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INTRODUCTION

Testing the equality of two or more population means is a problem

that occurs In nearly all disciplines. The usual analysis. of variance

F test for equality of means is based on three assumptions:

(1) independent random samples are selected from the populations,

(2) the data from each population are normally distributed, and

(3) the population variances are equal.

This study focus's on the violations of assumption (3), the equal

variance assumption. Various alternatives to the usual analysis of

variance F test which have appeared in the literature will be

presented and their properties discussed. Recommendations will be

made concerning the use of these tests.

For an experimenter trying to choose an acceptable alternative

for the usual analysis of variance F test there are two topics of

concern, robustness and power. Robustness refers to the ability of

the test statistic to hold the Type I error rate at the desired level

when basic assumptions are violated. The power of a test statistic is

its ability to detect differences among population means when there

are differences among them.

If a test is to be applied in a range of circumstances in which

assumptions are violated, the test must be robust. Lack of control of

Type I error rates will make a test unacceptable to the applied

researcher. Among tests that are robust, power can be used as a

criterion for choosing among them.



One of the common beliefs about the unequal variances situation

is that if the treatments have equal sample sizes then the usual ANOVA

F test is satisfactory in some sense. The findings of this report

bring the conventional wisdom into question. A most important point

for a researcher is not to choose an alternative test solely on the

basis of robustness but under careful consideration of the power of

the test statistic also. The primary focus of this report is the

power of alternatives to the usual ANOVA F test when the equality of

variance assiomption is violated.



ALTERNATIVE METHODOLOGIES

Let X., be the j observation in the i group, where j = 1,..

n^^ and i - l,...,k. The x..'s are assumed to be independent and

2normally distributed with expected values ^i. and variances a. . The

• • 2minimum variance unbiased estimates of /i. and a. are,

^i." .^ ''ij/^i
^""^

^i
" ^

^'^ii
^ ^/("i

" ^^ respectively.

Various alternatives to the usual ANOVA F test are presented. A

numerical example is given to illustrate the computation involved for

each test. In order to demonstrate numerically how to perform the

various tests the data set in Table 1 was used in each case.

TABLE 1. Data for Examples.

Group 12 3 4

1 12 12 13
8 10 4 14
9 13 11 14
9 X3 7 17
4 11 8 11

10 10 14
1 12

5

13
14

"i
7 6 8 8

n.

s^ X. . 32 70 69 110
j-1

ij

=^i.
4 .571 11 .667 8 .625 13 .750

s2 16, 286 1 .867 9 .696 2 ,786



1) THE ANALYSIS OF VARIANCE METHOD

The usual analysis of variance F test for testing the equality of

population means in a completely randomized design, with one-way

classification, is given by the following equation,

^ - - 2
E n (x - X )V(k - 1)

^
2

S (n. - 1) s:/(N - k)

i-1 ^ ^

k _ k n.

where N - S n. and x - S S""" x /N
i-1

' •

• i-1 j-1 ^J

When all population means and variances are equal, this statistic

follows the F distribution with (k - 1) and (N - k) degrees of freedom

respectively. This will be referred to as the ANOVA F statistic.

An Example of ANOVA

An example of computations for the ANOVA F statistic are

calculated using the data in TABLE 1,

N - 7+6+8+8 - 29 x - 281/29 - 9.690 ' '

F _ f 7 (4. 571 -9. 69') ^+6 f 11. 667-9. 691 ^+8 (8. 625-9. 69^ ^+8 (13. 75 -9. 69^ ^1/3
[6(16.286) + 5(1.867) + 7(9.696) + 7(2.786)1/25

- 115.941/7.777 - 14.908.

The ANOVA F value of 14.908 would be compared to a critical value

denoted as F (3,25) where a is the probability of a Type I error

chosen before hand, and 3 and 25 are the degrees of freedom of the

.05^



the null hypothesis that all means are equal would be rejected at the

.05 level of significance.

2) THE METHOD OF BOX

Box (1954) proposed a procedure that requires the computation of

the ANOVA F Statistic but adjusts the critical value and the degrees

of freedom to account for the unequal variances. Box proved that a

bias coefficient, b, determines the direction of the discrepancy

between the actual probability of the Type I error rate and the

nominal Type I error rate. The b coefficient is approximately the

ratio of the unweighted and weighted means of the population

variances. When the group sample sizes (n.'s) are equal, the weighted

and unweighted mean variances are equal, hence b - 1.0. When the

group sample sizes are unequal, unless the variances are homogeneous,

b may be either greater than or less than 1.0. When b ^ 1.0, the

ANOVA F statistic will be biased. Box showed that the mean square

ratio of the ANOVA F statistic is approximately distributed as

bF(h' ,h) where h' and h represent reduced degrees of freedom and F

represents an F random variable. Although Box defines b, h' and h

from the population variances it is possible to substitute the

estimated variances from the sample data in the following equations;



k k

^-i^ [.f^
(N - n.)s2]/[^s^ (n. - l)s2]

h' -
[ 2 (N - n.)S^]^/[( S n.S^)^ + N S (N - anjs'!]
i-1 1-1 ^ " 1-1 ^ "

k k
h -

[ S (n - l)sh^/l S (n - 1)S*1.
1-1 " - 1-1 " "-

An Example of Box's Method

An example of computations for Box's method are calculated using

the data in TABLE 1,

5 _ f25^ [22(16.286) + 23d. 867^ + 21^9.696-) + 21(2.786)1
29(3) [ 6(16.286) + 5(1.867) + 7(9.696) + 7(2.786)]

- [25/29(3)] [663.355/194.425] - 0.980

jj, _ [22(16.286) + 23(1.867) + 21(9.696) + 21(2.786)1^

([7(16.286) + 6(1.867) + 8(9.696) + 8(2.786)]^ +

29[15(16.286)^+ 17(1.867)^+ 13(9.696)^+ 13(2.786^])

- (663.355)V((225.06)^+ (29)5360.828] - 2.135

[j _ [6(16.286) + 5(1.867) + 7(9.696) + 7(2.786)1^

[6(16.286)^+ 5(1.867)^+ 7(9.696)^+ 7(2.786)^]

- (194.425)^2321.251 - 16.285

bF g^(h',h) - bF ^^(2. 135, 16. 285) - .980(3.552) = 3.481.

Recall the ANOVA F - 14.908. Box's method yields a critical value of

3.481 so the null hypothesis would be rejected. Most computer

packages will do decimal degrees of freedom. A conservative critical

value could be obtained by checking the critical values corresponding

to integer degrees of freedom on either side of the fractional degrees



of freedom and chosing the largest value. For this example 2 and 16

degrees of freedom would be the conservative degrees of freedom.

It should be noted that in the equal sample size case, after some

algebraic manipulation, the critical value reduces to F { (k - 1)6',
a

(N - k)e] where e' and e, the factors by which the degrees of freedom

are reduced, are given by

£' = 1/(1 + C(k - 2)/(k - l))c^)
, e = 1/(1 + c^)

and c is the coefficient of variation of the variances. That is to

say,

If

2 2 — ? 9 —9 9
c ^ (l/k) 2 (trf - a^)V(^ ) .

i-1
^

where

-2 >= 2

i-l ^

2Because the population variances (cr.'s) are unknown, use the estimated

2variances (S 's) to estimate the parameters.

3) THE METHOD OF BROWN & FORSYTHE

Brown & Forsythe (1974) suggest a statistic in which the

numerator Is the same as the ANOVA F statistic. The difference is in

the denominator which has expectation equal to. the numerator when all

means are equal. That is,



F* 1=1

k
n. ^,,.
1 1

S n.(x. - X )^

^
2

2 (1 - n./N)S:
i-1

i 1

Critical values are obtained from the F distribution with (k - 1) and

f degrees of freedom, respectively, where

k ~ (1 - n./N)S?
1/f - S c^/(nj^ - 1) and c. - r '—

.

i=l 2
2 (1 - n./N)S:
i-1 ^ ^

Brown & Forsythe used the Satterthwaite (1941) approximation for f.

