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CHAPTER 1

INTRODUCTION

The calculation of the radiation fields resulting from gamma-rays

streaming through straight rectangular ducts is a problem that presents

itself frequently in the design and analysis of radiation shields.

Current solutions to this problem are usually complex computer codes

based on Monte Carlo, albedo, and ray-analysis techniques. These codes

generally require the use of large main-frame computers and are

expensive to run. Simpler solutions to the gamma ray streaming problem

are almost always restricted to the unrealistic conditions of either a

plane or point gamma-ray source located at the duct entrance and a

detector located at the center of the duct exit. Such simple solutions

provide little flexibility for realistic source and detector locations

and thus have limited usefulness.

Several simple modeling techniques have been developed to describe

gamma-rays streaming through ducts. Simplest among these is the method

suggested by Rockwell [1] which states that the gamma flux escaping the

duct depends only on the geometry of the duct and the angular

distribution of the source and that the model need not consider

gamma-ray interactions or duct wall materials. Methods suggested by

other authors [2-4] are slightly more complex and involve separating the

duct streaming phenomena into different components, each of which is

separately calculated.

LeDoux and Chilton [2] (whose primary duct work concerned two

legged or L-shaped ducts) considered the problem as composed of two

separate phenomenon, photons scattering from the duct walls and photons

scattering from a duct lip region. LeDoux and Chilton used empirically



derived albedos (ratios of reflected to incident radiation) to calculate

the exposure contributions due to backscatter from the different

reflecting areas within a duct (i.e., the duct walls). For the lip

region, LeDoux and Chilton proposed a technique which analytically

integrated all single scatter photon interactions that occur in the lip

region and contribute to the streaming radiation and which represented

these scattered photons as being emitted at an equivalent single scatter

point.

Kitazume et al. [3], in a study of gamma-ray streaming through

straight cylindrical ducts, suggested, like LeDoux, that the gamma-ray

streaming problem be decomposed into two phenomena. However, unlike

LeDoux, Kitazume considered the two phenomena to be photons that

directly penetrated the duct wall, and photons that scatter from the

duct walls. Kitazume calculated the directly penetrating photon

contribution using a ray-analysis technique (an analysis method which

assumes that the transmission of a shield can be computed as if

transmission along various paths were affected only by material which

lies along that path) . A semi-analytical Monte Carlo albedo method was

used to describe the photon wall scatters.

Clifford [4], in a study of gamma-rays streaming through straight

principally cylindrical ducts, divided the gamma-ray streaming problem

into three different phenomena. These three phenomena are (i) photons

that directly penetrate the duct wall, (ii) photons that scatter from

duct walls, and (Hi) photons that scatter from a duct lip region.

Clifford treated the directly penetrating photons in a manner similar to

that used by Kitazume. For the photons scattered from the duct wall,

Clifford developed a new approach in which all photons scattering from a



duct wall were assumed to scatter from one effective point in the wall.

To determine the number of photons scattering from this point that

contribute to the streaming dose, Clifford integrated the number of

photons incident upon the duct wall which scatter, on a line extending

from the scatter point into the wall, to the gamma-ray detector. For

the photons that scatter from a duct lip, Clifford used a method similar

to that used by LeDoux.

In this work, a simple model will be developed to describe the

radiation fields resulting from gamma rays streaming through straight

rectangular ducts obliquely illuminated by monoenergetic photons. This

new model is designed to be used with a small micro computer and to

offer a large degree of flexibility. The model will allow for duct

configurations with variations in the duct dimensions, as well as

changes in the source and detector positions. Specifically, the model

will be designed to emulate duct configurations in which a point gamma

ray source obliquely illuminates the duct entrance and a point detector

traverses the area on the exit side of the duct.

During the modeling process, single and multiple scattering, as

well as direct penetration photon transmission phenomena will be

addressed. In particular, the gamma-rays streaming through the duct

will be divided into four groups or types. These groups are (i)

directly penetrating photons, (ii) photons scattered from the duct lips,

(iii) photons scattered from one of the duct walls, and (iv) photons

which scatter between two duct walls. Two different techniques for

modeling the contribution of the singly scattered photons to the overall

gamma ray streaming radiation field are presented. One technique used

to describe the single photon scatters is a modified version of



Clifford's lip-scatter method. The second technique is an albedo-based

method that uses an empirical albedo formula.

The models developed in this work are compared to benchmark

experimental data to test their validity. These experimental data were

obtained from a gamma ray streaming experiment conducted earlier by the

Department of Nuclear Engineering at Kansas State University. However,

in order to make such a comparison, the duct model had to be altered

slightly to describe the actual experimental conditions as closely as

possible.

A brief description of the duct streaming experiment will be

presented in Chapter 2. The development and description of the

gamma-ray streaming models are then given in Chapter 3. In Chapter 4

the models are refined and compared to the experimental data. Included

in these refinements are modifications to emulate the conditions of the

KSD experiment, as well as, to eliminate model components that prove

insignificant to the transmitted radiation field. The results of

Chapter 4 also include a comparison of the predictions obtained from

both the point-scatter and albedo models to the experimental data.

It is this author's belief that the model presented will be both

reasonably accurate and economic to use for engineering analysis of

gamma-ray streaming problems. Moreover, as discussed in Chapter 5, it

appears that these models can readily be generalized to more complex

duct geometries (e.g., cylindrical ducts, and detector and source at

different elevations)

.



CHAPTER 2

REVIEW OF DUCT STREAMING EXPERIMENT

An extensive experimental program focusing on gamma ray streaming

through straight ducts in concrete walls was conducted by the Department

of Nuclear Engineering at Kansas State University (1979-1980). The

outcome of this program was a large volume of data which could be used

in the development of simplified models describing gamma ray streaming

through ducts. This data represents the exposure rate fields produced

by collimated Co-60 gamma rays obliquely incident upon ducts in a

variety of configurations. Included in these different duct

configurations were variations in duct length, size, and type, as well

as multiple source strengths and positions.

Following is a brief description of the experimental program. A

detailed report of the experiment can be found in references 4, 5, and

6.

2.1 Experimental Duct Configurations

Many duct configurations were used in the experiment. Two Co-60

gamma ray sources were employed throughout the experiment. These Co-60

sources were positioned atop a large irradiator unit. Due to the size

of the irradiator unit the sources were restricted to movement in a

horizontal plane (i.e., the source elevation did not vary). During the

course of the experiment three concrete walls of different thicknesses

(50.8, 101.6, and 152.4 cm) were constructed. In these walls straight

cylindrical and rectangular ducts were formed. These ducts were

oriented perpendicularly to the duct wall and had their centerline at



the same height as the sources. A detector measuring the gamma ray

streaming exposure rate traversed the volume on the exit side of the

duct. Figure 2.1 shows the general experimental arrangement.

The configurations to be considered in this study are restricted to

rectangular ducts and detector traverses on the horizontal plane at the

duct centerline elevation. Because of these restrictions, only

experimental data for the 101.6 cm thick wall was available. Table 2.1

contains a summary of the various duct configurations that will be

considered in developing the gamma ray streaming models in Chapter 3.

2.2 Experimental Duct Wall Specifications

The 101.6 cm thick duct wall was constructed as a combination of

two 50.8 cm thick walls stacked next to one another. These thinner

walls were formed of stacked rectangular blocks composed of ordinary

concrete. The blocks were stacked in the pattern shown in Fig. 2.2.

The two 50.8 cm walls were offset slightly so that the cracks between

the blocks did not penetrate both walls. The wall dimensions are shown

in Fig. 2.3.

A square void penetrating perpendicularly through the walls served

as the "duct area". Different sized ducts could be formed by filling

this duct area with varying sizes and shapes of concrete blocks. During

the formation of the different ducts, care was taken to maintain the same

duct centerline.

The concrete blocks were constructed of ordinary concrete. This

concrete was composed of 300 kg cement per cubic yard of sand and

aggregate (30 weight percent heavy aggregate and 70 percent sand). The

concrete blocks were determined to have an average specific gravity of
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Fig. 2.1. Experimental arrangement used in the Kansas State University

gamma ray streaming experiment. (all dimensions in centimeters)



Table 2.1 Summary of straight rectangular duct
configurations (duct length is 101.6 cm
and detector is at duct centerline
elevation)

.

Source Source Source Duct Duct
Strength Angle, 8 * Dist.** Width Height

(Ci) (degrees; (cm) (cm) (cm)

0.5 33 200 30.5 30.5
0.5 45 200 30.5 30.5
0.5 60 200 30.5 30.5
0.5 33 200 30.5 15.. 25

10 45 300 30.5 15.25
10 60 200 30.5 15.25

* Angle formed between duct center line and line from
source to center of duct opening.

** Distance from source to center of duct opening.
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2.22 ± 2. 11 [5], This value was determined from weight and volume

measurements of a representative sample of the blocks.

2.3 Gamma-Ray Sources Used in the Experiment

Two gamma ray sources, nominally 0.5 Ci and 10 Ci, were used in the

experiment. The 10 Ci source was housed in a lead-shielded irradiator

unit manufactured by J. L. Shepherd and Associates. When needed, the 10

Ci source was pneumatically raised and positioned 2.22 cm above the top

of the irradiator and 5.08 cm from the irradiator's vertical centerline

(see Fig. 2.4). When the 0.5 Ci source was used, it was placed in a

wooden frame and mounted on the irradiator unit in a position identical

to that used by the larger source.

The sources were in the shape of right cylinders and were

positioned on their vertical axes. The 10 Ci gamma ray source was

triply encapsulated in stainless steel (type 304) with a wall thickness

of 0.264 cm and base thickness of 0.244 cm. The 10 Ci source dimensions

(before encapsulation) were 0.693 cm in diameter and 0.635 cm long. The

0.5 Ci gamma ray source was a pencil source contained in a Technical

Operations, Inc. Model 402 Gamma-Ray Projector [5],

The actual source strengths of the two sources are presented in

Table 2.2.

TABLE 2.2 Cobalt-60 Source Strengths, effective 1 June 1979 [5].

Nominal Source Strength Actual Source Strength
(Ci) (Ci)

0.5 0.474 ± 4.5%

10 8.12 t 4.8%
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In order to eliminate skyshine (photons that scatter from the air

around the source) and other unwanted scattered radiation from reaching

the detector, both a collimator and shadow shield were employed. These

devices caused the source gamma rays to be emitted in a narrow beam

which illuminated the duct mouth. They were constructed of lead bricks

(20.32 cm x 10.16 cm x 5.08 cm). The collimator and shadow shield

dimensions are illustrated in Figs. 2.5 and 2.6, respectively. The

collimator and shadow shield were placed on top the source irradiator

unit with the collimator centerline displaced horizontally 2.54 cm from

the irradiator centerline. (Note: The collimator was displaced because

of physical limitations imposed by an unused source orifice at the

irradiator's vertical centerline.) Figure 2.7 shows the top view of the

collimator and shadow shield and their positions in relation to the

source.

The degree or amount of collimation imparted by the collimator and

shadow shield is determined from their dimensions, as well as those of

the sources used. This degree of collimation can be expressed using

collimation angles (angles describing the collimated beam shape based

on the beam centerline) . These collimation angles are illustrated in

Fig. 2.8. The collimation angles were determined from measurements of

the beam's cross section at various distances from the irradiator.

Figure 2.9 shows the distances that were measured in the determination

of the collimation angles. The measurements are presented in Table 2.3,

and the resulting collimation angles are shown in Table 2.4. The

average collimation angles presented in Table 2.4 insured that the duct

mouth and surrounding area would be illuminated for all the different

duct configurations.
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Table 2.3 Dimensions of collimated beam (in cm) at perpendicular
distance X from the collimator face. Refer to Fig. 2.9

for definitions of dimensions.

