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Abstract
Spatio-temporal and/or multivariate dependence naturally occur in datasets obtained in

various disciplines; such as atmospheric sciences, meteorology, engineering and agriculture.

There is a great deal of need to effectively model the complex dependence and correlated

structure exhibited in these datasets. For this purpose, this dissertation studies methods

and application of the spatio-temporal modeling and multivariate computation.

First, a collection of spatio-temporal functions is proposed to model spatio-temporal

processes which are continuous in space and discrete over time. Theoretically, we derived

the necessary and sufficient conditions to ensure the model validity. On the other hand,

the possibility of taking the advantage of well-established time series and spatial statistics

tools makes it relatively easy to identify and fit the proposed model in practice. The

spatio-temporal models with some ARMA discrete temporal margin are fitted to Kansas

precipitation and Irish wind datasets for estimation or prediction, and compared with some

general existing parametric models in terms of likelihood and mean squared prediction error.

Second, to deal with the immense computational burden of statistical inference for multi-

ple attributes recorded at a large number of locations, we develop Wendland-type compactly

supported covariance matrix function models and propose multivariate covariance tapering

technique with those functions for computation reduction. Simulation studies and US tem-

perature data are used to illustrate applications of the proposed multivariate tapering and

computational gain in spatial cokriging.

Finally, to study the impact of weather change on corn yield in Kansas, we develop a

spatial functional linear regression model accounting for the fact that weather data were

recorded daily or hourly as opposed to the yearly crop yield data and the underlying spatial

autocorrelation. The parameter function is estimated under the functional data analysis

framework and its characteristics are investigated to show the influential factor and critical

period of weather change dictating crop yield during the growing season.
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Preface

Space time data sets are often collected at monitored discrete time lags, which are

normally viewed as a component of time series. Valid and practical covariance structures

are needed to model these types of data sets in various disciplines, such as environmental

science, climatology, and agriculture. In Chapter 1 we propose two classes of spatio-temporal

functions whose discrete temporal margins are some celebrated autoregressive and moving

average (ARMA) models, and obtain necessary and sufficient conditions for them to be valid

spatio-temporal covariance functions. An asymmetric version of this type of model is also

provided to account for the space-time irreversibility property. It is found that the existing

tools in analyzing time series and spatial data can be efficiently applied to identify and fit

the proposed model in practice. To show the application of these models, a simulation study

and two data analyses are presented. Kansas daily precipitation data is fitted with a spatio-

temporal model that has a MA(1) temporal margin. Daily wind speed data from Ireland is

fitted with a spatio-temporal model with AR(2) temporal margin. In all the analyses, the

performance of proposed models are compared with some general existing parametric models

in terms of likelihood, mean squared prediction error, and continuous rank probability score.

Spatial covariance tapering is one of the techniques to mitigate the computational bur-

den for certain attributes observed on a large number of locations. If multiple attributes are

further recorded at each of these location, as is often seen in geophysical and atmospheric

sciences, the added complexity of the covariances among different attributes at different

locations presents even bigger challenges to statistical approaches in estimation and predic-

tion. In Chapter 2 we investigate multivariate generalization of tapering techniques. We

derive classes of covariance matrix functions and develop multivariate covariance tapering

with those functions whose entries are compactly supported. In particular, we generate

Wendland-type compactly supported covariance functions for the multivariate case with

different degrees of smoothness. After normalization, those functions are employed as a

xv



tapering matrix function to multiply element-wise the original matrix function so that the

resulting covariance matrices can be efficiently manipulated using sparse matrix techniques.

A simulation study is conducted to show the computational gain and provide guideline on

choosing appropriate tapering matrix functions in applications of multivariate spatial pre-

diction. Moreover, an illustration of applying multivariate tapering is presented using USA

climate data to show how tapering can be used in data analysis.

Finally in Chapter 3, we study the impact of weather change on corn yield in Kansas.

Weather elements such as maximum and minimum temperatures and precipitation dictate

the crop yield during the growing season. To use this information effectively, we develop

a spatial functional linear regression model accounting for the fact that weather data were

recorded daily or hourly as opposed to the yearly crop yield data and the underlying spatial

processes are autocorrelated. The parameter function is estimated under the functional data

analysis framework and its characteristics are investigated to show the influential factor and

critical period of weather change affecting crop yield during the growing season. The effect of

climate change in larger time scale is explored using functional box plot. We also investigate

the behavior of a space/space-time dependence structure that can model the error term of

the functional regression.
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Chapter 1

Spatio-temporal covariance modeling
in continuous space and discrete time

1.1 Introduction

In the ever growing world of data analysis one area, spatio-temporal statistics, has allowed

us to model our world as a whole. The world we live in is four dimensional, three dimen-

sions making up space, and the fourth dimension being time. Often times appealing to

computational convenience, we study space and time separately not taking into account

their possible interaction. However, many environmental processes are dependent on the

space-time interaction, and examples can be found in climatology, agriculture, and other

environmental studies. See Cressie and Huang (1999), de Luna and Genton (2002), Wikle

and Royle (2005), Xu et al. (2005), Le and Zidek (2006), Pearce et al. (2006), among others.

Combining the spatial and temporal processes together creates the spatio-temporal process,

which can be viewed as a random field given by, {Z (s; t) , s ∈ S, t ∈ T }, where S = Rd

and T = R or Z. From this notation the spatial marginal of the spatio-temporal process is

given by, {Z (s; 0) , s ∈ Rd}, i.e. observing the spatial process at a fixed time. The temporal

margin of the process looks at the temporal process at a fixed location and is given by,

{Z (0; t) , t ∈ T }. Understanding these two marginals is the starting point for addressing the

the main interests of space-time statistics.

In spatio-temporal data analysis there are two basic questions of interest: predicting at a

1



new space-time location, and the development of valid spatio-temporal covariance functions.

There have been many recent developments in space-time modeling, mainly dealing with

the construction of space-time covariance functions. When the second-order moments of the

random field exist, its covariance function is defined by

C(s1, s2; t1, t2) = Cov(Z(s1; t1), Z(s2; t2)), (s1; t1), (s2; t2) ∈ S × T (1.1)

where S = Rd and T = R or Z. Currently many research efforts use T = R, to mention a

few; Haslett and Raftery (1989), Gneiting (2002b), Ma (2003), Stein (2005a) and Gneiting

et al. (2007). Within all of these references the authors build valid space-time covariance

structures under the framework of continuous space and time. They also mention a need to

contend with difficulties arising from the fact that time data are usually measured at discrete

time points and normally viewed as a component of time series. However, the attempts in

the spatio-temporal modeling directly with discrete time series margin, i.e. T = Z, are

limited. Most of these works were either based on spectral representation or stochastic

equations (see e.g., Storvik et al. (2002), Stein (2005b)). In these cases the model choice is

very difficult to justify in practice.

The goal of this chapter is to construct a valid spatio-temporal covariance function over

continuous space and discrete time. This model will provide an intuitive approach which

takes advantage of existing time series and spatial statistics techniques; and will provide

an interpretable model that is easier to apply in practice. The remainder of this chapter

is organized as follows: Section 1.2 explains the simplifications of stationarity, separability,

and full symmetry that are usually assumed in order to preform data analysis. Section 1.3

discusses the conditions for space-time covariance functions with a moving average while

Section 1.4 discusses ARMA type temporal margin. Also included is a simulation study of

the moving average case, a data analysis of Kansas Daily Precipitation data, and a data

analysis of the classic Irish Wind dataset introduced by Haslett and Raftery (1989).
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1.2 Simplifying and validating the space-time process

When trying to model the covariance of a spatial or spatio-temporal process, we tend to make

some simplifications and often justifiable assumptions, such as stationarity, separability, and

symmetry. Stationarity is the most common one of these assumptions, in many cases without

this assumption analysis can not be preformed. In the case of space-time processes there are

two types of stationarity involved, spatial and temporal. The covariance function 1.1 has

spatial stationarity if C(s0, s0 + s; t, t), written as C(s0, s0 + s; t), depends only on the space

lag s; it has temporal stationarity if C(s, s; t0, t0 + t), written as C(s; t0, t0 + t), depends

only on the time lag t. A random field is said to be stationary in both space and time if its

mean E(Z(s; t)) is constant for all (s; t) and its covariance function C(s0, s0 + s; t0, t0 + t)

depends only on the space lag s and time lag t for all (s0; t0) ∈ Rd × T , which allows us to

write C(s; t). With the stationary assumption the covariance function of certain lag does

not change when shifted in space and/or time.

In the history of this field the initial idea was to develop valid covariance functions for

both space and time independently of each other then multiply them together. This created

what is known today as the separable covariance function. A random field Z is said to have

a separable covariance function if there exists a valid spatial covariance function CS(s1, s2)

and a valid temporal covariance function CT (t1, t2), such that Cov(Z(s1; t1), Z(s2; t2)) =

CS(s1, s2) · CT (t1, t2). Gneiting (2002b), Stein (2005a) and Gneiting et al. (2007) explain

that the separable model, although simple and computationally attractive, does not really

capture the interaction between space and time. When applying this covariance function,

space and time are considered to be independent of each other, which in many cases is

not physically justifiable. This limits the modeling on the actual behavior of underlying

processes. Some further discussion on this matter involving estimation and prediction can

be found in Stein (2005a) and references therein.

Symmetric versus asymmetric models is a more recent discussion in space-time mod-

eling. Asymmetric models allow the covariance function to take into account underlying
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directional space-time effects caused by atmospheric, environmental, and geophysical pro-

cesses. Examples of such processes are, prevailing winds, ocean currents, climate patterns,

or thermal waves. Symmetric models often do not have the structure to include these ef-

fects; therefore, the asymmetric or not fully symmetric (Gneiting (2002b); Gneiting et al.

(2007)) covariance function is introduced. A space-time process Z has a fully symmetric

covariance function if Cov(Z(s1; t1), Z(s2; t2)) = Cov(Z(s1; t2), Z(s2; t1)) for all space-time

coordinates (s1; t1) and (s2; t2) ∈ S × T , Gneiting et al. (2007). With the above mentioned

processes this condition does not always hold true, Stein (2005a) and Gneiting et al. (2007)

construct covariance functions that account for these asymmetric effects in the Irish Wind

data. Further discussion of the asymmetric case is left to Section 1.4.1.

Another simplification that can be made to spatio-temporal covariance functions is when

C is compactly supported. Having a compactly supported covariance function allows a

threshold to be set on the space-time lag, meaning the Cov(Z(s1; t1), Z(s2; t2)) = 0 whenever

the lag in space and/or the lag in time exceeds the threshold. This leads to computational

efficiency for prediction, estimation, and simulation, especially for large datasets (Gneiting

(2002a)). More of this discussion is left to Chapter 2. Figure 4.1 on page 155 in Gneiting

et al. (2007) provides a very nice schematic illustration giving the relationships between

separable, fully symmetric, stationary, and compactly supported covariance functions.

Regardless the simplifications made to the covariance function, it must still have non-

negative definiteness to be valid. This is the biggest challenge for all space-time covari-

ance functions. A spatio-temporal covariance function is nonnegative definite if for any

a1, . . . , ak ∈ R and any k locations and time points, the following inequality holds

k�

i=1

k�

j=1

aiajC(si, sj; ti, tj) ≥ 0. (1.2)

For the proposed models in this chapter proofs for nonnegative definiteness are left to the

Chapter 1 Appendix in Section 1.6.

As mentioned earlier many well- established covariance functions build models on the

framework of continuous space and continuous time. However, in practice space-time data
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are often collected at monitored discrete time lags, and it is natural to assume the space-time

process Z(s, t) inhabits Rd ×Z. Using the framework of continuous space and discrete time

opens the door to a new class of covariance functions that would take advantage of classical

time series modeling techniques. To model most spatial-temporal data, the usual starting

point is breaking the problem into two parts, the time series and the spatial component.

Typically, we start at a fixed location and analyze the time series, usually with an ARMA-

type model and then analyze the spatial field at a fixed time. In many research fields,

experimenters use this approach in looking at time on one hand and space on the other.

There is a a wealth of knowledge in the data exploration of these two processes; why not

construct a model that takes advantage of this front end analysis efficiently? This is the

motivation behind the construction of the covariance functions introduced in this chapter.

To begin we first look at a spatio-temporal process where the temporal margin has a moving-

average-type model.

1.3 Moving-average-type temporal margin

The moving average model in time series is a building block of more complex model struc-

tures. It is only fitting that we begin our discussion of discrete temporal margins with this

type of structure. Namely, we start to investigate the permissibility of real-valued functions

ψ0(s1, s2) and ψ1(s1, s2), s1, s2 ∈ S, such that the function

C(s1, s2; t) =






ψ0(s1, s2), t = 0,
ψ1(s1, s2), t = ±1, s1, s2 ∈ S,
0, otherwise,

(1.3)

in the domain of S × Z that is stationary in time is a covariance function. A basic feature

of (1.3) is that its temporal margin at a fixed location s,

C(s, s; t) =






ψ0(s, s), t = 0,
ψ1(s, s), t = ±1,
0, otherwise,

is a stationary first-order moving average model, provided that |ψ1(s, s)| ≤ 1
2ψ0(s, s), s ∈ S,

under which (1.3) is a spatio-temporal function whose temporal margin is a first-order

5



moving average model.

Note here that the covariance function given in (1.3) is not stationary and as a result,

to prove its nonnegative definiteness the well- known Bochner’s Theorem (see Chapter 1

Appendix 1.35) can not be directly applied. However, (1.3) can be rewritten as

C(s1, s2; t) = ψ0(s1,s2)+2αψ1(s1,s2)
2 ·






1, t = 0,
1
2α , t = ±1,
0, t = ±2, . . . ,

+ψ0(s1,s2)−2αψ1(s1,s2)
2 ·






1, t = 0,
− 1

2α , t = ±1,
0, t = ±2, . . . , s1, s2 ∈ S,

(1.4)

which is a product-sum of purely spatial and purely temporal functions

ψ0(s1, s2)± 2αψ1(s1, s2)

2
, s1, s2 ∈ S, and






1, t = 0,
± 1

2α , t = ±1,
0, t = ±2,±3, . . . ,

(1.5)

where the latter are correlation functions of stationary first-order moving average models

and α is a constant not less than 1. Based on the decomposition, (1.5), we can use Bochner’s

Theorem to obtain the conditions for (1.3) to be a valid spatio-temporal covariance function.

Also for ease of use the conditions will be given in terms of the functions ψ0(s1, s2) and

ψ1(s1, s2), s1, s2 ∈ S. To do this we need two lemmas.

Lemma 1.3.1. Let α be a constant greater than or equal to 1. If ψ0(s1, s2) + 2αψ1(s1, s2)

and ψ0(s1, s2)− 2αψ1(s1, s2), s1, s2 ∈ S, are spatial covariance functions on S, then (1.3) is

a spatio-temporal covariance function on S × Z that is stationary in time.

Lemma 1.3.2 discusses the relationship that exists between, ψ0(s1, s2)± 2αψ1(s1, s2) and

ψ0(s1, s2)± 2βψ1(s1, s2), s1, s2 ∈ S, when α and β are two nonnegative constants.

Lemma 1.3.2. If α is a positive constant, and ψ0(s1, s2) + 2αψ1(s1, s2) and ψ0(s1, s2) −

2αψ1(s1, s2), s1, s2 ∈ S, are spatial covariance functions on S, then so are ψ0(s1, s2) +

2βψ1(s1, s2) and ψ0(s1, s2)− 2βψ1(s1, s2), s1, s2 ∈ S, for any 0 ≤ β ≤ α.
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In fact, when both ψ0(s1, s2) + 2αψ1(s1, s2) and ψ0(s1, s2)− 2αψ1(s1, s2), s1, s2 ∈ S, are

spatial covariance functions,

ψ0(s1, s2) =
ψ0(s1, s2) + 2αψ1(s1, s2)

2
+

ψ0(s1, s2)− 2αψ1(s1, s2)

2
, s1, s2 ∈ S,

is also a covariance function on S. So are

ψ0(s1, s2) + 2βψ1(s1, s2) =

�
1− β

α

�
ψ0(s1, s2) +

β

α
{ψ0(s1, s2) + 2αψ1(s1, s2)},

and

ψ0(s1, s2)− 2βψ1(s1, s2) =

�
1− β

α

�
ψ0(s1, s2) +

β

α
{ψ0(s1, s2)− 2αψ1(s1, s2)}, s1, s2 ∈ S.

Lemma 1.3.2 leads us to search for what values of α could be necessary and sufficient

for (1.3) to be a spatio-temporal covariance function. Actually the only choice is α = 1, as

Theorem 1.3.1 indicates.

Theorem 1.3.1. The function (1.3) is a spatio-temporal covariance function on S × Z if

and only if both

C+(s1, s2) = ψ0(s1, s2) + 2ψ1(s1, s2), s1, s2 ∈ S,

and

C−(s1, s2) = ψ0(s1, s2)− 2ψ1(s1, s2), s1, s2 ∈ S,

are spatial covariance functions on S.

Corollary 1.3.1. When (1.3) is a spatio-temporal covariance function on S ×Z, it is easy

to verify that for any constant θ with |θ| ≤ 1,

C(s1, s2; t) =






ψ0(s1, s2), t = 0,
θψ1(s1, s2), t = ±1, s1, s2 ∈ S,
0, otherwise,

(1.6)

is a spatio-temporal covariance function on S × Z.
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Note that ψ0(s1, s2) is a purely spatial covariance function on S, since it equals C(s1, s2; 0),

the spatial margin of C(s1, s2; t). While (1.3) can be used for non-stationary covariance func-

tions, Corollary 1.3.2 shows the simplification when the field has stationarity.

Corollary 1.3.2. Let ψ0(s) and ψ1(s) be real-valued functions defined on S. Then

C(s; t) =






ψ0(s), t = 0,
ψ1(s), t = ±1, s ∈ S,
0, otherwise,

(1.7)

is a stationary covariance function on S ×Z if and only if both ψ0(s) + 2ψ1(s) and ψ0(s)−

2ψ1(s) are stationary covariance functions on S.

As a benefit of this corollary, it suffices to check the validity of two strictly spatial

functions ψ0(s) + 2ψ1(s) and ψ0(s) − 2ψ1(s), s ∈ S, in order to verify the spatio-temporal

function (1.7).

Example 1.3.1. Let us take a look of the permissible domain of the parameter θ that

makes the function

C(s; t) =






exp(−�s�), s ∈ Rd, t = 0,
θ�s� exp(−�s�), s ∈ Rd, t = ±1,
0, otherwise,

a valid covariance function on Rd × Z. By the Corollary 1.3.2,

exp(−�s�)± 2θ�s� exp(−�s�)

must be covariance functions in Rd. For this, a necessary and sufficient condition is |θ| ≤ 1
2d

(see, e.g., Cambanis et al. (1981)).

Now that the basic structure of a spatio-temporal covariance function with a moving-

average-type temporal margin has been established, we construct the spatial component to

be more specific. Using Theorem 1.3.1 as well as Corollary 1.3.2, we impose the well- known

Matérn spatial margin and give the conditions to create a valid covariance function.

The spatial covariance model (α�s�)νKν(α�s�), s ∈ Rd, was proposed in von Kármán

(1948) for ν = 1
3 in R3, constructed in the plane in Whittle (1954) via the stochastic partial
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differential equation, and proposed in Matérn (1960) in the general form, where α is a

positive constant, and Kν(x) stands for the modified Bessel functions of the second kind

of order ν (Gradshteyn and Ryzhik (2000)). It reduces to
�

π
2 exp(−α�s�) and

�
π
2 (1 +

α�s�) exp(−α�s�), s ∈ Rd, when ν = 1
2 and ν = 3

2 , respectively. Note when ν = 1
2 the

Matérn model becomes the exponential spatial covariance function. The parameter ν is a

smoothness parameter that controls the degree of the differentiability of the model. The

following theorem determines a spatio-temporal covariance function whose spatial margin

is a linear combination of von Kármán-Whittle-Matérn models and whose temporal margin

is a first-order moving average.

Theorem 1.3.2. Assume that ν, αk, and βk (k = 1, 2) are constants with ν > 0, 0 < α1 <

α2 and −1
2 ≤ β1 < β2 <

1
2 . A necessary and sufficient condition for the function

C(s; t) =






θ(α1�s�)νKν(α1�s�) + (1− θ)(α2�s�)νKν(α2�s�), t = 0,
θ(α1�s�)νKν(α1�s�)β1 + (1− θ)(α2�s�)νKν(α2�s�)β2, t = ±1, s ∈ Rd,

0, otherwise,

(1.8)

to be a stationary correlation function on Rd × Z is that the constant θ satisfies

�
1− αd

2(1− 2β1)

αd
1(1− 2β2)

�−1

≤ θ ≤
�
1− α2ν

1 (1 + 2β1)

α2ν
2 (1 + 2β2)

�−1

. (1.9)

The reason why β1 and β2 are so restricted in Theorem 1.3.2 is to presume the validity

of the temporal margin of (1.8)





1, t = 0,
θβ1 + (1− θ)β2, t = ±1,
0, otherwise,

in case θ equals 0 or 1. When β2 approaches
1
2 from its left-hand side, the lower bound of θ

in (1.9) tends to zero so that (1.8) reduces to a separable spatio-temporal model, which is

the product of a spatial model and a temporal model.

The lower bound of θ in (1.9) depends on the dimensional parameter d, but the upper

bound does not; in contrast, the upper bound of θ in (1.9) depends on the smoothness

parameter ν and the lower bound does not. Since the interval [0, 1] is only a subset of θ’s
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permissible domain (1.9) and β1 or β2 may be negative, the function (1.8) is flexible to

represent spatio-temporal positive and negative correlations.