When there are only two groups Brown & Forsythe 's statistic reduces to

what is known as the Welch (1936) approximate degrees of freedom

solution to the Behrens- Fisher problem. Although Scheffe' (1944)

proved that exact solutions of this type cannot be found, a simulation

study by Wang (1971) has shown this approach is adequate for the size

of the test for the k - 2 case.

An Example of Brown & Forsythe 's Method

An example of computations for Brown and Forsythe 's method are

calculated using the data in TABLE 1,

P*
f 7(4.571-9.69)^+ 6(11.667-9.69^^+ 8(8 . 625-9 ,

69->^+ 8(13.75-9.69^^1
((1-7/29)16.286 + (1-6/29)1.867 + (1-8/29)9.696 + (1-8/29)2.786

]

- 347.823/22.874 - 15.206

c^~ (1 - 7/29)16.286/22.874 - 0.540

c^- (1 - 6/29) 1.867/22.874 - 0.065

c^~ (1 - 8/29) 9.696/22.874 - 0.307



c^- (1 - 8/29) 2.786/22.874 - 0.088

1/f - [.540^/6 + .065^/5 + .307^7 + .088^/7] - 0.064 , f- 15.625.

Since Brown & Forsythe's method yields F - 15.206, compared to

F 05^^' '-5 -^25) - 3.256 the null hypothesis would be rejected.

4) THE METHOD OF WELCH

Welch (1951) suggested the following statistic,

^ - - 22 w (x - X )^/(k - 1)
2 1-1 ^ ^-

V
[1 + (2/3)(k - 2)A]

where

2 _ k
w - n /S , w - S w. , S - -i^i

2 w.x.
1 1

.

1 L
i-1

A -

k
S
i-1

3 S (1 - w /w)V(n. - 1)

2
(k^ - 1)

The numerator of Welch's statistic differs from the ANOVA F numerator

in the sense that it weights the overall mean and the deviations from

it by w^ rather than n^^
. The critical values may be obtained from an

F distribution with (k - 1) and (1/A) degrees of freedom,

respectively. When there are only two groups Welch's statistic also

reduces to what is known as the Welch approximate degrees of freedom

solution to the Behrens- Fisher problem.
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An Example of Welch's Method

An example of computations for Welch's method are calculated

using the data in TABLE 1,

w^ - 7/16.286 - 0.430 w - 6/1.867 - 3.214

Wj - 8/ 9.696 - 0.825

w - (.43 + 3.214 + .825 + 2.872) - 7.341

A - 3{(1 - .43/7.341)^/6 + (1 - 3.214/7.341)^/5 + (1 - .825/7.341)^/7

+ (1 - 2. 872/7. 341)^/71/15 - 3(.376)/15 - 0.075

1/A - 1/.075 - 13.333

5 - [.43(4.571) + 3.214(11.667) + .825(8.625) + 2 . 872 (13 . 75) ]/7 . 341

- 86.069 / 7.341 - 11.724

V - ([.43(4.571-11.724)^+ 3.214(11.667-11.724)^+ .825(8.625-11.724)^

2. 872(13. 75-11. 724)^]/3)/[l + (2/3)2( . 075)

]

- (41.723/3)/!. 100 - 12.644.

2Since Welch's method yields v - 12.644, compared to an F ^ (3,13.333)

= 3.387 the null hypothesis would be rejected.

Levy (1978) proposed that the non-null distribution of Welch can

be approximated by a non- central F distribution with parameters (k -

1) , f" , and A
, where

2
^

f" - ( k - 1 ) / 3 A A - S ( 1 / ( n. - 1 ))( 1 - w./ w )

1-1 ^
^

/ 2 - k
w - n / CT. w - 2 w.
'

' " i-1 ^
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_. k _ k _,
2

u = Z w . u . / w and A=- S w. (u, -u)
1=1 1=1

Monte Carlo techniques were used to demonstrate that this

approximation is reasonable. Thus, as is the case with an ANOVA, one

could determine appropriate sample sizes for achieving a desired level

of power associated with Welch's test or, for specific sample sizes,

one could determine the power of Welch's test for particular

alternatives to the null hypothesis.

5) THE METHOD OF JAMES

James (1951) found a test statistic similar to Welch which

differs primarily in its approximations for the critical values. The

test statistic proposed by James is simply the numerator of Welch's

statistic and may be written as

'^ - - 2
J - S w (X - X )V(k - 1)

i-1

1, 1,

where w, — n./S.

i-1 " • i-1
, , , ,

w - 2 w . and x - S w . x . /w11 ..1 ...,11.'

2 2The critical value is x h(Q) where x is the (1 - a) percentile from

the chi-square distribution based on (k - 1) degrees of freedom and

h(a) - {1 + [(3x^ + (k + l))/2(k^ - 1)][ S (1 - Wj^/ w)V(n. - 1)11.
i-1

"

Just like Brown & Forsythe's and Welch's statistic, James' statistic

also reduces to what is known as the Welch approximate degrees of

freedom solution to the Behrens- Fisher problem in the two sample case.
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An Example of James' Method

An example of computations for James' method are calculated using

the data in TABLE 1,

v^ - 7/16.286 - 0.430 w^ - 6/1.867 - 3.214

Wj - 8/ 9.696 -0.825 w^ - 8/2.786 - 2.872

w - [.43 + 3.214 + .825 + 2.872] - 7.341

X - [.43(4.571) + 3.214(11.667) + .825(8.625) + 2 . 872(13 . 75) ]/7 . 341

- 86.069/7.341 - 11.724

J - [.43(4.571-11.724)^+ 3.214(11.667-11.724)^+ .825(8.625-11.724)^

+ 2.872(13.75-11.724)^] - 41.723/3 - 13.908.

The a - 0.05 chi- square critical value baseed on 3 degrees of freedom

is 7.815,

h(a) - (1 + [(3(7.815) + 5)/2(15)][(l - .43/7.341)^/6

+ (1 - 3.214/7.341)^5 + (1 - .825/7.341)^7 + (1 - 2.872/7.341)^7 ])

- [1 + (28.445 / 30)(0.376)] - 1.357

;(^g^h(.05) - 7.815(1.357) - 10.605.

Since James' method yields a chl-square value of 13.908, compared to a

critical value of 10.605 the null hypothesis would be rejected.

OTHER METHODS

Several techniques exist that were not chosen for a more detailed

investigation and comparison either because they were too complicated
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to be feasibly used by the typical researcher or little was found on

the power behavior of the test statistic.

The Second Order Method of James

One such technique Is known as the second order method of James.

This method Includes a second order approximate term that is added to

the correction factor h(a) for the critical value. For k > 2 James

proposes to use the first order method for smaller samples or the

usual chl-square critical value for large samples. In his opinion it

would Involve too much numerical calculation to Include the second

order correction term when considering the small gain in precision

when the second order term is added into the equation. It should be

noted that in 1951 the computers were not as efficient as they are

today. Thus, if James' second order correction was Implemented in a

statistical package so that hand calculation would not have to be

done, then the second order method could give slightly better

approximations than the first order method.

The Method of Unweighted Means

The method of unweighted means is another technique that has been

widely used in recent years. However, Mllliken & Johnson (1984) do

not recommend its use when the variances are unequal. The test

statistic is given by,

n 2 (X. - X ) /(k - 1)

^ 1-1
^-

k n.

2 r^ (x - X )V(N - k)

i-1 j-1 ^J ^-
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k - k _
where, l/n - (1/k) S (1/n.) " and x - Z x. /k .

