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BACKGROIM) OF THE TliME SERIES PROBLEM

The usual model in least squares regression analysis is

r

Xt=Po+JiPi%t+^t» t=0,l,...,n-l,

v/here the Z's are assumed fixed in repeated sampling and the e's

2
are independently distributed with mean zero and variance a , In

analysis of variance data the Z's may be merely dummy variates

with values or 1. VJhen tests of significance or confidence lim-

its are desired, normality of the 6's is also assumed.

In the sciences many problems occur in which a process pro-

duces what may be considered a family of random variables such

that there is a value of x^ for each value of t in some interval

T. The experimenter wishes to investigate the nature of the re-

sponse curve over the interval T. One of the major difficulties

in the application of traditional statistical methods to these

time series data is the possible absence of independence of suc-

cessive observations. If the €'s are not independent the assump-

tions necessary for using ordinary least squares estimation theory

are violated. It is the correlation of the €'s and not of the X's

which is to be avoided. Attitudes of research workers toward re-

gression analysis of time series have varied between widely sep-

arated extremes. Until the middle 1920' s, many researchers v^ere

completely unaware of the problems connected with the sampling of

time series. Following the appearance of articles such as Yule's

(1926) on "non-sense correlations," it was maintained that ex-

isting methods simply did not apply to time series and that



reputable statisticians should leave time series alone. Koopmans,

Wold and others clarified the sampling significance of regression

analysis based on time series in the late 1930* s. Considerable

work followed on the problem of testing for the existence of cor-

relation of the errors but all too little on the more important

problem of the best estimation procedure when the correlations do

exist. Results are still somewhat lacking in this latter area,

but several estimation procedures have been proposed since 195"0,

some by social and natural scientists, and others by physical sci-

entists and engineers. The method of spectrum analysis is most

prominent in the latter category. This paper will deal primarily

with those methods generally used in the social and biological

sciences,

NATURE OF THE TIME SERIES PROBLEM

Stationary Time Series

The discussion of time series is usually confined to what

are called stationary processes or stationary time series. There

are two important types of stationarity, A process is called

strictly stationary if the distribution of the set

(xt^,..., x^^)

of random variables from (x^it^T) is the same as that of the set

for every n, t^, t2,..., t^ and h. This roughly means that the

time series is without trends, not only in the mean values of the



x^ but also in their variances. Most of the studies in time

series do not require the assumption of strict stationarity but

are based on the weaker assumptions that: (1) E(Xj.) is a constant

for all t which may be taken as zero, and (2) the distributions

above have the same covariance matrix for all h. k time series

(xj.:t^T) is said to be weakly stationary if it satisfies these two

conditions. Hence the covariance matrix depends only upon the

time differences

^2"^l5 t2-t2)..., "t^n'^n-l?

and the covariance of x^^j^ and x^ is a function of h only. If

E(x^) is taken to be zero, then E(x^x^+j^)=Yj^. The covariance Yj^

is usually called the autocovariance between x^ and x^+^, and p^
is called the autocorrelation function of lag h.

For some time series (y^:teT) the model will have the form

yt=mt+xt

where m^. is a constant for each t and (x.t:teT) is a stationary

time series with E(xj.)=0. Since E(y^)=m^, the covariance function

of (y^:t€T)

V^ [^^t+h-^+h ) (yt-°4: )]
=2 (x^+hXt

)

is identical with that of (x^:t^T). Estimating m^ and r^ from a

finite number (n) of observations taken from the time series is

one of the problems of time series analysis.

Models

There are a number of models which may be used in analyzing

time series. If it is assumed that the data follow an underlying



systematic scheme with random fluctuations superimposed, the meth-

ods of harmonic analysis and periodogram analysis may be used to

determine the nature of the systematic component for functions

with regular periods. In cases where the periods are known, for

example, seasonal variation studies in economics, harmonic anal-

ysis is used to determine the amplitudes. VJhere the periods are

regular but unknown, periodogram analysis can be used to seek out

the hidden periodicities. If the systematic movement is oscilla-

tory v/ith irregular periods, the variables Z.. in the regular re-

gression model may become t^, and a polynomial form used to locally

describe the systematic component.

In other cases, the assumed model may involve lagged values

of X as predictors. An example of this autoregressive model might

be
r

Xt=Po+i|-j_PiXt-l+€t.

Or finally, a combined regression model could be used with lagged

X's, present Z's and lagged Z*s as predictors.

The choice between models is very difficult. It may happen

that one model fits v;ell and the others rather poorly. For short

series it is usually impossible to determine whether this phenom-

enon is due to the choice of the model or to the particularities

of the sample analyzed. Particularly for the autoregressive

schemes, tests for goodness of fit are not well developed.

Testing a Series for Autocorrelation

Suppose (x-j_,..., x^) is a sample from a normal time series



(X{.) and the hypothesis to be tested is that the time series

Xq^,..., Xjj are independent random variables having identical nor-

mal distributions N(;i,o ). The term white noise is often used in

reference to such independent random variables.

R, L. Anderson (19^2) proposed a criterion for testing this

hypothesis with the ratio

Rl=ci/c'

where a^c^= 2 (X|-x)(x^^j^-S), h=0,l5 and 2^+i=x-j_. Use of the rela-

tion Xj^+i=X]_, as opposed to running the summation from t=l to n-1,

is somewhat arbitrary, but it simplifies the distribution theory

of Rj^. If a sample is from a white noise, then with n large, Ri

will tend to have values near 0, If the sample is not from a

white noise, then R-^ will tend to have values away from 0,

Anderson derived the sampling distribution for R^ and has

prepared tables for Pr[Ri>Ri(c()]=c(, for c<f0.99, 0,95, 0.05, 0.01,

and n=5(l)15(5)75. Values of R^ for lag other than 1 may be

tested using the table for R]_, since for large samples R^ is ap-

proximately distributed like R-j_. For large n, Anderson also

showed that R^ is approximately normally distributed v/ith mean

-l/(n-l) and variance (n-2)/(n-l)^.

Koopmans (19^2) examined R^ as an estimate of /3 in the simple

autoregressive model

V/^^-l-^Sf
The circular definition of R^ was not satisfactory if the alterna-

tive hypothesis specified this form. Von Neumann (19^1) had ear-

lier obtained the distribution of



c2 -. n-1 ^ , _ n 5

Hart (19^2) tabulated the probabilities by use of a series approx-

imation. T. W. Ajiderson (195^) then showed that

n-1r 2 2"i
^"^

l/2[(x3L-x)'^ +(Xj^-x)'^J + 2 (xt-x)(x^+i-x)

n
Z (x^-x)'
=1 ^

> ., ^-- ^- nirnim -ii'i- - —

i

-r^ " V"- '— i fi-^-r-" nmi—i— irtir-nT-i

^ .-.^2

had greater power than R-j^ in testing the hypothesis that yD=0 for

Koopmans' model and that no uniformly most powerful test exists

for such a hypothesis. Since

%= 2n(l-Rc)/n-l,

Anderson was able to transform Hart's significance levels into

significance levels for R^.

A non-parametric test of great simplicity is due to Wald and

Wolfowitz (19^3) J but it is also circularly defined and somewhat

limited in use. Many other papers on testing for autocorrelation

have appeared; those mentioned here are probably the most signif-

icant.