X (cm) A B C D E F

91.44 13.46 17.27 41.40 44.96 16.00 19.56
121.9 17.02 22.10 53.59 58.42 19.81 24.38
182.9 24.38 31.75 77.98 84.84 27.18 34.04
243.8 31.75 41.40 102.4 111.5 34.29 43.69
304.8 38.86 51.31 126.5 138.2 41.66 53.34
457.2 57.15 74.17 187.2 204.7 59.94 77.47
609.6 75.44 99.82 247.9 271.0 78.23 101.6

Table 2.4 Collimation angles
definitions.

(in degrees) . See Fig. 2.8 for angle

X (cm) 9 eu 9 9
J

9 9
a b c d e f

91.44 7.00 8.97 20.68 22.29 8.30 10.11

121.9 6.92 8.96 20.92 22.62 8.04 9.86
182.9 6.91 8.97 21.19 22.87 7.70 9.61
243.8 6.91 8.98 21.33 23.04 7.45 9.46
304.8 6.86 9.02 21.38 23.15 7.35 9.38
457.2 6.85 8.87 21.49 23.30 7.19 9.26
609.6 6.85 9.03 21.55 23.35 7.10 9.19

AVERAGE 6.90 8.97 21.22 22.95 7.59 9.55
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2.4 The Gamma-ray Detector used in the Experiment

A sensitive high pressure ionization chamber ("HPIC") and its

associated electronics were used to measure the radiation fields

resulting from the streaming gamma rays. The HPIC was a Reuter-Stokes

RSS-111 Area Monitor System calibrated by the manufacturer with Co-60

gamma rays to read directly in units of yR/h. (Note: Graphic output

from the detector system was calibrated in units of uR/h. Digital

output was in units of mV.) [5] A spherical (25.4 cm diameter) ion

chamber with 0.30 cm thick stainless steel walls was used in the system.

The chamber was filled with high-purity argon at a pressure of 25

atmospheres (2.5 MPa) at 0° C. The center electrode of the ion chamber

was an aluminum sphere 5.08 cm in diameter. A 0.24 cm thick aluminum

weather housing enclosed the system [7].

In order to obtain air equivalent exposure rate measurements (from

the detector system digital output) , the voltage readings from the

detection system were multiplied by a correction factor of 0.25, i.e.,

X = 0.25 (Measured instrument output voltage mV)

where X is the exposure rate in units of uR/h. This correction factor

took into account the energy sensitivity of the detector, a correction

for the surrounding buildings and a voltage-to-exposure rate conversion

factor [5].

2.5 Experimental Geometry

Figure 2.10 shows the geometry used in the experiment. The source

position was defined by a two dimensional polar coordinate system (p,8 )

with the origin located at the center of the duct entrance. The

elevation of the source was at all times equal to that of the duct
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Top View

DETECTOR CENTER

Fig. 2.10. Experimental geometry used In the gamma-ray streaming experiment.
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centerline. The detector, on the other hand, employed all three

dimensions in defining its location throughout the experiment. Two

variables of the detector position, c and d, are illustrated in Fig.

2.10. The variable not shown is the detector elevation. This variable

was measured from the duct centerline with measurements below the

centerline being negative. Lastly, the duct size was defined by simple

length (L) , width (W) , and height (H) variables. (Note: The duct

height is not shown in the top view of Fig. 2.10).

2.6 Experimental Data Reduction

The exposure rate data obtained from the experimental program is

meant to describe only the effect of a duct in a shielding wall, not the

shielding properties of the wall itself. In order to produce data of

this type ("reduced data") , exposure rate measurements were obtained

with and without a duct in the wall. The difference between these two

measurements were reported and referred to as "reduced data" [5]. These

reduced data were then normalized to unit source strength and multiplied

by the source distance squared (p ) to account for the inverse-square

geometrical attenuation between source and duct entrance. Multiplying

by p
2

is not a theoretically correct method for eliminating the

inverse-square geometrical attenuation of the source. But, if it is

assumed that the area immediately surrounding the duct entrance acts as

the source of the majority of the radiation measured as reduced data and

that this area subtends a small solid angle from the source, then

multiplying by p
2 should prove to be a good approximation. The

resultant reduced data has units of m2 uR/Ci h. It is these data that

are used in this study to test various models for predicting the

radiation field transmitted by the duct.
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The amount of error involved in the reduced data is reported to

vary with the differences in the duct and solid wall exposure rate

measurements [5]. Large differences have small associated uncertainties

and small differences have large uncertainties. Table 2.5 illustrates

the error that can be associated with the reduced data. The error for

large differences in the ducted and solid wall exposure rates is due

almost entirely to the uncertainty in the source strengths (4.5% to

4.8%) and the source distance (< 0.5%).



24

Table 2.5 Estimated percentage error in the reduced data for
various differences in solid and ducted measurements
[5].

Ducted Wall Measurement
Solid Wall Measurement

(uR/hr)
Percent Error in Reduced Data

10

25

50

100

300

500

29.1

13.3
8.9
7.9

7.0
6.9
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CHAPTER 3

DEVELOPMENT OF GAMMA-RAY STREAMING MODELS

The calculation of the radiation fields resulting from gamma-rays

streaming through straight rectangular ducts is becoming increasingly

important in the design of shields used in modern nuclear reactors.

Several methods for performing these calculations have been developed.

Many of these methods result in very complex computer codes, requiring

large amounts of computer time on mainframe-sized computers. The

potential accuracy afforded by these complex codes is not needed for all

areas of shielding analysis, i.e., preliminary design studies and

on-site health physics calculations. From this arises the need for

simple engineering models that can estimate the gamma radiation

streaming through ducts and be evaluated on small micro-computers.

Rockwell [1], LeDoux et al. [2], and Kitazume et. al. [3] have all

studied the gamma ray streaming problem, presenting simplified Monte

Carlo, albedo, and ray-analysis techniques which are thought to be

useful. Invariably, however, these studies have been restricted to

cases where the source is located in the center of the duct entrance and

the detector is located in the center of the duct exit.

In this chapter a duct-streaming model is developed that is based

upon the use of a distant collimated point source obliquely illuminating

the duct entrance and a point detector traversing the area on the exit

side of the duct. The basis for this model is the use of single

scatter points to describe the single photon scatters that occur in

regions near the duct entrance. As an alternative to the single

scattering point methods, the albedo-based methods are also presented

where applicable. The albedo-based method, which Is widely used in
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modeling photons streaming through ducts, will provide a standard to

which the single-point scattering models can be compared. These two

different approaches are then compared to each other and to experimental

data in Chapter 4.

Gamma radiation transmitted through straight ducts can be divided

into four components, namely, 1) directly penetrating radiation, 2)

radiation that scatters once from the duct lips, 3) radiation that

scatters from the duct walls, and 4) radiation that scatters from more

than one duct wall.

The models presented in this chapter are designed specifically to

describe the duct configurations listed in Table 2.1 (i.e., rectangular

duct configurations used in the KSU gamma-ray streaming experiment).

These configurations have the source and detector at the same elevation

as the duct centerline and the source obliquely incident upon the duct

mouth. Figure 3.1 shows the general geometry and some of the associated

variables used in the model formulation. The source and detector

positions were described using a Cartesian coordinate system with the

origin at the center of the duct mouth. The parameters p, 8 , c, and d

used in this section are the same as the experimental variables (see

Fig. 2.10).

3.1 Description of Gamma-Photon Interactions

Some elements of gamma-photon interactions that will be used

throughout the model development in this chapter are: 1) an empirical

fit to the total attenuation coefficient, 2) a dosimetric response

function to convert the gamma flux to an exposure rate, 3) the

Klein-Nishina scattering cross section, 4) an energy-dependent Berger

buildup factor for a collimated source, and 5) an empirical exposure
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Fig. 3.1. General geometry used in the model development.
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rate albedo. In the following subsections, explicit approximations of

formulas for these five quantities are presented.

3.1.1 Total Attenuation Coefficient for Concrete

An energy-dependent total attenuation coefficient valid for Co

photons is required for the model development. The photon energy range

of interest ranges from 1.33 MeV to around 100 keV. A least squares fit

was performed [£n(U/p) vs. &n(E)] using tabulated data for the total

mass interaction coefficient [8]. This fit yielded the following

equation

HJ5L = 0.06381 E-°-
41851

{^} (3.1)

where E is photon energy iMeV), P is density of concrete (g cm ), and

P(E) is total attenuation coefficient in concrete for photons of energy

E.

Table 3.1 shows the data used in the fit, the values calculated using

Eq. (3.1), and the percent difference between the two.

3.1.2 Dosimetric Response Function

The dosimetric response function is a factor which converts the

photon flux to a dose related quantity, e.g., the exposure rate. The

exposure rate X is given by

X = RjCE) * (3.2)

where E is the photon energy (MeV), is the photon flux of energy E

—2 —1
(cm s }, and R^(E) is dosimetric response function for photons of

energy E (uR cm2 s/h).

Since one Roentge

coulombs (C) of static charge in a kilogram of dry air, and since

Since one Roentgen (R) is equivalent to the creation of 2.58 x 10~
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Table 3.1 A fit to the total attenuation
coefficient for concrete. '

. , # *
Energy (u/p) Calculated Percent
(Mev) W/g) (u/p) Difference

0.1 0.166 0.167 0.6
0.15 0.138 0.141 2.2
0.2 0.124 0.125 0.81
0.3 0.107 0.106 0.93
0.4 0.0954 0.0936 1.9

0.5 0.0871 0.0853 2.1

0.6 0.0806 0.0790 2.0
0.8 0.0707 0.0700 0.99
L.O 0.0636 0.0638 0.31
1.5 0.0518 0.0538 3.9

t From Reference 8

* U/p = 0.06381 E-
-* 18 * 1
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-19
1.602 x 10 coulombs of static charge is formed for each ion pair in

dry air, then because 33.85 eV is needed to form an ion pair in air, the

response function can be determined as

IL(E) = t (R kg(air)/C} • 1.602xl0~
19

{C/ion pair}
2.58x10

{ion pair/eV} • 10
6
{eV/MeV} • 10

3
{g/kg} • E {MeV}

33.85

He„<
E
>l

1 W/g(air} • 10
u
{uR/R} • 3600 {s/h}.

Simplifying, one obtains

air

)

R^E) = 66.04 E [-S (3.3)

f^en
(E)

i

alr

where is Che energy-dependent linear energy absorption

coefficient with units {cm2
g }.

To obtain an explicit energy-dependent expression for R^(E), a

least-squares third-order polymonial fit was performed on linear energy

absorption coefficient data [8], The result was

E
>i

air

= 0.01933 + 0.04397E - 0.05492E 2 + 0.01889E 3 (3.4)
P 1

Table 3.2 shows the data used in the fit as well as a comparison to the

predicted values. Combining Eqs. (3.3) and (3.4) then yields

R
X
(E) = 66.04 (0.01933 + 0.0437E - 0.05492E 2 + 0.01889E 3

) E (3.5)
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Table 3.2 A fit to the mass energy absorption
coefficient for air.

Photon
Energy
(MeV)

. t
i i s air
en

{cm2 /g>

*
Calculated

Value .