1-1 ^ i-1 ^

The quantity n is the harmonic mean of the sample sizes. The critical

values may be obtained from the F distribution with (k - 1) and

(N - k) degrees of freedom, respectively. This analysis yields

reasonable approximations to the F distribution only when the sample

sizes are not too unequal. A theoretical analysis suggests that the

size of this technique will be even more affected by heterogeneous

variances (when the sample sizes are unequal) than the usual ANOVA F

statistic (Kohr & Games 1974) . For this reason the method of

unweighted means was not considered in the detailed comparisons. It

should be noted that when the sample sizes are equal this analysis is

identical to ANOVA.

The Method of Two Stage Sampling

Bishop & Dudewicz (1978) present procedures, with tables and

approximations needed for implementation, which give exact tests with

power and size completely independent of the unknown variances. As a

historical note, two-stage sampling procedures were first introduced

by Stein (1945) in an equal variance context. The procedure of Bishop

& Dudewicz guarantees that the probability of a Type I error is

exactly a, and the power is exactly (1 - /3) for a given value of S

^ - 2
(where 5 = Z (fj..

- /x) ) chosen by the researcher.
i=l ^

The primary purpose of the first stage of the procedure is to

obtain estimates of the k variances based on n observations randomly
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chosen from each treatment group. Once the sample variances are

computed, It Is possible to determine N. , the total number of

observations needed from the i group, so that the desired power will

be obtained. The second stage consists of sampling the additional

(N - n) observations that are required for the i group and then

testing the null hypothesis i^. - li - . . . - fi

A practical problem with this method is the requirement of equal

sample sizes in the first stage. Work by Wilcox (1987) proposes a

simple yet accurate method for handling unequal sample sizes In the

first stage of the Bishop & Dudewicz method. If obtaining additional

observations is impractical, the procedure by Wilcox might still be

useful since it can be used to determine whether the existing sample

sizes are reasonably large enough to obtain the desired power. This

method was not considered because of its complexity, the requirement

of obtaining additional samples, and the lack of literature which

would allow comparison to the other procedures under consideration.

On the other hand, if the researcher does have the luxury of obtaining

additional samples for each treatment then this method is possibly

attractive in Its ability to control exactly both Type 1 error rates

and power

.
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REVIEW OF LITERATURE

In this section five papers are reviewed that compare the

performance of the test statistics described in the Alternative

Methodologies section. The tests are appraised in terms of the Type I

error rates and the power under various combinations of sample sizes,

variances and alternative hypotheses. The discussion of each paper is

divided into four sections: Purpose and Method, Size, Power and

Comments

.

M. A. Brown and A. B. Forsythe (1974)

Purpose and Method

Brown and Forsythe compared the performance of their test

statistic with the test of Welch , the first order test of James and

the ANOVA F statistic. Using four groups, six groups and ten groups

the size of each test was studied. The sample sizes ranged from four

to twenty-one and the standard deviations ranged from one to three.

For the power study, four groups with sample sizes (11,16,16,21) were

simulated with equal and unequal variances and four different mean

structures. For each set of criterion 10,000 independent replications

were simulated.

Size

The ANOVA F statistic shows some considerable deviations from its

nominal size when the sample sizes of the groups are unequal. At the

5% level in the examples shown, the empirical size of the ANOVA F

varies from 3% when the larger sample sizes are paired with the larger
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variances to 17% when the smaller sample sizes are paired with the

larger variances. For small sample sizes, the test of James deviates

more widely from the nominal size, rejecting the null hypothesis a

little too often. Overall the Type I error rate of the Brown-Forsythe

test varies slightly more than the test of Welch, For groups with

more than ten experimental units the difference between the nominal

and empirical sizes of both the Brown-Forsythe and Welch test are

small with Welch's test remaining slightly closer to the nominal

value, in most cases. Results of the size investigation are shown in

TABLE 2.

Power

The power results from this study are given in TABLE 3. The

ANOVA F values were given only when the equal variance assumption was

met. Because the Welch test and the test of James have similar

numerators and Welch's test had better control of the Type I error

rate the power calculations from James' test were omitted. When the

variances were equal both the Welch test and the Brown-Forsythe test

had only slightly less power than the ANOVA F. The Brown-Forsythe

test showed higher power, around 10%, only when an extreme mean was

paired with the largest variance. In all other cases The Welch test

had superior power. For example, when an extreme mean was paired with

the smallest variance the gain in power was as high as 35%. When

extreme means coincided with the largest and smallest variance as much

as a 26% gain in power was obtained by using Welch's test.
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Comments

The combination of sample sizes and standard deviations

adequately demonstrated the size of the various test statistics in

different situations. However, the power study was limited to include

only one sample size combination. Other combinations would have been

helpful had they been investigated. Also, the power of the ANOVA F

would have been interesting to see even though the Type I error rate

was not close to the nominal level.
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TABLE 2. Empirical Type I Error Probabilities, Nominal size - .05.

Standard
Sample Size Deviation ANOVA Brown-
Condition Condition F Forsythe Welch James

(4,4,4,4) (1,1,1,1)
(1,2,2,3)

(4,8,10,12) (1,1,1,1)
(1,2,2,3)
(3,2,2,1)

(11,11,11,11) (1,1,1,1)
(1,2,2,3)

(11,16,16,21) (1,1,1,1)
(3,2,2,1)
(1,2,2,3)

(4,4,4,4,4,4) (1,1,1,1,1,1)
(1,1,2,2,3,3)

(4,6,6,8,10,12) (1,1,1,1,1,1)
(1,1,2,2,3,3)
(3,3,2,2,1,1)

(6,6,6,6,6,6) (1,1,2,2,3,3)

(11,11,11,11,11,11) (1,1,2,2,3,3)

(16,16,16,16,16,16) (1,1,2,2,3,3)

(21,21,21,21,21,21) (1,1,2,2,3,3)

(20,20,20,20,20,20 (1,1,1.5,1.5,2,
20,20,20,20) 2,2.5,2.5,3,3)

.049 .034 .045 .079

.067 .041 .047 .081

.051 .048 .057 .067

.030 .057 .049 .056

.144 .062 .065 .077

.051 .049 .051 .055

.063 .057 .050 .054

.049 .051 .050 .053

.108 .062 .055 .058

.040 .065 .054 .056

.049 .034 .061 .095

.083 .049 .070 .109

.046 .045 .061 .074

.031 .065 .062 .075

.170 .058 .068 .084

.071 .052 .057 .073

.073 .065 .057 .062

.072 .068 .051 .052

.069 .065 .048 .049

.071 .066 .052 .053
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TABLE 3. Empirical Power of the Tests, Nominal Size - .05,
Sample Size Condition for all Cases (11,16,15,21).

Variance Mean Brown-
Condition Structure ANOVA F Forsythe Welch

(1,1,1,1) (0,0,0,0) .049 .051 .050
(1,0,0,0) .686 .676 .650

(0,0,0,0.7) .553 .544 .523
(0.5,0,0,0. 5) .336 .333 .318

(3,2,2,1) (0,0,0,0) .062 .055
(1.5,0,0,0) .332 .222
(0,0,0,1) .227 .478

(1.3,0,0,1. 3) .424 .682

(1,2,2,3) (0,0,0,0) .065 .054

(1.3,0,0,0) .291 .655
(0,0,0,1) .273 .175
(1,0,0,1) .298 .400
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R. L. Kohr and P. A. Games (1974)

Purpose and Method

Kohr and Games study the size and power of the ANOVA F, Welch

test and the test by Box. The study of the sizes of the various tests

was done with four groups. The sample sizes ranged from six to

fourteen and the variances ranged from one to thirteen with nine

different sets of variance combinations. The power study included

several plots of the power of the tests displayed in graphs at' several

different levels of the noncentrality parameter. Three different mean

structures were investigated with the same variance and sample size

conditions that were included in the size study. For each set of

criterion, four blocks of 500 replications were used in the

simulation.

