
PREDICTION AND VARIABLE SELECTION IN SPARSE

ULTRAHIGH DIMENSIONAL ADDITIVE MODELS

by

GIRLY MANGUBA RAMIREZ

B.S., University of the Philippines Diliman, 2001

M.S., University of the Philippines Los Banos, 2008

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Statistics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2013

Abstract

The advance in technologies has enabled many fields to collect datasets where the num-

ber of covariates (p) tends to be much bigger than the number of observations (n), the

so-called ultrahigh dimensionality. In this setting, classical regression methodologies are

invalid. There is a great need to develop methods that can explain the variations of the

response variable using only a parsimonious set of covariates. In the recent years, there

have been significant developments of variable selection procedures. However, these avail-

able procedures usually result in the selection of too many false variables. In addition, most

of the available procedures are appropriate only when the response variable is linearly asso-

ciated with the covariates. Motivated by these concerns, we propose another procedure for

variable selection in ultrahigh dimensional setting which has the ability to reduce the num-

ber of false positive variables. Moreover, this procedure can be applied when the response

variable is continuous or binary, and when the response variable is linearly or non-linearly

related to the covariates. Inspired by the Least Angle Regression approach, we develope

two multi-step algorithms to select variables in sparse ultrahigh dimensional additive mod-

els. The variables go through a series of nonlinear dependence evaluation following a Most

Significant Regression (MSR) algorithm. In addition, the MSR algorithm is also designed to

implement prediction of the response variable. The first algorithm called MSR-continuous

(MSRc) is appropriate for a dataset with a response variable that is continuous. Simulation

results demonstrate that this algorithm works well. Comparisons with other methods such

as greedy-INIS by Fan et al. (2011) and generalized correlation procedure by Hall and Miller

(2009) showed that MSRc not only has false positive rate that is significantly less than both

methods, but also has accuracy and true positive rate comparable with greedy-INIS. The

second algorithm called MSR-binary (MSRb) is appropriate when the response variable is

binary. Simulations demonstrate that MSRb is competitive in terms of prediction accuracy

and true positive rate, and better than GLMNET in terms of false positive rate. Application

of MSRb to real datasets is also presented. In general, MSR algorithm usually selects fewer

variables while preserving the accuracy of predictions.

KEY WORDS: Additive model; Smoothing; Sparsity; Ultrahigh dimensional; Variable

selection.

PREDICTION AND VARIABLE SELECTION IN SPARSE

ULTRAHIGH DIMENSIONAL ADDITIVE MODELS

by

GIRLY MANGUBA RAMIREZ

B.S., University of the Philippines Diliman, 2001

M.S., University of the Philippines Los Banos, 2008

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Statistics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2013

Approved by:

Major Professor

Haiyan Wang

Copyright

GIRLY MANGUBA RAMIREZ

2013

Abstract

The advance in technologies has enabled many fields to collect datasets where the num-

ber of covariates (p) tends to be much bigger than the number of observations (n), the

so-called ultrahigh dimensionality. In this setting, classical regression methodologies are

invalid. There is a great need to develop methods that can explain the variations of the

response variable using only a parsimonious set of covariates. In the recent years, there

have been significant developments of variable selection procedures. However, these avail-

able procedures usually result in the selection of too many false variables. In addition, most

of the available procedures are appropriate only when the response variable is linearly asso-

ciated with the covariates. Motivated by these concerns, we propose another procedure for

variable selection in ultrahigh dimensional setting which has the ability to reduce the num-

ber of false positive variables. Moreover, this procedure can be applied when the response

variable is continuous or binary, and when the response variable is linearly or non-linearly

related to the covariates. Inspired by the Least Angle Regression approach, we develope

two multi-step algorithms to select variables in sparse ultrahigh dimensional additive mod-

els. The variables go through a series of nonlinear dependence evaluation following a Most

Significant Regression (MSR) algorithm. In addition, the MSR algorithm is also designed to

implement prediction of the response variable. The first algorithm called MSR-continuous

(MSRc) is appropriate for a dataset with a response variable that is continuous. Simulation

results demonstrate that this algorithm works well. Comparisons with other methods such

as greedy-INIS by Fan et al. (2011) and generalized correlation procedure by Hall and Miller

(2009) showed that MSRc not only has false positive rate that is significantly less than both

methods, but also has accuracy and true positive rate comparable with greedy-INIS. The

second algorithm called MSR-binary (MSRb) is appropriate when the response variable is

binary. Simulations demonstrate that MSRb is competitive in terms of prediction accuracy

and true positive rate, and better than GLMNET in terms of false positive rate. Application

of MSRb to real datasets is also presented. In general, MSR algorithm usually selects fewer

variables while preserving the accuracy of predictions.

KEY WORDS: Additive model; Smoothing; Sparsity; Ultrahigh dimensional; Variable

selection.

Table of Contents

Table of Contents viii

List of Figures x

List of Tables xi

Acknowledgements xiv

1 Introduction 1

2 Literature Review 6

2.1 Problems of ultrahigh dimensional setting 6

2.2 Continuous Case . 7

2.2.1 Variable Selection for Parametric Models 7

2.2.2 Variable Selection for Nonparametric Models 12

2.2.3 Generalized Additive Models, Continuous Case 15

2.3 Binary Case . 15

2.3.1 Classification Techniques . 15

2.3.2 Variable Selection Techniques . 20

2.3.3 Generalized Additive Model (GAM), Binary Case 23

3 Continuous Case: Variable Selection and Prediction 25

3.1 Introduction . 25

3.2 GAM in the Continuous Case . 26

3.3 Most-Significant-Regression Algorithm, MSRc 27

3.3.1 Comparison of Greedy INIS and MSRc 29

viii

3.4 Performance Measures . 30

3.5 Graphical Presentation of the MSRc Algorithm 31

3.6 Numerical Comparisons . 35

3.6.1 Simulation Models and Results . 35

3.6.2 Real Data Analysis . 44

4 Binary Case: Variable Selection and Prediction 47

4.1 Introduction . 47

4.2 NPtest . 50

4.3 Most-Significant-Regression Algorithm, MSRb 51

4.3.1 Variable Selection Algorithm . 52

4.3.2 Model Building and Prediction Algorithm 54

4.4 Performance Measures . 56

4.5 Numerical Comparisons . 57

4.5.1 Simulation Models and Results . 57

4.5.2 Real Data Analysis . 63

5 Summary and Post-dissertation Research 66

5.1 Summary . 66

5.2 Post-dissertation Research . 67

Bibliography 73

A R Code for MSR-continuous 74

B R Code for Binary Case 81

B.1 R Code for MSR-binary . 81

B.2 R code for GLMNET . 93

B.3 R Code for True and False Positive . 95

B.4 R Code for NPtest . 98

ix

List of Figures

3.1 MSRc algorithm for Example 1. The covariates were recruited in the following

order: X3, X4, X2 and X70. The algorithm stopped when the |pvalue − pc|

≥ 0.0005. The p-value is the significance of f(xk) in predicting the current

residual, while pc is the significance of the current regression estimate of the

response. 32

3.2 MSRc algorithm for Example 2 (t=0). The covariates were recruited in

the following order: X4, X3, X1 and X2. The algorithm stopped when the

|pvalue − pc| ≥ 0.0005. The p-value is the significance of f(xk) in predict-

ing the current residual, while pc is the significance of the current regression

estimate of the response. 34

3.3 MSRc algorithm for Example 3 with t=0. The covariates were recruited in

the following order: X12, X8,X11, X7, X9, X10, X5, X4, X3, X6, X1 and

X2. The algorithm stopped when the |pvalue − pc| ≥ 0.0005. The p-value

is the significance of f(xk) in predicting the current residual, while pc is the

significance of the current regression estimate of the response. 36

3.4 Sample Correlation between X4 and Xj. Almost all correlations are smaller

than 1/
√

2 ≈ 0.707 . 40

x

List of Tables

3.1 Mean True Positive Rate and Mean False Positive Rate for Example 2. There

are 100 simulations each of size 400, from which the mean true positive rate

(TP) and mean false positive rate (FP) were computed. The prediction errors

were computed from an independent test data of size 200 for each simulation.

The mean prediction error (PE) was computed from the results of 100 simu-

lations. Robust standard deviations are given in parentheses. 37

3.2 Mean True Positive Rate and Mean False Positive Rate for Example 3 from

100 runs. There are 100 simulations each of size 400, from which the mean

true positive rate (TP) and mean false positive rate (FP) were computed.

The prediction errors were computed from an independent test data of size

200 for each simulation. The mean prediction error (PE) was computed from

the results of 100 runs. Robust standard deviations are given in parentheses. 38

3.3 Mean True Positive Rate and Mean False Positive Rate for Example 4. There

are 100 simulations each of size 400, from which the mean true positive rate

(TP) and mean false positive rate (FP) were computed. The prediction errors

were computed from an independent test data of size 200 for each simulation.

The mean prediction error (PE) was computed from the results of 100 simu-

lations. Robust standard deviations are given in parentheses. 39

xi

3.4 Mean True Positive Rate and Mean False Positive Rate under Different SNR

in Example 5 with t=0. There are 100 simulations, each of size 400, from

which the mean true positive rate (TP) and mean false positive rate (FP)

were computed. The prediction errors were computed from an independent

test data of size 200 for each simulation. The mean prediction error (PE) was

computed from the results of 100 simulations. Robust standard deviations

are given in parentheses. 41

3.5 Mean True Positive Rate and Mean False Positive Rate under Different SNR

in Example 5 with t=1. There are 100 simulations each of size 400, from

which the mean true positive rate (TP) and mean false positive rate (FP)

were computed. The prediction errors were computed from an independent

test data of size 200 for each simulation. The mean prediction error (PE) was

computed from the results of 100 simulations. Robust standard deviations

are given in parentheses. 42

3.6 Comparison of MSRc and gcorr: Mean True Positive Rate and Mean False

Positive Rate. There are 100 simulations each of size 400, from which the

mean true positive rate (TP) and mean false positive rate (FP) were com-

puted. Robust standard deviations are given in parentheses. 44

3.7 Comparison of MSRc and gcorr: Mean True Positive Rate and Mean False

Positive Rate . There are 100 simulations each of size 400, from which the

mean true positive rate (TP) and mean false positive rate (FP) were com-

puted. Robust standard deviations are given in parentheses. 45

3.8 Predictive Mean Squared Errors (PMSE) on the Testing Set. Wheat data

was partitioned randomly into a training set (480 lines) and a test set (119

lines). This partitioning was repeated 50 times. PMSE for SVR models and

Bayesian LASSO are from Long et al. (2011) 46

xii

4.1 Performance Measures for Example 1. With p = 1000, sample sizes of 60, 100,

200, and 300 were simulated 100 times, from which the mean true positive

rate (TP), mean false positive rate (FP) and mean accuracy were computed.

These performance measures were obtained via 3-fold CV. Robust standard

deviations are given in parentheses. 58

4.2 Performance Measures for Example 2. With p = 1000, sample sizes of 60, 100,

200, and 300 were simulated 100 times, from which the mean true positive

rate (TP), mean false positive rate (FP) and mean accuracy were computed.

These performance measures were obtained via 3-fold CV. Robust standard

deviations are given in parentheses. 59

4.3 Performance Measures for Example 3. With p = 1000, sample sizes of 60, 100,

200, and 300 were simulated 100 times, from which the mean true positive

rate (TP), mean false positive rate (FP) and mean accuracy were computed.

These performance measures were obtained via 3-fold CV. Robust standard

deviations are given in parentheses. 61

4.4 Performance Measures with p = 12000, and n = 60, 300 from simulation of

size 10. The mean true positive rate (TP), mean false positive rate (FP) and

mean accuracy were computed. These performance measures were obtained

via 3-fold CV. Robust standard deviations are given in parentheses. 62

4.5 Mean accuracy with robust standard deviations of different procedures ob-

tained from 10-fold CV with 10 runs. Performance measures for BMSF and

GeneSrF are from Zhang et al. (2012). 65

xiii

Acknowledgments

First, I give thanks and praises to God for His marvelous work in my life during my

five years of studies at Kansas State University. With that, I thank my major professor Dr.

Haiyan Wang for her persistent efforts in guiding and helping me with this dissertation. My

appreciation also to the committee members: Dr. Weixin Yao, Dr. Christopher Vahl, Dr.

Zhijian Pei, Dr. Paul Nelson and the chair of the committee from the Math department,

Dr. David Yetter. I also thank the faculty and staff of the Department of Statistics who

have been very helpful throughout my studies at K-State. Thank you also to all graduate

students for their friendship. Last but not the least, my sincere appreciation goes to my

family members: Noel, Jaron, Mama, Papa, Manang Grace, Manung Jon, Ading Cj, Auntie

Mercy and Lola for their love, encouragement and prayer support.

xiv

Chapter 1

Introduction

Given the remarkable advance in technologies and computing power, researchers are now

capable of collecting very large and complex datasets. Some examples of these data are found

in atmospheric science, microarrays, genomics, information technology, biogeochemical and

large-scale e-commerce. In these examples, the number of covariates (p) tends to grow much

faster than the number of observations (n), the so-called nonpolynomial (NP) dimensionality

or ultrahigh dimensionality. The need to analyze these kinds of dataset poses a great

challenge for those in the fields of statistics and machine learning. In recent years, there

have been significant developments in the analysis of these datasets. But, there remains a

great deal to do.

A typical problem in statistical inference is to select a parsimonious set from a large

collection of covariates for the efficient prediction of the response. That is, suppose that we

have a random sample (Xi, Yi), i = 1, . . . n from the population

Y = m(X) + ε (1.0.1)

in which Xi = (Xi1, . . . , Xip)
T are random variables, ε is a random error with conditional

mean zero and cov(X, ε) = 0. The main objective is to estimate m(X) by minimizing the

following function Σn
i=1(Yi−m̂(Xi))

2, where m̂(Xi) is an additive function of the components

of the argument. Or suppose that Yi is binary and the relationship between Yi and Xi is

1

described by the following nonlinear equation:

E(Y) =
em(X)

1 + em(X)
(1.0.2)

In this case, the main objective is to estimate m(X) such that the classification error is

minimized, where m̂(X) is an additive function of the components of the argument.

Dimension reduction plays a vital role in NP or ultrahigh dimensional problems with

the consideration of the sparsity assumption, which assumes that among the large number

of independent variables, only a small set is related to the response variable. There exist

numerous statistical procedures for data reduction and these include LARS by Efron et al.

(2004), SCAD by Fan and Li (2001), and Dantzig selector by Candes and Tao (2007).

However, these penalized methods are difficult to apply to ultrahigh dimensional datasets

due to challenges in computational expediency, statistical accuracy and algorithmic stability.

Fan and Lv (2008) proposed a two-stage screening method in which they first perform

dimension reduction of the model and then apply penalized methods. This screening method

called Sure Independence Screening (SIS) is successful in overcoming the aforementioned

challenges. A great feature of SIS is that the dimensionality of the model is allowed to

grow exponentially in the sample size. In addition, SIS requires normality of the response

variable and is designed specifically for linear models. Fan and Lv (2008) also extended

SIS to cover cases when the regularity conditions fail, and this methodological extension is

called Iterated Sure Independence Screening (ISIS). Fan et al. (2009) developed two possible

variants of SIS and ISIS that have attractive theoretical properties in terms of reducing the

false selection rates. However, SIS-based screening methods are based on correlation which

assumes that the response variable and covariates are normally distributed, and that the

relationship of the covariates with the response is linear. Thus, SIS-based procedures are

said to be methodologically challenged when the covariates are not jointly normal and when

the marginal or joint regression of the covariates with the response is nonlinear. Thus,

procedures for variable selection in nonparametric modeling is essential.

Procedures on variable selection in nonparametric modeling is limited. In practice,

2

there is usually not enough prior information that the effects of the covariates take a linear

form or belong to any parametric family. Sometimes, substantial improvements are pos-

sible by using a more flexible class of nonparametric models, such as the additive model

Y =
∑p

j=1mj(Xj) + ε, introduced by Stone (1985). Use of an additive model substantially

improves the flexibility of the ordinary linear model and allows transformed covariates to

enter into the linear model. At present, the literature on variable selection utilizing nonpara-

metric additive models is limited. Many of the available procedures are extensions of LASSO

such as the sparse additive models (SpAM) by Ravikumar et al. (2009) and COSSO which

is developed by Lin and Zhang (2006). Another procedure is the work of Huang et al. (2010)

which is an extension of adaptive LASSO to additive models. A penalty that combines spar-

sity and smoothness with a fixed design was proposed by Meier et al. (2009). Unfortunately,

all of these procedures are extensions of penalized pseudolikelihood approaches to additive

modeling, and hence, still suffer from the aforementioned three challenges in NP dimensional

settings. A most recent screening method, Nonparametric Independence Screening (NIS),

was developed by Fan et al. (2011) which is a variation of SIS based on nonparametric

marginal regression. Fan et al. (2011) further improved the NIS procedure by developing

the iterative NIS (INIS) and greedy-INIS. NIS-based methods consider correlation learning

by ranking the magnitude of marginal estimators, nonparametric marginal correlations, and

the marginal residual sum of squares. That is, one marginal nonparametric regression of

the response Y are fitted against each covariate Xi separately and the importance of each

covariate to the joint model is based on a measure of the goodness of fit of their marginal

models. The magnitude of these marginal utilities can preserve the non-sparsity of the joint

additive models under some reasonable conditions, even with converging minimum strength

of signals. NIS methods are two-stage procedures and can deal with the aforementioned

three challenges better than the other methods. Nevertheless, NIS-based procedures have

high false selection rate when the covariates are correlated with each other. This is because

NIS-based procedures assume that the active covariates are independent of the nonactive

3

covariates.

The procedures that have been discussed are appropriate when the response variable is

continuous. Variable selection and classification in datasets with a binary response variable

is also very relevant to many fields such as in bioinformatics and image recognition. In

bioinformatics, ultrahigh dimensional gene expression datasets are very common. For ex-

ample, scientists want to know which of these genes have strong contribution to the binary

response variable which assumes two values, namely, occurrence and non-occurrence of an

event. Three of the current popular methods are Generalized Linear Models with Elastic Net

(GLMNET), Binary Matrix Shuffling Filter (BMSF) and Gene Selection in Random Forest

(GeneSrF). The procedure GLMNET is able to do variable selection and classification simul-

taneously. On the other hand, BMSF and GeneSrF conducts variable selection. The latter

two procedures are combined with classification techniques such as Support Vector machine

(SVM), Naive Bayes (NB), linear discriminant analysis (LDA) and quadratic discriminant

analysis (QDA) to perform classification of new observations. According to literature, the

aforementioned procedures have very good performance in terms of accuracy in classifying

new observations. However, GLMNET, BMSF and GeneSrF have the tendency to select

many variables, which indicates that they also have the tendency to select too many false

positive variables.

In general, existing procedures for both continuous and binary response variables may

have the problem of selecting too many false positive variables. Motivated by this concern,

this paper proposes the Most Significant Regression (MSR) algorithm which can be used for

variable selection and prediction. With the high false selection rates in existing procedures,

MSR algorithm aims to reduce the false selection rates.

MSR algorithm relates to the Least Angle Regression (LARS) by Efron et al. (2004) but

taking into consideration the possibility of nonlinear relationships between the response and

the covariates. In addition, MSR, unlike the NIS-based procedures, BMSF and GeneSrF,

simultaneously conducts variable selection and response estimation. As demonstrated in

4

Monte Carlo simulations, results of MSR when the response variable is continuous resulted

in smaller false selection rates and better predictive ability than NIS-based procedures. In

addition, results of MSR when the response variable is binary showed that MSR always

selects fewer variables than existing procedures while maintaining comparable classification

accuracy.

5

Chapter 2

Literature Review

In the last decade, large data sets with large numbers of variables are more and more

common. This has stimulated the development of procedures that can perform variable

selection and data reduction on large data sets. Specifically, reviews of variable selection

procedures and prediction techniques are discussed in this chapter.