(^ /P)
alr

en

Percent
Difference

0.1 0.0227 0.0232 2.2
0.15 0.0247 0.0248 0.40
0.2 0.0265 0.0261 1.5

0.3 0.0287 0.0281 2.1

0.4 0.0294 0.0293 0.34
0.5 0.0298 0.0299 0.34
0.6 0.0295 0.0300 1.7

0.8 0.0287 0.0290 1.0
1.0 0.0278 0.0273 1.8

1.5 0.0254 0.0255 0.39

t From Ref erence 8

* From Eq. (3.4)
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3.1.3 Klein-Nishina Scattering Cross Section

The Klein-Nishina scattering cross section, a (E , 6 ) , is the
e c o sc

differential scattering cross section for photons of unit energy about

E , scattering through a unit solid angle about 8 . The Klein-Nishina

cross section may be written as [9]

a (E ,8 ) = h r
2

p[l + p
2 - p (1 - cos 2

8 )] —
\ (3.6)

e c o sc e r r sc [sr electron/

in which

P=^ (3.7)

and

E
sc

E

E
i i

° n cos6
sc

1
' 0.511

[1

(3.8)

where E is the energy of the photon prior to the scatter {MeV}, E is
o sc

the energy of the photon after the scatter, 6 is the scattering angle

(i.e., angle between incident photon path and scattered photon path),

-13
and r is the classical electron radius (r « 2.818 x 10 cm) [91.

e e ' '

In the duct-model development it is useful to use the macroscopic

Klein-Nishina cross section given by

pN
Z. (E ,9 ) = o (E ,6 )

—^ Z (3.9)k o sc e c o sc A

where p is the density of the scattering medium {g/cm3 }, N is

Avogadro's number {molecules/g-mole} , A is the molecular mass

{g/g-mole}, and Z is the number of electrons {electrons/molecule}. For

concrete, which is principally composed of S10 , a value of h can be

used for the average (Z/A) value. Equation (3.9) can thus be written as

W^ = °- 01196 P [1 + P
2

- P(l " cos 2
6 )] p (3.10)
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3.1.4 Buildup Factor

A buildup factor is widely used along with the uncollided flux

density to describe the accumulation of secondary or scattered photons

transmitted through thick materials. The buildup factor B is defined as

observed dose rate
B =

dose rate due to uncollided radiation

„ _ , dose rate due to scattered radiation ., .

dose rate due to uncollided radiation

Throughout the following model development a modified Berger-type

buildup equation is used. In this form, recommended by C. E. Clifford

[4], the photon energy-dependence is shown explicitly, namely

k
2

B(E,X) = 1 + \k
1

E exp[Xk
3
exp(k

4
E)], (3.12)

where \ is the number of mean free paths traveled by the photon, E is

the photon energy {MeV}, and the k are constants.
n

In order to obtain values for the constants k , Eq. (3.12) was fit

to Eisenhauer and Simmons buildup factor data for a point isotropic

source in an infinite concrete medium [10]. This fit yielded k. =

1.2858, k, = -0.4560, k, = 0.09739, and k. = -0.8319.15 4

Table 3.3 presents the Eisenhauer and Simmons data that was used in the

fit, as well as values obtained with Eq. (3.12).

Equation (3.12) and its associated constants represent an infinite

medium buildup factor. In order to predict photon buildup in a small

concrete region for a collimated source, a modification must be made to

Eq. (3.12). This modification takes the form
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Table 3.3 Comparison of Eisenhauer and Simmons buildup factors
(concrete medium, air response function) to values
generated using Eq. (3.12) [10].

(a) Eisenhauer and Simmons

Penetration Energy (MeV)

(mfp) 1.50 1.00 .80 .60 .50 .40 .30

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.50 1.39 1.45 1.48 1.53 1.57 . 1.61 1.68
2.00 1.85 1.98 2.06 2.18 2.27 2.37 2.52
3.00 4.00 4.72 5.18 5.82 6.26 6.80 7.42
4.00 5.25 6.42 7.18 8.25 8.97 9.85 10.80
5.00 6.60 8.33 9.47 11.10 12.20 13.50 15.00
6.00 8.05 10.40 12.00 14.30 15.90 17.80 19.90
7.00 9.58 12.70 14.90 18.00 20.20 22.80 25.60
8.00 11.20 15.20 18.10 22.20 25.00 28.50 32.20
10.00 14.60 20.70 25.10 31.80 36.40 42.10 48.20
15.00 24.20 37.20 47.40 63.60 75.60 90.70 107.00
20.00 35.00 57.10 75.50 107.00 131.00 162.00 198.00

(b) Calculated

Penetration Energy (MeV)

(mfp) 1.50 1.00 .80 .60 .50 .40 .30

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.50 1.54 1.66 1.73 1.84 1.91 2.01 2.16

1.00 2.10 2.34 2.50 2.72 2.88 3.09 3.40
2.00 3.26 3.80 4.15 4.65 5.01 5.49 6.18
3.00 4.49 5.38 5.96 6.81 7.42 8.22 9.39
4.00 5.78 7.09 7.96 9.22 10.12 11.33 13.06
5.00 7.15 8.95 10.14 11.91 13.16 14.84 17.27
6.00 8.58 10.95 12.53 14.89 16.56 18.81 22.06
7.00 10.10 13.11 15.15 18.19 20.36 23.28 27.51
8.00 11.69 15.44 18.00 21.84 24.59 28.31 33.68
10.00 15.14 20.65 24.48 30.32 34.53 40.25 48.55
15.00 25.39 37.43 46.25 60.10 70.36 84.48 105.23
20.00 38.39 61.03 78.48 106.90 128.51 158.81 204.10
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Table 3.3 (Continued)

(c) The ratio of the calculated factors, using Eq. (3.12)

,

to the Eisenhauer and Simmons buildup factors.

Penetration Energy (MeV)

(mfp) 1.50 1.00 .80 .60 .50 .40 .30

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.50 1.11 1.14 1.17 1.20 1.22 1.25 1.28

1.00 1.13 1.18 1.21 1.25 1.27 1.31 1.35
2.00 1.14 1.17 1.20 1.22 1.24 • 1.27 1.33
3.00 1.12 1.14 1.15 1.17 1.18 1.21 1.27
A. 00 1.10 1.10 1.11 1.12 1.13 1.15 1.21

5.00 1.08 1.07 1.07 1.07 1.08 1.10 1.15
6.00 1.07 1.05 1.04 1.04 1.04 1.06 1.11

7.00 1.05 1.03 1.02 1.01 1.01 1.02 1.07
8.00 1.04 1.02 .99 .98 .98 .99 1.05

10.00 1.04 1.00 .98 .95 .95 .96 1.01
15.00 1.05 1.01 .98 .94 .93 .93 .98

20.00 1.10 1.07 1.04 1.00 .98 .98 1.03
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k
2

B(E,X) = 1 + B Xk E exp[Xk exp(k E) ]

.

(3.13)

where B is a "buildup-correction factor" that accounts for the source

collimation and the finite dimensions of the shield. B is strictly an
c

empirical factor and will be determined in Chapter 4 through comparison

of the duct model to experimental data.

3.1.5 Albedo Formulation for Scattered Photons

An albedo, as referred to in gamma-ray scattering^ is a measure of

the reflective qualities of a surface. "Fundamentally, it expresses the

ratio of the flow rate of radiation emitted from a small increment of

surface to the flow rate of the radiation incident upon that surface

under specific conditions." [9] The specific conditions refer to the

incident direction and energy spectrum of the radiation, as well as the

direction and energy of the emitted radiation. The geometric situation

is illustrated in Fig. 3.2.

Chilton and Huddleston [11] reported the following seraiempirical

formula exposure-rate for the albedo:

C(E ) a (E ,9 ) 10
26

+ C T (E )
/— « a ,

\

o e ce o sc o ,- ...
a
x
(E
o
,9

o
;e,«

! ; (cos6 /cose)
(3 - 14)

o

where C(E ) and C'(E ) are constants dependent upon the incident photon

energy and the reflecting medium, E is the incident photon energy

{MeV}, 6 is the scatter angle, a (E ,6 ) is the Klein-Nishina
sc e ce o sc

energy scattering cross section, and a is the albedo. The

Klein-Nishina energy scattering cross section is simply the product of

Eqs. (3.6) and (3.7), i.e.,

.°ce
(K

o'
8
8c)

= h r
e

p2 [1 + p2 " P(l-c°s 2
8
sc

)]. (3.15)
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Fig. 3.2. Scattering geometry used in the albedo formulation.
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The experimental incident photon energy for the present study is

taken as 1.25 MeV (i.e., the average of the actual Co source photon

energies, 1.17 MeV and 1.33 MeV). Values for C(E ) and C'(E ) of 0.0586
o o

and 0.0107, respectively, at E = 1.25 MeV were interpolated from values

listed in reference [9].

The differential exposure rate resulting from reflected photons,

expressed in terms of an albedo, is [9]

S R_(E ) cos6 a (E ,6 ;8,i/i) dA
," OAO OAOO
dX = " g " , -, (3.16)

4tt R^ R^

where dX is the differential exposure, S is the source strength

{photons/second}, Ry(E ) is the dosimetric response function evaluated

at energy E , E is the initial energy of the photons, R. is the

distance from source to scatter point, R„ is the distance from detector

to scatter point, and dA is the differential scattering area.

3.2 Direct-Penetration Component

The direct-penetration radiation is defined as the uncollided gamma

rays which penetrate the duct walls. In the direct penetration

component, a small amount of buildup will be associated with the

directly-penetrating radiation. This associated buildup will be very

small due to the fact that most of the actual buildup will be described

in the gamma-ray scattering model components. The direct-penetration

component can be described by using simple attenuation and buildup

factor techniques. Further simplification can be achieved by restricting

the source and detector to the duct centerline elevation.

Given the geometry defined in Fig. 3.3, let
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x,, y,, z, = detector position,dad
S = source strength {photons/second},

= source angle,

9 and 8' = collimation angles,
c c

L = length of the duct,

W width of the duct, and

H = height of the duct (not shown in Fig. 3.3).

Since the source gamma rays are confined within the. collimator

angles, there is a negligible exposure rate whenever

a < 1L _ 6 - 8' 5 O . (3.17)
4 s c min

a > - - 8 + 9 = a (3.18)
4 s c max

where

a = tan"
1M *-\ . (3.19)

For the situation in which a is between these limits, the exposure
rate resulting from the direct-penetration component

can be written as

=
° —2. exp[-u(E )P] B(E ,X) , a . < a < a (3.20)

D , „2 r o ' o mm max

where

X^ = exposure rate due to direct penetration,

R distance from the source to the detector,

U(E ) = attenuation coefficient for concrete for photons of

energy E ,

P = the path length the photons travel through the concrete
(P + P

L
in Fig. 3.3),

and X = number of mean free paths traveled by the photons
{y(E ) P}.
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The source-to-detector distance R can be calculated from

r= [(x
o
-x

d
)

2
+ (y -y

d
)

2
+ (« -«

d)
2

]

%
. (3.2D

Direct-penetration photons can pass through the duct wall along

five possible paths as illustrated in Fig. 3.4. Each of the possible

paths present a different case for the calculation of the photon path

length. For each case the angular range of a and the path length P is

slightly different. Specifically, the results for the five cases are:

Case 1 : This case is defined by

tairl
(x +°W/ 2 ]

" ° "
"""'

[x -W° 2
)

' " X
d

i V (3 - 22)
v o '

K o '

For this case, the photon path length through the concrete is

Case 2 : This case is defined by

tan
" 1

(; -w/z ]
* a * taxr

'% *lh) '
and a > tan

"x
L ~-%/z} >

(3 - 24)

then

K " f
+
tlfd c^ (3 - 25)

Case 3 : For this case is

tan
' l

L -W/2
)

< a < tan
" l

fc !°W/2
J

-
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CASE I

CASE 2

CASE 3 CASE 4

CASE 5

Fig. 3.4. Illustration of the possible paths directly penetrating

radiation can have.
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and the path length is defined by

P =4 — (3.27)
sina cosa

Case 4 : In this case the photons travel completely in the duct so that

tairl (r-nM > a > e
-"1

frVB75) o.28)

and there is no path length in the concrete, i.e., P * 0.