Taking ν = 1
2 in (1.8) and omitting the constant, yields

Corollary 1.3.3. The function

C(s; t) =






θ exp(−α1�s�) + (1− θ) exp(−α2�s�), t = 0,
θ exp(−α1�s�)β1 + (1− θ) exp(−α2�s�)β2, t = ±1, s ∈ Rd,

0, otherwise,

(1.10)

is a stationary correlation function on Rd × Z if and only if the constant θ satisfies
�
1− αd

2(1− 2β1)

αd
1(1− 2β2)

�−1

≤ θ ≤
�
1− α1(1 + 2β1)

α2(1 + 2β2)

�−1

. (1.11)

For proof of Corollary 1.3.3 see Demel and Du (2011). The above is an example of

a spatio-temporal covariance function with an exponential spatial margin and a moving

average (MA(1)) temporal structure. This example is used in Section 1.3.1 to create a

simulation study of the performance of this covariance function and applied to study the

Kansas weather dataset.

1.3.1 Moving average simulation study

Using Theorem 1.3.2 and spatio-temporal correlation function of Corollary 1.3.3 we simulate

one hundred realizations from a Gaussian spatio-temporal process; with a constant mean

of zero and twenty uniformly distributed locations in R2 on the unit square at one hundred

time points in Z. The spatial marginal is an exponential structure and the temporal margin

is a MA(1). The model used for this simulation is from Corollary 1.3.3 with parameters;

α1 = 0.005, α2 = 0.009, β1 = 0.3, β2 = 0.4, and θ1 = 0.3.

In the simulations we compare the likelihoods of our model to the models introduced by

Gneiting (2002b). Gneiting has a separable model given by,

CG.SEP (s; t) = [exp(−c�s�)] ·
�
(1 + a|t|2α)−1

�
, s ∈ Rd

, t ∈ R, (1.12)

and a non-separable model given by,
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CG.NSEP (s; t) =
1

1 + a|t|2α

�
exp

�
− c�s�
(1 + a|t|2α)β/2

��
, s ∈ Rd

, t ∈ R. (1.13)

Note that Gneiting’s models are in terms of correlation functions and not covariance

functions. To have a covariance function one would multiply by the overall location variance

σ2. To start the process of evaluating the parameters we first look at time and space

independently of each other. As an example, look at the Autocorrelation Functions (ACFs)

for nine of the twenty locations. From these plots as well as plots for other locations it is

determined that at a fixed location time has a MA(1) structure. Spatially there is evidence

in the variogram, Figure 1.1 to suggest an exponential spatial structure.

Figure 1.1: Autocorrelation functions of nine of twenty locations (left) and spatial variogrom
at a fixed time (right)

Using weighted least squares procedure (Cressie and Huang (1999)) ,

W (θ) =
�

i,j

2�

u=1

�
Ĉ(hij; u)− C(hij; u|θ)

1− C(hij; u|θ)

�2

, (1.14)

where C(hij; u|θ) is the correlation function for the model and Ĉ(hij; u) is the empirical

space- time correlation. Here we minimize W (θ) on θ by summing over all locations and the
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first two time points since after a lag time of one the correlation is zero. Table 1.1 shows

the resulting parameter estimates.

Table 1.1: Parameter Estimates and standard errors

Parameter TRUE CMA(1)

α1 0.005 0.003728 (0.0004841)
α2 0.009 0.009186 (0.0014624)
β1 0.300 0.278291 (0.0383801)
β2 0.400 0.374883 (0.1149921)
θ1 0.300 0.250020 (0.0001042)

Table 1.1 is generated by finding the parameter estimates for all one hundred realizations

and taking an average. Notice that the TRUE parameters and estimated parameters are

virtually the same, which should be expected. Looking at the standard errors we can tell

that the estimates are stable and that the model is doing well estimating the parameters.

Another conclusion to draw from this analysis is that the weighted least squares estimates

provide effective estimates that are accurate with ease of computation. Gneiting’s models

and the proposed model are compared by their ability to predict the process and they

respected likelihoods. To compare prediction capabilities of the models, the data was split

into two parts; the first seventy time points are the training dataset and the last thirty are

the prediction dataset. Using two days of lag to predict the next day, Table 1.2 was created

by finding the average root mean square error, (RMSE). Here the root mean square error is

the average squared difference between the testing observed values and the forecasted values

based on the training dataset.

Note that from Table 1.2 we can see that the proposed model has the smallest RMSE at

all locations, and has slightly better predictions than Gneiting’s models when the temporal

margin is MA(1).

Our next comparison comes by analyzing the ratio between the likelihoods of the models

versus the true likelihood. Notice that Table 1.3 shows that the model (1.10) is much closer

to the true likelihood than Gneiting’s models.
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Table 1.2: Average RMSEs predicting the next day based on two days of lag

Model Loc.1 Loc.2 Loc.3 Loc.4 Loc.5 Loc.6 Loc.7 Loc.8

G.SEP 1.053 1.054 1.053 1.054 1.053 1.053 1.054 1.054
G.NSEP 1.053 1.054 1.053 1.054 1.053 1.053 1.054 1.054
CMA(1) 1.042 1.042 1.042 1.043 1.042 1.041 1.043 1.042

Model Loc.9 Loc.10 Loc.11 Loc.12 Loc.13 Loc.14 Loc.15 Loc.16

G.SEP 1.054 1.053 1.053 1.054 1.053 1.054 1.053 1.053
G.NSEP 1.054 1.053 1.053 1.054 1.053 1.054 1.053 1.053
CMA(1) 1.042 1.042 1.042 1.042 1.042 1.043 1.042 1.041

Model Loc.17 Loc.18 Loc.19 Loc.20

G.SEP 1.054 1.054 1.054 1.053
G.NSEP 1.054 1.054 1.054 1.053
CMA(1) 1.043 1.042 1.042 1.042

Table 1.3: Likelihood Comparisons

Model versus TRUE Average Likelihood Ratio

Gneiting Separable 0.02951883
Gneiting Non Separable 0.08797862
CMA(1) 0.70498240

This simulation study suggests that the proposed model, which takes into account the

discreteness of the time points has an advantage over Gneiting’s model when the temporal

margin is MA(1). Now we will fit Kansas daily precipitation data using the developed

space-time covariance function with a MA(1) temporal margin.

1.3.2 Kansas daily precipitation data

When dealing with raw daily weather data there are numerous issues that must be dealt

with, one being missing data observations. This missing data can occur for many reasons;

funding loss in a station, missed observation, data not entered, and much more. Using

space-time modeling to fill in these gaps is one way of solving this problem. In Chapter 3
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this analysis is used to model precipitation for Kansas counties to see how weather plays a

vital role is the production of agriculture.

In this analysis daily precipitation across the state of Kansas is considered from 1990 to

2011. The data was collected from the National Oceanic and Atmospheric Administration

(NOAA) on each of the 105 counties of Kansas. Over the state of Kansas there are 1123

stations, gray points in Figure 1.2, that supply data through the specified time range. First

each county was aggregated by taking a daily average across the county’s weather stations.

This was done both to normalize the data and provide stationarity. Now each county has

a time series of daily precipitation measurements in millimeters. Since an average is taken

over the county, the time series is then allocated to the centroid point of that county, shown

by the red squares in Figure 1.2. The resulting dataset is 105 time series, one for each
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Figure 1.2: Kansas Counties Map: Red squares are centroid points, gray points are stations,
orange highlighted counties sampled to display ACFs.

county, of daily precipitation data in millimeters over 8030 daily time points from January
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1, 1990 to December 31, 2011. The dataset was then split into the first fifteen years to fit

the model and the last five years to test the models predictive capabilities.

To begin the analysis we look at each process independently. It was observed that the

margins of both space and time are approximately normally distributed, which allows the

use of Gaussian theory for both the temporal process and spatial process when modeling

and predicting.

Based on the previous works of Haslett and Raftery (1989), Gneiting (2002b), Stein

(2005a) and Gneiting et al. (2007), the seasonal trend was fit and removed using annual

harmonic regression, (see Figure 1.3). Also the spatial trend was extracted by removing

0 100 200 300

−
2

−
1

0
1

2
3

4

Day of the Year

S
e
a
so

n
a
l C

o
m

p
o
n
e
n
t

Seasonal Component (1990−2001)

Figure 1.3: Seasonal Component of Kansas daily precipitation using annual harmonic re-
gression.

the station specific means. To start the analysis of the space-time process an exploratory

analysis of both space and time margins are done.

Referencing the orange highlighted counties of Figure 1.2, the ACFs of those counties

are given in Figure 1.4. Notice the highlighted counties are equally spaced North to South

and East to West, creating a small systematic sample of the state of Kansas. This small

sample will be used to show a finer scale of results later in the analysis. Using time series

analysis techniques, examining all Kansas counties indicates that the temporal marginal
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can be modeled with a MA(1) process. This result is represented by ACFs of the nine

highlighted counties. Figure 1.5 shows the fitted empirical time correlations for two days of

lag.
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Figure 1.4: Autocorrelation functions of nine chosen counties over Kansas

Exploring the spatial component results in an exponential type structure. Figure 1.5

shows the empirical spatial correlation with the fitted mixture exponential model as proposed

by Corollary 1.3.3. Based on the moving average simulation study and literature, namely

Gneiting (2002b) and Gneiting et al. (2007), Cressie’s weighted least squares (1.14) was used

to fit parameter estimates. Fitting space and time independent of each allows for reasonable

starting parameter values when fitting the overall space-time model. The proposed model

with added measurement error term ν known as the nugget effect is given by,

C(s; t) =






(1− ν) {θ exp(−α1�s�) + (1− θ) exp(−α2�s�)}+ νδs=0, t = 0,
(1− ν) {θ exp(−α1�s�)β1 + (1− θ) exp(−α2�s�)β2}
+ν {θβ1 + (1− θ) β2} δs=0, t = ±1, s ∈ Rd,

0, otherwise,
(1.15)

Using Cressie’s WLS (1.14) to fit (1.15) the following parameter estimates where obtatined.

ν = 0.322, α1 = 0.009, α2 = 0.003, θ = 0.230, β1 = −0.495, and β2 = 0.495. Notice that in
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Figure 1.5: Kansas precipitation marginal plots: (left) time and (right) space.

this case α1 > α2, this cause a slight modification to the inequality (1.10) where the α1 and

α2 change positions in the inequality.

To show the performance of the proposed model (1.15), comparisons are made with

popular models in Gneiting (2002b) and Gneiting et al. (2007). Using Gneiting’s separable

model

CG.SEP (s; t) = {(1− ν) exp(−c�s�) + νδs=0} ·
�
(1 + a|t|2α)−1

�
, s ∈ Rd

, t ∈ R, (1.16)

and Gneiting’s non separable model

CG.NSEP (s; t) =
1− ν

1 + a|t|2α

�
exp

�
− c�s�
(1 + a|t|2α)β/2

�
+

ν

1− ν
δs=0

�
, s ∈ Rd

, t ∈ R, (1.17)

the same fitting procedures where used. First Gneiting’s models where explored marginally

in the same manner as the proposed model. A Cauchy type model was used to fit the

temporal correlation, suggested by the empirical correlation function in Figure 1.5. The

red dotted line shows the Cauchy fit, which fits the empirical time correlation rather well.

An exponential spatial structure also seemed appropriate for Gneiting’s model as seen in

Figure 1.5. Notice that both the mixture exponential in blue and Gneiting’s exponential fit

in red are essential the same. Cressie’s WLS was used to find overall parameter estimates
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for both the separable and non- separable models.
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Figure 1.6: Empirical precipitation space-time correlations and fitted models based on 0,
1, 2 days of lag. Gneiting’s separable model denoted by G.SEP (red), non separable model
denoted by G.NSP (blue), and proposed model denoted by MA(1) (green).

Figure 1.6 shows the empirical space time correlations for 0, 1, and 2 days of lag with

three fitted space-time models: Gneiting’s separable model is represented by the blue line,
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Gneiting’s non-separable model is denoted by the red line, and the proposed model is the

green line. Notice that after two days of lag the space-time correlation is close to zero. This

fact encourages us to do one day ahead prediction based on two days of lag.

One comparison measurement used is the root mean-square error (RMSE). The RMSE

is calculated by,

RMSE =

�
1

T

T�

t=1

(ft − ot)
2

�1/2

; (1.18)

where T is the number of time points in the testing dataset, 1825 in this analysis, ot is

the observed at time point t, and ft is the forecasted at time point t. The RMSE was

calculated for each county. Table 1.4 gives the average RMSE over all counties. Notice that

all the models have a similar RMSE around 6.8, meaning on the average there is only 6.8

millimeters of error in predicting the next day’s precipitation. The proposed model denoted

CMA(1) does have the lowest average RMSE and standard deviation. The low standard

deviation over counties suggests the models are fairly accurate in one day ahead prediction

based on two days of lag. The 95% confidence intervals give a upper and lower bound

for prediction errors across counties with the proposed model having the narrowest width.

The low count indicates how many counties have the lowest RMSE per model. Sixty-five

counties, 62% of counties, are better modeled by the proposed model. This shows that the

proposed model performs best for most of the counties.

Table 1.4: Kansas Precipitation RMSE Statistics

Measure G.SEP G.NSEP CMA(1)(s; t)
AVG. RMSE 6.899 6.879 6.861
STD. DEV. 1.863 1.833 1.817
95% C.I. (6.54, 7.24) (6.52, 7.23) (6.51, 7.21)
Low Count 29 (28%) 11 (10%) 65 (62%)

Table 1.5 shows a snap shot of all the counties to show the RMSEs for the counties

highlighted in Figure 1.2. Here again we see that for most counties the CMA(1) model

preforms constantly better then than Gneiting’s models.
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Table 1.5: Kansas Precipitation Average RMSE for selected Counties

County G.SEP G.NSEP CMA(1)(s; t)
Anderson 8.787 8.784 8.844
Grant 4.150 4.164 4.179
Jackson 7.035 7.083 7.129
Kingman 6.977 6.977 6.954
Labette 10.143 9.982 9.917
Mitchell 6.098 6.074 6.058
Rice 7.539 7.513 7.427
Scott 5.041 4.963 4.894
Thomas 4.691 4.699 4.660

The continuous ranked probability score, Gneiting et al. (2007), is used to compare

predictive distributions Ft = N (µt, σ
2
t ) . Let I(y ≥ x) be an indicator function that takes

the value 1 when y ≥ x and 0 otherwise. The continuous ranked probability score is defined

as,

crps(F, x) =

� ∞

−∞
(F (y)− I(y ≥ x))2 dy. (1.19)

However, if Ft = N (µt, σ
2
t ) has a normal distribution with mean µ and variance σ2 the

equation (1.19) can be evaluated as

crps(N(µ, σ2), x) = σ

�
x− µ

σ

�
2Φ

�
x− µ

σ

�
− 1

�
+ 2φ

�
x− µ

σ

�
− 1√

π

�
. (1.20)

For each county we find the crps for each time point in the testing dataset and then take

an average over the scores to have an average CRPS for each county given by,

CRPS =
1

T

T�

t=1

crps(N(ft, σ
2
t ), ot), (1.21)

and the smaller the CRPS is the better. Here again T = 1825, the number of time points

in the testing dataset, ft is the forecast at time t, σ2
t is the variance of the forecast at each

time point, and ot is the observed at time point t of the test data. Table 1.6 shows the mean

CRPS of all counties and again the proposed model has the lowest value. Also the model

with MA(1) temporal structure has the most counties with the lowest CRPS with 89 out of
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105 counties given by the Low Count, while the separable model can not work as well for

all counties.

Table 1.6: Kansas Precipitation CRPS Statistics

Measure G.SEP G.NSEP CMA(1)(s; t)
AVG. CRPS 9.720 9.644 9.580
STD. DEV. 3.913 3.887 3.840
95% C.I. (8.96, 10.48) (8.89, 10.40) (8.84, 10.32)
Low Count 0 (0%) 16 (15%) 89 (85%)

Table 1.7 gives the individual county average for the highlighted counties in Figure 1.2.

Notice that the nine highlighted counties have the lowest CPRS when the model with

a MA(1) temporal margin is chosen. This indicates again that the proposed model is

constantly performing better overall.

Table 1.7: Kansas Precipitation Average CRPS for selected Counties

County G.SEP G.NSEP CMA(1)(s; t)
Anderson 14.827 14.726 14.583
Grant 5.797 5.757 5.701
Jackson 13.279 13.189 13.071
Kingman 9.559 9.486 9.386
Labette 17.862 17.732 17.595
Mitchell 7.507 7.447 7.368
Rice 8.692 8.622 8.512
Scott 4.337 4.275 4.340
Thomas 5.592 5.557 5.507

Based on this analysis, the proposed model (1.15) preforms slightly better than Gneit-

ing’s models when the temporal margin of the space-time process can be modeled with a

MA(1) structure. This suggests that taking into account the discreteness of the times series

does help to improve the predictability of the model and the time series analysis tools bring

convenience in model identification. Also the addition of the mixture on two exponential

spatial covariance functions aids in the flexibility of the model. Now we will make the ex-
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tension to include some ARMA type temporal margins in Section 1.4. Once the model is

established we use the famous Irish Wind dataset to compare to Gneiting existing results

from Gneiting (2002b) and Gneiting et al. (2007).

1.4 ARMA-type temporal margin

The ARMA structure is widely used in time series analysis. In this section we extend

the spatio-temporal covariance function with discrete temporal margin to include such

a structure. By using mixture method, the following Theorem 1.4.1 produces a spatio-

temporal covariance function, in which the marginal temporal process has an autoregressive

or autoregressive-moving average structure. The following theorem will provide a sufficient

and necessary condition for the proposed function to satisfy (1.2), and therefore become a

valid covariance spatio-temporal function. The proof is based on the well-known Bochner’s

Theorem (Rudin (1963)) and is given in the Chapter 1 Appendix 1.6.

Theorem 1.4.1. Assume that ν, α1, α2, β1, and β2 are constants with ν > 0, 0 < α1 < α2

and −1 < β1 < β2 < 1. A necessary and sufficient condition for the function

C(s; t) = θ(α1�s�)νKν(α1�s�)β|t|
1 + (1− θ)(α2�s�)νKν(α2�s�)β|t|

2 , s ∈ Rd
, t ∈ Z, (1.22)

to be a stationary covariance function on Rd × Z is that the constant θ satisfies

�
1− αd

2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

�−1

≤ θ ≤
�
1− α2ν

1

α2ν
2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

�−1

. (1.23)

The spatial margin of (1.22) is obtained by taking t = 0,

C(s; 0) = θ(α1�s�)νKν(α1�s�) + (1− θ)(α2�s�)νKν(α2�s�), s ∈ Rd
.

The temporal margin of (1.22) is

C(0; t) = θβ
|t|
1 + (1− θ)β|t|

2 , t ∈ Z,

with the restriction (1.23) for the parameter θ, and is a linear combination of correlation

functions of two univariate first-order autoregressive (AR) time series, which includes fam-

ilies of correlation functions of stationary AR(1), AR(2), and ARMA (2, 1) time series.
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Roughly speaking, αi’s can be looked at as the scaling parameter for the spatial covariance

exponential model. The βi’s are the corresponding coefficients when fitting an autoregres-

sive time series and θ plays as a balancing parameter based on strength of both space and

time interaction. If β1 = β2 then the temporal margin has an AR(1) structure and (1.22)

becomes a separable model. In the case when the time lag is zero the spatial marginal is

given by,

C(s; 0) = θ exp(−α1�s�) + (1− θ) exp(−α2�s�), s ∈ Rd
,

which is a mixture of two spatial Matérn models. In the special case where α1 = α2 the

spatial margin is reduced to a single Matérn model. Example 1.4.1 yields results when

ν = 1
2 ; exponential case. When applying this model we can use time series techniques to

fit independent time series for each location developing ARMA order and starting values

for β1, β2, and θ, so the final parameter estimation can be achieved by maximum likelihood

estimation or weighted least square estimation. For the spatial aspect we can use spatial

statistics procedures to find starting values for α1 and α2. The advantage here is that we

can employ well-established time series techniques, such as ACF and PACF to determine

the model patterns and orders since the temporal margin is treated as ordinary time series.

This is worth mentioning due to increasing demand on the statistical technique for the

model selection and justification given all these different theoretical models developed in

continuous space and time, e.g. Gneiting (2002b), Ma (2003), and Gneiting et al. (2007).

The permissible domain of θ in (1.22) contains the interval [0, 1] as a subset, in which

case (1.22) is a convex combination of two separable space-time covariance functions. For

other values of θ, (1.22) is the difference of two separable space-time covariance functions.

The left-hand bound of (1.23) involves the dimensional parameter d, while its right-hand

bound does not. When d gets large, the interval of (1.23) becomes narrow, and when

d → ∞, the left-hand bound of (1.23) tends to 0. The right-hand bound of (1.23) depends

on the smoothness parameter ν for the spatial component, while the left-hand bound does

not. When ν is large so that the model is spatially smooth, the interval of (1.23) becomes
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narrow.

An embedding problem arises when the whole or a part of the space-time domain of

a covariance function is over a lattice. More precisely, the question is: can we embed the

covariance function (1.22) into a covariance function whose space-time domain is Rd × R?

To this end, it seems better to compare (1.22) with the following covariance function whose

temporal domain is R, which differs from that of (1.22),

C(s; t) = θ(α1�s�)νKν(α1�s�)β|t|
1 + (1− θ)(α2�s�)νKν(α2�s�)β|t|

2 , s ∈ Rd
, t ∈ R, (1.24)

where β1 and β2 are restricted to be positive with 0 < β1 < β2 < 1. Theorem 3 of Ma (2005)

with ν2 =
1
2 gives the permissible condition of θ as

�
1− αd

2

αd
1

ln β2

ln β1

�−1

≤ θ ≤
�
1− α2ν

1

α2ν
2

ln β1

ln β2

�−1

. (1.25)

It is easy to verify that

(1− β1)(1 + β2)

(1 + β1)(1− β2)
≤ − ln β1

− ln β2
, 0 < β1 < β2 < 1.

Thus, the permissible interval of θ in (1.23) is included in that in (1.25), namely,
��

1− αd
2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

�−1

,

�
1− α2ν

1

α2ν
2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

�−1
�

⊂
��

1− αd
2

αd
1

ln β2

ln β1

�−1

,

�
1− α2ν

1

α2ν
2

ln β1

ln β2

�−1
�
.

