AL FLOW IN A CONSE
SULTANECES EFFECTIE OF FRIC

o.
-
&

MING~BESIN CHAHC

-
)
N

Giplows, Taiwan Provincial Taipei Institute of Techuology, 16!

A MASTER'S REPORT

submitted in vartial fulifililoenxv of the

requirements fer the degre:x

jue)
o}
o
4]
o]
L s
B
Ho
=
et
o
L
=
{i*
]
Laing
i
]
)
ry
3
b
]
=
71
beta
=
i)
[l
L
bia
vl
0%

KAHUSAS STATE UNIVIERSITY
3 L.

£



LD
2669
R4
/767
& 1/f ' TALLE OF

c. &

INTRODUCTION ¢ ¢ ¢ v o « s+ o = =
NO“{E‘ CL:.E“.. U‘QE . . . . . . L] ® .

FURLAMENTAL GOVERNING EQUATIONG.

WHTELLS

- . - L] ]
3 - @ . .
- L] - [ 3

QUALITAIIVL EFFECTS OF FRICTIOI-THE CRITICAL

WORKING FORMULAS-THE WALL TEMY

SPECIAL CASES OT POLYTROPIC GAS FLOU , . . .

Isentropic Fiow + + « « o
Iscthermal Flow . « o« « &«

Constant-~Mach Number Flow

WORKING RANGES COF MACH NUMBER~TUE

ISOPTESTIC FLOW. . & o + o & &
FUMERICAL EYAMPLE. , « « o+ + .
GORCLUSTONE . w w.n » w w » & = o

-
23 . . . . . . s . . . .

"J

REFEREXC
APPENDICES . o « + 5 « o s s o a

ACKNOWLEDGEMENT., v v o o 5 & » &

.

L - (] 2 [3
. £ - (3 v
(] - a .

bt
=
o
oy
¥4
VAl
-1
od
t—(
-

. . L] . .
a . - . .
] . . - .
L] a * -
- - . . .
] » ) . .

. * .
. 2 °
- » +

MACH

] - .
] .
. [ .
« - L]

. . .
L] . 4
L] - a
. 1 ]
L] ¢
. . +

« v .
C e
. s s
UMBER
s v .
v s e
s e
. s .
2 e .
f 0 s
v
+ . »
e e
e s
s e

18

. 26
. 29

. 45
. &E



T The Critical Mach Humber of 2 Parfect Gas with
k = 1‘4 * * L] L 3 . + ~ L

-

1

.

“

-

v

-

a

-

.

.

.

»

-

-

»
s

L

I1. Variztions of Stream Proparties of a Pexferct Gas
with n = 1.2 and k = 1.4; H_= 0.924 . . . . + « + « « « 14
I1I. Stream Properties of Polytropic Air Flow, n = 1.%2;
k = 1‘IA - . . L] * L 3 L3 L] - . L] L ] . & £ 3 + - L] L] L] - L L] L[] 39
LIST OF FIiIGURES
Figure Page

=
ry
t
1
o
=]

1, Critical Mach NHumber of a Perfect Gss zs a Fu
of n; I“'— = 1'4 L ] [ 3 * 2 L L 3 ¥ 4 ’V. » L ] L] L] . L] £ - - - » L ] 12

2. Working Range of Mach Fumber for Isentropic Gas Flow
in a Constant-Area Ducty k = 1.8 . 4 4 & % + o o s« o« &« o &« 30

3. Workingz Ranges of Mach Number for Polytropic Gas Flow
in Censtant-Area Ducts; K = 1.4 . . . o ¢ ¢ « 4+ &« & + o+ o 31

£
-
W

Stream Properties of Pelviropic Air Flow, n = 1.2;
P P :

-4 ] . (3 . (] E] - * - - L3 " [ * . - * # L] . € ] » . - 38

=
Jut

I8

5. £ x/D and (s-s }/R/J for Polytropic Air Flcw,
1.2

= ] ;k=l--o . - ® . ® [} [] ] . * ] L] 3 s ] . ] . -"i-ﬁ

=]

6, Working Ranges of Mach Number for Heating and Coosliug
of Polytropicec Air Flow with n = 1,2; k = 1.4 . . . . . . . 41

7. Woxking Renges of Mach Number for Heating and Cooling
of Paoliviroplc Air ¥low with n = Z,0 and n = 1,0;
k = 1!4 - L] - . L] L L] L - L] L a L ] L L ] L[] » - L] € L » L ] L] - 57

8., Working Ranges of Mach Number for Hazating and Ceooling
of Pclytropic Air Flow with n = C.,5 and n = -0.5;
k = lezi L3 L[] L] L] * L] L] L] - - . = L3 a L] L] » o * - L] L] L] L L] 58

9. Working Ranges of l!lach Number for Heating and Cocling
of Polytropie Air Flow with o = -1,0 and n = -2,0;
k & 1l£} L] - L] . - L] - L3 - L] a L » L 4 L ’ L] - L3 L] < . . - 59



INTRODUCTION

There are a number of studies puvblished for steady, one=-
dimensional flow of a compressible fluid. Shapiro and Heawthormne (77
presented the equations of steady flow sheowiug the combined effects
of external heat exchange, friction, area change, dérag of internal
bodies, chemical reaction, change of phase, injection of gases avd
change in molecular weigﬁt and specific heat, Recently, Chen (3)
obtained equations for changes in zome fluid properties alomg the

passage which include the thermodynamical behaviers eof the char-

dv

- = 0) of the pressure-voalume relation of

acteristics of n (-Eﬂf
a perfect gas for three sge cial cases of subsonic heating: constant-
heat flux, constant-wall temperature and exponential lengit tuadinal
fluid temperature distributica.

The main purpose of this resort 1s TC iavestipgate the physical
properties ¢f a perfect gas flowing steadily, and which un dergoes
a pclytropic process im a constant-area duct under the simultenecus
effects of friction and heat transfer, 1t is agssuned in this re-
port that: (a) the gas is flcwing in a duct according te the relation
pvn = constant, where n is constant, (b) the molecular weight and
the specific heats of the gas are constants, aud (c) Ehe Reynelds
Ansalogy is valid, the recovery factor is unity and the ratio of
specific heats is 1.4,

A so-called "Critical Mach Number"”, which represents a limit

€or a continuous polytropic gas flow. is used in thig report. This

critical point means that no flow car oocux such that the velocity

=h
l"l

o he gas passes through the eritical ¥



In addition to the irvestigatlens of fluid properties, equations
and figures are developed for several cases for ithe working ranges
of Mach Number of a polytropic gas flew inm ducts, The working ranges
were studied through an examinatisn of the related factors, such as
the impulse function, the stagnarion temperazture and the wall temp-
erature ratio, From these investigations of the working ranges of
Mach Number, it is shown that the isopiestic flow (n = 0) of =2

sage with friction

rd

perfect gas is impossible in a ¢onstant-ares pa
and heat tranzfer,
Based on the unpublished notes of Professor Wilson Tripp,

Department of Mechanilcal Engineering, Kansas State University, and

o
~.J
o

e zand reference 10, page 23, three particular

¢rence 4, pa

L)
i
Fh

on

aQ

[&)]

cases were surveyed as a verificatien to those formulas derived in
this report. Those three cases are: the isentroplc flow, the iso-
thermal flow, and the constant-Mach Furher flow.