Case 5: For this case

tan_1 (3r^72) >a>tan_1 (^72
and

a > tan
-1

[ 1 ,

W + W/2
o

and the path length is defined by

p.jllfo.s
-f)

J_. (3.3!)
v tana o 2' cosa

3.3 Lip Scattered Component

A "lip scatter" refers to a gamma ray which enters a portion of the

wall, scatters once, then leaves through a wall surface that is

perpendicular to the wall face through which the photon entered. Figure

3.5 illustrates different types of lip scattering. The "lip scattered

component" refers to the exposure rate resulting from lip scattered

photons and the buildup from photons scattered in the lip that pass

through the duct wall.
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(a)

(b)

(c)

(Top Views)

Fig. 3.5, Example of various lip scatters. Illustrated in (a) is

a lip scatter that occurs on the detector side of the

duct. A "near lip" scatter is shown in (b) and the

scatter shown in (c) is a "far lip" scatter.
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The general model development of lip scattering can be described as

follows. Lip scattered photons are attenuated in the duct wall material

before the lip scatter and undergo attenuation and buildup in the duct

wall material after the scatter. A general expression of the exposure

rate (at a detector outside the duct wall) resulting from a duct lip can

be written as

]
dV $Z

a
expC-UjP - u

s
P') B R (3.32)

where the integration is carried out over the lip volume, X is the

exposure rate resulting from photons scattering in the lip region, dV is

a differential volume element in the lip, # is the photon flux (due to a

source outside the duct wall) incident upon the differential volume, E
s

is the scattering cross section for the incident photons scattering

toward the detector, u. and u are the attenuation coefficients of the
l s

photons before and after the scatter, P and P' are the photon path

lengths in the wall material before and after the scatter, B is the

buildup associated with the scattered photons, and R is a detector

dosimetric response function. Equation (3.32) can be applied to any duct

lip region to yield the exposure rate contribution from that lip region.

The source side of the duct (the "duct mouth") offers the only

regions where the lip scattering can contribute significantly to the

transmitted radiation field. As a result of numerous preliminary

calculations, it was found that lip scattering that takes place in the

duct lips on the detector side of the wall generally contribute a

negligible amount to the overall exposure rate, especially if the duct

height and width are small when compared to the duct length.
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In the present development, there are four lip scattering regions

that will be considered: (i) the duct-side lip, nearest to the source

("near lip"), (ii) the duct-side lip, farthest from the source ("far

lip"), (iii) the duct top lip, and (iv) the duct bottom lip. Each lip

scattering volume is bounded by an edge of the duct mouth, a portion of

a wall, the plane of the duct mouth, and the two parallel planes

extending from the duct walls on either side of the lip.

Three different techniques for modeling the lip regions were

studied. The three techniques were: numerical integration of the lip

regions, a method suggested by LeDoux [2], and a method suggested by

Clifford [4], All three techniques involved integration of the lip

regions to determine the scattering sources presented by the lips. Both

LeDoux's and Clifford's methods are simplified single-scatter techniques

that use several geometric assumptions and represented the total lip

scattering sources as single scattering points at the lip corners at the

duct centerline elevation. The numerical integration method, on the

other hand, is an exact method that uses no geometrical assumptions or

simplifications. Calculations for determining the dose contribution

from the near lip region were performed using all three techniques. The

results of these calculations are summarized below.

The numerical integration technique developed in this study can be

expected to yield the most accurate results. This technique involves

the use of numerical quadrature to evaluate the volume integral in Eq.

(3.32). Gaussian quadrature was used to evaluate the volume integral

numerically, and it was found that a quadrature set of as low an order

as five could be used with little error. A disadvantage of this
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numerical integration technique over the simplified methods of LeDoux

and Clifford is the comparatively large computational effort that is

needed

.

The method suggested by LeDoux provides an expression that can be

evaluated easily and quickly. LeDoux suggested that the energy

attenuation coefficient should be used in determining the photon

attenuation. LeDoux further suggested that the same attenuation

coefficient could be used for the photon path before and after the

scatter. Use of the energy attenuation coefficient instead of the total

attenuation coefficient provides a means of accounting for the photon

buildup without introducing a buildup factor explicitly. The outcome of

LeDoux's method was an expression in which the volumetric integration

over the lip region could be evaluated analytically (using some

geometrical assumptions). However, upon comparison of LeDoux's method

and the numerically integrated model, it was found that LeDoux's method

substantially underpredicted the dose and thus LeDoux's model was not

used in this study.

The method suggested by Clifford [4] provided results that compared

more favorably with the numerically integrated model than LeDoux's and

was still computatively easy to evaluate. Clifford's method is very

similar to LeDoux's. The main difference between Clifford's and

LeDoux's methods is Clifford's use of a buildup factor and total

attenuation coefficients. The addition of a buildup factor makes the

models slightly more complex, but still allows the integration to be

evaluated analytically (after some geometrical assumptions)

.

After reviewing the different methods, a modified version of

Clifford's method was chosen to be used as the basis of the models of

the duct lip regions in this work. This modification, which will be
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referred to as the single-point scattering method, places the effective

scatter point within the lip instead of at the corner as in Clifford's

model. The exact position of the scattering point was determined by

comparison of the Clifford based models to the numerically integrated

model and by adjusting the scatter point location (i.e., moving the

scatter point along the line that bisects the lip corner at the duct

centerline elevation) until the exposure-rate peaks predicted by the two

different models coincided. A comparison of values obtained using the

single-point scattering method and the numerical integration method will

be presented in the next section of this chapter.

In the experimental arrangement, the collimator and shadow shield

allowed the duct mouth and duct lips to be fully illuminated, thus the

effect of the source collimation can be ignored in the treatment of

photon scattering by the lips. Nomenclature used throughout the

scattering models are:

E = scattered photon energy (MeV),
sc OJ

P = path length traveled by the photon before
scattering,

P. = path length traveled by the photon after
scattering and before leaving the lip,

P„ = path length traveled by the photon after
scattering and after leaving the lip,

R. = distance from source to the scatter point, and

R„ = distance from the scatter point to the detector.

3.3.1 Exposure-Rate Contribution from the Near Lip

The geometry of scattering that occurs in the near lip is

illustrated in Fig. 3.6. The near lip, of height H, extends from the

duct corner to infinity in the x direction and over the length of the
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duct in the z direction. The near-lip exposure-rate contribution is

composed of all photons that scatter in the near lip and their

subsequent buildup that reaches the detector. The exposure rate

resulting from these scatters occurring in the near lip, 3C., , is

s
o r

H/2
r

L

f rVW R
x
(E
sc

)

hL - £ jdy jdz jdx
[ 2

SC

2

*
exp[-u(E

o
)P

o]

-H/2 W/2 1 2

exp[-u(E )(P.+P_)] B(E ,u(E )(P.+P,» (3.33)
SC 1 l sc sc 1 2

where

Rj = f(x-x
o

)

2
+ (y-y )

2
+ (z-^)

2
]

4
, (3.34)

R
2

= [(x-x
d

)

2
+ (y-y

d
)

2
+ (z-z

d
)

2
]

h
, (3.35)

9
sc

= "M " °1 " V (3 ' 36)

_ lf
z - z

and

ai- tan_1
(zT^T] (3 - 38)

Equation (3.33) is the explicit form of Eq. (3.32) for the near

lip. This (Eq. 3.33) is also the form evaluated in the numerical

integration method to yield the exposure-rate contribution from the duct

near lip. If it is assumed that the lip scattered photons that

contribute significantly to the radiation field leaving the duct are

those which scatter near the lip corner and that this scattering volume

near the lip corner is small when compared to the source and detector

distance, then Eq. (3.33) can be greatly simplified. This assumption
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allows that all scatters occurring in the lip can be represented by a

single scattering point within the lip. This assumption also allows

that all variables except those dealing with attenuation and buildup in

the immediate scattering volume can be considered constant throughout

the integration volume. Lastly, if one assumes the length of the near

lip or duct height is small when compared to the source and detector

distance, then the volume integral in Eq. (3.33) can be reduced to a

surface integral independent of scattering point elevation. This leads

to the following simplified equation.

X^ = C jdz jdx [«p.[-„(E
o
)P

o
] .xpt-uCE^Pj] BCE^.u^P^j (3.39)

W/2

where

C =
S H Z, (E ,8 ) R (E )
o k o sc X sc

2 2
4ir Rj R^

exp[-u(E )P ] B(E ,u(E )P )
SC L SC sc I

(3.40)

sina,
(3.41)

„ x - W/2 .

P. = —;
, and

1 since
(3.42)

L - z
(x + W/2)

2 ,. „ -1 x + w/2
, if o

2
> tan Wr^A ,

-1 x + W/2
lf a

2 ± tan hr^r-

(3.43)

(3.43)
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Substituting Eqs. (3.13), (3.40) and (3.41) into Eq. (3.38) yields

*NL = C dz e*Pl-^Vl
(x -

j)
dx exp]-u(E ) :

sc sina„

D I dx (x - y) exp[F (x - £)] (3.44)

where

k
l ^"W k

2
D = B

X
,

SC
(E )

L

c sina sc
(3.45)

and

k, U(E ) u(E )

F = J __

sc
exp(k.E ) - —rsina„ ' 4 sc sina„

(3.46)

Evaluation of the integrals in Eq. 3.37 leads to

sina sina r (-u(E )L

*nL
-c

u(E ) u(B )

exp bi^r'o sc ^ v 1

1 +
1 SC

[k
3
exp(k

4
E
sc

)- 1]'

(3.47)

y(E
Q
)L

If one now assumes that —

-

>> 1, then this result reduces to
sina

sina, sina„ i B k, (E )

u(E )u(E )
o sc k

3
exp(k

4
E
gc

) - 1]'

(3.48)

Equation (3.33) represents the exact ray-analysis technique for

describing the near lip scattering region, while Eq. (3.48) represents

single-point scatter model for the same region. The validity of the

geometric assumptions can be seen by comparing the exposure rates
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obtained from Eq. (3.48) with those from Eq. (3.33). It was found that

Eq. (3.33) could be evaluated numerically with good accuracy using only

fifth order Gaussian Quadrature (numerical integration technique)

.

The scatter point used for Eq. (3.48) in this comparison was (X = W/2 +

4 cm, y = 0, 2=4 cm), a point within the near lip that allowed the

peak exposure rates of the two equations to occur at the same detector

x-coordinate. The scatter point was found to be valid for all duct

configurations that were considered. Based on this result, a

corresponding point (X = -W/2 - 4 cm, y = 0, z 4 cm) was used for the

far lip models that are developed in the next section. Figure 3.7 shows

a comparison of Eqs. (3.33) and (3.48) for three source angles, 8

33°, 45° and 60°. Figure 3.7 shows that the single-point scattering

method predicts values comparable to those obtained with the numerical

integration. Consequently, Eq. (3.48), which is considerably simpler to

use than the general result of Eq. (3.33), may be used with only a

slight amount of error incurred.

3.3.2 Exposure-Rate Contribution from the Far Lip

The geometry of scattering in the far lip is shown in Fig. 3.8.

Using the same assumptions that were presented in the previous section

for the near lip, equations for the far lip component can be derived.

The exposure rate resulting from scattering in the far lip, X^ , is

(after applying the single-point scattering model assumptions)

-W/2 a

X^ = C
j
dx exp[-u(E

sc
)P

1
] B(E

sc
,y(E

sc
)P

1
)

J

dz exp[-y (E^PJ (3.49)

where

a = (-x - W/2) tanOj, (3.50)
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P = Z/sinoi

Pj = -(X + W/2)/sina
2

(3.51)

(3.52)

(3.53)

(3.54)

S H L (E ,8 ) R(E )
o k O SC A sc

2 2
4ir R^ R^

c 4 l 2

exp[-u(E
sc

)P
2

] B(E
sc

,p(E
gc

)P
2
), (3.55)

(3.56)

and R and R„ are defined from Eqs. (3.34) and (3.35) respectively.

Evaluation of the integrals in Eq. (3.49) yields

*?L
=

sina sina sina sina, sina

u(E )u(E ) u(E )u(E )cosa, + u(E ) sina.
O SC sc I I

k (E )
2

r sina |l(K ) rtl(H „) p(E )
"

j ~ n l SC 2 SC SC ^ Osina B 7=-; —

*

: —

;

D
c U(

o
5

*-D u(E )
Slna

2
tsina

2
cosa

l
sc

(3.57)

where

D = k,exp(k.E ) - l,
3 v 4 sc

and

L - z
x - w/2

if L - z +
w/2

> 0,

,

w
X " 2

if L - z + < 0.

