEN

WRITE (9,207)

WRITE (',207)

207 FORMAT (' '"INPUT ENERGY OF ',F8.2, ' HEV IS TOO LARGE'"')
GO TO 20

ELSE IF (XS.LE.(0.D*0).OR.XD.LE.(0.D+0)) THEN
WRITE (9,202)

WRITE (*,202)

202 FORMATC "'IMPROPER GEOMETRY: SOURCE AND DETECTOR ON SAME SIDE OF
t WALL*" 1

)

GO TO 20

ELSE IF (YS.LT.(O.DO).ANO.T.GT.(O.DO)) THEN

WRITE (9,205)

WRITE (\205)

205 FORMATC '"IMPROPER GEOMETRY: SOURCE IS ABOVE BOTTOM OF CONCRETE
SSLAB"")

GO TO 20

ELSE IF (T.GT.(O.DO).AND.RC.EO.(O.DO)) THEN
WRITE (9,210)

WRITE (*,210)

210 FORMATC '"CONCRETE SHIELD NOT ASSIGNED A DENSITY"")
GO TO 20

ELSE IF (CUTMFP.GT.40.) THEN

WRITE (9,206)

WRITE (',206)

206 FORMAT (' '"CUTOFF VALUE OF ',F8.2,' MFP IS TOO LARGE"")
GO TO 20

ELSE

END IF

C

C CONVERT TO CYLINDRICAL COORDINATE SYSTEM
C H = height of wall edge above source-detector axis = minimum r
C THETA = angle of rotation between X and X' axes
C PSI = angle of rotation between X' and X" axes
C XSP = distance in X' direction from source to top of wall
C XDP = distance in X' direction from detector to top of wall
C ODD = distance separating source and detector
C RMAX = maximum value of r

C

THETA = DATAN((YS - YD) / (XS XD))

H = YS • DCOS(THETA) - XS • DSIN(THETA)

IF (H.LE.(0.D*0)) THEN

WRITE (9,203)

WRITE (*,203)

203 FORMATC '"IMPROPER GEOMETRY: SOURCE AND DETECTOR OH A CLEAR LINE
S OF SIGHT"")

GO TO 20

ELSE

END IF

XSP = XS • DCOS(THETA) YS • DSIN(THETA)
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IF (DABS(XSP).LE.(1.00-10>> XSP - O.D-MJ

XDP " XD • DCOS(THETA) - YD • OSIH(IHETA)

IF (DASS(XDP).LE. (1.00-10)) XDP - 0.0+0

PSI » DATA(I(ZD / (XSP XDP))

DDO = (XSP XDP) / DCOS(PSI)

C

C INITIALIZE PARAMETERS I H UNITS OF METERS

C

RC=RC*1. 00+06

CMU=GMUHUB(E, 1 ,3)*RC*1 .D-4

RA=RAA*1.0O»03

U=GMUHUB(E, 1 , 1 )*RA*1 .0-4

CUT»CUTMFP/U

C

C Conversion factor=<electrons per gram of air)*(air density)/(4*pi)

C

CON=2.3924D*22*RA

C

C CARRY OUT INTEGRATION OVER R

C

IF (CUT.LE.DDD) THEN

IF (T.EO.(O.DO)) THEN

WRITE (*,201) CUTMFP, CUT

UHITE (9,201) CUTMFP, CUT

ELSE

WRITE (*,201> CUTMFP, CUT, (CUTMFP/CMU)

WRITE (9,201) CUTMFP, CUT, (CUTMFP/CMU)

END IF

GO TO 20

ELSE

RMAX=0SQRT(CUT*CUT-DDD*D00>/2.

IF (RMAX.LE.H.OR. CUTMFP. LT.T'CMU) THEN

IF (T.EQ.(O.DO)) THEN

WRITE (*,201) CUTMFP, CUT

WRITE (9,201) CUTMFP, CUT

ELSE

WRITE (*,201) CUTMFP, CUT, (CUTMFP/CMU)

WRITE (9,201) CUTMFP, CUT, (CUTMFP/CMU)

END IF

201 FORMAT (' '"CUTOFF VALUE OF '.F8.2,' MFP IS TOO SMALL"*',

*/,' "*',F8.2,' M IN AIR*"',F8.2,' M IN CONCRETE*"')

GO TO 20

ELSE

END IF

END IF

CALL GAUS8(TING3,H,RMAX,DEL,XSUM,IERR3>

XSUM=XSUM*CON

IF (IERR3.NE.1) THEN

WRITE (*,204)

WRITE (9,204)
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204 FORMATC '"INACCURATE ESTIMATE OF I! INTEGRAL"*')

ELSE

END IF

C

C WRITE OUTPUT

C

IF (XSUM.EO. (0.0*00). AND. CFLAG) THEN

WRITE <*,208) CUTMFP

WRITE (9,208) CUTMFP

208 FORMATC "'CUTOFF VALUE OF '.FS.2,' MFP IS TOO SMALL*"',/,' ***A

J.LL EVALUATED PATH LENGTHS IN CONCRETE EXCEED CUTOFF VALUE***')

ELSE

WR!TE(9,112) A(NRESP)

WRITE(*,112) A(NRESP)

112 FORMATC Normalized ',A20, 'Response rate * d**2')

WRITE(*,113) XSUM,A(NRESP*4),XSUM*DDD*DDD,A(NRESP*4>

WRITE(9,113) XSUM,A(NRESP*4),XSUH*DDD*DOD,A(NRESP*4>

113 FORMAT(1X,1PE10.4,1X,A7,13X,1PE10.4,1X,'m**2*',A7)

WRITE(10,114) DOO,DDD*RAA/10.,XSUM,XSUM*DDD*DDO

114 FORMAT(2(F7.2,2X),2(1PE10.4,1X»

ENO IF

GO TO 20

11 STOP

END

C

C FUNCTION TING3 EVALUATES THE R INTEGRAND

C R = value of r at which GAUS8 evaluates the integrand

C RHAX = upper limit of integration over r

C 11, Z2 = z coordinates at which the wall edge is a distance r from

C the source-detector axis. Limits on phi will merge or change

C expressions at these values of z.

C TERM = discriminant of the quadratic whose solutions are 21 and

C 22

C ZMIN, 2MAX = limits of integration over z

C ZMINL, ZHAXL = limits on z computed from the source-detector

C geometry; compared to limits computed from the mean free path

C cutoff criterion to determine 2MIN and 2MAX

C

DOUBLE PRECISION FUNCTION T[NG3(R)

IHPLICIT REAL*8 (A-H.O-Z)

EXTERNAL TING2

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD

COMMON /ZVARS/ ZMINL, ZMAXL, Z1, Z2

COMMON /ERVARS/ RPT, ZPT

COMMON/S1/T,CMU,E,U/S2/DEL/S4/AR, BR, CR, CUTMFP

RPT=R

OJT=CUTMFP/U

RMAX=OS0RT(CUT*CUT-DO0*DD0)/2.

c

C COMPUTE Z BREAKPOINTS WHERE PHI WILL SWITCH EXPRESSIONS
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TERM=DSIMCPSI)*DSORTtR*R-M*H)

Z1=(XSP-TERM)/DC0S(PSI

)

Z2=(XSP*TERM)/DC0S(PSI

)

C

C CARRY OUT INTEGRATION OVER 2

C

CALL 2LIM(R, 21, 22, ZMINL, 2MAXL)

2MIN=DMAXUZMINL,<DDO-CUT'DSORT<1.-R*R/RMAX/RMAX>>/2.)

ZMAX=0MIN1 (ZHAXL, <DOO*CUT*DSQRT< 1
. -R*R/RMAX/RHAX) )/2.

)

CALL GAUS°(TING2,ZMIN,ZKAX,DEL,ZANS,IERR2)

IF (IERR2.NE.1) THEN

WRITE(9,20O)

WRITE<*,200)

200 FORMATC '"INACCURATE ESTIMATE OF 2 INTEGRAL"*')

ELSE

END IF

TING3=R»2ANS

RETURN

END

C

C FUNCTION TING2 EVALUATES THE 2 INTEGRAND

C 2 value of z at which the integrand is evaluated

C BETA = supplement of the photon scattering angle

C AAA = distance (m) traveled by photon in air before scattering

C AR = mean free paths traveled by photon in air before scattering

C BBS distance (m) traveled by photon in air after scattering

C BR = mean free paths traveled by photon in air after scattering

C

DOUBLE PRECISION FUNCTION TING2 (2)

IMPLICIT REAL*8 (A-H.O-2)

LOGICAL'1 BREAX.CFLAG

EXTERNAL TING1

COMMON /GEOM/ THETA, N, PSI, XSP, XDP, DDD

COMMON /ZVARS/ 2MIN, 2MAX, 11, 22

COMMON /ERVARS/ R, 2PT

COMMON/S1/T,CMU,E,U/S2/DEL/S3/NAA,NBB,RA/S4/AR,BR,CR,CUTMFP

C0MM0N/S67CFLAG

ZPT=Z

C

C COMPUTE SCATTERED GAMMA LEG LENGTH, B

C

BETA=DATAN(Z/R)-tDATAN(<ODD-Z)/R>

ES=SCATEN(E,BETA)

UEN=RESG(NAA,NBB,ES, 1 1 1
)«1 .0-4

IF (I1I.NE.0) THEN

WRITE <*,300) III

WRITE (9,300) III

300 FORMATC "'ERROR ',11,' IN COMPUTATION OF RESPONSE FUNCTION"")
ELSE
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END IF

SIG=SIGMA(E,BETA)

BBB=DSaRT(R*R»(00D-2)"(0DD-Z))

US=GHUHUB(ES, 1 , 1 >'RA*1 .D-4

BR=US*BBB

C

C COHPUIE LIMITS OF INTEGRATION FOR PHI

C BREAK = logical variable, TRUE if region of integration over phi

C splits in two at any values of z between z limits

C 2SPLIT = value of z where one region of integration over phi

C becomes two, or two becomes one (only used if BREAK=.TRUE.)

C PM1N1, PMAX1 = limits of integration over phi if only one valid

C region; limits over lower region if two regions of phi are

C valid

C PMIN2, PMAX2 = limits of integration over upper region of phi if

C two regions of phi are valid; set to zero if only one region

C of phi is possible (8REAK*. FALSE.)