Finally, 2 numerical example is presented to show the devails
of the calculztions required to obtain the wvariations of the physi-

cal properties of air flowing in 2 constant-area passage, according

; n
to the relation pv = constant, where n is equal to 1.2,
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KRGMENCLATURE

cross-secticnal flow area, sq. ft.

wetted area, sq. ft.

velocity of sound, YkRT , ft/sec

specific heat at constant pressure, Btufslug °R
specific heat at comstant volume, Btu/slug °R
equivalent hydraulic diametér, GAx/A

expansion efficiency, defined by Equation B-2
impulse function, 10

mechanical energy converted to thermal energy by friction,
ft-1b/siug

local friction coefficient

mean value of friction coefficient, defined as %{ f dx
nass veloecity, w/A, slug/sce sq. ft.

coefficient of convective heat transfer, Rtu/seec sq. ft. °R
mechanical equivalent of heat (778 ft-1b per Bru)

ratio of specific hezts, cp/cv

total length of flow passage, ft,

Mach Number, V/VKRT

Critical Mach NWumber

coastant of pvn = gecnstant

static pressure, 1lb/sq. ft. abs.

stagnation pressure, lb/sq. ft. abs.

heat flow per unit mass, Btu/slug

gas constant, ft-1

recovery factor, (Ta -T)/(?O—T)



.

entrepy per unii msss, Bitu/“R slug
adiabatic wall temperature, °R
stagnation tewperature, °R

flow passage wall temperature, °R
internal energy per unit mass, Btu/slug
axial velcecity in flow passage, ft/sec
specific volume, cu, ft./slug

work per unit mass, ft-1lb/slug

rate of mass flow, slug/sec

axial distance through flow passage, ft.

Greek Letters

density, slug/fcu, ft.

a parameter, e, pdv/J dQ

Subescripts

1

2

Supersc

=

W

e

.

signifies properties at initial section of flew passzge
signifies properties at final section of flow passage
properties evaluzted at Fanno Line

properties evaluated at Rayleigh Line

properties evaluated at the Critical Mach Number
slignifies stagnation state

signifies conditions of the wall of the duect

ipts

signifies properties cf iseuntropic flow at iHach Number
unity '

signifies properties of
1

isothermal flew =t Mzach Hunmber

Yk
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transfer are analyzed in the

vestigated here are based on
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a2 polytropic gas
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EQUATIONS

flow in 3 constant-

ed effects of fviction and heat

following pages. All probliems in-

the feollowing basie hypotiieses:

(1) The flow is steady and one-dimensional, that is to s=zy
all properties are uniforﬁ over each cross section.
(2) Changes are continuous in stream propeviiec.
{3) The fluid is a2 pexrfect gas with k = 1.4,
(4) The specific heats, ratio cf specific heats and molaocu-
lar weight are all assumed to be comstant.
(5) The fluid flow is polytropiec according to the relation
pv = constant, where n i1e censtant.
(6) Heat is transferred instzntaneously, coumpletely and
transversely throughout fth2 cross section,
Assume & perfect gss is flowing into a duct at the inlet
section named 1 and alongz the cducit to an arbitrazry section., Then
i) s (ot T n;l
(=3 = & T Bl o (1)
1 1 1 1
By iogarithmic differentiation the first part oi Equaticn (1)
gives
47
= = fa-~l] == (2)
From the expression for a perfect gas, the Mach Humbar 1s



uZ = y2/kRT

By logarithmic differentiation,

2

dM dv dT
gl =y BV B8 3
2 Y T (32
M
The continuity equation is
¢ = W/A = pV = constant
cr
.C.l_g..;...c_};y.— [
o Fv T °
i dp dv i ’n ¢ 1 i
Eliminating the terms 5 and from Equations (2), (3}, and (4,
yields
df _ _ n-=1 dﬁz (5)
T a1 M2 :
The stagnation temperature is
k-1 .2
T0 = T(1 + 5 M7)
or in differential form,
k-1 2
i . _
Eiﬂ - &1 “;&Ji__u.;ﬁi (6)
T T 1.2 2 .
o 1+ -5 4

-

Substituting Equation (5) into (6) fo: gﬁ,

“



dT

o _ (k-l)H2 - (p-1 dM \
T~ ko1 7y 2 (7
o (14n)(1 + ;§~H‘) M

From Equations (2) and (5),

dp _ -1 an? (8)

P n+l MZ &
Eliminating i% from equations (4) and (8) gilves

av _ 1 au’ 55

Vv n+l MZ ‘

By logarithmic differentiation of the second part cf Equaticn

(1), and using the relation of Lquation (5), one obtains

(¥ n+l MZ vy

From the definition of the stagnaticn pressure,

k.
k-1.2.k-1
= 1 —_
po p(_._ + 2 il )
After differentiation,
dp kHz
o _ dp + i W Si_ifa (11)
Pe P+ S x”
Cembining Equations (10) and (11) gives
P oM )
'PD _ (n'l‘i\)"'-z" - n B df‘{_: .
P . k-1 7. 2 (12
o {o+1) (1 + =5 Y M

~d



The definition of the iumpulse fvaciion is
o 2 A + vz
F = pA + pAV™ = pa(l + kM)

In differential form

From this expression, with the halp of Eguvation (10) to eliminate

a7 kM~ - n 4} 2y
""‘.E‘: T = (LJ;

The chanpge of entropy in differentiail form is

4T Podn .
da = o =oow 5 == (14)
2 J P

5w ol B - (15)

(16)

-
183
Fhy
w
Lt
w
]
1
o]

4, pagz 230, the change of

Yrew Fguatioen 8.40

tach: Humber under che dnflueuce of both friction and heat iLrans-
{ey, #or the conditione ¢f this sannlysilis, dis expiraszoed as



’ - 2 -1 2 4 2 k-1..2.
-:;_ k e 3T &t 1 Sl
d}[ = ——-—(l+' }I } (1 i )._.'J' . ) ° ﬂ. -+ kl‘i (J_ ' 2 i )-- I .d...x.,
M2 (l—Mz) o (1-4") D

Substituting Equation (€} into (71?) %k ginplifying gives

.2 {(n+l1) kM2 (1 + *-'—"51 2) -
dx
. &E 5

M 90 - M2[(n+2k-kn) + k(k-1)i"]

(17)

(18)
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S is always positive, it is
selected here as.an in&ependent varizble in ordex to'invéstigate-
the characi.:-eristics of fluid flow in the duct. The Vremaining
variables, such as -dT/T, d'l'olTD etc,, may comseguently be found
in terms of 4f§—§. with the aid of Equations (5), {7), (8}, 9

(16), (12), (13), (16), and (18). The final results are:

55 k(l—n)ﬁz(l + kgiﬁz) d
X ;
_ 2n - M [(a+2k-kn) + k(k-1}#")

dT .