(3.58)

(3.59)

(3.60)
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3.3.3 Exposure-Rate Contribution from the Top Lip

Figure 3.9 illustrates the geometry of lip scattering that occurs

in the top lip. The exposure-rate contribution from this lip can be

represented by (after applying the assumptions stated in Section 3.3.1)

L

*j,L
= C Jdz jdy exp[-u(E

o
)P

o
] exp [-utE^P^ H\C ,V ( E

SC)V (3. 61)

a

where

H
(ZZ

o
)

o sina. ' (3.63)

P,- 2-^. (3.64)
1 sina.

y - y.-IP 'o
a

i

= sln —r~H ' (3 - 65)

i r
y " yd

and

a
2

- sin — , (3.66)

S W L (E ,8 ) IL(E )

C -
.

°
2

S

%
SC

«P[-U(E
9C

)P
2

1
B(E u(E

sc
)P

2
), (3.67)

4tt R, R„

(x-x ) (x -x) + (y-y ) (v,-y) + (z-z ) (z.-z)

As before, the distances R and R are defined by Eqs . (3.33) and (3.34)

respectively.
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Analytic evaluation of the integrals in Eq. (3.61) then yields

*tl- c b^ [exp(LF) " 1] "Ig WaG)[L-±-±] 4 +
T} '

(3 - 69)
L sc J

where

k
9 "<E.J

D = B k, (E )

L
. , (3.70)

c 1 sc sina

SC

sina_ v ^3CApviv4
lJ

sc
/I =777^ (k,exp(k.E. ) -1) , (3.71)

and

u(E ) u(E ) z

F = -r-2- * ,
SC

rfpr , and (3.72)
sina sina H/2

u(E ) z

I . (3.73)
sina

1
H/2

If one assumes - z > H/2 and L >> l/u(E ) then -LF >> 1. In Eq.oo
(3.73), the dominant term is -u(E ) /sina , so that -LG >> 1. Equation

(3.69) can then be simplified to

XT!"" kr-TF +
TGG

+
F: •

(3 ' 74)

To calculate C in the above expression, the path P„ can be approximated by

P B [hjLJL _ Jill) _JL_ (3 75)
2 (cosy sinyj coscc

where

_ifl
x - x

d ii

Y = "n
, _ I • (3-76)
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If the value obtained from Eq. (3.75) is negative, then one should set

P_ 0, i.e., the path is entirely in the duct.

3.3.4 Exposure-Rate Contribution from the Bottom Up

The exposure rates resulting from scatters in the bottom lip are

equal to those from the top lip, if the detector and source are at the

duct centerline elevation. Such is the case for all ducts considered in

this study. Thus, Eq. (3.74) can be used to calculate the bottom lip

exposure rate contributions.

3.4 Wall Scattered Component

A "wall scatter" refers to a gamma ray which enters a portion of

the duct wall, scatters once, then leaves the duct wall. Unlike the lip

scatters, the wall scattered photon's entry and exit points are on the

same wall face. The wall scattered component refers to the exposure

rate resulting from wall scattered photons and the buildup from photons

scattered in the wall that pass through the duct.

The general model development of wall scattering is the same as

that used in lip scattering, except the volume integration is now

carried out over a wall volume.

Since the source photons are obliquely incident upon the duct

mouth, they can scatter off only three of the four duct walls. These

three walls can be divided into four distinct scattering regions. These

regions are: (i) the portion of the duct side wall that is directly

exposed to the source ("wall #1") . (ii) the portion of the duct side

wall that is shielded by the near lip region ("wall #2"), (iii) the top

wall of the duct that is directly exposed to the source, and (iv) the

bottom wall of the duct that is directly exposed to the source.
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Both the single-point scattering method and albedo technique were

used to evaluate the exposure rates arising from the wall scattering

regions. Chapter 4 will present a detailed comparison of results

obtained from the single-point scattering and albedo modeling

techniques.

The single-scattering technique, as applied to wall scattering uses

many of the same assumptions previously employed in the lip scattering

calculations. These assumptions can be restated as:

1) The wall scatters that lead to photons reaching the detector

occur almost entirely in a thin layer (less than a mean free

path) of the wall near the surface.

2) The scattering area and its associated distances from the

source and detector are such that all scatters that occur in

the wall can be represented by a single point in the wall.

The above assumptions can be applied in much the same way as those used

in the lip scattering components to reduce the volume integrations to

simpler equations.

The scattering points used in evaluation of the wall scatter models

are located at the centroid of the illuminated wall surfaces.

3.4.1 Exposure-Rate Contribution from Wall #1

(a) Single Scatter Approach

The geometry of wall #1 scattering is illustrated in Fig. 3.10.

In the wall #1 scattering region, only a single integration needs to be

performed after the assumptions stated on the previous page are applied

in the same manner as in the lip components. This is due to the fact

that the path lengths in the scatter region before and after the scatter
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depend only on the x-coordinate of the scatter point and the angles a.

and a . The resulting exposure rate X^ can be thus written as

-W/2

X
wl

« C dx exp[-u(E
o
)P

o
] exp[-u(E

sc
) Pj] BCE^.yCE^)^) (3.77)

where

S H L(E ,8 ) E_(E )
o k o sc X sc

C
2 2

4xR^ P^
W tana exp[-u(E )P,]B(E ,u(E )P) , (3.78)

l sc 2 sc sc I

-x - W/2
o cosa (3.79)

-x - W/2
1 sina„ (3.80)

(3.81)

-1 f

x
d

- x
a
2

" tan i-T7 (3.82)

and

The distances R. and R are defined from Eqs. (3.34) and (3.35)

(3.83)

respectively, and

L - z
x - W/2 1 " L - z *

x ~ "/2
> 0, or (3.83)

0, if L - z *
x ~ W/2

S 0. (3.84)
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Evaluation of the integral in Eq. (3.87) leads to

k„

hl m(l
1

B k (E ) u(E )
c 1 sc sc

u(EJ + M(E )-

u(E ) u(E )

(3.85)

where

D - k, exp(k, E ) - 1

3 r 4 sc
(3.86)

(b) Albedo Approach

The dose from wall #1 region can be expressed, recalling Eq. (3.16),

as

S R_(l ) cosa a (E ,a, ;ir/4 - a,,0) HW tana.
• O X 1 X o 1 I 1

4ir JL R
2

exp[-u(E_)P,]B(E \l(S)V.)
SC I sc, sc /

(3.87)

or, more simply as

S HW sina. a(E ,o. ;ir/4 - a,,0) R_(E )
o iXoi I Xo

«B1 2 2
4ir Rj R^

exp[-u(E )P ] B(E.
(
,,»(B.„)P,,

sc 2 sc sc 2
(3.88)

where a is the albedo function defined in Eq. (3.14), P is defined in

Eqs. (3.59) and (3.60), and a and a are the same as defined in the

single-point scatter approach for wall #1.

The above equations assume that the scattering point is at the same

elevation as the source and detector and is on the duct wall surface

(x = - |, y = 0) .
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3.4.2 Exposure-Rate Contribution From Wall #2

(a) Single Scatter Approach

Figure 3.11 illustrates the geometry of the wall #2 scattering.

The exposure rate resulting from wall #2, X„ , can be expressed as

-W/2 c

^ = C jdx Jdz exp[-u(E
o
)(P

o
+ P^] exp[-u(E

gc
)P

2
] B(E

sc
,u(E

sc
)P

2
) (3.89)

a b

where
S H I. (E ,9 ) II (E )

. o k o sc X sc
exp[-u(E )P,] B(E ,u(E )P,), (3.90)

4ir R^ R^

ti=^' »- 91 )

b = (j - x) tanaj , (3.92)

-lf
X
d " X

(3.93)

a
2

= tan 17^7 • (3.94)

(3.95)

P = _^_ . (W/2 - x)
n mnri roan. VJ, ^ U '

-x - W/2
P

l

=
cosai

' (3-97)

-x - W/2
P
2

= c^ • ( 3 -98)
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The upper bound of the inner integral, c, can have two possible

values, representing two cases, namely

Case #1:

Case #2:

c = L, if z + (x + |) tan(x - 8 - 6 ) > L (3.99)
o o 2 4 c s

c = z + (x - x) tan (7- - 6 - 6 ), if not case 1. (3.100)00 4 c s

For Case #1

*w2 = c Siry iMfcs^-f 1

F

D+A
exp

I 3W
tana 2

(D+A) _ _ w . _L_] + J_
i, 2 D+Aj D+A

(3.101)

where

-H(E) u(E )o sc
(3.102)

"(E)
D = — k,exp(k,E ) , andsma 3 r 4 sc

(3.103)

F = B k, (E )
i

.

sc
c 1 sc sina (3.104)

For Case #2,

*W2 " C
u(E„)

exp
L _ 3W

tana ~ 2
A - 1

D+A [ """''II tana 2
'eKpllT^-^CD+A)!! L 3W 11

. !

tana 2 D+A] D+A
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^ h((A Wr* HuSr-flc^')

where

A' =

3W

2

_1
D+A'

_J
D+A'

-U(E ) u(E )

sinct-
—

:

tan (7-

(3.105)

(3.106)

and

G = exp
U(EJ

1

»(EJ

sina
+ (x + 7) tan(To 2 4

(3.107)

If the source distance is much greater than the duct width, then G * 0,

and Case #1 and Case #2 become equivalent.

The distance P, is calculated from

P
3

=

L - z
W/2

0,

if I _ , 2^-lZi >
,

lf L - z + ^dll < o.

(3.108)

(3.109)

(b) Albedo Approach

The albedo dose from the wall #2 region is approximated by assuming

that the corner of the lip #1 region is transparent and that all

radiation scattering from wall #2 passes through this transparent area.

LeDoux and Chilton [6] suggest that the transparent area be bounded by a

distance equal to one mean free path, A, of an incident photon (see Fig.

3.12). The exposure rate from wall #2 is thus,
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sina
s
o
H mj cosa

i VVV4 " V 0)W
^2

=
', T2~T2
4ir Rj R

2

exp[-y(E
sc

)P
3

] B(E
gc

,p(E
sc

)P
3
) (3.110)

where P. is defined from Eqs. (3.108) and (3.109).

3.4.3 Exposure-Rate Contribution from the Top of the Duct

(a) Single-Scatter Approach

Figure 3.13 shows the geometry of a scatter in the top of the

duct. The illuminated surface of the top of the duct region is

triangular. In order to simplify the integration of the scattering

kernel, this surface was assumed to be a rectangle with an area equal to

that of the actual illuminated triangular area. The exposure rate,

denoted by by JC, , is thus given by

a b

X
TW

= C
J

dz
J

dy exp[-p(E
o
)P

o
] exp[-u(E

sc
)P

1
]B(E

sc
,u(E

sc
)P

1
) (3.111)

H/2

W
a = j tanB , (3.112)

where

=
2 """l

b = H/2 + z tanB
2 (3.113)

S W I. (E ,8 ) R (E )
o k o sc X sc

4tt Rf R
2-1 exP [

-u(E
sc

)P
2
1B(E

sc
,ll(E

S c
)P

2
)

'
(3 - 114)

1 2

y - H/2=
sine, • ».115)
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lf
y " yo

a
l

= sln \~ ' (3.117)

ll
y - yd

a
2

= Sin ~"

1

' (3.118)

-1 o
B

l

= tan
x -W/2 »- 119 >

-1 o
S
2

= tan
[h/TI

• (3.120)

Again, P^ and R
2

are defined in Eqs. (3.34) and (3.35), and P is

defined in Eq. (3.75).

Evaluation of Eq. (3.111) leads to

Xm, = C

exp (AF tan6
2
) - 1

A D
TW 2 F 2

f
Z

tanB
2

* (G+Fr

exp[A(G+F)tanB
2
][A-

(G+F)L6j +
A +

(G^LflJ (3 " 121)

where

W
A = j tan$

1
, (3.122)

D = B k. (E )
*

.
8C

, (3 123)c 1 sc sina p,1" ;

-U(E ) U (E )

TT
O SC

sindj sina
2

* (3.124)
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and

u(E
sc )

Q -rt=T k3«' <k
4
1«)

•
(3 ' 125)

(b) Albedo Approach

The albedo formulation of the exposure rate from the top wall is

S W tanS, sina, cl.(E ,-r - a. It ~ <*,,<I0
£ « _° j 1 X o 4 14 2 , .