C

CALL PHSPLT(R, 2SPLIT, BREAK)

CALL PHILIM(R, 2, 2SPLIT, BREAK, PMIH1, PKAX1, PMIN2, PMAX2)

C

C IF HO CONCRETE SLAB, COMPUTE PHI INTEGRAL AS A CONSTANT TIMES

C DIFFERENCE IN PHI LIMITS (NO DEPENDENCE ON PHI)

C

IF (T.LE.(O.OO)) THEN

CFLAG=. FALSE.

AAA=DS0RT(R*R*2*Z)

AR=U*AAA

CM.D0
c

C IF DISTANCE THROUGH AIR FROM SOURCE TO SCATTERING VOLUME IS

C GREATER THAN CUTOFF VALUE, SET INTEGRAND TO 2ERO; IF NOT,

C EVALUATE INTEGRAL

C

IF (AR.GT.CUTMFP) THEN

PANS1=0.D*00

ELSE

PANS1=DEXP(-AR)/AAA/AAA*(PMAX1-PMINHPMAX2-PMIN2>

ENO IF

ELSE

c

C IF CONCRETE SLAB PRESENT, CARRV OUT INTEGRATION OVER PHI

C

CALL GAUS10(TINGI,PMIN1,PMAX1,DEL,PANS1,IERRI)

C

C IF INTEGRAL HAS TWO REGIONS, INTEGRATE BETWEEN HIGHER LIMITS

C

IF (BREAK) THEN

CALL GAUS10(TING1,PMIN2,PMAX2,DEL,PANS2,IERR0)

PANS1=PANS1*PANS2
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ELSE

IERR0=1

END IF

IF CIESR1.NE.1 .OR.IERR0.HE.1) THEN

VRITE(9,200)

WRITE(*,200)

200 FORMATC '"INACCURATE ESTIMATE OF PHI INTEGRAL*"')

ELSE

END IF

END IF

C

C COMPLETE Z INTEGRAND

c

C COMPARE PATH LENGTHS EVALUATED IN Z INTEGRAND AGAINST MEAN

C FREE PATH CUTOFF; IF LARGER THAN CUTOFF, SET INTEGRAND TO ZERO

c

IF (BR.GT.CUTMFP.C*.(T.LE.(0.D0).ANO.(AR*BR).GT.CUTMFP)) THEN

TING2=O.D+0O

ELSE

TING2=BUGP(1,ES,BR,IERR)*SIG*UEN*DEXP(-BR)*PANS1/BBB/BBB

IF (IERR.NE.0) THEN

WRITE (*,400) IERR

WRITE (9,400) IERR

400 FORMATC ""ERROR ',11,' IN COMPUTATION OF AIR BUILDUP FACTOR*"')
ELSE

END IF

END IF

RETURN

END

c

C FUNCTION TING1 EVALUATES THE PHI INTEGRAND

C PHI = value of phi at uhich the integrand is evaluated

C CCC s distance (m) traveled by photon in concrete

C CR = mean free paths traveled by photon in concrete

c

DOUBLE PRECISION FUNCTION TING1 (PHI)

IMPLICIT REAL*8 (A-H.O-Z)

LOGICAL*! CFLAG

COMMON /GEOH/ THETA, K, PSI, XSP, XDP, 000

COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2

COMMON /ERVARS/ R, Z

COMMON/S1/T,CMU,E,U/S4/AR,BR,CR,CUTMFP/S6/CFLAG

C

C COMPUTE PATH LENGTH OF PHOTON THROUGH CONCRETE SLAB

c

WX=Z*DCOS(PSI)*DCOS(THETA)-R*(DSIN(PHI)"DSIN(PSI)*DCOS(TNETA>

£ -DCOS(PHI)*DSIN(THETA))

WY=-Z*DCOS(PSI)«DSIN(THETA)*R*(OSIN(PHI)«DSIN(PSI)*DSIN(THETA)

» DCOS(PHI)*DCOS(THETA>>

WZ=Z*DSIN(PSI)*R*DSIN(PHI)*DCOS(PSI)
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CCC=T*0SGRT(WX*WX/WY/WY-fWZ*WZ/WY/WY*1
.

)

c

C COMPLETE PHI INTEGRAND

C

AAA=OSORT(R*R*Z*Z)-CCC

CR=CMU*CCC

AR=U*AAA

c

C IF PHOTON PATH LENGTH THROUGH CONCRETE IS GREATER THAN CUTOFF

C CRITERION, SET INTEGRAL TO 2ERO

C

IF (CR.GT.CUTMFP) THEN

TING1=O.D-K>0

C

C IF PHOTON PATH LENGTH BEFORE SCATTERING OR TOTAL PATH LENGTH

C TRAVELED IS GREATER THAN CUTOFF CRITERION, SET INTEGRAL TO

C ZERO

C

ELSE IF (<AR»CR).GT.CUTMFP.OR.(ARtBR«CR).GT.CUTMFP) THEN

CFLAG*. FALSE.

TING1=0.D*00

C

C CUTOFF CRITERION NOT EXCEEDED; INTEGRAND EVALUATED

C

ELSE

CFLAG=. FALSE.

TINGt=BUGP(3,E,CR,IERR)«0EXP(-AR-CR)/(AAA»CCC)/(AAA*CCC)

IF (IERR.NE.O) THEN

WRITE (*,400> IERR

WRITE (9,400) IERR

400 FORMATC '"ERROR ',11,' IN COMPUTATION OF CONCRETE BUILDUP FACTOR
&**«')

ELSE

END IF

ENO IF

RETURN

ENO

C

C FUNCTION SCATEN(E.B) CALCULATES THE SCATTERED GAMMA ENERGY

C IN MEV AFTER A SINGLE SCATTER.

C E = THE UNSCATTERED GAMMA ENERGY IN MEV

C B » THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT

C TO THE INCIDENT PHOTON DIRECTION IN RADIANS

C

DOUBLE PRECISION FUNCTION SCATEN <E,B)

IMPLICIT REAL'S (A-H.O-Z)

SCATEN=E/<I.0O0>E/.5110034D0'(1.0D0»DCOS<B)>)

RETURN

END
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C FUNCTION SIGHA(E.B) CALCULATES THE KLEIN-NISHINA CROSS-

C SECTION IN K"2
C E = THE UNSCATTERED GAMMA ENERGY IN MEV

C | • THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT

C TO THE INCIDENT PHOTON DIRECTION IN RADIANS

C

DOUBLE PRECISION FUNCTION SIGMA (E,8)

IMPLICIT REAL*8 (A-H.O-2)

AL=.5110034D0/E

P=1.0O0*AL*DCOS(B)

SIGHA=3.970387D-30*AL"2/P**2'(AL/P*P/AL-DS!N(B)**2>

RETURN

END
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C SUBROUTINE TO END PROGRAM IN CASE OF ERROR

SUBROUTINE ERTRAP

IMPLICIT REAL*8(A-H,0-Z)

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, ODD

COMMON /ZVARS/ 2MIN, ZMAX, 21, 22

COMMON /ERVARS/ RPT, 2PT

WRITE (6,101)

101 FORMAT! CONDITIONS LEADING TO ERROR:')

WRITE (6,102) RPT, 2PT

102 FORMATC R = ',1PE11.4,' 2 = '.1PE11.4)

WRITE (6,103) H, 2HIN, 2MAX

103 FORMATC LIMITS: RMIN * '.1PE11.4,' 2MIN * '.1PE11.4,' ZMAX = ',

S1PE11.4)

WRITE (6,104) THETA, PSI

104 FORMATC ANGLES: THETA = .1PE11.4, PSI = \1PE11.4)

WRITE (6,105) XSP, XDP

105 FORMATC ROTATED GEOMETRY: X/SUB S/PRIME = ,1PE11 .4./19X, ' X/SUB

&D/PRIME = ',1PE11.4)

STOP

END

C* ************** *********
C FUNCTION TO COMPUTE ROOTS OF EQUATION FOR PHI GIVEN R AND ZC************«***********

DOUBLE PRECISION FUNCTION PHI (R, 2, I)

IMPLICIT REAL*8 (A-H.O-Z)

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD

PI - OACOS(-1.OD*0)

C

C COMPUTE SEPARATE TERMS FOR VALUE OF PHI

C

C SOURCE SIDE CONTACT POINTS

C

IF (I.E0.1.0R.I.E0.2) THEN

IF (XDP.EQ.O.D+0) THEN

TERM1 = -(XSP XDP - 2 * OCOS(PSI))

TERM2 = 0.

TERM3 = R * DSIN(PSI)

ELSE

TERM1 = -H*H*DSIN(PSI)*(XSP*X0P-Z'DCOS(PSI))/XDP/XDP

TERM2 = R*R*(1.*(H*DSIN(PSI)/XDP)*(H»DSIN(PSI)/XDP>>

S -(H*(XSP*XDP-Z*DCOS(PSI))/XDP)*(H*(XSP»XDP-Z*DCOS(PSI))/XDP)

TERM3 - R * (1.« H • H * DSIN(PSI) * DSINCPSI) / XDP / XDP)

END IF

c

C DETECTOR SIDE CONTACT POINTS

c

ELSE IF (I.E0.3.0R.1.EQ.4) THEN

IF (XSP.EO.O.D+O) THEN
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TERM1 = Z * OCOS(PSI)

TERM2 » 0.

IERM3 * I * DSIN(PSI)

ELSE

TERM1 = H * H • DSIN(PSI) * Z * DCOS(PSI) / XSP / XSP

TERM2=R*R*(1.*(K*DSIN(PSI)/XSP)«<H*DS1K(PSI>/XSP)>

t -(H*Z*0C0S(PSI)/XSP)*(H*2*DCOS(PSI)/XSP)

TERM3 = R * (1.* H • H * DSIN(PSl) * DSIN(PSI) / XSP / XSP)

END IF

C

C CALL ERROR TRAPPING SUBROUTINE; ARGUMENT IS INVALID

C

ELSE

WRITE (6,101)

101 FORMATC INCORRECT ARGUMENT FOR FUNCTION PHI. 1
)

CALL ERTRAP

END IF

C

C COMPUTE PHI

C

IDISCN • 1

IF (M0O(I,2).EQ.1) IDISGN = -1

IF (DABS(TERM2).LE.(1.D-10)> TERM2 = 0.