Testing for Autocorrelation in Residuals

In the previous section on testing for autocorrelation the

process (xj.) considered had mean value zero and, if necessary,

the mean correction was applied. The general class of time proc-

esses v/ith which the experimenter is usually concerned will need

to be reduced to stationary form by simple subtraction of a time



dependent mean. Such a preliminary treatment of data will nearly

always be necessary before methods of stationary time series can

be applied.

Consider the linear regression of a variable y^ upon k re-

gressor variables ^ti^2t^"' ^'^'^f
^^®^

^^t
^^ regarded as being

generated by a relation of the form

k

^t ^^o^iiPi^t-^^

where x^ is generated by a stationary process. The Z^. are con-

sidered fixed and independent of the x^ and inferences made condi-

tionally upon the fixing of the Z^^ at their observed values.

It has been shown, as shall be more fully illustrated in a

later section, that the departure of the process generating x±.

from a process generating independent random variables may effect

both the efficiency of the least squares methods and the validity

of the usual tests of significance. Lacking any precise prior

knowledge as to the nature of the data, a reasonable procedure

may be to carry out an initial regression based on the assumption

that the x^'s are white noise. The x^ can then be tested for

mutual independence. The fact that the p's are estimated invali-

dates the use of the methods of detecting autocorrelation pre-

sented in the previous section.

A small sample test of the null hypothesis that the x^ are

independent and normal with zero mean is due to Durbin and Watson

(1950, 1951). Let the n successive least squares residuals be

^l>^2»*'*'^n* ^ modification of the von Neumann statistic
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n-l ^

^ = T-;
i=l 1

is used to test for the existence of autocorrelation in the resid-

uals. It \vill be noted that

6£ , nd , and d=2(l-R )

s2 n-l

but since the original von Neumann and T. W. Anderson statistics

did not refer to the residuals from a regression analysis, tables

for those statistics cannot be used here. An exact distribution

for d cannot be evaluated, but upper and lower significance

bounds, d^ and d^, could be computed. This was done by Durbin

and Watson for 51, 2. 5%, and 1% one-tailed tests, for n=15(l)^0

(5)100 and for k=l(l)5. It should be noted that d^ and dj^ will

diverge as k increases and also as n increases.

In most cases the experimenter desires a test of the null hy-

pothesis against the alternative of positive correlation. The ex-

pected value of d will be small when the null hypothesis is false,

so if the computed value of d is less than the tabulated value the

null hypothesis is rejected. If the alternative hypothesis was

negative correlation, d would be expected to be near k. In this

case d'=if-d is considered and tested against the tabulated value

as above. Durbin and V/atson present alternative approximation

methods for use when n is greater than ^-0,

Moran (1950) presented an exact test for the residuals from

regression when only one predictor is used. He used the first two



autocorrelation coefficients of the residuals, defined in a cir-

cular fashion, and showed that the expected value of the autocor-

relation coefficient of the residuals r-, is

and that

^. . -(1+%)
^^^1^ = -WIT-

2. N+1 2Ri+3Rf-2R2
ECrn ) = .—- -f- —± ± ^

N^ N(N-2)

Finally Koran shows that for large samples the quantity

r^-E(r3_)

is normally distributed with mean zero and variance one.

The Correlogram

A useful tool in the analysis of time series, first proposed

by V/old, is called the correlogram. V/old (1953) indicated that

the choice of possible models used to explain stationary time

series data depended upon the relationship of successive true

autocorrelation coefficients p-^. The sample values R-^ are usually

displayed graphically as in Fig. 1.

Three possible forms of the correlogram are readily apparent.

First the curve may be strictly periodic with repeated non-damped

cycles. This suggests the use of harmonic analysis. Secondly,

the curve may be damped but with |^j greater than zero. This type

of curve may be generated by a linear autoregressive model. The
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+1

-1

lag L

~-— harmonic
autoregressive
moving average

Fig. 1. Correlogram,

third alternative is a damped correlogram with p eqioal to for

some L greater than m. Wold suggests the use of moving averages

to transform the data to non-autocorrelated observations.

The extent to which the fine structure of a correlogram can

be interpreted seems limited and it appears best to concentrate on

certain features such as pronounced oscillations and the speed

with which the R^ converge to zero. Bartlett (19^6) has shown

that successive autocorrelation coefficients tend to be autocor-

related and hence caution should be used in determining the model

from the correlogram. Especially with relatively short time

series, the empirical .correlogram may depend more upon the prop-

erties of the sample than upon the population, but it still is a .

valuable tool in selecting a suitable model.

To illustrate these concepts, precipitation data for Manhat-

tan, Kansas, was obtained and the probability of a dry day was

calculated for each day of the year. These probabilities are

listed in the Appendix. Now if it is assumed that the observed

probabilities are the result of random variation superimposed on
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a systematic model, the correlogram for the 3^5 observations may

give an indication of the appropriate model.

The autocorrelation coefficient (circular-definition) for

possible lags are listed in Table 1 and plotted in Fig. 2. Al-

though care must be taken in drawing conclusions from the correlo-

gram, the oscillation suggests that either an autoregressive model

or a periodic model be used to estimate the systematic component

of the data. It will be shoum later that harmonic analysis used

to fit a periodic function gives errors which appear random.

Table 1. Coefficients of Autocorrelation for Probabilities
of Dry Days in Manhattan, Kansas.

Lag Rj^ Lag R^ Lag Rj^ Lag Rj^

1 .6711 95 -.0899 190 -.9^05 285 .0825
5 .6313 100 -.1065 195 -.5017 290 .1317

10 .621^6 105 -.1557 200 -.51^3 295 .1811
15 .5932 110 -.1^37 205 -.M-711 300 .1860
20 .5712 115 -.2766 210 -.^5^3 305 .2565
25 .5189 120 -.2720 215 -.^53^ 310 .2893
30 .5157 125 -.2869 220 -.M4-52 315 .3if21
35 .^6i4-5 130 -.33if2 225 -.if035 320 .3if79
4o .if.i2if 135 -.3775 230 -.3775 325 .'+123

^5 .3^-79 1^0 -.4035 235 -.33^2 330 ,h-6k-5
50 .3^21 ik5 -.4452 2i;o ..2g69 335 5156

P. 'Bli ^^2 -^^33 2if5 -.2721 3^ :5i88
60 .2566 155 -.^543 250 -.2766 3^5 .5712
6^ .i860 160 -.lf710 255 -.1^37 350 .^9^2
70 .1811 165 -.51^2 260 -.1558 355 625;6
75 .1317 170 -.5017 265 -.1065 360 .631380 .0825 175 -.5^05 270 -.0899
85 .0221 180 -.5310 275 -.0295
90 -.0295 185 -.5310 280 .0221
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*•

4-1

-1

• • • •
• •

*j- 111 '
f

'

lag L

80-.. 160 2^0^.-" 320

• • • • *

Voo ^

Fig. 2. Correlogram for Probabilities of Dry Days.

THE AUTOREGRESSIVE MODEL

In many fields of study the time series phenomena may be rep-

resented by a regression model of the form

Wt-l"'- •
--^Vt-P=^l^f*'- • •••Pq^qt^^t

'

t-0,1, , , .
,n-l. (1)

where ^^ is a series of independently and identically distributed

random variables with mean zero and variance 0^, This is a gener-

alization of both the ordinary regression model

VPAt-^'-'-^PqV^t

and of the autoregression model

^t+'=<l^-l+---+°^^-p+^o=€t .
•

Values of x^, x_-],,..., x_p^.]_ are usually regarded as given num-

bers, or if they are considered as random variables, inferences

are made conditionally on those quantities held fixed.
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Since the coefficients in the normal equations are random

variables for model (1), rather than constants as for ordinary

regression models, difficulties arise in finding the sampling

distributions of the least-squares estimators.