2.1 Problems of ultrahigh dimensional setting

Richard Bellman (1961) coined the term “curse of dimensionality” which in statistics, refers

to the issues caused by the rapid increase in the number of covariates p given a fixed sample

size n. Due to the curse of dimensionality, the data are very scattered and thus, it is

quite difficult to achieve accurate predictions of the response. With a very large number

of covariates, unnecessary predictors may be present and will add noise to the estimation

of the response. Collinearity among the predictors is also likely to exist. In addition, with

very large p, the computational cost in model building is very expensive.

To avoid the curse of dimensionality, several techniques have been proposed and two

of these are variable selection and additive modeling. The main goal in variable selection

is to select the best subset of covariates. “Best” refers to a parsimonious model that has

small sum of square error, or large adjusted R2, or low prediction error and other criteria

6

available in literature. Selection of the best subset of covariates can improve significantly

the computational cost in estimation. On the other hand, additive modeling which was

introduced by Stone (1985) can significantly improve the flexibility of the variable selection

procedure.

2.2 Continuous Case

2.2.1 Variable Selection for Parametric Models

In this section, procedures for variable selection in parametric models, those that assume

a linear relationship between response and predictors are discussed. Initiated by Donoho

and Johnstone (1994), and following the Least Absolute Shrinkage and Selection Operator

(LASSO) by Tibshirani (1996), many penalized pseudo-likelihood procedures and related

methods have been studied in the literature in the setting of parametric models assuming

a linear or generalized linear relationship between the response and predictors. A recent

advance in ultrahigh dimensional variable selection is the development of screening methods

which are deemed better than the penalized procedures in terms of statistical accuracy,

computational expediency and algorithmic stability. Procedures for variable selection in the

parametric setting are discussed in two separate sections, namely penalized methods and

screening methods.

Penalized Methods

In high dimensional statistical endeavors, the purpose of applying the penalized methods

is to simultaneously select variables and estimate the regression coefficients by maximizing

the following penalized likelihood function:

n−1ln(β)−
p∑
j=1

pλ(|βj|) (2.2.1)

7

where ln(β) is the assumed log-likelihood and pλ(·) is a penalty function indexed by λ ≥ 0, a

regularization parameter. Variables with associated estimated regression coefficients equal

to zero are deleted.

Fan and Li (2001) support a penalty function that produce estimators that have the

following properties: sparsity, unbiasedness and continuity. Sparsity implies that the esti-

mator sets small coefficients to zero, therefore reducing the complexity of the model. For

the unbiasedness property, the estimator derived from the penalty function is said to be

nearly unbiased when the true parameter |βj| is large. For continuity, the resulting estima-

tor is continuous in the data to increase stability in model prediction. The following are the

penalized methods developed for variable selection in ultrahigh dimensional and parametric

setting.

Ridge Regression, HoerlA.E. and R.W. (1970). The main task of ridge regression is to

find a linear function that models the relationships between a continuous response variable

and continuous covariates. In ridge regression, the goal is to minimize the residual sum of

squares (RSS) subject to a constraint of the form Σ|βj|2 ≤ t. It yields an estimator for the

regression coefficients equal to β̂ = (XTX+λI)−1XTy. When the covariates are highly cor-

related, ridge regression is able to restrain the size of the estimated regression coefficients

by including a penalty which reduces the undesirable symptoms of correlated covariates.

Using this formulation, ridge regression may be seen as a penalized L2 -regression in which

pλ(|θ|) = λ|θ|2.

Bridge Regression, Frank and Friedman (1993). Bridge regression minimizes the RSS

subject to a constraint Σ|βj|q ≤ t. This procedure is a penalized Lq-regression, a natural

generalization of penalized L0-regression in which pλ(|θ|) = λ|θ|q for 0 < q ≤ 2. This bridges

the best subset selection (penalized L0) and ridge regression (penalized L2), including the

L1-penalty as a specific case.

8

Least absolute shrinkage and selection operator (LASSO), Tibshirani (1996) .

LASSO minimizes RSS subject to a constraint Σ|βj| ≤ t. The LASSO is also known as

the penalized L1-regression in the ordinary regression setting, in which pλ(|θ|) = λ|θ|. The

selected model in LASSO fits the mean Xβ well if its bias

Bias = ‖(I − P̂)Xβ‖

is small. P̂ is the projection to the linear span of the set of selected variables and I is the

n × n identity matrix. When θ is large, the LASSO estimator has a bias approximately

of size λ ≥ 0, where λ is the regularization parameter index of the penalty function. As

a result, the LASSO estimator has to choose a smaller λ in order to compensate the bias

problem and obtain a desired mean squared error. However, a smaller value of λ results in a

complex model. This explains why the LASSO estimator tends to have many false positive

variables in the selected model.

Smoothly clipped absolute deviation (SCAD), Fan and Li (2001). It is known

that the convex Lq penalty with q > 1 fails to satisfy the sparsity condition, while the

convex L1 penalty fails to satisfy the unbiasedness condition, and the concave Lq penalty

with 0 ≤ q < 1 fails to satisfy the continuity condition. With these results, none of the

Lq penalties is able to satisfy all three properties simultaneously. For this reason, Fan and

Li (2001) introduced the SCAD which satisfies the three aforementioned properties. The

SCAD penalty is given as

pλ(βj) =


λ|βj| if |βj| ≤ λ

−(
|βj |2−2aλ|βj |+λ2

2(a−1)) if λ < |βj| ≤ aλ
(a+1)λ2

2
if |βj| > aλ

Elastic net, Zou and Hastie (2005). This variable selection method is a linear combi-

nation of L1 and L2 penalties. The main idea is to solve the optimization problem given

9

as β̂ = argminβ|y − Xβ|2, subject to (1 − α)|β|1 + α|β|2 ≤ t for some t, and α = λ2
λ1+λ2

.

The function (1 − α)|β|1 + α|β|2 is the elastic net penalty, which is a convex combination

of the LASSO and ridge penalty. When α = 1 and when α = 0, the procedure becomes

ridge regression and LASSO, respectively. One characteristic of the elastic net is its ability

of selecting “grouped” variables, where strongly correlated predictors tend to be in or out of

the model together. Moreover, the authors claim that this procedure in real data analysis

and simulation studies outperform the LASSO in terms of prediction accuracy.

Dantzig selector, Candes and Tao (2007). This procedure is also based on penalized

pseudo-likelihood which is a solution to the L1 regularization problem. The idea is rather

than controlling the size of the residuals, the Dantzig selector is based on minimizing ‖β‖1

subject to controlling the covariance vector ‖n−1XT (y − Xβ)‖∞ ≤ λ, where λ ≥ 0 is a

regularization parameter. Dantzig selector’s consistency for estimation and model selection

depend heavily on the choice of λ. Shortly after the work on the Dantzig selector, it was

observed that the Dantzig selector and the LASSO share some similarities.

Nevertheless, these methods are limited in handling ultrahigh dimensional problems due

to the “curse of dimensionality”. They are simultaneously challenged in terms of com-

putational expediency, statistical accuracy and algorithmic stability (Fan et al. (2011)).

Motivated by these concerns, Fan and Lv (2008) and Fan et al. (2009), developed a method

that is based on correlation learning.

Correlation-based Marginal Methods

Sure Independence Screening (SIS), Fan and Lv (2008) and Fan et al. (2009). The

main idea of SIS is to apply a two-stage procedure which involves screening out variables

that have weak correlation with the response variable, and then applying lower-dimensional

10

techniques such as SCAD, Dantzig selector and LASSO to further reduce the number of

predictors and to estimate relevant parameters. SIS satisfies the sure screening property,

that is, all the important variables are selected with probability tending to one under some

conditions. In the screening stage, SIS ranks the independent variables in terms of their

marginal correlations with the response. A problem in this stage is its failure to look at the

joint correlation of the covariates to the response. Fan and Lv (2008) noted the possibility

of the following problems in the SIS procedure: First, SIS may fail to select an important

predictor that is jointly correlated but marginally uncorrelated or weakly correlated with

the response; and second, when high collinearity exists among the predictors, SIS may select

the unimportant predictors and exclude important predictors that are weakly correlated to

the response.

Iterative Sure Independence Screening (ISIS), Fan and Lv (2008). To solve the

problems in sure independence screening (SIS), the authors proposed the iterative-SIS (ISIS)

which is an extension of SIS. The ISIS procedure works in the following manner: First, apply

SIS and denote the set of selected variables as A1 which contains k1 variables. Obtain the

residuals from regressing the response with the selected k1 variables. In the next step, apply

SIS procedure again with the residuals as the new responses and select k2 variables from

the p− k1 variables. Denote this set as A2 . Continue the iteration until there are l disjoint

subsets A1, A2, . . . , Al whose union has a size d < n. After the variable selection, apply a

lower-dimensional techniques such as SCAD, Dantzig selector and LASSO to further reduce

the number of predictors and to estimate relevant parameters. Despite of the sure screening

properties of SIS-based procedures, they have methodological challenges: SIS relies on cor-

relation which assumes that the response variable and covariates are normally distributed

and the marginal relationship of each covariate with the response is linear. Hence, its as-

sumptions are violated when the response variable is not normally distributed and when

marginal or joint relationship of the predictors with the response is highly nonlinear.

11

Tilting method, Cho and Fryzlewicz (2012). The main task of this method is to select

important variables in linear regression models. Unlike the SIS-based procedures, during

variable selection, it takes into account both the marginal and joint relationship of the pre-

dictors with the response variable. To compute the correlation between a predictor, Xj and

the response, Xj is first tilted. Tilting refers to transforming Xj by projecting it on the space

orthogonal to the other predictors. This approach reduces the effect of other predictors on

the tilted correlation of Xj and response Y .

When the joint distribution of the response variable and covariates does not follow a

normal distribution, parametric methods based on conventional correlation may not be able

to detect the true relationship between the response and the covariates and therefore, may

lead to incorrect selection of covariates. In addition, the presence of nonlinear marginal or

nonlinear joint relationship of the covariates with the response variable results in modeling

biases in the linear model. To address these issues, there is a need for nonparametric variable

selection procedures.

2.2.2 Variable Selection for Nonparametric Models

Nonparametric variable selection procedures can greatly improve model building and re-

sponse estimation when parametric methods are not appropriate for the data. Fan et al.

(2011) in their article said that using a nonparametric modeling procedure such as the ad-

ditive model by Stone (1985) can significantly improve the flexibility of the ordinary linear

model and allows transformed predictors to enter into the linear model. The additive model

is given as Y =
∑p

j=1mj(Xj) + ε. In this section, the limited number of procedures for

variable selection in nonparametric additive models are discussed.

12

Penalized Methods

Penalized methods are popular approaches in variable selection and response estimation.

The following are the currently available penalized methods for the nonparametric setting.

Extensions of LASSO. Lin and Zhang (2006) proposed a penalized procedure called

Component Selection and Smoothing Operator (COSSO). This procedure is a functional

generalization of LASSO using the Sobolev norm penalty, and it is able to carry out model

selection on either additive or non-additive models. Another method is the penalized method

for additive model (penGAM) by Meier et al. (2009). In this method, the authors combine

the empirical L2-norm and the usual roughness norm to enforce both sparsity and smooth-

ness. The penGAM algorithm was built on the idea of a group LASSO problem. Ravikumar

et al. (2009) also proposed Sparse additive models (SpAM) which is another generalization

of the LASSO that uses the empirical L2-norm of each additive component function. The

method developed by Huang et al. (2010) is also an extension of LASSO to additive models.

Multiple Kernel Learning, Koltchinskii and Yuan (2010). This procedure is devel-

oped by combining empirical L2-norms and kernel Hilbert space (RKHS norms). L2 norms

are used to impose sparsity of the final model while RKHS norms are to impose the smooth-

ness of the components of the additive model.

Correlation-based Methods

The penalized methods applied to additive modeling are all challenged in terms of statisti-

cal accuracy, algorithmic stability and computational speed. Motivated by these concerns,

methods based on correlation learning are developed.

Generalized Correlation for Feature Ranking (gcorr), Hall and Miller (2009).

13

The gcorr procedure is based on marginal screening procedure in which the generalized em-

pirical correlations between the response and covariates are ranked. The authority of the

ranks are assessed using bootstrap methods. The main goal of this procedure is to reduce

the number of variables, after which other low-dimensional techniques such as LASSO may

be applied for the prediction of the response. The gcorr procedure recruits a variable based

on its marginal generalized correlation with the response Y and therefore, it ignores the

collinearity that may exist among the independent variables. For this reason, gcorr leads to

high false selection rate when the covariates are highly correlated.

Nonparametric Independence Screening (NIS) and its extensions, Fan et al.

(2011). Nonparametric independence screening (NIS) is a nonparametric version of the sure

independence screening (SIS). This procedure ranks the magnitude of marginal estimators,

nonparametric marginal correlations and the marginal residual sum of squares. Specifically,

the procedure fits the marginal regressions of each of the covariates with the response by

employing a B-spline bases and then ranks their importance to the joint model based on the

magnitude of the correlation of the marginal nonparametric estimate with the response. To

select a set of variables, a threshold value is predefined. Aside from the marginal correlation,

another equivalent approach of evaluating the importance of each covariate is by ranking

the residual sum of squares of the componentwise nonparametric regressions. The authors

extended the NIS procedure such as iterative NIS (INIS) and greedy-INIS, to reduce the

false positive rate and stabilize the computation. After applying a NIS-based procedure for

variable selection, a lower-dimensional technique is still required to further reduce the num-

ber of predictors and to estimate relevant parameters. NIS-based procedures have the sure

screening property. However, NIS-based procedures rely greatly on marginal correlations

and therefore, have high false selection rates when the covariates are highly correlated.

14

2.2.3 Generalized Additive Models, Continuous Case

Due to the curse of dimensionality for ultrahigh dimensional problems, many nonparamet-

ric methods fail to perform well. To avoid this problem, additive models was proposed by

Stone (1985) which estimates the response Y using an additive approximation. Hastie and

Tibshirani (1990) developed the generalized additive models (GAM) by extending additive

models to a wide range of distribution families. GAM uses three techniques, namely, non-

parametric regression, smoothing techniques and generalized distributional modeling. It can

be applied when the relationship between the covariate and response is nonlinear, and when

the distribution of the response variable belongs to the exponential family. The generalized

additive model is defined as

Y = α +

p∑
i=1

hi(Xi) + ε,

where {Xi}’s and ε are orthogonal, E(ε) = 0 and V ar(ε) = σ2. The function hi’s are

smooth functions which are estimated in a nonparametric fashion. For univariate smoothing

components, GAM procedure applies the B-spline and local regression methods, and the

thin-plate smoothing spline for bivariate smoothing components. GAM uses the generalized

cross validation (GCV) function as a criterion in choosing the smoothing parameters. The

GCV function approximates the expected prediction error, and selects the model that has the

smallest prediction error. As an alternative to using the GCV function, GAM also provides

the option of specifying the degrees of freedom for each individual smoothing component.

2.3 Binary Case

2.3.1 Classification Techniques

Supervised learning with a qualitative response is considered as a classification problem. A

classification problem can be further categorized into either binary classification or multi-

class classification. The focus of this dissertation is binary classification. Classification is

15

a technique that is used in many fields such as in bioinformatics, document classification

and image recognition. One important area in bioinformatics is disease classification given

ultrahigh dimensional datasets such as gene expressions and microarrays. Classification

techniques have the goal to determine a function that can be used to predict the class in

which a subject belongs given the independent variables or features. When the number of

independent variables is much larger than the sample size, complications occur in most of

classification procedures. Among the popular classification methods include logistic regres-

sion, Fisher’s Discriminant analysis (FDA), support vector machines (SVM) and k-nearest

neighbor classifier.

The response variable Yi in classification problems is qualitative. It can assume two val-

ues for binary case or more than two values for the multiclass case. For example, in cancer

classification, each of the covariates Xi represents the gene expression level of a patient and

Yi indicates whether this patient has cancer or not. Given a new observation X, classifica-

tion techniques aim to predict the unknown class label Y of this new observation. In this

section, various classification techniques are discussed.

Classical Methods. Many classical methods were developed that can be used for clas-

sification. Among the classical methods are Fisher’s linear discriminant analysis (LDA),

quadratic discriminant analysis (QDA), and logistic regression. Bickel and Levina (2004)

conducted a study to evaluate the performance of LDA in ultrahigh dimensional setting.

In their results, LDA performs asymptotically no better than random guessing when the

dimensionality p is much larger than the sample size n. For datasets with low dimension,

the aforementioned classical methods perform very well. However, these methods fail when

the number of covariates is much larger than the number of observations.

Distance-based classifiers. Various distance-based classifiers have been developed to

deal with classification problems in ultrahigh dimensional setting. They tend to reduce

16

the problems arising from the curse of dimensionality. Among the list of distance-based

classifiers are naive-Bayes classifier, centroid rule, and k nearest neighbor rule.

The Bayes classifier conducts classification based on the posterior probabilities of the

response. It is based on Bayes theorem and uses the following equation

P (Y = k|X = x) =
P (X = x|Y = k)πk∑K
i=1 P (X = x|Y = i)πi

. (2.3.1)

The denominator of the equation does not need to be estimated even though it is unknown

because it assumes a constant value. However, Bayes classifier breaks down in high di-

mensional settings due to curse of dimensionality and noise accumulation when estimating

P (X|Y). The naive-Bayes classifier overcomes this problem by assuming conditional in-

dependence which dramatically decreases the number of parameters to be estimated when

modeling P (X|Y). Specifically, the naive Bayes classifier uses the following equation:

P (X = x|Y = k) =

p∏
j=1

P (Xj = xj|Y = k) (2.3.2)

where Xj and xj are the jth components of X and x, respectively (see Fan et al. (2009) and

the references therein). Hence, the conditional joint distribution of the p covariates depends

only on marginal distributions. With this, naive-Bayes classifier is able to solve the problem

of the curse of dimensionality. However, it assumes that the covariates are conditionally

independent from each other even though they are not.

Another distance-based classifier is centroid classifier. It is a classification procedure

which assigns a new observation to a class if its centroid is closest to the observation. The

centroid could be the mean or median of data in class k. An extended version of centroid

classifier has found applications in the medical domain, specifically classification of tumors

(Tibshirani et al. (2002)).

The nearest neighbor classifier is another distance-based classifier which classifies new

observations based on their similarity with observations in the training set. Given a new ob-

servation, the procedure finds the k closest observations in the training data set and assigns

to the class that appears most frequently within the k-subset. To determine the k closest

17

observations in the training data set, Euclidean distance is usually used. Larger k values

may reduce the effects of noisy points within the training data set, and selecting the value

for k is often done via cross-validation (Hall et al. (2005)).

Prediction Analysis for Microarrays (PAM). This approach was developed by Tib-

shirani et al. (2002) intended for cancer class prediction from gene expression profiling. This

method is based on an improved version of the simple nearest centroid classier. Briefly, the

method classifies a new observation based on shrunken standardized centroid for each class.

Standardized centroid as explained by Tibshirani et al. (2002) in their paper is the average

gene expression for each gene in each class divided by the within-class standard deviation

for that gene. Nearest centroid classifiers obtains gene expression profile of a new observa-

tion, and compares it to the centroids of each class. The class with the nearest centroid,

in squared distance, is the predicted class for that new observation. PAM uses the nearest

shrunken centroid classifier in which each of the class centroids are shrunken toward the

overall centroid for all classes by an amount called threshold. This shrinkage moves the

centroid towards zero by threshold, setting it equal to zero if it hits zero. Nearest centroid

classifier is then implemented to the shrunken class centroids. This shrinkage procedure

in PAM has two advantages. First, it makes the classifier more accurate by reducing the

effect of noisy genes; and second, it does automatic gene selection, that is, when a gene is

shrunken to zero for all classes, then it is removed from the prediction rule. In addition, a

special case of PAM sets a gene to zero for all classes except one, and high or low expression

for that gene characterizes which class the new observations belong. To select the value for

threshold, PAM does K-fold cross-validation for a range of threshold values. Typically, the

threshold value chosen is the one which gives the minimum cross-validated misclassification

error rate. Tibshirani et al. (2002) demonstrated PAM’s effectiveness in finding genes for

classifying small round blue cell tumors and leukemias.