TERM4 • (TERM1 IDISGN * DSORT(TERM2>) / TERM3

IF (TERM4.LT. (1.D-10-1.)) THEN

PHI = -PI/2.

ELSE IF (TERM4.GT.O.-1.D-10)) THEN

PHI = PI/2.

ELSE

PHI = DATAN(TERM4 / OSQRTO. • TERM4 * TERM4))

END IF

END

c. ............,....,,.,,.
C SUBROUTINE TO SELECT LIMITS ON PHI FROM ROOTS OF PHI FORMULA

c. ............... .,.,,.
SUBROUTINE PHILIM (R, Z, ZSPLIT, BREAK, PMIN1, PMAX1, PMIN2,

I PMAX2)

IMPLICIT REAL*8 (A-H.O-Z)

LOGICAL*! BREAK

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, ODD

COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2

C

C SELECT PHI LIMITS FROM GEOMETRY AND BREAKPOINTS

C

C WALL "LEANS OVER" SOURCE; TUO REGIONS OF INTEGRATION FOR PHI

C POSSIBLE

C

IF (XSP/DCOS(PSI).LT.O) THEN

IF (Z.GT.ZMIN.AND.Z.LE. ZSPLIT) THEN

PMIN1 = PHKR, 2, 1)
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PMAX1 = PHKR, 2, 2:I

PMIN2

PMAX2 =

ELSE IF (2.GE.2SPLIT .AND.Z.LE.DHINK21 ,22)) THEN

PMIN1 » PHKR, 2, 1)

IF (BREAK) THEN

PMAX1 = PHKR, Z, 3)

PMIN2 PHKR, z, 4)

PMAX2 = PHKR, z. 2)

ELSE

PMAX1 = PHKR, z, 2)

PM.IN2 -

PHAX2 =

END IF

ELSE IF (Z.GE.DMINKZ1, 22).AND. 2.LT.ZMAX) THEN

PMIN2 =

PHAX2 =

IF (21.LT.22) THEN

PMIM1 = PHKR, z. 4)

PMAX1 = PHKR, z. 2)

ELSE

pmm = PHKR, z. 1)

PHAX1 * PHKR, 2, 3)

END IF

ELSE

URITE(6,102)

FORNATO ERROR IN SUBROUTINE PHIL IH, XSP. LT.O.')

CALL ERTRAP

END IF

c

C UALL "LEANS OVER" DETECTOR; TUO REGIONS OF INTEGRATION FOR PHI

C POSSIBLE

c

ELSE IF (XDP/DCOS(PSI).LT.O) THEN

IF (Z.GT.2NIN.AND.Z.LE.DMAXUZ1,Z2)) THEN

PMIN2 =

PMAX2 =

IF (21.LT.22) THEN

PMIN1 = PHKR, 2, 3)

PMAX1 = PHKR, Z, 1)

ELSE

PMIN1 = PHKR, Z, 2)

PMAX1 = PHKR, Z, 4)

END IF

ELSE IF (Z.GE.0MAX1(Z1,22).AND.Z.LE.ZSPLIT) THEN

PMIN1 = PHI(R, Z, 3)

IF (BREAK) THEN

PMAX1 = PHKR, 2, 1)

PNIN2 = PHKR, 2, 2)

PMAX2 = PHKR, Z, 4)
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ELSE

PMAX1 = PHKR, 2, 4)

PMIN2 •

PMAX2 •

END IF

ELSE IF (Z.GE.ZSPLIT.AND.Z.LT.ZMAX) THEN

PM1N1 = PHKR, Z, 3)

PMAX1 = PHKR, 2, 4)

PMIN2 =

PMAX2

ELSE

WRITE(6,103)

103 FORMATC ERROR IN SUBROUTINE PHILIM, XDP.LT.O.')

CALL ERTRAP

END IF

C

C ONE REGION OF INTEGRATION FOR PHI

C

ELSE

PHIN2

PMAX2 •

C

C LOWER LIMIT

C

IF CZ.LE.Z1.AND.Z.NE.ZMIN) THEN

PMIN1 = PHKR, Z, 1)

ELSE IF (Z.GE.Z1.AND.Z.NE.ZMAX) THEN

PHIN1 • PHKR, Z, 3)

ELSE

wirc(6,tU)
104 FORMATC ERROR IN SUBROUTINE PHILIM, NORMAL CASE, FINDING PH

SIMIN.')

CALL ERTRAP

END IF

C

C UPPER LIMIT

C

IF (Z.LE.Z2.AND.Z.NE.ZMIN) THEN

PMAX1 = PHKR, 2, 2)

ELSE IF (Z.GE.Z2.AND.Z.NE.ZMAX) THEN

PMAX1 = PHKR, Z, 4)

ELSE

WRITE(6,105)

105 FORMATC ERROR IN SUBROUTINE PHILIM, NORMAL CASE, FINDING PH

SIMAX.')

CALL ERTRAP

END IF

END IF

END

c*
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C SUBROUTINE TO COMPUTE POSSIBLE BREAKPOINTS FOB PHI LIMITS

C* **»**»***•»•»*•»•»..«..
SUBROUTINE PHSPLT (R, ZSPLIT, BREAK)

IMPLICIT REAL*8 (A-H.O-2)

LOGICAL*! BREAK

COMMON /GEOM/ THETA, N, PSI, XSP, XDP, ODD

COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2

BREAK .FALSE.

C

C SELECT GEOMETRIES WHERE SPLIT POSSIBLE

C

IF (R.GT.H.ANO.(XSP.LT.O.OR.XDP.LT.O)) THEN

C

C FIND VALUES OF Z WHERE INNER LIMITS APPEAR

C

IF (XSP.LT.O) THEN

ZSPLIT=-OSORT((R«XSP/H/DCOS(PSI))*(R*XSP/H/DCOS(PSI))

4 •(UH*H*DSIN(PSI)»DSIN(PSI)/XSP/XSP))

ELSE

ZSPLIT=DDO<-OSORT(<R*XDP/H/DCOS(PSI>>*(R*XDP/H/DCOS<PSI)>'

5 (HH*H*DSIN(PSI)«DSIN(PSI)/XDP/XDP))

END IF

C

C CONFIRM THAT INNER LIMITS ARE ON SCATTERING ZONE ANO COMPUTE THEM

c

IF (ZSPLIT. GE.ZMIN.ANO. ZSPLIT. LE. ZMAX) THEN

IF (XSP.LT.O) THEN

PHI1 * PHKR, ZSPLIT, 1)

PHI2 * PHKR, ZSPLIT, 3)

PHI3 = PHKR, ZSPLIT, 4)

PHI4 * PHKR, ZSPLIT, 2)

ELSE

PHI1 PHKR, ZSPLIT, 3)

PHI2 = PHKR, ZSPLIT, 1)

PHI3 = PHKR, ZSPLIT, 2)

PHI4 = PHKR, ZSPLIT, 4)

END IF

IF (PHI2.NE.PHI3) THEN

WRITE(6,106)

106 FORMATC VARIABLE ZSPLIT HAS BEEN COMPUTED INCORRECTLY.')

CALL ERTRAP

END IF

C

C FIND IF PHI REGION OF INTEGRATION DOES SPLIT (INNER LIMITS ARE

C INSIDE OUTER LIMITS)

C

IF (PHM.LT.PHI2.AND.PHI3.LT.PHI4) THEN

BREAK .TRUE.

ELSE

END IF
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ELSE

END IF

ELSE

2SPLII = ZMIN

END IF

END

C SUBROUTINE 10 COMPUTE LIMITS ON Z

C* ••••••••••« ......
SUBROUTINE ZLIM <R, Z1, Z2, ZMIN, ZMAX)

IMPLICIT REAL'S (A-H.O-Z)

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD

C

C COMPUTATION OF LOWER LIMIT ON Z

C

ZMIN DMINKZ1, Z2)

IF (XDP.GT.O) THEN

TERM = DSORT(H'H*DSIN(PSI)*DSIN<PSI>*XDP'XDP>

IF (R.GE.(H*TERM/XDP)) THEN

EXPRSN»R*TERM/H/DC0S(PS1

)

ZMIN • DDD - EXPRSN

ELSE

END IF

ELSE

END IF

C

C COMPUTATION OF UPPER LIMIT ON Z

c

ZMAX = DMAXKZ1, Z2)

IF (XSP.GT.O) THEN

TERM = DSORT(H«H*DSIN(PSI)*DSIN<PSI).XSP«XSP)

IF <R.GE.(H«TERM/XSP>> THEN

ZMAX=R*TERH/H/DCOS(PSI

)

ELSE

END IF

ELSE

ENO IF

END
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c

DOUBLE PRECISION FUNCTIOH BUGP<N,E,XX, 1ERR)

C

C THIS FUNCTIOH SUBPROGRAM EVALUATES GAMMA RAT EXPOSURE BUILDUP FACTORS

C USING THE GEOMETRIC PROGRESSION FITTING FUNCTION AND DATA AS REPORTED

C IN HARIMA, ET AL., "VALIDITY OF THE GEOMETRIC PROGRESSION GAMMA-RAY

C BUILDUP FACTORS," NUCL. SCI. ENG. 94, SEPT. 1986. VARIATION OF

C COEFFICIENTS UITH ENERGY IS DETERMINED BY LINEAR INTERPOLATION IN

C LOG(E). PARTS HAVE BEEN TAKEN FROM THE SUBROUTINE "SETP" USED IN

C THE CODE "QAD-CGGP", WRITTEN BY D. TRUBEY (RSIC, OAK RIDGE NATIONAL

C LABORATORY).