Model with Lagged Dependent Variable

Mann and Wald (19^3) studied the autoregression model

^t"*"'^l^-l'*""*'*"=^^-p'^^o~^t ^^^ showed that ordinary least squares

theory is valid as3miptotically.

A method presented by Durbin (I960) examines the properties

of estimators for the model containing lagged x's. He considered

the simplest cases of the regular regression model, namely,

x^=pZt+€t, t=l,...,n

where Z^^,.,., Z^ are constants, and

Xt+'=<Xt_i=6t, t=l,...,n

where x^ is constant. Both cases take ^t to be independently and

identically distributed with mean zero and variance C5^.

Application of least squares gives estimates for p and «=( of

the form

b=JiXtZt/J^z2 and a-J^XtX^.i/J^x^.i

respectively. The estimate b is the minimum-variance unbiased

estimator for p, but a is biased and its small sample properties

do not follow directly from any classical theory. The difference

arises from the fact that while b is a linear function of the x's

and relatively easy to handle, a is a ratio of quadratic forms.

In developing a reasonable optimality criterion for estimating



-^'v-'^t^" "

?*"'"i*
• T -^ r ' X

Ik

o(, Durbin considers the estimating equation

nan
t=l ^ -^ t=l ^ ^ -^

from which a is derived. If a is replaced by «=( then

The linear equation in a is called an unbiased estimating equation

in accordance with a definition by Durbin: '

Suppose that the estimator a of a parameter oc is
given by the linear equation

Tia+T2=0, (2)

where T-, and Tp are functions of the observations such
that T2/T1 is independent of unknown parameters, and
where

E(Tio<+T2)=0.
(2)

Then equation (2) is called an unbiased linear estimating
equation.

Linear in this case means linear in a, not linear in the ob-

servations. The quantity T3_ is assumed to be non-zero. If T=l,

this definition includes the ordinary notion of an unbiased esti-

mator .

A second definition is necessary in requiring the analogue

of minimum variance of an unbiased estimator. Since (2) may be

multiplied through by an arbitrary constant without affecting the

value of a, requiring T-lo<+T2 to have minimum variance is not

enough. To take care of this situation, the equation was stand-

ardized by dividing through by E(Ti).

If ti=Ti/£(ri,^) and t2=T2/E(T^) "then Durbin' s second defini-

tion is:

Suppose that tia+t2=0 is an unbiased linear estimating
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equation where E(t-j^)=l and

V(tic<+t2)^V(tio<+t^), (3)

for all other unbiased linear estimating equations
tj_a+t^=0 having E(tj_)=l. Then tia+t2=0 is called
a hest unbiased linear estimating equation.

The notion of a minimum variance unbiased estimator is in-

cluded in this definition, for if ti=ti=l and (2) is satisfied, a

is a minimum variance unbiased estimator of c<.

Now a lo\-:er bound for the variance of t]_o(+t2 is derived. Let

T-[_a+T2=0 be an unbiased estimating equation where T-j_ and T2 depend

only on the observations. If the sample density is jjJ(x]_,,..,

Xj^;c<), then from (3)

^ (T3_c<+T2) jz5 dx=0

where Tp^ denotes the multiple integral and dx stands for dX]_»«»»j

dXjj, If the conditions for differentiating under the integral

sign are satisfied, the differentiation with respect to <=< gives

f^ X.-Ji dx + y^(txo<+t2)(^2J/3°<)dx=0,

Since E(ti)=/1 ti^ dx?=l and ^jzJ/5cc=jZ$ blog ^/dc<, one may write

/^ (t2=<+t2)(^log j2J/3c<)^dx=-l.

By Schwarz's inequality

E(t-i_o(+t2)^ EC^log izJ/do<)^^ y^(tio(+t2)(^log ^/3o()^dx ^=1,

so that finally

V(tic<+t2):?|-(^log ^/5o()^ EC^'^log j5/3c<'^) ^^^
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If t^sl then -t2 is an unbiased estimator and ik-) becomes the

Cramer-Hao inequality

E(t2+c<)S

for the lov/er bound on the variance of an unbiased estimator.

Quantity tj^ may not be identically equal to one but may con-

verge stochastically to one as n—> oo. In this case let h^ be a

function of n such that

E(blog ^/ac<)2=o(S^).

It follov/s that since t-j_(a-o()=-(t3_c(+t2) , the limiting min-

imum variance is that found above. Thus the asymptotic distribu-

tion of 6n(a-c(), if it exists, has mean zero and the limiting min-

imum variance is

lim si

n—^00 ECblog ^/dcc)'^

For single parameter problems o^^ is usually equal to v/n".

A.S an example, the errors €]_,..., e^ for the autoregressive

model can be assumed normally distributed with unit variance.

The density function is then

^ .21

(27r)
n/2

exp -1/2 2 (x^+coc^^j^y

Application of the method of maximum likelihood gives the linear

estimating equation, namely,

n 2 ^

^tli'^-i''t=i''t^t-i=o»
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which is unbiased according to the previous definition.

Differentiation leads to

-d%og ^/dc(^= 2 x|^3^,

no n
so from the previous derivation, with T-j_= 2 x^_i and T2= 2 x^Xj-^-j^

t— J. t—

1

one obtains

V(t^o(+t2) ^ .

^(Jl <i)

For this example this lower bound is actually attained as

. n p
t,c<+t5 =^bloR 6 /E( 2 xf i)

dc< / t=l ^-•'

and

V(t,c(+t ) = E(c)log qV6o()^ = 2l.

[=(J,-f-i)]' E(Ji4-i)

To consider the variance of the estimator a, asymptotic

theory and the assumption
|

c<
|
< 1 are used. The expected value,

n 2 1
1 E( 2 yit . )—^ J_
n t=l t-1 •:^Z?

as n becomes large, so that in the limit v/n(a-c<) will have zero

mean and variance l-o(^. Thus a is an asymptotically efficient

estimator of oc since l-cc is the minimum variance possible.

Durbin extends this proof to multi-parameter problems and

shows that, in general, the same properties hold. These results

are important for the next section where the model has autocorre-

lated errors.
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Hurwicz (195^0) studied the small sample bias of the parameters

in autoregressive models and indicated the serious proportions that

the bias may take on.

Model with Autocorrelated Errors

For many situations, the appropriate model is

VPl\t"*'"*''PqV*"^t' (t =0>--«>n-l) (5)

where (U^) is a stationary autoregressive series given by

Ut+=<lUt-l+**«+"=^Ut_p=6t) (t = 1,0,1,...) (5a)

and where the Z's are given constants. The ^^'s are assumed to

be independently and identically distributed with mean zero and

variance c5^. This model differs from the model of the previous

section in that it does not contain lagged x's and has autocorre-

lated error terms.

The common assumption of independence of error terms may be

violated in data such as a series of outputs of a production proc-

ess. Cochrane and Orcutt (19^9) have offered three reasons why

the 6^'s in economic time models tend to be autocorrelated:

1. Use of incorrect functional form of the relationship.
2. Omitted variables are usually autocorrelated.
3. Errors of measurement are often autocorrelated.

