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I. INTRODUCTION

Problem Relevance

Considerable energy is used to store and prepare meat.
Reduction of energy consumption éan be accomplished in the
industrial preparation of meat by optimization of meat cooking
procedures. To achieve this, a thorough understanding of heat
and mass transfer during the cooking process is essential so
that energy supplied to raise the internal temperature of the
meat may be utilized economically. 1In the cooking of meat,
heat is supplied to improve the tenderness and flavor and also
to destroy microorganisms. During the heating process, water
retained in proteins is released and it is then transported
to the surface through a complex network of fibers and muscles.
Water is evaporated from the surface into fhe hot air. There-
fore, understanding the process of meat cooking involves cha-
racterization of unsteadv state, simultaneous, heat and mass

transfer in a complex porous system.

Background and Previous Work

During the roasting of meat, there is an exchange oif heat
and mass (water) between the air and the product. Heat is trans-
ferred from the air to the meat and moisture is evaporated from
the meat. This process results in three distinct stages of
drying. The first stage is a constant drying rate period which

is followed by two falling rate pericds as shown in Figure 1.1.
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Fig. 1.1 Drying rate curve

In the constant drying rate period, the rate of moisture
loss is constant and is independent of the amount of moisture
present in the meat. The moisture is transported from |
within at a faster rate or at the same rate as water is
evaporated from the surface. For low Biot number (Biot no. =
hd/k), the water in the meat can be assumed to be free water
and hence evaporation at the solid surface can be thought of
as water évaporating from a shallow container [1].

The falling rate period starts wnen the surface tempera-
ture begins to rise above the wet bulib temperature. In this
stage, the migration of moisture to the surface slows down
considerably, so, at any point, there is not sufficient water
on the surface to evaporate at the same rate as the constant
rate period. The surface is much drier and the evaporating zone
moves into the solid. In the roasting of meat, this results in
the formation of crust and the evaporation occurs in the vicinity

o
of the 100°C isotherm. The transport of water bkelow 100°°C



is similar to capillary liquid flow. The transport of moisture
in the crust can be assumed to be in vapor phase [4]. 1In the
falling rate period, the unbounded moisture (or free water)
assumption in the meat can no longer be applied.

Considerable research in the roasting of meat has already
been reported in the literature. The work most closely related
to this work is that of Godsalve et al. [2,3], Bengtsson, [6],
Skjolderbrand [4,5] and Bimbenet et al. [7]. These workers
have studied the heat and mass transfer in meat during roasting.
Godsalve et al. [2] presented experimental data for water emis-
sion rates from the surface of beef muscle that was heated in
a dry atmosphere. Air flow rate, temperature,and humidity were
continuously controlled at all times. From the data, a quali-
tative model of heat and mass transfer during the roasting
process was deduced. In a later paper {3], they examined the
effect of air flow rate, orientation of the muscle fibers, and
post mortem treatment of the muscle being cooked. They con-
cluded that the variation in flow rate did not change the basic
mechanism of water transport, but it did change the water enmis-
sion rate in the constant and falling rate pericds. Perpendi-
cular fiber orientation with respect to air flow rate gave
a higher rate of water loss in the early stages of cooking.

Skjoldebrand et al. [4] presented a theory of how the water
content inside the crust depends on the time temperature history
of different meat recipes. It was shown that moisture within

the crust was very low, but it increased markedly near the



evaporating zone. A model was also develcoped for

calculating the water content profile and thermal conductivity
in the crust. The same authors [5] also qualitatively analyzed
the heat and mass transfer between air and the product in a
forced convection oven. Bengtsson et al. [6] presented experi-
mental data to assess the weight loss and distribution of tempera-
ture and moisture in beef samples as a function of initial ana
ambient temperature. The authors only considered the constant
drying rate period and also provided some simulated temperature
profiles. No mathematical model was explicitly provided in the
paper. Bimbenet et al, [7] studied heat and mass transfer during
drying of a semisinfinite solid in warm air. A mathematical model
which gives an exact solution was provided for the one dimensional
case. ' The model was valid only for the constant drying rate
period.

Work done by Hamm [15], Hung et al. [18] and Godsalve
et al. [2] indicated that water is expelled from the beef muscle
becausg of protein denaturation. Heat of denaturation of meat
and the resulting release of juices are factors that should be
of importance to heat and mass transfer during cooking. This
effect has been considered by Hamm and Deatherage [19] and
Laakonen [20]. The effect of water holding capacity of the
muscle has been discussed by Hamm [15] and Bouton et al. [16,17].
Funk and Boyle [22] found that cooking rate increased as fat
content or oven temperature was increased. Drip losses were
not significantly affected by oven temperature, but they
increased with increased fat content.

The thermal conductivity of beef has been measured
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previously by QOkos et al. [9], Hill et al. [8] and Woodams
et al. [{12]. Hill et al. [8] and Lentz [13] reported that the
thermal conductivity of frozen meat is greater for heat flow
parallel to the muscle than for heat flow perpendicular to
fiber. Stuart and Closset [14] showed that fiber structure
has an important influence on heat and mass transfer in freeze
dried beef. A compilation of thermal properties of beef was
given by Polley, Snyder and Kotnour [10]. The heat
transfer coefficient at the surface of meat can be estimated
from available correlations [23].

The use of microwave cooking has been investigated by
Moore et al. ([24], Voris and Duyne [25] and Korschgen and
Baldwin [26]. Moore et al. indicated that dry roasting in a
conventional oven resulted in less loss of juice and more
even roasting as compared with microwave roasting. Contrary
to these findings, Korschgen and Baldwin ([26] reported that
there;was no significant difference in cooking loss by the
two different technigues. They also noted very little differ-
ence in flavor and juiciness for microwave and conventional
roasting. Voris and Duyne [25] came to the same conclusions.
Energy reguirement associated with microwave cocking has been
found to be considerably less than that for conventional
roasting [25,26]. ©No work was found where microwave roasting
was cérried out at controlled conditions of temperature and

humidity.



Numerical Solution for

[}

Partial Differential Equations

Parabolic partial
unsteady state problems

diffusion is important.

differential equations arise from
in which transport by conduction or

The general form of parabolic partial

differential eguation in one dimension is

Following are the boundary conditions which may exist.

1) At time t = 0, u = 0 for all values of x.

For time t > 0, u =1 at x = 0

For time ¢t > 0, u = 0 at x =1
2y At time t = 0, u = 0 for all values of x

For time t > 0, du + hu + const. = 0 at x = 1

dx
{(convection BC)
; du _
Far time t > 0, = = 0 at x = 0

The length wvariable in eqguation (1.1) varies from 0 to

1 and the time variable t can take any value on the positive

axis. The region represented by the two independent variables,

cr

x and t, is a part of the x-t plane as shown in Figure 1.2,
For numerical computations, the continuous variables

% and t are replaced by discrete variables defined by

points on the shaded plane as éhown.in Figure 1.2. The

grid points are spaced so that they are ax apart in the

x direction and At apart in the t direction.
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Fig. 1.2. Two dimensional grid
The index i is used to indicate position on the x axis and
k to indicate the position on the t axis. The dependent
variable u is a function of the_two independent wvariables
X and t.

A number of finitedifference equations analogous to
equation (1.1) can be written to solve the partial differen-
tial equation numerically. The forward or the explicit
difference equation is the simplest to formulate (though it
is inefficient to use). In the forward difference equation, th

2

finite diff., amnalog of (3 u/axz) is written for the known

time level t, .

k
320, _ Yi+1,k T %Mk Y Yi-1.x
L ("—f)i = 5 (1.2)
Ik (Ax)
u. - O
A (EE) - i,k+1 i,k (1.3)

at At
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HERCR Ui ket T T2 | Mislk Y “‘i—m::l N ’.]-(ax)z | W1

In this scheme, the value of the dependent variable u can be
calculated directly from equation 1.4. This method is the
simplest to use but it is very inefficient. For the numerical
solution to converge, a very stringent condition between the
time interval, at, and the length interval, 4x, must be
satisfied. This condition reguires the ratio At/(ﬂx)z to be
less than 1/2 [21]. 1If this condition is not met, the coeffi-
cient of u, k in equation (1.4) will become negative and this

1,

will cause the value of u; to oscillate from one time step
to the next. This restriction is a rather serious one. To
avoid truncation errors in the x direction, ax has to be kept
small and, for the solution to be stable, at should be of the
same order of magnitude as (Ax)z. As a result, small
vdues of the time increment Atmust be used even though
larger values could have been used without causing truncation
errors in the t direction.