This means that a stationary random field on Rd×Z with covariance (1.22) can be embedded

into a stationary random field on Rd × R with covariance (1.24) when β1 and β2 are both

positive. However, this is not allowable if β1 or β2 are negative, in which case (1.24) would not

be real-valued. It is unclear whether (1.22) can be embedded into a real-valued, stationary

covariance function on Rd ×R when β1 or β2 is negative. Moreover, some of the models for

discrete time can not be expanded to continuous time which covers the discrete one as a

constrained version on discrete domain, which is so-called embedding problem. For instance,
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the autocorrelation function (ACF) of AR(1) process is β|h| with −1 < β < 0 and h ∈ Z,

but βt, t ∈ R is not a valid ACF for continuous case.

The following is a special case when ν = 1
2 , producing a spatio-temporal covariance

function with an exponential spatial margin and a ARAM-type temporal margin.

Corollary 1.4.1. Assume that α1, α2, β1, and β2 are constants with 0 < α1 < α2 and

−1 < β1 < β2 < 1. A necessary and sufficient condition for the function

C(s; t) = θ exp(−α1�s�)β|t|
1 + (1− θ) exp(−α2�s�)β|t|

2 , s ∈ Rd
, t ∈ Z, (1.26)

to be a stationary covariance function on Rd × Z is that the constant θ satisfies
�
1− αd

2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

�−1

≤ θ ≤
�
1− α1

α2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

�−1

. (1.27)

The complete proof of Corollary 1.4.1 is given in Demel and Du (2011). This corollary

is used for the Irish Wind data analysis in Section 1.5 with a nugget effect extension.

Another advantage of the proposed model is that the simple structure of the model gives

intuitive meaning for each component, which eases the cumbersome task of determining the

appropriateness of the model. The ARMA process can be easily interpreted and techniques

for estimating parameters are well- understood. This leads us to use these techniques to

find starting values to fit the over space-time covariance function presented. All these are

not readily shared in general continuous case. For example, Gneiting (2002b) states that

his model relies on two functions which must be complete monotone or that the derivatives

are monotone. A researcher has to both determine these functions, verify their conditions,

and obtain that the resulting covariance function is positive definite. There is no clear

defined method proposed by Gneiting for determining these functions, which can cause some

difficulties in actual application. Although this is a challenge to the researcher, Gneiting’s

model is very versatile in fitting spatio-temporal data. Our proposed model presented can

serve as an attempt in seeking a more straightforward approach to study spatial-temporal

data where at each location the temporal process can be modeled with a ARMA type

covariance structure.
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1.4.1 Asymmetric Covariance Functions

As mentioned earlier the need of an asymmetric covariance model comes into play when

taking into account the underlying space-time effects caused by natural occurring forces.

To construct stationary functions that are not fully symmetric, which means C(s, t) =

C(s,−t) = C(−s, t) = C(−s,−t) is not necessarily true. Gneiting et al. (2007) used the gen-

eral idea of a Lagrangian reference frame (May and Julien (1998)). This Lagrangian frame-

work can be thought of as modeling the center of an air, water, or thermal mass. The re-

sulting spatio-temporal random field has stationary covariance, C(s; t) = ECS (s−Vt) , s ∈

Rd, t ∈ R, where CS is a valid spatial covariance function and V ∈ Rd is a random velocity

vector. This random velocity vector has various choices depending on the physicality of

the data and can be justified when included in the model. When analyzing the Irish Wind

Data, Gneiting et al. (2007), noted that Ireland has a prevailing westerly wind and that

the simplest case is when V = v is constant and represents the mean or prevailing wind.”

Applying this knowledge, they form a special case of the the Lagrangian which has the form,

CLGR (s, t) =

�
1− 1

2v
|slong − vt|

�

+

, (1.28)

where the spatial separation vector s = (slong, slat)
� has longitudinal lag (east-west) com-

ponent slong and latitudinal lag (north-south) component slat, and v ∈ R is a longitudinal

velocity. Recall that Gneiting’s Model assumes a continuous frame for time while the pro-

posed model in Corollary (1.4.1) has a discrete time domain. Based on the fact that a

correlation function on R restricted to a discrete domain subset of itself, say Z, will still be

a valid correlation function on that discrete domain. Therefore, to apply the Lagrangian

reference frame and enrich our model to accommodate asymmetry property, we only have

to change the time domain from R to Z. Then make the convex combination of the built

model and the asymmetric model (1.28) to create

C (s, t) = (1− λ)
�
θ exp(−α1�s�)β|t|

1 + (1− θ) exp(−α2�s�)β|t|
2

�

+ λ

�
1− 1

2v
|slong − vt|

�

+

. 0 < λ < 1.
(1.29)
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Now we are ready to apply and compare the models above using the Irish wind dataset.

1.5 Irish Wind Data Analysis

To compare the proposed model (1.22), (i.e. (1.4.1)) with existing models presented by

Gneiting (2002b), and Gneiting et al. (2007), we use the Irish wind dataset first analyzed by

Haslett and Raftery (1989). This is a spatio-temporal dataset that measures average daily

wind speeds taken from twelve synoptic meteorological weather stations in Ireland from

year 1961 to 1978. As in Haslett and Raftery (1989), Gneiting (2002b), Stein (2005a,b),

and Gneiting et al. (2007), the following steps were taken to clean the data. A square root

transformation is taken to stabilize the variance over both stations and time periods so that

the margins of space and time are approximately normally distributed. This allows us to

use Gaussian theory for both the temporal process and the spatial process. The location

of Rosslare was removed for stationarity reasons, as recommended by Haslett and Raftery

(1989). The seasonal trend was fit and removed using annual harmonic regression. To

extract the spatial trend the station specific means where removed. The final resulting

dataset becomes time series of velocities for eleven meteorological stations, to which we will

apply the proposed models (1.32) and (1.29). For evaluating the ability to predict, the data

are split into a training dataset from years 1961 to 1970 and a test dataset from years 1971

to 1978. These steps were also taken by Haslett and Raftery (1989), Gneiting (2002b), Stein

(2005a,b), and Gneiting et al. (2007).

1.5.1 Symmetric Covariance Models

To start the analysis we first compare the symmetric cases of the proposed models. To

achieve a good fit of the data Gneiting (2002b), (see, Figure 5 there in), noted that the

space-time correlation approaches zero after a lag of three days; we will utilize this in fitting

our model. The symmetric spatio-temporal covariance functions that we will compare are
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Gneiting’s separable and non-separable models given by,

CG.SEP (s; t) = {(1− ν) exp(−c�s�) + νδs=0} ·
�
(1 + a|t|2α)−1

�
, s ∈ Rd

, t ∈ R, (1.30)

and

CG.NSEP (s; t) =
1− ν

1 + a|t|2α

�
exp

�
− c�s�
(1 + a|t|2α)β/2

�
+

ν

1− ν
δs=0

�
, s ∈ Rd

, t ∈ R, (1.31)

and our proposed model denoted by CSM(s; t) and given by,

CSM(s; t) = (1− ν)
�
θ exp(−α1�s�)β|t|

1 + (1− θ) exp(−α2�s�)β|t|
2

�

+ ν

�
θβ

|t|
1 + (1− θ) β|t|

2

�
δs=0, s ∈ Rd

, t ∈ Z,
(1.32)

Again note that the above functions are in terms of a correlation function. This is done

for the ease of coding and computation. Here ν is a spatial nugget effect coefficient that can

also account for measurement error or micro variability; and δ is an indicator function that

equals one only when spatial lag is zero. Using the same techniques mentioned in Section 1.4

we first look at space and time independently of each other. From Figure 1.7 we can see

that it is reasonable that the temporal margin for each station could possibly have an AR(1)

or AR(2) structure. Recall that by allowing β1 = β2 in (1.32) we obtain an AR(1) temporal

margin structure. For comparison we fit both the AR(1) and AR(2) cases. Compared to

the autoregressive structure of proposed model (1.32) which accounts for the discrete time

points, Gneiting (2002b) uses a Cauchy type function to model the temporal margin without

formal justification other than using empirical time correlation. Again note that Gneiting’s

methods have to chose a function to fit both the temporal process and the spatial process;

and verify the nonnegative definiteness. The tools from time series allow us to make the

choice of AR(1) or AR(2). Both methods use weighted least squares to fit the temporal

process in order to find starting values for temporal related parameters for the covariance

functions. Notice in Figure 1.8 that both Gneiting’s Cauchy and the presented AR(2) fit

the empirical temporal correlation quite well. To fit (1.32) spatially we used the α1 = α2

simplification to obtain a single exponential. Gneiting also uses a exponential structure for
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fitting the spatial correlation. Looking at Figure 1.8 the spatial correlation plot, notice that

Gneiting’s and the proposed model fit are identical.

Based on the simulation study of the moving average case, parameter estimates were

obtained using Cressie’s weighted least squares procedure. Gneiting also used this approach

in fitting his models. After we find the parameter estimates for the models we compare the

empirical correlations with the fitted correlations for each model. The empirical correlation

is calculated by finding the cross-correlation over time between all stations. The parameter

estimates for Gneiting’s models (1.30) and (1.31), as well as the proposed model (1.32) are

given in Table 1.5.1.
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Figure 1.7: Partial autocorrelation function of selected locations in the Irish wind data.

From Figure 1.9 we can evaluate plots of fitted correlation versus empirical correlation.

For spatial correlation which is given by C(s; 0) (black). Using the second set of four plots in

Figure 1.9 we can see that the models fit the empirical correlations quite well at a time lag

of 0. At a time lag of one (red) we see that all models start to under predict the empirical
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Figure 1.9: Left set of four: Empirical space-time correlations versus model fitted space-time
correlation. Right set of four: Fitted - Empirical versus (Fitted + Empirical)/2. Plot based
of years (1961-1970)
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Table 1.8: Irish Wind Parameter Estimates

G.SEP G.NSEP CSM(s; t) AR(1) CSM(s; t) AR(2)
ν = 0.04153 ν = 0.04153 ν = 0.04267 ν = 0.04312
c = 0.00128 c = 0.00128 α1 = 0.00126 α1 = 0.00127
a = 0.97200 a = 0.97200 θ = 1.4318 θ = 1.07324
α = 0.83400 α = 0.83400 β1 = 0.52002 β1 = −0.16108

β = 0.68060 β2 = 0.48623
1 G.SEP is Gneiting’s separable model (1.30)
2 G.NSEP is Gneiting’s non-Separable model (1.31)
3 CSM(s; t) AR(1) is model (1.32) taking α1 = α2 and β1 = β2
4 CSM(s; t) AR(2) is model (1.32) taking α1 = α2

correlation. The second set of plots confirm this conclusion. As the time lag increases to two

and three, (green and blue), we see the models start to behave better, but still have a lack of

fit when compared to the empirical. To evaluate the prediction capabilities of the models the

root-mean-square errors (RMSEs) were calculated between the fitted based on three days

of lag and the test data set. When comparing these results the smaller the better. Each

column corresponds to a given model, here the Empirical Model use the training empirical

correlations to predict the future correlations. Roughly this is how well the data can predict

itself through the calculated empirical correlations. Gneiting noted in his papers that the

empirical model does have the smallest RMSE overall, but these predictions are only valid

at the given locations. We can not use this model to predict at unknown locations. Recall

that under model (1.32) in the AR(1) case, the model becomes separable, and comparing

it to Gneiting’s separable model (1.30) we find the results comparable. The same is true

when looking at model (1.32) in the AR(2) case and Gneiting’s non-separable model (1.31).

Again the presented model is an alternative to Gneiting’s that is easier to apply in that the

researcher does not have to chose unknown functions to build the covariance structure.

We also calculated the likelihood using the three days of lag and then averaging over

each set of three days, which can be seen in Table 1.10. In all cases the log likelihoods are

comparable. So for the Irish wind data the proposed models in the AR(1) and AR(2) cases
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Table 1.9: Irish Wind: RMSEs for one-day ahead predictions based on three previ-

ous days

Station G.SEP CSM(s; t)AR(1) G.NSEP CSM(s; t)AR(2) Empirical
Valentia 0.50052 0.50040 0.50100 0.50074 0.49960
Belmullet 0.49496 0.49553 0.49534 0.49609 0.49396
Claremorris 0.49093 0.49180 0.49157 0.49178 0.48589
Shannon 0.46753 0.46724 0.46834 0.46740 0.45405
RochesPoint 0.48321 0.48337 0.47871 0.48428 0.46475
Birr 0.47713 0.47684 0.47597 0.47744 0.46239
Mullingar 0.42742 0.42750 0.42427 0.42747 0.41433
MalinHead 0.49635 0.49663 0.49191 0.49727 0.47913
Kilkenny 0.43887 0.43937 0.43584 0.43969 0.41412
Clones 0.48634 0.48680 0.48389 0.48710 0.46574
Dublin 0.44986 0.44973 0.44528 0.44903 0.42705

Table 1.10: Irish Wind: Log Likelihoods; symmetric case

G.SEP CSM(s; t)AR(1) G.NSEP CSM(s; t)AR(2) Empirical
19.1049 19.1574 18.6119 19.2153 19.664738

are very competitive with Gneiting’s models. Note that Gneiting’s models are very versatile,

but our models provide nearly identical results with a procedure that is easier to apply and

more intuitive when the temporal margin is close to an AR(1), AR(2), or ARMA(2, 1)

structure. The ease of the application does not come from fitting, both Gneiting’s and

the presented models are fitted the same way. The ease comes from using the exploratory

analysis to gain parameter estimates for the models. The presented model also utilizes basic

time series techniques to justify the use of an AR(1), AR(2), or ARMA(2, 1) structure. The

model proposed can use classical ARMA interpretation of the temporal related parameters,

while this is not a straightforward manner in some theoretical continuous space-time models.
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1.5.2 Asymmetric Covariance Models

Now we will take into account asymmetric cases and compare Gneiting’s general stationary

model,

CG.STAT (s; t) =
(1− λ)(1− ν)

1 + a|t|2α

�
exp

�
− c�s�
(1 + a|t|2α)β/2

�
+

ν

1− ν
δs=0

�

+ λ

�
1− 1

2v
|slong − vt|

�

+

s ∈ Rd
, t ∈ R,

(1.33)

versus the asymmetric case of the proposed model denoted by CASYM(s; t), and given by,

CASYM(s; t) = (1− λ)

�
(1− ν)

�
θ exp(−α1�s�)β|t|

1 + (1− θ) exp(−α2�s�)β|t|
2

�

+ ν

�
θβ

|t|
1 + (1− θ) β|t|

2

�
δs=0

�

+ λ

�
1− 1

2v
|slong − vt|

�

+

s ∈ Rd
, t ∈ Z.

(1.34)

In the asymmetric case we see the addition of two new parameters λ, the weight pa-

rameter associated with the Lagrangian reference, and v is the speed in which the westerly

wind systems move, measured in kilometers per day. Here we use the existing parameter

estimates that we found in the symmetric case and use weighted least squares and obtain

fitted estimates �λ = 234 kilometers per day and �v = 0.0573 as did in Gneiting et al. (2007).

From Figure 1.10 we can evaluate plots of fitted correlation versus empirical correlation.

Spatial at a time lag of zero (black) all the models fit rather well for both Gneiting’s and

our model (1.34). At a time lag of one (red) we see that Gneiting’s model (1.33) and the

model (1.34) fits are about the same. At a lag of two Gneiting’s model is slightly better

than model (1.34). At three days the model both asymmetrically models seem to have a

similar fit. Again we conclude that the model (1.34) is competitive to Gneiting’s methods.

To compare prediction capability the RMSEs were calculated between the fitted based on

three days of lag and the test dataset. When comparing these results the smaller RMSE

indicates better prediction.

Notice that again in Table 1.5.2 we see similar results as the symmetric case, in that

our model (1.34) is comparable to Gneiting’s model (1.33). If we compare Tables 1.5.1 and
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Figure 1.10: Upper: Empirical versus fitted correlation Gneiting’s stationary model (1.33)
(left) and CASYM(s; t) AR(2) (right). Lower: Fitted - Empirical versus (Fitted + Empiri-
cal)/2. Plot based of years (1961-1970)

1.5.2, notice that Gneiting’s model (1.33) has the lowest RMSEs, but our model (1.34) is

very close. When applying the asymmetric case with the proposed model (1.34) note that

the temporal margin is no longer autoregressive in its nature. This could be why our model

(1.34) does not improve over the model (1.32). We also calculated the likelihood using

the three days of lag and then averaging over each set of three days, which can be seen in

Table 1.12, in which case our model (1.34) again is very comparable to Gneiting’s.

After analyzing both the symmetric and asymmetric cases we can see that our models

(1.32) and (1.34) are highly comparable to Gneiting’s models (1.30), (1.31), and (1.33) on

all accounts. Gneiting’s models are very versatile, but the models we proposed here provide

nearly identical predictions and likelihoods with a procedure that is easier to apply and more
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Table 1.11: Irish Wind: RMSEs for one-day ahead predictions based on

three previous days

Station G.STAT CASYM(s; t) AR(2) Empirical
Valentia 0.4989789 0.5041726 0.4995971
Belmullet 0.4945723 0.4982614 0.4939611
Claremorris 0.4896983 0.4938673 0.4858922
Shannon 0.4657336 0.4694637 0.4540456
RochesPoint 0.4737622 0.4857265 0.4647548
Birr 0.4724635 0.4793497 0.4623907
Mullingar 0.4193231 0.4291690 0.4143287
MalinHead 0.4878435 0.4984323 0.4791251
Kilkenny 0.4294301 0.4401993 0.4141247
Clones 0.4788818 0.4879050 0.4657351
Dublin 0.4400079 0.4494564 0.4270464
1 G.STAT is Gneiting’s General Stationary (Asymmetric) Model (1.33)
2 CASYM(s; t) AR(2) ASYM is model (1.34) taking α1 = α2

Table 1.12: Irish Wind: Log Likelihoods; asymmetric case

MODELS G.STAT CASYM(s; t) AR(2) Empirical
Log likelihood 18.267072 18.484894 19.664738

intuitive when the temporal margin is of an ARMA type time series. The advantage here is

that our model takes into account the fact that the data are collected in time and are often

considered as a realization of a time series. There are well developed techniques that can

be borrowed to aid the choice of the models rather than trying to find an unknown function

that fits the empirical time correlation without much justification. In this sense we believe

our proposed models is in the direction of trying to utilize convenient techniques in time

series and spatial statistics for practical continuous space and discrete time data modeling,

which covers a even larger class of models which may not have continuous counterparts. In

addition, the relative ease of interpretation of parameter estimation stems from being able

to use those properties studied for time series.
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1.6 Chapter 1 Appendix

The following contains proofs for theorems discussed in Chapter 1

Bochner’s Theorem. Suppose that C is a continuous on Rd ×R. Then C is a covariance

function if and only if it is of the form

C(s; t) =

� �
e
i(s�ω+tτ)

dF (ω, τ), (s; t) ∈ Rd × R, (1.35)

where F is a finite, non-negative measure on Rd × R.

This allows us to use Fourier transforms to aid us in the proofs for nonnegative definite-

ness for the proposed covariance functions.

1.6.1 Proof of Theorem 1.3.1

With Lemma 1.3.1 ; we only need to show the necessary part. Being a covariance function

on Rd, (1.3) is positive definite; that is, the inequality

n�

i=1

n�

j=1

aiajC(si, sj; ti − tj) ≥ 0

holds for every positive integer n, any real numbers ak, and any sk ∈ Rd, tk ∈ N, k = 1, . . . , n.

In particular, for two arbitrary positive integers n and m, choose arbitrarily points s1, . . . , sn

and points t1, . . . , tm, from which to form nm pairs si and tj, and then for corresponding

coefficients take the products aibj, i = 1, . . . , n, j = 1, . . . ,m. We obtain

n�

i=1

n�

i�=1

m�

j=1

m�

j�=1

aiai�bjbj�C(si, si� ; tj − tj�) ≥ 0. (1.36)

Define

C1(t) =






1, t = 0,
1
2 , t = ±1,
0, t = ±2,±3, . . . ,

and C2(t) =






1, t = 0,
−1

2 , t = ±1,
0, t = ±2,±3, . . . ,
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which are the covariances of the first-order moving average processes. Then inequality (1.36)

is rewritten as, with a factor 1
2 dropped,

n�

i=1

n�

i�=1

aiai�C+(si, si�)
m�

j=1

m�

j�=1

bjbj�C1(tj − tj�)

+
n�

i=1

n�

i�=1

aiai�C−(si, si�)
m�

j=1

m�

j�=1

bjbj�C2(tj − tj�) ≥ 0. (1.37)

Particularly selecting tj = j, j = 1, . . . ,m, and letting bj take values from the sets {cos(ω), . . .,

cos(mω)} and {sin(ω), . . . , sin(mω)} respectively, with ω ∈ R, (1.37) becomes
n�

i=1

n�

i�=1

aiai�C+(si, si�)
m�

j=1

m�

j�=1

cos(jω) cos(j�ω)C1(j − j
�)

+
n�

i=1

n�

i�=1

aiai�C−(si, si�)
m�

j=1

m�

j�=1

cos(jω) cos(j�ω)C2(j − j
�) ≥ 0,

and
n�

i=1

n�

i�=1

aiai�C+(si, si�)
m�

j=1

m�

j�=1

sin(jω) sin(j�ω)C1(j − j
�)

+
n�

i=1

n�

i�=1

aiai�C−(si, si�)
m�

j=1

m�

j�=1

sin(jω) sin(j�ω)C2(j − j
�) ≥ 0.

Adding the last two inequalities together yields
n�

i=1

n�

i�=1

aiai�C+(si, si�)
m�

j=1

m�

j�=1

cos((j − j
�)ω)C1(j − j

�)

+
n�

i=1

n�

i�=1

aiai�C−(si, si�)
m�

j=1

m�

j�=1

cos((j − j
�)ω)C2(j − j

�) ≥ 0,

which is equivalent to
�
1 +

�
1− 1

m

�
cosω

� n�

i=1

n�

i�=1

aiai�C+(si, si�)

+

�
1−

�
1− 1

m

�
cosω

� n�

i=1

n�

i�=1

aiai�C−(si, si�) ≥ 0.