^W
8, R* R?

W
• exP [-li(E

sc
)P

2
] B(E

sc
,y(E

sc
)P

2
) (3.126)

-if o 1 , -lf
A
d

where

*
= tan *

[
z"- z

J

+ tan * IT
-

and P
2

is defined in Eq. (3.75).

3.4.4 Exposure-Rate Contribution from the Bottom of the Duct

The exposure rates resulting from scatters in bottom of the duct

are equal to those from top of the duct, if the detector is at the duct

centerline elevation.

3.5 Multiple Scattering from the Duct Walls

Photons may scatter more than once from the walls of the duct

before reaching the detector. The largest contribution of the dose

resulting from such multiple scatters is due to double scatters.

Therefore, only double scattering are considered in the following

discussion.

There are two main types of double wall scatters. The first type

("double-1") is illustrated in Fig. 3.14 and represents radiation that

experiences its first scatter or reflection in the near lip region and
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then scatters again from the opposite side of the duct, on the detector

side of the wall. The second type ("double-2") , shown in Fig. 3.15, has

the photon first scatter from the wall #1 region and then again from the

opposite side of the duct.

These double scatters are just combinations of lip and wall

scatters. Thus, the appropriate equations developed in Section 3.3 and

3.4 can be used to calculate a resulting exposure rate at the detector

due to double scatters. Before explicit expressions are presented for

these double-scatter exposure rates, the following notation is

introduced:

x, y, z = first scatter point,

x', y', z' = second scatter point,

E = energy of photon after first scatter,

E' » energy of photon after second scatter,

8 = scattering angle of first scatter,

0' = scattering angle of second scatter,

R, = distance between source and first scatter,

R„ distance between scatter points, and

R, = distance from second scatter point to detector.

3.5.1 Exposure-Rate Contribution from Double-1 Scatters

The location of the first scatter of the double-1 is on the near

lip, while the second scatter can be either a lip or wall scatter

depending on the detector position. Figure 3.14 shows the two possible

scattering paths of the second scatter, with "possible scatter #1"

having a second lip scatter while "possible scatter #2" has a wall
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scatter. The resulting exposure rates for these two scattering paths

can be readily computed using the single-point scattering technique.

The results are as follows:

W
(a) Possible Scatter tt\ (defined by x , £ - —

)

2
cosci (sina ) coso,

X™, = C i ±- ±- (1+D) (3.128)
li(E )U(E )VE' )

sc sc

where „

S E%(E' ) Z. (E ,8 ) E (E ,8' )
o X sc k o sc k sc scC= — ^^ "

, , ,
*"- "-

, (3.129)
4ir R^ R^ R3

k
2

B k.(E' )
c 1 sc

[k
3
exp(k

4
E^) - l]

2 '

(3.130)

°1
= tan \T^\ • < 3 - 131 >

iro x

2
tan_1 fr^fVI . (3.132)

-l|
|x

d
" x

°3 " tan
«, -,' '

(3 - 133 >

sc 1 2
'

and

(b) Possible Scatter #2 (defined by x, > -
j)

coscc sina 1 sina

*dbi - C
U(E )U(E ) iIS5— +F

|

< 3 ' 13«
sc

,(E ) „»• )—-1
sc sc sina.

(3.134)

(3.135)
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where

S H W JL(E' ) E, (E ,6 ) E. (E ,8' )tana.,
o X sc k o sc k sc sc 3

2 2 2
4* ^ R

2
R
3

(3.137)

F =

B k. (E 1

)
c 1 sc SC

y(E' ) U (E )
sc _ sc

sina, sina.,

2 sina.
(3.138)

and

D = k_ exp(k,E' ) - 1,
3 r 4 sc

(3.139)

(3.140)

3.5.2 Exposure-Rate Contribution from Double- 2 Scatters

The first scatter in double-2 is a wall #1 scatter. Figure 3.15

illustrates the two possible second scattering paths. "Possible scatter

#1" is a second wall scatter and "possible scatter #2" is a lip scatter.

The resulting exposure rates, X^
B2 » resulting from applying the single-

point scattering technique are shown below.

(a) Possible Scatter #1 (defined by x i j)

^E = CG
sina,

p(E ) + u(E' ) -^
sc sc sina.

(3.141)

where

,22
S H W cota, cota, R^(E' ) I, (E ,6 ) E, (E ,8' )o 1 3 X sc k o sc k sc sc

2 2 2
4tt R^ R^ R3

(3.142)

sina,
u(EJ + u(E )

sc sina.

(3.143)
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I K,(E' )
c 1 sc sc

y(E* ) ii(i )sc n sc
sina sina

2 sina.
(3.144)

D = k
3
exp(k

4
E^) - 1 (3.145)

. rx - x
a, = tan

-1 -2
1 Iz - Z

(3.146)

-1 x' - x
a = tan —;

2 Iz - z
(3.147)

(3.148)

= a, + a and
sc 1 2

= a„ + a„
sc 2 3

(3.149)

(3.150)

(b) Possible Scatter it! (defined by x, > j)

sina cosa, r B k. (E' )

x -re 2 3
i + c 1 sc

B2 U(E
sc

)U(e;
c ) r [k3exp(k

4
E;

c
) - I]

2

where

(3.151)

S H W coto. R_(E' ) I, (E ,8 ) I (E ,8' )o 1 X sc k o sc k sc sc
2 2 2

4, R
2
R
2
R
2

(3.152)

sina,

, and

P(E ) + U(E )

1

sc sina

(3.153)

sc 3 2
(3.154)
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CHAPTER 4

MODEL REFINEMENTS AND COMPARISON TO EXPERIMENT

In this chapter, the models developed in Chapter 3 will undergo

some refinements and be compared. The refinements will include

modifications of the model to account for some non-ideal conditions

present in the KSU gamma-ray streaming experiment, as well as to

eliminate the model components that contribute a negligible amount to

the gamma-ray streaming dose. Two comparison will be presented in this

chapter. The first comparison will show how the point-scatter method

for describing duct-wall scatters compares to the empirical albedo based

method. Following the point-scatter and albedo method comparison, the

characteristics of the various model components will be presented.

These characteristics show how and where each component contributes to

the overall gamma-ray streaming dose. In the second comparison, the

model will be compared to the experimental data. Lastly, so that a

fuller understanding of radiation streaming through ducts can be gained,

the effects of changes in the duct geometry on the

duct-streaming-radiation field will be presented.

In order to compare the model results to the experimental data, the

calculated values must first be modified to emulate the experiment as

closely as possible. There are three main differences between the

idealized model (presented in the previous chapter) and the experimental

program (discussed in Chapter 2). The first difference arises from the

fact that the experimental data are expressed as "reduced data" (i.e.,

as normalized differences of exposure rates between walls with and

without ducts present), whereas the models describe the exposure rate

transmitted through the duct. The second difference is that the model
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assumes a point detector (i.e., they predict the exposure rate at any

point in the transmitted radiaton field) while the experimental program

used a spherical detector with a 25.4 cm diameter. Lastly, the model is

based on the use of infinite medium buildup factors while the actual

experimental configuration indicates that photon buildup occurs in very

restricted regions of the duct wall.

Thus it is necessary to modify the idealized model of the previous

chapter to account for these three experimental complications before

comparing experimental results to the different models. In the next

three sections, methods for correcting the idealized model to the

realities of the experiment are presented.

4.1 Prediction of Experimental Reduced Data

The results from the KSU gamma ray streaming experiment were

expressed as reduced data (see Chapter 2) . To obtain the reduced

exposure rate at a particular observation location, the differences

between the measured rates obtained through a wall with the duct and

through a solid wall of the same thickness were computed. These

differences were then divided by the source strength and multiplied by

the square of the source-to-duct distances, p
2

, to obtain the so-called

"reduced exposure rate". In this way, data was reported that was

independent of the source strength, only very weakly dependent on the

source-to-duct distance, and independent of the effect of background

(i.e., radiation that penetrates the solid portion of the duct wall).

In order to use the reduced data as a benchmark against which

various duct penetration models can be verified, it is first necessary

to modify the duct models so that they yield reduced exposure rates.

Prediction of the reduced exposure rates requires that consideration be
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given only to those photons that travel all or partly in the duct.

Photons that penetrate the wall without ever entering the duct should be

excluded from the calculated gamma-ray reduced dose. For the

single-scatter models, this emphasis can be satisfied by requiring

photons to scatter only in directions that enter the duct. With the

direct-penetration model, on the other hand, one must calculate the

actual differences between the ducted-wall and solid-wall exposure

rates. No changes are needed for the double-scatter models since they

are concerned only with photons traveling in the duct. The model

modifications for the single-scatter and direct-penetration models are

discussed below.

The change in the single-scatter models to predict reduced exposure

rates take the following form. The single-scatter exposure rates are

simply not evaluated for detector positions which require the photons to

scatter deeper into the wall. This restriction could conceivably

eliminate scatters which could contribute to the radiation field, i.e.,

wall scatters. But, these scattered photons would have to travel

approximately the wall thickness before exiting and so would be almost

entirely attenuated in the wall (assuming a wall several mean free paths

thick), and hence should contribute little to the overall exposure rate.

In the direct-penetration model, buildup and attenuation through

the entire wall is subtracted from Eq. (3.20). The resulting direct

penetration model can thus be written as

R
x
(E

q
) S

qK -
5

|exp[-u(E )p] B (E ,u(E )P) - exp[-u(E )p'] B(E ,U(E )P')j
4irR I ooo o o o I

(4.1)
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where P' is the photon path length in a solid concrete wall, and the

other variables are as defined previously in Section 3.2.

The final change that needs to be made to the models in order to

have them yield results in reduced data form is the normalization. The

calculated values must be divided by the source strength (Curies) and

multiplied by the square of the source distance.

4.2 Correction for a Finite Sized Detector

To account for the difference in the detector sizes used in the

experiment and models, the calculated data will have to be averaged over

a volume equivalent to that of the experimental detector. This

averaging process acts to smooth out sharp peaks in the calculated data

and will hereafter be referred to as "smoothing the data". A spatial

weighting function corresponding to the detector sensitivity must be

used in this smoothing. To simplify this process the following

assumptions are made.

1) The spatial dependence of the exposure rate field is

one-d imens ional

.

2) The detector sensitivity is constant throughout the detector

volume (i.e., a weighted average of all point exposure rates

calculated in the detector volume can be performed using equal

weighting factors)

.

The exposure rate field dimensional dependence was taken to be

along the x-axis (horizontal and parallel to the duct wall) . The

assumption of one dimensional dependence should incur little error since

any sharp variations in the radiation field will occur in the
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x-direction as long as the detector is at the duct centerline elevation

and the duct height is greater than the detector diameter.

The assumption of equal weighting or constant spatial sensitivity

throughout the detector will cause the peaks in the radiation field to

be slightly lessened while raising any low areas or valleys.

Calculations performed using different weighting functions (circular and

parabolic weighting functions that are peaked at the detector center)

showed that only at sharp peaks or steep valleys in the radiation fields

did the radiation field profiles, calculated using different weighting

functions, differ appreciably and this difference was small when compared

to the peak magnitudes. For simplicity a constant weighting function

was selected for the subsequent analysis. Specifically, all calculated

values on both sides on a detector location within a distance of 12.7 cm

(radius of the experimental detector) were added together and then

divided by the number of values used (i.e., a simple average was

computed) . This resulting value was taken as the smoothed or

experimentally equivalent value for the given point.

4.3 Buildup-Correction Factors

A buildup factor is applied as a multiplicative correction factor

to the uncollided flux to account for secondary or scattered photons

that are transmitted through material. These secondary photons are

referred to as buildup. Generally, most of the buildup occurs in the

volume immediately surrounding the path of the uncollided flux. A

reduction in the material surrounding the uncollided path results in a

reduction in the photon buildup.