The backward difference equation does not have any such
restriction on the size of At for stability. 1In this method,

the analog of {azu/axz) is written for the next (unknown)

time level tk+1'

2 2u Uip kel T 94 ket T Yiaq, ket
54 < 5 {1.5)
X (ax)



au _ Ci,k+1 T Yi,k
Ge)i T (at) (1.6)
Uit ket T 2% ket T Mion ket _ YiLker T Yk
— (at)
2 2
-y - lax) - -lax)
Hence u; g y4q + (-2 st ) Ui, ket Y Yist,k+1 T Tat o YiLk

(1.7)

Equation (1.7) is an implicit equation. The wvalue of

the dependent variable a, at the next time step t cannot

k+1
be solved directly as in the forward difference equation.
Unlike equation 1.4, equation 1.7 contains three values of

the dependent variable u. at the next time level t (which

k+1
is not known). The eguation can be solved by writing the
difference equation for all the grid points in the x-direction.
The resulting set of equations results in a tridiagonal matrix
which can be solved simultaneously by applying the appropriate
boundary conditions. Stability analysis shows that there 1is
no restriction on the size of at, and it can be fixed inde-
pendent of the size of ax. Both the backward and the forward
difference equations are first order correct in time.

The Crank and Nicholson Method [27] for solving the
parabolic partial differertial equation is second order correct
in time and it also does not have any restriction on the size

of At. In this method, all finite difference analogs are

written about the point X and tk+1/2‘
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u - i,k+1 ik
(at)i,k+1/2 At (1.8)
In approximating the derivative (azu/axz). an arith-

i,k+1/2°

matic average of its finite difference analog at point X 0 by

and X L is taken. Sobasically it is an average of the

forward and backward and difference eguations.

Uipt, ke17294 ko1 911, k41

(AX)2 (aXJ?’

£1.8)

on combining equation (1.8) and 1.9) we get

2{Ax)2
Wig ket P P25 9y et T Ui k1 =
2
_ - Zax) _
ui-1,k + [ 2 -E—t——'—] ulJ( ui+1'k (1.}0)

Equation 1.10, like the backward difference equation is an
implicit equation, but unlike the backward difference equation
it is second order correct in time. The Crank and Nicholson
equation regquires more computations per single time step than
the backward difference equation, but since it is second order
correct in time, larger values of At can be used without
causing seriocus truncation errors.

The backward difference equation can be used satisfacto-
rily for both kinds of boundary conditions discussed earlier.

The Crank and Nicholson equation works good for the first
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boundary condition. However, when the convection boundary
condition is applied, the value of u oscillates at the boundary
for large values of the heat transfer coefficient (h). Therefore,
for large values of h, the Crank and Nicholson equation can
no longer be used to solve the partial differential equation
numerically [21].

Heat conduction or diffusion in two or three space
dimensions can also be described by the parabolic partial

differential egquation and it has the following form.

In two space dimensions 32u S?u au
...._.2 + _2 = H (l.ll)
Ix 3y :
22y 32u azu au
In three space dimensions 5 + 5 * 5 = 3T { kw2
33X 3y 3z

where x, y and z are three space dimensions.
It has been shown that the Crank and Nicholson method

for solving multidimensional parabolic differential equations
is impractical [21]. The forward difference or the explicit
method of solution has very stringent reguirements for the
time increment and space increments for stability. For the

two dimensional case, the condition between aAt, ax and ay to

be satisfied is [27]

AL !
20(ax) "% + (ay) "2

| A

This restriction (as discussed earlier) makes this method of
solution very inefficient. The implicit methcd requires a

large number of iterations for adequate convergence [27].
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One of the most efficient schemes for solving parabolic differ-
ential equations in two or more space dimension is the "Implicit
Alternating Direction"” (I.A.D.) method [21,27]. For the two dimen-
sional case, this method employs two difference equations which
are used over successive time steps of duration at/2. The first
equation is implicit only in the x direction and the second
equation is implicit only in the y direction. The first
equation contains analog to azu/ax2 written for the first time
step t, + at/2 (abbreviated as *) and the analog to (azu/ayz)

at the time level £ - The final equation results in this form.

* - * * -
DA CA TS Nl U5 Rl T P RO U £ Y s V5 e P B Y
(ax) 2 (AY)2
F* o
Ti,79,3.%
at/2
Let ax = Ay
2
(ax)
.. -1%* e * -3 *
£ u i-1(j+2{ NE +1] u i,9 u 1415
(AX)Z
= 9551,k T M ek

{1.13)

The second equation of the I.A.D. method contains the analog
to (azu/ayz} written for the time level t, t+ At = tk+1 and the

analog to (azu/axz} for tne time level £, + at/2.
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- - 3 - . - * - *
BT P S8 ket U5 T Ll U B U0 2 S R C A P Bckullt 75 Rl S P
7 2
(ay) (ax)
-1 %
I U 1. e (1.14)
bE/SS *
Since Ax = Ay, we can reduce equation 1.14 to
2
_ (8x) -
Ui, 5-1,k+1 720508 = 11 9y 5 ket T U, 40, ke
(ax) 2
= * . Ccasiodinll_ * *
u®s _1,9% 5 Hof $u%41,9  (1.15)

Equation 1.13 can be solved first and the value of u at the
intermediate time step used to sclve eqg. 1.14. Both equations,
1.13and 1.15, when written for the grid points, are reduced
to a system of equations with a tridiagonal matrix. On applying

the appropriate boundary conditions, the solution is straight

forward.
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II. PROBLEM FORMULATION

Mathematical Modelling

In convection oven roasting of meat, there is an exchange
of heat and mass (water) between the meat and the hot air in
the oven. Heat flows into the meat thus raising its internal
temperature. During the heating process, water retained by
the proteins is released, an@ it migrates to the surface through
a complex porous system. A certain amount of heat (known as
heat of denaturation) is alsoreleased with the release of
juices from the proteins. The actual mechanism of transport
of water through tse complex network of fibers and muscles is
not very well understood. For the sake of simplicity, the
flow of water inside the meat can be thoughtof as a capilla;y
liquid flow [4]. The water which migrates to the surface is
evaporated inte the hot air in the oven, thus increasing the
oven humidity. As the internal temperature of the meat is
raised, the fat content contained in it also melts aroqund the
fiber and may drip to the bottom of the container.

The mathematical model proposed here to describe the
unsteady state heat and mass transfer during the roasting of
meat neglects these drip losses. In addition to this, heat of
denaturation will not be considered. Only the constant rate
period of drying is considered. During this stage of drying,

the migration of water to the surface is fast enough so that
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there is sufficient water at the surface to evaporate at all

times. The following assumptions are made to formulate the model

1) Water at the meat surface behaves like free or unbounded
water.

2) The thermal conductivity of meat remeains constant during
the heating process.

3) The heat transfer coefficient between air and meat remains
constant.

4) The third dimension of the meat is much larger than the
other two dimensions. Therefore, heat transfer is neglected
in the third direction.

5} The temperature in the oven remains constant during the

entire roasting process.

All these assumptions are fairly reasonable and we do not
encounter any serious problems when we incorporate them in
our model. Assumption No. 1 is valid for the constant drying
period and it can be applied safely when the Biot. No. (Biot
No.= hd/k) is low [1].