=2 - kM %(k'l)?i__f_.ilm';l}._]_ g 94X (20)
o 2n - M [ (n+2k~kn) + x{k-1)H"]
2 k-1.2
__T Y i p— R
dp _ KMT(1 + 5 M) H o
o 2 T4t (23}
' 2n - M [(n+2k-kn) + k(k-1)¥"]
. i
el + Bl
dvVv , 2 dx .
=~ " " 5 s GF S (22)
9n - M7[(n+2k-kn) + k{k-1)u"]
-1
. ket + Bxhy®y .
dp _ I SN— (23)
P 2n - M‘[{n+2k—ku) + k(k-1)M] B
d 2 . .
Po o [(atiOn® - 201/2 e 4 ot

2 -
Pa 2n - U [{n+2k~-kn)} + !«:(';-;—l)}izj



2. 2 -1 2
- KME (M -n) {1 = =577 ) -
9; = = i e e e L f 3% - (25)
_ 2n - M [(n+2k-kn} + k{k~-1)3M"]
-— 2
. k(k-mu® (1 + Ephet) i
ds = > ' ' — fF EX (26)

— 2 . & }
(k=13 150 = w¥[(n+2k-kn) + k(k—l)ﬁz]J z

From these equations it 1s seen that the Qirection of change
depends not on whether the flow is subsonic or supersenic, but
whether the denominator is greater or less than zers., RNoking
that 4f i% is always positive, the equatiowns fron {1y) to (283
become infinite if thé deacminatoer is zero, This mé#ns that
when the Mach Number is of such vszlve as to-cause the denominator
to be zero then this Mach Number is a limiting one for t?e gas
flow. This point is called the Critical Mach Number and is
represented by Mc°

Let

i
o

2n - Mi[(n+2k—kn) 4 k(k«l)ni}

or

o

K (k=107 + (n+2k-kn)Hi - I =

-

3 I3 d . gré a
Splving this equatioun for M. sives

~(or2kokn) 4 Jotakokmd’ ¢ ek (k1)
2

{k-1)

It




et
~

oT

R _
—(n%g;—kqjh+'¥{n+2knkn)“Ji_§§gikull : (27)
SK(k-1) A2

The pesitive signs before the sauare roots are chosen, since
2 . = . F :
Mc and Mc are always positive. From Equation (27) it is cleariy
shown that no real Critical Mach Number exists In a polytropic

gas flow for any negative value of =n.

M
¢

o BT

Crirical Mach Number,

Figure 1, Critical Mach K f a Perfect Gas as a

u
Function of n, k
For polytropic flow of a perfect gas in a duct, the Critical

Mach Number for twenty-two.differcat values of positive n are

celculated by assuming k = 1.4 and are shown on Table 1. For any
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additicnal values of positive n, the Critical MMach Number of flow

can be cbtained from Figure 1.

Table 1. Critical Mach Number of a Perfect Gas, k = 1,4

n Mc n Hc
0.0 0.000 5.0 1,890
0.5 0,598 - 1,932
1.0 0,845 6.0 2,070
1.4 1,000 6.5 2.155
. . 1,035 7.0 2.236
2:0 1.195 [ 2,335
2,5 1,336 8.0 25 305
3.0 1.464 8.5 2,464
3.5 1.581 9.0 Z2.53¢6
4,0 1.690 945 2.605
4,5 1.793 10,0 26818

According to Equations (19) threugh (26), the clrections of

changes in the stream properties can be easily examined. As an

L14/]

example, Table II summarizes the case of a perfect gas in which
n = 1.2 and k = 1.4, Here it is seea that the Mach Number always
tends toward the critical Mach Number 0,924. Continuous transi-
tions either from M less than Mc to M greater than Mc, or from

M greater than HC tc M less than Mc'are consequently impossible,



For any gas
of changes of stream propexztics

the differential equatiocas from (19)

Table

Variations of
Gas with n = 1,2 and

flow

5 i~} PR S
WIUTH OiEnCy

Stream Propertles

R e e

M<HM
c

(

-

ubsooic

L, the directions

Hh
m
f )
=

cf a

oy

o b
SV V)
FE |

o~

Mo
C

nic or Supersonic)

Mach Numbsr
Temperature

Stagnaticn
Temperature

Density

Velocity

Ir;}gulﬂ.-.

Fanction

Entropy

incresses

decreases

ases for M-
g foxr HM<

decrezzes
decriases
GeCFEeases

increases

[l

.
~g =y

QO
.
R N |

{

finc:easeg

‘decreases

increases

decreases
inwreascs
decriases

increanes

increases for M<0.836
decressas for M»0,936

decreases

for M<0,951
1decraases for M>0.9¢61



W2RYING FORMULAS

In order to obtain formuiass suitable for practical ccmpu-
tation, the integration of the previcusly given.differential
equations 1s needed. The Mach Number will bo selected as the
independent variable for this purpose. Equation (18) is re-

arranged to read

L M2 - LY | 2
dx "¢ 2n - M7 [(n+2k-kn) + k(k-1)M"] g™
LA 2 k-1 2. R
0 M2 (n+1)kMT(L + == M%) ‘ M

where -the limits of integration are taken as {I) the sectioz

where the Mach Number is M, and where x is arbitrarily set equal
tec zero, and (II) #he.section where the Mach Numﬁer is M_, and:x
is.thé length L of ducﬁ ﬁea:u:ed ét M = Mc' | ‘

The integration of th: ai.ove-mentioned eguation is carvied

.out in Appendix B. The final result is

' 2
= L 2 M 2n 1 1 5
Lf — = —— R'n(.._._) + e (._...... & __..) (28}
D n+l i Mc k(n+1) ,MZ Mi ‘

where f is the mean friction ccefficient with respect to length,
defined by
L
£ = % J fd=x
0
By similar methcds of integration other stream properties
are found in terms of the loczl M¥ach Number. These integrated

relations ara:
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n-1 . i 3 p  Elm=1)
TE=a W n—1 I.‘ T
2z (23T = &9 = Pl = ey (r+1) (29)
1 P P v M’
c C c
i g 2LE-L) g g Dl
o _ e, (n+1) 2
= (—) o v, (30)
T M k-1 7
oc 1 + -
2 "¢
k
D g 2. 3 o4 byt Bof
o c,n+l 2 ~ o 5
(u-if) ( },_1 2‘. (..-".1,
Poc 1 4+ —H
2 ¢
2n
M — 2
¥ +1 1 4+ kM 9
T (E,I—F')n ( 5) (32)
c 1 + kM
c
R (n-k) Mi
-— = — s ——--—--——:-—----———--— ; e a3 A
© T e T T ALY (1Y a2 (337

hie quantities marked with a subscript c in these 2xprescions,
such &g Tc, PC, etc., repiesent the values of the streazm propor-
ties at the section in the duct where M = M .

The next step 1is to find out the wall temperature of the
constant-area passage fcr polytropic gas flow., Consider an in-
finitesimal length of duct dx, The rate of hest transferred from

the wall to the fluid is equal to the rate absorbed by the fluid.

From reference 4, pp. 213 and 243, this cau bz written as,

wdQ = pAV c_ d T = U (T -7 ) da (34)
P o w 2y W



The recovery facter is taken €

Thus, Equation (34} becomes
aT_ " §
T -T pVe D
v o p

Furthermore, Reynolds Analegy,
and coefficient of heat transfer, i

is, from reference &, pp 243,

_H
Ve
R P

- £
2

Introducing Equation (36} into (35)

dT
o

"

Equation (37) shows the relati
stagnation temperature aund the leng
stituting Equations (7) and (18) fo

(377,

gives

2kmZ [ (1-n) .+ (k-1)u%]
7
2n - M [{n+2k-kn) + k(k-1)H

P}

}

17

o be unity, i'e"—Taw

(355

which relates {riction facrox

assuﬁed to bea valid. This

FE

i
O8]

o

P

gives

(WY
~u
et

on between the change in

th of flow passage. Sub-
dTo dx
T znd 4f—=, into Equation
o '
T
::—i.-.l
T
¢



1.8

Simplifying this expression for T fTo yinrlds

Wl

2 2
- M (LK ] )
Tw - 2n M [n(1+k) + k(i-k)u ] (38}

o  2n - MP[(n+2k-kn) + k(k-134 ]

4

This formula represents a ratic of the local wall temperature

to the local stagnation temperature of the fluid flow. Since

| ]

5 always gresater than zero,

the absoclute temperature of Tw or To

the signs of the numerator and denominator of the right-hand
side of Equation (38) must agree with each other., This charact-
eristic defines a working range of Iach Number for any k;nd of
polytropic gas flow in a ccnstant—aréa duét under the influences

of frictien and heat transfer.