C

C ARGUMENT N IS THE MATERIAL INDEX: 1. AIR

C 2. WATER

C 3. CONCRETE

C 4. IRON

C 5. LEAD

C ARGUMENT E IS THE ENERGY E (MEV)

C ARGUMENT XX IS THE NUMBER OF MEAN FREE PATHS

c

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION EE(25),BFSET(5,25,5>,FLOGE<25>

C MEANING OF INDICES: BFSET(MATERIAL,E, COEFFICIENT)

COMMON/BLD01/PARAM(5)

C

C data for air

DATA «BFSETC1,J,K),K=1,5>,J=1,25>/1.170,

4 0.459,0. 175, 13. 73, -0.O862, 1.407,0.512,0.161,14.40,-0.0819,

42.292,0.693,0.102,13.34,-0.0484, 3.390,1.052,-0.004,19.76,-0.0068,

t 4.322,1.383,-0.071,13.51,0.0270, 4.837,1.653,-0.115,13.66,0.0511,

5 4.929,1.983,-0.159,13.74,0.0730, 4.580,2.146,-0.178,12.83,0.0759,

8 3.894,2.148,-0.173,14.46,0.0698, 3.345,2.147,-0.176,14.08,0.0719,

1 2.887,1.990,-0.160,14.13,0.0633, 2.635,1.860,-0.146,14.24,0.0583,

4 2.496,1.736,-0.130,14.32,0.0505, 2.371,1.656,-0.120,14.27,0.0472,

4 2.207,1.532,-0.103,14.12,0.0425, 2.102,1.428,-0.086,14.35,0.0344,

4 1.939,1.265,-0.057,14.24,0.0232, 1.835,1.173,-0.039,14.07,0.0161,

5 1.712,1.051,-0.011,13.67,0.0024, 1.627,0.983,0.006,13.51,-0.0051,

I 1.558,0.943,0.017,13.82,-0.0117, 1.505,0.915,0.025,16.37,-0.0231,

£ 1.418,0.891,0.032,12.06,-0.0167, 1.358,0.875,0.037,14.01,-0.0226,

S 1.267,0.844,0.048,14.55,-0.0344/

C

C data for water

DATA <<BFSET(2,J,K),K=1,5),J=1,25)/1.182,

4 0.463, 0.175, 14. 23.-0. 0908, 1.427,0.549,0.143,14.86,-0.0707,

5 2.335,0.736,0.087,13.28,-0.0419, 3.477,1.117,-0.019,11.67,0.0026,

I 4.461,1.457,-0.084,13.62,0.0341, 4.983,1.730,-0.126,13.64,0.0561,

4 5.059,2.059,-0.168,13.67,0.0770, 4.663,2.221,-0.186,13.33,0.0826,

4 3.897,2.242,-0.185,14.19,0.0777, 3.478,2.154,-0.176,14.50,0.0774,

4 2.920,2.022,-0.164,14.21,0.0655, 2.660,1.882,-0.149,14.24,0.0595,

4 2.500,1.766,-0.135,14.33,0.0546, 2.377,1.679,-0.124,14.23,0.0503,
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t 2.212,1.544,-0.105,14.36,0.0437, 2.103,1.441,-0.089,14.22,0.0378,

4 1.939,1.269,-0.058,14.52,0.0246, 1.839,1.173,-0.039,14.07,0.0161,

t 1.710,1.056,-0.013,11.82,0.0047, 1.621,0.989,0.004,13.45,-0.0041,

I 1.554,0.939,0.018,13.55,-0.0122, 1.507,0.903,0.029,16.13,-0.0272,

t 1.422,0.879,0.035,13.36,-0.0191, 1.362,0.859,0.042,13.37,-0.0247,

t 1.267,0.843,0.047,15.08,-0.0336/

C

C data for concrete

DATA (<BFSEI(3,J,K),IC=1,5),J=1,25)/1.029,

I 0.364,0.240,14.12,-0.1704, 1.067,0.389,0.214,12.68,-0.1126,

5 1.212,0.421,0.201,14.12,-0.1079, 1.455,0.493,0.171,14.53,-0.0925,

S 1.737,0.628,0.115,15.82,-0.0600, 2.125,0.664,0.118,11.90,-0.0615,

t 2.557,0.895,0.042,14.37,-0.0413, 2.766,1.069,0.001,12.64,-0.0251,

S 2.824,1.315,-0.049,8.66,-0.0048, 2.716,1.430,-0.070,18.52,0.0108,

t 2.522,1.492,-0.082,16.59,0.0161, 2.372,1.494,-0.085,15.96,0.0194,

8 2.271,1.466,-0.082,16.25,0.0195, 2.192,1.434,-0.078,17.02,0.0199,

S 2.066,1.386,-0.073,15.07,0.0202, 1.982,1.332,-0.065,15.38,0.0193,

S 1.848,1.227,-0.047,16.41,0.0160, 1.775,1.154,-0.033,14.35,0.0100,

41.671,1.054,-0.010,10.47,-0.0008, 1.597,0.988,0.008,12.53,-0.0115,

S 1.527,0.951,0.020,9.99,-0.0184, 1.478,0.940,0.021,13.11,-0.0163,

i 1.395, 0.917.0.02B, 13. 45, -0.0213, 1.334,0.901,0.035,12.56,-0.0267,

S 1.260,0.823,0.065,14.28,-0.0581/

C

C data for iron

DATA <(BFSET(4,J,K),(C=1,5),J=1,25)/1.004,

S 1.583,-0.565,5.53,0.3568, 1.012,0.130,0.620,11.39,-0.6162,

S 1.028,0.374,0.190,29.34,-0.3170, 1.058,0.336,0.248,11.65,-0.1188,

t 1.099,0.366,0.232,14.01,-0.1354, 1.148,0.405,0.208,14.17,-0.1142,

S 1.267,0.470,0.180,14.48,-0.0974, 1.389,0.557,0.144,14.11,-0.0791,

S 1.660,0.743,0.079,14.12,-0.0476, 1.839,0.911,0.034,13.23,-0.0334,

t1. 973, 1. 095, -0.009, 11. 86, -0.0183,1.992, 1.1B7, -0.027, 10. 72, -0.0140,

I 1.974,1.230,-0.036,9.30,-0.0110, 1.942,1.251,-0.041,7.89,-0.0090,

t 1.892,1.244,-0.040,6.95,-0.0123, 1.846,1.223,-0.037,6.74,-0.0131,

S 1.750,1.197,-0.040,15.90,0.0110, 1.712,1.126,-0.022,7.34,-0.0047,

81.627,1.059,-0.005,11.99,-0.0132, 1.553,1.026,0.005,12.93,-0.0191,

i 1.483,1.009,0.012,13.12,-0.0258, 1.442,0.980,0.023,13.37,-0.0355,

i 1.354,0.974,0.029,13.65,-0.0424, 1.297,0.949,0.042,13.97,-0.0561,

S 1.194,1.048,-0.002,5.01,0.0584/

c

C data for lead

DATA (<BFSET<5,J,K),K=1,5>,J-1,25>/0.,

S 0.,0.,0.,0., 0.,0.,0.,0.,0., 1.006,0.230,0.442,12.61,-0.5099,

t 1.013,0.302,0.331,10.34,-0.3011, 1.024,0.289,0.289,12.38,-0.1453,

S 1.029,0.423,0.179,17.00,-0.1217, 1.058,0. 357,0. 238, 12. 96, -0.123o]

i 2.165,1.323,0.079,12.13,-0.0731, 1.520,0.337,0.019,9.05,-0.0108,

S 1.201,0.271,0.171,5.00,0.0842, 1.135,0.523,0.140,17.37,-0.0874,

i 1.180,0.597,0.113,16.76,-0.0596, 1.233,0.631,0.107,14.62,-0.0533,

1 1.271,0.684,0.089,14.56,-0.0417, 1.334,0.738,0.073,13.84,-0.0334,

I 1.372,0.789,0.059,13.44,-0.0288, 1.409,0.865,0.039,13.11,-0.0217,

S 1.425,0.903,0.036,13.26,-0.0319, 1.383,0.967,0.027,13.51,-0.0385,
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( 1.328,1. 009,0. 023, K. 06,-0. 0403, 1.303,0.954,0.052,13.90,-0.0714,

t 1.233,1.127,-0.012,5.00,0.0459, 1.175,1.149,-0.005,5.26,0.0484,

S 1.135,1.167,0.002,5.53,0.0488, 1.083,1.190,0.017,6.11,0.0646/

C

C ** ENERGY INTERPOLATION OF GP PARAMETERS **

DATA EE /0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1,

* 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0,

* 1.5, 2., 3., 4., 5., 6., 8., 10.,

15. /

IERR

IF (XX.LE.O.DO) THEN

BUGP =1.00

RETURN

END IF

IF <E.LT..015O0.OR.E.GT.15.D0) THEN

IERR 1

BUGP 1.D0

RETURN

END IF

IF (N.LT.1.0R.N.0T.5) THEN

IERR • 2

BUGP 1.D0

RETURN

END IF

IF (XX.GT.40.D0) THEN

IERR 3

BUGP « 1.D0

RETURN

END IF

NLIM=0

1 NLIM=NLIM-H

IF(BFSET(N,NLIM,1).GT.O) GO TO 2

GO TO 1

2 CONTINUE

DO 3 1=1,25

FlOGE<I)=DLOG(EE(I>)

3 CONTINUE

NJ=NLIH

12 CONTINUE
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IFCE.LE.EE(NJ)) GO TO 13

IF(NJ.GE.25) GO TO 100

NJ=NJ*1

GO TO 12

C

13 CONTINUE

I FCNJ.LE.NLIH> GO TO 100

IF(NJ.EO.NLIM»1.0R.NJ.E0.25> GO TO 200

GO TO 300

C

C ** E<EE(NLIH> OR EE(25)<E **

100 DO 101 L«1,5

PARAH(L)=BFSET(N,NJ,L>

101 CONTINUE

GO TO 999

C

C •* EE(NLIM)<E<EE(NLIM-H)

C OR EE(24)<E<EE(25) •*

C (PARABOLIC INTERPOLATION)

200 X=DLOG(E)

IF (NJ.EQ.25) NJ-NJ-1

XI=FI0GE(NJ-1)

XJ*FLOGE(NJ)

XK=FLOGE(NJ-H)

CI«(X-XJ)/<X1-XJ)«(X-XIC)/(XI-XK>

CJ=(X-XI >/(XJ-XI >*(X-XK)/(XJ-XIC)

CK=(X-XI)/(XK-XI)*(X-XJ)/(XK-XJ)