Heat transfer within the meat can be given by Fourier's

Law

2 2 2
2= 552 (2.1)
3kS Y 2z

Since the third dimension (Z) of meat is much larger than the

X and Y dimensions (Assumption No. 4), equation 2.1 can be

reduced to two space dimensions.
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2 2
=F = ﬂ[;;f‘ + ;;5 ] (2.2)

The boundary conditions are

1) at t=0,0 = 8, for all values of X between 0 and a,
and all values of Y between 0 and b.
2) (Heat from air) = (Heat absorbed in evaporating water)

+ (Heat flowing into the meat)

or h(e, - 0) = ak (P,-P) - k (F)y g
30 _ h _ _ A _
“Uplges = F Loy ol = 5B 1 =B, st
3) similarly (28 = Big ~a7- 2Kp (p _p (2.5)
¥ 13X'%=a k*"a k s "a :

Similar boundary conditions can be written for Y = 0 and Y = b.

The parameters used in the above equation are

e Thermal diffusivity of meat (mz/sec)

pC
k = Thermal conductivity of meat (J/msec®C)

a

kp = Mass transfer coefficient between air and meat
I~
7 kg = sec/m
m Pascals sec
8 = Ambient temperature, ¢

» = Latent heat of vaporization of water (J/kg)
P_ = Partial pressure of water vapor in air (Pascals)

P_. = Water Vapor Pressure at the meat surface temperature
(Pascals)

For this pericd of drying, water at the meat surface is assumed

to be unbound (assumption No. 1). Hence PS can be taken as
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the vapor pressure of pure water at the surface temperature

i1 P = A + Bs (2.6)
s

A linear relationship of Ps and @& is used because it is easy

to apply in the tridiagonal matrix to solve the partial differ-
ential equation using the Implicit Alternating Direction (I.A.D.)
method. As shown below, this approximation does not introduce
any serious errors if we subdivide the entire temperature

range into small increments and calculate A and B separately

for each increment. In the roasting of meat, the maximum
temperature of the surface is approximately 90°c (during the
constant drying rate period). Let us divide the temperature

range (DOC = QGOC) into four temperature ranges.

range a 0% < o < 30°C
range b 30°C < 8 < 50°C
range c 509 < 8 < 70%
range d 70°%C < @ < 30°c

The coefficients A and B of equation 2.6 for each of these
temperature zones may be estimated using the least square

- method and literature data [27].

From Table 2.2, it can be seen that the maximum error

introduced in the calculation of PS is approximately 5%.



Table 2.1. Least Square Estimates of 'A' and 'B' for the
different temperature ranges

Temperagure A B B
Range ( C) (Pascals) Pascals/"C
0 < &< 30 -126.35 140.85
30 < & < 50 =8.,357 .00 412.21
50 < 8 <70 -36,001.81 958.89
70 < 8 < 90 -108,230.00 1,983.65

Table 2.2. Comparison of Ps actual and PS calculated

Temp {OC) P_ actual P_ calculated % error
(ﬁascals) {Pascals)
10 1,249.50 1,282.15 1.6
30 4,319.08 : 4,099.15 Sl
50 12,563.35 12,253.58 2.4
70 31,741.13 31,120.49 2:0
90 71,414.15 70,207.62 1.5

Equations (2.2) and its boundary conditions may be
written in dimensionless form by introducing the dimension-

less wvariables:

y = Y/a

x = Xx/a

T = 8785
853784

and T = at/a2
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On substituting these dimensionless variables, egquation 2.2

and its boundary conditions have the following form

A - (2.7)

at 1 =0, T = 1.0 for all values of x between 0 and 1

and y between 0 and b/a (2.8)

_.ar _ ah . .. _ arkg |A-P5+Be,
(dx)x=0 - k {1 T]’ K = [ea_e + BT (2.9)
o
4T _ ah . _ axky, [A-P_+Be
(a;)x=1 = 3 {1-T} < '—eaieo Q. + Bé] (2.10)

Similar dimensionless equations can be written for y = 0 and
y = b/a

Equation 2.6 is a parabolic partial differential equation
in two space dimensions. As discussed in the previous section,
there are several schemes to solve this equation numerically.
The most efficient method for solving this equation is the
Implicit Alternating Direction (I.A.D.) method and this method
will be used in this report.

When using a finite difference technique to sclve a
partial differential equation, the region of interest must
be divided into a network of grid points. The dimensionless
variable x varies from 0 to 1 and the variable y varies from

0 to b/a. Because of symmetry, it suffices to solve the problem
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s
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y=0 y=b/2a y=b/a

Fig. 2.1. Two dimensional heat flow
in the meat piece.

for one gquadrant only (as shown in Figure 2.1). From symmetry

again, there is no heat flux across the axis x = 1/2 and

Y b/2a and these two sides of the gquadrant can be thought of
as perfectly insulated boundaries.

Consider the shaded gquadrant in Figure 2.1, divided into
m and n segments (in the y and x directions) of equal length
sx. In this way, (m+1)-(n+1) grid points are established in

the entire region of interest as shown in Figure 2,2 below.

j=1 3=2 3=3 . . . . . . . .J=m J=m+l

i=l.

i=2

i=n+1

Fig. 2.2. Arrangement of grid points
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Subscripts i, j and k can be used to denote the grid point
(i,j) at a time level ty (i represents position on the x
axis and j represents position on the y axis). The I.A.D.
method can be summarized by equations 1.13 and 1.15.

Let T and T* refer to temperature at the beginning and end
of the half time step at/2, respectively. Applying equation
1.13 for each grid point i =1, 2, 3, 4...n in the jth

column gives the following tridiagonal system for the jth

column
-T* . + bT,* . - T_*, = d
0,7 1,3 2p3 1
- T.*% . + pT.* . = T_*% . = d
1.3 2 53 3 4 2
= * i * = * =
To¥,5 Y PTN 5 7 TR 5 U5
- Mm% * - =
Tn«Z,j+an—1,j Tn,j 9h-1
=T% *  _Mx
Tn-1,3 0,37 1,3
= d
n
where
di = Ti,5-1 T T 5 v Ty 44
2
and b = 2{&%L L 13
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From symmetry, Tg j = T§ T Therefore, the first equation
-, r
{for i = 1) of the tridiagonal set of equations reduces to

bT * i - 2Ty* | ,

1]
o

* - : * .
IE T n+1,3 can be written in terms of T n,j (in the

nth equation), the first and the last equation will have only
two unknown variables and the entire tridiagonal matrix can
be solved by the algorithm given in the appendix y BE

‘"n+l,j
can be obtained in terms of T*n . from the convection

r
boundary condition. Expanding the temperature at the grid
point (n,j) in a Taylor series and neglecting the powers

higher -than second gives:

2
3 3 T* 2
T* . = T* .o == (-ax) + —5 (-ax)
nel SRl s 32lln+1,j 3> n+1,j3 - 2
-, a’r 2 _ [T+ il (-ax)-T* 1(2.11)
- —5 = L= = -AX) = ] (2.
ax® h+1,i  (ax) % el %% hi1,5 B+l 3
AT+ : . .
- can be obtained from the convection B.C.
X .
n+1,3J
AT - ah .. . _2Akp A&-Pa+Bég -
Ix k (-7 n+1,j} k i ea—eo + BT n+1,j]
n+1,J
. . 3T™* . .
On substituting = in equation 2.11, we get
n+1,]
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3" T* 2
T* Paad ; ha
axz n+1, 3 (Ax)zl n,j n+1,j {1+1—}5- + ——E——} +

aEAx _ aktpax ( A;PE;BGQ 1] (2.12)
a o

The temperature at the grid point (n+1,]j) must also satisfy

equation 2.7 . Writing the finite difference analog of

o ; at the beginning of the half time step at/2
¥

and the finite difference analog of aZT/ax2 at the end of

azT/ay

the half time step At/2 gives:

* -
3 2 327 O Tne1,3 7 Tavt,g
2 . 2 . at/2 3
ax n+t,j Y n+1,3j
azT*/ax2 is given by equation 2.12
n+1,3j )
22 Tasr,5-1 2Tr+1,3 * Tnet, 341 _
""'—'f = ) fax = ay}
3y [n+1,] (ax)
E T 41,5 Tnet, .2 (7% . -T* ;,ahsx akkpBAXZ
At/2 (&x)z n,j n+1,]'i k k
ahax _ aikpAx A-Pa+Bég
T X k t 8,9, H
T . ,=2T

n+l,j=-1 n+1,j+Tn+T,j+1

(sx) 2
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ahax

Let G1

G2 = axkEBAx

AT
(ax) 2

* R
s . * 5 = * ¥ ¢ « - W
T n+1'J{1+R(1+GT+G2)} RT n,3+7 {Tn+1,]-1+Tn+1,j+1 2Tn+1,3

¥ a8l B i 8,9, }}+Tn+1,j

_R ) 2G2 § A-P,+Bo
Let B =3 tﬁﬁl,iﬂan+1,j-1 Den T8 i"agéag‘éﬂ *Thet,

»

-+ T* (1 +R (1 +Gl +#@G2)} = RT* . +E

n+1,j r]

RT* . £
* R p— ¢ J + (2.13)
n+i,3 1+R{1+G1+G2) 1 + R{1 + G1 + G2)

T

i i * i * ., . Sub-
Equation 2.13 gives the value of T n+1,3 in terms of T n,3

stituting squation 2.13 in the nth equation of the set of tri-

diagonal system of equations

~T* + bT*n . = I = d

* .
n-1,j r3 n+1,3

RT::j E
- - [ - = A
T*n-T,j * bT*n,j T+R({1+G1+G2) T+R (1+GT1+G2) An
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R R
=T * = PR s B R
T*n-1,3t R weie ! Tn, 5 = %n * TER{TGTIED)
. o R
.- by =b - T RIT FeT T oY
.o __E
'y =4, ¥ TITROT TG FCD

On modifying the coefficients of the nth equation, the
entire set of equations for the jth column can be sclved. The
procedure may be repeated for successive columns j =1, J = 2,
...J = n until all the TI 3 are found at the end of the first

’

half time step. T¥

; can be directly obtained by the convec-
i,n+1

tion boundary condition. The temperature at the end of the
second half time step At can be found by applying equation 2.15
for each grid point 3 =1, 2,...n for all i and then for succes-
sive rows (i =1, 2,...n).

The humidity of air in the oven changes as roasting
proceeds and this should be taken into consideration in the
model. Assuming that a constant pressure (say 1 atmosphere)
is maintained inside the oven and since the oven temperature
is constant, the total number of moles of air and water vapor
in the oven must also remain constant. During the roasting
of meat, water is transferred (in the form of wvapor)} to the
air and to prevent the pressure from rising inside the oven,

a certain amount of wet air must be vented ocut of the oven.
For the sake of simplicity, it will be assumed that the
water vapor evaporated from the meat is thoroughly mixed

with the hot air before the mixture is vented.
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If the oven is completely dry at the start of roasting

- P_=0at t =20
a

Let e be the density of gas (kg/m3) at temperature o,
and V be the volume of the oven (ma).

/. Mass of dry air at t = 0 = Ma =0, v kg
Total moles of dry air = M, = PraV

Let AW be the mass of water (kg) which is evaporated from

kg-moles

the meat in the time interwval at.

AW = kp (PS = Pa) a' + At (2.14)
where PS = A + Be
g,
a' = total surface area of meat (m~)
t+ Mass of water vapor in the oven = W = W' + AW (W' = 0 at t =

Moles of water vapor in the oven = M, = W/18.0

Mass of air in the oven = Ma

Moles of air in the oven = Ma/29.0

Total Moles of air and water wvapcr

"

Ma/29.0 + W/18.0 - M

Mcles of air and water vented = M

v t
Mass of water vapor removed = qﬂ * Mv
L
t
Mass of air removed = —= * i
Mt v
Hence Mass of water vapor remaining inside the oven
My
= W' =W {1-T}
t
My
Mass of air ramaining in the oven M'_ = M_ {1 - —/—1}
a a Mt
. o . W'
Humidity in the oven = H = i
a
We know that H = 180 % Ea

29.0 = (P - pa)
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_ H * 29,0 = P )
*+ P. T TET0FE#29.0 (2.15)

Where P is the total pressure = 1.03 x 105 Pascals. The
value of P at the end of time interval at is given by equation
2.15 and this wvalue of Pé can be used in equation 2.14 to
calculate the amount of water evaporated in the next time

step..



28

i _7 ‘Read input variables }_ Initialize the Temp. of.
.Begln-———aand set values for ‘-,%———?all the grid pts,set
| ; ‘ax and # of grid pts = Py =0 and W' =0
_ _ _ _ Irepeat for all
f_ .values of j= l id s w00 ,
! ;
iCompute di |Gy = -2 ;*1 [_Seh coefficient of the: !
k e e '-rxﬂla‘ onal matrix '
T I B Lz =pRes L Lx) 5
: o : | b= 2E2° Ly
i / ! =- )
L g Bl g5 s ki |
é it s l;_,’
s, 1
i i,j+1
:l e 1121' n ‘
{
:
(Hodify value of 4 | Solve the triéiagonal
land b set of equations with
\ o] coeff. ai, b., ci, d.
Led, 2 Yt .
Solve the tridia-} |Modify wvalue| |Compute 4, fbr(;§§§ time step
lgonal set of of d) and 4 jd; = TI_ .+2{—5—— -1 T} .
lequations with bm r‘ ] imlsd =t ¥ +J
lcoeff. e., b., e 1 + T
ic}., dj 3 i+l, 3
E=l,2”:m ] = 1,2“..m :
| :
L { Repeat for alil~ |
~ T Tijvaluesof i=1l,2,...n,— — —
Compute 4w [Find Hum and | {Chéck 1f Center| F | E
_ ' _ P_ at the end [Temp < T__. > Stop!
1= kp2' a7 (B -B )} of time inter s i f
val &T.
GOTO*

Fig. 2.3. Flow diagram of the simulation for the roasting o
meat.

r
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ITI. RESULTS AND DISCUSSION

Computer simulations were carried cut for two different
oven temperatures, 175°C and 225°C. The computer program is
given in the appendix. Table 3.1 summarizes the results as the
length of time for the center to reach 10°¢c and 70°C. The cocking
parameters used iIn the simulations were ootained from the
literature. The thermal conductivity of beef was taken to ce
0.4 watts,"fn2 OC [8,9] and the density aﬁd specific heat as
879 kg/m> and 2510 J/kg°C, respectively {5,10]. Based on the
above values, the thermal diffusivity {k/gco) was found to be
1.8 x 10-7 mz/sec. The results from the computer simulations
were compared with the experimental results given by Bengtsson

.
ak Sdw

oy

§]. For the purpose of comparison, the dimension

of the meat and the heat transfer coefficient h were taken

to be the same as that chosen by the above authors [6]. The mass
rransfer coefficient k_ was obtained by the relatiocnship