18

Support Vector Machines (SVM). A support vector machine (SVM) was developed

with the intention to classify new observations into two classes (Cortes and Vapnik (1995)).

However, SVM may also be applied to multi-class problems by treating each single class as a

separate problem. Given a training data, each marked as belonging to one of two categories,

a model is obtained from SVM training algorithm. An SVM model is a representation of the

observations in space, mapped so that the observations of the separate classes are divided

by a hyperplane that is as wide as possible. The best hyperplane is the one that represents

the largest separation between the two classes. New observations are then mapped into that

same space and predicted to belong to a class based on which side of the hyperplane they

lie on. SVM can perform both linear and nonlinear classification. Support vector machines

are usually used in bioinformatics, image recognition and text categorization. It is shown in

Dumais et al. (1998) that SVM outperforms other popular methods in text categorization,

such as naive Bayes and decision trees in terms of prediction accuracy and computation

time.

Chang and Lin (2011) have been actively developing a library for Support Vector Ma-

chines (LIBSVM). For classification, they developed c-Support Vector Classification (C-

SVC) and v-Support Vector Classification (V-SVC). Given training variables XiεRn, i =

1, ..., l in two classes and a response binary variable Y , (C-SVC) solves the following problem:

minα
1

2
αTQα− eTα

subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, ..., l

(2.3.3)

where e = [1, ..., 1]T , Q is an l × l positive definite matrix, Qij ≡ yiyjK(xi, xj), and

K(xi, xj) ≡ φ(xi)
Tφ(xj) is the kernel function. On the other hand, V-SVC introduces a

new parameter νε(0, 1] and the problem it solves is given as

minα
1

2
αTQα

subject to 0 ≤ αi ≤ 1/l, i = 1, ..., l,

eTα ≥ ν, yTα = 0

(2.3.4)

19

where Qij ≡ yiyjK(xi, xj).

Classification Tree Based Methods. Decision tree methods according to Rokach and

Maimon (2008) are commonly used in data mining. The main goal is to build a model that

predicts the value of a response variable based on several independent variables. Tree based

classification methods was first introduced by Breiman et al. (1984). Three of the popular

tree based procedures are bagging, random forest and boosted trees. Bagging decision trees

as discussed by Breiman (1996) builds numerous decision trees by conducting a multiple

resampling of training data with replacement and classification of a new observation is

based on majority vote among the trees.

On the other hand, random forest was introduced independently by Ho (1995) and Amit

and Geman (1997). It is a combination of “bagging method” and random selection of

features. To construct a model using random forest requires making choices for the shape

of the decision to use for every node, the type of predictor to use for every leaf, the splitting

objective to optimize for every node and the method for implementing randomness into the

trees. For classification, the new observation is entered to the tree and is assigned to a class

corresponding to the node where it ends up. This procedure is iterated over all trees and

the observation is classified based on the majority vote of the trees.

Another tree-based method is “boosting” which iteratively grows classification trees in a

sequence of reweighted datasets (Austin and Lee (2011)). In a given iteration, subjects who

were misclassified in the previous iteration are given higher weights than those who were

correctly classified. The final classification is based on the majority vote of classification

trees.

2.3.2 Variable Selection Techniques

Variable selection is a procedure to determine the covariates that have strong contribution

to the response variable. It is very important to conduct variable selection in ultrahigh

20

dimensional setting to avoid the curse of dimensionality. Most classification techniques fail

when the number of covariates is much larger than the number of observations. Hence,

for efficient classification of qualitative response variables, it is necessary to first reduce

the number of covariates before implementation of classification procedures. Majority of

the variable selection procedures were already discussed in Sections 2.2 and 2.3. These

procedures can also be used for variable selection when the response variable is binary. In

addition to these procedures, this section presents the popular variable selection procedures

that are specifically used for variable selection when the response variable is binary, namely,

Shrinkage methods, SVM, GLMNET, Gene Selection with Random Forest (GeneSrF) and

Binary Matrix Shuffling Filter (BMSF).

Shrinkage methods. The shrinkage methods were developed for regression problems

with the objective of shrinking the coefficients of some variables by imposing a penalty

on their size. Among the shrinkage methods are Ridge regression and LASSO which were

already discussed in Section 2.2.

Variable Selection in SVM. Guyon et al. (2002) developed a variable selection proce-

dure called RFE-SVM which stands for recursive feature elimination using binary support

vector machine. This procedure ranks genes using the coefficient magnitude trained from the

SVM instead of ranking genes using correlation between gene and phenotype. It recursively

removed covariates with smallest coefficient magnitude in the learned SVM model followed

by recursively training the updated data with decreasing number of variables to re-rank the

rest of genes. The authors demonstrated that the RFE-SVM has the ability to eliminate

gene redundancy automatically and yielded better and more compact gene subsets. More-

over, Fan and Li (2001) also developed SCAD-SVM. Both RFE-SVM and SCAD-SVM were

developed using binary SVM.

Variable Selection in Random Forest. A very popular random forest procedure that

can be used for binary variable selection is the Gene Selection in Random Forest (GeneSrF)

which was developed by Diaz-Uriarte and Alvarez de Andres (2006) to select relevant genes

21

to be used for classification in gene expression studies. Its main goal is to identify the smallest

possible number of genes and still result in good predictive performance. The authors have

demonstrated the performance of GeneSrF through simulated and microarray data sets. In

their results, random forest has comparable predictive performance to other classification

methods, including KNN and SVM. In addition, GeneSrF in most data sets have yielded

smaller sets of genes than alternative methods while preserving predictive accuracy.

Binary Matrix Shuffling Filter (BMSF). Zhang et al. (2012) developed the Binary

Matrix Shuffling Filter (BMSF) for variable selection. This method takes into account

possible gene interactions during gene selection. To perform filtering, BMSF utilizes Support

Vector Machine (SVM) and eliminate variables through evaluating the effect of random

sets of genes. During the gene selection process, the set of genes kept in the model was

repeatedly refined and updated while taking into account the effect of a given gene on the

contributions of other genes to their importance in cancer classification. Through real data

sets, the authors have shown that BMSF often selects very small number of genes while

preserving predictive accuracy. The significance of using BMSF includes: (1) It accounts

for possible gene interactions, (2) It often selects small number of genes while accurately

classify new observations, (3) It results in improved LOOCV classification accuracy when

coupled with SVM, Naive Bayes (NB), linear discriminant analysis (LDA) and quadratic

discriminant analysis (QDA). Results from Zhang et al. (2012) suggests that accounting for

interactions among features in the search space coupled with a manageable search scheme

as in BMSF provides better accuracy for biomarker selection.

Generalized Linear Models with Elastic Net (GLMNET). This procedure was

developed by Jerome Friedman, Trevor Hastie and Rob Tibshirani which contains very

efficient procedures for fitting elastic-net regularization paths for generalized linear models.

The elastic net penalty includes mixture of ridge and lasso penalties. The GLMNET function

can fit Gaussian and multiresponse Gaussian models, logistic regression, poisson regression,

multinomial and grouped multinomial models and the Cox proportional hazard model. The

22

efficiency of the GLMNET algorithm comes from using cyclical coordinate descent in the

optimization process and from underlying Fortran code. The coordinate descent update has

the form

β̃j ←
S(1

N

∑N
i=1wixij(yi − ỹ

(j)
i), λα)∑N

i=1wix
2
ij + λ(1− α)

(2.3.5)

where ỹ
(j)
i = β̃0 +

∑
l 6=j xilβ̃l pertains to the fitted value excluding the contribution from xij.

The S(z, τ) is the soft thresholding operator defined as

sign(z)(|z| − τ)+ =


z − τ if z > 0 and τ < |z|
z + τ if z < 0 and τ < |z|
0 if τ ≥ |z|

For detailed discussion of GLMNET, please refer to Friedman et al. (2009).

2.3.3 Generalized Additive Model (GAM), Binary Case

Wood (2008) discussed the generalized additive model when the response variable is binary,

that is when the outcome yi is either 0 or 1. The value 1 indicates an event and 0 indicates

no event. The objective for GAM-binary case is to model p(y|X) which is defined as the

probability of an event given X = (x1, x2, ...xp)
T . The generalized additive logistic model

assumes that

logit(p(Y = 1|X)) = log
p(y|X)

1− p(y|X)

= f0 +

p∑
j=1

fj(xij)

= η(x)

(2.3.7)

where the fj’s, j = 1, ..., p are smooth functions obtained via thin-plate smoothing. The

probability of an event given X = (x1, x2, ...xp)
T is

p(Y = 1|X) =
e(f0+

∑p
j=1 fj(xij))

1 + e(f0+
∑p
j=1 fj(xij))

=
e(η̂)

1 + e(η̂)
. (2.3.8)

23

GAM uses the generalized cross validation (GCV) function as a criterion in choosing the

smoothing parameters. The GCV function approximates the expected prediction error, and

selects the model that has the smallest prediction error. As an alternative to using the

GCV function, GAM also provides the option of specifying the degrees of freedom for each

individual smoothing component.

24

Chapter 3

Continuous Case: Variable Selection

and Prediction

3.1 Introduction

In ultrahigh dimensional settings, high collinearity among the covariates is likely to exist,

which makes marginal correlation screening unreliable as a measure of association between

the variables and the response. Specifically, the existing nonparametric procedures are chal-

lenged by the following problems (Fan and Lv (2008)):

1. Unimportant covariates are likely to enter the final model when they are highly correlated

with important covariates.

2. Important covariates that are marginally uncorrelated but jointly correlated with the

response are unlikely to enter the final model.

3. There exists a problem of collinearity among the covariates.

Given these problems, nonparametric marginal screening procedures such as the NIS-

based procedures have high false selection rates in the final model. Hence, this paper

proposes the Most Significant Regression - Continuous (MSRc) algorithm which is a variable

selection and response estimation procedure that takes into account the correlation structure

25

among the covariates. The algorithm is a combination of smoothing spline estimation,

additive modeling and tests of generalized conditional correlation procedures. It can be

used with continuous or discrete response variables, and when the predictors are linearly or

nonlinearly related to the response.

Comparisons with other methods such as NIS, INIS, greedy-INIS and generalized corre-

lation (gcorr) are presented using the results from Monte Carlo simulations. Using a real

data from genome wide association studies (GWAS), the prediction accuracy of MSRc is

also compared with Support Vector Regression (SVR) Models and Bayesian LASSO which

are established feature selection procedures in GWAS.

3.2 GAM in the Continuous Case

Generalized Additive Modeling (GAM) technique by Wood (2008) is implemented in the

MSRc algorithm and therefore it is important to present how it was used. GAM is used

to assess the significance of a smoothing spline estimate of X, say f(x), in predicting the

response, say Y . The notation used in this paper is GAM(Y, f(x)). Given the variables Y

and X, GAM derives the smoothing spline estimate f(x) that minimizes the function

n∑
i=1

(yi − f(xi))
2 + λ

∫ ∞
−∞

[f ′′(x)]2dx.

The term
∫∞
−∞ f

′′(x)2dx measures how wiggly f(x) is and λ ≥ 0 is how much f(x) is

penalized for being wiggly. In this paper, a thin plate regression spline basis was used and

the value of λ was selected to yield an effective degrees of freedom which is controlled by the

degree of penalization selected during fitting by generalized cross validation (GCV) criterion

given as

nD/(n−DoF)2,

where D refers to deviance of the model computed as D =
∑n

i=1(yi − f̂(xi))
2, and f̂(xi)

is the estimate from fitting to all the data. DoF is the effective degrees of freedom of the

model and n is the number of observations (Wood (2008)).

26

3.3 Most-Significant-Regression Algorithm, MSRc

Suppose that we have a random sample (Xi, Yi), i = 1, 2, ..., n observed from an unknown

population, where Xi = (Xi1, . . . , Xip)
T . We consider the case that p >> n. Suppose

that only a small subset of covariates of size p′ contribute to the response and p′ < p. For

convenience of notation, we denote these p′ covariates as Zi = (Xij1 , . . . , Xijp′
)T . Moreover,

let the true model be

Yi = m(Zi) + εi (3.3.1)

in which Yi is continuous and εi is the random error with conditional mean equal to 0. The

covariates in Zi are called active variables which we want to identify from the entire set of

covariates Ω = {Xi1, . . . , Xip}. Let X∗ = {X∗1 , ..., X∗m} be the set of variables selected to

enter the model. Initialize X∗ = φ.

Step 1: Let k = 1 , ε0(X
∗) = Y , and ĝ = 0. The ĝ stores the fitted values.

Step 2: Select the first variable marginally as follows. Calculate p-values of testGAM(ε0(X
∗), f̂(Xj)),

for j = 1, . . . , p, where f̂(Xj) is a smoothing spline estimate of ε0(X
∗), j = 1, . . . p. The

p-values are obtained for testing individual smooth terms for equality to the zero function.

Choose the variable in Ω that has the smallest significant p-value (pvalue< α = 0.01) and

denote it as X∗k . If X∗k does not exist, terminate the algorithm. Otherwise, proceed to

Step3.

Step 3: Fit εk−1(X
∗) with the smoothing spline estimate of X∗k , f̂(X∗k). Update X∗ ⇐

X∗
⋃
{X∗k} and Xnew ⇐ Ω−X∗.

Step 4: Update ĝ ⇐ ĝ + f̂(X∗k) and compute εk(X
∗) = Y − ĝ. If Xnew = φ, terminate the

algorithm.

Step 5: Calculate p-value of test GAM(Y, ĝ). Denote it as pc.

Step 6: Calculate p-values of test GAM(εk(X
∗), f̂(Xj)) for all Xj ε Xnew. If there is no

p-value close enough to pc, that is, |pvalue− pc| < 0.0005 terminate the algorithm. Other-

27

wise, proceed to the next step.

Step 7: Set k = k+ 1. Select the independent variable whose p-value is close enough to pc,

that is, |pvalue− pc| < 0.0005 and denote the variable as X∗k . Then return to Step3.

The algorithm uses |pvalue − pc| < 0.0005 as a criterion for recruiting an independent

variable. The effects of this criterion are different for two scenarios.

1. If the first variable is good, that is, pc is small (close to zero), then the selection ensures

that the next variable recruited is highly significant.

2. The first variable recruited may be a false positive when active variables are marginally

uncorrelated with Y , or if inactive variables are highly correlated with some active vari-

ables. When the first variable recruited is a false positive, then the algorithm controls the

contribution of the next variable being selected (which may also be a false positive) to be

no more than the first variable in the model. The contribution is in terms of generalized

correlation to be explained below.

In the algorithm, p-values from GAM(ε(X∗), f̂(Xj)) for all Xj ε Xnew test the signif-

icance of the generalized correlation between the current residual ε(X∗) and each of the

smoothed function of the remaining Xj ∈ Xnew. Since the residuals are calculated based

on the variables that are already in the model, this correlation is actually the conditional

generalized correlation between Y and Xj ∈ Xnew conditional on the variables selected in

earlier steps. The generalized correlation of ε(X∗) and f(Xj) is given and estimated by

ϑj = supfεF
cov(f(Xj), ε(X

∗))√
var(f(Xj))

√
var(ε(X∗))

(3.3.2)

ϑ̂j = supfεF

∑
i(f(Xij)− fj)(εi(X∗)− ε∗)√

n
∑

i(f(Xij)2 − f j
2
)
√
n
∑

i(εi(X
∗)2 − ε∗2)

(3.3.3)

respectively, where fj = n−1
∑

i f(Xij) and ε∗ = n−1
∑

i εi(X
∗).

28

3.3.1 Comparison of Greedy INIS and MSRc

Greedy-INIS ranks the utility of covariates according to a measure of goodness of fit such

as the magnitude of marginal estimators, nonparametric marginal correlations, and the

marginal residual sum of squares. In the variable screening, via thresholding, it selects a

set of variables with size less than or equal to p0, a small positive integer. An example

of the threshold value is the qth quantile of the marginal correlations. There are three

problems involved with this thresholding step of greedy-INIS. First, what is the most reliable

threshold value? Does the threshold value depend on the judgment of the person who runs

the analysis? Second, given thousands of independent variables, the threshold value selected

may result in hundreds of variables being recruited. This will lead to achieving sure screening

property such that all the positives are selected but very high false selection rates. Some

threshold value may also result in very few variables selected which leads to very low false

selection rates but very low true positive rates. Third, since greedy-INIS relies mainly on the

threshold value, it will always select at least one variable to enter even though there are no

variables important in predicting the response. In the case of highly correlated independent

variables and when there is only one important variable used to generate Y , greedy-INIS

is likely to select at least 1 variable. After variable screening, the next step is to select the

final variables to enter the model by applying a more refined technique such as penGAM

(Meier et al. (2009)) and SCAD (Fan and Li (2001)). Greedy-INIS mainly rely on these

refined techniques to improve its false selection rates.

When p0 = 1, greedy-INIS and MSRc both recruit one variable at a time. The major

difference is the criteria on how they recruit the variable. As stated above, greedy-INIS

selects a variable based on a fixed threshold value. On the other hand, MSRc selects the

variable through two criteria. The first criterion applies to the recruitment of the first

covariate, and it requires that the smoothing spline estimate f̂(X∗1) of a variable X∗1 should

be significant (p-value < α = 0.01) in predicting the response. The second criterion specifies

that Xk is recruited if the significance of its smoothing spline estimate f̂(Xk) of the current

29

residual is comparable to the significance of the current regression estimate of the response.

The threshold value in MSRc pertains to pc in Step 5 of the MSRc algorithm which is

updated every time a new variable is being added to the model. As a new variable is being

added to the model, the residuals εk(X
∗) also change. The p-values of GAM(εk(X

∗), f̂(Xi))

for all Xi ε Xnew explained in Steps 6 and Step 7 of the MSRc algorithm also change as the

residuals change. Hence, MSRc recruits a variable Xk based on the significance of f̂(Xk) in

predicting the current residual assessed relative to the contributions of the variables that

are already in the model.

3.4 Performance Measures

To compare the performance of MSRc with existing nonparametric procedures, this paper

uses the mean true positive rate (TP), mean false positive rate (FP) and mean squared

prediction error (PE). Specifically, for variable selection properties, the following measures

are computed:

TP =

∑r
i=1 number of active variables recruited in the ith run

r
,

FP =

∑r
i=1 number of inactive variables recruited in the ith run

r
,

where r is the number of runs. Active variables are the independent variables used to

generate the true model, while inactive variables are the independent variables not used in

the true model. For predictive performance, independent testing is implemented to avoid

overfitting that occurs when the variable selection, model building and testing are applied

to the same data. That is, the prediction error (PE) is calculated on an independent test

data set of size n/2. The PE is computed using the equation

PE =

∑r
i=1

∑n/2
j=1

(ŷij−yij)2
n/2

r
.

30

3.5 Graphical Presentation of the MSRc Algorithm

Here we illustrate the variable selection process of the MSRc algorithm with three examples.

These examples use simulated data from models discussed in earlier articles.

Example 1. This is an example also discussed in Hall and Miller (2009). Suppose Wij,

j = 1, . . . , 6 and Xik, k = 5, . . . , 5000 are independent random variables which follow a

N(0, 1) distribution, and let Yi = 2sin{π
2
(Wi1 + 0.5Wi2)} +

∑
j=3

5Wij
2 + 0.4eWi6 + Zi0 ,

Xi1 = 2Wi1
2 +Zi1 , Xi2 = 2Wi2 +Zi2, Xi3 = Wi3Wi4 +Zi3 , and Xi4 = Wi6 +Zi4, where each

of the Zij’s are normally distributed with mean equal to 0 and standard deviation of 0.1.

The sample size is n = 500. This is a measurement error model in that the true covariates

Wij, j = 1, . . . , 6 are not directly observed.

Figure 3.1 presents MSRc algorithm for one simulation of data from Example 1. The

first variable recruited is X3 which has a p-value equal to 1.69 × 10−38. It is significant at

α = 0.01 and it is the smallest among all p-values from each of the 5000 generated covariates.