Based on the note:z

Mechanical Engineering,

page 178 and reference 10, page 23,

tropic gas flow 1in &

of those formulas derived

Case 1

duct

b=i

SPECIAL CASES
of Professar Wi

Kansas State Universit

three

spac

are to p2 used here

d

w

b2

investigated in

YTsentrople Flow

19

v, on reference &,
1:1 cases of poly-
as & verificavien

this report.

When n = k, the polytzopic gas flow is isentropic and the

governing phyeical differential equaticus (5%, 47)5 (8), {9}y (2

(12), (13), and (18) become

dT .. dp av _ (k-1) dp _ _ !
R D e
dT ) eeny -1y e
- 1) -
To  (k+1)(1 + ‘i-zi w2y W
a8, _ K(M2-1) an?
Py (k+1) {1 + =~ 47 V?
. 2 ;
a¥ _ k{M"-1) arl
Foopr1) (1ekn?y  o?
2
_ R _k _k o odM
ds = 7 - g7t ol — 77 °

4 2 :

(=13 &M

e (39)

[ " ’

(k+1) M?.
(40) -
(413
(42)

lson Tripp, Department of

i

-~

b
:
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Through steps of simplifying Equzation (18) for ths case.

n = k, the frictional term of isentropic flow Is

dx _ 2k - MA[k(3-k) + k(k-1) n2} aw?
s e NE k-1 2 7
k(k+1)M (1 + 7 M7) M
2. .3=-k k-1 2 .
TS TR WAL TR
M2 (1 + 1‘—5-5 %) LTy
, oy« S5y
. ) - dM
k+1 Mz(l » k;l 1) M2
2 -ty ad’
T (k+1) 2 .2 e
M M
or, in an altered fcrvm,
2 2 5 g
sz _ (k;l)“ M 5 4 i% (4a)
M (1-M7)
Substituting Equation (44) into (40) yields
T, 55 o’ dx : T
T - T S N IR fhaa)
o (1 + === M7}
, 2
aT
From this equation it is clear that "%ﬂ is negative, since
o
455% is always greater than zore., This says that ouly a cocling

process can occur for isentropic flow in ducts wich friction sad

heat transfer.
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From Equation (38), the wall tamperaivre ratio for the case

n = k is simplified as

W 2k - Mz[k(k+1) + k(l—k)ﬁzl
o 2k - MI[K(3-k) + k(k-1)u"]

k+1 k-1 ,.2

1 - 7 KD

1 - Mz[l L el

=
1
[

(1 - u2) (1-n%)

|

=
[
‘—l

(1 + u2y (1-m2)

d

=
1
[

(1 - u2y

= ' ) ‘ (45)
(1 & Ebony

-
l

=
1
=

Noting that the absolute stagnation tlenperature is always
greater than zero, the wall teunperature ratio of the present

case is never negative. That is to say

k-1

2
M >
== M%) 20

(1 -

or

M o< J/;%T | (454)

Equations (44A) and (45A) show that isentreplc gas flow in

a constant-area duct is pcssible only fer the cooling process

-
and only when the Mach Number is less than or equal to ;k 1
Y k-

: /2
For air, M < /=7 = 2.287,
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The working formulas for isentropi- {low can be obtained

cal differential equa-

e

either by integrating the governing phyes
tions from (39) to {(43), or by substituting k for n in the inte-
grated working formulas of polytropic flow, cn p2gt .+ The

results are

k-1 =1
—_— k-1 k-1, et
T k VE 1l .k+1
T ('g—;) = (g";) = (g = (T) (46)
¥ ¥
T l‘..-_];
o k41 2 k-1 .2 :
-5 = L5} (——)(1 + —= M7) (473
* I .
" - 1 2
(¢}
o Kk kK ol
. o | - Y - c—13
—= = (15)k+_ (;:';?"]“)k Lo “5—1 woy o (ea)
P M
1.
‘max _ 2 o, . ! ik 0%
B —a= = oo (u?' 1+ L n") (45)

141

The quzrtities marked with an agterisk In these axprezssicn

peto

such as p#*, V¥, stec,, represent the vaiues of the straam PLCPEYLLTS
2t the section in the duct where the Mach Number is unity. Tha
Cpitical Mach Number for isentropic flew is equal to unity.

The formulas and ccnclusions presented here for isentropic

flow agree with those given in reference (9).
Case I1 Isothcrmzl Flow

When n fs unity the fleid flow is isothexrmal znd the govaerning

differential eguaticns Lznoie



dp _ dp _ _ dv _ 1 JdM7 507
> - 3 % (5073
aTt E-L o? 2
o _ 2 M (513
A
o 1+ b, Mz e
2
a7, 1+ KM% - 2 au?
p_ k=1 .2, @ @ (ad
o 4(1 + -0} M
dF kMz - 1 dM2 .
F B o2 L3
2(1 + kM™) M
2
1 R dM
ds = LB AU (54)
2 1] MZ
From Equation (18), the friction term for the case n = 1 is
ppdx _ 2= MOLQAHK) + k(k-1) ¢ 1 aw?
- 9
o w1 + £ ) R
or, rearranging,
2 k-1 2
aM kMT(1 + 3 MT) . fs
g = 7 2. 4 75
2M 2 - MT[{14+k) + k(k-1) M7]
(km?y (1 + 5'2;1— M)
= sk [I-f g_.}_{
1 -
2(1—kr-12)(1 + ',,i :12) b
2
kM dax
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Substituting this relation into Eguatinns (51} and (52) gives

dT s

P
To _ L(l;-l__j. e bE Q.B. (56
o 2(1-kM7) (1 + f‘-.5_~~ IS
dp Aora TAEO e L
o _ 2 dx
B w1 7. f 3%
Po 2(kM°-1) (1 + =5— ¥7)

Equations (50), (51), (55}, (56) and (57) are the same as those
presented on page 179, reference 4. To obtain the working formu--

las for isothermal flow, the usual integratioa wmethods are used.

For example, Equation (55) may be rearranged to give

Carrying out the integration yields

L 2
oF -PRE o LML g g (58)
kM :

Using similar methods the formulas whichk fellow are obtain=ad

, xt ;
7

——E—— = g = ki - = 1 . (59)
P p kM

5 k ke

1 2k (k-1 k-1 2. k-1 N

*j% — (EE?I) (1 + =5~ H7) (649)
P, kM

T

o _ 2%k k-1 .2

=t T G-y YT (61)
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e
=

5
[ath
o
S

(63)

i g . .

Such symbols as p ~, V ~, etc., in the relastions from Equa-
tions (59) to (63), denote the stream properties at a Mach Number

equal to the Critical Mach Humber (i.e, Hi-). The wall temper-

Vi

ature ratio for the present case is

i‘g_ _ 2 - M2 [(1+k) + k(1-k) M7

2 .