They conducted some empirical sampling studies using generated

autoregressive error processes with a given regression model. The

series used were analogous in length to most available economic

time series with approximately twenty observations. When least
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squares regression was used to analyze the generated series, the

results indicated:

1. Estimated autocorrelation of the residuals tended
to be biased tov/ard randomness.

2. The least squares estimates are not biased even though
they are not the best estimates.

3. VJhen the autocorrelation of the errors is high the
variance of the least squares estimates is greatly
increased.

k. Nearly optimum results can be achieved if the error
term is only a rough approximation to a random
series so even a simple transformation of the
error term may be adequate.

5. If sample residuals are used to estimate the error
variance, c5 , this estimate will be too small
when the errors are positively correlated.

6. Analyzing first differences is a good method for
economic problems.

Champernowne (19^8) showed similar results by theoretical work

with this model.

Nov7 returning to the original model, if the U. , U^_i»« • • j^t-D

are expressed in terms of the x' s and Z's using (5)? the model

(5'a) becomes

V^iVi-^'-'-'Vt-p

= Pl2it+- • •+Pq2qt-'^lPl2l,t-l-^- • •+=<pPp^q,t-p+ef

An investigation of the efficiencies and estimated variances

of least squares estimates of regression coefficients for fixed

Z' s and tests of hypotheses concerning them when an incorrect

transforming model is used has been carried out by Watson (195'1).

Various types of general solutions are presented; bounds on the

bias of the estimated variance, lower bound on the efficiency of

the estimates of regression coefficients and some bounds on the

significance points of the t and F tests. Some special types of



20

incorrect transformations are also discussed. It was found that

for what appeared to be only mildly inaccurate estimates, the true

probabilities for 5% significance levels may be considerably dif-

ferent. Watson takes a rather pessimistic view of the use of

transforming devices to remove the effect of autocorrelation in

time series data.

Application of least squares to this equation will, in prin-

ciple, lead to optimum estimates when the
6-t

are normally distri-

buted. These equations will be non-linear and hence, difficult

to solve. Some sort of iterative procedure is required. Various

methods have been suggested by Champernowne (19^8), Cochrane and

Orcutt (19^9), Durbin (I960) and others, but these are computa-

tionally inefficient.

Fuller and Martin (I961) have suggested the simultaneous es-

timation of both the error sturcture and the model by least

squares. This method appears much more promising for practical

work. For the first order autoregressive error and a single Z

variable this method is easily illustrated. The models are

and V°<Ut-l=ef (7)

Substituting (6) and (6) lagged into (7) gives

x^=pZ^+c<pz^_^-coc^_^+6^. (8)

Estimation of c< and p is now clearly a problem in non-linear es-

timation. If the equation is re\^^ritten as

^=ei2t+®22t-i-^©3^-l-^€t
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where 02=-©iO3, the problem may now be viewed as a non-linear re-

striction upon the three parameters. Independence of the errors

will now be a special case with oc=0.

This problem can now be handled by the modified Gauss-Newton

iterative procedure. The problem becomes one of regression by

expanding (8) in a Taylor's series about a point Po=^^o»Po^» where

o(q and pQ are guessed values of the parameters. If only the first

order terms are considered, then

Xt-2^to=^2^+°^2t>l)Ap+(PoZt.l-xt_i)Ac<

where Ap=p-po and Aoc=c<-c<q, The corrections in the trial values,

Ao( and Ap, can be found by regressing (xf-x^o) on i2^+^o^-l^ ^^^

and (Po^t-l-^t^i).

Hartley (I96I) has sho^-m that the residual sum of squares

decreases in the Gauss direction, that is, that some k>0 exists

such that the residual sum of squares associated with Polr=('=<o''"^'=<»

pQ+kAp) is less than the residual sum of squares associated with

Pq. It may happen that the full step results in an increase in

the residual sum of squares. In order to assure a decrease in the

residual it is necessary to compare the preceding residual with

the computed residual sum of squares at the end of each iteration.

If a decrease is recorded, (c<Q+Ao(,pQ+Ap) are used as start values

for the next iteration. If a decrease is not recorded, the start

values are taken as (c<o+l/2 Ac<,pQ+l/2 Ap) and the residual sum of

squares computed. If a decrease is not noted at this step, the

residual sum associated with (oCq+IA Ac<,pQ+i/if Ap) is foiind and
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so on until the decrease occurs. The iteration is carried on

until the Ao( and Ap satisfy a criterion of form

(Ac<i)2

var ($j_)

The serious problem may be in locating an initial approxima-

tion (°(q5Pq) in the region of the absolute minimum of the resid-

ual. A preliminary grid over a v;ide range for << and p may be nec-

essary to find a sufficiently close approximation. The absolute

minimum and not a local minimum must be found.

If the Z^^ are assumed to be bounded and the €4. normally dis-

tributed the final set of estimates are maximum likelihood esti-

mates possessing the properties of consistency and asymptotic nor-

mality. Large sample variances and covariances are estimated in

the ordinary manner as the product of the elements, Cj_j, of the

inverse of the variance-covariance matrix at the final iteration

and the estimated variance s^. The variance is estimated by

n-1 ^2
S =

n-r

where r is the number of parameters estimated.

The exact nature of the correlation properties is of course

unknown. A. second order autoregressive scheme

V=<lUt-l+°^2Ut-2=€t

could be assumed and the parameters estimated in a similar way.
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Goodness-of-fit tests for autoregressive schemes have not been de-

veloped to a sufficient extent. It seems though that for most

situations, a model only roughly approximating the true one will

give the desired random error terra.

PilBAiMETRIC TIME SERIES

The classical model which has been used widely in time-series

analysis consists of tv/o parts, a systematic part Mi., and a random

element of error 6^ with mean zero and variance c^. If the ob-

served item is Xj. (t=0,l,. . . jn-l) the time series has the form .

The stochastic element ^^ is superimposed on the non-stochastic

part Kj. and the error at one time point does not affect a later

observation. This model is not valid if the error elements are

autocorrelated

.

Different methods of analysis are appropriate for different

assumptions about the nature of M^. If the data indicate that M^

is a "smooth" function of time, that is, K^ is not highly irreg-

ular or periodic in form, a polynomial may be used to locally rep-

resent the data. The autocorrelations of M^ and K^_^^ (h=l,2,...,

n) should be positive, zero, or small negative numbers. A semi-

empirical procedure known as the variate difference method is com-

monly used to estimate the degree of this polynomial.

VJhen oscillatory and periodic movements are present in the

data the function to be fitted must be of trigonometric form.

This usually involves the use of Fourier analysis or some related
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procedure.

Variate Difference Method
\

Suppose the time series x^, t=. . ,-l,0,+l,. , .
, is known to be

of the form

k P
Xt=p2^Ppt^ +6t=Mt+€t

where Po>Pi»'"jPk ^^® unknown and where 6^ is a random element '

p
with variance 6 ,

For a sample (x]_,..., Xjj)j n>k+l, minimum variance estimators

for the p's can be obtained by least squares and the variances of

the estimators calculated by usual methods if the parameter k is

known. However, k is usually unknown and must also be estimated.