At this point, pc is set to be equal to 1.69×10−38. The second variable recruited is X4 which

has p-value equal to 1.59 × 10−25. Note that the absolute difference of the current pc and

p-value of X4 is less than 0.0005. After X4 is recruited, pc becomes 3.39× 10−67. Next, X2

is recruited with p-value equal to 2.31× 10−4. Again, the absolute difference of the current

pc and p-value of X2 is less than 0.0005. After recruiting X2, the value of pc becomes

5.11 × 10−72. The variable recruited next is X70 with p-value equal to 3.77 × 10−4. The

absolute difference of the current pc and p-value of X70 is less than 0.0005. The current pc

is now equal to 3.36× 10−79. The algorithm proceeds to finding the variable whose p-value

is closest to the current pc. The p-value closest to the current pc is 2.39 × 10−3. However,

|2.39×10−3−3.36×10−79|= 0.002 which is greater than 0.0005. Hence, the algorithm stops.

Result comparison. For this example, the generalized correlation (gcorr) procedure

by Hall and Miller (2009) implemented 500 bootstrap simulations with size n = 500 and

used a prediction level of α = 0.02. With the lowest 99% percentile ranking plot, Hall and

Miller (2009) selected 10 variables X3, X4, X3484, X3010, X2672, X1264, X3275, X307, X2787,

31

Figure 3.1: MSRc algorithm for Example 1. The covariates were recruited in the following

order: X3, X4, X2 and X70. The algorithm stopped when the |pvalue − pc| ≥ 0.0005.

The p-value is the significance of f(xk) in predicting the current residual, while pc is the

significance of the current regression estimate of the response.

 pc pvalue

X 3 1.694325e-38 NA

X 4 3.386070e-67 1.589661e-25

X 2 5.113372e-72 2.307805e-04

X 70 3.355634e-79 3.774648e-04

stop NA 2.378705e-03

and X459. The X3 and X4 were clearly shown as more influential in their plot than the other

8 covariates. In summary, the Hall and Miller (2009) procedure identified two true positives

but eight false positives. On the other hand, MSRc algorithm found three true positives

X2, X3 and X4, and only one false positive.

Example 2. This example generates data based on a model that was also considered in

Meier et al. (2009) and Fan et al. (2011). Following Fan et al. (2011), we set n = 400 and

p = 1000. Let

g1(x) = x, g2(x) = (2x− 1)2, g3(x) =
sin(2πx)

2− sin(2πx)

32

and

g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx).

The response variable was generated from the following additive model:

Y = 5g1(X1) + 3g2(X2) + 4g3(X3) + 6g4(X4) +
√

1.74ε

The independent variables X = (X1, . . . , Xp)
T are simulated according to the random-effects

model

Xj =
Wj + tU

1 + t
, j = 1, . . . , p,

where W1, . . . ,Wp and U are iid Unif(0,1), and ε ∼ N(0,1) independent of {Xi}’s. When

t = 0, the covariates are all independent, and when t = 1, the pairwise correlation of

covariates is 0.5.

Graphical Presentation of MSRc Algorithm. Figure 3.2 is the graphical presen-

tation of MSRc algorithm for one simulation of data from Example 2 with t = 0. The

first variable recruited is X4 which has a p-value equal to 4.06 × 10−69. It is significant

at α = 0.01 and it is the smallest among all p-values from the 1000 generated covariates.

At this point, pc is set to be equal to 4.06 × 10−69. The second variable recruited is X3

which has p-value equal to 2.05 × 10−39. Note that the absolute difference of the current

pc and p-value of X3 is less than 0.0005. After X3 is recruited, pc becomes 8.24 × 10−110.

The next variable recruited is X1 with p-value equal to 6.30× 10−49. Again, note that the

absolute difference of the current pc and p-value of X1 is less than 0.0005. After recruiting

X1, the value of pc becomes 7.61 × 10−159. The variable recruited next is X2 with p-value

equal to 2× 10−26. The absolute difference of the current pc and p-value of X2 is less than

0.0005. The current pc is now equal to 2.56× 10−190. The algorithm proceeds to finding the

variable whose p-value is closest to the current pc. The p-value closest to the current pc is

2.05 × 10−3. However, |2.05 × 10−3 − 2.56 × 10−190|= 0.002 which is greater than 0.0005.

Hence, the algorithm stops.

33

Figure 3.2: MSRc algorithm for Example 2 (t=0). The covariates were recruited in the

following order: X4, X3, X1 and X2. The algorithm stopped when the |pvalue−pc| ≥ 0.0005.

The p-value is the significance of f(xk) in predicting the current residual, while pc is the

significance of the current regression estimate of the response.

 pc pvalue

X4 4.058269e-69 NA

X3 8.237006e-110 2.047447e-39

X1 7.610119e-159 6.302985e-49

X2 2.556754e-190 1.999054e-26

stop NA 2.047515e-03

The results of Meier et al. (2009) and Fan et al. (2011) were not reported for a single

run. Instead, they reported a summary of the results from multiple runs. We defer such

comparisons to a later section.

Example 3. Again, this simulation model is from the paper of Fan et al. (2011) which

was first implemented by Meier et al. (2009). There are 12 active variables with different

coefficients.

Y = g1(X1) + g2(X2) + g3(X3) + g4(X4) + 1.5g1(X5) + 1.5g2(X6)

+1.5g3(X7) + 1.5g4(X8) + 2g1(X9) + 2g2(X10) + 2g3(X11) + 2g4(X12) +
√

0.5184ε

where ε ∼ N(0,1) independent of {Xi}’s. The covariates are simulated as in Example 2 and

34

we also set n = 400 and p = 1000.

Graphical Presentation of MSRc Algorithm. Figure 3.3 is the graphical presenta-

tion of MSRc algorithm for one simulation of data from Example 3 (t=0). The first variable

recruited is X12 which has a p-value equal to 2.40 × 10−24. It is significant at α = 0.01

and it is the smallest among all p-values from each of the 1000 covariates. At this point,

pc is equal to 2.40× 10−24. The second variable recruited is X8 which has p-value equal to

7.77 × 10−14. Note that the absolute difference of the current pc and p-value of X8 is less

than 0.0005. After X8 is recruited, pc becomes 8.72× 10−40. The variables entered next in

order are X11, X7, X9, X10, X5, X4, X3, X6, X1 and X2. After recruiting all of these 12

covariates, the algorithm proceeds to finding the next variable to recruit. At this point, the

current pc is equal to 6.85 × 10−181. The p-value closest to the current pc is 1.43 × 10−3.

However, |1.43 × 10−3 − 6.85 × 10−181|= 0.001 which is greater than 0.0005. Hence, the

algorithm stops.

We defer the numerical comparisons with the results of Meier et al. (2009) and Fan et al.

(2011) in next section.

3.6 Numerical Comparisons

3.6.1 Simulation Models and Results

To demonstrate the power of our proposed MSRc method and to be able to compare with

the results of Fan et al. (2011) and Hall and Miller (2009), we present comparison results

for the following 8 simulation examples.

Example 2 continued. Similar to Fan et al. (2011), we generated data with the model

in Example 2 and repeated the data generation 100 times. For each set of data generated,

we applied our MSRc algorithm. The summary of the results from all 100 runs are given in

Table 3.1.

35

Figure 3.3: MSRc algorithm for Example 3 with t=0. The covariates were recruited in the

following order: X12, X8,X11, X7, X9, X10, X5, X4, X3, X6, X1 and X2. The algorithm

stopped when the |pvalue−pc| ≥ 0.0005. The p-value is the significance of f(xk) in predicting

the current residual, while pc is the significance of the current regression estimate of the

response.

 pc pvalue

X12 2.396003e-24 NA

X8 8.715722e-40 7.774712e-14

X11 5.385543e-58 2.257844e-15

X7 1.346557e-74 8.107431e-12

X9 4.766031e-89 1.013635e-14

X10 1.469327e-101 1.296765e-10

X5 1.895683e-113 2.610391e-13

X4 5.622542e-128 3.646222e-11

X3 2.802539e-142 8.308468e-13

X6 7.245347e-161 2.749789e-15

X1 2.629366e-166 8.475396e-09

X2 6.846030e-181 9.601577e-10

stop NA 1.426431e-03

Based on Table 3.1, the Most Significant Regression algorithm, MSRc, consistently has

competitive true positive rates and has lowest false selection rates for both cases, that is,

when covariates are independent (t = 0) and when pairwise correlation of covariates is 0.5

(t = 1). In terms of predictive performance, MSRc achieves the smallest prediction error

for both cases.

36

Table 3.1: Mean True Positive Rate and Mean False Positive Rate for Example 2. There

are 100 simulations each of size 400, from which the mean true positive rate (TP) and

mean false positive rate (FP) were computed. The prediction errors were computed from

an independent test data of size 200 for each simulation. The mean prediction error (PE)

was computed from the results of 100 simulations. Robust standard deviations are given in

parentheses.

Model Method TP FP PE

Example 2 t=0 MSRc 4.00(0.00) 0.43(0.75) 2.15(0.26)

INIS 4.00(0.00) 2.58(2.24) 3.02(0.34)

g-INIS 4.00(0.00) 0.67(0.75) 2.92(0.30)

penGAM 4.00(0.00) 31.86(23.51) 3.30(0.40)

ISIS 3.03(0.00) 29.97(0.00) 15.95(1.74)

Example 2 t=1 MSRc 3.99(0.00) 0.16(0.00) 2.29(0.24)

INIS 3.98(0.00) 15.76(6.72) 2.97(0.39)

g-INIS 4.00(0.00) 0.98(1.49) 2.61(0.26)

penGAM 4.00(0.00) 39.21(24.63) 2.97(0.28)

ISIS 3.01(0.00) 29.99(0.00) 12.91(1.39)

Example 3 continued. Here we report comparisons based on 100 runs. The mean true

positive rate (TP), mean false positive rate (FP), and prediction error (PE) from indepen-

dent test data sets are given in Table 3.2. Table 3.2 shows that when the covariates are

independent (t = 0), the MSRc algorithm is competitive with other methods in terms of

mean true positive rate. In comparison, MSRc has the lowest mean false positive rate and

lowest prediction error. When the covariates have pairwise correlation equal to 0.5, that is,

when (t = 1), MSRc has the lowest mean false positive rate. However, it is slightly worse

than the other methods in terms of mean true positive rate and prediction error.

Example 4. This example is the simulation model used by Fan et al. (2009) and imple-

mented by Fan et al. (2011) in their paper. We set n = 400 and p = 1000. The response Y

37

Table 3.2: Mean True Positive Rate and Mean False Positive Rate for Example 3 from 100

runs. There are 100 simulations each of size 400, from which the mean true positive rate

(TP) and mean false positive rate (FP) were computed. The prediction errors were computed

from an independent test data of size 200 for each simulation. The mean prediction error

(PE) was computed from the results of 100 runs. Robust standard deviations are given in

parentheses.

Model Method TP FP PE

Example 3 t=0 MSRc 11.98(0.00) 0.47(0.75) 0.88(0.12)

INIS 11.97(0.00) 3.22(1.49) 0.97(0.11)

g-INIS 12.00(0.00) 0.73(0.75) 0.91(0.10)

penGAM 11.99(0.00) 80.10(18.28) 1.27(0.14)

ISIS 7.96(0.75) 25.04(0.75) 4.70(0.40)

Example 3 t=1 MSRc 8.25(1.49) 0.70(0.75) 1.53(0.22)

INIS 10.01(1.49) 15.56(0.93) 1.03(0.13)

g-INIS 10.78(0.75) 1.08(1.49) 0.87(0.11)

penGAM 10.51(0.75) 62.11(26.31) 1.13(0.12)

ISIS 6.53(0.75) 26.47(0.75) 4.30(0.44)

is simulated from the model Y = β1X1 + β2X2 + β3X3 + β4X4 + ε, where ε ∼ N(0,1). The

independent variables X1, . . . , Xp are jointly Gaussian, and each variable has a marginal

distribution N(0,1), and corr(Xi, X4) = 1√
2

for all i 6= 4 and corr(Xi, Xj) = 1
2

if i and j are

distinct elements of {1, . . . , p} \ {4}. The values of the coefficients are set to β1 = 2, β2 = 2,

β3 = 2, β4 = −3
√

2, and βj = 0 for j > 4 so that X4 is independent of Y , even though it is

the most significant variable in the joint model in terms of the regression coefficient.

Results. For this example, Table 3.3 shows that MSRc is competitive with other meth-

ods in terms of mean true positive rate. However, it has a slightly higher mean false positive

rate than that of greedy-INIS and has significantly a higher prediction error than all the

other methods. This result is questionable, and hence the data was investigated. The in-

38

vestigation suggested that a different data may have been used by Fan et al. (2009) when

they implemented their analysis. In simulating the data, the correlation of X4 with all

other covariates is set to 1/
√

2. However, after investigation of the simulated data, nearly

all of the sample correlation values is lower than 1/
√

2. Figure 3.4 shows the results of this

investigation.

Table 3.3: Mean True Positive Rate and Mean False Positive Rate for Example 4. There

are 100 simulations each of size 400, from which the mean true positive rate (TP) and

mean false positive rate (FP) were computed. The prediction errors were computed from

an independent test data of size 200 for each simulation. The mean prediction error (PE)

was computed from the results of 100 simulations. Robust standard deviations are given in

parentheses.

Model Method TP FP PE

Example 1 MSRc 4.00(0.00) 2.24(0.75) 5.72(0.97)

INIS 3.99(0.00) 21.96(0.00) 1.62(0.18)

g-INIS 4.00(0.00) 1.04(1.49) 1.16(0.12)

penGAM 3.00(0.00) 195.03(21.08) 1.93(0.28)

ISIS 4.00(0.00) 29.00(0.00) 1.40(0.17)

Example 5: Different SNR settings. This simulation is given by Fan et al. (2011) in

their paper. The data were generated from the following additive model:

Y = 3g1(X1) + 3g2(X2) + 2g3(X3) + 2g4(X4) + C
√

3.3843ε

where the variables X1, . . . , Xp are simulated according to Example 2. In this example,

C takes a series of different values (C2 = 2, 1, 0.5, 0.25) which lead to the corresponding

SNR=0.5,1,2,4. In this example, we set n = 400 and p = 1000.

Results. The results for INIS and penGAM under different numbers of basis functions,

dn = 2, 4, 6, 8, are obtained from the paper of Fan et al. (2011). They did not report the

39

Figure 3.4: Sample Correlation between X4 and Xj. Almost all correlations are smaller

than 1/
√

2 ≈ 0.707

performance of g-INIS or ISIS. From Table 3.4, in which all of the covariates are independent,

the MSRc has very good true positive rates under various SNRs. In comparison to INIS and

penGAM procedures, the MSRc algorithm has consistently the lowest false selection rates

and lowest prediction errors under various SNRs. Table 3.5 presents the more difficult case

where pairwise correlation between the covariates is equal to 0.5. MSRc has a competitive

performance in terms of true positive rate and has the lowest false selection rate and lowest

prediction errors under various SNR values.

40

Table 3.4: Mean True Positive Rate and Mean False Positive Rate under Different SNR in

Example 5 with t=0. There are 100 simulations, each of size 400, from which the mean true

positive rate (TP) and mean false positive rate (FP) were computed. The prediction errors

were computed from an independent test data of size 200 for each simulation. The mean

prediction error (PE) was computed from the results of 100 simulations. Robust standard

deviations are given in parentheses.
SNR dn Method TP FP PE

0.5 NA MSRc 3.96(0.00) 0.47(0.75) 7.34(0.62)

2 INIS 3.96(0.00) 2.28(1.49) 7.74(0.79)

penGAM 4.00(0.00) 27.85(16.98) 8.07(0.92)

4 INIS 3.93(0.00) 2.29(1.68) 7.90(0.81)

penGAM 3.99(0.00) 25.61(13.62) 8.21(0.84)

8 INIS 3.81(0.00) 2.59(2.24) 8.16(1.08)

penGAM 3.95(0.00) 34.59(20.34) 8.49(0.82)

16 INIS 3.38(0.75) 2.02(1.49) 8.60(1.13)

penGAM 3.74(0.00) 33.48(23.88) 9.04(0.93)

1.0 NA MSRc 4.00(0.00) 0.45(0.75) 3.77(0.50)

2 INIS 4.00(0.00) 2.16(2.24) 3.98(0.34)

penGAM 4.00(0.00) 26.51(14.18) 4.20(0.46)

4 INIS 4.00(0.00) 2.08(1.49) 3.97(0.45)

penGAM 4.00(0.00) 28.33(15.49) 4.24(0.47)

8 INIS 4.00(0.00) 2.72(2.24) 4.04(0.43)

penGAM 4.00(0.00) 36.50(21.83) 4.37(0.47)

16 INIS 4.00(0.00) 1.80(1.49) 4.26(0.45)

penGAM 4.00(0.00) 38.60(19.78) 4.80(0.57)

2.0 NA MSRc 4.00(0.00) 0.51 (0.75) 1.93(0.26)

2 INIS 4.00(0.00) 2.03(2.24) 2.12(0.17)

penGAM 4.00(0.00) 25.89(13.06) 2.25(0.24)

4 INIS 4.00(0.00) 2.38(2.24) 2.06(0.22)

penGAM 4.00(0.00) 30.37(17.16) 2.21(0.26)

8 INIS 4.00(0.00) 2.79(2.24) 2.03(0.21)

penGAM 4.00(0.00) 38.51(16.42) 2.24(0.26)

16 INIS 4.00(0.00) 1.77(1.49) 2.17(0.25)

penGAM 4.00(0.00) 42.58(16.60) 2.54(0.30)

4.0 NA MSRc 4.00(0.00) 0.54 (0.75) 1.01(0.13)

2 INIS 4.00(0.00) 2.06(2.24) 1.19(0.13)

penGAM 4.00(0.00) 28.57(14.37) 1.27(0.15)

4 INIS 4.00(0.00) 2.33(1.49) 1.09(0.10)

penGAM 4.00(0.00) 30.75(17.35) 1.18(0.14)

8 INIS 4.00(0.00) 2.88(2.24) 1.02(0.12)

penGAM 4.00(0.00) 40.51(17.54) 1.14(0.14)

16 INIS 4.00(0.00) 1.72(1.49) 1.10(0.12)

penGAM 4.00(0.00) 45.77(19.03) 1.33(0.16)

41

Table 3.5: Mean True Positive Rate and Mean False Positive Rate under Different SNR in

Example 5 with t=1. There are 100 simulations each of size 400, from which the mean true

positive rate (TP) and mean false positive rate (FP) were computed. The prediction errors

were computed from an independent test data of size 200 for each simulation. The mean

prediction error (PE) was computed from the results of 100 simulations. Robust standard

deviations are given in parentheses.
SNR dn Method TP FP PE

0.5 NA MSRc 2.47(0.75) 0.39(0.75) 7.78(0.73)

2 INIS 3.35(0.75) 33.67(8.96) 9.49(1.28)

penGAM 3.10(0.00) 17.74(15.11) 7.92(0.89)

4 INIS 3.02(0.00) 20.22(2.43) 8.70(1.14)

penGAM 2.78(0.00) 15.91(10.07) 7.99(0.91)

8 INIS 2.51(0.75) 10.48(0.75) 8.37(0.89)

penGAM 2.59(0.75) 16.47(9.70) 8.13(0.90)

16 INIS 2.10(0.00) 4.47(0.75) 8.44(1.00)

penGAM 2.41(0.75) 15.56(10.63) 8.42(0.97)

1.0 NA MSRc 3.61(0.75) 0.19(0.00) 3.87(0.42)

2 INIS 3.83(0.00) 32.46(9.70) 4.86(0.60)

penGAM 3.64(0.75) 24.61(21.08) 4.19(0.49)

4 INIS 3.56(0.75) 20.53(1.68) 4.42(0.52)

penGAM 3.46(0.75) 22.07(16.04) 4.18(0.49)

8 INIS 3.09(0.00) 10.67(0.75) 4.28(0.49)

penGAM 3.12(0.00) 19.92(10.63) 4.30(0.50)

16 INIS 2.68(0.75) 4.18(0.75) 4.45(0.52)

penGAM 2.95(0.00) 16.39(11.19) 4.57(0.55)

2.0 NA MSRc 4.00(0.00) 0.54(0.75) 1.97(0.19)

2 INIS 3.99(0.00) 29.45(11.57) 2.55(0.38)

penGAM 3.97(0.00) 36.57(22.57) 2.25(0.28)

4 INIS 3.93(0.00) 19.12(3.73) 2.26(0.24)

penGAM 3.91(0.00) 31.31(20.52) 2.19(0.23)

8 INIS 3.50(0.75) 10.29(0.75) 2.21(0.23)

penGAM 3.71(0.75) 27.06(19.03) 2.28(0.29)

16 INIS 2.93(0.00) 4.07(0.00) 2.42(0.32)

penGAM 3.22(0.00) 19.51(12.13) 2.53(0.30)

4.0 NA MSRc 4.00(0.00) 0.75(0.75) 1.07(0.11)

2 INIS 4.00(0.00) 29.47(11.38) 1.45(0.21)

penGAM 4.00(0.00) 37.27(20.71) 1.27(0.17)

4 INIS 3.99(0.00) 17.36(5.22) 1.17(0.12)

penGAM 4.00(0.00) 38.71(20.34) 1.16(0.11)

8 INIS 3.78(0.00) 10.00(0.00) 1.13(0.16)

penGAM 3.99(0.00) 41.42(15.86) 1.19(0.13)

16 INIS 3.02(0.00) 3.98(0.00) 1.36(0.15)

penGAM 3.72(0.75) 29.58(19.40) 1.43(0.18)

42

Example 6. This example uses a simulation model discussed in Hall and Miller (2009).