Letting m tend to infinity, we obtain

(1 + cosω)
n�

i=1

n�

i�=1

aiai�C+(si, si�) + (1− cosω)
n�

i=1

n�

i�=1

aiai�C−(si, si�) ≥ 0. (1.38)
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It then follows by choosing ω = 0 in (1.38) that

n�

i=1

n�

i�=1

aiai�C+(si, si�) ≥ 0,

which means that C+(s1, s2) is positive definite. Similarly, taking ω = π in (1.38) yields

that C−(s1, s2) is positive definite. This concludes the proof. �

1.6.2 Proof of Theorem 1.3.2

We have

ψ0(s)± 2ψ1(s) = θ(α1�s�)νKν(α1�s�)(1± 2β1)

+(1− θ)(α2�s�)νKν(α2�s�)(1± 2β2), s ∈ Rd
.

Notice that

�

Rd

e
−ıs�ω(αk�s�)νKν(αk�s�)ds = c0α

2ν
k (�ω�2 + α

2
k)

−ν− d
2 , ω ∈ Rd

,

where c0 is a positive constant not related to αk (see Eq. (4.130) of Yaglom (1987)), k = 1, 2.

We obtain the Fourier transforms of ψ0(s)+2ψ1(s) and ψ0(s)−2ψ1(s) positively proportional

to

f1(ω) = θα
2ν
1 (�ω�2 + α

2
1)

−ν− d
2 (1 + 2β1) + (1− θ)α2ν

2 (�ω�2 + α
2
2)

−ν− d
2 (1 + 2β2),

and

f2(ω) = θα
2ν
1 (�ω�2 + α

2
1)

−ν− d
2 (1− 2β1) + (1− θ)α2ν

2 (�ω�2 + α
2
2)

−ν− d
2 (1− 2β2), ω ∈ Rd

,

respectively. Hence, it suffices to show that inequalities (1.9) are necessary and sufficient

for f1(ω) ≥ 0 and f2(ω) ≥ 0, ω ∈ Rd.

Suppose that f1(ω) ≥ 0 and f2(ω) ≥ 0 hold for every ω ∈ Rd. Since 0 < α1 < α2 and

0 ≤ 1 + 2β1 ≤ 1 + 2β2, it follows from

0 ≤ lim
ω→∞

(�ω�2 + α
2
1)

ν+ d
2 f1(ω) = θα

2ν
1 (1 + 2β1) + (1− θ)α2ν

2 (1 + 2β2) (1.39)
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that

θ ≤
�
1− α2ν

1 (1 + 2β1)

α2ν
2 (1 + 2β2)

�−1

,

and from

0 ≤ f2(0) = θα
−d
1 (1− 2β1) + (1− θ)α−d

2 (1− 2β2), (1.40)

that

θ ≥
�
1− αd

2(1− 2β1)

αd
1(1− 2β2)

�−1

.

Consequently, inequalities (1.9) are necessary for f1(ω) ≥ 0 and f2(ω) ≥ 0, ω ∈ Rd.

On the other hand, we are going to show that, under inequalities (1.9), f1(ω) ≥ 0 and

f2(ω) ≥ 0 hold for every ω ∈ Rd. While this is obviously true if 0 ≤ θ ≤ 1, it remains to

consider the cases
�
1− αd

2(1− 2β1)

αd
1(1− 2β2)

�−1

≤ θ ≤ 0, and 1 ≤ θ ≤
�
1− α2ν

1 (1 + 2β1)

α2ν
2 (1 + 2β2)

�−1

.

Case
�
1− αd

2(1−2β1)

αd
1(1−2β2)

�−1
≤ θ ≤ 0: In this case, 1− θ is positive and (1.40) is valid. Since

0 < α1 < α2 implies
�

α2
2

�ω�2 + α2
2

�ν+ d
2

≥
�

α2
1

�ω�2 + α2
1

�ν+ d
2

,

we obtain

f2(ω) = θα
−d
1

�
α2
1

�ω�2 + α2
1

�ν+ d
2

(1− 2β1) + (1− θ)α−d
2

�
α2
2

�ω�2 + α2
2

�ν+ d
2

(1− 2β2)

≥ {θα−d
1 (1− 2β1) + (1− θ)α−d

2 (1− 2β2)}
�

α2
1

�ω�2 + α2
1

�ν+ d
2

≥ 0,

and since 0 ≤ 1 + 2β1 < 1 + 2β2,

f1(ω) ≥ {θα2ν
1 (�ω�2 + α

2
1)

−ν− d
2 + (1− θ)α2ν

2 (�ω�2 + α
2
2)

−ν− d
2}(1 + 2β1)

=

�
θα

−d
1

�
α2
1

�ω�2 + α2
1

�ν+ d
2

+ (1− θ)α−d
2

�
α2
2

�ω�2 + α2
2

�ν+ d
2

�
(1 + 2β1)

≥ {θα−d
1 + (1− θ)α−d

2 }
�

α2
1

�ω�2 + α2
1

�ν+ d
2

(1 + 2β1)

≥ 0, ω ∈ Rd
,

39



where the last inequality is obtained from

θ ≥
�
1− αd

2(1− 2β1)

αd
1(1− 2β2)

�−1

≥
�
1− αd

2

αd
1

�−1

.

Case 1 ≤ θ ≤
�
1− α2ν

1 (1+2β1)
α2ν
2 (1+2β2)

�−1
: In this case, θ is positive and (1.39) is valid. Thus

f1(ω) ≥ {θα2ν
1 (1 + 2β1) + (1− θ)α2ν

2 (1 + 2β2)}(�ω�2 + α
2
2)

−ν− d
2

≥ 0,

and

f2(ω) ≥ {θα2ν
1 + (1− θ)α2ν

2 }(�ω�2 + α
2
2)

−ν− d
2 (1− 2β2)

≥ 0, ω ∈ Rd
,

where the last inequality is due to

θ ≤
�
1− α2ν

1 (1 + 2β1)

α2ν
2 (1 + 2β2)

�−1

≤
�
1− α2ν

1

α2ν
2

�−1

.

This concludes the proof �

1.6.3 Proof of Theorem 1.4.1

Notice that, for k = 1, 2,
∞�

t=0

β
|t|
k e

−ıtω0 =
1− β2

k

1 + β2
k − 2βk cosω0

, ω0 ∈ [−π, π],

and �

Rd

e
−ıs�ω(αk�s�)νKν(αk�s�)ds = c0α

2ν
k (�ω�2 + α

2
k)

−ν− d
2 , ω ∈ Rd

,

where c0 is a positive constant not related to αk (see Eq. (4.130) of Yaglom (1987)). We

obtain the Fourier transform of (1.22) that is positively proportional to

f(ω;ω0)

= θα2ν
1 (�ω�2 + α2

1)
−ν− d

2
1−β2

1

1+β2
1−2β1 cosω0

+ (1− θ)α2ν
2 (�ω�2 + α2

2)
−ν− d

2
1−β2

2

1+β2
2−2β2 cosω0

,

= {θα2ν
1 (�ω�2 + α2

1)
−ν− d

2 (1− β2
1)(1 + β2

2 − 2β2 cosω0) + (1− θ)α2ν
2

×(�ω�2 + α2
2)

−ν− d
2 (1− β2

2)(1 + β2
1 − 2β1 cosω0)}

2�
k=1

(1 + β2
k − 2βk cosω0)−1

= {g1(ω)− 2g2(ω) cosω0}
2�

k=1
(1 + β2

k − 2βk cosω0)−1, ω ∈ Rd, ω0 ∈ [−π, π],
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where

g1(ω) = θα
2ν
1 (�ω�2 +α

2
1)

−ν− d
2 (1− β

2
1)(1+ β

2
2) + (1− θ)α2ν

2 (�ω�2 +α
2
2)

−ν− d
2 (1− β

2
2)(1+ β

2
1),

and

g2(ω) = θα
2ν
1 (1− β

2
1)β2(�ω�2 + α

2
1)

−ν− d
2 + (1− θ)α2ν

2 (1− β
2
2)β1(�ω�2 + α

2
2)

−ν− d
2 , ω ∈ Rd

.

By Bochner’s theorem, (1.22) is a stationary covariance function on Rd × Z if and only

if its Fourier transform, f(ω;ω0), is nonnegative, or equivalently,

g1(ω)− 2g2(ω) cosω0 ≥ 0, ω ∈ Rd
, ω0 ∈ [−π, π]. (1.41)

Moreover, inequality (1.41) holds for all ω ∈ Rd and ω0 ∈ [−π, π] if and only if

g1(ω)− 2g2(ω) ≥ 0, g1(ω) + 2g2(ω) ≥ 0, ω ∈ Rd
. (1.42)

This is true because, on one hand we obtain (1.42) from (1.41) by simply taking ω0 = 0 and

π in (1.41), and on the other hand, inequalities (1.42) imply

g1(ω) ≥ 2|g2(ω)| ≥ 2g2(ω) cosω0, ω ∈ Rd
, ω0 ∈ [−π, π].

Notice that inequalities (1.42) are the same as

θα
2ν
1 (�ω�2 + α

2
1)

−ν− d
2 (1− β

2
1)(1− β2)

2 + (1− θ)α2ν
2 (�ω�2 + α

2
2)

−ν− d
2 (1− β

2
2)(1− β1)

2 ≥ 0,

and

θα
2ν
1 (�ω�2 + α

2
1)

−ν− d
2 (1− β

2
1)(1 + β2)

2 + (1− θ)α2ν
2 (�ω�2 + α

2
2)

−ν− d
2 (1− β

2
2)(1 + β1)

2 ≥ 0,

for all ω ∈ Rd, or equivalently,

θα
2ν
1 (�ω�2+α

2
1)

−ν− d
2 (1+β1)(1−β2)+(1−θ)α2ν

2 (�ω�2+α
2
2)

−ν− d
2 (1+β2)(1−β1) ≥ 0, (1.43)

and

θα
2ν
1 (�ω�2+α

2
1)

−ν− d
2 (1−β1)(1+β2)+(1−θ)α2ν

2 (�ω�2+α
2
2)

−ν− d
2 (1−β2)(1+β1) ≥ 0. (1.44)
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Hence, it suffices to show that inequalities (1.23) are necessary and sufficient for (1.43) and

(1.44) to hold.

Suppose that (1.43) holds for any ω ∈ Rd. Multiplying (�ω�2 + α2
1)

ν+ d
2 both sides of

(1.43) and then letting ω tend to infinity, we obtain

θα
2ν
1 (1 + β1)(1− β2) + (1− θ)α2ν

2 (1 + β2)(1− β1) ≥ 0, (1.45)

or

θ + (1− θ)
α2ν
2

α2ν
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)
≥ 0,

which results in

θ ≤
�
1− α2ν

1

α2ν
2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

�−1

,

since 0 < α1 < α2 and (1 + β1)(1− β2) ≤ (1− β1)(1 + β2). On the other hand, substituting

ω = 0 in (1.44) yields

θα
−d
1 (1− β1)(1 + β2) + (1− θ)α−d

2 (1− β2)(1 + β1) ≥ 0, (1.46)

and thus

θ ≥
�
1− αd

2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

�−1

.

Therefore, we conclude that inequalities (1.23) are necessary for (1.43) and (1.44) to hold.

Next we are going to show that, under inequalities (1.23), (1.43) and (1.44) hold for any

ω ∈ Rd. While this is obviously true if 0 ≤ θ ≤ 1, it remains to consider the cases

�
1− αd

2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

�−1

≤ θ ≤ 0, and 1 ≤ θ ≤
�
1− α2ν

1

α2ν
2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

�−1

.

Case
�
1− αd

2

αd
1

(1−β1)(1+β2)
(1+β1)(1−β2)

�−1
≤ θ ≤ 0: In this case, 1 − θ is positive and (1.46) is valid.

Since 0 < α1 < α2 implies

�
α2
2

�ω�2 + α2
2

�ν+ d
2

≥
�

α2
1

�ω�2 + α2
1

�ν+ d
2

,
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inequality (1.44) follows from

θα1(�ω�2 + α
2
1)

−ν− d
2 (1− β1)(1 + β2)

+ (1− θ)α2(�ω�2 + α
2
2)

−ν− d
2 (1− β2)(1 + β1)

= θα
−d
1

�
α2
1

�ω�2α2
1

�ν+ d
2

(1− β1)(1 + β2)

+ (1− θ)α−d
2

�
α2
2

�ω�2 + α2
2

�ν+ d
2

(1− β2)(1 + β1)

≥ {θα−d
1 (1− β1)(1 + β2) + (1− θ)α−d

2 (1− β2)(1 + β1)}
�

α2
1

�ω�2 + α2
1

�ν+ d
2

≥ 0.

Since (1 + β1)(1− β2) < (1− β1)(1 + β2), inequality (1.43) follows from

θα
2ν
1 (�ω�2 + α

2
1)

−ν− d
2 (1 + β1)(1− β2)

+ (1− θ)α2ν
2 (�ω�2 + α

2
2)

−ν− d
2 (1 + β2)(1− β1)

≥ {θα2ν
1 (�ω�2 + α

2
1)

−ν− d
2 + (1− θ)α2ν

2 (�ω�2 + α
2
2)

−ν− d
2}(1 + β1)(1− β2)

=

�
θα

−d
1

�
α2
1

�ω�2 + α2
1

�ν+ d
2

+ (1− θ)α−d
2

�
α2
2

�ω�2 + α2
2

�ν+ d
2

�
(1− β2)(1 + β1)

≥ {θα−d
1 + (1− θ)α−d

2 }
�

α2
1

�ω�2 + α2
1

�ν+ d
2

(1− β2)(1 + β1)

≥ 0,

where the last inequality is obtained from

θ ≥
�
1− αd

2

αd
1

(1− β1)(1 + β2)

(1 + β1)(1− β2)

�−1

≥
�
1− αd

2

αd
1

�−1

.

Case 1 ≤ θ ≤
�
1− α1

α2

(1−β2)(1+β1)
(1+β2)(1−β1)

�−1
: In this case, θ is positive and (1.45) is valid. We

deduce inequality (1.43) from

θα
2ν
1 (�ω�2 + α

2
1)

−ν− d
2 (1 + β1)(1− β2)

+ (1− θ)α2ν
2 (�ω�2 + α

2
2)

−ν− d
2 (1 + β2)(1− β1)

≥ {θα2ν
1 (1 + β1)(1− β2) + (1− θ)α2ν

2 (1 + β2)(1− β1)}(�ω�2 + α
2
1)

−ν− d
2

≥ 0,
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and inequality (1.44) from

θα
2ν
1 (�ω�2 + α

2
1)

−ν− d
2 (1− β1)(1 + β2)

+ (1− θ)α2ν
2 (�ω�2 + α

2
2)

−ν− d
2 (1− β2)(1 + β1)

≥ {θα2ν
1 + (1− θ)α2ν

2 }(�ω�2 + α
2
2)

−ν− d
2 (1− β2)(1 + β1) ≥ 0,

where the last inequality is due to

θ ≤
�
1− α2ν

1

α2ν
2

(1− β2)(1 + β1)

(1 + β2)(1− β1)

�−1

≤
�
1− α2ν

1

α2ν
2

�−1

.

This completes the proof of the theorem �
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Chapter 2

Multivariate Tapering

2.1 Introduction

In this world with ever-growing data availability, the size of datasets is always increasing as

technology advances and many of these datasets require spatial or spatio-temporal analysis

in environmental monitoring, climatology, hydrology, and many other fields. One of the

challenges in dealing with those correlated large datasets is to calculate the inverse of the

covariance matrices, which is the keystone for finding the best linear unbiased prediction or

kriging/co-kriging, and is vital to maximum likelihood estimation or Bayesian inference. In

spatial and spatio-temporal statistics this becomes a common obstacle in computation since,

as the number of locations increases on a spatial domain, the covariance matrix increases.

For example, if a space has n locations the covariance matrix would be n×n, where n could

be in the hundreds if not thousands or even larger. It is well documented that calculating

the predictions as well as likelihoods can be computationally infeasible for large datasets,

requiring O(n3) operations. Covariance tapering is one of approaches that can be used to

mitigate this challenge.

To start let us identify where covariance tapering will aid in calculations. Let the second

order stationary Gaussian process Z(s), s ∈ Rd have a zero mean and an isotropic covariance

function K(h; θ, σ2), where σ2 is the variance of the process and θ is the parameter that

controls how fast the covariance function decays over the lag distance h = si − sj. Given n
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observations, Zn = (Z(s1), . . . , Z(sn))T , the log-likelihood is

ln = −n

2
log(2π)− 1

2
log[det[Vn(θ, σ

2)]]− 1

2
Z�

n [Vn(θ, σ
2)]−1Zn, (2.1)

where Vn(θ, σ2) denotes the covariance matrix of Zn, whose (i, j)th entry is K(si−sj; θ, σ2).

Here we would need the inverse to find maximum likelihood estimators. On the other hand,

the best linear unbiased prediction, i.e. interpolation, at an unobserved location s∗ is given

by

Ẑ(s∗) = c∗�Vn(θ, σ
2)−1Zn, (2.2)

where c∗ = (K(s∗ − si))n×1. Apparently, the inverse of the covariance matrix is needed for

both parameter estimation and for making predictions, as well as mean square prediction

errors (MSPE).

The principle of tapering is to keep the covariance approximately unchanged at small

distance lags and reduce the covariance to zero at large distance lags. To implement the

idea, let Ktap be an isotropic correlation function of compact support, i.e., Ktap(h) = 0 if

h > γ for some γ > 0. Then the tapered covariance function �K is the product of K and

Ktap

�K(h; θ, σ2) = K(h; θ, σ2)×Ktap(h), (2.3)

and the tapered covariance matrix is a Hadamard product �Vn = Vn(θ, σ2) ◦Tn, where Tn

has the (i, j)th element as Ktap(�si−sj�). This causes the tapered covariance matrix to have

a high proportion of zeros resulting in a sparse matrix. Inverting a sparse matrix is much

more efficient computationally than trying to invert the original covariance matrix of the

same dimension (see, e.g., Pissanetzky (1984), Gilbert et al. (1992), and Davis (2006)). Once

the tapered covariance function �K is calculated it would be used for spatial interpolation

and estimation as if it were the correct covariance function. In the case of the finding MLEs,

one would maximize the corresponding log-likelihood

l̃n = −n

2
log(2π)− 1

2
log[det[�Vn]]−

1

2
Z�

n [�Vn]
−1Zn, (2.4)
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and for interpolation,

Ẑ(s∗) = �c∗� �Vn(θ, σ
2)−1Zn. (2.5)

To measure the accuracy of the BLUP we use the MSPE. The MSPE(s∗, K) has the form,

MSPE(s∗, K) = K(s∗, s∗)− c∗�Vn(θ, σ
2)−1c∗, (2.6)

where K(s∗, s∗) is the variance of the random variable in question at the new location

s∗ ∈ S. If the BLUP is calculated under the tapered covariance function �K(h; θ, σ2), the

actual MSPE has the form,

MSPE(s∗, �K) = K(s∗, s∗)− 2�c∗� �V−1
n c∗ + �c∗� �V−1

n Vn
�V−1

n �c∗. (2.7)

Intuitively, being that the taper is a correlation function, when the taper is sufficiently

close to 1 for spatial locals that are within a small distance from each other, causes the

behavior of the original covariance structure to remain almost unchanged. Specifically, we

need to study how to choose the taper without sacrificing the richness of the modeling of

the underlying original covariance structure.

For spatial interpolation the key component is the behavior the covariance function has

at the origin, i.e. a small neighborhood around the location in question. Furrer et al. (2006)

show that if the appropriate taper is chosen, the fixed-domain asymptotic optimality of

prediction for the Matérn model is not affected, in the sense that the ratio of (2.6) and (2.7)

converges to 1 under fixed-domain asymptotics. Kaufman et al. (2008) provided results that

show the tapered MLE is consistent for micro-ergodic parameters in the Matérn covariance

under the fixed-domain asymptotic framework with θ fixed. Du et al. (2009) gave general

conditions that ensure tapering does not affect the efficiency of the MLEs. Note here that

the results stated are under the univariate case where only one attribute is of interest.

The computational burden is even heavier if multiple attributes are concerned other

than large number of locations are observed. The important technique to elevate this com-

putational intensity is through likelihood approximation. Stein et al. (2004) developed
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techniques for likelihood approximation over a regular complete lattice and in doing this

the number of calculations are drastically reduced. Also Fuentes (2007) presented a version

of Whittle’s approximation for irregularly spaced data and came to the same reduction in

calculations. Both cases transform the original process into the spectral domain and as a

result the calculations under the approximation require O(mlog2m + n) rather than n3 for

the exact likelihood. While we are engaged to approximate likelihood in the spatial domain

directly by extending tapering technique.

Unlike the univariate case, the multivariate case is a new research effort across the spatial

and spatio-temporal statistics field. Many spatial datasets have more than just one variable

of interest and often times there is a particular variable of interest and the remaining vari-

ables can further help in the prediction of the primary variable. Just like the univariate case

where a taper itself must be correlation function, here not only is there the covariance func-

tion for each variable that needs to be tapered, there is an addition of the cross-covariance

function between each of the variables to be concerned. For example, bivariate process

has two covariance functions and one cross-covariance function. For large amounts of data

cokriging requires the solution of a large linear system based on the covariance and cross-

covariance matrices, and “it is impossible to solve the linear system with direct methods”,

Sun et al. (2012). Recently Furrer and Genton (2011) proposed aggregation-cokriging for

highly-multivariate spatial datasets to reduce computation. In which, the secondary vari-

ables are weighted based on the correlation with the primary variable to create a linear

combination to reduce the linear system size. However, the challenge is how to efficiently

find the weights that are appropriate for the secondary variables.

The goal of this chapter is to establish multivariate tapering functions with different

degrees of smoothness and show how the behavior of the original covariance function is

affected. The continuation of this discussion will look at multivariate tapering in Section

2.2, a simulation study for an Askey-type multivariate taper on a bivariate exponential

covariance structure in Section 2.3 will demonstrate the effectiveness of tapering in the
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multivariate case. Section 2.4 examines a simulation study when the Wenland-type taper

is applied to a multivariate Matérn covarinance structure. An application to USA climate

data compares the behaviors of both Askey and Wendland type tapers.