00 201 L=1,5

PARAM(L)=CI*BFSET(N,NJ-1,L)

* +CJ*BFSET(N,NJ,L)

* CK*BFSET(N,NJ»1,L>

201 CONTINUE

GO TO 999

C

C •* EE(NJ-2)<EE(NJ-1)<E<EE(NJ)<EE(NJt1) "
C (REVISED PARABOLIC INTERPOLATION)

300 X=DLOG(E)

XI=FLOGE(NJ-2)

XJ=FLOGE(NJ-1)

XK=FLOGE(NJ)

Xl=FLOGE(NJ»1>

CI=0.5*(X-XJ)/(XI-XJ)«(X-XK)/(XI-XX)

CJ=0.5*(X-XI)/(XJ-XI)*(X-XX)/(XJ-XK)

«=0.5*(X-XI )/(XK-XI )'(X-XJ)/(XK-XJ)

DJ=0.5*(X-XX)/(XJ-XK)«(X-XL)/(XJ-XL)

DK=0.5*(X-XJ)/(XK-XJ)»(X-XL)/(XK-XL>

0L=0.5'(X-XJ)/(XL-XJ>«(X-XK)/(XL-XK)

DO 301 L=1,S

PARAM(L)=CI'BFSET(N,NJ-2,L)

* <CJ*OJ)'BFSET(N,NJ-1,L>
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* »tCK-H>K)«BFSET(H,NJ,L>

* DL*BFSET(N,NJ»1,L)

301 CONTINUE

C

C EVALUATE BUILDUP FACTO*

c

999 BUGP=8LDUP(XX)

RETURN

END

C

C

FUNCTION BLDUP(TTT)

C " BUILDUP FACTORS CALCULATED BY GP-HETHOD **

IMPLICIT REAL«8(A-H,0-Z>

COMMON /BLD01/ PARAMC5)

C TTT = Ml TIMES DISTANCE

C

IF(TTT.LE. 0.) GO TO 100

IFCTTT.GT.40.) GO TO 200

C

FK=PARAM(2)»DEXP(PARAM(3)*DLOG<TTT))

* PARAM<5)*FUNCF(TTT,PARAH«))

IFCFIC.LE.O.) GO TO 100

GO TO 300

C

200 FK35=PARAM(Z)*DEXP<PARAM(3)*DLOG(35.DO))

* PARAM<5)«FUNCF(35.D0,PARAM(4>)

FX40=PARAM(2)»DEXP(PARAM(3)*DLOG(40.D0))

» PARAM(5)*FUNCF(40.D0,PARAM(4))

TEMP=(1.D0-DEXP(0.1D0*0LOG(TTT/35.D0)))

* /(1.-DEXP(0.1*0LOG(40.D0/35.D0))) « DLOG((F«0-1 .D0)/(FK35-1 .DO))
FK = 1.000*CFO5-1.0D0>*DEXP<TEHP)

C

300 TEMP=TTT

IF(FK.NE.1.) TEHP=(DEXP(TTT«DLOG(FK))-1.)/(Flt-1.)

BLDUP=1.t<PARAMC1)-1.)*TEMP

RETURN

C

100 BLDUP=1.

RETURN

END

C

c« ............ ...... ......»..,.,...,
c

FUNCTION FUNCF(X.XX)

IMPLICIT REAL*8(A-H,0-Z)

C

T=X/XK

1F(T.GE.7.) GO TO 1
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FUNCF=1.-(1.tDEXP<«.D0>)/(DEXP(2.*T)tDEXP<4.D0))

RETURN

1 FUNCF=1.

RETURN

END

C
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c****

C**"

c****

C*"« SUBROUTINE GAUS8 -- DOUBLE PRECISION IBM 370 VERSION
C****

C*"« PURPOSE

C*»*« GAUSS INTEGRATES REAL FUNCTIONS OF ONE VARIABLE OVER FINITE
C»"« INTERVALS, USING AN ADAPTIVE 8-POINT GAUSS-LEGENDRE ALGORITHM.
C"*« GAUSS IS INTENDED PRIMARILY FOR HIGH ACCURACY INTEGRATION OR
C"*« INTEGRATION OF SMOOTH FUNCTIONS. FOR LOWER ACCURACY
C**»* INTEGRATION OF FUNCTIONS UHICH ARE NOT VERY SMOOTH, EITHER
C*"« ONC3 OR QNC7 MAY BE MORE EFFICIENT.

C****

C*«" USAGE

C**" CALL GAUS8(FUN,A,B,ERR,ANS,IERR)

c«*«*

C*"* FUN - NAME OF EXTERNAL FUNCTION TO BE INTEGRATED. THIS NAME
C**" MUST BE IN AN EXTERNAL STATEMENT IN THE CALLING PROGRAM.
C"** FUN MUST BE A FUNCTION OF ONE REAL ARGUMENT (THE
C**" VARIABLE OF INTEGRATION).

C*"* A - LOWER LIMIT OF INTEGRAL.

c...» 8 . upper LIMIT OF INTEGRAL (MAY BE LESS THAN A).
C**« ERR - USER-SUPPLIED ERROR PARAMETER. ANS WILL NORMALLY HAVE
C***» NO MORE ERROR THAN ERR TIMES THE INTEGRAL OF THE
C**** ABSOLUTE VALUE OF FUN(X).

C"** ANS - COMPUTED VALUE OF INTEGRAL.

C*"* IERR - ERROR PARAMETER SET BY GAUS8:

C**** IERR = 1 IS NORMAL.

IERR = 2 MEANS ANS IS PROBABLY INSUFFICIENTLY ACCURATE.

C*"« SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C*«« THE EXTERNAL FUNCTION FUN(X) MUST BE SUPPLIED BY THE USER.

C**** METHOD

C"** AN ADAPTIVE 8-POINT GAUSS-LEGENDRE ALGORITHM WITH INTERVAL
C"** BISECTION, COMBINED RELATIVE/ABSOLUTE ERROR CONTROL, AND
C*«" COMPUTED MAXIMUM REFINEMENT LEVEL WHEN A IS CLOSE TO B.

SUBROUTINE GAUS8(FUN,A,B,ERR,ANS, IERR)

IMPLICIT REAL*8 (A-H.O-Z)

DIMENSION AA(30),HH(30),LR(30),VL(30),GR(30)

* 8-POINT GAUSS-LEGEGNORE QUADRATURE DATA.

DATA XI, X2.X3.X4/0. 18343464249565000,0. 52553240991632900,
1 0.79666647741362700,0.96028985649753600/
DATA W1,W2,W3,W4/0.362683783378362D0,0.3137O6645877887D0,

1 0.22238103445337400,0.10122853629037600/
* MISCELLANEOUS PARAMETERS.

DATA SQ2/1. 41421356237309500/
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DATA LMN,NLMX,KMX,KML,NBITS/1, 30, 5000, 6,44/

c.... a-POIMT GAUSS-LEGENORE INTEGRATION FUNCTION.

G8(X,H)=H«((U1«(FUN(X-X1 ,H)*FUN(X*X1*H))tU2*(FUN(l(-X2*H)*FUN(X*l(2*

1H)))»(U3*(FUN(X-X3*H>*FUN<X»X3*H>)*g4«(FUN<X-X4*H>»FUN<X*X4*H)>))

C"" 1NIT1ALI2E.

ANS-O.DO

IERR=1

IF(A.EQ.B) RETURN

LMX=»LMX

IF(B.EO.O.DO) GO TO 3

[F(DSIGN(1.D0,B>"A.LE.0.D0) GO TO 3

C=0ABS(1.00-A/B)

IF(C.GT. 0.100) GO TO 3

NIB=-IDIKT<0LOGCC)/DLOG(2.D0>)

LMX=MIN0(NLMX,N81TS-NIB-6)

LHX=MAXO(LMX,LMN)

3 TOL=DMAX1(ERR,2.D0"<5-NBITS))/2.00

IF(ERR.LT.O.DO) TOL=0.5D-6

EPS=T0L

HH(1)=<B-A)/4.D0

MUM
LR(1)«1

L"1

EST=G8<AA(L)»2.D0*mt(L>,2.D0'HH(L>>

K=8

AREA=OABS(EST)

EF=0.5D0

MXL=0

C«"* COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.

4 GL=G8(AA(L>*HH<L),HH(L>>

GR(L)=G8<AA<L)*3.D0*HH(L),HH(L>)

K=IC*16

AREA=AREA»(DABS(GL)»DA8S(GRCL))-DABS(EST))

C IF(L.LT.LMN) GO TO 11

GLR=GL*GR(L)

EE=EF*DA8S(EST-GLR)

AE=OMAX1(EPS*AREA,TOL*DABS(GLR»

IF(EE-AE) 6,6,7

5 MXL=1

6 IFUR(U) 8,8,10

C"** CONSIDER THE LEFT HALF OF THIS LEVEL.

7 IF(K.GT.KMX) LMX=KML

IF(L.GE.LMX) GO TO 5

L=L*1

EPS=EPS/2.D0

EF=EF/S02

HH(L)=HH(L-1)/2.00

LR(L)«-1

AA(L)=AA(L-1)

EST=GL
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GO TO 4

C*"* PROCEED TO RIGHT HALF AT THIS LEVEL.

8 VL(L)=GIR

9 EST=GR(L-1)

LR(L)«1

AACL)=AA(L>*4.D0*HHCL)

GO TO 4

C***" RETURN ONE LEVEL.

10 VR=GLR

11 IF(L.LE.1) GO TO 14

L=L-1

EPS=EPS*2.D0

EF=EF*SQ2

IF(LR(L).GT.O) GO TO 13

VL(L)=VL(L*1)+VR

GO TO 9

13 VR=VL(L»1)*VR

GO TO 11

C"** EXIT.

14 ANS-VR

IF(MXL.GT.O) IERR=2

RETURN

END

C****

C****

C"«* THE FOLLOWING SUBROUTINES ARE DUPLICATES OF GAUS8, USED TO AVOID
C*"* CALLING THE SUBROUTINE RECURSIVELY.

C****

SUBROUTINE GAUS9(FUN,A,B,ERR,ANS, IERR)

IMPLICIT REAL*B CA-H,0-2)

DIMENSION AA(30),HH(30),LR(30),VL(30),GR(30)

C"« 8-POINT GAUSS-LEGEGNDRE OUADRATURE DATA.