The independent variable X1 has a nonlinear relationship with the response Y and is error

contaminated, that is, Xi1 = Wi+δi and Yi = Wi
2−1+εi. Here, Wi is uniformly distributed

on [-2,2], and the two error terms δi and εi are both normally distributed with mean equal to 0

and standard deviation equal to 3/4. The other independent variables Xij’s , j = 2, . . . , 5000

were taken to be independent N(0,1). The sample size for this simulation is n = 200.

Results. Hall and Miller (2009) implemented this simulation using their generalized

correlation procedure (gcorr). Their procedure implemented 500 bootstrap simulations of

size n = 200, from which they obtained prediction bands for the ranking at α = 0.02. Using

a cutoff at 1
2
p, Hall and Miller (2009) identified Xi1 as the variable that has the highest

correlation with Y , and there are three false positives. On the other hand, MSRc algorithm

showed one true positive and zero false positive.

Example 7. To compare the performance of MSRc and generalized correlation (gcorr)

by Hall and Miller (2009) in the presence of multicollinearity, the data generation in this

example follows Example 2, with t = 1. The pairwise correlation among the independent

variables is 0.5. There are 1000 independent variables, and 4 of these are the active variables.

The generalized correlation procedure implemented 500 bootstrap simulations of size n =

400, from which prediction bands for the ranking at α = 0.02 were obtained.

Results. In this example, gcorr used a cutoff at 1
2
p. Table 3.6 shows the mean true

positive rate (TP) and mean false positive rate (FP) from 100 simulations. From the re-

sults, we conclude that when the independent variables are correlated, gcorr has very poor

performance in terms of mean true positive rate and mean false positive rate. Thus, for this

simulation example, MSRc is better than gcorr.

Example 8. In this simulation example, the independent variables have pairwise correlation

equal to 0.5. To compare the performance of MSRc and generalized correlation (gcorr) by

Hall and Miller (2009), the data generation in this example follows Example 3 with t = 1.

43

Table 3.6: Comparison of MSRc and gcorr: Mean True Positive Rate and Mean False

Positive Rate. There are 100 simulations each of size 400, from which the mean true positive

rate (TP) and mean false positive rate (FP) were computed. Robust standard deviations are

given in parentheses.

Model Method TP FP

Example 7 t=1 MSRc 3.99(0.00) 0.16(0.00)

gcorr 2.15(0.00) 10.59(3.73)

There are 1000 independent variables, and 12 of these are the active variables. Generalized

correlation procedure implemented 500 bootstrap simulations of size n = 400, from which

prediction bands for the ranking at α = 0.02 were obtained.

Results. Similar to Example 7, the gcorr implemented 500 bootstrap simulations with

size n = 400, and used a prediction level of α = 0.02 and a cutoff at 1
2
p. Table 3.7 shows

the mean true positive rate (TP) and mean false positive rate (FP) from 100 simulations.

From this comparison, we can see that neither method has the sure screening property. The

generalized correlation procedure of Hall and Miller (2009) can only identify one or two

active variables out of the 12. On average, the MSRc can identify around 8 active variables.

The false positive rate of gcorr is obviously a lot higher than the MSRc. So we conclude

that when the independent variables are correlated, gcorr performs poorly in terms of mean

true positive rate and mean false positive rate. Hence, MSRc performs better than gcorr.

3.6.2 Real Data Analysis

Enormous amount of data is obtained from genome-wide association studies (GWAS). The

goal in GWAS is to understand how genetic variation in an organism, plant or animal is

associated with a phenotypic trait such as disease risk and quantitative traits. Typically, its

focus is on the detection of single-nucleotide polymorphisms (SNPs) that are associated with

a particular phenotypic trait, and on prediction of the latter. Data from GWAS have small n

44

Table 3.7: Comparison of MSRc and gcorr: Mean True Positive Rate and Mean False

Positive Rate . There are 100 simulations each of size 400, from which the mean true positive

rate (TP) and mean false positive rate (FP) were computed. Robust standard deviations are

given in parentheses.

Model METHOD TP FP

Example 8 t=1 MSRc 8.25(1.49) 0.70(0.75)

gcorr 1.37(0.75) 15.18(2.99)

and large p, have the sparsity nature and the SNP’s may be related. In this paper, analysis

is done on data of grain yield in wheat from several international trials conducted at the

International Maize and Wheat Improvement Center, Mexico. Edited data was downloaded

from R package BLR (http://cran.r-project.org/web/packages/BLR/index.html). The phe-

notype is the average grain yield for each wheat line. The data consist of 599 wheat lines,

each genotyped with 1279 DArT markers (Diversity Array Technology). Long et al. (2011)

also analyzed this data with the goal of predicting grain yield. They compared the perfor-

mance of support regression (SVR) models, ε-SVR and least squares SVR, and Bayesian

LASSO. In this section, MSRc algorithm is compared with these methods in terms of mean

squared error of prediction. For each of ε-SVR and LS-SVR, two types of kernels were

considered: a linear kernel and a Gaussian RBF kernel. More information about the imple-

mentation of SVR models and Bayesian LASSO is discussed in Long et al. (2011).

The wheat data was partitioned randomly into a training set (480 lines) and a test set

(119 lines). Specifically, 480 lines were randomly selected from wheat data to obtain the

training set. The remaining 119 lines were considered as the test set. This partitioning

was repeated 50 times. Table 3.8 presents the predictive mean squared errors (PMSE) of

MSRc, support vector regression (SVR) models and Bayesian LASSO. The values under

SVR models and Bayesian LASSO were obtained from the results of Long et al. (2011).

The table indicates that MSRc algorithm has superior results in terms of predictive mean

45

squared errors (PMSE). Specifically, the PMSE of MSRc has reduced significantly the PMSE

of other methods by at least 43.6% as shown in Table 3.8.

Table 3.8: Predictive Mean Squared Errors (PMSE) on the Testing Set. Wheat data was

partitioned randomly into a training set (480 lines) and a test set (119 lines). This parti-

tioning was repeated 50 times. PMSE for SVR models and Bayesian LASSO are from Long

et al. (2011)

PMSE MSRc ε-SVR ε-SVR LS-SVR LS-SVR Bayesian

Linear RBF Linear RBF LASSO

Mean 0.387 0.799 0.686 0.765 0.688 0.768

Standard Errors 0.048 0.086 0.071 0.083 0.079 0.078

46

Chapter 4

Binary Case: Variable Selection and

Prediction

4.1 Introduction

Classification with a binary response variable exist in many fields such as genome wide

association studies (GWAS), bioinformatics, microarray, financial data and many more. For

example, classification of cancer tissue samples in microarray data has gained popularity

in recent years. The greatest challenge of classifying cancer tissue samples is the effective

classification given that the sample size (n) is much smaller than the number of covariates

or features.

The classical techniques for classification tend to break down in ultrahigh dimensional

settings. One example of a classical technique is the Fisher’s linear discriminant analysis

(LDA). In the study of Bickel and Levina (2004) they have shown that LDA results in

poor classification and is asymptotically no better than random guessing. Studies in the

literature have stressed the importance of reducing the number of variables before conducting

classification to reduce the noise that results in poor classification accuracy. When only a

small part of a large set of variables account for the variation of the response variable, using

all the variables will only increase misclassification rate. Thus, variable selection plays a

47

very important role in high dimensional classification problems.

A vast number of techniques for variable selection have been developed in recent years.

One example is the Features Annealed Independence Rules (FAIR) by Fan and Fan (2008)

in which the important features are selected through hard thresholding on two-sample t-

statistics and the choice of the optimal thresholding parameter is based on the classification

error. Although simulations have shown that FAIR is able to select all important covari-

ates, it has the tendency to result in high false positive rate due to its assumption that all

covariates are independent from each other. Fan and Fan (2008) have compared FAIR with

nearest shrunken centroids which is another variable selection technique for ultrahigh di-

mensional settings. Based on simulation studies, the latter procedure selects fewer variables

than FAIR but has bigger misclassifications rates. Another variable selection technique is

the individual-gene-ranking method (Li et al. (2004) and the references therein) which per-

forms gene selection through a univariate criterion function to provide a list of top ranked

covariates. Another procedure which is most recently developed is the BMSF by Zhang

et al. (2012). A good property of this procedure is its ability to consider the interaction

among covariates during variable selection. However, the implementation of BMSF coupled

with classification techniques such as LDA, naive Bayes, SVM and QDA requires extensive

computations such that the authors had to present their results by doing variable selection

using all the samples rather than using the training data in cross validation. This could

lead to poor generalization ability to new data. Although the results of BMSF presented in

Zhang et al. (2012) showed high prediction accuracies, the results may not be reproducible in

other datasets. In the paper of Zhang et al. (2012) they have also shown that the number of

genes selected by BMSF is usually fewer than GeneSrF. For the variables selected by BMSF

and GeneSrF, an important issue to consider is whether these two procedures were able to

select the true variables and whether they have minimized the number of false variables

selected since the authors did not consider simulation study. In general, the main challenge

of variable selection techniques is the selection of all the true variables from a large number

48

of covariates while minimizing the number of false variables selected. The development of

an algorithm which has high prediction accuracy while using fewer number of covariates is

very important in high dimensional settings.

Another issue to consider is the relationship that may exist between the response variable

and covariates. Most of the variable selection procedures available are appropriate when

there is a linear relationship between the response and each of the covariates. However,

variable selection procedures under the nonlinearity assumption is limited. One example

of technique that is usually used in this situation is the nonlinear SVM which usually

results in high prediction accuracy. In practice, most of the variable selection procedures

are combined with nonlinear SVM to improve their performance. However, the problem

with SVM procedures is its inclusion of all covariates without providing information to the

user on how each variable contributes to the response. The entire classification process is

like a black box.

Motivated by the concerns presented, this chapter presents the Most Significant Re-

gression algorithm for the binary data (MSRb). This procedure can be used for two-class

classification, and when the relationship between the covariates and the response variable is

linear or nonlinear. The main focus of this algorithm is minimizing the false selection rates

in variable selection while maintaining high prediction accuracy. Specifically, the procedure

is developed for the following two objectives:

1. To select the active independent variables that are significantly associated with the bi-

nary response variable;

2. To predict the binary response variable.

The MSRb algorithm is compared to GLMNET through Monte Carlo simulations. In

addition, two microarray datasets namely, lung and prostate cancer datasets are also used

to compared the performance of MSRb and GLMNET. These two microarray datasets were

also used by Zhang et al. (2012) with the application of BMSF and GeneSrF procedures.

The results from their paper are also included in this chapter. The significance of MSRb

49

algorithm includes: (1) MSRb often selects a relatively small number of covariates that can

accurately classify new observations; (2) MSRb results in better performance than GLMNET

in terms of reducing the false positive rate; and (3) It can be used when the relationship

between the response variable and the covariates is linear or nonlinear.

Basically, the MSRb algorithm goes through a series of test to select the important

variables in a fashion closely related to Least Angle Regression but in the binary setting.

Since the response variable is binary, the hypothesis test requires a procedure or test that is

suitable for this setting. In the next section, we describe this test in detail. The algorithm is

presented in Section 4.3 and the performance measures and numerical measures are presented

in Sections 4.4 and 4.5. The application to two cancer microarray datasets are given in

Section 4.5.

4.2 NPtest

In this section, we present a nonparametric test (NPtest) to be used in the algorithm.

The discussion in this section is restricted to data from one response variable and one

covariate. NPtest is a procedure developed by Gharaibeh et al. (2013) which can be used

to detect nonlinear relationship between variables. It is a test of heteroscedastic constant

regression between a response variable, either discrete or continuous, and a continuous

covariate. Specifically, this procedure is testing the hypothesis H0: E(y|x) does not depend

on x against H1: E(y|x) depends on x. Let (Xj, Yj), j = 1, . . . , N , be a random sample of

the random variables (X, Y). Let the marginal probability density function and cumulative

distribution function of Xj be denoted by f(x) and F (x), respectively. In the development

of the test statistics, assume that F (x) is differentiable and the fourth conditional central

moments of Yj given Xj = x are uniformly bounded for every x and assume that σ2(Xi) =

V ar(Yi|Xi). To test the hypothesis, the test statistic is given as

√
N(BN −WN) (4.2.1)

50

where

BN =
k

N−1

N∑
j1=1

[
1

k

N∑
j=1

Yj gNk(Xj1, Xj)−
1

Nk

N∑
j2=1

N∑
j=1

Yj gNk(Xj2, Xj)

]2
+Op(N

−1)

WN =
1

N(k−1)

N∑
j1=1

N∑
j=1

[
Yj gNk(Xj1, Xj)−

1

k

N∑
j2=1

Yj2 gNk(Xj1, Xj2)

]2
+Op(N

−1).

and gNk(X1, X2) = I
(
N |F̂ (X1)−F̂ (X2)| ≤ k−1

2

)
is the indicator function that the difference

between the ranks of X1 and X2 is no more than (k − 1)/2.

Under H0, the test statistic as N →∞ is asymptotically normally distributed with mean

equal to 0 and variance limN→∞ λN , where

λN =
N∑
j<j′

E

{
4σ2(Xj)σ

2(Xj′)

N(k−1)2
[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]−

2I

(
|j′∗−j∗|≤

k−1

2

)
+O(N−1)I(|j′∗−j∗|≤k−1) (4.2.2)

and j′∗, j∗ are the ranks of Xj′ and Xj among the covariate values X = (X1, . . . , XN).

For detailed discussion of NPtest, refer to Gharaibeh et al. (2013). For the MSRb

algorithm, the NPtest is used to test the nonlinear relationship between the current working

residual and each of the covariates. The p-values corresponding to the test statistics are

then used to determine which covariate will be selected. The variable is selected based on

its p-value and the criteria which is explained in the next section.

4.3 Most-Significant-Regression Algorithm, MSRb

Suppose that we have a random sample (Xi, Yi), i = 1, 2, ..., n observed from an unknown

population (X, Y), where X = (X1i, . . . , Xpi)
T . We consider the case that p >> n. Suppose

that only a small subset of covariates of size p′ contribute to the response and p′ < p. For

convenience of notation, we denote these p′ covariates as Z = (Xj1 , . . . , Xjp′
)T . Moreover,

51

let the true model be

logit(p(Y = 1|Z)) = log
p(Y = 1|Z)

1− p(Y = 1|Z)

= m(Z),

(4.3.1)

The covariates in Z are called active variables which we want to identify from the entire set

of covariates Ω = {X1, . . . , Xp}. Let X∗ be the set of variables selected to enter the model.

Initialize X∗ = φ.

4.3.1 Variable Selection Algorithm

For variable selection, we use the training data. Let ntr be the number of observations in

the training data, a be the threshold of the p-value for filtering out the most irrelevant

variables, k be the number of active variables already selected at the current stage and ri be

the current working residual for the ith observation with the active variables in the model.

Denote ĝi as the current fitted value in the logit scale for the ith observation.

Step 0: Initialize a = 0.5, k = 0, ri = Yi and ĝi = 0.

Step 1: Group the values of each independent variable Xj according to the value of the

response variable Y , j = 1, ..., p. The response variable has two classes and therefore there

are 2 groups for the values of Xj. Conduct a two sample t-test for the 2 groups of Xj

values and obtain the p-value. Since there are p independent variables at the start of the

algorithm, then there are p two sample t-tests giving p p-values.

Step 2: Discard all independent variables with p-value> a and keep those that have p-

values< a and put them into set Xnew. Suppose there are m variables in Xnew. If Xnew = φ,

terminate the algorithm. Otherwise, proceed to the next step.

Step 3: Conduct a Bonferroni correction procedure at significance level equal to 0.01 for all

variables in Xnew. That is, select all variables in Xnew with p-values less than 0.01/m and

put them in set X∗. Update k, which is equal to the number of variables in X∗. If k = 0,

52

proceed to Step 5. Otherwise, update Xnew ⇐ Ω−X∗ and proceed to Step 4.

Step 4: Let the set of all selected covariates be X∗ = {Xi1 , Xi2 , ..., Xik}. Enter each vari-

able into the model one at a time as follows. Let j be the index of how many covariates are

already in the model.

(1) Initialize j = 1. Using the first covariate, Xi1 , fit a nonlinear logistic model

logit(p(Yi = 1|Xi1 = x)) = f1(x), where f1(x), is estimated by a smooth function f̂1

obtained via thin-plate smoothing spline. From the fitted model, obtain the fitted value

for each observation in the logit scale and denote it as η̂i = f̂1(Xi1 i), i = 1, ..., ntr. The

estimate for the smooth function is obtained using the generalized additive model in the

MGCV package by Wood (2008). Thin-plate smoothing spline is implemented since it is

the optimal smoother of any given basis dimension or rank according to Wood (2003). For

MSRb algorithm, the default basis dimension was used which is equal to 8 when the model

has 1 single variable.

(2) For all i = 1, ..., ntr, do the following: calculate the weights wi = eη̂i

(1+eη̂i)2
; then com-

pute the working residual ri = yi−η̂i
wi

and obtain the adjusted dependent variable zi = η̂i + ri

; update ĝi ⇐ ĝi + η̂i.

(3) Update j ⇐ j + 1 and fit a weighted nonlinear regression model between the

jth covariate XijεX
∗ and the current adjusted dependent variable Z with observations

z1, z2, ..., zntr . Obtain the following for all i = 1, ..., ntr: the new fitted values η̂i, the new

weights wi = eη̂i

(1+eη̂i)2
, the new working residual ri = zi−η̂i

wi
, and the new adjusted dependent

variable zi = η̂i + ri. Update ĝi ⇐ ĝi + η̂i.

(4) Repeat (3) for all j such that j ≤ k.

Step 5: From the set Xnew, select the variable with smallest p-value.

Step 6: Update k ⇐ k + 1. Denote the previously selected variable as Xik . Update

Xnew ⇐ Xnew −Xik and perform the following:

If k = 1, do the following: Using the covariate Xi1 , and the current working residual

r = Y as the response variable to fit a nonlinear logistic model logit(p(Y = 1|Xik = x)) =

53

fk(x), where fk(x) is a smooth function to be estimated by f̂k(x) obtained via thin-plate

smoothing spline using the generalized additive model in MGCV package by Wood (2008).

From the fitted model, obtain the following updates for i = 1, ..., ntr: the fitted values

η̂i = f̂k(Xik i); the weights equal to wi = eη̂i

(1+eη̂i)2
; the working residual ri = yi−η̂i

wi
; and the

adjusted dependent variable zi = η̂i + ri.