P
between the heat and mass transfer during drving (h/k_A =

Table 3.1. Comparison of calculated and experimental cooking
time for oven temperatures 1759C and 225°C

ven Temp. Initial Temp. Final Center  .Experimental - - Calculated
(<C) (<C) Temp. (©C) Cooking time (min) Cooking time (min)
175.0 5.0 40.0 39.0 41.0
70.0 80.0 70.0
225 .0 5.0 40.0 32 .49 32.5
70.0 50.0 50.0
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Figures 3.1, 3.2 and 3.3 show a relationship between
the wet bulb temperature Tw, the surface temperature Ts and
the center temperature Tc. The nature of these curves are
very similar to those shown by Bengtsson et al. [6]. The
center temperature, the wet bulb temperature and the surface
temperature increased monotonically with the cooking time.
The wet bulb temperature increases due to the accumulation
of steam in the oven. The surface temperature moved closer
to the wet bulb temperature towards the end of the cooking
period. The falling rate period of drying starts when the
surface temperature exceeds the wet bulb temperature. For
an oven temperature of 175°C and a heat transfer coefficient
of 5 watts/m2 OC, the surface temperature always remained
less than the wet bulb temperature. For this case the cons-
tant drying rate prevailed during the entire cooking. Increas-
ing the heat transfer coefficient from 5 to 30 watts/m2 %
simultes forced convection cooking. This is shown in Figure
3.3. Since the heat transfer coefficient was increased sig-
nificantly, the rate of heating increased and consequently
the surface temperature rose very sharply. The surface temp-
erature became greater than the wet bulb temperature and the
constant drying rate period was reduced to about 7 min. of
cooking time. It was followed by the first falling rate
period. At the end of the constant drying period and the
start of the falling rate period (Fig. 3.3), the surface
temperature exceeds Tw and also 100°C, indicating a formation
of crust at the meat surface. Keeping the heat transfer coef-

ficient the same as in case 1 (5 watts/m2 OC) and
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increasing the oven temperature to 225°C, reduced the constant
drying period to 30 minutes (Fig. 3.2). Again as in Figure

3.3 (h = 30 watts/m2 OC and Ta = 175°C) the surface temperature
exceeds 100°C.

Figure 3.4 compares the moisture loss as a function of
cooking time for the oven temperatures of 175°C and 225°cC.

The moisture loss curve for an oven temperature of 175°%C is
almost linear, therefore, the constant drying rate period pre-
vailed during the entire cooking. For an oven temperature of
225°C, there was an abrupt change in the shape of the curve
after 30 minutes of cooking, indicating the start of the
falling rate period. The moisture loss when the meat was
medium cooked (Tc = 70°C) was about doubled when the oven temp-
erature was 225°¢. Increasing the oven temperature from 175%C
to 225°C caused a 15% reduction in the cooking time (Fig. 3.5)
but also doubled the moisture loss.

Moisture loss 1is an important factor in the cooking of
meat and it should be taken into account in the numerical
model describing the roasting process. For an oven tempera-
ture of 225°C and a heat transfer coefficient of 5 watts/m2 OC,
21.8 gm of moisture per 600 gm of meat was evaporated from
the meat surface for the center temperature to reach 76%¢.

The energy required for evaporating this water was 53 kJ and
it was approximately 30% of the total energy required for
cooking. (For Ta = 175°C and h = 5 watts/m2 OC, approximately
25% of the total energy required for cooking was used for

evaporating the moisture). Melting of fat is not very
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critical as far as the energy requirement for the roasting is
concerned. The fat content in meat varies from 1.3% to 10%
and only a part of this fat melts and drips to the bottom.

The meat sample used by Bengtsson et al. [6] had a fat content
of 4% or lower. The amount of energy required to melt all the
fat would only be about 3% of the total energy required for
the meat to be medium cooked (Tc = 7OOC). As a result, the
melting of fat does not appreciably change the energy require-
ment in this model.

Figures 3.5 and 3.6 show how the center temperature
changed with time for wvarious values of the heat transfer coef-
ficient and oven temperature. The general shape of the curve
was not altered by changing the cooking variables (h and Ta).
These curves were almost flat at the beginning of cooking but
they rose very rapidly about half-way through the cooking
period. They again tended to flatten out towards the end of
cooking. As seen from Figure 3.6, increasing the heat trans-
fer coefficient from 5 watts/m2 °c to 10 watts/m2 9C decreased
the cooking time by almost 35% (Tc = 7OOC}. Further increasing
the heat transfer coefficient to 30 watts/m2 Oc casued a
further decrease of cooking time by another 15.0% for the
meat to be cooked medium. Similar results were obtained when
the oven temperature was increased to 225°¢C.

Table 3.1 compares the experimental and simulated cooking
time for the center Eemperature to reach 40°C and 70°C for two
different oven temperatures. Figure 3.7 compares the experi-

mental and simulated center temperature of the meat as a
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function of cooking time for an oven temperature of 175°C.
As seen from Table 3.1 and Figure 3.7, there was close agree-
ment between the experimental and simulated results until the
center temperature reached 40°C. The difference between the
two showed up when TC became greater than 40°c. The differ-
ence was primarily caused by the evapcoration of water from
the meat surface as cooking progressed. Due to this transport
of moisture, the water content decreased and, as a result, the
thermal conductivity of the meat decreased. This changed the
thermal diffusivity which in turn caused the experimental
cooking time to be greater than the simulated cooking time.
Another reason for this slight difference was the formation
of crust. As seen from Figures 3.1 and 3.2, the surface temp-
erature approached 100°C towards the end of cooking and this
marked the formation of crust. Since the water content in
the crust is much lower than the rest of the meat [4], the
thermal conductivity of the crust is significantly lower.
This increased the resistance to the flow of heat to the meat.
When the meat was cocked at an oven temperature of 225%,
the surface temperature Ts exceeded the wet bulb temperature
Tw after about 35 minutes of cooking (Figure 3.2). As a result,
a transition from the constant drying rate period to the falling
rate periocd took place. Due to this transition, the heat
transfer coefficient decreased markedly which caused the
experimental cooking time to increase-,
Several researchers have found that proteins denature

when the meat is heated to a temperature of about 50-60°C.
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Protein denaturation results in a sudden release of water from
the muscle. It is not very clear what effect this release of
meat juices has aon the roasting of meat. Godsalve et al. ([2]
pointed out that sometimes protein denaturation causes a de-
crease in the temperature near the surface (region where the
juice is being released). Denaturation of proteins alsc alters
the porous structure [2] which in effect changes the basic
mechanism of moisture migration. The effect of this phenomenon
on the thermal cconductivity of meat is not very well under-
stood.

Figures 3.8 to 3.11 give the 40°c and 70°C isotherms
inside the meat piece at different levels of cooking time.
Due to the symmetry of the problem, the isotherms are shown
only for one quadrant. Point A in Figure 3.8 refers to the
center of the meat. Sides BC and DC were exposed to the con-
vective boundary condition. Figure 3.8 shows the 40°C isotherms
within the meat, when the oven was operated at 175°C and the
heat transfer was by free convection (h = 5 watts/m2 26
Figure 3.8 shows how tie 40°¢ temperature isotherm
moved towards the center of the meat piece as cooking

progressed. Figure 3.9 shows the same isotherm but for

a higher oven temperature of 225°c. As seen from Figures
3.8 and 3.9, the 40°c isotherm penetrated much faster

for the higher oven temperature. It took only about 32
min. for an oven temperature of 225°¢C as compared to 41

min. for an oven temperature of 175°c for the center

temperature to reach 40°c. This resulted in a
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decreise of approximately 25% in the cooking time. Thus,
cooking time can be reduced significantly by raising the
oven temperature, but at the expense of greater moisture loss
as shown in Figs. 3.4 and 3.5. Fiqures 3.10 and 3.11 show
the 70°C isotherms for Ta = 175°¢ and 225°C and similar con-
clusions were reached.

Figures 3.12 to 3.18 show different temperature levels
(20—800C) that existed in the meat at fixed times (h = 5
w/m? °C and T_ = 175°C). After 10 min. of cooking (Fig. 3.12),
the maximum temperature in the meat was 40°c {(which is the
temperature at the outer corner). After 20 minutes, £he 20%¢
isotherm had moved closer to the center and had penetrated
faster than the 30°C isotherm.