DATA X1,X2,X3,X4/0. 18343464249565000,0.52553240991632900,

1 0.79666647741362700,0.96028985649753600/

DATA U1,U2,U3,U4/0.362683783378362D0,0.313706645877887D0,

1 . 22238 1 034453374D0, . 1 1 22853629037600/
C*"* MISCELLANEOUS PARAMETERS.

DATA SO2/1.414213562373095D0/

DATA LMN,NLMX,KMX,KML,NBITS/1,30,5000,6,64/

C"«» 8-POINT GAUSS-LEGENDRE INTEGRATION FUNCTION.

G8(X,H)=H-((U1»(FUN(X-X1»H)tFUN(X*X1*H))tW2*(FUN(X-X2*H)+FUN(X*X2'

1H)))*(U3*(FUN(X-X3'H)»FUN(X*X3'H))*U4-(FUN(X-X4*H)*FUN<X+X4«H))))
C"** INITIALIZE.

ANS=0.D0

IERR=1

IF(A.EO.B) RETURN

LMX=NLMX

IF(B.EO.O.DO) GO TO 3

IF(DSIGN(1.D0,B)*A.LE.0.D0) GO TO 3

C=0ABS(1.D0-A/B)
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IF(C.GT.O.IDO) GO TO 3

NIB=-IDINT(DLOG(C)/DLOG(2.D0)>

LMX=MIN0(NLMX,NBITS-NIB-6>

LMX=MAXO(LMX,LMN)

3 TOL=DMAX1(ERR,2.DO"(5-NBITS))/2.DO

IF(ERR.LT.O.DO) TOL=0.5D-6

EPS=TOL

HH(1>=<B-A)/4.D0

AA(1)=A

LR<1).1

L=1

EST=G8(AA(L)*2.D0*HH(L>,2.C-0*HH(L>)

K=8

AREA=DABS(EST)

EF=0.5O0

MXL=0

C"*» COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.

4 GL=G8(AA(L>*HKU>,HHCL))

GR(L)=G8(AA(L)*3.D0'HH(L),HH(L)>

K=K*16

AREA=AREA»(DABS(GLW)ABS<GR<L))-DABS(EST»

C IF(L.LT.LMN) GO TO 11

GLR=GL*GRa>

EE=EF*DABS(EST-GLR)

AE=DMAX1CEPS*AREA,TOL*DABS(GLR»

IF(EE-AE) 6,6,7

5 MXL=1

6 IF(LR(D) 6,8,10

C"" CONSIDER THE LEFT HALF OF THIS LEVEL.

7 IF(lt.GT.KMX) LMX=KML

IF(L.GE.LMX) GO TO 5

L=L-H

EPS-EPS/2.D0

EF=EF/SQ2

HH(L)=HH(L-1)/2.D0

LR(L)=-1

AA(L)=AA(L-1)

EST=GL

GO TO 4

C"" PROCEED TO RIGHT HALF AT THIS LEVEL.

8 VL(L>=GLR

9 EST=GR(L-1)

LR(L)=1

AA(L)=AA(L)+4.D0*HH(L)

GO TO 4

C*»*« RETURN ONE LEVEL.

10 VR=GLR

11 IF<L.LE.1) GO TO 14

L=L-1

EPS=EPS*2.D0
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EF=EF*S02

IFUR(L).GT.O) CO TO 13

VL(L)=VL<L*1)*VR

GO TO 9

13 VR=VLCL*1)*VR

GO TO 11

C"** EXIT.

14 ANS=VR

IF(MXL.GT.O) IERR=2

RETURN

END

C****

c*«*«

c****

SUBROUTINE GAUS10(FUN,A,B,ERR,ANS, IERR)

IMPLICIT REAL'S (A-H.O-Z)

0IMENSION AA(30),HH(30),LR(30),VL(30),GR(30)

c»... 8-POINT GAUSS-LEGEGNDRE QUADRATURE DATA.

DATA X1,X2,X3,X«/0. 18343464249565000,0.52553240991632900,

1 0.79666647741362700,0.96028985649753600/

DATA U1 , U2 , U3 , U4/0 . 36268378337836200 ,0.31 3706645877887D0

,

1 0.222381034453374D0,0.101228536290376D0/

C**** MISCELLANEOUS PARAMETERS.

DATA SO2/1.414213562373095D0/

DATA LMN.NLMX.XMX, XML, NBITS/1, 30, 5000, 6,64/

C**" 8-POINT GAUSS-LEGENDRE INTEGRATION FUNCTION.

G8<X,H)=H*<<U1«(FUN<X-X1*M>+FUN(X-tX1*H>>+U2*(FUN(X-X2*K)«-FUN<X-fX2*

1H»)*(U3"(FUN(X-X3«H)«FUN(X*X3*H))»U4*(FUN<X-X4*H)+FUN(X*X4*H))))

C**«* INITIALIZE.

ANS-O.DO

IERR=1

IF(A.EO.B) RETURN

LMMLM
IFC8.EQ.0.D0) GO TO 3

IF(DSIGN(1.DO,B)*A.LE.0.D0) GO TO 3

C=DABS(1.D0-A/B)

IFCC.GT. 0.100) GO TO 3

NIB=-I0INT(DLOG(C)/DLOG(2.D0))

LMX=MIN0(NLMX,NBITS-NIB-6)

LMX=MAX0(LMX,LMN)

3 TOL=OMAX1(ERR,2.D0**(5-NBITS))/2.D0

IF(ERR.LT.O.DO) TOL=0.5D-6

EPS=TOL

HH(1)=(B-A)/4.D0

AA(1)=A

LR(1)=1

L=1

EST=G8(AA(L)*2.D0*HK(L),2.D0*HH<L))

X=8

AREA=OABS(EST)
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EF=0.5D0

MXL"0

C"*« COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.

4 GL=G8(*A(L)*HK(L),KH(L))

GR(L)=G8<AA(L>*3.D0*HH(L),HH<L»

AREA=AREA*(DASS(GL)»OABS<GR(L))-DABS(EST>>

C IF(L.LT.LMN) GO TO 11

GLR*GL*GR(L)

EE=EF*DABS(EST-GLR)

AE=DMAXKEPS*AREA,TOL*DABS<GLR)>

IF(EE-AE) 6,6,7

5 MXL-1

6 1F(LRU>> 8,8,10

C««" CONSIDER THE LEFT HALF OF THIS LEVEL.

7 IF(K.GT.ICMX) LMX=KML

IF(L.GE.LMX) GO TO 5

L-L*1

EPS=EPS/2.00

EF=EF/S02

HH(L)=HH<L-1)/2.D0

LR(L>-1

AA(L)=AA(L-1)

EST-GL

GO TO 4

C"" PROCEED TO RIGHT HALF AT THIS LEVEL.

8 VL(L)=GLR

9 EST*GR(L-1>

LR(L>»1

AA(L)=AA(L)t4.D0*HH(L)

GO TO 4

C***» RETURN ONE LEVEL.

10 VR=GLR

11 IF(L.LE.1) GO TO 14

L=L-1

EPS=EPS*2.D0

EF=EF*S02

IF(LR(L).GT.O) GO TO 13

VL(L)=VL(L*1)»VR

GO TO 9

13 VR=VL(L»1)*VR

GO TO 11

C*"* EXIT.

14 ANS=VR

IF(MXL.GT.O) IERR=2

RETURN

ENO
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DOUBLE PRECISION FUNCTION GHUHUB(EE,MH,NN)

DOUBLE PRECISION VERSION

COMPUTES MASS ATTENUATION COEFFICIENTS AND MASS KERMA COEFFICIENTS
FOR AIR, WATER, CONCRETE, IRON, AND LEAD

OVER THE RANGE 0.01 TO 10 MEV

Reference: Hubbell, J. H., "Photon Mass Attenuation and

Energy-Absorption Coefficients from 1 keV to 20 MeV,"

Int. J. Appl. Radiat. Isot., 33, 1269-1290, 1982.

VARIABLE EE IS THE ENERGY (MeV)

INDEX MM DETERMINES TYPE GMU:

INDEX NN DETERMINES MATERIAL:

1. TOTAL MASS INTER. COEFFICIENT

2. MASS KERHA COEFFICIENT

1. AIR

2. WATER

3. CONCRETE

4. IRON

5. LEAD

FUNCTION RETURNS COEFFICIENT <CM|2/G)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION N(5),E(33,5),COEF1(33,5),COEF2(33,5)

C NUMBER OF ELEMENTS IN ENERGY RANGE

DATA N/4*25,33/

C ENERGY GROUP STRUCTURE

DATA E/. 01,. 015,. 02,. 03,. 04,. 05,. 06,. 08,. 10,. 15,. 2,. 3, .4

4,. 5,.6,. 8,1., 1.5, 2., 3., 4., 5., 6., 8., 10., 8*0.

t,. 01,.015, .02, .03,-04, .05,. 06,. 08,. 10,. 15,. 2,. 3,.

4

S,. 5, .6,. 8,1. ,1.5, 2., 3. ,4., 5., 6., 8. ,10. ,8*0.

&,. 01,. 015,. 02,. 03,. 04, .05,. 06,. 08,. 10,. 15, .2, .3,.

4

8,. 5,.6,. 8,1., 1.5, 2. ,3. ,4. ,5., 6., 8., 10., 8*0.

S,. 01,. 015,. 02, .03,. 04,. 05, .06,. 08,. 10,. 15,. 2,. 3,.

4

4,. 5,.6,. 8,1., 1.5, 2., 3., 4., 5., 6., 8., 10.,8*0.