A polynomial of degree p has the well-known property that its

(p+l)th finite differences vanish. Tintner (19^4-0) has used this

property in developing the variate difference method for estima-

ting the value of k for the given model.

Let y^ be the time series defined by the hth forward differ-

ence of the time series x^. Since A is a linear operator

yh,t=^S='^X+^^€f

By the advancing difference formula

and

^^et=€t+h-(l)^t+h-l+(2)€t+h-2-...+ (-l)^€t

^VMt+h-(l)Mt-Hh-l+(2) ^it+h-2----^(-l)\.
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If one considers the sequence of samples (x, ,.. . ,xl_j_j^), h=l,

2,... and forms the ratios ''.-

vj/h,5/[^(1i)]» h=i,2,...

= 2
§=lL

it follows that

since M| is a nonrandom function of t and 6c is a random element.

From the above expression for A^'^e^ we find

The first term is alv/ays non-negative and will vanish for all

h^k+1. Therefore E(Qj^)=o^ for h^k+1.

In a practical situation, the question then becomes: Which

difference series sufficiently explains the non-random part of the

time series so that all difference series of higher order are es-

timates of a and represent e^ alone?

Under the assumption that element
€-t

is normally distributed

with mean zero and variance o^, a large sample test has been given

by 0. Anderson (1929) for testing the hypothesis that the vari- •

ance of the difference series of order h is approximately equal

to the variance of difference series h+1, i.e. Qh=Qh+i' ^or a

sample (x-j_,..., x^), n»kQ the estimates of the variances of the

difference series are



K5v<f

^

Qh=^iiyh,^/[(n-h)(^)]

If the systematic part of M^ has been eliminated in the finite

difference series of order h^, then approximately

Qho=Qho+l=QhQ+2="' •

In order to test the approximate equality of Qj^ and Qh+i , the

standard error of Q^+i-Qh ^^ computed:

%. ~ "— » lc=0,l,2,.,, ,

^hn

Shn ^as been tabulated by Tintner (19^0). An asymptotic formula

can be used for large values of n and h>6:

2 _ (3h+l)Qgv/Sfh
®h Q

> h=6,7,... •

2(2h+l)^(n-h-l)

The quantity

Ru = ShlSkti = ShlSktl Hv, h-0 T ?" _ _i— njjj^, n-u,i,2,...
®h '^ih

is approximately N(0,1) for large samples (0. Anderson, 1929).

Hence if an h^ is found such that \ -1 is significant but % is

not significant at the chosen significance level it is assumed

that the systematic part of the series has been approximately

eliminated in the h^th difference series. It should be pointed

out that the choice of the order of difference ho is a multiple

choice problem. Therefore the maintaining of a fixed level of

significance is extremely difficult.



27

2
The estimate Qj^ of a is not completely efficient since one

o
observation is lost each time one takes a higher difference. Morse

and Gruhbs (19^7) have treated this problem and present a table

for evaluating the efficiency for various n and h^. The higher

the order of the series of differences from which the variance

has been estimated the less efficient is the estimate.

Applicability of the variate difference method is thought to

be limited even by Tintner whose work with this method has been

extensive. This method is not valid when the errors are autocor-

related and an autoregressive scheme should be used under such

circumstances.

Oscillatory and Periodic Movements

In some types of data a distinct oscillatory movement may be

apparent. Suppose it is Imown that such a time series x^^, t=...,

-1,0,+1,,.., has the periodic parametric form

x.=A + 2 [a cos u>^t+B„sin e<;„tl+64.

where 6^ is a random element v^ith mean zero and variance a , A-,

A. ) B , and tj are knov/n real constants and O^u; <Tr, For sim-

plicity, it is assumed for the moment that A is zero.

Consider a sample (xq,..., x^_3_) from the time series. If

one multiplies through by cos tct, Oi:a;^Tr, sums over t and divides

by n then

T n-1
<^(<o)=:=. 2 Xf-COSCJt

n t=0 ^
1 n-1 r k

^ t^O lpii^S^°^ "^P*
^°^ tt;t+BpSin oipt cos t4;t)+6tcos a/t



The expression can now be rewritten

k PA n-1
<Kito)

1 k PA n-;
=i 2 -^ 2 cos(tc> +co')t+cos(«^^-"^)t
^ p=l ^ t=0 P P

B„ n-1
+-^ 2 sin(tc'„+a;)t+sin(to'_-6t;)t-

'^^ t=0 P P

1 n-1
+— 2 €tcos cut,
n t=0^

Now as n—> oo, c<(«;)—>Ap/2, tJ=a^p, p=l,...,k

Similarly, if the original expression is multiplied through

by sinct^t and denoted by =<'(«-'), and the corresponding operations

carried out, as n—> cd
,

c<«(^)__<^-Bp/2,a;=u;p, p=l,...,k

Therefore, if 2Tr/aJ ^ is a genuine period of the time series x^,

t=,..,-l,0,+l,..., 1 2 X{.cosaX.t will tend to be near k^/2 and
n-1 n 0=0 ^ .f p

1 2 Xf sin 6<^ t will tend to be near -B„/2.
n t=0 '' P P'

Let n in the sample (x-j_,..., x^) be odd, say 2r+l, and let

2Trp

The form of the periodic function is now

Apcos pO^+BpSin pOtj+^t

k
X. =A + 2
t o p=i

where ©^=2xrt/2r+l.
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If the periods of the time series are knovm but the A , A.
,

B^, p=l,,..,k are iinJinown, the mininram variance estimators for

these quantities can be found by least squares. These least

squares equations are

n-lr

t=0
x-j^-Aq- 2 (ApCOs pO^+BpSin pO^) =0

and

n-1
2

t=0 ^-•^o" 5. ^\°°s pO^+BpSin pQ^)
p=l

sin hOt
COS jOt

=0,

gives

nj j—xj«««}K*

The standard formula for the sum of a cosine progression

n-1
2 cos mt^sin(l/2)mt;25 cos(l/2)m(t-l)^/sin(l/2)m;z{

where jzJ=04./t. For integral values of m this will vanish since

(l/2)mt;^mjr. Therefore all sums of the form

Scos hO^ cos j 0^=1/2 Scos(h+j )0^+2cos(h- J )0tt Lt t

will vanish unless h=j, when the value will be (l/2)n.

The first of the least squares equations gives the result
n-1

From the normal equations, the covarlance matrix is found to

be
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n/2

n/2

• •

. 11/2

and its inverse is

2/n

2/n .

. . .2/n

It follows that coefficients are random variables with zero

covariances and variances 2cj^/2r+l. The variance of a fitted

value is (2k+l)o^/n and is independent of the angle 0^, The re-
n-1 p

sidual sum of squares S (x^-x^)^ is given by

n-1 p J" k
. p ?'

Jo^t-^ag.l/2^np|^(a|-Hb|)|.

The expectation of this is (n-2k-l)o^ and so the variance of an

observation is estimated by
n-1 2

s^=

n-2k-l

If the time series has periodic form but the A^, Bp, and o^p

and even k are unknovm, a method of searching for suspected periods

is necessary. The behavior of the mean values of ©((«;) and c<« (cu)

described earlier suggests that these values considered as func-

tions of u) might be useful in screening out true periods if any
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exist.

As early as I898, Schuster proposed a method of searching

for possible periods. Walker in 191^, and Fisher in 1929, fol-

lowed with methods of testing the significance of suspected pe-

riods. This method^ generally known as periodogram analysis,

tests the significance of possible periods imder the assumption

that X{. is a white noise.