To 2 - MP[(+K) + Kk(k-1) H%]

2 1\12 r
1 - MT[(1+k)/2 + k(1-k)m™ /2] 3 5
2 k-1 7 T (64)
(1-kM™) (1 + ﬁf; M)

An examination of Equation (5€) shows that Leat is added to

the stream when M is less than 3. , #&nd heat is rejected frem the

vk

But from Eguaticn (64), investigations

*

stream when M exceeds L.
vk

give the results that the heating procass is frem Mach Number

equal to zero to the value of i: , and the cooling process 1s con-
k

fined in a ﬁorking range of llach Number, decreasing from 1.774 to
1,063, This behavior of working range and the term Tw/To was nnt

presented in reference 4.

These working ranges of Mach Vumber for isothermal flow in a

duct are:
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1.063 < M < 1,774 H cooling process,

Case 111 Constant-Mach Number Flow

When n = -1, constant-Mach Number flow exists im the constant-

area passage, as shown in Appendix C. The governing physical

el
5 from those

¥

differential equations atve obtainad by eliminating
M
simultaneous equatioms (5), (7), (&), (9), 10y, (12), (13} ard

{16). For exzample, the term i may be cancellei when Equations

(5) and (13) are divided one into the other, yielding

4T _ (L-n) (1 + kM®) dF
T

(kM2 - n) ¥
When n = -1,
dT dF
T~ 2F

Integrating this relation from state 1 to any arbitrary state

gives

=)
(2 4



T Ty vy 2 P2z .2 B 7
T T ({;?) B k=) B U ® e
Y1 01 1 - by Py

From Equations (5) and {16), the entropy change is
q L PY 2

- R hiﬁil) ) L
§ 7S TTITNECD) a7

o
&}
iy
e
Yooy

Equation (17) can be simplified by settil

stant Mach Number flow) giving

ar_ - L2
0

teanperature ratlio is

w =% & WOP{1ek) # k(k-1) H

,

6 =2 - ¥ P(3k-1) + k{(k-1)H"]

J 1 - MTEQR1y/2 o w{k-IDNT/2)
- ) 2 - - L.
1 (3k-1)/2 + kik-1)1u"/2]

L}-kﬂz){l +- 7 /
(1+knz)(1 3+ (k-13u°/2)

(65)

(66)

0 (for con-

(67)
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Equation (67) shows that the stagnation tewperature of

constant-Mach Number flow always décreases, Thus
process can occur. Equation (68) shows that this
cess must be in the range that the Mach Nuwmber is

than Eo . That is " & T g
'k n

cnly a cooling
ceoling pro-

equal to or less
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WORKING RANGES 0¥ MACH NUMBER

Frbm the last three particular cases it 1s shown that there
alvays exist some restrictions either for the heating or for the
cooling process for polytropic gas flow in a duct. These re-
strictions will be further investigated here in order to obtaln
a general expression for any value of n.

The working range of Mach Number is defined by:

(1) The differential governing equation of stagnation

temperature, i.e., Egquation (Z0}.

(2) The friection term, ﬁfg% g

(3) The wall temperature ratio (Tw/To), which 1is greater

than zero, i1.,e.,, 0 < TW/TO < @

(4) The Critical Mach HNumber

(5) The impulse function,

Through a study of these factors, the working range of Mach
Number will be obtained. For isentropic gas flow (i.e., n = k),
the working range of Mach Number is deteyrmined as follows, (1)
From Equations (44A) and (45A) it is seen that only cooling pro-
cesses can occur and the Mach Number must be less than or equal

2 - ; ;
to = Bevond this wvaluz no isentropic gas flow can exist
k-1 y ! g

in a duct. (2) The directions c¢f flow can be determined by the
differential form of the impulse function and the value of the

Critical Mach Number.



Substituting Equation (44) inte {(42) gives

2

5 = Fy 4]
1 4+ k¥

This shows that the impulee function zlwvays decreasges be-

cause of the friction. From Equaticn (42), the reiatiom cof im-

pulse function to Mach Number is
aF k(M2-1)  ax
= (42)

Fo (k1) (14kM%y w2

subsonic (M<1), the Mach Number inecreases to unity (dX

because the change of impulse function is negative, and whan
the flow is supersonic the Mach Number decvezses
veloelty.

Figure {2) shows the working racges of Mach Number for

isentropic gas flow in a comstant-area duct,

1.0 «
0,660 — e o — — N

| ™~
0.5 T ey,

Wall Temperature Ratio,
/T

o : |

= | S

= 1 L

0.0 - ... T
1.0 2.0 2,237
Mach Nunber, M
Fig, 3 VWorking Range of Mach Number for Isentropic Gas

Flow in & Constant-Area Duct; k = 1.4



can

and

dix

polytropic gas floﬁ

Using similar prcredures,
be obtained for other cacses
a
b,

Figure 3 shows the combine

the working rangas of Hach Numhar

of n, such as 2, 1, 0.5, -0.5, -1

These special cases are shown on Figuras 7 teoe 9 in Appen-

d working ranges of Mach Number for

in constaut-areca ducts.

Y/
A /
2.0 o s 7
: ?f 4
o i rj/’
1.4 =7
” %_—'——"-M% Do —— % T -—7-‘,
£ L s el e
o AR, ——
0 SE———
¢ Y N(n = 0.777
o 0.5 —— — 14 1.2¢1
i o f
- :%ﬁ; Critical Mach ¥umber Line
z—, 0 . G ‘d‘::_ = X L8 = SERR S
e i — 1.0 2.0 3.6
(o] “ )
2 _0.5 = | Mach Number, M
s
. -
" ] I‘iGtﬂ:
-1.0 |- S ;
o Eégg represents cooling
b lEE:i represents heating
Avrous show dirvrection of Mach
Mumber changes. n_ and n, are
the wvalues of n for the Rayleigh
i line and the Fanno line (see
] Appendix A).

for Polytropic Gas
Lo,
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From Figure (3) ii ig ecean that: (1) a gap exists between
the heating and cooling processes as n becomes greater than
0.777, (2)'on1y cooling processes can occur when n is less than
zero, and (3) when the gas flow in duct 1is isopiestic (i.e.,
n = 0) neither heating nor cooling can occur in a censtant area
passage under the combined effects of friction and heat transfer.
A proof that the isopiestic flow is impossible in & duct is
demonstrated in the following paragraphs. The dinpulse function

1ls

F = pA + pAV2 = pA(l-!-kMz)

After differenmtiating, and nnting that both the pressure and

area of impulse function are constant, there results

dF k o2
'_—f = 2 d L'{

(1+kM™)

Dividing both sides by dx,

1l dF _ k sz (£-13
—_— el
F dx (l+kM2) dx
M2
where i must be negative since the Jmpulse function decreases

in the direction of flow.

From Equation (7), the stagnation tempcrature for m = 0, is
4Ty 1+ (k-1yn” an? )
's 1+ LE%LLHZ e

Substituting Equation (A-2) into (17), and solving for the

Mach HNumber, yields
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dJZ _ L+ N H £ el e OX
—F =" R )
M 2 + (k-1) M~
Dividing both sides by dx,
2 2
dM M
1z -2f 5 (A-3)
dTo T‘
Replacing 7 of Equation (37} by (A-2), and solving for ?i 5
o 0
gives
EE " D 1 + (k-1) M2 sz Ced
= T o A
'I‘o 2f Mz(l 2 121 MZ) dx
Substituting Equation (A-3) inte (A-4),
Ty D 1+ (k-1)n° M2
T -1 T3 2 -1 2. (C2E R
lo} M7(1 + & )
2
_ (k-1) H (A-5)
2 + (k-1) M
From thermodynamics the value of k is known always to be
greater than unity. Therefore the ratio —- ig negative, This
G
is impossible because the absolute temperaturz cf Tw and To are

always greater tham ze

TO.