S,. 01,. 01304, .01304,. 015,. 0152,. 0152,. 015861,. 015861,. 02, .03,. 04
S, .05, .06, .08, .088004, .088004, . 10, . 15, .2, .3, .4, .5

4,. 6,. 8,1., 1.5, 2., 3., 4., 5., 6., 8., 10./

DATA (<COEF1(I,J),I=1,33),J=1,1)/

4 5. 0160*00, 1.5810*00, 7.6430-01, 3. 5010-01. 2. 471D-01

4, 2. 0730-01, 1 .8710-01, 1.6610-01,1. 5410-01,1. 3560-01, 1.234D-01
4, 1.0680-01,9. 5480-02, 8. 712D-02.8. 0560-02, 7.075D-02, 6. 3590-02
4, 5. 1760-02,4. 4470-02,3.5810-02, 3. 079D-02, 2. 751D-02,2.523D-02
4,2.2250-02,2.0450-02,8*0.00/

DATA <<COEF1(I,J>,I=1,33),J=2,2)/

4 5. 2230*00, 1.6390+00, 7.9580-01,3.7180-01, 2. 6680-01, 2. 262D-01
4,2. 0550-01, 1.8350-01, 1.7070-01,1.5040-01,1. 3700-01,1.1870-01
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1,1.0610-01, 9. 6870-02,8. 957D-02, 7. 8460-02, 7. 0700-02, 5. 7550-02

1,4. 9400-02,3. 9690-02, 3. 4030-02,3. 031D-02, 2. 771D-02.2. 4290-02

1,2.2190-02,8*0.00/

DATA <<C0EF1(I,J),[=1,33),J=3,3)/

1 2. 6190*01, 8. 185D*00, 3. 6050*00, 1.2020*00, 6. 0700-01, 3. 9180-01

1,2. 9430-01. 2.1 190-01, 1 .7810-01, 1.4330-01,1. 2700-01, 1.082D-01

1,9.6290-02,8.7670-02,8.0980-02,7.1030-02,6.3810-02,5.1970-02

I, 4. 4820-02, 3. 6540-02, 3. 1890-02, 2. 895D-02, 2. 6960-02, 2. 4500-02

1,2.3110-02,8*0.00/

DATA <<C0EF1(I,J),1=1,33),J=4,4>/

1 1.6900*02,5.6560*01,2.5460*01,8.1090*00,3.6010*00,1.9440*00

1,1.1970*00,5.9180-01,3.7010-01,1.9600-01,1.4580-01,1.0980-01

1,9. 3980-02, 8. 4130-02, 7.7030-02,6. 6980-02,5. 994D-02, 4. 883D-02

1,4. 2650-02, 3. 6220-02, 3. 31 1D-02, 3. 1460-02, 3. 0570-02, 2. 991D-02

t,2.994D-02,8*0.D0/

DATA <<COEF1(I,J),I=1,33),J=5,5)/

1 1.3060*02,6. 1000*01, 1.5800*02, 1.1 160*02, 1.0700*02, 1.4800*02

1,1. 3200*02, 1.5300*02, 8. 6360*01, 3. 0320*01, 1.4360*01, 8. 041D*00

1,5. 0200*00, 2. 4190*00, 1.6100*00, 7. 3800*00, 5. 5500*00, 2. 014D*00

S, 9. 985D-01, 4. 0260-01,2. 3230-01, 1.6130-01, 1.2480-01, 8. 8690-02

1,7.103D-02,5.222D-02,4.607D-02,4.234D-02,4.1970-02,4.2720-02

1,4.391D-02,4.6750-02,4.972D-02/

DATA <<CO€F2<l,J),t = 1,33),J=1,1)/

1 4. 6400*00, 1.300D*00, 5. 2550-01, 1.5010-01, 6. 694D-02

1,4. 031D-02, 3. 004D-02, 2. 3930-02, 2. 3180-02, 2. 4940-02, 2. 6720-02

1, 2. 872D-02, 2. 9490-02,2. 9660-02,2. 9530-02, 2. 8820-02, 2. 7870-02

1,2. 5450-02, 2. 3420-02, 2. 0540-02, 1.8660-02,1.7370-02,1 .644D-02

1.1.521D-02, 1.4460-02, 8*0. DO/

DATA <<COEF2<I,J),t=1,33),J=2,2)/

1 4. 8400*00, 1.3400*00, 5. 3670-01, 1.5200-01, 6. 8030-02, 4. 155D-02

1,3.1520-02,2. 5830-02,2. 5390-02, 2. 7620-02,2. 9660-02, 3. 1920-02

1,3. 2790-02, 3. 2990-02, 3. 2840-02, 3. 205D-02, 3. 1000-02, 2. 8310-02

1, 2. 604D-02, 2. 2780-02, 2. 0630-02,1. 9130-02, 1.804D-02.1.657D-02

1,1. 5660-02, 8*0.D0/

DATA <CC0EF2<I,J),1=1,33),J=3,3>/

1 2. 4670*01, 7. 582D*00, 3. 21 70*00, 9. 4540-01, 3. 9590-01, 2. 0480-01

1,1. 2300-01, 6. 154D-02, 4. 1800-02, 3. 014D-02, 2. 8870-02, 2. 9370-02

1,2. 9800-02, 2. 984D-02, 2. 9640-02, 2. 8870-02, 2. 7900-02, 2. 554D-02

1,2.3480-02,2.0860-02,1.9290-02,1.8280-02,1.7600-02,1.6800-02

1,1.6390-02,8*0.00/

DATA <(CO€F2(I,J),I=1,33),J=4,4)/

1 1.3670*02, 4. 895D*01, 2. 2570*01, 7.2370*00, 3. 1460*00, 1.6300*00

1,9.5380-01,4.0930-01,2.1810-01,7.9700-02,4.8400-02,3.3740-02

1,3.0500-02,2.9220-02,2.8430-02,2.7180-02,2.6040-02,2.3580-02

1,2. 1950-02, 2. 0360-02, 1.984D-02.1. 9760-02, 1.991D-02, 2. 043D-02

1,2. 1000-02,8*0. DO/

OATA ((C0€F2(I,J),I=1,33),J=5,5)/

1 1.2560*02,6.1000*01,1.1300*02,8.9390*01,8.0800*01,1.0900*02

1,9. 8800*01, 1.140E*02, 6. 9230*01, 2. 5500*01, 1.2210*01, 6. 7960*00

1,4.1770*00,1.9360*00,1.4500*00,2.3100*00,2.2290*00,1.1350*00
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4,6. 2290-01, 2. 581D-01. 1.4390-01,9. 5640-02, 7. 1320-02, 4. 8380-02

4,3-7870-02, 2. 7140-02, 2. 407D-02, 2. 351D-02, 2. 4630-02, 2. 6000-02

4,2.7300-02,2.9480-02,3.1140-02/

C

C PERFORM INTERPOLATION

C

DO 101 I • 1,N<HN>

IF <EE.E0.E(I,NN» GO TO 102

IF (EE.LT.ECI.NN)) GO TO 103

101 CONTINUE

102 1FCMM.EQ.1) GMUHUB = COEFKI.NN)

IF(MM.EQ.2> GHUHUB = COEF2(I,NN)

GO TO 104

103 II = 1-1

GOTO (201,202), mm

201 YY1 = 0LOG(COEF1(II,NN))

YT2 = 0LOG(C0EF1(I,NN))

GOTO 203

202 YY1 = DLOG(COEF2(II,NN))

YY2 = DLOG(COEF2(I,NN))

203 XX1 • DLOG(E(II,NN)>

XX2 * DLOGCEU.NN))

GG • DLOG(EE)

22 = YY1 <GG-XX1)*(YY2-YY1>/<XX2-XX1)

GMUHUB = DEXP(ZZ)

104 CONTINUE

RETURN

END
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c

DOUBLE PRECISION FUNCTION RESG(N,M,E, IERR)

" DOUBLE PRECISION VERSION

* This function subprogram returns the gamma-ray response function at

* energy E (MeV) for the following types of response (arg. N):

* 1. Exposure (R cm|2)

* 2. Absorbed dose or kerma (cGy cm|2)

* 3. ANSI Prescribed dose equivalent (cSv cm|2)
*

* Absorbed dose or kerma is evaluated for the following media (arg. M):
* 1. Air

* 2. water

* 3. Concrete

* 4. Iron

* 5. Lead
*

Note: M is a dummy argument if N = 1 or 3.

*

* The following function is required: GMUHUB

* (effective June 1988, CMU no longer used)

IMPLICIT REAL*8(A-H,0-Z>

IERR

IF (M.LT.1.0R.K.GT.5) THEN

IERR = 1

RESG 1.D0

RETURN

END IF

IF (N.LT.1.0R.N.GT.3) THEN

IERR = 2

RESG = 1.00

RETURN

END IF

IF (N.EQ.3.AND.E.LT.0.01) THEN

IERR 3

RESG 1.D0

RETURN

END IF

IF (N.EQ.3.ANO.E.GT.15.D0) THEN

IERR = 3

RESG = 1.D0

RETURN

END IF

IF (N.NE.3.AND.E.LT..01D0) THEN

IERR = 3

RESG 1.D0

RETURN

END IF
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IF (N.NE.3.AND.E.GT.10.D0) THEN

IERR = 3

RESG 1.D0

RETURN

END IF

IF (N.E0.1) THEM

RESG = 1.835D-8*E*GMUHUB(E,2,1)

RETURN

ELSE IF (N.EQ.2) THEN

RESG = 1.602D-B*E*GMUHUB(E,2,M)

RETURN

ELSE IF (N.EQ.3) THEN

X = LOG(E)

IFCE.LE..03O0) THEN

RESG=-20.477D0-1.7454D0*X

GO TO 10

ELSE IFCE.LE..5D0) THEN

RESG=-13.626D0-.57117D0'X-1.0954D0*X*X-.24897D0*X*X*X

GO TO 10

ELSE IF(E.LE.5.DO> THEN

RESG=-13.133D0*.72008D0*X-.033603D0*X*X

GO TO 10

ELSE

RESG=-12.791D0».28309D0*X».10873D0*X*X

END IF

RESG=EXP(RESG)/3600.DO

RETURN

END IF

RETURN

END



APPENDIX D

Sample Input and Output for the Program SILOGP
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if a concrete roof is not used, the roof thickness and concrete density"j specified as 0. All quantities in the first record should beseparated by commas or spaces.
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The remainder of the input file consists of a list of radialsource- detector distances. Each distance should be placed on a separate

r tricted bv form^f "** ?* be in My 0rder
-

The va?ues are notrestricted by format for instance, a source- detector distance of 120 mmay be expressed as "120" or "120." or "1.2E+02."
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FIRST RECORD:

ni Nr l°^
Ce photon ener?y (

MeV) (maximum energy 10 MeV)DANG Full angle of collimation (degrees)
I Concrete thickness (m)

RC Concrete density (g/cm3
)

RAA Air density (mg/cm3
)

NRESP Type of response function:
1 = exposure
2 = air kerma
3 = water kerma
4 = ANSI prescribed dose equivalent

SECOND AND SUBSEQUENT RECORDS:
D Source- detector distance (m) at which response is

computed

The sample problem, shown in Figure D-l, resembles the henchman-experiments performed at Kansas State University In the example acobalt- 60 source is placed on the axis of a silo covered byT™ of
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concrete. In reality, 60 Co emits two photons per decay, of energies
1.17 MeV and 1.33 MeV. These are approximated by two 1.25 MeV photons
for this problem. Since no collimating wedges can be placed on the silo
walls when a concrete roof is present, the full angle of collimation
formed by the silo is defined by interior dimensions. The point source
is 31 cm below the roof of the silo, and the interior radius of the silo

is 1.18 a; these produce a full angle of collimation of 150.5°. The air

density is 1.12 mg/cm3
, while the concrete has a density of 2.13 g/cm3

Exposure rates are to be computed between 30 m and 700 a from the
source.