If it is assumed that there are no true periods at all in

the given time series, then the A and B are all zero. But if

27r/a^p is a true period, the behavior of '=<(**^p) and c<«(a;p) indi-

cate that both of these will tend to have values away from zero

for large n. The Quantity or(«J )+o(« ( a; ) has a value for each
P P

'C
, p=l,.,.,k, so one needs a way of testing whether the largest

(or mth largest) of these quantities is significantly large under

the assumption that Xi. is a white noise.

The further assumption that x^ is normal white noise with

pmce a is made in dc

testing. The quantities

p
variance a is made in dealing with the problem of significance

2(2r-H) °c(^p). / 2(2r+l) c<«(a;^), p=l,...,k

are 2k independent random variables distributed N(0,1), If

, p=l,. . .
,k,u„=2kHi c<2(a.p)+c<«2(^p)

u-j_5..., Ujj. are chi square variables with 2 degrees of freedom,

and have probability element

e-(u-L+. . ,+Ujj.)dU2^. . .du^
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i'or u^O, p=l,...5k5 and otherwise. The problem of whether

2 2
the largest (or mth largest) of the quantities <=( {uJr})+cii (uj^)

is significantly large reduces to testing whether the largest of

u-^,..., u^. is significantly large. The test which suggests it-

2
self 5 since c is unknovrn, is v/hether the largest (or mth largest)

of the ratios

. g = 2
, TD=l,...5k

J.

is significantly large.

V/alker's (191^-0 criterion was that the chance for the larg-

est intensity to exceed a given level x is given by l-d-e"^''^ ) .

Fisher (1929) found the distribution function of g:

P(g>g')= L(-l)^(A)[l-(^+l)g'l^"-^p-o * - J

where r is the largest integer ^k-1 for which l-(r+l)g' ^ 0, For

a given k and a given <k the value of g^ for v/hich P(g > g^)=<=<

would be the critical value of g for significance level 100c< %,

Tabulations of g^ have been made by Davis (19^1) for a wide range

of values of g^ and k.

Similarly if g is defined as the mth largest of U]_,..
.

, uj,

and divided by u-j_-i-. ..+Ujj., then

(m-l)l p=m pCk-p)l(p-m)l

where r is the largest integer for which 1-rg' ^ 0.

Hartley (19^9) proposed a method for testing the significance

of periods using the ? ratio. The observed intensities S=aS+b|
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are computed and the significance of the largest intensity is

tested.

Hartley starts v/ith the hypothesis of a completely random

2
series where the x^ are normal deviates with variance a . The p

ns2
. P

, p=l,...,k, are all independent X. variates,intensities 1/2

each with 2 degrees, of freedom. V/alker's criterion Is converted

into an exact test by making use of the residual as an indepen-

p
dent estimate of a . The test that results is one for the maximum

variance ratio

max ' nsL^(n-2k-l)/K^max '

The probability for F^jax^^* ^^ gi.VQn by

P(F*)^ ^j,(s) (1-exp [-s%* J)^ds

where ^y(s) denotes the distribution of a sample standard devia-

tion based on v degrees of freedom. For this problem, y=n-2k-l.

Hartley uses an approximation to the integral valid only for upper

percentage points. Instead of evaluating the upper 100c< % point

of the distribution, the 100c(/k *% point of the F distribution

based on 2 and y degrees of freedom.

If the series x^ is of the periodic form, then of the k pe-

riods examined, some, say h, have positive amplitudes and the re-

maining k-h have zero amplitudes. This says that A^+B^>0 for h
Ir XT

values of p, and A^+B^=0 for k-h values of p. If the maximum ob-

served intensity is judged significant by the test, the conclusion
2 2that Ap+Bp > for that particular p for which the maximum intensity
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was observed is not strictly valid. Only rejection of the hypoth-

esis of randomness is justified. In practice, however, it is usu-

ally desired to conclude that the maximum intensity observed indi-

cates that for the particular p the a|+b| > 0,

To investigate the extent to which the experimenter might be

misled by the significant test, it is necessary to investigate the

power of the test. The chance of reaching a significant result is

the sum of two situations:

1. The observed maximum intensity l/2|nS^j does come
from the set of h positive intensities, and

2, The observed maximum intensity does come from
the set of k-h true zero intensities,

A wrong conclusion v/oxild be reached if the second situation

occurs. It has been shovm by Hartley (19^9) that this chance is

smaller than (k-h)A times the error of the first kind, and hence,

if the independent harmonic intensities are used in the F^... test,

the chance of reaching a wrong conclusion is almost negligible.

In order to examine the F test iinder the general hypoth-

esis

%-V^"^^t' t=0,l,...,n-l,

where the ^^ are random normal deviates, the x+ are represented

by their complete, finite Fourier expansion with n assumed odd for

convenience. The general hypothesis can now be written

1/2 (n-1)

l/2(n-l)%'Xt=V pii
(Apcos pO^+BpSin pQt)+6t.

This differs from the previously stated ^^ in that the represen-

tation of Xj. includes (n-l)-k additional real Fourier terms. The
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magnitude of these additional terms as a percentage of the vari-

ance of the e^ can be expressed by a non-centrality ratio (Hart-

ley, 19^9)

, l/2(n-l) poo
S = (l/2)n ^1^ (A;-fB|)/<72.

If the series of x-j. are the ordinates of a smooth function, then

from standard Fourier theory it is laiovm that for a sufficiently

large k, S can be made as snail as is required for any n>2k. In

practice then, if periods up to order m are suspected, the F„,^

test will detect only these if n » 2m. If too small values of m

and n are used, the Fjr^^ test, which is based on the assumption

that S is zero, will be biased by an amount depending on the

value of o. This effect can be calculated exactly using the

methods of Hartley. It is stressed that the Fj^a^^ test is inap-

propriate unless the x^ can be represented by a moderate number

of Fourier terms and yet S will be expected to be zero or small.

The residuals from the final fitted curve can be examined for

autocorrelation to see if the periodic behavior has been adequate-

ly described. Use of the circular coefficient of autocorrelation

with lag L is appropriate in this case. For lag 1, Anderson and

ilnderson (1950) have calculated tables of significance points of

R v/here

^2^(xt-yit)(xt-l-Mt-l)
R _

, xo=Xn

is the circular autocorrelation coefficient used for residuals



36

from a Fourier series. Since economic data were the primary moti-

vation for the work, the basic periods for v;hich the R . values

were calculated are for p=2, 3, ^-, 6 and 12, indicating the usual

yearly increments for which economic data are tabulated. Signif-

icance levels are for cc=,oi and c<=,05 and N ranges from 6 to the

point in each distribution where tables for the regular coeffi-

cient of correlation or of the incomplete beta function give sat-

isfactory approximations.

Using the same data for which the correlogram was plotted in

Fig, 2, harmonic analysis and Hartley's method can be used to test

for periods in the data. If it is assumed that the periods will

be no shorter than one month in length, then an upper limit of 12

can be used in searching for periods in the data. The results of

such a harmonic analysis are given in Table 2,

The Hartley test at the 1% level of significance gives peri-

ods 1, 2, 3, and k as significant. Therefore the resulting model

is

The coefficient of determination resulting from this model is

.6353 and multiple R will be .7971. The standard deviation of an

observation is .0^25.