As applied to the models in this study, the duct, as well as source

collimation, acts to decrease the volume where buildup occurs. In the
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scattering models developed earlier, buildup factor was an infinite

medium used on the scattered leg of the photon's path. However, the

buildup should be reduced because of the duct presence. In the

direct-penetration model, the majority of the buildup occurs in the

"near lip" on the source side of the wall and the "far lip" on the

detector side of the wall from photons that are slightly deflected from

their incident directions. (Note: The near lip model accounts for the

direct-penetration buildup in the near lip.) Considering these facts

the infinite medium buildup used in the scattered models can be expected

to overpredict the exposure rates and should be reduced somewhat, while

the buildup in the direct penetration model should be reduced

substantially.

In the development of the buildup used in the duct models, a

correction factor, B , was included. B represents the fraction of the
c c r

total infinite-medium buildup that should be used in the models.

Appropriate values for B are not easily obtained from theoretical

considerations, and in this study they were determined through

comparison of the models to some of the experimental data. This

comparison involved adjusting the value of B until good visual

agreement was found between plotted values of experimental data and

calculated model results. A constant buildup-correction factor of 0.1

was found to be suitable for the direct penetration model. The buildup-

correction factors for the scattering models were found to vary for each

different duct configuration. Table 4.1 lists the values of B that
c

were determined for the different duct configurations.

The variation in B for the scattering models can be contributed to

the changes in the experimental geometry for the different duct
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Table 4.1 Buildup Correction Factors determined for the various duct
configurations and detector locations.

Source Source Source Duct Duct Detector
Strength Angle Dist. Width Height Z-coord. B

(ci) (degrees) (cm) (cm) (cm) (cm)
c

0.5 33 200 30.5 30.5 201.6 0.85
0.5 33 200 30.5 30.5 251.6 0.60
0.5 33 200 30.5 30.5 351.6 0.35
0.5 45 200 30.5 30.5 201.6 0.80
0.5 45 200 30.5 30.5 251.6 0.65
0.5 45 200 30.5 30.5 351.6 0.30
0.5 60 200 30.5 30.5 .201.6 1.00
0.5 60 200 30.5 30.5 251.6 0.80
0.5 60 200 30.5 30.5 351.6 0.60
0.5 33 200 30.5 15.25 201.6 0.60
0.5 33 200 30.5 15.25 251.6 0.50
0.5 33 200 30.5 15.25 351.6 0.30
10.0 45 300 30.5 15.25 201.6 0.55
20.0 45 300 30.5 15.25 251.6 0.45
20.0 45 300 30.5 15.25 351.6 0.35
20.0 60 200 30.5 15.25 201.6 0.35
20.0 60 200 30.5 15.25 251.6 0.30
20.0 60 200 30.5 15.25 351.6 0.20
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configurations. The exact relation between the buildup-correction

factor and the configuration geometry is not known, but some simple

empirical approximations can be formed. Using the values for B in
c

Table 4.1, two empirical expressions for the buildup-correction factor

were developed (least squares fits) . The scattering model

buildup-correction factor for the square ducts (30.5 cm x 30.5 cm) can

be approximated by

B = 0.75 +
0,27

„
3

- 0.142 f (4.2)
c cos8 L \-"*-i

where c is the distance from the back of the duct wall to the detector,

L is the duct length, and 9 is the source angle. The buildup-

correction factor in the scattering models used for the rectangular

ducts (30.5 cm wide x 15.25 cm high) can be approximated by

B = 0.991 - 2i222. - 0.142 f . (4.3)
c cosB L

In effect B introduces a single free parameter to the duct

penetration models. The values for this parameter (B ) should be

determined from comparison of the model results to experimental data.

But, for calculations requiring only order-of -magnitude results, a

constant value of B (between zero and one) can be choosen. Using a

constant value of B should result in duct penetration model predictions

that are within a factor of two for peak exposure rate regions.

4.4 Elimination of Models Providing Insignificant Contributions

Some of the models developed in Chapter 3 for different components

of the exposure rate were found to contribute insignificantly to the
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overall gamma-ray streaming. These models included the top and bottom

lip models and both double-scatter models. The top and bottom lip

models generally contributed less than one percent of the total reduced

data values. The double-scatter models contributed slightly more,

ranging from around two percent in the peak exposure regions to close to

ten percent at the limits of the detector traverse (x, = -150 cm and x 3d d

= 150 cm) . At the detector positions where the double-scatter models

accounted for close to ten percent of the exposure rate the total

exposure rate was usually very small (less than 10 uR m 2 /Ci h) . Since

the above mentioned models have relatively negligible contributions to

the overall gamma-ray streaming dose, they were not used. These models

were included in the development in Chapter 3 in order that the overall

model development should be complete.

4.5 Comparison of the Single-Scatter and Albedo Models

In order to compare the effectiveness of the single-scatter with'

the albedo wall scattering components developed in Section 3.4, these

components were combined (separately) with the duct lip and direct

penetration components and then compared to experimental data. These

two composite models were evaluated with buildup-correction factors of

0.0 and 1.0 at detector x-locations ranging from -150 cm to 150 cm for

duct configurations with source angles of 33, 45, and 60 degrees. The

resulting reduced data were then plotted (separate plots for each duct

configuration and B value) yielding a total of six plots. Included on

each plot were the experimental data, the data obtained from the

composite model with the single-scatterwall-scattering components, and

data obtained from the composite model with the albedo based

wall-scattering components. The duct configuration and the B value are
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identified in the upper right corner of each plot. The plots are shown

in Figs. 4.1 through 4.6.

Figures 4.1 through 4.6 show that the single-scatter model predicts

the experimental results better than the albedo model. In Figs. 4.1

through 4.3 the models used no buildup (B = 0) and the single-scatter

model predicted values which were slightly higher than those predicted

by the albedo model and the experimental values were higher yet.

Figures 4.4 through 4.6 (B =1) show generally good agreement between

the experimental data and the single-scatter models, but very poor

agreement of the experimental data with the albedo models. It can be

concluded from these comparisons that the models using the albedo

technique, which have buildup at the scattering point incorporated in

their empirical albedo formulas, are unresponsive to changes in the

buildup correction factor, and that these albedo models predict values

that are less than one half of the experimental reduced data values.

The single-scatter models, on the other hand, are very responsive to

changes in the buildup correction factor and can achieve good agreement

with the experiment.

The single-scatter model will be used for all subsequent

comparisons of experimental and predicted exposure rates since the

albedo-based model is not as accurate as the former.

4.6 Characteristics of the Principal Model Components

The composite model used to predict the reduced exposure rate field

is a sum of the various individual model components each of which

predicts the reduced exposure rate arising from radiation transmitted by

a different mechanism. Each of these model components predicts a

different spatial contribution to the composite reduced exposure rate
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field. Figures 4.7 through 4.9 illustrate the shapes of the different

reduced exposure rate components generated from the various models and

how they contribute to the composite field. The figures were generated

for duct configurations with source angles of 33, 45, and 60 degrees.

These configurations are representative of the ones studied in this work

and present the variations in exposure rate field shape and relative

magnitude for the different components.

Figures 4.7 through 4.9 show how the relative contributions of the

different components change as the source beam illuminates the duct

mouth at increasing angles from the duct axis. The direct-penetration

component is very prominant when the source angle is 33 degrees (fig.

4.7). But, as the source angle increases, the effects of the source

collimation and increased attenuation cause the direct penetration

contribution to decrease until, at a source angle of 60 degrees, there

is a negligible direct-penetration contribution.

The duct-lip contributions behave just the opposite of the

direct-penetration component. The relative contribution from the near

and far duct lips increases with increasing source angle. This increase

is to be expected, since the size of the duct lips do not change with

increasing source angle whereas the wall scattering area decreases. The

far duct-lip model shows very slight relative increases in its

contribution as the source angle increases because of the acute

scattering angle encountered by photons scattering in the far duct lip.

The only major variation in the duct-wall scatter contributions as

the source angle varies is that they extend over a smaller detector

traverse area. This smaller spatial range is due to the fact that the

scatters are originating closer to the duct entrance and thus are more

restricted by the duct exit walls as the source angle increases.
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4.7 Comparison of the Models to the Experimental Data

A measure of how well the models fit or compare to the experimental

data is difficult to obtain. There appears to be no one ideal method

for making such comparisons; however, a measure of agreement between the

models and experimental data can be obtained by computing the sample

correlation coefficient. A sample correlation coefficient is the

measure of the linear association between two variables, such as

experimental data and values obtained from the models. When the models

provide a perfect fit to the experimental data the degree of linear

association is maximized. The sample correlation coefficient can be

determined, for a given set of experimental and corresponding model

predicted values, from [12]

Z (Y -Y) (Y -Y)
1=1

(4.4)

I (Y.-Y) 2
£ (Y -Y) :

1=1
X

i=l
X

where r is the sample correlation coefficient, n is the number of

experimental data points, Y are the experimental data, Y are the

values obtained from the models, Y is the average or mean of the

experimental data, and Y is the mean of the model predicted values. The

values of the sample correlation coefficient can vary from negative one

to positive one. A value of positive one indicates a perfect positive

correlation between the variables being compared. A value of negative

one indicates a perfect negative correlation between the variables. If

the sample correlation coefficient is zero, the variables are said to be

uncorrelated [12].
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Sample correlation coefficients were calculated for detector x-axis

traverses in the various experimental duct configurations studied.

Seventeen experimental data points and model predicted values were used

in the calculation of the sample correlation coefficients. These values

are reported in Table 4.2. Graphs of the experimental data and model

predictions (detector x-coordinate vs. reduced data) are shown in Figs.

A.l through A. 18 in Appendix A. As seen from the sample correlation

coefficients and Figs. A.l through A. 18, the models generally provided

an excellent fit to the experimental data. The average of the

calculated r
2 values was 0.927 with the majority of the individual r 2

values being between 0.9 and 1.0.

The worst r 2 value reported was 0.606. This low value appears to

be caused by the use of too large a build up factor in the models for

the particular configuration. The general shape of the exposure rate

field predicted by the model (see Fig. A. 12) agrees with that of the

experiment, but the magnitude of the model predicted values are high.

Although the sample correlation coefficient could be used to

provide an indication of how well the models predict the experimental

data, it must be realized that the r values are insensitive to cases in

which there is a constant bias between the experimental and model

predicted data. The sample correlation coefficient indicates the degree

to which the model predicts the shape of the exposure rate field, not

how close the model values compare to the actual experimental values.

This is illustrated when Figs. A. 9 and A. 12 are considered. The r

values (r = 0.902 for Fig. A. 9 and r = 0.606 for Fig. A. 12) seem to

indicate that the model fits the experimental data in Fig. A. 9 better

than in Fig. A. 12. This can be misleading since the figures indicate
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Table 4,2 Correlation coefficients (see Section 4.6) for the various duct

configurations and detector locations. (Duct Width is 30.5 cm

for all configurations)

Source Source Source Duct Duct Detector Correlation
Strength Angle Dist. Width Height Z- coord. Coefficient

(CD (degrees) (cm) (cm) (cm) (cm) *

0.5 33 200 30.5 30.5 201.6 0.993

0.5 33 200 30.5 30.5 251.6 0.980

0.5 33 200 30.5 30.5 351.6 0.923

0.5 45 200 30.5 30.5 201.6 0.976

0.5 45 200 30.5 30.5 251.6 0.971

0.5 U 200 30.5 30.5 351.6 - 0.903

0.5 60 200 30.5 30.5 201.6 0.966

0.5 60 200 30.5 30.5 251.6 0.963
0.5 60 200 30.5 30.5 351.6 0.902

0.5 33 200 30.5 15.25 201.6 0.994

0.5 33 200 30.5 15.25 251.6 0.990
0.5 33 200 30.5 15.25 351.6 0.606

10.0 45 300 30.5 15.25 201.6 0.956
10.0 « 300 30.5 15.25 251.6 0.935

10.0 45 300 30.5 15.25 351.6 0.838

10.0 60 200 30.5 15.25 201.6 0.990

10.0 60 200 30.5 15.25 251.6 0.978

10.0 60 200 30.5 15.25 351.6 0.935

Average 0.927

* Calculated using Eq. (4.4).
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that the model provides a better fit for the duct configuration of Fig.