Size

Ranking the procedures from poor to good TABLE 4 shows the ANOVA

F had the worst control of the size. Next was Box's test and finally

Welch's test was the best. For the equal sample size case when there

was one extreme variance the ANOVA F performed particularly poorly

with the size of the test doubling the desired level. Box's test

performed similarly with one extreme variance but was not as liberal

as the ANOVA F. When the groups had several different variances Box's

test was somewhat conservative. Welch's test by far demonstrated the

best control of the Type I error rate with empirical probabilities

ranging from 5% to 5.3%.

For the unequal sample size cases the ANOVA F tended to be quite

conservative when the extreme variance was paired with the largest
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sample size and was quite liberal when the extreme variance was paired

with the smallest variance. The minimum and maximum empirical values

for the ANOVA F were 2.2% and 23.6% respectively. Box's test and

Welch's test both performed more adequately than the ANOVA F. Overall

the test by Welch was slightly better in the unequal sample size cases

because of its smaller range of empirical values 4% to 5.3% as

compared to the range of Box's test 3.6% to 7.6%.

Power

Power functions are displayed in TABLES 5, 6, 8, and 9. These

values were read from graphs . The power functions were expressed in

terms of the noncentrality parameter,

k

i-1

where

[(n S (^ - ;i)Vk) / "^ ]^^'^

k

i-1

Since all variance conditions used had an average of four and all

sample size conditions had a harmonic mean of eight these numbers were

used in the above formula.

When the assumption of equal variances was met the ANOVA F

statistic was more powerful than either the Welch test or the Box test

but the increase in power was small, ranging from 2.5% to 5.5%, In

TABLE 6 it is shown that when the means are evenly spaced apart and

the sample sizes are equal then Welch's test was the most powerful

with Box's test having a severe power loss. The gain in power for the

conditions described above was as high as 47%. The power for less



extreme variance conditions are intermediate between those shown in

TABLE 6 but the same trends hold whenever the means are evenly spaced

apart and the sample sizes are equal. Unfortunately, when the null

hypothesis is violated in other ways, the power depends upon what

variances accompany the deviant means. As demonstrated previouly by

Brown and Forsythe, TABLE 5 shows that when small variances are paired

with the more deviant means Welch's test was as high as 34% more

powerful than Box's test and as high as 24% more powerful than the

ANOVA F statistic. When larger variances are paired with the more

deviant means the ANOVA F statistic was the most powerful while Box's

test had slightly higher power than Welch's test, as shown in TABLE 5.

Caution must be used in this situation because the superiority of the

ANOVA F may be inflated due to the fact that the probability of a Type

I error may be twice as high as desired because of its lack of

control. As TABLE 5 shows, in some situations Box's test does have

more power than Welch's test but this gain in power is only as high as

11%, whereas, when reverse conditions hold Welch's test provides

gains in power as high as 34%. In none of the equal sample size cases

does Box's test have superior power over both the ANOVA F and Welch's

test. Thus as Kohr and Games stated, "The only absolute statement

that can be made about the equal sample size case when population

variances are unknown is that the Box test would not be the preferred

test.

"

When sample sizes are unequal and the variances are unequal, the

ANOVA F statistic 's failure to control the probability of a Type I

error makes its use questionable. When the bias coefficient of Box's



24

test is less than one (b < 1.0), see TABLE 7, and the ANOVA F is

conservative, it might still be possible that the ANOVA F would

overcome the initial conservative bias and be the most powerful

alternative for medium to large values of the noncentrality parameter.

If the experimenter is willing to accept a 5% risk of a Type 1 error,

they should have little complaint if the actual size is 1% and the

test is still the most powerful of any available. It is only when

(b > 1.0) and the ANOVA F is biased in the liberal direction that the

ANOVA F must be discarded.

When the larger variances were paired with the larger sample

sizes (b < 1.0), if the alternative hypothesis had means that were

equally spaced apart or deviant means paired with smaller variances

and smaller sample sizes, then Welch's test was consistently the most

powerful of the three tests. Within each alternative hypothesis the

superiority of the Welch test roughly decreased as the bias

coefficient (b) approached 1.0.

Under the alternative where (/j^ < /i^ - ^^ < f, ) the results were

mixed and not as clear. When the variances were (1,1,1,13) the

results were similar to those above with Welch's test being the most

powerful, but when the variances were (1,2,3,10) or (1,3,5,7) the Box

test was the most powerful by as much as 18% as shown in TABLE 8. To

be assured of using the most powerful test the experimenter must know

whether (b > 1) or (b < 1) and the kind of alternative hypothesis that

is expected. But this is a most unlikely situation for the use of an

omnibus test like the three discussed in this paper. If in fact the

experimenter anticipates on an a priori basis that the alternative
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hypothesis would be (ij^ < fi^ - ii^ < ii^) usually they would perform

appropriate contrasts to gain greater power rather than using an

omnibus test.

When larger population variances are paired with the smaller

sample sizes (b > 1.0) results as shown in TABLE 9 apply. The complex

results for this variance and sample size condition occured when the

alternative hypothesis was (fi^ < n^ - fi^ < ^ ). For the equally

spaced means alternative and when the extreme means were paired with

the larger sample sizes and smaller variances the Welch test was

consistently more powerful than the Box test. However, for the

^'^1 ^
'^Z

~
^k ^ '^2^ alternative, the Box test was more powerful than

Welch's test for the variance condition of (7,5,3,1) but less powerful

for the (13,1,1,1) variance condition as shown in TABLE 9.

Overall the Welch test demonstrated superb control of the Type I

error rate and usually had power superior to Box's test. The only

times that the Box test demonstrated greater power were on the few

occasions when two means deviated largely from the grand mean and both

of the means were paired with relatively large variances. As noted by

Kohr and Games, many unequal variance conditions produced results

where the power superiority of the Welch test was even greater than

the 47% shown in TABLE 9, while the power superiority of the Box test

over Welch's test never exceeded more than 13%.

Kohr and Games suggest that one could make use of Box's bias

coefficient (b) as follows. If the bias coefficient is between 0.88

and 1.05 then the ANOVA F would be used and if the value was outside
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this range then the Welch test would be used. The authors also

suggested another way to use Box's test In an omnibus procedure, but

felt that such a procedure would be too complex for the everyday

experimenter. The authors conclude that the Welch test is the test of

choice when the sample sizes are unequal, but it is not better than

the ANOVA F in the equal sample size case.

Comments

This paper by Kohr and Games was the only paper found that

demonstrated the performance of both Box's test and Welch's test under

numerous sample size and variance conditions. The size study was

conducted with nine different variance conditions and showed Just how

poorly the ANOVA F controls the size when the variances are (1,1,1,13)

or (13,1,1,1) and the sample sizes are equal. There is some doubt

about the author's reccommendation to use the ANOVA F when the sample

sizes are equal. Although the ANOVA F did have superior power, its

Inability to control the Type I error rate makes its use questionable.

With the above variance condition the empirical Type I error rate

could be twice as high as desired and some researchers may find this

objectionable. The increase in power may not be worth the risk that

is involved. The findings of this paper about the performance of

Welch's test are consistent with the previous paper. New findings

included the comparisons of Box's test with Welch's test. For an

omnibus test to be run on any particular set of data where the

assumption of equal variances is violated the Welch test should be

performed because of its excellent control of the size. There is

little doubt that in some situations this test will not be the most
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powerful but on these rare occasions the power loss would be from 1%

to 25%.

TABLE 4. Empirical Type I Error Probabilities, Nominal Size - .05.