2.2 Multivariate tapering

The multivariate spatial data can be viewed as realization of multivariate random fields.

An m-variate stochastic process or random field {Z(x) = (Z1(x), . . . , Zm(x))�,x ∈ D} is a

family of real random vectors on the same probability space, where the index set D could be

a temporal domain like R, or a spatial domain like Rd, with d as a natural number. When

all of its components have second-order moments, {Z(x),x ∈ D} is called a second-order

vector (or multivariate) random field, and its covariance matrix (function) is defined by

C(x1,x2) = E{(Z(x1)− EZ(x1))(Z(x2)− EZ(x2))
�}, x1,x2 ∈ D.

Its diagonal entry Cii(x1,x2), the covariance function of the ith component random field

{Zi(x),x ∈ D}, is called a direct covariance (function), and its off-diagonal entry Cij(x1,x2)

(i �= j), the covariance between the ith component random field {Zi(x),x ∈ D} and the

jth component random field {Zj(x),x ∈ D}, is called a cross covariance (function), i, j =

1, 2, . . . ,m. Moreover, {Z(x),x ∈ D} is said to be a (weak, second-order) stationary or

homogeneous random field, if its mean function EZ(x), x ∈ D, is a constant vector, and its

covariance matrix function C(x1,x2) depends only on the lag x1 − x2, x1,x2 ∈ D. In such

a case, we simply write C(x1 − x2) for C(x1,x2) for simplicity of notations. The validity of

the multivariate covariance and cross-covariance is warranted by the following property.

Given a real m×m matrix function C(x1,x2),x1,x2 ∈ D, it is shown in Ma (2011) that

there is an m-variate second-order random field {Z(x),x ∈ D} with mean zero and with

C(x1,x2) as its covariance matrix if and only if {C(x1,x2)}� = C(x2,x1) and the inequality

n�

i=1

n�

j=1

a�
iC(xi,xj)aj ≥ 0 (2.8)
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holds for every positive integer n, any xk ∈ D, and any ak ∈ Rm, k = 1, . . . , n.

In order for the tapered covariance function to maintain the richness of the original

processes, the multivariate tapering matrix function Ctap must be a compactly supported

correlation matrix function, i.e. a correlation matrix functions whose entries are compactly

supported. Like the univariate case the technique of tapering is to use the Hadamard

product, �C(s) = C(s) ◦ Ctap(s). Again, instead of using the original covariance matrix

function to find MLEs and do cokriging we use �C. However the challenge is finding and

forming compactly supported covariance function, in fact, “it seems that there exist few

results on multivariate compactly supported covariance functions,” Zhang and Du (2008).

This motivates us to create flexible compactly supported multivariate covariance functions

that can be used as tapers that would allow for both computation efficiency and prediction

efficiency.

2.2.1 Preliminary results of covariance matrix functions

Multivariate or vector random field modeling is an on-going contemporary research topic

in its own right in the spatial statistics. With multiple variables of interest vector random

field requires both direct covariance for each variable and cross-covariances between pairs of

variables. The following two lemmas provide some fundamental tools to construct a valid

covariance matrix function (Du and Ma (2011)). Recall that A ◦B denotes the Hadamard

or Schur product of two matrices A and B of the same size, which is the entrywise product

of A and B.

Lemma 2.2.1. If C1(x1,x2) and C2(x1,x2) are m × m covariance matrix functions, and

A1 and A2 are m × m positive definite matrices, then there is an m-variate spherically

invariant random field with covariance matrix A1 ◦C1(x1,x2)+A2 ◦C2(x1,x2), x1,x2 ∈ D.

Note that the particular case where Ak = αk1 and αk (k = 1, 2) are nonnegative con-

stants, we obtain that α1C1(x1,x2) + α2C2(x1,x2), x1,x2 ∈ D, is also a covariance matrix,

where all entries of the matrix 1 equal 1. In other words, the set of covariance matrices is
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a convex set.

Lemma 2.2.2. If g(ω) is a nonnegative function in Rd
, C(x1,x2;ω) is an m×m covariance

matrix for every fixed ω ∈ Rd
, then there is an m-variate spherically invariant random field

with direct and cross covariances

�

Rd

cos(ω�(x1 − x2))Cij(x1,x2;ω)g(ω)dω, x1,x2 ∈ Rd
, i, j = 1, . . . ,m,

assuming that the above integrals exist.

One class of vector random fields can be constructed such that both the direct and

cross-covariance functions have the form of an exponential variogram. Here with the above

lemmas we have the following theorem.

Theorem 2.2.1. If Θ = (θij) is an m×m conditionally negative definite matrix with positive

entries, then the m×m matrix function with entries

Cij(s) = θ
− 1

2
ij exp(−θ

1
2
ij�x�), (2.9)

where �x� is the Euclidean norm of x ∈ Rd
, and the matrix function has the form





θ
− 1

2
11 exp(−θ

1
2
11�x�) θ

− 1
2

12 exp(−θ
1
2
12�x�) . . . θ

− 1
2

1m exp(−θ
1
2
1m�x�)

θ
− 1

2
21 exp(−θ

1
2
21�x�) θ

− 1
2

22 exp(−θ
1
2
22�x�) . . . θ

− 1
2

2m exp(−θ
1
2
2m�x�)

...
...

. . .
...

θ
− 1

2
m1 exp(−θ

1
2
m1�x�) θ

− 1
2

m2 exp(−θ
1
2
m2�x�) . . . θ

− 1
2

mm exp(−θ
1
2
mm�x�)




, (2.10)

is a stationary covariance matrix function.

By changing the Euclidean norm to the �1-norm we obtain another valid covariance

matrix function given in Theorem 2.2.2.

Theorem 2.2.2. If Θ = (θij) is an m×m conditionally negative definite matrix with positive

entries, then the m×m matrix function with entries

Cij(s) = θ
− d

2
ij exp(−θ

d
2
ij|x|), (2.11)
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where |x| is the �1-norm of x ∈ Rd
, and the matrix function has the form





θ
− d

2
11 exp(−θ

d
2
11|x|) θ

− d
2

12 exp(−θ
d
2
12|x|) . . . θ

− d
2

1m exp(−θ
d
2
1m|x|)

θ
− d

2
21 exp(−θ

d
2
21|x|) θ

− d
2

22 exp(−θ
d
2
22|x|) . . . θ

− d
2

2m exp(−θ
d
2
2m|x|)

...
...

. . .
...

θ
− d

2
m1 exp(−θ

d
2
m1|x|) θ

− d
2

m2 exp(−θ
d
2
m2|x|) . . . θ

− d
2

mm exp(−θ
d
2
mm|x|)




, (2.12)

which is a stationary covariance matrix function.

Proofs of Theorems 2.2.1 and 2.2.2 are given in Appendix 2.6.

Du et al. (2012) also introduced the hyperbolic vector random fields, which provides

direct and cross-covariances matrix functions when the random variables of interest have

a generalized hyperbolic distribution. This structure provides a basis for modeling more

complex processes. Just as Examples 2-5 in Du and Ma (2011) illustrate, the next theorem

demonstrates how naturally a conditionally negative definite matrix gets involved in our

covariance matrix construction. The Matérn model is a very common model to use in the

univariate case, Du et al. (2012) construct a valid Matérn multivariate covariance matrix

function as given in the following theorem.

Theorem 2.2.3. Let α and νij (i, j = 1, . . . ,m) be positive constants. A necessary and

sufficient condition for the existence of an m-variate stationary hyperbolic random field on

D with direct and cross covariances

Cij(x) =
1

2νijΓ
�
νij +

d
2

�(α�x�)νijKνij (α�x�) , x ∈ Rd
, i, j = 1, . . . ,m, (2.13)

is that the m×m matrix with entries νij is conditionally negative definite.

Each direct or cross covariance in (2.13) is a univariate Matérn . Particularly, in (2.13)

taking νij =
1
2(νi + νj) yields a covariance matrix function with direct and cross covariances

1

2
1
2 (νi+νj)Γ

�
1
2(νi + νj) +

d
2

�(α�x�)
1
2 (νi+νj)K 1

2 (νi+νj) (α�x�) , x ∈ Rd
, i, j = 1, . . . ,m.
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Multiplying this matrix function with two positive definite matrices, one with entries 2
1
2 (νi+νj)

and the other with entries Γ
�
1
2(νi + νj) +

d
2

�
, it results in a covariance matrix function in

the next corollary,

Corollary 2.2.1. If ν1, . . . , νm are positive constants, then there exists an m-variate sta-

tionary hyperbolic random field on D with direct and cross covariances

Cij(x) = (α�x�) 1
2 (νi+νj)K 1

2 (νi+νj) (α�x�) , x ∈ Rd
, i, j = 1, . . . ,m. (2.14)

The following corollary is obtained from Theorem 2.2.3 by letting νij = max(νi, νj),

i, j = 1, . . . ,m.

Corollary 2.2.2. If ν1, . . . , νm are positive constants, then there exists an m-variate sta-

tionary hyperbolic random field on D with direct and cross covariances

Cij(x) =
1

2max(νi,νj)Γ
�
max(νi, νj) +

d
2

�(α�x�)max(νi,νj)Kmax(νi,νj) (α�x�) ,

x ∈ Rd
, i, j = 1, . . . ,m. (2.15)

Gneiting et al. (2010) also presents a multivariate Matérn covariance matrix function.

They discuss the necessary and sufficient conditions for a parsimonious and a full bivariate

Matérn model. The parsimonious multivariate Matérn model gives each marginal covariance

function,

Cii(h) = σ
2
iM(h|νi, αi), i = 1, . . . , p, (2.16)

and cross covariance function given by,

Cij(h) = Cji(h) = ρijσiσjM(h|νij, αij), 1 ≤ i �= j ≤ p. (2.17)

In (2.16) σi > 0, νi > 0 is a smoothness parameter, and αi > 0 is a scaling parameter. Note

that in (2.16) and (2.17),

M(h|ν, α) = 21−ν

Γ(ν)
(α�h�)νKν(α�h�);
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where Kν is a modified Bessel function of the second kind. In (2.17) αij > 0 is a common

scaling parameter of the cross covariance, νij =
1
2(νi + νj, 1 ≤ i �= j ≤ p, and

ρij = βij
Γ(νi + (d/2))1/2

Γ(νi)1/2
× Γ(νj + (d/2))1/2

Γ(νj)1/2
×

Γ(12(νi + νj))

Γ(12(νi + νj) + d/2)
, 1 ≤ i �= j ≤ p;

where the matrix (βij)
p
i,j=1 with diagonal elements βii = 1 for i = 1, . . . , p and off-diagonal

elements βij for 1 ≤ i �= j ≤ p is symmetric and nonnegative definite. Notice that the

multivariate Matérn covariance model of Gneiting et al. (2010) is simply the Hardmard

product of that in Corollary 2.2.1 and a positive definite matrix given by ρij. In contrast to

those in Gneiting et al. (2010), the covariance matrix structures here are displayed as neat

as possible.

2.2.2 Wendland type of compactly supported covariance matrix
functions

In this section we develop multivariate tapering matrix functions by extending Wendland

type of correlation function to multivariate case, where each entry is compactly supported.

Here a compactly supported function in Rd is a function whose values are zero outside a com-

pact set in Rd. The celebrated univariate Wendland type of tapering function is constructed

by using the fractional descente, i.e. φν,κ = Ikφν,0, where Iφ(t) =
�∞
t uφ(u)du/

�∞
0 uφ(u)du

and φν,0 is given by the following Askey function with α = 1.

The Askey function is given by,

C(x) =

�
1− �x�

α

�ν

+

, (2.18)

where α is a positive constant, ν ≥
�
d
2

�
+1, [x] denotes the largest integer that is not greater

than x, and x+ = max(x, 0), x ∈ R; see Askey (1973) and Letac and Rahman (1986).

Wendland 1 function is given by,

Kwend1(�x�; γ) = (1− �x�
γ

)4+(1 + 4
�x�
γ

), γ > 0, (2.19)

which second differentiable at zero, and Wendland 2 function is given by

Kwend2(�x�; γ) = (1− �x�
γ

)6+(1 + 6
�x�
γ

+
35�x�2

3γ2
), γ > 0, (2.20)
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which is fourth differentiable at zero, see Wendland (1995).

These functions become the building blocks to create multivariate tapering functions.

The frist multivariate taper discussed is the Askey-type which is derived by the mixture of

(2.18).

Theorem 2.2.4. Let d ≥ 2, ν ≥
�
d
2

�
− 1, and νk ≥ 0 (k = 1, . . . ,m). If an m×m matrix

with entries gij(u) is positive definite for every fixed u ∈ [0, 1] and the function gij(x) is

continuous on [0, 1], then there is an m-variate Gaussian or elliptically contoured random

field with direct and cross covariances

Cij(x) =






� 1

0 (u− �x�)ν+ gij(u)du, �x� ≤ 1,

0, �x� > 1,
(2.21)

x ∈ Rd, i, j = 1, . . . ,m.

The proof of Theorem 2.2.4 can be found in Du and Ma (2012).

Example 2.2.1. Let α be a constant between 0 and 1. In (2.21) taking m = 2 and

g11(u) = u, g12(u) = g21(u) = min(u, α), and g22(u) ≡ α, α ∈ [0, 1], yields

C11(x) =
1

ν + 1
(1− �x�)ν+1

+ − 1

(ν + 1)(ν + 2)
(1− �x�)ν+2

+ ,

C12(x) = C21(x)

=
α

ν + 1
(1− �x�)ν+1

+ − 1

(ν + 1)(ν + 2)
(α− �x�)ν+2

+ ,

C22(x) =
α

ν + 1
(1− �x�)ν+1

+ , x ∈ Rd
.

Example 2.2.1 will be used in a simulation study later to show the performance of

the Askey multivariate taper when used in conjuncture with an exponential and Matérn

bivariate covariance structures. Later in the simulation study we find that the Askey taper

does not perform well when the smoothness of the original covariance increases at origin.

One way this happens is when the covariance has a Matérn structure with smoothness

parameter ν > 0.5. Notice that the Askey tapers are not differentiable at origin, the need
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for smoother multivariate tapers arises. The following theorem gives a general format to

construct nonstandardized tapering matrix function, whose smoothness at origin can be

controlled by the input univariate compactly supported covariance function, the proof is

given in the Appendix.

Theorem 2.2.5. Let K(�x�) be a univariate compacted supported and isotropic covariance

function, with the supporting range 1. If an m×m matrix with entries gij(u) is positive def-

inite for every fixed u ∈ [0, 1] and the function gij(x) is continuous on [0, 1], then there is an

m-variate Gaussian or elliptically contoured random field with direct and cross covariances

Cij(x) =






� 1

0 K(�x�u )gij(u)du, �x� ≤ 1,

0, �x� > 1,
(2.22)

x ∈ Rd, i, j = 1, . . . ,m.

Wendland-type compact supported correlation functions are usually serve as tapering

functions, which possesses a desirable smoothness parameter making them have higher or-

der differentiability at zero, and have flexibility to monitor the degree to which they alter

the original covariance matrix functions at zero. This makes the Wendland-type taper an

preferable candidate to create a multivariate taper for smoother processes. To generate the

well- known Wendland tapering functions (Wendland (1995)) which have been adopted in

literature (e.g. Furrer et al. (2006), Kaufman et al. (2008), and Du et al. (2009)) to mul-

tivariate, we use univariate Wendland tapering function in the equation (2.22). Note that

the Wendland functions are constructed as a series of compacted supported functions with

different differentiability at zero by using the fractional descente. With this substitution we

obtain the following multivariate extension of Wendland compactly supported covariance

function, the standardized version will be called the Wendland tapering matrix function.

Theorem 2.2.6. Let ν ≥ d+1
2 , k = 0, 1, 2, . . . . If an m × m matrix with entries gij(u) is

positive definite for every fixed u ∈ [0, 1] and the function gij(x) is continuous on [0, 1], then

there is an m-variate Gaussian or elliptically contoured random field with direct and cross
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covariances

Cij(x) =






� 1

0 ukIkφν,0(
�x�
u )gij(u)du, �x� ≤ 1,

0, �x� > 1,
(2.23)

x ∈ Rd, i, j = 1, . . . ,m.

Using Theorem 2.2.6 and the Wendland 1 equation (2.19) we have Corollary 2.2.3, which

will be used in our simulation study of the bivariate Matérn covariance.

Corollary 2.2.3. Let α be a constant between 0 and 1. In (2.23) taking ν = 3, k = 1 and

taking m = 2 and g11(u) = u, g12(u) = g21(u) = min(u, α), and g22(u) ≡ α, α ∈ [0, 1], yields

C11(x) = (1− �x�)5+
�
1

7
(1− �x�)2 + (1− �x�)�x�+ �x�2

�
,

C12(x) = C21(x)

= α(1− �x�)5+
�
1

6
(1− �x�) + �x�

�

+(α− �x�)5+
�
1

7
(α− �x�)2 + (α− �x�)(�x� − 1

6
) + �x�2 − �x�

�
,

C22(x) = α(1− �x�)5+
�
1

6
(1− �x�) + �x�

�
.

Also using Wendland 2 equation we obtain the multivariate version of Wendland 2 in

Corollary 2.2.4.

Corollary 2.2.4. Let α be a constant between 0 and 1. In (2.23) taking ν = 3, k = 2 and

taking m = 2 and g11(u) = u, g12(u) = g21(u) = min(u, α), and g22(u) ≡ α, α ∈ [0, 1], yields

C11(x) = (1− �x�)7+
�

1

10
(1− �x�)3 + (1− �x�)2�x�+ 10

3
(1− �x�)�x�2 + 8

3
�x�3

�
,

C12(x) = C21(x)

= α(1− �x�)7+
�
1

9
(1− �x�)2 + (1− �x�)�x�+ 8

3
�x�2

�

+(α− �x�)7+
�

1

10
(α− �x�)3 + (α− �x�)2(�x� − 1

9
)

+
10

3
(α− �x�)(�x�2 − �x�) + 8

3
(�x�3 − �x�2)

�
,

C22(x) = α(1− �x�)7+
�
1

9
(1− �x�)2 + (1− �x�)�x�+ 8

3
�x�2

�
, x ∈ Rd

.
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When using the above theorems and corollaries there are two ways to arrange the covari-

ance structure, a variable arrangement or a location arrangement. Figure 2.1 and 2.2 give

an example of Theorem 2.2.1, the exponential covariance model, with the Askey-type taper

of Theorem 2.2.4. These images were created using 100 locations are placed on a line for 0 to

1. From variable orientation plots one can clearly see the two direct covariance matrices and

the cross-covariance matrix. The location orientation of Figure 2.1 can be seen as a layering

of the three covariance functions, each 4×4 block creating a mini covariance matrix for each

location starting for the upper left hand corner. From the variable orientation of Figure 2.2

notice that along the diagonal would represent a distance lag of h = 0 where the correlation

should be the strongest. As the distance lag increases the correlation decays towards zero.

Also after the taper the tapered covariance remains to have the same correlations along the

diagonal, but note that the off diagonals are set to zero.
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Figure 2.1: Location orientation covariance plot of exponential covariance, Askey taper, and
tapered covariance.

Figure 2.3 is an example of the Matérn model from Theorem 2.2.3 with the Wendland 1

taper of Example 2.2.3. Notice that the Wendland 1 taper is much smoother than that of

the Askey taper. This smoothness plays a critical part in the simulation studies to come.

In Section 2.3 we simulate the effect of the Askey-type taper on a vector random field with

an exponential covariance structure as in Theorem 2.2.1 and in Section 2.4 we investigate

the Askey-type, Wendland 1 and Wendland 2 tapers with the Matérn model of Theorem

2.2.3. The goal of the simulations is to study the effect of multivariate tapering has on
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Figure 2.2: Variable orientation covariance plot of exponential covariance, Askey taper, and
tapered covariance.
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Figure 2.3: Variable orientation covariance plot of Matérn covariance, Wendland 1 taper,
and tapered covariance.

cokriging and computation efficiency.

2.3 Bivariate exponential case

In this section we show how Theorem 2.2.4 and 2.2.1 can be used to create a multivariate

valid covariance matrix function as well as how tapering can be used to perform efficient

computations. We simulate samples from the original multivariate random field with mean

zero based on Theorem 2.2.1. The exponential covariance parameters are θ11 = .5, θ22 = 1,

and θ12 = θ21 = 1, formulating the Θ matrix. The covariance is constructed over the unit

square with n uniformly distributed locations. Here in the simulation n is allowed to increase

to show, in the case of a fixed-domain, that the MSPE is hardly affected and the time for

computation is drastically improved.
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The taper used for the exponential covariance structure comes from standardization of

Example 2.2.1, where α = 1, ν = 7, and γ ∈ 0.5, 0.3, 0.1. For each γ, i.e. the tapering range,

we provide the simulation results for MSPE and time improvement, note the smaller the γ

is the more tapered the covariance will become. For each simulation we predict 50 points

along the vector form (0, 0) to (1, 1) and 50 points along the vector from (0, 1) to (1, 0).

The MSPE is calculated for each point then averaged to find an average MSPE. The time

taken to calculate cholesky decomposition is the measure we use to compare times. Because

of very similar results, the γ = 0.1 simulation will be looked at in detail and other results

will be left to the appendix of this chapter. For the γ = 0.1 case this amounts to basically

reducing the information of the covariance structure 90%. From Figure 2.4 we can see that

at 2000 locations the taper starts to take effect by decrease time to calculate the inverse of

the covariance matrix as well as produce the same MSPE as the true exponential covariance

structure. Table 2.1 shows a more detailed look at the actual measurements taken. Notice as

the number of locations increase that the MSPE of the tapered covariance converges to the

MSPE of the true. This is analogous to the results of Furrer et al. (2006) in the univariate

case. Looking at the times for cholesky decomposition, the true covariance spends a lot of

time in calculation where the tapered covariance does not. In the case of 8100 locations, a

16200×16200 covariance matrix is produced because two variables are under consideration.