EXAMPLE

Problem: One pound of air flnws steadily in a constant-

area duct with friction and heat tranasfer, according to the

¢ n : . .
relation pv = constant, where n = 1.2, At one section in the

duct, air is at M = 1, p = 100 psia and T = 1000°R, It 1is de-

sired to determine all the physical propertles of the air flow

from p = 50 psia to p = 150 psia, and show the final results on
graphs. (Assume k = 1.4, R = 53.3 ft—lb/lbm °R, cp = 0,24
Btu/lb_ °R, ¢ = 0,17 Btu/lL_ °R)

m v m

Solution: For peclytropic air flow with n = 1,2, the
Critical Mach Number is equal to 0.924 (sece Fig., 1). The mnass

flow per unit area can be obtained as follows,

V = MC = 1 (49,02/1000 = 1550 ft/sec

p = P/RT = 100 x 144/53.3 x 1600 = 0,270 1b_/ft’
w/A = pV = 0,270 x 1550 = 418,2 1b_/ft’sec
The physical properties of air at the critical Mach Number
may be obtained by using thess werking formulas for n = 1,2,
n-1

Mo2(5s )

-9 ™ 2 0.920)° 182 < 0,955
c - ' '

T __ . 1000 . Sg
Te = 5,985 © 0,985 - 101445 7R

a 2n

r ‘*‘:L'—' y

- G = 0.920)7%%1 < 0,017

34



_ p . 100 O g =

Pe = G.917 © 0.917 ~ 0P80 psie

1‘{ .;?'......

P_ . (Ti)n+1 = (0 92&)0 e 0.931
p M

C

0,.2701

p. = 0

2

V. _ M n+l 1 0,569 _ 5
‘-Ic - (\{ ) 0‘924) L= 1007&‘..
P _ 1550

" 10557 = 1.0747 1443 ft/sec

n-1 -1.2
T Mo o2(EEsy 1 o4 =ooy
o) c n+l 1.2
poane— = ) e o s = 0 s e = 1
T G -1 7) = ©.985 ({7i7gg) = 1.010
oc 1 & =M
To k-1 .2
= = = 1 g e e il = g 2 - °
T,. = Torg = T(1 + <7 M)/1.61¢ = 1200/1,010 = 1188 °R
k
2n k-1 ,2 5
Po_ eyt (L Z T s T 6.017 (238 - 1001
o % ) » 1.892 .
ocC 1 + ——

o
~

— 0_.,. - .1"_:_:..]_'.. b 2 k - l s 2 - i
Poe = TTO0T © POX * yH ) /1,001 = 100(1.892)/1.001
188.8 psia
F B iﬁl 1 4+ 1l
e _c L ! - =
F_ = (M ) (l 4 kgz) 1.002



v 7
F /4 = —;%%~ = p{l+¥u©)/1.002 = 100(2,1942)/1.002 =
219 1b,/ft>
(s~s )
O sl My oo 358
Bl3 2.2 ﬂn(Mc) = Bl dox
Yo 2.4 - w%[2.88 - 0.56M%] _ .
T""-‘—" 2 ?"— —0.1_666
o 2.4 - M°{2.32 + 0,556:°]

1

M 1 .
4Lf 1.818 En(ﬁ") + 0.78 (EZ - =) = 0,0173

]

)
M2
[+

ST

Using similar methods, the streawm preparties at other
pressure could be obtained if the Mach Number of filuid flow
is known. For example, suppose that the prescsure of air is

150 psia, then

1.0546

HIH
I
-~
ﬁ[d
S

=
]
~~
t
kL
u

T = T_(1.0546) = (1014.45)(1.0546) = 1070 °R
C = 49,02VT = 49.,02/1070 = 1602 ft/sec

Since the flow is steady,

= '=E— = E'.'
PV=rt V= Gy

> |



and

The cor

.
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AT .

M= 4§18, 2 ‘
D e e = 3 ! oA
(77T 50 = 144753.3 = jojo - 1103 ftisec
V/e = 1103/1602 = 0,682

are az follows,

espondd

u
!

&

0

r
=

™
o
o

n-1 ] '
Y ) =
= (f{C)z(nﬂ’ _ f:_é‘.?;.ixc"“k = 1.0546
M “a.6se’ o
W 2R S
M st 0.924, 1091

1.3783

'!'
7~
3
x

—r
I
1}
~
i} ‘
|
i
—
1

[ c,n+l ), 824, _ %
0 (v - n (0,685) = 1.306
c
2
- ]
I o @Bgmrt o (oD B G.766
v ‘M 0.524’ oo
c c
Ty M E%Ei%%.- S8 iiir'
== () VMY 2y = 0,986
3 kel @
oc 1+ =
2
: _k_
P T D =
o c.n+l 2
o P ( =) = 1,088
M k-1,2
co : 1 +4 M
2
., 2n 2
1 + ki
%_ - (;c)n+. (lW*"}do) = 1,05
c o 1+ &y
afF 2= 1.818 ¢ -4 o0.78¢ - Ly - 0.197
D Y aow A YV 7Y
c C
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T 2.4 - n%[2.88 - 0,561°]
o 2.4 — MZ[2.32 + 0.26M°]
SV— s 1

—c M
R/J 2.2 "n MC

|

For other values of pressure, the physical properties are

tabulated in Table III for &air flowing in the constant—-area duct.

1.7"
1.5‘
1.3¢
1.1
0.9r
0.7¢
0.5¢
i ] (s 1 — ] 1 ] pc
0.0 0.5 0.7 0.9 1,1 1.3 1.5 1.7 1.9
Mach Nuwmher, M
Fig. 4 Streazm Properties of Polytropic Air Flow, n = 1,2
k = 1,4, Noste that the Sywmbols: 1 = p /fp , 2 =
/T , 3 =7/¥ , and 4 = T /T . ° ec
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Figures (4) and (5} represcnt the continucus variations of
stream properties of polytrepic 2ir flow in 2 duvci. Figure (6)
shows the gorking ranges of HMach Nuwber for heating and ccoling
of the present problem. This is to say that the range of Mach

Number from 0.0 to 0,707 is for cooling, from 0.707 to 0.924 is

for heating, and from 1,02 to 2,022 is cooling again,

L S PSRRI, SR

1.1 1.3 L.> 1.7

Mach Number, M

R/J

for Polytropic L3 Flow, n = 1.2;

% (u"sc}
Fig. 5 éfﬁ and RT3

k= 1.4



The Wall Temperature Ratic, Tw/To
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0

0.707 < M < 0.924
0.00 < M < 0,767

1.020 < M < 2,022

_ K=2,022 =
*%%Rﬁ A/z’ ‘

(U DU . DR S

i.8 =z.0 2.2

2.4

f
s |
Z2.2L i | tolM_ = 0.924 at T /T =
c W
1|
2.0¢ Note:
Lheating
1.8¢
cocling
1.6¢
1,45
1.2F M:O.?O?m\\\\K J
VO Egr— e o o g
s
0.8%
0.6~
0.4
_-f'-i'-'q-.;-_.*__ -
0.2 1.0620 T
L F M=1,C ;
N\, 4
N\
[} 1 | b A Y = "]
0.0 0.2 0.4 0,6 0.8 1.0 1.2 1.4 1.6
Mach Number,
Fig. 6 Working Ranges of Mach Number for Heating and

Cooling of Polytropic Air Flow with n =

k = 1,4

1,.2;



The steady, one-dimemsionzl polytropic gas flow in comnstant-
area ducts under the simultancous eifects of friction and heat

is5 assumed In this report that

r
1.4

transfer was investjgatéd. I
the area of duct, specific Reats, molecular weight, and the
value of n of the pressure-veluma relation of a perfect gas, are
all constant. In addition thco Raynﬁlds Analogy is assumed and
the recovery factor is taken as unity.