Sample Size
Condition

Variance
Condition Welch

(8,8,8,8) (1,1,1,13) .115 .070 .063

(1,2,3,10) .074 .050 .050

(1,3.5,7) .065 .041 .056

(2.67,4,4,5.33) .051 .044 .050

(4,4,4,4) .052 .045 .048

(5.33,4,4,2.67) .063 .053 .059

(7,5,3,1) .060 .045 .054
(10,3,2,1) .073 .044 .053

(13,1,1,1) .099 .055 .053

(6,8,9,9) (1,1,1,13) .074 .048 .050
(1,2,3,10) .056 .052 .057
(1,3,5,7) .057 .050 .054
(2.67,4,4,5.33) .049 .045 .057
(4,4,4,4) .052 .046 .055
(5.33,4,4,2.67) .058 .045 .050
(7,5,3,1) .081 .049 .059
(10,3,2,1) .114 .067 .060
(13,1,1,1) .160 .067 .053

(5,7,10,14) (1,1,1,13) .030 .053 .055
(1,2,3,10) .022 .036 .040

(1,3,5,7) .033 .047 .053
(2.67,4,4,5.33) .033 .045 .059
(4,4,4,4) .043 .043 .046
(5.33,4,4,2.67) .074 .050 .051
(7,5,3,1) .134 .059 .050
(10,3,2,1) .173 .075 .063
(13,1,1,1) .236 .076 .055
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TABLE 5. Estimated Empirical Power of the Tests, Nominal Size - .05,
Sample Size Condition (8,8,8,8), Mean Structure (fi < p. ~

fi < p. ) .

Varlance Conditions
Noncentral Lty (7 5,3,1) (1 3,5,7)
Parameter ANOVA F Box Welch ANOVA F Box Welch

0.0 .075 .038 .050 .069 .025 .031
0.6 .138 .088 .213 .131 .113 .088
1.0 .313 .225 .531 .306 .250 .200
1.3 .538 .438 .775 .488 .425 .325
1.6 .756 .656 .931 .681 .581 .469
2.0 .950 .831 .999 .856 .788 .700

TABLE 6. Estimated Empirical Power of the Tests, Nominal Size -
Sample Size condition (8,8,8,8), Mean Structure (^ < ja <

05,

V-
Variance Conditions

Noncentral Lty (1,

Parameter ANOVA

0.0 .119
0.6 .075

1.0 .319

1.3 .463

1.6 .631
2.0 .825

1,1,13) or (13,1,1,1)
F Box Welch

088 .063

100 .200

200 .500
300 .738

425 .894
625 .999

(4,4 4,4)
ANOVA F Box Welch

.088 .031 .050

.144 .113 .125

.344 .300 .300

.513 .481 .481

.688 .663 .644

.900 .875 .850

TABLE 7. Variance Conditions of the Study.

Coefficient Bias (h) Values
of Variation of Variance Sample S Lze Conditions
the Variances Condition (6,8,9,9) (5,7,10,14)

1.299 (1,1,1,13) 0.875 0.586
0.884 (1,2,3,10) 0.884 0.663
0.559 (1,2,3,7) 0.894 0.754
0.235 (2.67,4,4,5 33) 0.956 0.889
0.0 (4,4,4,4) 1.0 1.0
0.235 (5.33,4,4,2 67) 1.048 1.134
0.559 (7,5,3,1) 1.127 1.397
0.884 (10,3,2,1,) 1.231 1.568
1.299 (13,1,1,1) 1.352 1.778
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TABLE Estimated Empirical Power of the Tests, Nominal Size - .05,
Sample Size Condition (5,7,10,14), Mean Sturcture (^i < ;j - ^

Noncentrallty
Parameter ANOVA

0.0 .019

0.6 .100
1.0 .319

1.3 .525
1.6 .725

2.0 .913

Variance Condition (1,3,5,7)

F Box Welch

038 .062
163 .125
400 .300
619 .463

800 .625
931 .813

TABLE 9. Estimated Empirical Power of the Tests, Nominal Size - .05
Sample Size Condition (6,8,9,9), Mean Structure (ii < \<^'2^-

Variance Conditions
Noncentrality (7,5 3,1) (13 1,1,1)

Parameter Box Welch Box Welch

0.0 .031 .075 .075 .056
0.6 .150 .113 .125 .225
1.0 .225 .200 .181 .419
1.3 .375 .306 .275 .638
1.6 .500 .425 .350 .825
2.0 ,T00 .600 .538 .981
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J. B. Dijkstra and P. S, P. J. Uerter (1981)

Purpose and Method

Dijkstra and Werter compared the size and power of three tests,

the second order test of James, the Welch test and the test of Brown-

Forsythe. Although James' second order method was ruled out as an

alternative to the ANOVA F statistic in the Alternative Methodologies

section, its values of size and power were listed to demonstrate its

similarities to Welch's test. The size study included three groups,

four groups and six groups. The sample sizes ranged from four to

twenty and the standard deviations ranged from one to three. The

power study included two sets of four groups , one equal the other

unequal. Three different alternatives were used with the same

standard deviations as the size study. For each set of criterion

10,000 replications were simulated.

Size

The range of the size of all three test statistics for the

various combinations was from 3.5% to 7.5%, so all three have

excellent control of the size as demonstrated in TABLE 10. The second

order test of James was the test statistic that remained closest to

the nominal value in nearly all cases whereas Welch's test and the

test of Brown- Forsythe behaved very similarly but both were slightly

higher than the nominal value.

Power

Uniformly none of the tests are more powerful than the other two.

The test of Welch and the second order James' test are almost

identical differing only in the third decimal place. As was found
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earlier by Brown and Forsythe, when an extreme mean was paired with

the largest variance the Brown- Forsythe test had superior power by as

much as 24%. Conversely, when the extreme mean was paired with the

smallest variance Welch's test and the second order test of James had

superior power by as much as 32%. When the alternative included two

extreme means (5,0,0,0.5) or (0.5,0,0,5) paired with the extreme

variances (1,2,2,3) the test with superior power was dictated by

whether the largest extreme mean coincided with the largest variance

or not. Thus for this alternative the behavior was exactly the same

as above when there was only one extreme mean, but with equal sample

sizes the difference in power was around 21% and with unequal sample

sizes the difference was only as high as 6%. Results of the power

study are displayed in TABLE 11.

Comments

The sample sizes chosen for the size study were adequate but a

few more variance combinations would have been helpful for both the

size study and the power study. A variance combination with just one

extreme variance (i.e. (1,1,1,3)) would have added to the utility of

this Investigation. Some cases of the noncentrality parameter were

chosen poorly (i.e. (5,0,0,0.5)). It would have been better to choose

an alternative like (1,0,0,0.5) or (0.5,0,0,0.5). The detection of a

difference in the means is more difficult when the means are closely

grouped. Thus if a test has good power when there is only a small

difference in the means then it would follow logically that the power

would be even higher when the means differ by a large amount. For the

above alternative the power of all three tests is so high that it is
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difficult to assess which test is superior. However, the other

alternatives do show more clearly the power behavior of the tests. It

might have been helpful to include the size and power of the ANOVA F

along with the other tests as well. Because the behavior of the Welch

test and the second order test of James are nearly identical the

simpler test by Welch would be the test of choice because of the

complexity in calculating James' second order test. The findings of

this paper are consistent with the findings of the previous papers.

New findings Include the similarity of Welch's test and James' test

and the power behavior under the (5,0,0,0.5) and (0.5,0,0,5)

alternatives.
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TABLE 10. Empirical Type I Error Probabilities, Nominal size - .05.