The original covariance takes 61.12 minutes to calculate the cholesky decomposition and the

tapered covariance takes 27.46 seconds. The calculations here were done using R (R Core

Team (2012)) on the Kansas State University Beocat with a node having 16 GB of RAM and

a 4x Quad-Core AMD Opteron 8350 Processor. Results in Appendix 2.6 are very similar to

the results shown here, the difference being γ is larger allowing for more information. This

allows the taper to be more accurate at a smaller number of locations.
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Figure 2.4: Results Graph: Exponential and Askey taper, tapered with γ = 0.1

Table 2.1: MSPE and Time for Exponential and Askey with γ = 0.1

NUM.LOCS EXP.MSPE EXP.TIME Askey.TIME Askey.MSPE
400 0.0288870 0.30 0.14 0.2544790
625 0.0142470 0.72 0.15 0.0850270
900 0.0107040 2.14 0.18 0.0478780
1225 0.0160650 5.37 0.18 0.0825650
1600 0.0117850 11.90 0.25 0.0399870
2025 0.0024041 24.07 0.77 0.0033075
2500 0.0104930 46.03 0.89 0.0236090
3025 0.0096929 87.92 1.91 0.0181450
3600 0.0026003 177.54 2.44 0.0030367
4225 0.0068860 332.88 4.60 0.0093571
4900 0.0079591 806.05 6.21 0.0105690
5625 0.0046308 1280.80 10.84 0.0052771
6400 0.0039480 1746.50 14.29 0.0043060
7225 0.0065214 2569.80 21.08 0.0073742
8100 0.0051621 3666.50 27.46 0.0055965

1 NUM.LOCS is total number of locations
2 EXP.MSPE is the MSPE using the true covariance
3 EXP.TIME seconds to calculate Choleski decomp. for the exponential
4 Askey.TIME seonds to calculate Choleski decomp. for the tapered
5 Askey.MSPE is the MSPE using the tapered covariance
6 Refer to Figure 2.4 for graph of results
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2.4 Bivariate Matérn case

Here we used the multivariate Matérn spatial covariance model, taken from Du et al. (2012),

with two variables of interest. The tapers used are the Askey tapering function of Example

2.2.1 and both Wendland tapering function of Examples 2.2.3 and 2.2.4. For each simulation

we take n uniformly distributed locations on a 100 x 100 unit square. Our simulations are

concerned with how the taper performs when the smoothness for the multivariate Matérn

increases or decreases. The reason for the 100 x 100 unit square is because of the smoothness

of the Matérn .

As the smoothness increases, in order to do calculations the field must be larger to avoid

singularity in the covariance matrix. For these examples the following parameters where

used over all comparisons; the Matérn Covariance parameters are αmatern = 1, σ1 = 1,

σ2 = 1, φi,j = 0.5, ν1 and ν2 change to modify the smoothness of the two Matérn processes.

The change in ν1 and ν2 will be noted for each table. Some cases are left to Appendix

2.6 because of similar results. For all tapers the tapering range γ = 10 resulting in a 90%

reduction of information from the original covariance structure, and αtaper = 0.5. With other

simulations we noticed that α does not change the outcome of the MSPE and α is never

small tuning parameter depended on each situation. Based on smaller simulations of the

Matérn , we used a taper νtaper = 8 for the Askey-type taper to account for the smoothness

of the bivariate Matérn processes.

To calculate MSPE, cokriging was done on 500 uniformly distributed points in the 100×

100 square. As a result notice that in all cases the MSPE of the Askey-type taper is not

performing well because this taper is not smooth enough to capture the behavior of the

Matérn at short distances. However, when the number of location goes to 1000 and beyond

both Wendland 1 and 2 tapers perform well against the true covariance structure producing

fast accurate cokriging. Tables 2.3, 2.5, 2.7, and 2.9, show that as the number of locations

increase the MSPE of the Wendland tapered covariances converge to the MSPE of the true

covariance. Tables 2.4, 2.6, 2.8, and 2.10, give the results for the time it takes to calculate
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the cholesky decomposition for the inversion of the covariance matrix. Again we see that

tapering provides faster faster calculations of the inverse. The calculations here were done

using R (R Core Team (2012)) on the Kansas State University Beocat with a node having

16 GB of RAM and a 4x Quad-Core AMD Opteron 8350 Processor.

In conclusion we can see that in general as the smoothness of the Matérn increases

the smoother the taper has to be. Also notice that tapering range is 10 which is 10%of

the domain range. This indicates that by removing 90% of the data from the covariance

structure we are still able to make accurate predictions using our tapers instead of the full

covariance structure. The results are similar to the Furrer, Genton, Nychka (2006) in that as

the smoothness of the Matérn increases we must use a taper with appropriate smoothness.

Time savings becomes apparent around 1500 locations and the MSPE for both Wendlands

is very close to the TRUE Matérn MSPE at less than 200 locations. Although we used

a tapering range of 10, increasing would decrease the MSPE further to the TRUE, but

raise time taken to perform calculations. In practice one should make the taper as large

as possible, but choose so that time can be saved. Both Wendland 1 and Wendland 2 are

very close in all simulations, so based on the complexity of the tapers one might chose the

simpler of the two tapers. We formulate a guideline for choosing tapers suggested by the

simulation studies given in Table 2.2.

Table 2.2: General Results of Multivariate Tapers

Taper True Covariance Structure Valid taper for
Askey Bivariate Exponential Not valid for Bivariate Matérn

Wendland 1 Bivariate Matérn ν1, ν2 ≤ 1.5
Wendland 2 Bivariate Matérn ν1, ν2 ≤ 2.5
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Table 2.3: MSPE Results for Matérn : ν1 = 0.25, ν2 = 0.25 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9999 1.0000 1.0000 1.0000
421 0.9985 0.9998 0.9989 0.9990
761 0.9928 0.9983 0.9938 0.9939
1201 0.9865 0.9964 0.9878 0.9881
1741 0.9636 0.9831 0.9650 0.9652
2381 0.9418 0.9676 0.9431 0.9432
3121 0.9181 0.9481 0.9191 0.9192
3961 0.8931 0.9250 0.8939 0.8940
4901 0.8839 0.9173 0.8847 0.8847

1 NUM.LOCS is total number of locations
2 MAT.MSPE is the MSPE using the true covariance
3 ASK.MSPE is the MSPE for Askey taper
4 WEND.1.MSPE is the MSPE for Wendland type one taper
5 WEND.2.MSPE is the MSPE for Wendland type two taper
6 Refer to Figure 2.5 for graph of results

Table 2.4: Time (in sec.) Results for Matérn : ν1 = 0.25, ν2 = 0.25 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.01 0.00 0.01 0.00
181 0.17 0.00 0.00 0.00
421 0.59 0.01 0.01 0.02
761 3.53 0.05 0.05 0.06
1201 13.78 0.22 0.21 0.23
1741 41.91 0.69 0.67 0.76
2381 107.29 1.54 1.58 1.65
3121 242.64 3.60 3.51 3.52
3961 494.24 7.59 7.65 7.71
4901 936.71 12.76 12.93 12.78

1 NUM.LOCS is total number of locations
2 MAT.TIME time to calculate cholesky decomposition for Matérn
3 ASK.TIME time to calculate cholesky decomposition for Askey
4 WEND.1.TIME time to calculate cholesky decomposition for Wendland 1
5 WEND.2.TIME time to calculate cholesky decomposition for Wendland 2
6 Refer to Figure 2.5 for graph of results
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Figure 2.5: Graphical results of comparing the Matérn : ν1 = 0.25, ν2 = 0.25 and Tapers

Table 2.5: MSPE Results for Matérn : ν1 = 0.5, ν2 = 0.5 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9996 1.0000 0.9999 0.9999
421 0.9925 0.9991 0.9945 0.9949
761 0.9676 0.9922 0.9717 0.9724
1201 0.9424 0.9839 0.9475 0.9483
1741 0.8686 0.9359 0.8722 0.8726
2381 0.8084 0.8857 0.8108 0.8110
3121 0.7507 0.8288 0.7522 0.7523
3961 0.6965 0.7689 0.6974 0.6975
4901 0.6802 0.7486 0.6808 0.6809

1 NUM.LOCS is total number of locations
2 MAT.MSPE is the MSPE using the true covariance
3 ASK.MSPE is the MSPE for Askey taper
4 WEND.1.MSPE is the MSPE for Wendland type one taper
5 WEND.2.MSPE is the MSPE for Wendland type two taper
6 Refer to Figure 2.6 for graph of results
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Table 2.6: Time (in sec.) Results for Matérn : ν1 = 0.5, ν2 = 0.5 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0000 0.0100 0.0100
181 0.1900 0.0000 0.0000 0.0100
421 0.5900 0.0100 0.0200 0.0100
761 3.5300 0.0600 0.0500 0.0600
1201 13.8500 0.2200 0.2100 0.2300
1741 41.9200 0.6600 0.6500 0.7600
2381 107.1300 1.5600 1.5800 1.6400
3121 241.3700 3.5100 3.4400 3.4800
3961 494.6700 7.7400 7.7500 7.7100
4901 937.7300 12.7900 13.0700 12.8900

1 NUM.LOCS is total number of locations
2 MAT.TIME time to calculate cholesky decomposition for Matérn
3 ASK.TIME time to calculate cholesky decomposition for Askey
4 WEND.1.TIME time to calculate cholesky decomposition for Wendland 1
5 WEND.2.TIME time to calculate cholesky decomposition for Wendland 2
6 Refer to Figure 2.6 for graph of results
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Figure 2.6: Graphical results of comparing the Matérn : ν1 = 0.5, ν2 = 0.5 and Tapers
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Table 2.7: MSPE Results for Matérn : ν1 = 1.5, ν2 = 1.5 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9902 0.9998 0.9962 0.9972
421 0.8961 0.9884 0.9238 0.9295
761 0.7186 0.9283 0.7463 0.7518
1201 0.5957 0.8614 0.6131 0.6159
1741 0.3975 0.6532 0.4026 0.4026
2381 0.2921 0.5004 0.2936 0.2934
3121 0.2189 0.3754 0.2193 0.2192
3961 0.1664 0.2796 0.1666 0.1666
4901 0.1509 0.2421 0.1510 0.1511

1 NUM.LOCS is total number of locations
2 MAT.MSPE is the MSPE using the true covariance
3 ASK.MSPE is the MSPE for Askey taper
4 WEND.1.MSPE is the MSPE for Wendland type one taper
5 WEND.2.MSPE is the MSPE for Wendland type two taper
6 Refer to Figure 2.7 for graph of results

Table 2.8: Time (in sec.) Results for Matérn : ν1 = 1.5, ν2 = 1.5 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0000 0.0000 0.0000
181 0.1900 0.0000 0.0000 0.0100
421 0.6000 0.0100 0.0200 0.0100
761 3.5100 0.0600 0.0500 0.0600
1201 13.8500 0.2200 0.2200 0.2200
1741 41.9100 0.6800 0.6600 0.8000
2381 107.6300 1.5700 1.6100 1.7200
3121 241.7400 3.5200 3.4300 3.7600
3961 494.1900 7.8000 7.8900 7.9200
4901 936.4500 12.8100 13.1400 12.9500

1 NUM.LOCS is total number of locations
2 MAT.TIME time to calculate cholesky decomposition for Matérn
3 ASK.TIME time to calculate cholesky decomposition for Askey
4 WEND.1.TIME time to calculate cholesky decomposition for Wendland 1
5 WEND.2.TIME time to calculate cholesky decomposition for Wendland 2
6 Refer to Figure 2.7 for graph of results

67



0 1000 2000 3000 4000 5000

0
.2

0
.4

0
.6

0
.8

1
.0

MSPE: Matern ν1=1.5,ν2=1.5 vs. Tapers

Number of locations

M
S

P
E

TRUE
Askey Taper
WEND.1 Taper
WEND.2 Taper

0 1000 2000 3000 4000 5000

0
2
0
0

4
0

0
6
0
0

8
0

0

Time: Matern ν1=1.5,ν2=1.5 vs. Tapers

Number of locations

M
S

P
E

TRUE
Askey Taper
WEND.1 Taper
WEND.2 Taper

Figure 2.7: Graphical results of comparing the Matérn : ν1 = 1.5, ν2 = 1.5 and Tapers

Table 2.9: MSPE Results for Matérn : ν1 = 2.5, ν2 = 2.5 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9551 0.9993 0.9832 0.9875
421 0.7161 0.9680 0.7878 0.8039
761 0.4432 0.8469 0.4838 0.4927
1201 0.3011 0.7214 0.3177 0.3198
1741 0.1500 0.4593 0.1536 0.1532
2381 0.0881 0.3019 0.0891 0.0887
3121 0.0540 0.1955 0.0543 0.0541
3961 0.0341 0.1268 0.0342 0.0342
4901 0.0273 0.0971 0.0273 0.0273

1 NUM.LOCS is total number of locations
2 MAT.MSPE is the MSPE using the true covariance
3 ASK.MSPE is the MSPE for Askey taper
4 WEND.1.MSPE is the MSPE for Wendland type one taper
5 WEND.2.MSPE is the MSPE for Wendland type two taper
6 Refer to Figure 2.8 for graph of results
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Table 2.10: Time (in sec.) Results for Matérn : ν1 = 2.5, ν2 = 2.5 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0100 0.0000 0.0000
181 0.1800 0.0000 0.0100 0.0000
421 0.5900 0.0100 0.0100 0.0100
761 3.5200 0.0600 0.0600 0.0600
1201 13.7800 0.2100 0.2200 0.2200
1741 42.5300 0.6700 0.6500 0.7900
2381 107.5000 1.5300 1.5500 1.6400
3121 241.6000 3.6500 3.4800 3.5300
3961 495.2000 7.8400 7.8600 7.7700
4901 938.1000 12.7000 13.0700 13.2800

1 NUM.LOCS is total number of locations
2 MAT.TIME time to calculate cholesky decomposition for Matérn
3 ASK.TIME time to calculate cholesky decomposition for Askey
4 WEND.1.TIME time to calculate cholesky decomposition for Wendland 1
5 WEND.2.TIME time to calculate cholesky decomposition for Wendland 2
6 Refer to Figure 2.8 for graph of results
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Figure 2.8: Graphical results of comparing the Matérn : ν1 = 2.5, ν2 = 2.5 and Tapers
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2.5 USA Multivariate Climate Data

To show the application of multivariate tapering we examine precipitation and temperature

data from the National Climatic Data Center for the years from 1895 to 1997. In this

analysis we consider yearly total precipitation which is standardized over the long-run mean

and standard deviation for each station. The average yearly temperature is also standardized

in the same way.

The question here is, can yearly average temperature improve the spatial prediction of

yearly total precipitation? So we co-krigged yearly total precipitation as the primary variable

of interest with temperature being the secondary. To illustrate the tapering methods we

used the year 1969, because this year had one of the most complete data records for both

precipitation and temperature, with 5,182 stations and did not show any non-stationarity.

The data can be found at http://www.image.ucar.edu/public/Data. The complexity here

comes in the fact we are dealing with a covariance matrix that has dimension 10364×10364

since we have two variables of interest. The goal is to perform multivariate cokriging to

show how tapering can give accurate predictions in the multivariate case as well as allow

for time savings in highly complex calculations. We used the Multivariate Matérn Model

discussed in Gneiting et al. (2010) Theorem 1 and using the RandomFields package in R,

(Schlather (2011)) we found MLEs for the following parameters, (a subscript of P is for

precipitation and T is for temperature): σP = 0.747, σT = 0.238, νP = 0.186, νT = 0.799,

νPT = 0.493, 1
aP

= 162, 1
aT

= 162, 1
aPT

= 162, ρPT = −0.0819, τP = 0, τT = 0.113. Based on

simulations in Sections 2.3 and 2.4, and the works of Kaufman et al. (2008) and Furrer et al.

(2006) we use a tapering range of 50 miles (80.40 km) and a tapering α = 0.5. To account

of the smoothness of the multivariate Matérn , the Askey taper used a tapering parameter

ν = 7. Parameters for tapers where chosen based on previous simulation work and the

lowest MSPE. For results we provide MSPE, predictions, and times to complete the process

of calculating results for 100,000 points which create a equally spaced grid across the US.

For matrix calculations, we used the Matrix package in R (Bates and Maechler (2011)), All
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calculations were carried out on the Beocat of Kansas State University with a node having

16 GB of RAM and a 4x Quad-Core AMD Opteron 8350 Processor. .

Table 2.11 give the results for the time of constructing the covariance matrix, solving

for the inverse and calculating all predictions for the 100,000 new points. Note that the

average time it take to calculate one prediction of a new location for the Matérn , Askey,

Wendland 1, and Wendland 2 are; 0.52606 sec., 0.51958 sec., 0.53198 sec., and 0.52192 sec.

The time taken to calculate a prediction in all four cases is relatively the same. As in works

of Kaufman et al. (2008) and Furrer et al. (2006) the time savings comes at the construction

step and in the calculation of the inverse. Note that there is a huge improvement of time

savings for calculating the the inverse from approximately 64 minutes for the true covariance

to 6 minutes for the tapered covariances.

Table 2.11: US Precipitation Time Results for Tapering

Task Matérn Askey Wendland 1 Wendland 2
Matrix Construction 86.01 53.17 55.72 73.66
Inverse Calculation 3852.49 416.09 448.33 419.07

Prediction Calculations 52601.91 51954.32 53194.61 52188.26
Total 56540 52424 53699 52681

1 Time given in seconds

Table 2.12 shows the average MSPE and standard deviation of the MSPEs over the

100,000 predicted points. Notice that Wendland 1 has the best results which correspond to

results found in the simulation studies, when choosing the proper taper.

Table 2.12: US Precipitation MSPE Results for Tapering

Taper Range MATERN Askey Wendland 1 Wendland 2
Avg. MSPE 0.29288 0.36847 0.30523 0.30872
Std. MSPE 0.043293 0.081602 0.052982 0.055655
1 Average MSPE and Std. taken over the 100,000 predicted points.

The following are images of the 100,000 predicted points using the tapering methods
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and the original Matérn covariance matrices. Based on the simulations and kriging we

found that the tapering alpha parameter does not effect predictions greatly. However as

alpha increases to 1 the Askey taper improves slightly and as alpha decreases to 0 both

the Wendland Type 1 and Wendland Type 2 improve slightly. Notice that the Wendland

Type 1 kriging produces the best image when compared to the Matérn in Figure 2.9 further

backing up the simulation study results.
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Figure 2.9: Total yearly precipitation kriging using Matérn , Askey, Wendland 1, and Wend-
land 2
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Figure 2.10: Total yearly precipitation prediction for USA in 1969 Using original Matérn
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Figure 2.11: Total yearly precipitation prediction for USA in 1969 Using Askey Taper
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Figure 2.12: Total yearly precipitation prediction for USA in 1969 Using Wendland 1 Taper
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Figure 2.13: Total yearly precipitation prediction for USA in 1969 Using Wendland 2 Taper
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2.6 Chapter 2 Appendix

2.6.1 Proof of Theorem 2.2.1

We evaluate the Fourier transform matrix of 2.10, which is positively proportional to





(θ11 + �ω�2)− d+1
2 (θ12 + �ω�2)− d+1

2 . . . (θ1m + �ω�2)− d+1
2

(θ21 + �ω�2)− d+1
2 (θ22 + �ω�2)− d+1

2 . . . (θ2m + �ω�2)− d+1
2

...
...

. . .
...

(θm1 + �ω�2)− d+1
2 (θm2 + �ω�2)− d+1

2 . . . (θmm + �ω�2)− d+1
2




, (2.24)

where ω ∈ Rd, by using Theorem 1.14 of Stein and Weiss (1971). This matrix is positive

definite for each fixed ω ∈ Rd since its entries can be rewritten as

(θij + �ω�2)−1 =

� ∞

0

exp(−�ω�2u) exp(−θiju)du, i, j = 1, . . . ,m,

and the matrix with entries exp(−θiju) is positive definite due to the assumption that Θ

is conditionally negative definite (see Theorem 1 in Du and Ma (2011)). According to the

Cramér-Kolmogorov Theorem (Cramár (1940)), (2.10) is a covariance matrix function. �

2.6.2 Proof of Theorem 2.2.2

The Fourier transform matrix of 2.12 is positively proportional to





�d
k=1(θ11 + ω2

k)
−1

�d
k=1(θ12 + ω2

k)
−1 . . .

�d
k=1(θ1m + ω2

k)
−1

�d
k=1(θ21 + ω2

k)
−1

�d
k=1(θ22 + ω2

k)
−1 . . .

�d
k=1(θ2m + ω2

k)
−1

...
...

. . .
...�d

k=1(θm1 + ω2
k)

−1
�d

k=1(θm2 + ω2
k)

−1 . . .
�d

k=1(θmm + ω2
k)

−1




, (2.25)

and is positive definite for each fixed ω = (ω1, . . . , ωd)� ∈ Rd since its entries can be rewritten

as
d�

k=1

(θij + ω
2
k)

−1 =
d�

k=1

� ∞

0

exp(−ω
2
ku) exp(−θiju)du, i, j = 1, . . . ,m,

and, by assumption, Θ is conditionally negative definite. According to the Cramér-Kolmogorov

Theorem, Cramár (1940), (2.12) is a covariance matrix function. �
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2.6.3 Proof of Theorem 2.2.5

Clearly, an equivalent form of (2.22) is

Cij(x) =

� 1

0

K(
�x�
u

)gij(u)du, x ∈ Rd
, i, j = 1, . . . ,m.

The Hardmard product of given matrix function and a positive definite matrix with entries

gij(u) results in a valid covariance matrix function by Lemma 2.2.1. Consequently this

theorem is proved by applying modified Lemma 2.2.2.

2.6.4 Proof of Theorem 2.2.6

In Theorem 2.2.5 take K(·) = ukIkφν,0(·). Note that ukIkφν,0(·) is a univariate covariance

function because Ikφν,0(·) is, when ν ≥ d+1
2 , k = 0, 1, 2, . . . . �

2.6.5 Proof of Corollary 2.2.3

By Theorem 2.2.6, together with the univariate Wendland tapering function (2.19), (2.23)

becomes

Cw,ij(x) =






� 1

0 (u− �x�)4+ (u+ 4�x�)gij(u)du, �x� ≤ 1,

0, �x� > 1,
(2.26)

x ∈ Rd, i, j = 1, . . . ,m. Completing the integration completes the proof. �

2.6.6 Proof of Corollary 2.2.4

By Theorem 2.2.6, together with the univariate Wendland tapering function (2.20), , (2.23)

becomes

Cw,ij(x) =






� 1

0 (u− �x�)6+
�
u2 + 6u�x�+ 35

3 x
�
gij(u)du, �x� ≤ 1,

0, �x� > 1,
(2.27)

x ∈ Rd, i, j = 1, . . . ,m.