To see whether the systematic portion of the variation has

been sufficiently explained, the autocorrelation of the residuals

is examined. Table 3 gives the coefficients of autocorrelation

for the residuals from the regression line. None of the coeffi-

cients calculated are near to exceeding the significance level
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for a reasonable <=(, It seems valid to conclude then that the

data are periodic in natiire and that the fitted model gives good

estimates of the true parameters.

Table 2. Harmonic Analysis of Probabilities of
Dry Days for Manhattan, Kansas.

ao = . 8^9^+5^

Intensity F Ratio

1 .073138
2 .005515

I
-.00801^1-

.005011
5 -.000671
6 -.002125

I
-.002107
-.002280

9 .ooi+523
10 -.006^J+8

11 -.000200
12 -.00^532

.009187 .005^33
.000355+

279.53*
.017995 18.22*
.012171 .000121 10.93*
.010217 .000129 6.66*
.001261 .000002 0.10
.006155 .0000if2 2.18
.001613 .000007 0.36
.0035^+0 .000018 0.91
.002^80 .000027 1.37
.00^20 .000061 3.1^
.002886 .000008 0.1+3
.005387 .000050 2.55

j!L_significant at l7o level

Lag

Table 3, Coefficients of Autocorrelation of Residuals
from Regression Model with p=^.

Rt Lag R,

1 .0979 8
2 -.05^^ 9

I
-.0771 10
.052^ 11

5 -.000^- 12
6 -.0190 13
7 -.1091 Ih

..0602
•.0785
.01^+6

-.0^82

.03^5

.0167

.0183

Lag

16

19
20

R,

..0169
•. 091+9
..0216
-.07^6
• .0690
..0038
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SU1#IARY km CONCLUSIONS

Problems involved in the analysis of time series data have

concerned statisticians since statistics emerged as a separate

discipline. Most of the well-kno^vn statisticians have, at one

time or another, made some contribution to the theory of time

series analysis.

The first area of the problem that was attacked was that of

testing for the existence of autocorrelation, and considerable

progress has been made. Less v;ell developed are the areas of es-

timation and hypothesis testing. It has been illustrated here

that significant contributions are still being made and much re-

mains to be done in these areas. Small sample theory is extremely

vague and efficient goodness-of-f it tests are practically non-

existent.

V/ere it not for the fact that most time series, particularly

those in economics, are relatively short, the non-independence of

the €'s would pose a much less serious problem. The theory of

least squares estimation should be used wherever applicable. It

is possible that fitting the ordinary least squares line is the

best starting point in the analysis of a time series.

The methods presented here are generally amenable to pro-

gramming for computers.
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APPENDIX

Probability of a Dry Day* at l>ianhattan, Kansas

^3

Day Probability Day Probability Day Probability

i • J »,' .', >' :, V u **
i- > • -^ ',."

.:. i l,' V C* o 1 .OO-i-'^OCVO

^ • 9 3 i V i 4 4 c 42 • 9482 / 5 o 6 82 .91377346
3 . c V 6 L'' :; J. 7 2 •^ <. 9 4 627586 83 .32758672
u > c^4c-Z 736 44 .di\.'3A462 84 .5^482756
5 .91379310 ^5 <> 8 9 6 5 5 1 7 7 55 .37931010

. 6 .93103448 46 ,91379310 36 .94827548
7 .93103448 47 (86205896 87 .81034443
8 .93103446 4b .89655172 88 .56206845
V . 9 o :> 5 i 7 2 4 9 .io44 6 272o 89 .84452772

10 •9 3i0j448 50 .93103479 90 .89655148
11 .94b275ci6 51 <. 8 6 2 6 o 9 6 91 •S62 06836
12 . ;• ^t o ^ 1 POO 52 , '^ ^ 5 / > J J. ij 92 .91379356
1 3 • 93 1 03443 5 3 .9i3 7 931u 93 .79310348
14 .96bt;i724 ;''4 .86206696 94 .32758624
15 • "yj>l V'JJ'-tH-O 5 5 .89655 179 95 .84452746
16 .931 03446 :'-'6 .93103448 96 .91379348
17 .91379310 5 7 .86206896 97 .81054410
18 .94827586 5 8 .82758620 98 .75562086
19 .93103448 59 .84^82758 99 .8103^448

• 20 .96531724 6 .94327586 iCO .79310242
21 .89553172 61 .87931044 101 .79310372
22 .962 7 3852 62 .862 06896 102 .82758662
23 .86206896 63 .86206896 103 .86206896
24 .94527536 64 .82 7^66^0 104 .81034486
25 .94o27Db6 / 1- .87931044 105 .79310386
26 .9310:5448 'OC .91379310 106 .81034443
27 .59655172 67 ,94827586 107 .87931072
23 .96551724 6 8 .931034 78 108 .84482724
29 .93103443 6? ,87931034 109 .77586248
3 .91379310 70 .86206896 110 .77586210
31 .94827586 71 64452753 111 .79310386
32 .96551724 72 87931034 112 .34462724
33 .89655172 73 896 55172 113 .82758672
34 .84462758 74 86206896 114 .79310356
35 .91379310 75 87931034 115 .74137910
36 .94627586 76 .^;"-027566 116 .32758686
37 • 96:j 51724 77 .8275862 117 .75862024
38 .9137931^' 78 SI 0344 8 2 116 .31034410
39 .84482758 7P ,91379310 119 .79310338
4 .9482 7586 6 93103448 120 .77586286

Dry day is defined as less than .10" precipitation.
Probabilities are based on data for years I9OI-I96O,
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APPENDIX (continued)

Day Probability Day Probability Day Probability
121 .IQ^l'.-i^^ 1 V ] .7^,1 "7944 221 . 7 9 3 J 3 4 "j-

122 . 7 7 5 y 6 2 6 172 . 7 9 3 1 3 44 222 .84482706
123 . t: 4 4 8 2 7 > S ] 7 - .0 10 3448 2 223 .77566258
124 .82756620 17^. .77536206 224 .81034420
12b .74i37':31 1 7 :,v .793.10344 225 .82758631
126 .724 13793 1 7 6 . .' 5 8 6 ^: '- 8 226 .75862093
127 . 7 7 5 6 2 u 6 i 7 7 .79 310344 227 .75862006
lid • 7 93ivjjM4 i / c . 7 7 ;. 8 6 2 6 228 .77^86244
129 .775562^6 1 / '•

. 7 5862068 229 .31034406
1 3 .72413753 lo;; .77586206 230 .84482793
131 .7931^344 18 1 .74137931 231 .81034444
132 .31034482 182 .84482778 232 .75862032
1 3 3 .75b62w63 18 3 ."^2413796 233 .86206665
13 4 .79310344 li;4 .79310344 234 .86206644
13 3 .84462753 185 .77586206 235 .82758658
136 .74137931 156 .793103.44 236 .82758631
137 .72413793 167 .75 8 62068 237 .87931093
135 .75 6 62068 168 .77586206 238 .75662068
139 .68963517 189 .81034462 239 .75662017
140 .84432755 1 • t-v .86206896 240 .77586258
141 .74137931 191 .84482758 241 .91379331
142 .77586206 192 .82758620 242 .89655106
143 .65965517 1 9 3 .81034496 243 .86206817
144 .72413793 194

.
.81034482 244 .79310393

145 .75o62068 195 " ,79 310344 245 .81C3446S
146 .77=86206 196 ,84482758 246 .31034406
147 .72413793 1 <--!