If k > 1, do the following: Fit a weighted nonlinear regression model between the

covariate Xik and the current working residual (r1, ..., rntr) as the response variable. For

i = 1, ..., ntr, obtain the fitted values from the fitted model and denote it as η̂i; compute the

weights wi = eη̂i

(1+eη̂i)2
; update the working residual ri ⇐ ri−η̂i

wi
; and compute the adjusted

dependent variable zi = η̂i + ri.

Step 7: Update ĝi ⇐ ĝi+η̂i and do the following: Fit a logistic regression model between the

response variable Y and a surrogate variable g using observation pairs (Y1, ĝ1), ..., (Yntr , ĝntr) :

logit(p(Y = 1|ĝ)) = β0 + β1g,

where the model estimate is obtained using generalized additive model in the MGCV package

by Wood (2008). Then from the fitted model, obtain the p-value pc from the deviance test

of β1 equal to zero.

Step 8: Conduct an NPtest between the current working residual r1, ..., rntr and each of

the variables in Xnew. From the NPtest, obtain all p-values pbi, i = 1, ...,m. If there is no

p-value close enough to pc, that is, |pbi − pc| ≥ 0.00005, for all i, terminate the algorithm

and report the variables in X∗ as the variables selected. Otherwise, select the independent

variable whose p-value is close enough to pc and then return to Step 6.

4.3.2 Model Building and Prediction Algorithm

From the previous section, the variables are selected using a training data. Denote the set

of variables selected as X∗. From the same training data, model building is implemented.

The model derived from the training data is then used for making predictions of the test

54

data. Let nte be the number of observations in the test data. Specifically, the following

steps are done to obtain the final model and prediction of the test data.

Step 1: Let ĥi be the storage for the predicted value of the ith observation of the test data

in the logit scale . The covariates are entered to the model one at a time. Let j be the index

of covariates entered in the model. Initialize ĥi = 0 and j=1.

Step 2: Using the training data, fit a nonlinear logistic model of Y and covariate Xij :

logit(p(Yi = 1|Xij = x)) = fj(x),

where fj(x) is estimated by a smooth function f̂j(x) obtained via thin-plate smoothing

spline using generalized additive model in MGCV package by Wood (2008). From the fitted

model, obtain the fitted values η̂i = f̂j(Xij i). For all i = 1, ..., ntr, compute the weights

equal to wi = eη̂i

(1+eη̂i)2
, the working residual ri = yi−η̂i

wi
and the adjusted dependent variable

zi = η̂i + ri.

Step 3: Using the model built in Step 2, predict the response variable in the logit scale for

each observation in the test data using the same covariate used in modeling and denote the

predicted value from this model as υ̂i, i = 1, ..., nte. Update ĥi ⇐ ĥi + υ̂i.

Step 4: Update j ⇐ j + 1. Using the training data, fit a weighted nonlinear regression

model between the current working residual ri and jth covariate in X∗. Obtain the following

for i = 1, ..., ntr: the new fitted values η̂i, the new weights wi = eη̂i

(1+eη̂i)2
, the new working

residual ri = zi−η̂i
wi

and the new adjusted dependent variable zi = η̂i + ri.

Step 5: Using the model built in Step 4, predict the response variable for the test data

given Xij and denote as υ̂i, i = 1, ..., nte. Update ĥi ⇐ ĥi + υ̂i.

Step 6: Repeat Steps 4 and 5 until all the covariates in X∗ are used in model building.

The ĥi is the accumulation of all predicted values in the logit scale as the covariates in X∗

are entered into the model one at a time in predicting the successive working residual for

the test data.

Step 7: The predicted value for the ith observation in the test dataset in the response scale

55

denoted by ŷi is now obtained by computing

ŷi =

{
1, if eĥi

1+eĥi
≥ 0.5

0, otherwise .
(4.3.2)

4.4 Performance Measures

Cross validation (CV) was implemented to evaluate the performance of the algorithm. The

data was partitioned randomly into a training set and a test set. For k-fold CV, the data was

randomly partitioned into k folds in which the test set consists of the observations from the

mth fold and the training set consists of the remaining observations, m = 1, ..., k. Variable

selection and model building are implemented using the training data while prediction is

obtained for the test data. The MSRb algorithm is applied k times in k-fold CV since there

k different test data and k different training data. In the end of the algorithm, predicted

values of test data from all k folds are combined to give the prediction accuracy.

The results from different runs of CV maybe different due to the random partition.

Hence, we repeat with r runs. For examples with simulated data, both data generation and

k-fold cross validation were done r times. For real datasets, k-fold cross validation was done

r times.

Before we present the performance measures used to compare MSRb with existing proce-

dures, we first define some terms: (1) active variables are the independent variables used to

generate the true model, while inactive variables are the independent variables not used in

the true model; (2) accuracy is the percentage of correctly classified samples in the combined

predicted values of test data in CV.

To compare the performance of MSRb with existing procedures, we use the mean true

positive rate (TP), mean false positive rate (FP) and mean accuracy. Specifically, the

following measures are computed:

TP =

∑r
i=1 number of active variables recruited in the ith run

r
,

56

FP =

∑r
i=1 number of inactive variables recruited in the ith run

r
,

MeanAccuracy =

∑r
i=1 percentage of correct classifications in the ith run

r
,

where r is the number of runs. Again, note that variable selection and model building are

based on training data while prediction is done using the test data.

4.5 Numerical Comparisons

4.5.1 Simulation Models and Results

To demonstrate the power of our proposed MSRb method and to be able to compare with

GLMNET, we present comparison results for 3 data generation settings.

Example 1. Covariates are generated from the normal distribution with mean 0 and

standard deviation equal to 1. That is, Xi ∼ iid N(0,1), i = 1, 2, ...p. The response Y is

simulated from the Bernoulli distribution with log odds of success given by the function

f(x1, x2) = e2X1 + e2X2 − 16
5

. Based on the function, there are two active variables, namely,

X1 and X2. We generate random pairs of (X, Y) of sample size n = 60, 100, 200, 300 and

p = 1000. Variable selection and response estimation was done using 3-fold cross-validation

(CV). Data were simulated 100 times. This example illustrates the performance of MSRb

when the active covariates are not linearly related to the log odds of the success probability

of the response.

Results. For this example, Table 4.1 shows that the mean accuracy of MSRb is slightly

lower than GLMNET by less than 1% when the sample size is 60 and 100. However, when

the sample size is increased to 200 and 300, MSRb becomes more accurate by approximately

7% than GLMNET. In terms of true positive rate, GLMNET is slightly higher than MSRb

by 0.4 for sample size 60 and by 0.7 for sample size 100. When the sample size is increased

to 200 and 300, the two procedures have comparable true positive rates. As regards to false

positive rate, MSRb is significantly lower than GLMNET for all sample sizes considered in

57

this simulation. MSRb has almost zero false positive rates while GLMNET’s average false

positive rate ranges from 7.55 to 26.06.

Table 4.1: Performance Measures for Example 1. With p = 1000, sample sizes of 60, 100,

200, and 300 were simulated 100 times, from which the mean true positive rate (TP), mean

false positive rate (FP) and mean accuracy were computed. These performance measures

were obtained via 3-fold CV. Robust standard deviations are given in parentheses.

Method Size (n) Mean Accuracy TP FP

MSRb 60 61.87 (0.09) 0.61(0.75) 0.39 (0.75)

GLMNET 62.82 (0.09) 1.07 (1.49) 7.55 (9.20)

MSRb 100 71.58 (0.07) 1.10 (0.00) 0.08 (0.00)

GLMNET 72.34 (0.07) 1.86 (0.00) 15.62 (12.38)

MSRb 200 85.12 (0.03) 1.96 (0.00) 0.00 (0.00)

GLMNET 77.81 (0.03) 2.00 (0.00) 18.23 (15.86)

MSRb 300 86.32 (0.02) 2.00 (0.00) 0.01 (0.00)

GLMNET 78.81 (0.03) 2.00 (0.00) 26.06 (20.83)

Example 2. Covariates are generated from the normal distribution with mean 0 and

standard deviation equal to 1. That is, Xi ∼ iid N(0,1), i = 1, 2, ...p. The response Y is

simulated from the Bernoulli distribution with log odds of success given by the function

f(x1, x2) = −4 + 8√
2π
e−

1
2
(
X1
2

+
X2
2

)2 . Based on the function, there are two active variables,

namely, X1 and X2. We generate random pairs of (X, Y) of sample size n = 60, 100, 200, 300

and p = 1000. Variable selection and response estimation was done using 3-fold cross-

validation (CV). Data were simulated 100 times. This example illustrates the performance

of MSRb when the contribution of the active covariates to the log odds of the success

probability of the response is nonlinear and non-additive.

58

Results. For this example, Table 4.2 shows that the mean accuracy of MSRb is slightly

lower than GLMNET by 2% when the sample size is 60. However, as the sample size

increases, MSRb becomes more accurate than GLMNET. Specifically, for sample sizes 100

and 300, MSRb is higher in accuracy by approximately 4% and 1% respectively. When the

sample size is 200, the prediction accuracy of the two procedures are comparable. In terms

of true positive rates, GLMNET is slightly better than MSRb by approximately 0.5 for

sample size 60 and 100. When the sample size increases to 200 and 300, the two procedures

have comparable true positive rates. As regards to false positive rates, MSRb is significantly

lower than GLMNET for all sample sizes considered in the simulation. MSRb has almost

zero mean false positive rate for all sample sizes while GLMNET’s mean false positive rate

falls from 7.17 to 20.91.

Table 4.2: Performance Measures for Example 2. With p = 1000, sample sizes of 60, 100,

200, and 300 were simulated 100 times, from which the mean true positive rate (TP), mean

false positive rate (FP) and mean accuracy were computed. These performance measures

were obtained via 3-fold CV. Robust standard deviations are given in parentheses.

Method Size (n) Mean Accuracy TP FP

MSRb 60 57.98 (0.10) 0.41 (0.75) 0.59 (0.75)

GLMNET 60.25 (0.07) 0.84 (1.49) 7.17 (9.33)

MSRb 100 71.58 (0.07) 1.07 (0.00) 0.90 (0.00)

GLMNET 67.35 (0.08) 1.69 (0.50) 14.00 (13.18)

MSRb 200 74.91 (0.06) 1.68 (0.75) 0.03 (0.00)

GLMNET 74.69 (0.04) 2.00 (0.00) 18.21 (14.05)

MSRb 300 77.83 (0.02) 1.98 (0.00) 0.01 (0.00)

GLMNET 76.34 (0.03) 2.00 (0.00) 20.91 (18.84)

59

Example 3. Covariates are generated from the normal distribution with mean 0 and

standard deviation equal to 1. That is, Xi ∼ iid N(0,1), i = 1, 2, ...p. The response Y is

simulated from the Bernoulli distribution with log odds of success given by the function

f(x1) = 1.5X1. Based on the function, there is only one active variable, namely, X1. We

generate random pairs of (X, Y) of sample size n = 60, 100, 200, 300 and p = 1000. Variable

selection and response estimation was done using 3-fold cross-validation (CV). Data were

simulated 100 times. This example illustrates the performance of MSRb when the active

covariate is linearly related to the log odds of the success probability of the response

Results. For this example, Table 4.3 shows that the mean accuracy of MSRb is higher

than GLMNET for all sample sizes. Specifically, the prediction accuracy of MSRb is higher

than GLMNET by approximately 1% when the sample size is 60 and 300, and approximately

2.5% when the sample size is 100 and 200. In terms of true positive rate, the two procedures

have comparable result. As regards to false positive rate, MSRb is consistently lower than

GLMNET for all sample sizes considered in the simulation. Specifically, the mean false

positive rate for MSRb ranges from 0.04 to 0.40. On the other hand, the mean false positive

rate for GLMNET ranges from 5.78 to 14.19.

Example 4. In real datasets such as in bioinformatics, sample size is usually smaller than

400 and the number of covariates is at least 10000. To address this scenario, Examples 1,

2 and 3 were used to simulate data with sample size (n) equal to 60 and 300, while the

number of covariates (p) is set to 12000.

Results. The data generation, variable selection and model building with training data,

and prediction for the test data in CV are repeated 10 times. The average accuracy, average

TP, average FP from the 10 runs with robust standard deviations are reported in Table 4.4.

For Example 1, the mean accuracy of MSRb is higher than GLMNET by approximately

2% and 7% for sample sizes 60 and 300 respectively. In terms of true positive rate, MSRb

is lower by 0.40 when the sample size is 60. The two procedures have comparable true

positive rates when n = 300. For the false positive rate, MSRb is significantly lower than of

60

Table 4.3: Performance Measures for Example 3. With p = 1000, sample sizes of 60, 100,

200, and 300 were simulated 100 times, from which the mean true positive rate (TP), mean

false positive rate (FP) and mean accuracy were computed. These performance measures

were obtained via 3-fold CV. Robust standard deviations are given in parentheses.

Method Size (n) Mean Accuracy TP FP

MSRb 60 64.43 (0.14) 0.61 (0.75) 0.40 (0.75)

GLMNET 63.08 (0.09) 0.67 (0.75) 5.78 (6.65)

MSRb 100 70.72 (0.07) 0.89 (0.00) 0.16 (0.00)

GLMNET 67.09 (0.08) 0.96 (0.00) 11.33 (12.38)

MSRb 200 73.53 (0.03) 1.00 (0.00) 0.06 (0.00)

GLMNET 71.63 (0.03) 1.00 (0.00) 13.81 (14.61)

MSRb 300 73.44 (0.02) 1.00 (0.00) 0.04 (0.00)

GLMNET 72.41 (0.03) 1.00 (0.00) 14.19 (12.75)

GLMNET. The false positive rate of MSRb is almost zero while GLMNET has mean false

positive rates ranging from 17.53 to 22.13.

For Example 2, the mean accuracy of GLMNET is higher by 5% than MSRb when the

sample size is 60. When the sample size is increased to 300, GLMNET has higher accuracy

by 1%. In terms of true positive rates, GLMNET is higher by 0.6 than MSRb for sample

size n = 60, and they have comparable result when n = 300. In terms of false positive rate,

MSRb has almost zero false positive rate while GLMNET has around 21 for both sample

sizes n = 60 and n = 300.

For Example 3, MSRb has higher accuracy than GLMNET for both sample sizes 60

and 300. MSRb is higher in accuracy by 1% and 2% when n = 60, 300 respectively. The

true positive rates of both procedures are comparable for sample sizes 60 and 300. In

61

terms of false positive rate, MSRb has significantly lower false positive rate than GLMNET.

Specifically, the average false positive rate for MSRb is between 0.27 and 0.70 for n = 60,

while that for GLMNET is at least 17. When the sample size is n = 300, the average false

positive rate for MSRb is almost zero, while that of GLMNET is between 15.56 and 22.13.

In general, Table 4.4 showed that when p = 12000, MSRb has better prediction accuracy

than GLMNET for all examples except for Example 2 with n = 60. In terms of true positive

rate, GLMNET is better in selecting the true variables when the sample size is small (n=60).

When the sample size is 300, MSRb and GLMNET both select the correct active variables.

However, in terms of false positive rate, MSRb is significantly better for all examples. In

addition, the standard deviations of mean false positive rate for GLMNET are very large. It

is also important to note that for both methods, MSRb and GLMNET showed improvement

in mean accuracy, true positive rate and false positive rate as the sample size increases.

Table 4.4: Performance Measures with p = 12000, and n = 60, 300 from simulation of size

10. The mean true positive rate (TP), mean false positive rate (FP) and mean accuracy

were computed. These performance measures were obtained via 3-fold CV. Robust standard

deviations are given in parentheses.

MSRb GLMNET

Example n Mean Accuracy TP FP Mean Accuracy TP FP

Example 1 60 68.00 (0.00) 0.73 (0.56) 0.27 (0.56) 65.67 (0.00) 1.13 (1.49) 17.53 (16.98)

300 85.90 (0.02) 2.00 (0.00) 0.00 (0.00) 78.3 (0.02) 2.00 (0.00) 22.13 (16.23)

Example 2 60 58.67 (0.00) 0.30 (0.75) 0.70 (0.75) 63.17 (0.00) 0.97 (1.49) 20.67 (29.29)

300 77.43 (0.02) 2.00 (0.00) 0.00 (0.00) 76.33 (0.03) 2.00 (0.00) 21.43 (22.01)

Example 3 60 59.33 (0.00) 0.43 (0.75) 0.57 (0.75) 58.83 (0.00) 0.67 (0.75) 17.47 (19.59)

300 74.17 (0.01) 1.00 (0.00) (0.06) (0.00) 72.05 (0.02) 1.00 (0.00) 15.56 (14.55)

62

4.5.2 Real Data Analysis

A common task in bioinformatics is the selection of relevant genes, where researchers try

to determine the smallest possible set of genes that can still achieve good predictive per-

formance. A typical data in bioinformatics consist of small sample size (n) and very large

number of genes. In this section, we present the results of MSRb to two gene-expression

datasets related to lung and prostate tumors. The lung cancer dataset includes 12533 genes

with sample size equal to 181, among which 150 belong to class 1 and 31 belong to class

2. On the other hand, the prostate data involves 12626 genes with sample size equal to 33,

among which 24 are from class 1, and 9 from class 2.

The two datasets were used to compare MSRb with GLMNET. Ten-fold cross validation

as explained in Section 4.4 was done using 10 runs for each of the datasets and the mean

accuracies with robust standard deviations were obtained to compare the performance of

the different procedures. Table 4.5 indicates that MSRb algorithm for the prostate data has

comparable accuracy with GLMNET. On the other hand, for the lung dataset, MSRb has

slightly lower accuracy by 2% than GLMNET. In terms of the number of genes selected,

MSRb is using only one covariate for both datasets while GLMNET uses 14 genes for

prostate data and 22 genes for lung data.

Zhang et al. (2012) also analyzed these two datasets. The results of their analysis for

BMSF-SVM, GeneSrF-SVM, BMSF-NB, GeneSrF-NB, BMSF-LDA, GeneSrF-LDA, BMSF-

QDA, and GeneSrF-QDA are included in the bottom portion of Table 4.5. The authors have

implemented these procedures in a different manner. They first selected relevant genes from

the entire microarray data using all samples with BMSF and GeneSrF. After selecting the

genes, they conducted 10-fold cross validation in the data where 9 folds are used in SVM,

NB, LDA, and QDA to build a model while 1 fold is used as a test data. Prediction of

the response for the test data uses the model which was developed from the training data.

Modeling and prediction was implemented 10 times because there are 10 folds. When the

mth fold was treated as test data, the remaining observations are treated as training data,

63

m = 1, ..., 10. The prediction of test data for each of the 10 folds are combined and the

accuracy is computed which is the percentage of correct classifications. This procedure is

repeated in 10 runs and the average accuracy is the mean percentage of correct classifications

in 10 runs. On the other hand, the results of MSRb and GLMNET are obtained by selecting

the relevant genes from the training data, then build a model from the same training data

and then predict the class of test data. For this reason, the results from Zhang et al. (2012)

cannot be compared directly with the results of MSRb and GLMNET.

In the prostate data, the prediction accuracy of MSRb is the same with GLMNET,

BMSF-NB, GeneSrF-NB and BMSF-QDA. On the other hand, MSRb is higher in accuracy

by approximately 1 to 2 % than BMSF-SVM, BMSF-LDA, GeneSrF-QDA. The other pro-

cedures GeneSrF-SVM and GeneSrF-LDA have accuracies that are much lower than MSRb

by 6%. In terms of the number of genes selected, MSRb is using only one gene to achieve

an accuracy of 99.69% while other procedures are using 2 to 3 genes. In the lung data, the

MSRb has the lowest accuracy equal to 96.30% while the other procedures has prediction

accuracy between 97.56% and 99.11%. However, the MSRb procedure is using only 1 gene

for prediction while the other procedures are using 8 to 22 genes. In general, MSRb is us-

ing the fewest number of genes while providing high prediction accuracy. Furthermore, the

accuracy of Zhang et al. (2012) may not be achievable for a new data because of overfitting

as a result of variable selection using the entire set of samples. On the other hand, MSRb

and GLMNET reported accuracy is closer to the generalization accuracy for new data.