Completing the integration completes the proof. �
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2.6.7 Additional Bivariate Exponential Results

The following are more results for the bivariate exponential case when γ = .5, .3.

Table 2.13: Results for Exponential and Askey-Taper with γ = .5

NUM.LOCS EXP.MSPE EXP.TIME Askey.TIME Askey.MSPE
400 0.0288870 0.30 0.30 0.0295190
625 0.0142470 0.71 0.71 0.0143110
900 0.0107040 2.12 1.75 0.0107220
1225 0.0160650 5.35 4.33 0.0160900
1600 0.0117850 12.04 9.48 0.0117940
2025 0.0024041 24.09 19.79 0.0024050
2500 0.0104930 45.88 38.51 0.0104940
3025 0.0096929 88.50 63.78 0.0096927
3600 0.0026003 181.06 105.31 0.0025995
4225 0.0068860 525.65 200.30 0.0068912
4900 0.0079591 727.54 287.45 0.0079560
5625 0.0046308 1207.70 418.64 0.0046212
6400 0.0039480 1882.70 606.73 0.0039294
7225 0.0065214 2934.00 920.14 0.0065031
8100 0.0051621 5185.10 1456.30 0.0051650

1 Refer to Figure 2.14 for graph of results
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Figure 2.14: Results Graph: Exponential and Askey taper, tapered with γ = 0.5
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Table 2.14: Results for Exponential and Askey-Taper with γ = 0.3

NUM.LOCS EXP.MSPE EXP.TIME Askey.TIME Askey.MSPE
400 0.0288870 0.32 0.20 0.0369410
625 0.0142470 0.72 0.36 0.0151380
900 0.0107040 2.14 0.74 0.0109690
1225 0.0160650 5.37 1.60 0.0164190
1600 0.0117850 11.94 3.44 0.0118980
2025 0.0024041 24.28 6.22 0.0024076
2500 0.0104930 45.97 12.36 0.0105300
3025 0.0096929 88.98 21.20 0.0097140
3600 0.0026003 178.38 37.15 0.0026005
4225 0.0068860 588.64 62.17 0.0068968
4900 0.0079591 773.91 100.78 0.0079618
5625 0.0046308 1318.50 142.92 0.0046226
6400 0.0039480 2094.10 213.86 0.0039302
7225 0.0065214 2781.20 312.71 0.0065050
8100 0.0051621 4306.90 445.93 0.0051659

1 Refer to Figure 2.15 for graph of results
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Figure 2.15: Results Graph: Exponential and Askey taper, tapered with γ = 0.3
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2.6.8 Additional Bivariate Matérn Results

The following are more results for the bivariate Matérn case.

Table 2.15: MSPE Results for Matérn : ν1 = 0.5, ν2 = 0.25 and Tapers

NUM.LOCS MAT.MSPE ASKEY.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9996 1.0000 0.9999 0.9999
421 0.9923 0.9991 0.9944 0.9948
761 0.9668 0.9922 0.9714 0.9721
1201 0.9412 0.9838 0.9470 0.9478
1741 0.8666 0.9357 0.8710 0.8714
2381 0.8061 0.8855 0.8092 0.8094
3121 0.7483 0.8285 0.7504 0.7504
3961 0.6941 0.7686 0.6954 0.6955
4901 0.6779 0.7484 0.6790 0.6790

1 Refer to Figure 2.16 for graph of results

Table 2.16: Time (in sec.) Results for Matérn : ν1 = 0.5, ν2 = 0.25 and Tapers

NUM.LOCS MAT.TIME ASKEY.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0000 0.0100 0.0000
181 0.1800 0.0100 0.0000 0.0000
421 0.6000 0.0100 0.0100 0.0100
761 3.5400 0.0600 0.0600 0.0600
1201 13.8100 0.2200 0.2100 0.2100
1741 41.9100 0.7000 0.6900 0.8300
2381 107.2400 1.5200 1.5400 1.6300
3121 241.7700 3.5500 3.3500 3.7000
3961 494.4600 7.6100 7.6800 7.7300
4901 936.7200 12.7900 12.8400 12.7600

1 Refer to Figure 2.16 for graph of results
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Figure 2.16: Graphical results of comparing the Matérn : ν1 = 0.5, ν2 = 0.25 and Tapers

Table 2.17: MSPE Results for Matérn : ν1 = 0.5, ν2 = 1.5 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9993 1.0000 0.9997 0.9998
421 0.9882 0.9988 0.9920 0.9926
761 0.9569 0.9899 0.9632 0.9641
1201 0.9290 0.9794 0.9355 0.9364
1741 0.8515 0.9252 0.8564 0.8568
2381 0.7914 0.8718 0.7953 0.7955
3121 0.7346 0.8134 0.7379 0.7381
3961 0.6816 0.7537 0.6846 0.6848
4901 0.6669 0.7344 0.6695 0.6697

1 Refer to Figure 2.17 for graph of results
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Table 2.18: Time (in sec.) Results for Matérn : ν1 = 0.5, ν2 = 1.5 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0000 0.0100 0.0000
181 0.1700 0.0100 0.0000 0.0000
421 0.6000 0.0100 0.0100 0.0100
761 3.5400 0.0600 0.0500 0.0600
1201 13.7800 0.2300 0.2100 0.2200
1741 41.9400 0.6700 0.6600 0.8300
2381 107.2000 1.5400 1.5900 1.7600
3121 241.4700 3.4900 3.3400 3.3100
3961 493.2400 7.8000 7.8100 7.7900
4901 937.0200 12.9700 13.2400 12.7100

1 Refer to Figure 2.17 for graph of results
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Figure 2.17: Graphical results of comparing the Matérn : ν1 = 0.5, ν2 = 1.5 and Tapers
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Table 2.19: MSPE Results for Matérn : ν1 = 0.5, ν2 = 2.5 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9975 1.0000 0.9993 0.9995
421 0.9754 0.9977 0.9845 0.9857
761 0.9321 0.9845 0.9441 0.9455
1201 0.9007 0.9698 0.9123 0.9133
1741 0.8201 0.9087 0.8319 0.8323
2381 0.7614 0.8536 0.7734 0.7737
3121 0.7070 0.7965 0.7193 0.7195
3961 0.6564 0.7395 0.6689 0.6690
4901 0.6434 0.7217 0.6554 0.6555

1 Refer to Figure 2.18 for graph of results

Table 2.20: Time (in sec.) Results for Matérn : ν1 = 0.5, ν2 = 2.5 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0100 0.0000 0.0000
181 0.1700 0.0000 0.0100 0.0000
421 0.6000 0.0100 0.0100 0.0100
761 3.5200 0.0600 0.0500 0.0500
1201 13.8400 0.2200 0.2200 0.2300
1741 41.9500 0.6700 0.7000 0.8100
2381 107.4100 1.5500 1.5500 1.6400
3121 241.3400 3.6400 3.4800 3.6300
3961 493.9600 7.6800 7.9000 7.8300
4901 935.7000 12.9100 13.0200 13.1000

1 Refer to Figure 2.18 for graph of results
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Figure 2.18: Graphical results of comparing the Matérn : ν1 = 0.5, ν2 = 2.5 and Tapers

Table 2.21: MSPE Results for Matérn : ν1 = 1.5, ν2 = 0.5 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9895 0.9998 0.9961 0.9971
421 0.8915 0.9882 0.9222 0.9281
761 0.7111 0.9278 0.7426 0.7483
1201 0.5885 0.8606 0.6089 0.6118
1741 0.3918 0.6527 0.3985 0.3985
2381 0.2878 0.5005 0.2903 0.2899
3121 0.2156 0.3761 0.2167 0.2164
3961 0.1640 0.2807 0.1645 0.1644
4901 0.1488 0.2434 0.1491 0.1491

1 Refer to Figure 2.19 for graph of results
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Table 2.22: Time (in sec.) Results for Matérn : ν1 = 1.5, ν2 = 0.5 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0100 0.0000 0.0000
181 0.1900 0.0100 0.0100 0.0000
421 0.5900 0.0100 0.0100 0.0200
761 3.5200 0.0500 0.0600 0.0600
1201 13.8300 0.2200 0.2000 0.2200
1741 42.0100 0.7200 0.6800 0.8300
2381 107.2000 1.6000 1.5900 1.6500
3121 241.5600 3.6200 3.3500 3.5500
3961 493.8200 7.7500 7.6700 7.8100
4901 935.8400 12.8800 12.9200 12.9100

1 Refer to Figure 2.19 for graph of results
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Figure 2.19: Graphical results of comparing the Matérn : ν1 = 1.5, ν2 = 0.5 and Tapers

84



Table 2.23: MSPE Results for Matérn : ν1 = 1.5, ν2 = 2.5 and Tapers

NUM.LOCS MAT.MSPE ASK.MSPE WEND.1.MSPE WEND.2.MSPE
41 1.0000 1.0000 1.0000 1.0000
181 0.9892 0.9998 0.9959 0.9969
421 0.8923 0.9879 0.9207 0.9266
761 0.7146 0.9265 0.7416 0.7471
1201 0.5926 0.8584 0.6092 0.6119
1741 0.3956 0.6496 0.4005 0.4005
2381 0.2908 0.4972 0.2924 0.2922
3121 0.2179 0.3731 0.2186 0.2185
3961 0.1658 0.2781 0.1661 0.1661
4901 0.1503 0.2409 0.1506 0.1507

1 Refer to Figure 2.20 for graph of results

Table 2.24: Time (in sec.) Results for Matérn : ν1 = 1.5, ν2 = 2.5 and Tapers

NUM.LOCS MAT.TIME ASK.TIME WEND.1.TIME WEND.2.TIME
41 0.0000 0.0000 0.0000 0.0000
181 0.2000 0.0100 0.0000 0.0000
421 0.6000 0.0100 0.0100 0.0100
761 3.5400 0.0600 0.0600 0.0500
1201 13.8100 0.2100 0.2300 0.2200
1741 42.0400 0.6900 0.6600 0.8200
2381 107.3100 1.5200 1.5100 1.6700
3121 241.8300 3.5100 3.3900 3.5700
3961 494.1800 7.6500 7.7800 7.7300
4901 937.1500 13.0100 13.2500 12.8500

1 Refer to Figure 2.20 for graph of results
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Figure 2.20: Graphical results of comparing the Matérn : ν1 = 1.5, ν2 = 2.5 and Tapers
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Chapter 3

Functional space-time modeling

3.1 Introduction and Background

The development of a crop during its life cycle is heavily influenced by weather variables

such as precipitation, maximum temperature, and minimum temperature. In agriculture

the behavior of these weather variables can be used to construct a model that explains

weather impact on corp production, and also predict crop yield. Usually the data collected

on these weather elements can be seen as a function taken over time on a yearly, daily,

or hourly scale. Throughout the life span of a crop there are important time periods that

weather can positively or negatively influence the resulting crop yield. It would be beneficial

if there was a model that would identify these important time points and give a measure

of how influential each weather element is on crop yield. Staggenborg et al. (2008) did an

exploratory analysis of minimum temperature, maximum temperature, and precipitation to

see what relationship each weather element has with crop production. They explain that the

growing season for Kansas corn is form April to September and that the vital time for a corn

plant’s life is from June 20th to July 10th. Within this short time frame they find guidelines

for what weather conditions produce a good crop. For example, during this time the corn

needs lots of rain, hot days, and cool nights according to Staggenborg et al. (2008). Our goal

is to analytical explore as well as pin point the time periods in a growing season where these

weather variables have either a negative or positive impact on the resulting corn harvest.
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In this chapter we will review functional linear modeling and how it can be used to better

examine weather effects on crop yield. We will also explore a spatial dependence covariance

structure and add it to the functional linear model. Using these ideas of a functional linear

model with spatial dependence we will model the effects of weather on Kansas corn yield

from the years 1990-2011.

The Kansas weather data that are analyzed are gathered from 1123 weather stations in

Kansas provided by the National Climatic Data Center (NCDC), and the corn yield data

was gathered from U.S. Department of Agriculture (USDA) for each of the 105 counties.

Figure 3.1 shows the locations of all 1123 stations represented by the black dots. Maximum
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Figure 3.1: Weather stations of Kansas: black dots are each station.

and minimum daily temperatures are measured in degrees Celsius and daily precipitation is

recorded in millimeters. Take a look at an example of raw daily weather data in Figure 3.2,
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here the red line is maximum temperature, blue is minimum temperature, and black is pre-

cipitation. Notice how the daily weather readings can be thought of as a function of time.

The idea that daily weather readings can be seen as a function gives us the motivation to

use functional data analysis. One of the biggest challenges when dealing with raw data is
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Figure 3.2: Finney County weather elements, red is Max Temp, blue is Min Temp, and
black is Precipitation. Temperature is measured in degrees C and precipitation is measured
in millimeters.

missing data. Throughout the Kansas weather data missing information frequently occurs
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from station to station. Some stations have years with missing months which causes a prob-

lem, example Thomas County. Because of this, a significant portion of the data needs to

be cleaned and in some case interpolated. To solve this missing data problem covariance

models discussed in Chapter 1 and time series techniques are used to interpolate the data.

To interpolate the precipitation data we use similar techniques discussed in Chapter 1 by

applying a modified version of the spatio-temporal covariance function with a MA(1) tem-

poral margin. Time series and spatial statistics are used to predict the missing temperature

values over both space and time.

The response variable of interest is the yield data, which is measured in average bushels

of corn per acre harvested each year. The yield data was collected form 1990 to 2011, an

example of the yearly crop yield for three counties is given in Figure 3.3; Finney county

in blue, Pottawatomie in red, and Thomas in green. For the yield data there is really no

1990 1995 2000 2005 2010

5
0

1
0

0
1

5
0

2
0

0

Kansas Average Bushels Per Acre 1990−2011

Year

B
u

s
h

e
ls

/A
c
re

Figure 3.3: Plot of Corn Yield for Dickinson, Finney, and Sherman Counties. Blue is
Dickinson County, green is Finney County, and red is Sherman County

missing data problems and minimal cleaning was done. One very interesting part of this

modeling is the different scales of time. Weather data is recorded on a daily basis were

yield is only collected once a year after harvest. This again is another reason functional
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data analysis can provide insight to how weather plays a role in the development of crops.

Spatial because yield is only recorded at the county level we have to aggregate the data.

To do this we find an average daily weather reading for each county based on the weather

stations in that county. This results in having a time series for each weather component

for each county, a total of 315 total time series. With the back ground of the data now in

place it is time to introduce the model. To begin we review the B-Spline basis functions

in Section 3.2.1 that are used to estimate the functional parameter of the functional linear

model in Section 3.2.2. In Section 3.2.3 we introduce a functional linear model that allows

the scalar responses to have a spatial dependence structure.

3.2 Methodology

3.2.1 B-Splines

Functional data usually have a framework that can be represented by a smooth curve. In

order to approximate this curve we can use many techniques, one in particular is splining.

A spline is a smooth polynomial piecewise function that has controllable smoothness at the

places where the polynomial pieces connect known as knots. Splining is commonly used

for interpolating a function, smoothing a function, or in approximating the behavior of a

function. Historical the word “spline” came from the ship building industry which meant a

thin piece wood to create curve. To create the curve in the wood weights were placed on

the wood in order to bend the wood into the desired shape. This is the same process to

create a spline curve. A spline curve is a sequence of curve segments that are connected

together to form a single continuous curve. The connecting points of the spline are called

knots. The knots are like the weights in the ship yard. Each segment between the knots

can be modeled with some polynomial, then the polynomials are splined together to create

a single smooth curve. One such type of spline curve for representing complicated smooth

curves is a B-spline.

B-splines, short for basis splines, are commonly used as basis functions to fit smoothing
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curves to large datasets. A B-spline of order p is a piecewise order p Bezier curve and

is C(p−1)-continuous. B-splines are generally chosen because they are relatively easy to

manipulate having local control points, the knots, which only affect a small interval of

the entire spline. This ease of manipulation provides an excellent way of approximating

a functions behavior over the intervals between the knots. Using a B-spline allows us to

create small intervals over the grow season of a crop in order to approximate the behavior

of weather elements and the influence they have on crop production. Given a sequence of

increasing numbers {xj}Nj=1, called knots, between an interval [a, b], and extend it to the

following sequence,

x−(p) = · · · = x0 = a < x1 < x2 < · · · < xN−1 < xN < b = xN+1 = · · · = xN+p+1.

Now define bj,i(x) = I[xj , xj+1](x), j = 0, 1, 2, . . . , N, then B-splines are defined by the Cox-de

Boor recursion formula:�
bj,(p+1)(x) =

x−xj

xj+(p+1)−1−xj
bj,(p+1)−1(x) +

xj+(p+1)−x

xj+(p+1)−xj+1
bj+1,(p+1)−1(x),

j = −(p),−(p− 1), . . . ,−1, 0, 1, 2, . . . , N − 1, N ; (p+ 1) > 1.,

If the knots are equidistant from each other the B-spline is said to be uniform otherwise it

is called non-uniform. The knots are vital to the construction of the B-spline, they control

their shape, smoothness, and ability to fit the data. Find the correct number of knots is

a challenge in its own right. One goal B-splines, is to pick a set of knots such that over

parameterization does not occur and that the B-spline accurately fit the data. Another

goal of B-splines is to approximate the behavior of the a curve using a linear combination

of B-spline basis functions and weights. The second goal will be used in Section 3.3 to

approximate the behavior of weather elements precipitation, maximum temperature, and

minimum temperature to see how each plays a role in the development of a crop. To utilize

the B-splines for this purpose we create a functional linear model.

3.2.2 Functional linear models for scalar responses

According to Ramsay and Silverman (2005), a functional linear model can be formulated in

the following ways: the dependent variable Y with argument t is a function of t, one or more
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of the independent variables or covariates Z is a function of t, or both Y and Z are functions

of t. We will discuss the case when the response Y is scalar and the independent variable(s)

Z are a function of t. The main difference from ordinary linear models is that instead of

the βis being a constant value they will now be functions βi(t). Functional data is similar

to time series data, but the data are usually collected on a finer time scale such as daily or

hourly weather readings. The goal of this type of functional data analysis is to approximate

the βi(t) functions which use the explanatory variables X(t)to explain the response variable

Y (Cardot et al. (1999)). Here instead of obtaining regression coefficients we find regression

coefficient functions βi(t) that show the influence the independent variables have on the

response (Ramsay and Silverman (2005)).

To start let y be a vector of responses , Z is a design matrix, β is a vector of coefficients,

and � is the error vector then the multiple general linear model is given by.

y = Zβ + �. (3.1)

Instead of Z being a typical design matrix, define Z as a vector of functions with entries

Zi(t). Now the functional extension of (3.1) is where the scalar values yi will be predicted

by functions Zi. So in the functional form (3.1) becomes

yi = α +

� T

0

Zi(t)β(t)dt+ �. (3.2)

Notice that the summation in the matrix product Zβ in (3.1) is replaced by the integration

over a continuous index t in the interval [0, T ] of (3.2).

One way to solve this problem is through discretizing the covariate function, however

Ramsay and Silverman (2005) state that this is a naive approach and results in “infinitely

many sets of solutions”. To solve the problems of the naive approach we turn to basis

functions. We can expand β in terms of a set of basis functions Bj(s). Let Bj(t) be a vector

of basis functions of length Jβ, where Jβ = N + p+1 is the number of knots that have been

selected to create the basis, so that

β(t) =

Jβ�

j=1

bjBj(t) (3.3)
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The number of control points should be chosen so there is no significant loss of information,

but small enough so that we can reasonably interpret β(t). With the representation of β(t)

in (3.3) the model (3.2) can now be expressed as

yi = α +

� T

0

Zi(t)β(t)dt+ εi = α +

Jβ�

j=1

� T

0

Zi(t)bjBj(t)dt+ εi. (3.4)

Now we write (3.4) in matrix form, define matrix W to be a n× Jβ matrix with entires,

wi,j =

� ∞

0

Zi(t)Bj(t)dt, 1 ≤ i ≤ n; 1 ≤ j ≤ Jβ, (3.5)

We can further simplify this notation by defining the (Jβ + 1) × 1 vector θ = (α,b�)� =

(α, b1, . . . , bJβ)
� and define the coefficient matrix Z to be the N×(Jβ+1) matrix Z = [1 W],

and 1 is a N × 1 vector of ones. Then (3.4) becomes

y = Zθ + ε (3.6)

and the least squares estimate of the parameter vector θ̂ is given by

θ̂ = (Z�Z)−1Z�y. (3.7)

Now the problem is just a standard multiple regression problem.

Now the are many choices of the basis functions Ramsay and Silverman (2005) gives an

example of predicting total annual precipitation for Canadian weather stations with daily

temperature observations from 35 different weather stations using Fourier basis functions.

Ramsay and Silverman (2005) also mention that B-spline basis functions could be used as

well. Cardot et al. (2003) show how B-spline basis functions can be used and also introduce

a penalized version of the B-spline to account for the roughness of the spline. The penalty

involves a adding a constant determined by the derivatives of the B-spline basis functions.

Usually the squared first derivatives are used. Note here that we have yet to consider

when the responses have some type of dependence structure. Giraldo et al. (2009) showed

that space time kriging was possible when the responses are functional in both space and
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time. They do this by using classical multivariable geostatistics techniques and extending

them to the functional data context. Horváth and Kokoszka (2012) give an in depth review

of spatially distributed functional data when the response is functional. They develop

functional spatial-temporal covariance functions as well as techniques for estimating them

using basis functions. In the cases of Giraldo et al. (2009) and Horváth and Kokoszka (2012)

both the response variable and dependent variables have the same time scale. The difference

here in this work is the time scale for the yield is in years and the weather data is measured

in days. This leads us to propose a similar model to that of (3.2) but with a spatial twist

resulting in a weighted least square procedure. This weighted least square procedure will

allow for the scalar responses to have a spatial/spatio-temporal dependence structure over

years. The introduction of this new functional linear model is driven the desire to explain

weather impact on crop yield in the state of Kansas. In Section 3.3 we will perform a data

analysis on how weather impacts Kansas corn yield using this modified functional linear

model.