Standard
Sample Size Deviation Brown-
Condition Condition Forsythe James Welch

(4,4,4) (1,1,1) .037 .044 .041
(1,2,3) .048 .053 .049

(4,6,8) (1,1,1) .044 .050 .049
(1,2,3) .050 .043 .042

(4,4,4,4) ' (1,1,1,1) .040 .052 .050
(1,2,2,3) .044 .057 .056

(4,6,8,10) (1,1,1,1) .044 ,049 .052
(1,2,2,3) .052 .044 .045
(3,2,2,1) .059 .054 .059

(10,10,10,10) (1,1,1,1) .048 .050 .051
(1,2,2,3) .056 .050 .051

(10,14,16,20) (1,1,1,1) .046 .046 .046
(1,1.5,2,3) .061 .050 .050
(3,2,1.5,1) .062 .046 .048

(4,4,4,4,4,4) (1,1,1,1,1 ,1) .035 .053 .062
(1,1,2,2,3 ,3) .046 .064 .075

(4,6,8,10,12,14:) (1,1,1,1,1 ,1) .043 .053 .062
(1,1,2,2,3,,3) .065 .051 .056
(3,3,2,2,1..1) .057 .058 .069

(10,10,10,10,10, 10) (1,1,1,1,1, 1) .048 .050 .052
(1,1,2,2,3, 3) .065 .051 .053

(10,10,15,15,20, 20) (1,1,2,2,3, 3) .068 .051 .053
(3,3,2,2,1, 1) .063 .053 .056
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TABLE 11. Empirical Power

Standard

of the Tests, Nominal Size - .05.

Sample Size Deviation Mean Brown

-

Condition Condition Structure Forsythe James Welch

(4,4,4,4) (1,1,1,1) (0,0,0,0) .035 .053 .052

(5,0,0,0.5) 1.000 .999 .999

(3,0,0,0) .951 .875 .874

(4,4,4,4) (1,2,2,3) (0,0,0,0) .046 .057 .057

(3,0,0,0) .312 .616 .616
(0,0,0,3) .306 .220 .220
(5,0,0,0.5) .751 .974 .972
(0.5,0,0,5) .660 .449 .447

(4,6,8,10) (1,1,1,1) (0,0,0,0) .047 .052 .055
(3,0,0,0) .986 .935 .941

(0,0,0,3) 1.000 1.000 1.000

(4,6,8,10) (1,2,2,3) (0,0,0,0) .057 .050 .051
(3,0,0,0) .556 .873 .876
(0,0,0,3) .746 .521 .524
(5,0,0,0.5) .983 .999 .999
(0.5,0,0,5) .999 .923 .926
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R. R. Wilcox, V. L. Charlln and K. L. Thompson (1986)

Purpose and Method

The authors of this paper compare the performance, in terms of

size and power, of the ANOVA F statistic, Welch's test and the test of

Brown- Forsythe. The size study included four groups and six groups

with sample sizes ranging from four to fifty. The standard deviations

ranged from one to four and standard deviation conditions Included one

extreme standard deviation, equally spaced standard deviations, as

well as other combinations. The power study included the same sample

size and standard deviation combinations with one alternative

hypothesis. For each set of criterion 10,000 replications were

simulated.

Size

With as many as fifty observations per group and equal sample

sizes in four groups the ANOVA F can be very unsatisfactory when there

is one extreme variance. Comparing the equal sample size cases

(11,11,11,11), (21,21,21,21) and (50,50,50,50) with one extreme

standard deviation (1,1,1,4) it becomes apparent that the robustness

of the ANOVA F improves very slowly as the sample sizes increase, and

it is not obvious when, if ever, the sample sizes would be large

enough to indicate that the ANOVA F would be acceptable in terms of

its size. As TABLE 12 shows the empirical probability of a Type I

error starts at 11% and only reduces to 9% when the groups have fifty

observations. For equal sample sizes Welch's test performs better

than the test of Brown- Forsythe in the sense that the maximum
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empirical Type I error probability for the Brown- Forsythe test was

8.4% while the maximum value for Welch's test was only 6.0%.

However, when the four groups had unequal sample sizes the choice

between the Brown-Forsythe test and Welch's test is not as clear-cut.

There are instances where one will have a slight advantage over the

other but both tests have Type I error rates between 4.4% and 8.6%.

When the larger standard deviations were paired with the larger sample

sizes Welch's test remained closer to the nominal value. Conversely,

when the larger standard deviations were paired with the smaller

sample sizes the Brown-Forsythe test remained closer to the nominal

value. The Type I error rate for the ANOVA F ranged from 2.7% to

27.9%, being very conservative when the larger standard deviations

coincided with the larger sample sizes and quite liberal when larger

standard deviations coincided with the smaller sample sizes.

With six groups of equal sample size Welch's test had a slight

edge over the Brown-Forsythe. When the group sizes were unequal the

behavior of all three tests were very similar to the four group

situations. Overall, the edge would be given to the Welch test

because of its smaller maximum empirical rate of 8.6% as compared to

the maximum empirical rate of 10% for the Brown-Forsythe test.

Power

Even when the variances are equal there is only a slight loss of

power, around 1-2%, when using Welch's test or the Brown-Forsythe test

as compared to using the ANOVA F. As several authors have noted

previously, when extreme means are paired with small standard

deviations Welch's test has superior power by as much as 69%, as shown
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in TABLE 13. When extreme means are paired with larger standard

deviations the Brown- Forsythe test has superior power but only by as

much as 26%. In the cases where the Welch test does not have superior

power the ANOVA F has about 20-25% higher power than Welch's test but

for these exact cases the ANOVA F has particularly poor control over

the size so that the increase in power may be due to the inflated Type

I error rate.

Comments

The combination of sample sizes and standard deviations were

adequate to show the size behavior of the various tests. The findings

of this paper are consistent with those previously reviewed. This

paper uncovered a condition when the performance of the Welch test Is

not good. This occurs when there Is one or more extreme standard

deviations and they are paired with the smaller sample sizes the

empirical Type I error rate of Welch's test reaches its maximum value,

around 8%. Other tests perform much worse than Welch's test and don't

reveal any consistent pattern. Although the combination of sample

sizes and standard deviations were adequate for this investigation the

power performances were limited by the use of only one alternative

hypothesis. Other alternatives would have been helpful in this study.
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TABLE 12. Empirical Type I Error Probabilities, Nominal size - .05.

Standard
Sample Size Deviation Brown-
Condition Condition ANOVA F Forsythe Welch

(11,11,11,11) (1,1,1,1) .048 .046 .055

(1,2,3,4) .068 .051 .060
(4,1,1,1) .109 .084 .055

(21,21,21,21) (1,1,1,1) .051 .050 .056

(1,2,3,4) .069 .065 .056
(4,1,1,1) .097 .084 .055

(50,50,50,50) (4,1,1,1) .088 .084 .044

(4,8,10,12) (1,1,1,1) .051 .048 .072
(4,3,2,1) .173 .065 .086
(1,1,1,4) .041 .075 .069
(4,1,1,1) .279 .081 .082

(6,10,16,20) (1,1,1,1) .053 .069 .065
(4,3,2,1) .194 .059 .070
(1,1,1,4) .027 .077 .062
(4,1,1,1) .275 .072 .068

(15,15,15,15,13,15) (1,1,1,1,1 ,1) .049 .048 .062
(1,1,1,4,4 ,4) .080 .071 .064
(1,1,1,1,1 ,4) .119 .095 .064

(6,10,15,18,21,25) (1,1,1,1,1 ,1) .047 .047 .075
(1,1,1,4,4 ,4) .029 .080 .068
(4,4,4,1,1 ,1) .234 .069 .080
(1,1,1,1,1 ,4) .041 .100 .073
(4,1,1,1,1 .1) .309 .091 .078
(4,3,3,1,1 ,4) .091 .062 .080
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TABLE 13. Empirical Power of the Tests, Nominal size =- .05,
Mean Structure for All Cases (1.2,0,0,0) or (1.2,0,0,0,0,0).