64

Table 4.5: Mean accuracy with robust standard deviations of different procedures obtained

from 10-fold CV with 10 runs. Performance measures for BMSF and GeneSrF are from

Zhang et al. (2012).

Procedure Prostate Lung

Number of Genes Mean Accuracy Number of Genes Mean Accuracy

MSRb 1 99.69 (0.00) 1 96.30 (0.01)

GLMNET 14 99.69 (0.00) 22 98.51 (0.00)

BMSF-SVM 2 98.48 (1.59) 8 99.11 (0.64)

GeneSrF-SVM 3 93.93 (2.47) 12 98.95 (0.40)

BMSF-NB 2 99.69 (0.95) 8 98.39 (0.31)

GeneSrF-NB 3 99.69 (0.95) 12 98.34 (0.00)

BMSF-LDA 2 96.66 (0.95) 8 97.79 (0.26)

GeneSrF-LDA 3 93.93 (0.00) 12 98.34 (0.00)

BMSF-QDA 2 100.00 (0.00) 8 97.56 (0.46)

GeneSrF-QDA 3 96.66 (1.72) 12 98.34 (0.26)

65

Chapter 5

Summary and Post-dissertation

Research

5.1 Summary

This dissertation developed algorithms for variable selection and response variable estima-

tion when the response variable is continuous or binary. The development of these algorithms

are inspired by the Least Angle Regression. Both MSRb and MSRc are multi-step model

selection algorithm to select variables in sparse ultrahigh dimensional additive models. The

variables go through a series of nonlinear dependence evaluation. The algorithm can be

used when the predictors are linearly or nonlinearly related to the response.

Generalized correlation procedure (gcorr) and NIS based procedures such as INIS and

g-INIS are very efficient variable selection procedures for continuous case. NIS-based proce-

dures are coupled with low dimensional techniques such as penGAM and SCAD to improve

their results. Although these procedures are very good in terms of prediction error and

true positive rate, they tend to have high false positive rate. In the simulations study, we

find that MSRc algorithm is competitive with NIS-based procedures in terms of prediction

error and true positive rate. Also, simulations showed that MSRc has significantly less

false positive rate than generalized correlation procedure (gcorr). The advantage of using

66

MSRc over NIS-based procedures and gcorr is its capability to reduce false positive rate.

NIS-based procedures and gcorr both select variables based on the marginal contribution of

the covariates with the response variable. On the other hand, MSRc algorithm selects only

the first variable by looking at the marginal contribution of covariates and it selects the

next variable based on its contribution on the response variable conditional on the active

variables which are already selected in the previous steps. However, MSRc has the tendency

to fail when the first variable selected is a false variable.

Another part of this dissertation is the development of a variable selection and response

estimation when the response variable is binary. This algorithm is called MSRb which is a

modified version of MSRc. From our simulated data, MSRb is competitive with GLMNET

in terms of mean accuracy and true positive rate. However, in terms of false positive rate,

MSRb is much better than GLMNET. Real studies using two microarray data (lung and

prostate data) showed that MSRb is competitive with BMSF and GeneSrF. In terms of the

numbers of variables selected. MSRb has fewer number of covariates selected.

MSR algorithm is different from forward stepwise selection in the sense that the latter

procedure involves testing the addition of each covariate using a chosen model comparison

criterion, adding any one variable that improves the model the most, and repeating this

process until none improves the model. The addition of a variable may be based on any

of the following criteria: F-tests, adjusted R-square, Akaike information criterion, Bayesian

information criterion, and Mallows’s Cp. On the other hand, MSR algorithm adds a variable

only if its contribution is as much as the contribution of the variables that are already in

the model, and this is done by evaluating which of the covariates has p-value closest to pc

which is obtained from relating the response variable Y and the current fitted values.

5.2 Post-dissertation Research

The algorithms developed in this dissertation are limited to situations where the response

variable is continuous or binary. The algorithm could be extended to the case where the

67

response variable follows a multinomial distribution in which the number of classes is more

than two.

In addition, MSRb and MSRc algorithms could not delete a variable that has already

been selected in previous steps. These algorithms could be modified in a way that the active

variables may be removed in the next steps.

Additional research can also be considered to quantify the conditions under which MSR

algorithm could perform well. The theoretical properties may be pursued in future research.

68

Bibliography

Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized trees.

Neural Computation, pages 1545–1588.

Austin, P. and Lee, D. (2011). Boosted classification trees result in minor to modest improve-

ment in the accuracy in classifying cardiovascular outcomes compared to conventional

classification trees. American Journal of Cardiovascular Disease, 1(1):1–15.

Bickel, P. J. and Levina, E. (2004). Some theory for fisher’s linear discriminant function,

“naive bayes”, and some alternatives when there are many more variables than observa-

tions. Bernoulli, 10:989–1010.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123–140.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and

regression trees. World Scientific Pub Co Inc.

Candes, E. and Tao, T. (2007). The dantzig selector: Statistical estimation when p is much

larger than n. The Annals of Statistics, 35:2313.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM

Trans. Intell. Syst. Technol. 2, 3, Article 27.

Cho, H. and Fryzlewicz, P. (2012). High dimensional variable selection via tilting. Journal

of the Royal Statistical Society, 74:593–622.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20.

Diaz-Uriarte, R. and Alvarez de Andres, S. (2006). Gene selection and classification of

microarray data using random forest. BMC Bioinformatics, 7(3).

69

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81:425455.

Dumais, S., Platt, J., Heckerman, D., and Sahami, M. (1998). Inductive learning algo-

rithms and representations for text categorization. Proceedings of the 7th International

Conference on Information and Knowledge Management.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The

Annals of Statistics, 32:407–499.

Fan, J. and Fan, Y. (2008). High dimensional classification using features annealed inde-

pendence rules. The Annals of Statistics, 36(6):2605–2637.

Fan, J., Feng, Y., and Song, R. (2011). Nonparametric independence screening in sparse

ultra-high-dimensional additive models. Journal of the American Statistical Association,

106(494):544–557.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96:1348–1360.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature

space. Journal of the Royal Statistical Society, 70:849911.

Fan, J., Samworth, R., and Wu, Y. (2009). Ultra-dimensional variable selection via in-

dependent learning: Beyond the linear model. Journal of Machine Learning Research,

10:18291853.

Frank, I. and Friedman, J. (1993). A statistical view of some chemometrics regression tools

(with discussion). Technometrics, 35:109–148.

Friedman, J., Hastie, T., and Tibshirani, R. (2009). Regularization paths for generalized

linear models via coordinate descent.

70

Gharaibeh, M., Sahtout, M., and Wang, H. (2013). A nonparametric lack-of-fit test of

constant regression in presence of heteroscedastic variances. Manuscript in revision.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer

classification using support vector machines. Machine Learning, 46:389–422.

Hall, P., Marron, J., and Neeman, A. (2005). Geometric representation of high dimension,

low sample size data. Journal of the Royal Statistical Society, B(67):427–444.

Hall, P. and Miller, H. (2009). Using generalised correlation to effect variable selection

in very high dimensional problems. Journal of Computational and Graphical Statistics,

18:533–550.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall,

London.

Ho, T. K. (1995). Random decision fores. Proceedings of the 3rd International Conference

on Document Analysis and Recognition, pages 278–282.

HoerlA.E. and R.W., K. (1970). Ridge regression: Biased estimation for nonorthogonal

problems. Technometrics, 12:55–67.

Huang, J., Horowitz, J., and Wei, F. (2010). Variable selection in nonparametric additive

models. The Annals of Statistics, 38:22822313.

Koltchinskii, V. and Yuan, M. (2010). Sparsity in multiple kernel learning. The Annals of

Statistics, 38:3660–3695.

Li, T., Zhang, C., and Ogihara, M. (2004). A comparative study of feature selection and

multiclass classification methods for tissue classification based on gene expression. Bioin-

formatics, 20:24292437.

Lin, Y. and Zhang, H. (2006). Component selection and smoothing in multivariate non-

parametric regression. The Annals of Statistics, 34:22722297.

71

Long, N., Gianola, D., Rosa, G., and Weigel, K. (2011). Application of support vector

regression to genome-assisted prediction of quantitative traits. Theoretical and Applied

Genetics, 123(7):1065–74.

Meier, L., van de Geer, S., and Buhlmann, P. (2009). High-dimensional additive modeling.

The Annals of Statistics, 37:3779.

Ravikumar, P., Liu, H., Lafferty, J., and Wasserman, L. (2009). Spam: Sparse additive

models. Journal of the Royal Statistical Society: Series B, 71:10091030.

Rokach, L. and Maimon, O. (2008). Data mining with decision trees: theory and applications.

World Scientific Pub Co Inc.

Stone, C. J. (1985). Additive regression and other nonparametric models. The Annals of

Statistics, 13:689–705.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B, 58(1):267–288.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002). Diagnosis of multiple cancer

types by shrunken centroids of gene expression. Proceedings of the National Academy of

Sciences, 99(10).

Wood, S. (2003). Thin plate regression splines. Journal of the Royal Statistical Society:

Series B, 65(1):95–114.

Wood, S. N. (2008). Fast stable direct fitting and smoothness selection for generalized

additive models. Journal of the Royal Statistical Society:Series B, 70:495–518.

Zhang, H., Wang, H., Chen, M.-s., and Yuan, Z. (2012). Improving accuracy for cancer clas-

sification with a new algorithm for genes selection. BMC Bioinformatics, 13(298):1471–

2105.

72

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society, 67:301–320.

73

Appendix A

R Code for MSR-continuous

#Input x which is a nxp matrix of n observations with p covariates.

#Input y which is a vector of n observations for the response variable.

#Then run the following:

name=colnames(x)

nm= dim(x)

n=nm[1]

m=nm[2]

betah=matrix(0, nrow=1, ncol=m)

colnames(betah)=colnames(x)

mm=m

vn=dimnames(x)[[2]]

pv=numeric() #storage for p-values

max.steps=2

u=data.frame(coe=rep(0,m),name)

library(mgcv)

74

###compute pvalues

for (j in 1:m) {

n2=n

x2=x[,j]

y2=y

bb=gam(y2~s(x2))

nt=summary(bb)$s.pv

pv[j]=nt

}

Pval=data.frame(cbind(vn,pv))

colnames(Pval)=c("vn","pv")

Comment - H.Wang

After calculating p-values for each predictor with the response

variable, need to discard those variables with p-values large.

Then further selection is only among the variables kept.

####

aa=2

alfa=0.0005

pvkeep=pv[pv<aa]

xold=x

vnold=vn

mold=m

m=mkeep=sum(pv<aa)

vn=vn[pv<aa]

vlist=seq(mold)[pv<aa]

75

x=x[,pv<aa]

beta=seq(0,1,length=max.steps) # possible values of beta

Pmin=min(pvkeep)

pnew=which.min(pvkeep) #get index number of the with smallest p-value

enter=NULL

fx=matrix(0,n,mkeep) #storage for fitted values from smoothing spline

#coeff=numeric() #storage for coefficients of fx

#coeff[-(1:m)]=0 # those variables with large pvalues should not enter

coeff=NULL

bfxhat=rep(0,n) #coeff*fx

e=y #residuals

plist=NULL

k=1; b=0;

while ((k<mkeep) & (sum(coeff==0)<2) & (sum(plist)<alfa)) {

enter[k]=vn[pnew]

###smooth spline

fit=gam(e~s(x[,pnew]))

fx[,k]=drop(fit$fitted.values)

if (m==2) {

xx=x[,-pnew]

76

pv=NULL

for (i in max.steps:1) {

coef=beta[i]

bfx=bfxhat+coef*fx[,k]

da=data.frame(X=bfx, Y=y, trt=rep(1, n2), A=rep(0, n2))

cc=gam(y~s(bfx))

pval=summary(cc)$s.pv

R=ifelse(max(abs(bfx))<1e-4,1, pval)

res=y-bfx

x2=xx

y2=res

dat=data.frame(X=x2, Y=y2, trt=rep(1, n2), A=rep(0, n2))

NPT=summary(gam(y2~s(x2)))$s.pv

pvthis=NPT

pv=c(pv, pvthis) # keep all the pvalues from using all beta values

b=ifelse(abs(pvthis-R)<alfa,0,abs(pvthis-R))

plist=c(plist, b)

if (b==0) break()

}

bfxhat=bfx

e=y-bfxhat

coeff[mkeep]=ifelse((b==0), 1, 0) # what is this?

vn=colnames(x)[-pnew]

enter[mkeep]=vn

fit=gam(e~s(xx))

77

fx[,mkeep]=drop(fit$fitted.values)

coeff[k]=coef

totfx=bfx+(coeff[mkeep]*fx[,mkeep])

tres=y-totfx

} else {

x=x[,-pnew]

nm=dim(x)

n=nm[1]

m=nm[2]

vn=dimnames(x)[[2]]

for (i in max.steps:1) {

coef=beta[i]

bfx=bfxhat+coef*fx[,k]

da=data.frame(X=bfx, Y=y, trt=rep(1, n2), A=rep(0, n2))

cc=gam(y~s(bfx))

pval=summary(cc)$s.pv

R=ifelse(max(abs(bfx))<1e-4,1,pval)

res=y-bfx

pv=numeric()

for (j in 1:m) {

x2=x[,j]

y2=res

dat=data.frame(X=x2, Y=y2, trt=rep(1, n2), A=rep(0, n2))

NPT=summary(gam(y2~s(x2)))$s.pv

78

pv[j]=NPT

}

a=which.min(abs(pv - R))

b=ifelse(abs(pv[a]-R)<alfa,0,abs(pv[a]-R))

#cat(i ,"enter",enter[k],coef,R,a,b,"\n")

plist=c(plist, b)

if (b==0) {break()}

}

pnew=a

coeff=c(coeff, coef)

bfxhat=bfx

e=y-bfxhat

}

k=k+1

}

pick up the last one missed.

d=max(seq(length(coeff))[abs(coeff)>1e-6])+1

if (d<=mkeep) {

coeff[d]= 1

lastfit=gam(e~s(xold[,vnold==enter[d]]))

bfxhat=bfxhat+lastfit$fitted.values

err=mean((lastfit$residuals)^2)

} else err=mean(tres^2)

coeff

79

enter

xbar=err

v = data.frame(coeff,enter)

updates=v[match(u$name,v$enter),"coeff"]

u$coe=ifelse(!is.na(updates), updates, u$coe)

attach(u)

coe

#Output from this code will consist of

#enter, list of variables selected

#xbar, prediction error

#bfxhat, list of predicted values

80

Appendix B

R Code for Binary Case

B.1 R Code for MSR-binary

#Input a dataframe with two arguments, (Y0,X0)

#Y0 is the binary response variable with values either 0 or 1

#X0 is a nxp matrix which consists of p independent variables

dat=data.frame(Y0,X0)

#To run the MSRb algorithm,

MSRb=msr.bin(dat)

#Output from this code will consist of

#zfit, the predicted values for the training data

#ypred, the predicted values for the test data

#pclasif, the proportion of correct classification

#vselect, the variables selected in the jth fold

#nvselect, the number of variables selected in the jth fold

#TPFP1, the number of true positive variables and false

81

#positive variables in the jth fold

source("nptest.r")

msr.bin=function(dat, useprior=F,alfa=0.00005, nfold=3,aa=0.5){

set.seed(gmr)

nn=dim(dat)[2]

mm=dim(dat)[1]

nsize=mm

datay=dat[,1]

datax=dat[,2:nn]

loca1=sample((seq(nsize))[datay<0.5])

loca2=sample((seq(nsize))[datay>0.5])

folds1= split(loca1, rep(1:nfold, length = length(loca1)))

folds2= split(loca2, rep(1:nfold, length = length(loca2)))

allfolds=mapply(c, folds1, folds2, SIMPLIFY=FALSE)

result=NULL

vselect=NULL

numvselect=NULL

nvselect=NULL

yolds=datay

xolds=datax

library(mgcv)

vselect.fold=list()

for(jj in 1:nfold){

ypos= (1:nsize)[allfolds[[jj]]]

82

yte=yolds[ypos] # y for the test sample for fold jj

ytr=yolds[-ypos] # y for the training sample for fold jj

xte=xolds[ypos,] # x for the test sample for fold jj

xtr=xolds[-ypos,] # x for the training sample for fold jj

ynew=yte

xnew=xte

y=ytr

x=xtr

name=colnames(x)

nm= dim(x)

n=nm[1]

m=nm[2]

betah=matrix(0, nrow=1, ncol=m)

colnames(betah)=colnames(x)

vn=dimnames(x)[[2]]

pv=numeric() #storage for p-values

max.steps=2

u=data.frame(coe=rep(0,m),name)

for (j in 1:m) {

x2=x[,j]

y2=y

bb=t.test(x2[y2>0], x2[!(y2>0)])

83

nt=bb$p.value

pv[j]=nt

}

Pval=data.frame(cbind(vn,pv))

colnames(Pval)=c("vn","pv")

if (min(pv)>aa) {

psuc=mean(ytr)

pred=rep(ifelse(psuc<0.5,0,1),length(ynew))

enter=NA

numvselect=0

} else {

pvkeep=pv[pv<aa]

xold=x

vnold=vn

mold=m

m=mkeep=sum(pv<aa)

vn=vn[pv<aa]

vlist=seq(mold)[pv<aa]

x=x[,pv<aa]

84

enter=NULL

fx=matrix(0,n,mkeep) #storage for fitted values from smoothing spline

coeff=NULL

bfxhat=rep(0,n)

yold=y

e=y

plist=NULL

variables significant at 0.01 level with Bonferroni correction

should be included in the final model

if ((sum(pv<0.01/m)>0)&(sum(pv<0.01/m) <n/2)){

surekeepindex=seq(mold)[pv<0.01/m]

enter=vn[surekeepindex]

k= length(surekeepindex)

coeff=rep(1, k)

fitpred=fit.and.predictGAM(x,e, x,enter, coeff)

e=fitpred$e; bfxhat=fitpred$bfhat

x=x[,!(pvkeep<0.01/m)]

vn=vn[!(pvkeep<0.01/m)]

vlist=seq(m)[!(pvkeep<0.01/m)]

pvkeep=pvkeep[!(pvkeep<0.01/m)]

m=ncol(x)

} else {enter=NULL; k=0}

beta=seq(0,1,length=max.steps) # possible values of beta

Pmin=min(pvkeep)

85

pnew=which.min(pvkeep) #get index number of the variable with smallest p-value

b=0;

stopcond =T

while ((k<mkeep) & (sum(coeff==0)<2) & stopcond) {

k=k+1

if (k==1) {

x2new=x[,pnew]

fitq=gam(e~s(x2new),family=binomial(link = "logit"))

fx[,k]=predict(fitq)

} else {

x2new=x[,pnew]

ph=1/(1+exp(-bfxhat))

wt=ph*(1-ph)

if (max(abs(wt))<10^(-5)) wt=rep(1,length(ph))

fitq=gam(e~s(x2new),weights=wt)

fx[,k]=predict(fitq) #drop(fit$fitted.values)

}

if (m==2) {

pv=NULL

for (i in max.steps:1) {

coef=beta[i]

bfx=bfxhat+coef*fx[,k]

86

dd=gam(yold~bfx,family=binomial(link = "logit"))

phat=1/(1+exp(-bfx))

w=phat*(1-phat)

if (max(abs(w))<10^(-5)) w=rep(1,length(phat))

pval= summary(dd)$p.pv[2]

R=ifelse(max(abs(bfx))<1e-4,1, pval)

res=residuals(dd,type="working")

x2=xx

y2=res

daty21=data.frame(X=x2, Y=y2, trt=rep(1, length(y2)), A=rep(0, length(y2)))

NPT=NPtest.indept.alt(daty21, k=3, estpower=T, eta.simple=0, alpha=0.01)

pvthis=NPT$pvalue.sim

pv=c(pv, pvthis) # keep all the pvalues from using all beta values

b=ifelse(abs(pvthis-R)<alfa,0,abs(pvthis-R))

plist=c(plist, b)

if (b==0) {

bfxhat=bfx

e=residuals(dd,type="working")

coeff[mkeep]=ifelse((b==0), 1, 0)

vn=colnames(x)[-pnew]

enter[mkeep]=vn

break()