3.2.3 The spatial functional linear model

Our proposed model for predicting Kansas corn yield based on multiple weather elements

has the from

yk,i = µk +
3�

w=1

� T

0

Wk,i,w(t)βwi(t) dt+ εk,i. (3.8)

Here yki is the scalar response bushels per acre for the kth year (k = 1, . . . , K) and ith

county (i = 1, . . . , n). Each weather component is represented by Wk,i,w(t) and βw(t),

for example, Wk,i,1(t) is the precipitation process for year k and county i. The function

β1(t) is the weight function for precipitation indicating at what times and to what degree

precipitation influences corn production. Just to be clear k indicates year, i is the index for

county, t ∈ [0, T ] is a time point within the growing season and is common for k and i. The

µk is spatial yield trend per year over the whole state and εk,i is the yearly spatial error

term over counties that will later be modeled using spatial statistic techniques.
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Note that each βw(t) is a function of time that will describe when and how important

each weather element is important to the prediction of corn yield. Just as in the review

of the functional linear model the goal is to estimate the βw(t)s. In order to estimate

each βw(t) we use B-spline basis functions for each weather element with order p given by

Bw,q(t), w = 1, 2, 3, q = 1, 2, . . . , N∗ so that βw(t) =
�N∗

q=1 bw,qBw,q(t) is the smoothing

approximation so that

yk,i = µk +
3�

w=1

N∗�

q=1

bw,q

� T

0

Wk,i,w,(t)Bw,q(t) dt. (3.9)

For our proposed weighted least squares procedure to solve for β(t) = [β1(t), β2(t), β3(t)]

we do the following

β̂w(t) = argmin
bw,q

K�

k=1

n�

i=1

n�

j=1

��
yk,i − µk −

3�

w=1

N∗�

q=1

bw,q

�
Wk,i,w(t)Bw,q(t)

�
(3.10)

×σ
−(ijk) ×

�
yk,j − µk −

3�

w=1

N∗�

q=1

bw,q

�
Wk,i,w(t)Bw,q(t)

��
,

where σ−(ijk) is the (i, j)th element of Σ−1
k , the spatial covariance matrix for yearly yield

among counties.

Similar to the discussion in Section 3.2.2 we can represent (3.9) and (3.10) in matrix form.

LetY = [Y �
1 , Y

�
2 . . . , Y

�
k ]

� is a vector of length kn×1 and each component Yk = [yk,1, . . . , yk,n]�,

here yk,i represents the yearly yield observation from year k and county i. The vector

µ = [1�
nµ1,1�

nµ2, . . . ,1�
nµk]� is kn× 1 vector with each element µk is the average crop yield

over all counties for the kth year and 1n is a n × 1 vector of ones. Define the matrix

Ww, w = 1, 2, 3 as a kn × N∗, N∗ = N + p + 1, matrix that consists of the integrations

over the B-spline basis functions and data components maximum temperature, minimum

temperature, or precipitation. N∗ = N + p+ 1 is the number of total knots for order p = 3
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B-spline basis functions with N interior knots so that

Ww =





�
W1,1,w(t)B1(t)dt

�
W1,1,w(t)B2(t)dt . . .

�
W1,1,w(t)BN∗(t)dt�

W1,2,w(t)B1(t)dt
�
W1,2,w(t)B2(t)dt . . .

�
W1,2,w(t)BN∗(t)dt

...
...

...
...�

W1,n,w(t)B1(t)dt
�
W1,n,w(t)B2(t)dt . . .

�
W1,n,w(t)BN∗(t)dt

...
...

...
...

...
...

...
...

�
Wk,1,w(t)B1(t)dt

�
Wk,1,w(t)B2(t)dt . . .

�
Wk,1,w(t)BN∗(t)dt�

Wk,2,w(t)B1(t)dt
�
Wk,2,w(t)B2(t)dt . . .

�
Wk,2,w(t)BN∗(t)dt

...
...

...
...�

Wk,n,w(t)B1(t)dt
�
Wk,n,w(t)B2(t)dt . . .

�
Wk,n,w(t)BN∗(t)dt





w = 1, 2, 3

Here Wk,i,w(t) are the functions of maximum temperature, minimum temperature, or pre-

cipitation ate each year and county. BJ is the Jth b-spline J = 1, 2, . . . , N∗ with integration

being over the time interval from [0, T ]. Since we have three weather elements there will

be three W matrices which can be represented as [W1 W2 W3]. Now the weight vector

for the basis functions with elements bw,J , J = 1, . . . .N∗ will also be in three pieces one for

each weather element defining b = [b�1 b�2 b�3]
�, where bw = [bw,1, . . . , bw,N∗ ]�, w = 1, 2, 3. So

now let Z = [M W1 W2 W3] where M = I⊗ 1n, I is a K ×K identity matrix and 1n is a

n× 1 vector of ones. Also define the parameter vector Ω = [µ�,b�]�, where b = [b�1, b
�
2, b

�
3]

�.

Allowing the spatial covariance to change from year to year we get a block diagonal

kn× kn matrix defined as

Σ∗ =





Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣK




.

and Σk is the n × n spatial covariance matrix for yield across counties for the kth year.

Notice that the off diagonals are zero meaning there is no yearly space time covariance, but

if you data where better modeled by a more complex covariance structure the only change

would be the off diagonals.
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Combining all the notation we obtain the matrix form of (3.9) is

Y = ZΩ

and a weighted least squares estimate function of (3.10)

Ω̂ =
�
Z�Σ−1

∗ Z
�−1

Z�Σ−1
∗ Y.

By solving for Ω we obtain estimates for the yearly mean yield over the state of Kansas

and obtain three functional parameters one for each weather element. Looking a the graphs

of these functional parameters we can determine if a weather element as a positive or negative

effect on crop yield and how strong it is. Taking the first derivative of these functions

determines what time points are vital to the growth of the crop in terms of each weather

element. We now fit our model and discuss the findings.

3.3 Kansas corn and weather data analysis

As mentioned in the introduction there are n = 105 counties in Kansas on which we collect

data over K = 22 years from 1990-2011. The growing season for Kansas is from April to

September, however, to avoid complications of having boundary knots during the growing

season we add March and October to allow the B-spline to have a more freedom at the end

points of the growing season. This totals to T = 245 days, 183 days which make up the

corn growing season, so the time interval for the B-spline basis functions is [1, 245]. The

B-spline basis functions were of order p = 3 and a total of N∗ = 19 knots, four boundary

knots and N = 15 interior knots were equally spaced over the growing season creating a

two week interval between the knots. This setup captured the behavior of βw(t)s the best.

To fit the model and estimate our β(t) functions requires a two step process; first fitting

the mean structure then analyzing the residuals to develop the covariance structure then

refitting it with the yearly spatial covariance structure. After the initial fit, we noticed that

the residuals have an approximate normal distribution centered at zero which allowed us to
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use Gaussian random field theory to fit the covariance structure of the residuals. To check

for isotopy we looked at directional variograms and noticed that all directions have the same

pattern. We also looked at the space-time empirical correlations and noticed that from year

to year corn yield is linearly uncorrelated. Since the weather does not have year to year

correlation this effects the corn yield by only having spatial correlation. Using the yearly

empirical variograms we fit an exponential covariance function and parameter estimation for

the range, scale, and nugget was done by maximum likelihood. Figure 3.4 shows a sample

of the empirical and fitted variograms from the first nine years. Now that we have the
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Figure 3.4: Variograms for the first nine years. Distance scale in 100 kilometers

estimate for our Σ∗ we refit the model, and the estimation of Ω in (3.2.3) can be done to

find estimates for µks and functional parameters βws.

Figure 3.5 shows the estimate β̂1(t) and its derivative for precipitation. When d
dt β̂(t) = 0

for some t we obtain an important time point in the growth cycle of corn when precipitation

has either a positive or negative influence. Recall that the important dates determined

by Staggenborg et al. (2008) are June 20th to July 10th when using complex computer

simulations. Based on the raw data during the early part of April rain is vital since ground

moisture is needed for the seed to sprout. Next, notice the declining behavior of precipitation
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Figure 3.5: Precipitation β̂(t) and d
dt β̂(t)

producing a negative effect. After the seed sprouts if there is too much moisture, the plant

has the possibility of drowning resulting in a replant and a shorter growing season. This

shorter growing season can prevent the crop from reaching the maximum yield potential.

Around April 26th precipitation begins to increase maxing out around June 18th and another

positive spike around July 16th. Notice that these days coincide with the days set forth by

Staggenborg et al. (2008), meaning that at the beginning and end of the vital period June

20th to July 10th precipitation has a major positive influence on corn yield. There is one last

major positive effect coming in the middle of August which is mostly for cooling the plants

from the summer heat. Precipitation towards the end of the season has a slight negative

effect because farmers need the corn to dry in order to harvest and moisture prevents this

process.

Figure 3.6 shows the estimate β̂2(t) and its derivative for maximum temperature. From

the plots for maximum daily temperature notice hot days in May are vital because a freeze

would cause the crop to die. Again, the agronomy time frame holds true with the raw

data in that days surrounding June 26th-27th maximum temperature has a big positive

influence on corn yield. Also note the sharp decline to a negative effect at the very end of
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Figure 3.6: Maximum Temperature β̂(t) and d
dt β̂(t)

July beginning of August on through to September. This is showing how the hot summer

months, especially without precipitation, can cause a drought which can damage or destroy

the corn plants deceasing yield. At the end of the growing season there is one last positive

effect for drying the corn around September 20th.

Figure 3.7 shows the estimate β̂2(t) and its derivative for minimum temperature. Through

the beginning of a crops life freezing can in most cases cause serious damage to yield. Notice

that minimum temperature has a mostly negative effect from April 1st to May 6th this is

because the young plant can drastically be effected by freezing conditions. During the in

vital June 20th to July 10th time period minimum temperature does not have major effect

on yield, but going into the hot summer months of August and into September cool weather

has a positive effect on yield. Around August 3rd to September 4th having cool weather to

battle against the hot days is very beneficial for a good corn crop at the end of the season.

Looking at the big picture weather plays a vital role for good crop yield. To sum up what

weather conditions produce a bunker crop; in the beginning of the season a farmer would

want warm days and nights with a little rain, during the crucial June 20th - July 10th hot

days with good amounts of rain, and at the end of the season some rain and cool conditions
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Figure 3.7: Minimum Temperature β̂(t) and d
dt β̂(t)

to handle the summer heat of August and September. Overall the proposed model fits the

data nicely to give agronomist, farmers, and statisticians a way to analyze raw weather to

predict yearly yield outcomes. Weather does not change much year to year, but what about

over a ten or twenty year time period? Next we investigate how corn yield is affected by

ten year weather patterns.

3.4 Ten year weather patterns

Through the analyses of Chaper 1 and 3 we notice that weather patterns are almost in-

dependent from year to year, but there may be something changing over larger periods of

time. To look at this relationship we will look at how agriculture districts change over a

ten year period with respect to yield and each weather element using functional boxplots

presented by Sun and Genton (2011). Figure 3.8 shows the agriculture districts of Kansas.

Kansas is almost perfectly divided from the northwest corner to the southeast corner with

the west side having more crops than the east side. We will use the functional boxplot over

two areas. The heavily farmed or rural area will be made up by the agriculture districts;
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Figure 3.8: Kansas Agriculture Districts: Red-Northwest, Green-North Central, Orange-
Northeast, Cyan-East Central, Purple-Central, Pink-West Central, Gray-Southwest, Yellow-
South Central, Blue-Southeast.

Northwest, West Central, Southwest, South Central. The other five districts will make up

the urban area or light farming. Figure 3.9 this split of the rural and urban areas of Kansas

as described above. The functional data plots that will be compared are from 1990-2000
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Figure 3.9: Kansas Rural and Urban Areas.

and 2001-2011. Here we are looking for change over ten years in crop yield, precipitation,
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maximum temperature, and minimum temperature.

When looking at the following functional boxplots the upper line represents the maxi-

mum. The colored band is the 50% central region measured outward from the median curve

given by the middle black line. The lowest blue band is the minimum. For the 10 year

change in yield for both rural and urban areas the overall yield has a very small increase

over a ten year period, see Figures 3.10 and 3.11. However, notice that in the years 2001

to 2011 the functional boxplot in Figures 3.10 has a colored band that is slightly wider for

the rural area than that of the rural area in years 1990 to 2000. There could be a number

of reasons for this increase in variability such as weather changes, expansion of urban areas,

or data collection is inaccurate.
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Figure 3.10: Rural Functional Boxplot of Yield; Top: years 1990-2000, Bottom: years 2001-
2011

Figures 3.12 and 3.13 show the ten year change functional boxplots for precipitation.

Recall from Figure 3.5 that at the middle of June and August are very important times for

a corn plant in terms of precipitation. In Figure 3.12 notice that the years 2001 to 2011 have

more precipitation during these critical times which could explain the wider quartile band

in Figure 3.10. The Urban precipitation during 2001 to 2011 has a loss of precipitation

around August 15th which can explain the decline in yield for the Urban area for those

years. Overall in the rural area the precipitation pattern did not change over the ten year
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Figure 3.11: Urban Functional Boxplot of Yield; Top: years 1990-2000, Bottom: years
2001-2011

gap, however, in the urban area precipitation has declined during the August 15th time

frame. This would explain the sharp decline of crop yield in the the urban area during the

years 2009-2001.
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Figure 3.12: Rural Functional Boxplot of Precipitation; Top: years 1990-2000, Bottom:
years 2001-2011

Figures 3.14, 3.15, 3.16, and 3.17, show the change over 10 years for maximum and

minimum temperatures. In all the cases there is not much change, but in all cases note

that in the later 2001 to 2011 years the quartile band is tighter. With the addition of newer

technology to collect data and more stations to collect data from, this should be expected
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Figure 3.13: Urban Functional Boxplot of Precipitation; Top: years 1990-2000, Bottom:
years 2001-2011

signifying more accurate data collection.
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Figure 3.14: Rural Functional Boxplot of Maximum Temperature; Top: years 1990-2000,
Bottom: years 2001-2011

Taking a look spatially in Figure 3.18 we plot a three dimensional functional boxplot

over the state of Kansas. Again we see the same conclusions, the southwest portion of

Kansas maintains a higher corn yield than the rest of the state and the urban areas have a

lower yield. Figure 3.18 shows that the minimum and maximum corn yield surface do not

really change over a ten year time span. The interquartile surfaces do have slight changes

with yield increasing in the northeast and southwest parts of Kansas. Examining Figure
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Figure 3.15: Urban Functional Boxplot of Maximum Temperature; Top: years 1990-2000,
Bottom: years 2001-2011
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Figure 3.16: Rural Functional Boxplot of Minimum Temperature; Top: years 1990-2000,
Bottom: years 2001-2011

3.19 clearly there is a lot of activity going on with precipitation during the ten year time

span. Here the total precipitation was taken over the time period from June 15th to June

21st which is the first critical time span for corn plants to obtain moisture. The maximum

surface in Figure 3.19 shows drastic changes for different areas of Kansas. For example,

during 1990 to 2000 the southwest corner of Kansas did not have near the maximum rainfall

as it did in the 2001 to 2011. This explains the raise of the surfaces in that area in Figure

3.18. On the negative side looking at the southeast part of the surfaces notice the decline
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Figure 3.17: Urban Functional Boxplot of Minimum Temperature; Top: years 1990-2000,
Bottom: years 2001-2011

in precipitation over the ten year gap. This coincides with the low surface in that area of

Figure 3.18. Maximum and minimum surface plots were also examined, but they did not

show any change over the ten year time span. Overall it is clear that changes in weather

patterns over a ten year time span can have a huge impact on crop production.
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Figure 3.18: 3D Functional Surface Boxplot of Yield. Left: years 1990-2000, Right: years
2001-2011
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Figure 3.19: 3D Functional Surface Boxplot of Precipitaton June 15th to June 21st. Left:
years 1990-2000, Right: years 2001-2011
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Conclusion and Future Work

Throughout this work there has been a central theme of explaining correlation or cor-

related structure in space/space-time processes. In Chapter 1 we found that it is beneficial

to consider the discreteness of the time points in spatio-temporal modeling in terms of ease

of model identification and plausibility. It is seen that the proposed covariance functions

generally out perform Gneiting’s separable and non separable covariance functions in the

Kanas Precipitation data analysis and competitive with those methods in the Irish Wind

data analysis. However, in the asymmetric case Gneiting’s model provides a slightly better

fit, but the proposed asymmetric model is still very comparable. Applying the asymmetric

framework to the proposed model causes the temporal margin to be no longer autoregressive

in nature. To fix this it could be possible to choose a slightly different Lagrangian function to

maintain the autoregression structure. Another improvement of both the models proposed

and Gneiting’s models is the ability to use maximum likelihood estimation. The problem

here is trying to maximize over a large parameter vector, but efficiency of MLE might be

beneficial in final model estimation. One solution would be to use profile likelihoods to esti-

mate certain parameters so that the overall parameter space dimension becomes smaller. It

would also be relevant to extend the proposed models (1.8) and (1.22) to include more types

of time series margins and the constrains for each. The spatio-temporal models presented in

Chapter 1 have successfully started to provide an effective approach that can be used in an

intuitive manner as well as easier to apply to space-time data with some discrete temporal

margins.

In Chapter 2 we introduced some multivariate covariance matrix functions and extended

tapering techniques to the multivariate case. Several classes of compactly supported corre-

lation matrix functions are developed to play as tapering matrix functions, especially the

multivariate Wendland type tapering matrix functions with desired flexibility of smoothness.

We established a guideline for choosing a tapering function based on the original covariance
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function. Simulation study shows that as the number of locations in a space increases the

MSPE of the tapered covariance tends to zero with a great deal of time savings in inverting

the large covariance matrix. Future work would consist of establishing theoretical conditions

on the tapering matrix function to assure there is no loss of optimality of prediction and

efficiency of estimation.

Chapter 3 introduced the spatial functional linear model, which was used to examine

how weather variables affect Kansas corn yield. Overall the model performed well giving

insight into what important time points are within the growing season and how weather

has either a positive or negative impact on corn yield. In the end we were successful in

creating a monitor-like system that can predict the yield given daily weather observations.

There are many extensions that can be studied in the future. First our study focuses on the

state of Kansas only, if national information is concerned, it would be interesting to explore

large scale influence of weather change on yield. Second, we only studied the corn yield

in this work, while multiple crops are harvested at each state, such as sorghum, bean, etc.

Then multivariate spatial function regression can be considered, where we could also take

advantage of the multivariate covariance functions and tapering techniques introduced in

Chapter 2. Third, for the data analysis in this chapter we could also let the model include

over covariates such as soil type, humidity, and other variables that play a significant role in

the production of crop yield. Fourth, not apparent in the Kansas application, but in other

applications the Σ∗ matrix could have a spatio-temporal structure. For example, if the

independent variables had a scale of minutes and the response variable had a scale in hours,

there might be space-time correlation in the response variable, which could be modeled

with the models of Chapter 1. Furthermore, it would be beneficial to construct a functional

confidence intervals for the parameter functions βw(t). Research on the asymptotics of the

spatial functional linear model would also be a worthwhile venture in future work. With

functional data analysis being a new technique for spatial statistics there are many more

possible avenues to be exploited.
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von Kármán, T. (1948), “Progress in the statistical theory of turbulence.” Proceedings of

the National Academy of Sciences U.S.A., 34, 530–539.

Wendland, H. (1995), “Piecewise polynomial, positive definite and compactly supported

radial functions of minimal degree.” Advances in Computational Mathematics, 4, 389–

396.

Whittle, P. (1954), “On stationary processes in the plane.” Biometrika, 41, 434–449.

Wikle, C. K. and Royle, J. A. (2005), “Dynamic design of ecological monitoring networks

for non-Gaussian spatio-temporal data.” Environmetrics, 16, 507–522.

Xu, K., Wikle, C. K., and Fox, N. I. (2005), “A kernel-based spatio-temporal dynamical

model for nowcasting weather radar reflectivities.” Journal of the American Statistical

Association, 100, 1133–1144.

117



Yaglom, A. M. (1987), Correlation Theory of Stationary and Related Random Functions,

Vol. I, Basic Results., Springer, New York.

Zhang, H. and Du, J. (2008), Positive Definite Functions: From Schoenberg to Space-time

Challenges, Gráficas Casta, Spain, chap. Covariance tapering in spatial statistics.

118


	Title Page
	Abstract
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Preface
	Spatio-temporal covariance modeling in continuous space and discrete time
	Introduction
	Simplifying and validating the space-time process
	Moving-average-type temporal margin
	Moving average simulation study
	Kansas daily precipitation data

	ARMA-type temporal margin
	Asymmetric Covariance Functions

	Irish Wind Data Analysis
	Symmetric Covariance Models
	Asymmetric Covariance Models

	Chapter 1 Appendix
	Proof of Theorem 1.3.1
	Proof of Theorem 1.3.2
	Proof of Theorem 1.4.1


	Multivariate Tapering
	Introduction
	Multivariate tapering
	Preliminary results of covariance matrix functions
	Wendland type of compactly supported covariance matrix functions

	Bivariate exponential case
	Bivariate Matrn case
	USA Multivariate Climate Data
	Chapter 2 Appendix
	Proof of Theorem 2.2.1
	Proof of Theorem 2.2.2
	 Proof of Theorem 2.2.5
	 Proof of Theorem 2.2.6
	 Proof of Corollary 2.2.3
	 Proof of Corollary 2.2.4
	Additional Bivariate Exponential Results
	Additional Bivariate Matrn Results


	Functional space-time modeling
	Introduction and Background
	Methodology
	B-Splines
	Functional linear models for scalar responses
	The spatial functional linear model

	Kansas corn and weather data analysis
	Ten year weather patterns

	Conclusion
	Bibliography