Sample Size
Condition

Standard
Deviation
Condition

Brown-
Forsythe Welch

(11,11,11,11) (1,1,1,1) .794 .789 .773

(4,1,1,1) .244 .206 .118

(21,21,21,21) (1,1,1,1) .983 .983 .981

(4,1,1,1) .372 .348 .180

(50,50,50,50) (4,1,1,1) .604 .593 .334

(4,8,10,12) (1.1,1,1) .396 .366 .412

(4,3,2,1) .232 .094 .109

(1,1,1,4) .060 .112 .392

(4,1,1,1) .359 .114 .106

(6,10,16,20) (1.1,1,1) .592 .564 .570

(4,3,2,1) .282 .111 .107

(1,1,1,4) .050 .144 .545

(4,1,1,1) .381 .132 .108

(15,15,15,15,15,15) (1,1,1,1,1
. 1) .908 .907 .898

(1,1,1,4,4 .4) .152 .137 .825

(1.1.1.1,1 .4) .334 .275 .883

(6,10,15,18,21,25) (1,1,1,1,1 .1) .546 .525 .552

(1,1,1,4,4 .4) .038 .104 .505

(4,4,4,1,1 ,1) .307 .107 .113

(1,1,1,1.1 |4) .070 .168 .546

(4,1,1,1,1 .1) .422 .154 .113

(4,3,3,1,1,,4) .154 .108 .113
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A. J. Tomarken and R. C. Serlin (1986)

Purpose and Method

Toraerken and Serlin study the size and power of the ANOVA F,

Welch, Brown-Forsythe, Kruskal-Wallis and inverse normal scores tests.

Only the first three tests will be discussed in this investigation.

The size and power studies included three groups and four groups with

sample sizes ranging from six to thirty. For the power study four

alternatives were investigated with four different sample size and

variance combinations : equal variances, equal pairing (equal sample

sizes and increasing variances), direct pairing (increasing sample

sizes and increasing variances), and inverse pairing (increasing

sample sizes and decreasing variances). For each set of criterion

1,000 replications were simulated. Tables of the results from this

investigation were averaged across cases that were similar in design.

The design structure is shown in TABLE 14, only cases with the same

letter were averaged together.

Size

With three groups of equal sample sizes, when the variances were

unequal, in three of the four cases the empirical rejection rates of

the ANOVA F statistic exceeded the robustness criterion of 7% adopted

by the authors. With four groups of equal sample sizes and unequal

variances the ANOVA F performed more acceptably, only exceeding the

robustness criterion once in the four cases, but the average was

higher than that of Welch's test or Brown-Forsythe ' s test. Both

Welch's test and Brown-Forsyth's test performed adequately in the
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equal sample size cases with Welch's test remaining slightly closer to

the nominal value.

In the unequal sample size cases the ANOVA F showed marked

deviations, being too conservative when larger sample sizes were

paired with larger variances and too liberal when larger sample sizes

were paired with smaller variances. Results are shown in TABLE 15.

The Welch test and the Brown- Forsythe test remained within the

authors' robustness limits in both the three and four group cases.

Once again the Welch test remained slightly closer to the nominal

level than the Brown- Forsythe test. As noted in the previous paper,

when larger sample sizes were paired with smaller variances Welch's

test had a slightly poorer performance. Overall, Welch's test showed

the best control of the Type I error rate.

Power

Results summarizing the behavior of the various tests when the

variances are equal are shown in TABLE 16. For all cases mean

structures were specified to an estimated ANOVA power of 0.70 and

nominal level 0.05. Additional mean structures were specified with

estimated ANOVA power of 0.85 and 0.55, these cases are denoted by *

and ** respectively. As expected the ANOVA F had the highest power

but only by about 1-5%. Brown- Forsythe ' s test had slightly higher

power than Welch's test. It may be suprising that only minimal losses

in power are incurred when the ANOVA F alternatives are used in the

equal variance cases.
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The results from the three sample size and variance combinations,

equal pairing, direct pairing and inverse pairing are shown in TABLE

17. Although for the equal sample size cases the ANOVA F was the most

powerful when the extreme mean was paired with the largest variance,

the Type I error assessments showed that it was frequently too liberal

under these conditions, particularly when there were three groups. A

striking consistency existed across all the cases studied. In each of

the three sample size and variance combinations, the Welch test proved

to be the most powerful procedure when means were equally spaced

apart, when extreme means were paired with the smallest variances and

when two identical means were situated midway between two extreme

means. Although the Welch test was consistently superior for these

mean patterns, its relative advantage varied somewhat across

conditions. Its rejection rates ranged from 5% to 15% higher than the

Brown- Forsythe test when the means were equally spaced apart. When

extreme means were paired with the smallest variances Welch's

superiority ranged from 5% to 35% and when two identical means were

situated between two extreme means the superiority ranged from 9% to

21%.

Although the Welch test was unequivocally the test of choice for

three of the four mean structures, the Brown- Forsythe test was

optimal, though less clearly so, for the mean structure where an

extreme mean was paired with the largest variance. The superiority of

Brown-Forsythe's test ranged from 8% to 18%. Even though the ANOVA F

had the highest power its severe lack of control of the size renders

it an unreasonable test.
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Comments

This study included sufficient combinations of sample sizes and

variances to see the size and power behavior of the tests. The only

variance condition that was omitted that may have been helpful would

have been the situation where just one extreme variance existed.

Although the figures in the tables accurately described the behavior

of the various tests, the way they were tabulated was confusing. Even

though there would have been four times as many tables if listed

separately the authors could have chosen the ones that were

outstanding or demonstrated a point that was being made. The findings

in this paper were consistent with previous papers. New findings

included the demonstration that the same behavior of the tests found

earlier could be expected with medium and large sample sizes and

confirmation that the ANOVA F fails to adequately control the Type I

error rate even when the sample sizes large.
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TABLE 14. Design of the Monte Carlo Investigation.

Sample Size Variance Conditons
Condition (5,6,6) (12,4,1) (6,2,1) (1,4,12) (1,2,6)

(20,20,20) A B~^ B

(12,12,12) ABB
(30,20,10) A C C D D
(18,12,6) A C C B D

Variance Conditions
(6,6,6,6) (12,6,4,1) (6,3,2,1) (1,4,6,12) (1,2,3,6)

(20,20,20,20) A B B

(12,12,12,12) ABB
(30,24,16,10) A C C D D
(18,14,10,6) A C C D D

TABLE 15. Empirical Type I Error Probabilities, Nominal Size - .05,

Probabilities Given are Averaged Across Cases With Same Letter.

Sample Size Variance
Condition Condition

2 2 2
(All 4 cases) (tj -ct -cj )

2 2 2
(Hj^-n^-nj) {a^>a^>a^)

2 2 2
(n^>n2>nj) (^a^a^a^)

2 2 2
(nj^>n2>n2) (,a^<a^<a^)

2 2 2 2
(All 4 cases) (ff -ct -;7,-ct )

2 2 2 2

'"l""2""3""4'' (''i>''2^''3^''4''

2 2 2 2
(n^>n2>nj>n^) (,a^a^a^>a^)

2 2 2 2(n^>n2>n2>n^) (,a^<a^<a^<a^)

NOTE: The number in parentheses is the number of times out of the
four cases that the empirical rejection rate was greater than .07.

Brown-
ANOVA F Welch Forsythe

.053(0) .050(0) .051(0)

.069(3) .048(0) .062(0)

.022(0) .049(0) .061(0)

.167(4) .057(0) .064(1)

.053(0) .055(0) .052(0)

.064(1) .048(0) .059(0)

.025(0) .050(0) .059(0)

.144(4) .056(0) .059(0)
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TABLE 15, Empirical Power of the Tests, Nominal Level - .05,
Equal Variances, Probabilities Given are Averaged Across Cases With
Same Letter.