}

}

ph=1/(1+exp(-bfxhat))

wt=ph*(1-ph)

87

if (max(abs(wt))<10^(-5)) wt=rep(1,length(ph))

fit=gam(e~s(xx),weights=wt)

fx[,mkeep]=drop(fit$fitted.values)

coeff[k]=coef

totfx=bfx+(coeff[mkeep]*fx[,mkeep])

tres=residuals(fit,type="working")

} else {

if (k==1) {enter[k]=vn[pnew]; x=x[,-pnew]; coeff=1; k=k+1}

nm=dim(x)

n=nm[1]

m=nm[2]

vn=dimnames(x)[[2]]

for (i in max.steps:1) {

coef=beta[i]

bfx=bfxhat+coef*fx[,k]

dd=gam(yold~bfx,family=binomial(link = "logit")) #to get p_c

phat=1/(1+exp(-bfx))

w=phat*(1-phat)

if (max(abs(w))<10^(-5)) w=rep(1,length(phat))

pval=summary(dd)$p.pv[2] #this is the p_c

R=ifelse(max(abs(bfx))<1e-4,1,pval)

res=residuals(dd,type="working") #z-bfx

pv=numeric()

for (j in 1:m) {

x2j=x[,j]

88

y2=res

daty2=data.frame(X=x2j, Y=y2, trt=rep(1, length(y2)),A=rep(0,length(y2)))

NPT=NPtest.indept.alt(daty2, k=3, estpower=T, eta.simple=0, alpha=0.01)

pv[j]=NPT$pvalue.sim

}

a=which.min(abs(pv - R))

b=ifelse(abs(pv[a]-R)<alfa,0,abs(pv[a]-R))

plist=c(plist, b)

if (b==0) {

pnew=a

enter[k]=vn[pnew]

x=x[,-pnew]

cat("break", vn[pnew], "\n")

if (coef==0) {

coeff=c(coeff, 10)

fitpred1=fit.and.predictGAM(xold,yold, xold,enter,coeff=rep(1,length(enter)))

bfxhat=fitpred1$ypred

e= residuals(fitpred1,type="working")

vn=colnames(x)[-pnew]

} else{

coeff=c(coeff, coef)

bfxhat=bfx

e=residuals(dd,type="working") #z-bfxhat

vn=colnames(x)[-pnew]

}

break()

}

89

}

}

stopcond=(min(plist[length(plist):(length(plist)-1)])<alfa)

}

enter=enter[coeff>0]

#PREDICTION PART

fitpred=fit.and.predictGAM(xold,yold, xte,enter, coeff)

ypred=fitpred$ypred # predict at link scale

enter

numvselect=length(enter)

pred=1/(1+exp(-ypred))

if (useprior==T) psuccess=sum(yold)/length(yold) else psuccess=0.5

pred[pred<psuccess]=0

pred[pred>=psuccess]=1

}

resnew=cbind(yte,pred)

result=rbind(result,resnew)

vselect.fold[[jj]] =enter

vselect=c(vselect,enter)

nvselect=c(nvselect,numvselect)

}

nclasif=sum(result[,1]==result[,2])

pclasif=nclasif/nsize

90

meanvs=mean(nvselect)

tpfpmsr=true.postiveMsr1(vselect.fold, nvselect,nfold=length(vselect.fold))

list(nclasif=nclasif,pclasif=pclasif, vselect=vselect, nvselect=nvselect,

vselect.fold=vselect.fold,predicted=result,TPFP1=unlist(tpfpmsr))

}

fit.and.predictGAM=function(xold,yold, xte,enter,coeff=rep(1,length(enter))){

xfinal=xold[,enter]

xnew=xte[,enter]

if (sum(coeff)==1) {

tt=length(xnew)

g=rep(0,tt)

cres=yold

ypred=rep(0,tt)

z=xfinal

h=gam(cres~s(z),family=binomial(link = "logit"))

r=residuals(h,type="working")

newd=data.frame(z=xnew)

bf=predict(h)

g=predict(h,newd)

cres=r

ypred=ypred+g

row.names(ypred)=NULL

zfit=bf+cres

} else {

91

tt=dim(xnew)[1]

p=ncol(xfinal)

g=matrix(data=0,nrow=tt,ncol=p)

cres=yold

ypred=rep(0,tt)

for (w in 1:p){

if (w==1) {

z=xfinal[,w]

h=gam(cres~s(z),family=binomial(link = "logit"))

r=residuals(h,type="working")

newd=data.frame(z=xnew[,w])

bf=predict(h)

g[,w]=predict(h,newd)

cres=r

ypred=ypred+g[,w]

zfit=bf+cres} else {

z=xfinal[,w]

ptt=1/(1+exp(-bf))

wtt=ptt*(1-ptt)

if (max(abs(wtt))<10^(-5)) wtt=rep(1,length(ptt))

h=gam(r~s(z),weigths=wtt)

fits=h$fitted.values

bf=bf+fits

r=residuals(h,type="working")

newd=data.frame(z=xnew[,w])

g[,w]=predict(h,newd)

cres=r

92

ypred=ypred+g[,w]

zfit=bf+cres}

} }

list(zfit=zfit, ypred=ypred, bfhat=bf, e=r)

}

B.2 R code for GLMNET

#Input a dataframe with two arguments, (Y0,X0)

#Y0 is the binary response variable with values either 0 or 1

#X0 is a nxp matrix which consists of p independent variables

dat=data.frame(Y0,X0)

#To run the MSRb algorithm,

glmnet=glmnetBin(dat)

#Output from this code will consist of

#ypred, the predicted values for the test data

#pclasif, the proportion of correct classification

#vselect, the variables selected in the jth fold

#numvar, the number of variables selected in the jth fold

#TPFP1, the number of true positive variables and false

#positive variables in the jth fold

glmnetBin=function(dat){

93

library(glmnet)

set.seed(gmr)

nfold=3

nn=dim(dat)[2]

mm=dim(dat)[1]

nsize=mm

y=dat[,1]

x=dat[,2:nn]

n=length(y)

loca1=sample((seq(n))[y<0.5])

loca2=sample((seq(n))[y>0.5])

folds1= split(loca1, rep(1:nfold, length = length(loca1)))

folds2= split(loca2, rep(1:nfold, length = length(loca2)))

allfolds=mapply(c, folds1, folds2, SIMPLIFY=FALSE)

yolds=y

xolds=x

numvar=NULL

resultgnet=NULL

vselect.fold=list()

for(jj in 1:nfold){

ypos= (1:nsize)[allfolds[[jj]]]

yte=yolds[ypos] # y for the test sample for fold jj

ytr=yolds[-ypos] # y for the training sample for fold jj

xte=xolds[ypos,] # x for the test sample for fold jj

xtr=xolds[-ypos,] # x for the training sample for fold jj

94

ynew=yte

xnew=as.matrix(xte)

y=unlist(ytr)

x=as.matrix(xtr)

cvob1=cv.glmnet(x,y,family="binomial")

glmnetfit=glmnet(x,y,family="binomial", lambda=cvob1$lambda.min)

pall=length(glmnetfit$beta)

vselect.fold[[jj]]=(seq(pall))[abs(as.vector(glmnetfit$beta))>1e-5]

tw=predict(cvob1,xnew,type="response",s="lambda.min")

predg=tw

predg[predg<0.5]=0

predg[predg>=0.5]=1

resgnet=cbind(yte,predg)

resultgnet=rbind(resultgnet,resgnet)

varn=cvob1$nzero[(cvob1$lambda==cvob1$lambda.min)]

numvar=c(numvar,varn)

}

print(resultgnet)

nclasif=sum(resultgnet[,1]==resultgnet[,2])

clasifg=sum(resultgnet[,1]==resultgnet[,2])/nsize

tpfpglm=true.postive1(vselect.fold, nfold=length(vselect.fold))

list(numvar=numvar, nclasif=nclasif, pclasif=clasifg,

vselect.fold=vselect.fold,TPFP1=unlist(tpfpglm))

}

B.3 R Code for True and False Positive

true.postive= function(vselect.fold, nfold=length(vselect.fold)){

95

tpfp=NULL

for (i in 1:nfold){

tp=sum((vselect.fold[[i]] ==1) | (vselect.fold[[i]] ==2))

fp= sum(vselect.fold[[i]] >2)

tpfp=rbind(tpfp, c(tp,fp))

}

colnames(tpfp)=c("tp", "fp");

row.names(tpfp)=paste("fold",1:nfold, sep="")

tpfp

}

true.postive1= function(vselect.fold, nfold=length(vselect.fold)){

tpfp=NULL

for (i in 1:nfold){

tp=sum((vselect.fold[[i]] ==1))

fp= sum(vselect.fold[[i]] >1)

tpfp=rbind(tpfp, c(tp,fp))

}

colnames(tpfp)=c("tp", "fp");

row.names(tpfp)=paste("fold",1:nfold, sep="")

tpfp

}

true.postiveMsr1= function(vselect.fold, nvselect,nfold=length(vselect.fold)){

tpfp=NULL

96

for (i in 1:nfold){

tp=sum((vselect.fold[[i]] =="X1"))

fp= nvselect[i] -tp

tpfp=rbind(tpfp, c(tp,fp))

}

colnames(tpfp)=c("tp", "fp");

row.names(tpfp)=paste("fold",1:nfold, sep="")

tpfp

}

true.postiveMsr2= function(vselect.fold,nvselect,nfold=length(vselect.fold)){

tpfp=NULL

for (i in 1:nfold){

tp=sum((vselect.fold[[i]] =="X1") | (vselect.fold[[i]] =="X2"))

fp= nvselect[i] -tp

tpfp=rbind(tpfp, c(tp,fp))

}

colnames(tpfp)=c("tp", "fp");

row.names(tpfp)=paste("fold",1:nfold, sep="")

tpfp

}

true.postiveMsr4= function(vselect.fold, nfold=length(vselect.fold)){

tpfp=NULL

97

for (i in 1:nfold){

tp=sum((vselect.fold[[i]] =="X1") | (vselect.fold[[i]] =="X2") |

(vselect.fold[[i]] =="X3") | (vselect.fold[[i]] =="X4"))

fp= length(vselect.fold[[i]]) -tp

tpfp=rbind(tpfp, c(tp,fp))

}

colnames(tpfp)=c("tp", "fp");

row.names(tpfp)=paste("fold",1:nfold, sep="")

tpfp

}

B.4 R Code for NPtest

###

i1 is the i1 th group; n is the vector of sample sizes;

position.i1 function gives the starting and end position of covariate

#values in the i1th group among the vector listing all covariate values.

e.g., covariate values in group 1 start from 1st value to the n1 th value;

#those in group 2 start from n1+1 and end at n1+n2 th value.

position.i1=function(i1, n){

if (i1==1) lower=1 else lower=sum(n[1:(i1-1)])+1

upper=sum(n[1:i1])

c(lower, upper)

}

98

############# map the index over r=1,...,N to i=1, ...a, j=1, ..., n_i

r is an integer; n is a vector of the sample sizes

mapindex=function(r, n){

aaa=length(n)

sumn=numeric()

for (i in 1:aaa) sumn=c(sumn, sum(n[seq(i)]))

imap=sum(sumn<r)+1

jmap=r-sum(n[seq(aaa)[(sumn<r)]])

c(imap, jmap)

}

makepseudo=function(N,n, k, a, alltrt){

psudo<-array(0, c(a, sum(n), k))

index<-array(0, c(a,sum(n), k))

Augment observations for each cell

##**

for (i in 1:a){

for (j in 1:N){

99

if (i==1){

if (j<= n[1]) {

newtrt<-alltrt[,1:n[1]]

total<-ncol(newtrt)

jj<-j

}

if (j>=n[1]+1) {

newtrt<-cbind(alltrt[,1:n[1]], alltrt[, j])

total<-jj<- ncol(newtrt)

}

}

if (i>1) {

if ((j<=sum(n[1:i]))& (j>=sum(n[1:(i-1)])+1)) {

newtrt<-alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])]

total<- ncol(newtrt)

jj<- j-sum(n[1:(i-1)])

} else {

newtrt<-cbind(alltrt[,(sum(n[1:(i-1)])+1): sum(n[1:i])], alltrt[,j])

total<-jj<-ncol(newtrt)

}

100

}

newtrt[3,]<-rank(newtrt[2,])

flag<-((jj==total)& (jj>n[i])& c(rep(T, total-1), F)) | (jj<=n[i])

if ((jj==total) & (jj>n[i])) {

newtrt[3, -jj]<- rank(newtrt[2, -jj])

total<-total-1

}

target<-newtrt[3, jj]

newtrt<-newtrt[, flag]

if (trunc(target) <= ((k-1)/2))

{psudo[i,j,]<- newtrt[1, order(newtrt[3,])[1:k]]

index[i,j,]<- seq(1, total)[order(newtrt[3,])[1:k]]

}

if (trunc(target) > (total- ((k-1)/2)))

{psudo[i,j,]<- newtrt[1, order(total-newtrt[3,])[1:k]]

index[i,j,]<- seq(1, total)[order(total-newtrt[3,])[1:k]]

}

if ((trunc(target) <=(total-(k-1)/2)) & (trunc(target) >((k-1)/2)))

{

psudo[i,j,]<- newtrt[1, order((abs(newtrt[3,]-trunc(target)))) [1:k]]

index[i,j,]<- seq(1, total)[order((abs(newtrt[3,]-trunc(target)))) [1:k]]

}

101

#cat(j, "done\n")

} #end of j

} #end of i

list(psudo=psudo, index=index)

}

NPtest.indept.alt= function(dat, k=3, estpower=T, eta.simple=0, alpha=0.01)

{

X=dat$X; trt=dat$trt; Y=dat$Y; #Y=unlist(tapply(dat$Y, trt, standard))

ranksuse=unlist(tapply(X, trt, rank)) ### replace with rank(X)

alltrt=rbind(Y, X, ranksuse)

n=unlist(tapply(rep(1, nrow(dat)), trt, sum)) ### replace with length(X)

N=sum(n); a=length(n)

#if (estpower==T) alltrt2=rbind(dat$A, X, ranksuse) else

#alltrt2=rbind(rep(0, N), X, ranksuse)

put the data in increasing order of X (within each trt)

for (i1 in 1:a){

102

locationi1=position.i1(i1,n);

orderwant=order(alltrt[2,locationi1[1]:locationi1[2]])+locationi1[1]-1;

alltrt[,locationi1[1]:locationi1[2]]= alltrt[,orderwant]

alltrt2[,locationi1[1]:locationi1[2]]= alltrt2[,orderwant]

}

psudodat=makepseudo(N,n, k, a, alltrt)

#psudoA=makepseudo(N,n, k, a, alltrt2)

psudo=psudodat$psudo; index=psudodat$index

#psudo2=psudoA$psudo

##**

#cellmeanA<-apply(psudo2, c(1,2), mean)

#meanrkA=apply(psudo2,1, mean)

#asy.mean.alt=k*sum((cellmeanA-matrix(rep(meanrkA,N),

#ncol=N)^2)/((sum(n)-1)*a)# asymptotic mean under alt

##**

cellmean<-apply(psudo, c(1,2), mean)

apply(cellmean, 1, var)

colmean=apply(psudo, 2, mean)

sig<- cov(t(cellmean)) # diagonal part gives the \hat\sigma_{1,i}^2

and off-diagonal part gives \hat\sigma_{1,i_1, i_2}

calculate all $\widehat{\sigma}_i^2(X_{ij})$

sigXij<-apply(psudo, c(1, 2), var)

get a axN matrix with \hat\sigma_i^2(X_{ij}) =sigXij[i, j]

103

#sigXij<-apply(makepseudo(N,n,4*k,a,alltrt),c(1, 2), var)

use 4k pseudo obs for var approximate

#sigXij=t(apply(sigXij,1,function(x) smooth.spline(x)$y))

use smoothed version to approximate var

#MSTd=k*a*sum((colmean-mean(psudo))^2) /(sum(n)-1)

calculate $\overline{U}_{i..}$

meanrk=apply(psudo,1, mean)

calculate B_N

MSTphi=k*sum((cellmean-matrix(rep(meanrk,N),ncol=N))^2) /((sum(n)-1)*a)

#MSTc=k*sum((cellmean-matrix(rep(meanrk,N),ncol=N)-matrix(rep(colmean,a),ncol=N,

byrow=T)+mean(cellmean))^2)/((a-1)*(N-1))

calculate MSE i.e. W_N

MSE= sum((psudo-array(rep(cellmean, k), c(a, sum(n), k)))^2)/(sum(n)*a*(k-1))

#Tsinter=(sqrt(sum(n)) * (MSTc-MSE))

#Tsc=(sqrt(sum(n)) * (MSTd-MSE))

Tss=(sqrt(sum(n)) * (MSTphi-MSE))

calculate Td1 and Td2 for diagnostics

#offdiagsum=function(x) sum(matrix(x)%*%

#matrix(x, ncol=length(x)))-sum(x^2) #\sum_{m\ne m’} x_m x_{m’}

#Td1=k*mean(apply(cellmean, 2, offdiagsum))/a

104

#Td2=mean(apply(psudo, c(1,2), offdiagsum))/(k-1)

##**

#Calculate estimate of variance for test statistics

count is a matrix;first 3 columns give the value of i1 j2 i;the last column

gives the number of times X_{ij_2} is used in construction of windows for

all covariate values in group i_1

count<-matrix(-1, a^2*N, 4)

whereini=0

for(i1 in 1:a){

for (j2 in 1:N){

for (i in 1:a){

whereini=whereini+1

if (i1==1) lower=1 else lower=sum(n[1:(i1-1)])+1

upper=sum(n[1:i1])

counti1j2i=sum(index[i,lower:upper,]==((mapindex(j2, n)[1]==i

) *mapindex(j2, n)[2])) ## this is the line different from NP.test.old

count[whereini,]=c(i1, j2, i, counti1j2i)

}}}

tau3=0

for (jp in 2:n[i]){

for (j in (max(1, (jp-k+1)): (jp-1))){

105

tau3=tau3+ ((k-jp+j)^2 + (k-jp+j)-2*(jp-j<=((k-1)/2)))*(jp-j<=k-1

) * sigXij[j] *sigXij[jp] *(j!=jp)

} }

tau3=tau3*4/(sum(n)*(k-1)^2)

tauAsys=tau3

pvalue.sim=1-pnorm(Tss/sqrt(tauAsys))

power2=pnorm(qnorm(alpha, mean=0, sd=sqrt(tauAsys), lower.tail=F),

mean=eta.simple*k/a, sd=sqrt(tauAsys), lower.tail=F)

list(tauAsys=tauAsys,Tss=Tss,pvalue.sim=pvalue.sim, power2=power2)

}

#NPtest.indept.alt(dat, k=3, estpower=T, eta.simple=0, alpha=0.01)

106

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Literature Review
	Problems of ultrahigh dimensional setting
	Continuous Case
	Variable Selection for Parametric Models
	Variable Selection for Nonparametric Models
	Generalized Additive Models, Continuous Case

	Binary Case
	Classification Techniques
	Variable Selection Techniques
	Generalized Additive Model (GAM), Binary Case

	Continuous Case: Variable Selection and Prediction
	Introduction
	GAM in the Continuous Case
	Most-Significant-Regression Algorithm, MSRc
	Comparison of Greedy INIS and MSRc

	Performance Measures
	Graphical Presentation of the MSRc Algorithm
	Numerical Comparisons
	Simulation Models and Results
	Real Data Analysis

	Binary Case: Variable Selection and Prediction
	Introduction
	NPtest
	Most-Significant-Regression Algorithm, MSRb
	Variable Selection Algorithm
	Model Building and Prediction Algorithm

	Performance Measures
	Numerical Comparisons
	Simulation Models and Results
	Real Data Analysis

	Summary and Post-dissertation Research
	Summary
	Post-dissertation Research

	Bibliography
	R Code for MSR-continuous
	R Code for Binary Case
	R Code for MSR-binary
	R code for GLMNET
	R Code for True and False Positive
	R Code for NPtest