Proteins denature when they are heated to about 60-70°C.
Protein denaturation results in a sudden release of moisture
and it is of considerable importance in understanding the
mechanism of moisture migration inside the meat. From these
isotherms it is possible to tell which region inside the meat
will be releasing moisture due to protein denaturation. This
region will have an increased moisture content and therefore
an increased thermal conductivity relative to the condition
prior to denaturation. The meat was 60°C after approximately
30 min of cooking (Fig. 3.14). The portion of the meat below
the 60°C isotherm is at a temperature higher than 60°C. The
region between 60°C isotherm and 50°C isotherm {Fig. 3,15}
is the region where release of juices is taking place. This

zone moves closer to the center as cooking progresses. A
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similar set of figures, for the oven temperature of 225°C
(and h - 5 watts/m2 OC), are given in the appendix. For an
oven temperature of 225°C, the actual cooking times may be
somewhat longer than the simulated cooking times for the same
center temperature because the effect of moisture loss on
thermal conductivity is not included in the mathematical

model.
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Fig. 3.5. Simulation results showing the Center Tempera-
ture as a function of time for two diffgrent
oven temperaturgs (T = 1757C, Ta'= 225°C, and
h = 5.0 watts/m”~ °C)2
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IV. CONCLUSION

Summary of Results

The mathematical model proposed to describe the roasting
of meat is valid for the constant drying rate period only. In
this period of drying, the surface of the meat remains wet and
the evaporation of moisture from the meat surface can be thought
of as water evaporating from a shallow pool. The constant rate
period of drying (during the roasting of meat) lasts for the
entire heating cycle if the oven temperature is kept low and
the cooking in the oven is done by free convection (low heat
transfer coefficient). Increasing the heat transfer coefficient
and/or the oven temperature eventually causes the surface
temperature to rise and to excead the wet bulb temperature,

This results in the end of the cconstant drying rate period
and the start of the falling rate pericd.

As shown in ﬁhe previous chapter, moisture loss is an
important factor in the cooking of meat. A major part of the
energy required for cooking is used in evaporating the water
bound in the muscle. Moisture loss is greater when meat is
roasted at higher oven temperatures, but the total cooking
time is reduced.  Evaporative losses can be reduced by
raising the relative humidity inside the cven and lowering

the oven temperature. To maintain the same thermal drying
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force (same cooking time), the humidity inside the oven

can be increased which in effect raises the wet bulb temp-
erature. Melting of fat is not very critical in modelling
the roasting process. As shown earlier, a very small fraction
of the energy required for cooking is used for melting the

fat contained in the meat.

If the meat is cooked in a closed oven, the humidity and
the wet bulb temperature in the oven increase as the cooking proceed
This happens because the water that evaporates from the meat
surface 1s accumulated in the oven. Since the drying rate
and the heat transfer rate are dependent on the humidity and
the wet bulb temperature, it is very essential that these
changes in the wet bulb temperature and humidity be accounted
for in the model describing the roasting process. From the
simulation results it was observed that roasting at higher
oven temperature results in higher wet bulb temperature,
higher surface temperature and steeper temperature gradients.
Therefore, it can be concluded that oven temperature, heat
transfer coefficient and humidity in the oven have import-
ant effects on the cooking of meat.

From the simulation results it can be concluded that
the following factors must be considered to model the roasting
of meat in the constant drying rate period
1) Convection and conduction heat transfer in meat
2) Evaporation of water from the meat surface

3) Changes in gas phase wet bulb temperature.
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On comparing the simulated and experimental results, it
was found that the two were in close agreement. For the
center temperature to reach 40°C, the difference in the experi-
mental cooking time and the cooking time obtained from the
simulation was less than 3% for both oven temperatures used
(Ta = 175°C and 225°C). The difference between the experi-
mental and simulated cooking times was about 12% for the
meat to be cooked ' medium ' (center temperature to reach
7D°C). As discussed in the previous chapter, this difference
is primarily due to the gdecrease in thermal conductivity of
meat due to the evaporation of water from the muscle. The
model proposed in this report does not account for the change
of thérmal conductivity of meat as it cooks. For low center
temperatures (below 40°C) the mathematicalrmodel gave very
accurate results, but it should be modified slightly for
higher temperatures.

In modelling the roasting process, the flow of heat was
considered only in two dimensions and heat transfer was neglected
in the third direction. This was a reascnable assumption since
the third dimension of the meat sample used for the experimental
results was about three times larger than the other two dimen-
sions. Heat flow in all the three dimensions needs to be con-
sidered if the length, width and height of the meat piece are
comparable in size.

The Implicit Alternating Direction Method was used to
numerically solve the parabolic partial differential eqguation

in two space dimensions. For the sake of mathematical simplicity,
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the increment in the x and y directions were taken to be same.
As discussed in the first chapter, the Implicit Alternating
Direction Method does not impose any restriction on the time
increment at and the space increment aAk. In the simulations,
At and ax were chosen (independent of each other) to be 2.5
min. and 0.25 cm, respectively. This corresponds to a dimen-
sionless time increment At = 0.035 and dimensionless space
increment ax = 0.09. The computer execution time was less
than 5.0 sec. Decreasing the time incrementby 50%, increases
the accuraéy of the simulation result by only 0.4%, but in-
creases the computer execution time by about 100%. If the
sapce increment ax is reduced by a factor of 1/2, the simula-
tion time increases by a factor of 4 and the accuracy of the
result is improved by about 1°c. It can therefore be concluded
that the Implicit Alternating Direction Method is a very effi-
cient scheme to solve the parabolic partial differential eguaion
in two or more space dimensions. Fairly large values of the
space increment and the time increment can be chosen without

causing serious errors in the result.

Future Work

The mathematical model proposed in this report for des-
cribing the roasting of meat is wvalid only for the constant
drying rate period. If the meat is cooked at a higher oven
temprratur2 ot if the roasting is done in a forced convection

oven, the constant rate period may last for a very short time,
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thus limiting the use of this model. In order to make the model
more versatile, it should be extended to describe the falling
rate period of drying also. The falling rate pericd starts
when the surface temperature exceeds the wet bulb temperature
in the oven. During this stage of drying, the meat surface
is relatively dry and evaporation no longer takes place from
the meat surface. The evaporating zone is moved inside the
meat. Evaporation takes place in the vicinity of the 100°¢
isotherm. Transport of water below the 100°C isotherm takes
place by capillary flow of the liquid. ..Transport .of water above the 100°%
isotherm (in the crust) takes place in the vapor phase. Unlike the
constant drying rate period, where the drying rate is con-
trolled by the external conditions, the drying rate in the
falling rate period is controlled by the‘transport of water
in the meat. The amount of water that is evaporated depends
on the amount of water that is transported to the evaporating
zone. This requires a model which describes the migration of
moisture in the meat.

As stated in the previous paragraph, the evaporation
{(in the falling rate period) takes place very close to the
100°c isotherm. As cooking proceeds, the 100°C isotherm
moves further inside the meat and as a result the boundary at
which evaporation takes place no longer remains stationary.
Due to this, the thickness of the crust increases as cooking
progresses. Since the transport of vapor in the crust is
inversely proportional to its thickness, the resistance to

the flow of vapor increases causing the drying rate to decrease.
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The thermal conductivity of meat depends on its fat and
water content. It is known that the water content of meat
decreases markedly as it cooks. Therefore, there is a need
to consider the variation of thermal conductivity of meat with
moisture content. This requires a model for moisture content
as a function of position.

Summarizing the above results, it can be concluded that
the following factors need to be considered in modelling the
falling rate period.-

1) Convection and conduction heat transfer in meat

2) Migration of moisture in meat

3) Evaporation of water near the 100°¢c isotherm

4) Moving evaporating boundary

5) Variation of thermal conductivity of meat with moisture
content.