The general working formulas ¢f polytropic gas flow were
oLtaiaed in terms of n, k and M, zad an important ratio of the
local wall temperature to the local stagnation temperature was
also found. Three particular cases, (the isentropic flow, the
isothermzal flow, and the constant-Mzch Nemnber flow) were used to
verify the formulas derived in this report.

A so-called “Critical Mach Number", which represents a limit
for cqnfinuous pelytropic gas flow in coastant-area ducts, was
defined and investigated. For the Critical Mach Number, there
are four final conclusions: (a) for evary positive value of n
there is-always a definite anﬁ unigue value of the Critiezl Mach
Number, (b) there is a parabolic relation between the Critical
Mach’Number and the positive value of n, (c) the Critical Mach
Nuzher is zero when n is zere, and (d) nc Critical YMach Number
exists for negative values of n,

Besides the investigation of the stream properties, the
working rangaes of Mach Number for polytrepic gas {lew were in-

vestigated. As to the characteristics e¢f the workiug ranges of



Mach Number, four conciusions wewe made: (1) the isopiestic flow
can never occur In a constant-avrea passage undcer the combined ef-
fects of friction and heat transfer, (2) for ﬁositive values of

n the flow either for heating or for cocling is in the direction
of approaching the Critical Mach Number, (3) when the value of n
is negative the flow is always subsonic and no hoating can occur
for a polytropic gas flow; enly the cooling process can cceur and
the range of Mach Number fnr this cooling varies ffcm zero to a
value approaching unity as n becomes more negative, (4) the di-
rection of flow for the cooling prccess ic to decrease the Mach
¥umwber to zero when n 1s less than zero but greaiar than -1; when

n is less than the value -1, the flow is in the dirsction to in-

creacze the Mach Number from zero to some limiting value definad
T .
3

by T ¢
0

Only the heating process exists for the case eof any positive
value of n from zero to 0.777, and the Mach Number for range of
heating increases as n increase, When n is greataev then 0.777,
but less than unity, there always exist both heating and coolirg
processes for gas fleowing pclyiropically in a duct. VWhenever the
value of n is beyond the value of unity, there exist one Mach

Number range for heating and two Mach Number ranges f

cr cooling.
When n equals k, (isentropic flow) it is noted that only the

cooling process exists, and its range of Mach Nuumber is between

2
zero and s When n is equal to -1 the flo.r of gas is the
v k-
constant-llach Number case,
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For any value of n thore exists either one or two definite
ranges of'Mach Numbers for which neither heating nor cooling can
oceur. This is due to the assvmption of the Reynolds Analogy
and to the assumption that the value of the recovery factor being
equal te unity, wvhich results in a megative valve of the wall-

temperature ratio, Tw/To’ which is au impnssibility.
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Apolytropic Flow
From the first law of thermodynamics,

dQ = du + dW

If an irreversible diabatic expansion process of a perfect

considered, Equation (B-1) becomes
= v/
dQ S dT + e, p dv/J

Now, let

e, P dv/J

dq

E=2
i

Arranging this relation for dQ, gives

e p dv/J

dQ = —= 5

Substituting Equation (B-3) into (B-2), gives

8y P AV/I g4y L, Se
3 T(k-1)

From the equation of state, pv = RT;
R dT = p dv + v dp

Substituting (B-5) into (B-4) gives

e p dv

e p dv + v dp

¢ - (k-1)

+ LT
e, P dv

46

(B-1)

gas is

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)
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After combining and rezrvangiag,

[1 + ee(k—l)(l—l/Q)ip dv + vdp = 0 éB"7)
Let

1+ ee(k—l)(l—1/¢) = n (B-8)
then Equation (B-7) becones,

npdv +vdp =0 (-9}
If n is a constant, integrating Equation (B-9) yields

pvn = constant

This is a polytropic flow, in that n is a constant, If n is not
a constant apolytropic flow will occur. The Fanno Line or the
Rayleigh Line processes are examples of apolytropic flow in which

n in Equation (B-9) is a function of k and M.

Rayleigh Line

This is a reversible diabatic process for which 2, 0= L.

Thus, Equation (B-7) reduces to

np = 1+ (k-1)(2-1/9¢) (B-10)

Solving Equation (B-6) for ¢,

(k-1)
vdp/pdv + k

¢ = (B-11)



From page 196, Equations 7.1i8 and 7.17,

p_ . _(1+k)
P” (1+kH2)
v _ (itk)m?
VE ()

or in differential form,

dp - —dez
P (1+kM%)

av . au’
v

M2(1+kH2)

Dividing Equation (B-14) by (B-15), viel

vdp/pdv = -kMz

reference 4,

Substituting Equation (5-1%) into (B-11),

¢=._._._....,__.__..

(k-1)
k(l—Mz)

Combining Equation (B-17) with (B-10),

Fanno Line

This is an irreversible adiabatic process for which ¢

Thus Equation (BE~8) reduces to

n, = 1+ ee(k—l)

(B-12)

{B-13)

(B-14)

(B-15)

(B-18)

=
L)

(B-19)



Using the relations cv = ¢ - RJI

(B-2) becomes, with dQ = 0,

k cqs =
-1 RdAT - (1-—ee)pdv - vidp = 0

How, Bernoulli's Equation gives
-v dp = v dV + d?f

where de is daefined as

dF, = (1wee)pd?

£
Combining Fquations (B-20), (B-21) ond

k
S S T FAV =
(k—l) RAT + Va 0
Substituting Egquation (B-5) into (B-23
I 5
vav = - J_ﬁ%__ (pdv 4 wdp)

Eliwinating VdV, from Lgaailens {B-21i)

_ k pdv _+ wvdp
f (k-1)

dF
By Ifguation (B-22), €, becomes
S F
e » . L.t vdp/pdy
a {k-1)

From p., 168, Equatiors 6.22 and 6,23,

aad ¢ /cv = k Equation

(B=-22), gives

} for R4T,

1

and (B-24), gives

referancae 4,

(B-20)

(B-21)

(8-22)

—~
o> ]
!
t~
(5]
—

{B-24)

(B-25)



Sl (k1) jl"
PE M o4 k;lmz)
v 2(1 + E—E—iﬂz)
or, in differential form,
2
dp _ 1 + (k-1)M a2
= - T3 k-1.2. ot
P 217 (1 + =5=°)
dv 1 2
£Y = aM
Vo ooanP(1 4+ E%lﬂz)

Dividing Equation (B-27) by (B-28), vielding

o
vdp/pdv = -[1 4+ (k-1)¥"]
Subgstituting Equation (B-29) into (B-26}

M

m
1]

and, by Equation (B-19)

n, =1+ (k-1) M2

50

(B-29)

- (B~30)
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APPTNLTIX B

Integration of Equation (28)