J. .: / .77 586206 247 .81034493
1 4 3 .67241379 19S .810344.82 248 .87931079
149 .75362063 199 »a2 1 oooc'^ 249 .75862068
IbO . 793 1^344 200 .79310344 250 .84482744
151 . 7G6S9655 201 .64482758 251 .32758655
152 . 775562 ./6 2 02 .91379 3^^0 252 .82758606
153 . 7241 3793 203 .879 31034 253 .75662093
154 .79510344 2 04 .87931034 2 54 .31034444
155 .b273862'o 205 .87931047 255 .68965520
]56 .65517241 2 06 .3 7931U34 256 .82758641
157 .72413793 2 07 .32758620 257 .77586293
15(3 .72413793 20B .79310344 258 .77586293
159 .77586206 209 .87931044 259 .79310306
160 .70689655 2K; .86206896 260 .84482755
161 .67241379 211 .75862068 261 .87931079
162 . 75 o 62^68 2 12 .79310344 262 .91379368
163 .72413793 213 .87931034 263 .91379593
164 .75d62063 21'+ .75862066 264 .87931068
165 .82 7 5662-^ 215 . 5 6 2 0' 6 8 9 6 265 .82758620
166 .74137931 216 .91379310 266 .93103431
167 .77586206 217 .66206896 267 .32758606
163 .84482756 218 .310344 96 263 .36206358
169 .75362'j68 2 ] 9 .70689675 '

269 .74137966
17C .77586206 2 2 .79310344 270 .79310306
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Day Probability
ii I 1 • w ^ .'' -i ^ ^J*' ('.

2 72 oi'-iH'^O.l

27 J . C O ^ 0' O ^

274 .6 02 lob':-

6

2 71; .913 / 7 3 1

276 .344£275d
27 7 .862 068 96

2 7 -3 .9i3793K
2 7 9 • 3 1 v/ 3 4 4 o 2
280 .86206896
261 .t;i^:>'+4o2

232 .51u34itt^
26 3 . V 1 3 / V 3 i o

26^ » o^joz'b 1 12

23 b .62/ 26620
285 .6 7931 o34
2S7 .61^34482
28S •862 068 9 6

259 .596b3172
290 .91379310
291 .3273862J
292 .8 7931^3^
29? . c '^' G ? 6
294 . V 1 :> / ? 3 i >^

275 • c 2 / ;>• D 2

2V6 . V 1 ji 7 ? J 1 :,

29 7 . c 7 ?:> 1 j34
295 . ?' i - 7 ^ 3 1 -.J

29 9 » c 62 06c >o
30C .91379310
3^ 1 .896^61 72
302 .87931034
30 3 .«27~.862l.
304 .oluJq-^o2
3 i.' b .896^217^
3 o 5 • 8 7>:>i wi4
3o7 .£'^4G2 7ib
3C8 .862 6 8 9 6

3 (.9 .93103446
310 .89635172
311 .91^79^10
312 . 9 1 3 7 V 3 1

313 .87931034
314 .94<i27586
315 .931.3448
316 .931 ;. 344 s

317 • 9 1 3 7 V ri 1

318 . 8 7 V 3 1 'J 3 '-<

319 .913/931..
32 .3 79 31 034

- 0. .;. . • J. ; / y 3 i

^ c. -:^ . ,' H- c <i / ::>

-' /^ J* . c 9 6 :j :; i > <i

'• 2 4 . V : :• 1 7 <i

3 2 'J . 9 6 2 - 17 2

j26 .913 /9310
:o2 7 .^0331724
32 8 .VD 2 21724
.' 2 '

' <> 7 "? 3 1 1^ ^ 4
33 . o620oo'76
- .0 1 »o9 6 02l72
', ^ y

. c7v_:;10jh
'.*.-.

. s- s- 6 ii 720
j>::;4 . ,' 1 :; 7 9 3 JL

:> j::; .> 9 fc 2 i 7 2
-> •> ••'-

1.V137V310
3 3 7 .. 87931034
3 38 .89652172
33"'

,> 7 2 8 62^00
34.'-. .39622172
3 4 i > J 2 7 2 8 6 2

^42 . v82 /2602
S) H J- 4. 8 D 2 6 9 6
J 4.1, .^310:>44o
i"^ _• <> y i 3 7 > p i.

^•-o > •' 2 P i / 2

- '^^ ' . .' i 2 7' 'y 2 i u

j^ ^ t. V 1 2 '/ V 3 1

^ Lt. \< 1> > 2 2 1724
.' '-

\- 1 ..OGlOOuOO
" - 1 1. 9137^;3iO
3 b 2 <.9d 2 31 724
^ "- j^ <. 9 4 b <! 7 3 6 6
3-j^ , 9 13 79310
^ !--' ^' 1 ,' V 2 1 7- ^ 4

J' -JO i. :^ D 2 2 1 7 2

i :. 7 . c44c2728
ilJC i 862068'?6
':> y . 9Hb2 7 20D
36-.: . 8 7 93 lu 24
3(3 1 d 9 6 2 2 1 7 2

362 • ^•' 3 103448
vi t^ '; 9 8 2 75 8 62
364 , 98272^62
:5 6 -

• cj 7 7 3 1 3 4
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In the sciences many problems occur in which a process pro-

duces what may be considered a family of random variables such

that there is a value of X^ for each value of t in some interval

T, The experimenter usually wishes to investigate the nature of

the response curve over the interval T.

The usual regression model in least squares analysis is

r

VPo-'illPi^it+^t , t=0,l, . . . ,n-l,

where the Z' s are assumed fixed in repeated sampling and the ^'s

are independently distributed with mean zero and variance o^. In

applying traditional least squares methods to time series data

difficulties may arise because successive observations often lack

the property of independence. If the 6's are not independent the

assumptions necessary for using ordinary least squares estimation

theory are violated,

A concern for problems involved in analyzing time series data

was lacking among research workers until the middle 1920' s. In

the 1930's Koopmans, Wold, and others clarified the sampling sig-

nificance of regression analysis of time series data. Consider-

able work followed on the problem of testing for the existence of

correlation of the errors but all too little on the more important

problem of the best estimation procedure when correlations do ex-

ist. Results are still somewhat lacking in this area, but several

estimation procedures have been proposed since 1950. This paper

deals with the methods generally used in the social and biological

sciences.



The discussion of time series is usually confined to what are

called stationary time series. Roughly, this means that the time

series is without trends, not only in the mean values of the X^

but also in their variances.

Three models are generally used in analyzing time series data.

If it is assumed that the data follow an underlying systematic

scheme with random fluctuations superimposed, the methods of har-

monic analysis and periodogram analysis may be used to determine

the nature of a systematic component with regular periods. For

a systematic component with an irregular oscillatory movement the

variables 2^^^ in the regular regression model may be replaced by

t^'s and a polynomial form used to locally describe the function.

In other cases, the assumed model may involve lagged values of X

as predictors or possibly both lagged X's and Z's. This is re-

ferred to as an autoregressive model.

Much remains to be done on the time series problem in the

areas of estimation and hypothesis testing. Small sample theory

is extremely vague and efficient goodness of fit tests are prac-

tically non-existent.