Measurement of thermal conductivity, density, and
specific heat of meat have been made by several researchers
8, 9, 10] and their values can be easily obtained from the
literature. So far no work has been reported on the
measurement of diffusivity of water in meat (8 = d/as). in
order to model the migration of water in meat, it is necessary
to estimate the value of the parameter.s . Since the flow of
water in the crust takes place as vapor, it is also necessary

to estimate the value of the mass transfer coefficient kp in

the crust.
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Fig. 3.1. Simulated temperature psofiles for an

oven temperature of 225°C after 10 min.
of cooking. The origin represents the
center of the meat piece.
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Fig. 5.3. Simulated temperature pgofiles for an
oven temperature of 225°C after 30 min.
of cooking. The origin represents the
center of the meat piece.
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Subroutine TRIDAG (Dummy arguments: £, 1, a, b, ¢, 4, v;

calling arguments: 1, M~1, a, b, ¢, 4, T)

Fig. 5.6. Subroutine Tridag
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Nomenclature

width of the meat piece (m)

surface Area of the meat (mz}

constants of Equation (2.6) (Pascals and Pascals/OC)
heat capacity of meat at constant pressure (J/ngC)
heat transfer coefficient between air and meat
(3/m? sec °c)

humidity inside the oven (kg of water/kg dry air)
thermal diffusivity in the meat (J/m sec °c)

mass transfer coefficient between air and meat (kg/
m2 Pascals sec = sec/m)

mass of air in the oven (kg)

total moles of air and water vapor in the oven (kg-moles)
moles of air and water wvapor vented from the oven
(kg/moles)

moles of water vapor in the oven (kg-moles)

total pressure in the oven (Pascals)

partial pressure of water vapor in air (Pascals)
water vapor pressure at the meat surface (Pascals)
time (sec)

aimensionless temperature

center temperature of the meat piece (°c)

wet bulb temperature in the oven (0

c)
surface temperature of the meat piece
volume of oven (m3)

mass of water vapor in the oven (kg)
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dimensionless space variable
space variables (m)
thermal diffusivity in the meat {mz/sec)
water difffusivity in the meat (mz/sec)
increment in the x direction (m)
increment in the y direction (m)
time increment (sec)
dimensionless time
dimensionless time increment
mass of water evaporated from the meat in the time
interval at
latent heat of vaporization of water (J/kg)

density of meat (kg/m>)

‘density of air (kg/mB)

temperature {OC)
ambient temperature (OC)

initial temperature of the meat piece {OC)

represents position on the x axis
represents position on the y axis

represents level of time
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THIS PFUGRAM SOLVES FOR THE UMSTEADY STATE HEAT
COMDUCTION IN A RECTANGULAR MEAT SLAB USING THE l.A.D
METHOD,. INITIALLY THE TEMPERATURE OF THE MEAT IS
UNIFOPM EVERYWHERE AND IS EQUAL TO TO. AT TIME T=0,
THE MEAT IS EXPOSED TC HOT AIR IN THE OVEM AT TEMPER-
ATURE TA. WATER IS TRAMSPORTED FRUM THE MEAT SURFACE
TO THE HOT AIR HEATING THE MEAT. THE HUMIDITY AND
THE WET BULB TEMPERATURE IN THE OVEN CHANGES AS THE
MEAT COOKS.
THE PARAMETERS USED ARE:
K=THERMAL COMNDUCTIVITY OF MEAT IN J/({M SEC'C)
LAMDA=LATEMT HEAT CF VAPORIZATICN IN J/KG
ALPHA=THERMAL DIFFUSIVITY IM THE MEAT M2/5EC
KP=MASS TRANSFER COEFFICIENT IN SEC/H
PA=VAPOUR PRESSURE OF AIR IN PASCALS
H=HEAT TRANSFER CCEFFICIENT IM J/(M2 SEC'C)
TA=AMBIENT TEMPERATURE OF HOT AIR IN *C
TOo=IMITIAL TEMPERATURE GOF MEAT IN 'C
TM=MAX.CEMTER TEMP. TO WHICH THE MEAT IS TO BE

HEATED IN 'C
Al=WIDTH OF THE RECTANGULAR MEAT SLAB [N 4

B3=LENGTH 3F THE RECTAMGULAR MEAT SLAB IN M
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DIMENSION A{5C),B(501,C(5C),D(50),T150,50),TSTAR{50,50)
DIMENSION B1(50),TPPIME(50),THETA{5C,50)
REAL K,KP,LAMDA,MCLE

READ AND CHECK INPUT PARAMETERS

N=GRID SIZE

M=GRID SIZE

DT=TIME INCREMENT IN MINS.
CTAU=DIMENSIONLESS TIME INCREMENT

AIR=MASS OF AIR IN THE GVEM IN KG
MOLE=MOLES OF AIR IN THE OVEN IM KG-MOLE
W=MASS COF WATER IN THE OVEN IN KG

VAPL=MASS OF WATER THAT HAS VAPCRISED IN KG

READ (5,*)TM,ALl,B3
READ(5,*)K, ALPHA,TA,TO
READ{S,*IN,M
READ(5,=*)DT
READ{5,*)PA

PEAD(5,*)H
READ{5,*)LAMDA
DTAU={ALPHA%60.0*DT) FAL1**2
ATR=0.0137
MOLE=AIR/29.0°

H=0.

VAPL=0.

WRITE(6y500)DTAU.MN,AL1,B3
WRITE(6,501 JALPHA,H,K,PA
WRITE(6,502)TA,TO,TM™
WRITE(6,503)
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I=H/164.T*K )
TMAX={TM-TO )/ (TA-TO)
NP1=N+1

MP1l=M+1

FLOATN=N
DX=1/FLOATN
Gl=Al1*H%=DX/K
RATIC=DTAU/(DX:DX)
ICONT=1

SET INITIAL TEMP. IN THE SLAB

DO 2 I=1,NP1
DC 2 J=1,MP1
TiI,4)=0.0
TSTAR(I,4)=0.0

SET COEFFICIENT ARRAYS A,B,C OF THE TRIDAG. MATRIX

Bll)=2.,0%{1.0/RATIC+1.0)
BlL(1)=B(1)
F=2.0%[1.0/RATIC~-1.0)
DO 3 I=2,M

A{I)==1.0

B{I)=8B{1)

B1(I)=B{1)

ClI l=-1 -O

Cil)==2.0

BN=B{(N)

TAU=0,0

TAU=TAU+DTAU

COMPUTE TEMP, AT THE END OF HALF TIME INCREMENT
{IMPLICIT BY ROWS) :

LC 8 J=1,M

00 7 I=1,N

IF{J.NEL1)GO TO 6
D(I)=2.0*T([,2)+F*T(I,1)

GO TC 7T
DIIY=T{IL,J=-1)+F=T{I,J)+T(],J+1})
CONTINUE '

CALCULATE THE COEFFICIENT A2 & 32 OF ANTOINE'S

EQUAT ICON

ANTOINE'S EQUATION : PS=A2+B2*THETA

FOR TEMP. RANGE 0-30'C,A2=-126.4 PA,B2=140.9 PA/'C
30-50'C,A2=-8357.0 PA,B2=412.2 PA/'C
50-70'C+A2=-36001.8 PA,B2=958.9 PA/'(
70-907C,A2=-108230.9 PA,B2=1983.7 PA/'C

IF{T(I,J)-0.14706)51,51,52
IFITII»J)-0.26470)53,53,54
IF{T(I,J)-0.38235)55,55,56
A2=-126.4%

B2=140.9
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GO TO 5

A2=-8357.0

B2=412.2

GO TO S

A2=-36001.8

B2=958.9

G0 TC 5

A2=-108230.0

B2=1983.7

H1={A2-PA+B2*T0) /{B2*{TA-T0))
G2=A1%7%B2%DX

6=G1+G2 .
BIN)=BN=RATIO/{1.0+RATIO*(1.0+G))

IF{J.NE.1IGO TO 18
E=RATID*={TINPL,J+1)-TINPLl,J)+G1-G2*H1 )+T(NP1,J)