2
N
From Equation (18), 459% in terms cf the Mach Number Q&T
can be represented as
2 . 2 2
dx 2n - M [(n+2k-kn) + k(k-1)M"] dM
4t =5 = 2 k1 .2 2 -l
(+1) kM7 (1 + 5= M) M
or, in integral form,
2
»
{L 4f 51_35_ _ 7n . {LIC dMZ _
lo e N LY
2 2
A ahE
n+2k-kn F‘c an? (k=1) Jhc at
+ I N -1
n+l)k h2 (1 + kzﬂ g }I? (n+1) qZ (1 -+ Efl q2)

(c-2)
Since the right-hand side of Equatien (C-2} is complicated,
a separate mathematical operation should be used for each of the

three integrals. From the first term, the Iintegral is

2
M 2
C M
I 2 r (c-3)

Let

7z = L4 AE-L) (c-4)
M



then
- (i-l)/z , @ = ey -1
(Zz - {(k-1)/2)
and
k=1 .2, 2 _
(1 + 5= M) = a7 (C-6)
Substituting Equations (c-4), (C-5) and (C-6) inte {(C-3), gives
2
M
c 2 Z Z
Jz de-z4=Ic(kgld—§"dz)=(%}‘ﬁ""z)c
M (1 + T-H M Z Z
2 & 4o
1/ + (k-1)/2
k-1 ¢ ] 1
=55y 2 LA S
1/M° + (k-1)/2 M“ Mc
k-1 _2.
k-1 (L + 5= M) 42 3 1
=77 M T R N S i LE-72
(1 + 5 M) M M M
c c

Using similar assumptions

second term becomes

M2 Z
J c d}[z ) :r c

. 2 = -

M2 (1 o+ Efl MiHym® Uz
(1 + .1.("_1 1,[2 ) 3.{2
= @ 2 o e
| P 7
R o1+ ‘?1 W} M-

and nmethod, the 1integral of the

(c-
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The integration of the third term gives

2 2
f”c di’ (2 g (14 koL Mz)]Hc _
w2 o 4 k;l ) k-1 'n 2 2
(1 + E:_.]:. }.{2) :
g Z__¢ (c-9)
(k-1) n (1 + _l'_l__g__]_._ M.'Z)
Substituting Equations (C-7), (C-8) and (C-9) into (C-2),
k=1 .2
[L LE ax _ 2n [k"1 ) (= 2 dc) . Ei + i _ l"]
. D" Dk 2 n o k-1 20 77 777
2 (S c
k-1 .. 2 2 k-1 _ 2
_ n+2k-kn [L (1 + 2 k. . Eg]_ 2 2 (1 + 2 Mc)
{(n+1)k n (1 + k;l HZ} M2 (n+l) “n (1 + k-1 M2)
c 2
(Cc-10)

After simplifying the right-hand side, and noting that a
constant, average friction coefficient f is uscd for the inte-

gration, Equation (C-10) becomes

7L poo—2o k1
BEF = () b T b e O - 5 (c-11)



APPENDIX C

Constant-Mach Number Flow
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It is the purpose here to prove that the polytropic gas flow

is constant-Mach Number flow when n = -1 in the relation pvn =
constant.

The relation between pressure and specifie voluwme for a

polytropic flow n = -1 of 2 perfect gas is
P
% = ;L or, P - %" (D-1)
1 P1 1

For a constant-area duct the continuity equation is

v

B L (p-2)
P1

Therefore, from Equations (D-1) and (0-2),

P
P v 1 \ .
5 v (n-3)

From the equation of state of a2 perfect gas,

P = PRT and, pl = leTl
T .
P._=E_.T_ (D-4)

or



T _o_ . 1
f\l pl p
Substituting Equation (D-3) into (D-5)
i b 2 v .2
== &) = o
1 P 1
From the definition of Mach Number,
2 2 2 2
vS = M°KkRT and, V] = M]KRT;
V.2 M .2,T
(g") = 2 )
1 1 1

From

This shows the flow is constant-Mach Number as

Equations (D-6) and (D-8),

2
M
G- =1
1

polytropic gas flow,

for it 3
p

(D-5)
gives
(p-7)
(D-8)
n = =L of the
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The Wall Temperature Ratio,

The Wall Tamperature Ratio,

/T,

T
W

fm
L

i

,_.
1

[#]

w

]

1.6} K mo= 2,05 M=1.196
- heatlns jiating 1.196<M<1.58

R . "‘ =t
1.7 p ¥ cecling 0,0<M<0,967

it g 1.58<M<2,766
o.si\\ M=1.58

d-

cooling

cooling
0.4¢
M=, 807,
\ =4 14
ﬂ n»: e {! . . . »
. U J.2 1.6 2.0 2.4 2.8

Mach Humbar, H

%
4

1.6k
/

ta

3 ’

- .’2gafipg A= 1.0 N = 0.844
hzating O0<l<0, 844

0.87¢ p "
cooling 1.063<M<1.774

G.br

M=1,063

1 0.844 =1,774
0

0.4

“6“ 2.0 2.4 2.8

Mach Number, M

Fig. 7 Working Rauige of Mach Number for Heating and
Cooling of Poiyizopic Alr Flow with n = 2.0

and with n o= 1.0; k = 1.4



The Wall Temperature Ratio,

The Wall Temperature Ratio,
T

TW/T

Lo

/T,

w

M =0,598

L3

0.8

Mach Number, M

n= -0,5

cooling 0<M<0,8025

Mach Number, M

Fig. 8 Working Ranges of Mach Number for Heating and
Cooling of Polytropic Air Flow with n = 6.5
and with n = -0,5; k = 1.4

heating = 0.0<M<0,5%2
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The Wall Temperature Ratio,
Tw/To

0

The Wall Temperature Ratio,
TW/T
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1.2 n = ~-1,0

1.0 constant-Mach Number Flow

ccoling

. A 1 -4 1

0.0 0.2 0.4 0.6 0.8 “.0,.844

Mach Number, M

cooling n = -2,0

Mach Number, M

Fig. 9 Working Ranges cf Mach Number for Heating and
Cooling of Pelytropic Air Flow with n = -1,0
and n = -2,0; k = 1.4 .
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The mainrpurpose of the work in this report is to investi-
gate the physical properties of a steady polytropic flow of a
perfect gas in a constant-area duct under the simultaneous zffects
of friction and heat traznsfer, The assumptions made in the analy-
sis of this report are that the exponent "n'" of the relation
pvn = constant, the molecular weight and the specific heats of
the perfect gas are all coastant, and that the Reynolds Analogy
is wvalid, the recovery faétor ijs unity and the ratioc oi specific
heats 1is 1.4,

The governing physical equations and the working formulas
for the polytropic gas flow in ducts were derived in terms of
n, k and M, and the ratio of local wall temperature to locel
stagnation temperature was also found,

A newly named "Critical Mach Number", which TEPIESb;ES a
1imit for continuous polytropic gas flow, was investigated and
found that no Critical Mach Number existed for auny negative value
of n.

Particular treatment was given as a verification tc thoss
formulas derived in this report for the cases of the igsentyropic
flow, the isothermal flow, and the constant-Mach Numbar flow.

It ié found that the final results of the cases are entirely
the same as that shown on references (4), (9) and (10)}.

The working ranges of Mach Number for heating and cooling
processes of a polytropic gas flow were also studied., The fimnal
important findings are that the isopiestic flow of a perfecrt gas

is impessible in a constant-area duct with friction and heat



"tranesfer, and that if the value of n is negative only a cooling

process can OCCur.