Sample Size Mean Number ANOVA Brown-
Condition Structure Of Cases F Welch Forsythe

(All 4 cases) (^l^>^i^>^^) 4 .697 .665 ,684

(n^^-n^-n^) CMi>M2-M3) 2 .712 .693 .709

(n^>n2>nj) (;'1>M2-M3) 2 .700 .662 .674

(n^>n2>n2)
(Mi-^2>;^3) 2 .683 ,639 ,664

(All 4 cases) (fl^>f,^>,,^>ll^) 4 .698 .664 .684

("l-"2""3""4^ (;.^>M2-''3-^> 2 .704 ,672 ,702

(nj^>n2>n2>n^) (.^^>^.^-,.^-^^) 2 .682 ,628 ,666

(n^>n2>n2>n^)
^"r^a-^s^^^ 2 ,684 ,637 ,667

(All 4 cases) (^^>f.^.t,^>^^) 4 .699 ,660 ,685
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TABLE 17. Empirical Power of the Tests, Nominal Level - .05,
For All Cases Mean Structures were Specified to an Estimated ANOVA
Power of .700.

Sample Size
and Variance Mean Number ANOVA Brown-
Condition Structure Of Cases F Welch Forsythe

Equal Pairing I^l>f2>'^^ 4 .683 .765 .659

^"l""2""3^ Ml>M2=/'3 4 .646 .493 .628

2 2 2

(M^>^2-''3^* (2) (.803) (.645) (.784)

^-''2>''3 4 .766 .938 .743

(1) (.554) (.864) (.529)

Direct Pairing M^>M2>''3 4 .665 .909 .855

(n >n >n )
/'l>/^2-*'3

4 .634 .680 .804

2 2 2

^j,-M2>''3 4 .760 .992 .940

(3) (.547) (.945) (.803)

Inverse Pairing
''l>''2>''3

4 .691 .538 .387

(n^>n2>n2) (^]^>M2>M3) (2) (.840) (.701) (.514)'

2 2 2

''l>''2-''3
4 .767 .722 .421

Mi-M2>M3 4 .646 .298 .384

(^]^-A'2>/J3) W (.756) (.404) (.514)

Additional power assessment with estimated ANOVA power of 850
* .

r •
.

Additional power assessment with estimated ANOVA power of .550.
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TABLE 17 cont.

Sample Size
*

and Variance Mean Number ANOVA Brown-
Condition Structure Of Cases F Welch Forsythe

Equal Pairing
''l>^2>''3>''4

4 .681 .779 .660

(n^-n^-n^-n^)
''l>'^2-''3-''4

4 .634 .444 .622

2 9 9?
{^^>^^-t.^.f.^^)* (4) (.756) (.570) (.730)

M^-/x2-;i3>/i^ 4 .770 .961 .751

(;.^>;x2-M3>M4)** (2) (.584) (.924) (.564)

^^>^^.^^>^^ 4 .688 .816 .667

Direct Pairing ^j^>M2>A3>M4 4 .665 .900 .817

(n^>n2>nj>n^)
^l>'^2-''3=''4

4 .613 .567 .756

2 2 2 2

''l-''2-''3>^4
4 .770 .994 .925

**
{^^-^^.^^>l,^) (4) (.550) (.964) (.777)

^^>^^-^^>fj.^ 4 .637 .886 .799

Inverse Pairing ;i^>M2>M3>M4 4 .712 .615 .467

<n^>n2>n2>n^)
''l>''2-''3-''4

4 .792 .848 .497

2 2 2 2
^.^-^^-^.^>^.^ 4 .645 .301 .430

(^j_-M2-/i3>,.^)* (4) (.754) (.402) (.553)

''l>^2-''3>''4
4 .728 .678 .471

Additional power assessment with estimated ANOVA power of .850.

Additional Power assessment with estimated ANOVA power of .550.
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CONCLUSIONS AND RECOMMENDATIONS

An unexpected finding was the lack of robustness of the ANOVA F

when the variances were unequal. Even when the sample sizes were

equal the empirical Type I error probabilities could be twice as high

as desired, particularly when there was only one extreme variance. As

seems to be well known, when the sample sizes were unequal the ANOVA F

showed marked deviations from the nominal level, being too

conservative when larger variances were paired with larger sample

sizes and too liberal when larger variances were paired with smaller

sample sizes. All other tests did remarkably well In terms of

controlling the Type I error rate. The test that had the best control

of the Type 1 error rate was Welch's test. Even at its worst the

empirical rate rarely reached as high as 8%. This occurred when there

was one extreme variance and when the sample sizes and variances were

inversely paired.

Although only one paper considered the test of Box, the paper did

raise some doubts about the utility of the test. It was not the test

of choice even when the sample sizes were equal and rarely had

superior power over Welch's test.

The first order test of James was similar to Welch's test in

terms of power but did not control the Type I error rate as well.

James' second order test was equivalent to Welch's test In terms of

size and power but, because of its complexity in calculation It was

not considered better than Welch's test.
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This leaves the choice of an alternative to the ANOVA F between

the Brown-Forsythe test and the Welch test. Another surprising result

was that there was only about a 1% to 5% loss in power as compared to

the ANOVA F when using these two tests when variances were equal.

Unequivocally it cannot be said that one test is consistently superior

to the other. The Brown-Forsythe test has superior power only when

extreme means coincide with the largest variances. In most other

cases Welch's test has superior power. For example, when extreme

means are paired with the smallest variances or when means are equally

spaced apart Welch's test has superior power. When two identical

means are situated midway between two extreme means Welch's test once

again has superior power. Thus for an experimenter wanting to perform

an omnibus test, Welch's test should be used. There is little doubt

that in some situations Welch's test will not be the most powerful but

on these occasions the loss In power would only be 1% to 25%.

Another approach for selecting an alternative procedure would be

to carefully investigate the experimental data and choose the test

that would provide the most power, either Welch's test or Brown-

Forsythe 's test. The researcher could also perform both tests and go

with the alternative hypothesis if either test rejects the null

hypothesis

.

Further research possibilities might include the investigation of

the size and power of the alternative tests when the variances are

unequal as well as the observations lacking normality. Another

extension of this report could be the investigation of higher order

treatment structures when the variances are unequal.
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Typical experimental situations where Welch's test would be

particularly beneficial could be experiments involving preservatives

in meat products or experiments involving yields of grains. In

preservative experiments a situation commonly referred to as masking

occurs. Masking is where a difference between two means may not be

detected because of a large variance in a third mean. This frequently

occurs because the controls used in the experiment typically have

large variances. An example of masking might be a situation with a

sample size condition of (6,10,16,20), a standard deviation condition

of (1,1,1,4) and a mean structure of (1.2,0,0,0). In this particular

situation Welch' test is 40% (54-14) more powerful than Brown-

Forsythe's test. With a sample size condition of (4,8,10,12) and the

same standard deviation condition and mean structure as above a 28%

(39-11) gain in power is acheived by using Welch's test. Even when

there are six groups, see TABLE 13, the superiority in power of

Welch's test can be as high as 40%.

For the grain yield experiment a common situation occurs where

low yields have small variances and high yields have large variances.

This is a direct pairing situation. An example of this direct pairing

might be the following: sample size condition (n. > n > n, > n,),

2 2 2 2variance condition (a > a. > a > a ) , and mean structure

^f-^ -* 1^2 ''
''i

'' '^4^ • ^°'" '"'^'^ situation the Welch test had a power of

90% and the Brown-Forsythe test had a power of 82%. Other examples of

this direct pairing are shown in TABLE 17.
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These are just a few of the typical situations where an

alternative to the ANOVA F such as the Welch test could be very

beneficial to researchers. In general, whether the sample sizes are

equal or not, if the variances are unequal the Welch test should be

used because of its excellent control of the Type I error rate and

usually superior power.
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ABSTRACT

Alternative procedures for testing the equality of population

means when the assumption of equal variances is violated are

discussed. A numerical example is illustrated for each alternative

procedure. Five papers which compare the performance of these

alternatives are reviewed. The tests are appraised in terms of

significance level and power. Whereas other procedures had

limitations in several contexts, the findings of this report indicate

the test by Welch is the test of choice because of its excellent

control of the Type I error rate and usually superior power.