The input file for this example is shown below, and resides in the
file SAMPLE- S. IN on this distribution disk.

1.25,150.5,0.21,2.13,1.12,1
30

50
70

100
150
200
300
400
500
600
700

Results are given by SILOGP as the dose rate per photon, multiplied
by tie square of the source- detector distance (m) and divided by the
solid angle of collimation (steradians) defined by the silo. In these
units, effects of inverse- square attenuation and collimation are
eliminated, and results may be graphed in less space. To convert to
units of exposure per unit time, multiply this result by the solid angle
of collimation reported in the output, divide by the square of the
source- detector distance, and multiply by the number of photons emitted
per unit time. Areal density is the product of the source- to- detector
distance and the air density; presenting exposure as a function of areal
density compensates for variations in atmospheric temperature and
pressure.

The output created by the example input file is shown below. It
resides alone in the file SAMPLE- S . OUT on the distribution disk.

CALCULATION OF SKYSHINE GAMMA- RAY NORMALIZED RESPONSE

Photon Energy (MeV) 1.250
Full Angle of Collimation (deg) 150.500
Solid Angle of Collimation (sr) 4.683
Air Density (mg/cu. cm) 1.120
Concrete Thickness fm) 0.210
Concrete Density (g/cu. cm)

.'

2^130
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K^F?™ AREAL DENSITY NORMALIZED Exposure
DISTANCE (II) (C/CH|2) (m|2 R/sr)

30.00
50.00
70.00
100.00
150.00
200.00
300.00
400.00
500.00
600.00
700.00

routines* Tn^sTwp
3 * 3

l7 A™ C°deS fnerated by th« integrationroutines in SlLUtP. If the error code is nonzero, a numericalintegration performed by the code did not meet the confidence criteriaand the accuracy of the reported exposure should be questioned.

3.360 0.1798E-17 ERROR CODE:
5.600 0.2731E-17 ERROR CODE:
7.840 0.3468E-17 ERROR CODE:
11.200 0.4232E-17 ERROR CODE:
16.800 0.4769E-17 ERROR CODE:
22.400 0.4675E-17 ERROR CODE:
33.600 0.3634E-17 ERROR CODE:
44.800 0.2425E-17 ERROR CODE:
56.000 0.1487E-17 ERROR CODE:
67.200 0.8653E-18 ERROR CODE:
78.400 0.4865E-18 ERROR CODE:
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APPENDIX E

Sample Input and Output for the Program WALLGP

The following is a guide for preparation of input files for the
code WALLGP. In each execution of the code, information for any number
of problem geometries are read from the input file, with information for
each problem on a separate line. The quantities required for each
problem include source photon energy, coordinates of the source and
detector with respect to the wall separating them, concrete roof
thickness (if one is present), and densities of concrete and air. Also
required are the type of detector response to be computed, the maximum
distance in mean free paths which photons may travel, and a convergence
criterion for the adaptive integration subroutines.

Some restrictions apply to the input parameters. Since the source
and detector must be separated by the wall, the distances YS and YD of
the source and detector below the wall must not both be negative in the
same problem geometry. If no concrete roof is to be used, the roof
thickness and concrete density should be specified as 0. All quantities
in each record should be separated by commas or spaces, but are not
otherwise restricted by format. For instance, a source- wall distance of
120 m may be expressed as "120", "120." or "1.2E+02."

THE FOLLOWING INPUTS ARE REQUIRED ON ONE LINE FOR EACH CASE:

Source energy (MeV) (maximum energy 10 IfeV)
Source- wall distance normal to the wall (m)
Detector- wall distance normal to the wall (m)
Source distance below top of wall (m) (negative if source
is above the wall)
Detector distance below top of wall (m) (negative if
detector is above the wall)
Offset of detector from an axis normal to the wall
through source (m)

Thickness of concrete slab above source and wall (m)

Density of concrete (g/cm3
)

Density of air (mg/cm 3
)

Response function desired:
1 = exposure (R/s)
2 = air kerma (rad/s)
3 = water kerma (rad/s)
4 = dose equivalent (rem/s)
Absolute accuracy desired in integration routines
[Recommended value in most cases = 0.01 (17,)]
Maximum mean free path distance used in computations
(contributions from photons traveling farther than CUTMFP
are ignored: 40 mfp absolute maximum)

In the sample problem shown in Figure E-l, a cobalt- 60 point source
is placed 3 m behind a wall and 3 m below its top edge. The point
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detector at which exposure rates are measured is placed on the other
side of the wall, 100 m from the wall (measured normal to the wall face)
and 3 m below the top of the wall. A reference plane may be placed
through the source and normal to the wall; the detector lies 10 n from
this plane, measured parallel to the wall. A concrete slab shield 10 cm
thick is placed above the source, resting on the edge of the wall and
extending infintely in directions behind the source and along the wall.

The two photons emitted by 60 Co with each decay, of energies 1.17
MeV and 1.33 MeV, are approximated by two 1.25 MeV photons for this

problem. The concrete has a density of 2.35 g/cm3
, while the air

density is 1.2 mg/cm3
. Exposure rates are to be computed at the

detector; a convergence criterion of DEL=.01 and a cutoff value of 40
mean free paths have been selected.

The record of the input file which defines this example problem is
shown below. It may be found separately in the file SAMPLE- V. IN on this
distribution disk.

1.250, 3.0, 100.0, 3.0, 3.0, 10.0, 0.10, 2.35, 1.2, 1, .01,40.

Results are given by VALLGP as the dose rate per second, with the
source normalized to a strength of one photon emitted per second. By
multiplying this result by the true source strength, the true response
rate may be obtained. The output created by the input file above is
shown below; this output is written by WALLGP to logical unit 9. The
output is listed separately in the distribution file SAMPLE- V. OUT.

CALCULATION OF SKYSIIINE GAMMA- RAY NORMALIZED" RESPONSE

Photon Energy (MeV) 1 . 250
Air Density (mg/cu. cm) 1.200
Concrete Density (g/cu. cm) 2.350

Mean Free Path Cutoff Criterion 40.000
Percent Error of Result 1 . 000

X(S) X(D) Y(S) Y(D) Z(D) TW M (m) (m) (m) („,)
3.00 100.00 3.00 3.00 10.00 0.10

Normalized Exposure Response rate * d**2
3.8266E-21 (R/S) 4.0979E-17 m**2*(R/S)

A second output file is created by WALLGP on logical unit 10. This
file contains data useful for plotting results on a graph. For each
problem, one line of output is created, containing in order:

1) the straight- line distance in meters between the source and
detector;
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2) the areal density (the product of distance and air density, in

g/cm2
) separating the source and detector on a straight line;
3) the response rate, normalized to a source strength of one photon

per second from the source;

4) the response rate, multiplied by the square of the source-
detector distance. This value is sometimes useful in comparing results
of different problem geometries, since effects of inverse- square
attenuation are eliminated from the results.
The line of output in the plot data file created for this example case
is shown below, and in the file SAMPLE-W.PLT.

103.48 12.42 3.8266E-21 4.0979E-17
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ABSTRACT

Two computer codes were developed to analyze gamma-ray skyshine, the scattering

of gamma photons by air molecules. A review of previous gamma-ray skyshine

studies discusses several Monte Carlo codes, programs using a single-scatter model,

and the MicroSkyshine program for microcomputers. A benchmark gamma-ray

skyshine experiment performed at Kansas State University is also described.

A single-scatter numerical model was presented which traces photons from

the source to their first scatter, then applies a buildup factor along a direct path

from the scattering point to a detector. The FORTRAN code SKY, developed with

this model before the present study, was modified to use Gauss quadrature, recent

photon attenuation data and a more accurate buildup approximation. The resulting

code, SILOGP, computes response from a point photon source on the axis of a silo,

with and without concrete shielding over the opening. Another program,

WALLGP, was developed using the same model to compute response from a point

gamma source behind a perfectly absorbing wall, with and without shielding

overhead.

Results of SILOGP were compared to measurements from the KSU

benchmark experiment. SILOGP underpredicted the experimental exposure rates

within 250 m of the source and overpredicted responses further away. Average

deviations of SILOGP from experiment ranged from 20% to 40%. Both SILOGP

and WALLGP were compared to an ANSI Standard problem involving a point

source in open air, and both were found to be in excellent agreement with reference

values. The two codes also agreed very well with results for a similar problem based

on infinite-medium point-source buildup factors computed using the method of
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moments.

SILOGP and the microcomputer code MicroSkyshine were applied to several

silo skyshine problems. SILOGP returned lower exposure estimates, within 30% of

MicroSkyshine values in the worst cases, but within 15% in others. MicroSkyshine

was also used to test WALLGP in comparisons which varied individual problem

parameters. WALLGP consistently predicted a response at least 20% lower than

that predicted by MicroSkyshine. Discrepancies between results of WALLGP and

MicroSkyshine were attributed in large measure to the deliberately conservative

approximations upon which the MicroSkyshine method was based.