GC 70 17 .
E=0,5*RATIO*({TI(NPL,yJ=1)+T{NP1,J+1)-2.0%T(NP1,J)
1+2.,0%(G1-G2%H1) ) +T(NP1,J)
DINI=DIM)+E/ (1. 0+RATIO*{1.0+G))

CALL TRIDAGI(1 ,N»AyByC,D»TPRIME)

D0 9 I=1,N

TSTARI I, J)=TPRIME(I)

TSTAR(NPL ,J)=(RATIO*TSTARI(N,JI+E}/{1.0+RATIO*({1.0+G))

COMPUTE TEMP. OF THE M+1TH COLUMN AT THE END CF
HALF TIME INCREMENT

D0 26 I=1,M
TSTARL{I,#PL1={Gl=G2*H1+TSTARII,M))/{1.0+G)
CONTINUE

COMPUTE CORNER TEMP, AT THE END OF HALF TIME INCREMENT
TSTAR{NP1,MP1 )=0.5*({TSTARINP1,M) +TSTAR(N,MP1))
COMPUTE TEMP. AT THE END DOF FULL TIME INCREMENT

DO 12 T=1,N

DO 11 J=1,M

IF{T.NE.1)GO TC 10
D{J)=2.0*TSTAR{2,J)+F*TSTAR{I,4)

GO TO 11
DIJY=TSTARII-1,J)+F*TSTAR(I,J)+TSTAR{I+1,J)
CONT INUE

CCMPUTE ANTOINE'S CODEFFICIENT A2 & B2

IF{TSTARI(I,J)-0.14706)61,61,62
IF{TSTARI{1,J)-0.26470163,63,64
IF(TSTAR{I,J)-0.38235)65,65,066
A2=-126. 8

B2=140.0

GO TO 15

A2=-8357.0

B2=412.2

GG 10 15
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A2==-36001.8

B2=958.9

GO TO 15

A2=-108230.0

B2=1983.7

Hl=(A2-PA+B2%T0) /{B2%(TA-TO))
G2=A1*7*B2*DX

G=Gl+G2
Bl(M)=BN-RATIO/{1.0+RATIO*(1.0+G))

IFII.NE.1)GC TO 21
EL1=RATIC*{TSTAR{I+1,MPL)<TSTARI(I MP1)+G1-G2*H1)
L+TSTAR(I,MP1) )
G To 22
El=0.5*RATIC*(TSTAR(I-1,MP1)}+TSTAR{I+1,MP1}
1-2.0%TSTAR(I yMP1)+2,0*%{G1-G2*H1 ) )+TSTAR{[,MP1)
D{M)=D(MI+EL/{1.0+RATIO*{(1.0+G)}

CALL TRIDAG(L M, A,Bl,C,D,TPRIME)

DO 23 J=1,M

TUI+J)=TPRIME{J}
T{IyMPL)={RATIO*TII,M)+EL1) /{1 .0+RATIO*{1.0+G))

CCMPUTE TEMP., CF N+1TH RCW AT THE END OF FULL TIME

IHCREMENT

DO 27 J=1.,M
TINPL,J)={G1-G2*H1+T{N,J)) /(1.0+3)
CONTINUE

CGHMPUTE CCRNER TEMP. AT THE END OF FULL TIME INCREMENT

TINP1,MP1)=0.5%«{TINPL,M)}+T(N,MP1)})

TIME=TAU*AL **2/ { ALPHA*60.0)
DO 50 I=1,NP1
DC 50 J=1,MP1
THETA{I ,J)=TII,J)*(TA-TO)+TO

73
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COMPUTE ANTOINE'S COEFFICIENT A2 €&B2

IF{THETA(NP1 ,MP1)-30.0)71,71,72
IF{THETA(NP1,MP1}~50.0)73,73,74%
IF{THETA{NP1 4MP1 )=T0.0)75,75,76
A2==-126.4

B2=140.9

GO 1O 77

A2=-8357.0

B2=412,21

GO TD 77

A2==-36001.38

B2=958,. 39

GO TO 77

A2=-108230.9

B2=1583.7

CCMPUTE VAPCUR PRESSURE OF WATER AT THE SURFACE
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PS=A2+B2*THETA(NP1,MP1)
COMPUTE AMT. OF MOISTURE LOST

KP=H/ {64 . T*LAMDA)
AREA=.15%2, 0*(. 055+, 08)+2. 0%, 055%, 08
WPR=KP*{PS-PA)*2,5%50,0=AREA
VAPL=VAPL+HPR
W=KP*x{PS—=PA)*AREAXDT*60,0+W
WMCLE=W/18.0
AMCLE=AIR/2G,0 .
TMOLE=AMCLE+WMOLE
VMOLE=TMCLE-MOLE
VAIR=AMOLE*VMOLE*29,0/TMOLE
VW=WMOLE*VYMOLE*18,0/TMOLE
AIP=AIR-VAIR
W=W-VHW
HUM=W/AIR
PA=HUM%*29,0%103225,0/(18,0+HUM*29,0)
VOL=PA*] 00, 0/103225.0
TW={PA/0.0002418)**{1/4,33333)
IFIICCNT.EQ.4)G0 TO 998
GO TO 999
WRITE(6, 201 )T IME
WRITE(&,204 JVAPL,PA,VOL,THW
DC 14 I=1,NPl :
WRITE{&,202 Y [THETAL(I J),J=1,MP1)
WPITE(S,202)
CONTINUE

ICONT=ICONT +1
IF{ICONT.EQ.5)ICONT=1
IF(TI1,1)1-TMAX)}4,4,1 .
FORMAT(/," AT A TIME T = ' ,F8.2,/)
FORMAT{17F7.2)

FCRMATI(® ')
FORMAT{* MS=1,FB8.6y/+" PA=1,FG,24/y!
11 TW=',3Fbe2,/)

VCLE="'",F5.2+/»

FORMAT(' THE INPUT PARAMETERS ARE EERVIT DTAU

™

K

14

1F4.,2:/5"' N = 1,12,/ Al = ', F6.4,y/+"' B3

1:F6.4)

FORMAT{' TA = '3FS5.1y /4 TO = VT yFhale/s!

1 ',F4.1)

FORMAT{ ' ALPHA = ' ,F11l.9,/,' H = 1 ,F5,2.4/ !

1= ", F4,2,/,"' PA = 1,F8.2)

FORMAT{? ok dkak ek ek ke ok ckk kk k kkk ok kR ko dok  kk kRt )
sTOP

END
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SUBRCUTINE TRIDAG(IF,L,A,BsCyDsV)

EEEEREEREEE EERF R TR AR FEEXE IR FER T R TR R FF IR IR AR FFRRERER
DIMENSTION A{1),B{1),C(1),D(1),VI{1),BETA(101),GAMMA{10])

BETA{IF)=B(IF)
GAMMA(IF)=D{IF}/BETA(IF)
IFP1=1F+1

Do 1 I=IFPLl,L



. BETA(II)=B(I)-A{I}*C(I-1)/BETA(I-1)

1 GAMMA{I)={D{I)-A(I)*GAMMA{ I-1))/BETA(I)
VIL)=GAMMA{L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K

2 VII)=GAMMA{I)-C{I)*v(I+1)/BETA(I)
RETURN
END

$ENTRY

72.0 0.0275 0.04

0.4 0.000000180 175.0 5.0

11 18

2.50

0.

5.0

24360C0.0
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ABSTRACT

The purpose of this work was to develop a mathematical
model and carry out numerical simulations to describe the
process of roasting of meat. Simultaneous heat and mass
transfer was considered and the effects of ambient tempera-
ture, humidity and heat transfer coefficient on the roasting
process were investigated in detail. The results of the
mathematical simulations were compared with the existing
experimental data and they were found to be in close agree-
ment. The simulations showed that evaporation of water from
the meat surface is an important factor in the cooking of
meat, whereas the melting of fat is.not very critical in

the modelling of the roasting process.