A. 12. Thus when evaluating the model comparisons, the sample

correlation coefficient should be used in conjunction with the figures

in Appendix A. Overall it appears that the model predicted the shape of

the exposure rate fields very well for the duct configurations with

source angles of 33 and 45 degrees. In the duct configurations with

source angles of 60 degrees, however, the model was unable to predict

the exposure rate peaks occurring at the positive detector

x-coordinates. The author does not know the reason for this model

failure, but suggests that further study in this field may lead to an

answer.

4.8 Effect of Duct Geometry on Transmitted Radiation

Changes in the duct geometry or configurations have noticeable

effects on the reduced exposure rate fields predicted from the models.

Below is a discussion of some of the effects encountered for changes in

the duct type and detector z-coordinate. The effect of changes in

source angle was previously discussed in Section 4.6.

Rectangular ducts (30.5 cm wide x 15.25 cm high) were found to

exhibit the same behavior as the square ducts for changes in source

angle and detector z-coordinate. However, the magnitudes of the

radiation fields predicted for the rectangular ducts were found to be

approximately one half of those predicted for the square ducts (except

in cases where there is a substantial direct-penetration contribution,

i.e., source angle = 33 degrees). This is to be expected since the

rectangular ducts were half the height of the square ducts and thus had

lip and side wall regions (primary scattering regions) that were one

half the size of those in the square ducts. The top and bottom wall
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components displayed little change between the rectangular and square

ducts. There is no change in the reduced exposure rates calculated for

the direct-penetration component for the square and rectangular ducts.

Increases in. the detector z-coordinate caused the reduced exposure

rate profiles to become flatted and lower in magnitude. As the detector

moves farther from the wall (increases z-coordinate) , the distances from

the source and scatter points to the detector increase. These distances

appear in the model formulations as inverse square quantities, thus

reducing the model predicted exposure rates as these distances increase.

Figures 4.10 through 4.15 illustrate the changes in the predicted

reduced exposure rate field resulting from gamma rays streaming through

the square ducts (30.5 cm x 30.5 cm). In Figs. 4.10 through 4.12 the

overall effect of changes in source angle are shown for configurations

with the detector traversing the x-axis at z-coordinates of 201.6,

251.6, and 351.6 cm, respectively. Figures 4.13 through 4.15 illustrate

the effect of changes in the detector z-coordinate for the different

source angles that were studied.
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CHAPTER 5

CONCLUSIONS, MODEL LIMITATIONS, AND RECOMMENDATIONS FOR FURTHER STUDY

Presented in the following sections are the conclusions obtained

from this study, a brief summary of the major limitations of the model,

and recommendations for further study.

5.1 Conclusions

The most important result of this work has been finding that the

single-scatter method for describing gamma-ray scatters could be used

for all the single scattering model. Variations of this approach are

commonly used to describe photon scatters in the duct lip regions, but

for photons scattering from wall surfaces albedo techniques are

generally used. It was found that, for the cases studied, the albedo

based models underpredicted the wall scattered dose. Comparison of the

models to experimental data showed that the single scatter based models

are surprisingly accurate tools for prediction of photons streaming

through ducts.

Another important finding was that the scattered-photon buildup

factor depends on the detector and source positions in relation to the

duct. This finding was substantiated through comparison of

experimental data to the model-predicted values using different

experimental configurations and different model buildup correction

factors. It was found that the models required a lower value of the

photon buildup on the scattered photons the farther the detector was

from the duct wall. Also, a lower value of the photon buildup factor

could generally be used as the source angle increased. The exact

relation between buildup and geometry involved is not known from a

theoretical standpoint. However, simple empirical formulas applied as

buildup correction factors proved effective.
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5.2 Model Limitations

The models developed in Chapter 3 and later modified in Chapter 4

were developed for a specific set of conditions. These models were

developed to describe the radiation field, at the duct centerline

elevation, resulting from gamma rays streaming through ducts. The type

of duct allowed in the models was restricted to ones with rectangular

cross sections. Also, only concrete ducts were considered. These

limitations were imposed upon the models in order that the modeling task

could be simplified. These limitations, however, should not be

considered as fundamental.

The models can also be adapted to calculate the radiation fields at

off-centerline elevations. The scattering models need not be changed,

only the calculation of the exit path of the scattered photons after

they have left the scattering region needs to be redetermined. In using

this method to achieve off-centerline model predictions it must be

assumed that the photon paths in the scattering regions do not change

appreciably with changes in the detector elevation.

The present form of the models is not designed to handle

nonrectangular ducts. Nevertheless, the principles behind the model

derivations can be applied to essentially any duct configuration. In

applying these principles, however, it might be necessary to subdivide

the scattering regions into numerous smaller regions.

Lastly, modifying the models to account for ducts in materials

other than concrete should prove fairly simple. All that needs to be

done is to replace the empirical formulas for the total attenuation

coefficient and buildup factors in concrete with ones developed for the

material of interest.
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5.3 Recommendations for Further Study

The most interesting recommendation for further research is that of

adapting the models to be used for off-centerline detector elevations.

This could conceivably be accomplished by using multiple scatter points,

at different elevations, for the various models. The major difficulty

involved would be the determination of a simple method to calculate the

scattered photon's exit path in the duct wall. The KSU gamma ray

streaming experiment provided a large amount of data on the

off-centerline measurements in addition to the data on the centerline

measurements

.

A further recommendation is that a comprehensive study of the

photon buildup in finite shields be performed. This could lead to a

more accurate calculation of the buildup correction factor, or possibly

an empirical formula describing buildup in finite shields. Another

result of this type of study could be a better understanding of the

regions of importance in the duct wall.

Finally, a study of whether models developed to describe gamma-ray

streaming through rectangular ducts could be used for cylindrical ducts

or vice versa. This question needs to be addressed in order to develop

truly general models describing how gamma rays stream through ducts.
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APPENDIX A

The figures presented in this section were generated on a Hewlett

Packard 9816 computer using a HP7470A plotter. Each figure has a legend

in the upper right hand corner identifying the duct configuration

corresponding to the plotted data. Table A. 1 presents a summary of the

various figures and their figure numbers. All configurations listed

below are for 101.6 cm thick walls with duct widths of 30.5 cm.

Table A.l

Source Source Source Duct Detector Figure
Strength Angle Dist. Height Z-coord. Number

(Ci) (degrees) (cm) (cm) (cm)

0.5 33 200 30.5 201.6 A.l
0.5 33 200 30.5 251.6 A. 2

0.5 33 200 30.5 351.6 A.

3

0.5 45 200 30.5 201.6 A.

4

0.5 45 200 30.5 251.6 A.

5

0.5 45 200 30.5 351.6 A.

6

0.5 60 200 30.5 201.6 A.

7

0.5 60 200 30.5 251.6 A.

8

0.5 60 200 30.5 351.6 A.

9

0.5 33 200 15.25 201.6 A. 10

0.5 33 200 15.25 251.6 A. 11

0.5 33 200 15.25 351.6 A. 12

10.0 45 300 15.25 201.6 A. 13
10.0 45 300 15.25 251.6 A. 14
10.0 45 300 15.25 351.6 A. 15
10.0 60 200 15.25 201.6 A. 16
10.0 60 200 15.25 251.6 A. 17
10.0 60 200 15.25 351.6 A. 18



117

vO
in m .

• «o O ~H
O o en o om m m cn cm

ii il il ii ii ii

eg • -o
±> <-l u u

•8 ja ao to o
4J OO C «H O
•a -h <J q o

2 EQ ai a csi

a Q C/l W Q CO

a
in

a
o

a m
X 0)

i) a
X

E
.c

a a
o en

U) 4-1 -

aj H
u aj *

« o ai

c s 3
•H rH

00 CO

c >
•H

a O

u

E T3

Of 4J

h U
1 4J «H

X 01 -o
1)

J-J o a
o 3
4-J

o Of

i i a) X o
in u « E

i
<DG O

1 i i I 1 VI n
LO

c3 a a O o a a —
c: a o a a a i

c3 in a IT) a ID
i r\] (M TT-. <—

i

1 o
O c/l

ej> w

(M TO/ ni tfrt) p^hq paonpa^



113

I

\C o
in m • co

. , o *H —
O O *"H O >A ^On n n rj n •

*-j oo c "H
•V -H < Q
3 33 (U <U N

Q O CO CO O 03

a
ID

a o
in

s CO

11

U Q) -.

c
13 CO

o tu

S 3H ^H
oo aj

c >

a O s -e
o «) <d

'J

1

W CJ

U -H

X to -o
eg

u
3
-O H

a a
aj

a) -o
s: o

U'J u " s
i 0)

G - ii

a
a

o
a
m

o
o
Ln

O
a
en

o
a
ID

o
o
m

(q to/ ui yri) f^bq paonps^



lis

1

to o
in in • n
• -O O -H H
O o n o m nnnnw n
II II II II II

— j= oo >fi

U GO C -H
T3 H < Q
3 X <u es]

u uu u b b •

U O 3 3 *J

3 3 O 01 GQ Q W W Q 03

o
o
m

a
a

o
(\J

o
in

i

•a ij

-h -a

e x:

n u
IT)

v~' O CO

0) x:

CD •73 W
c o a>

T3

g 3
-4

hi c >

n B -a
nl aj

u

X 4J -H
w t3

4)

u u u
o

•O ^H

U cu

LI

1

0J X

a '"
II

01

c c

a
r i 9- H

£
o a:

(4 TO/ m Hrt) B3BQ paonps^j



120

(

m m • ~h
• »o o *h no o m o o oon fi <r m w •

II [I II II I!, II

4J H U£X U19I O
U CiO C 'H O
TJ "H < Q U
i-t OJ I

j_> t-j

u u
3 3 _

q q « en q m

O
a
o

a
in
"-<

a]

IJ

M nj

a
CH
1-4

O
O
U
I

X
u
o
u
a
HI

u
aj

Q

(H 70/ m Hrt) B3Ea psonpey



121

£> SO
in 10 • co
* o O -h r*.o o ia o m \o

1 1 1

>

ii I) ii 11 II II

Duct

Width

Duct

Height

Source

Angle

Source

Dist.

Det.

Z-coord

Bc
X J

X ^*>'"*'

X /

X /

X

\ x -

jS X

X

^r -

C x

X

1
1 1

r \

a
IT)

o
a

a
a
CD

a
a
IT!

a
a

a
a

o
a
t\J

a
a

o
in

i

U H *
nj <u -

C T3 to

^1 60 flj

c >

CJ nj a)

1 a) u

CO -a

O u K
u y a
O -a -i

OJ a)

« i»
<U u EQ

(U TO/ m Hrt) B3ECI paonps^j



122

M3 M3

• «o O iH r-.O O m o m enn n <r n n »

ll ll il ll

£ X 00 »
4-» 00 C ft
T3 -H < Q

q q en en a m

a
in

a
o

a
in

01

c
•H
-a
^
o
o
a
I

X
u
a
u
o
m
4-1

11

Q

O
in

a —
i

(q TO/ m ^rt) E3BQ psonpay



123

^o o
• »o o —i <J*

O C O O O <T<

n c) *o ts «m •

v

00 (0 o
) C -H O
< Q O

I

OJ 0) Csl

O
in

a

CTJ CTJ

X *TJ JJ

(0

CD AJ H
X - a 0) u

a

0]

c
•H

U
o
o
o
I

X
s-

c
4-1

a
i)

u
CU

(q TO/ in ^rt) B3BQ paonpay



124

mm • oo
. .o o -h en
o o o o m co

II II II

£ £ 00 0) O
U 00 C -H o
T3 «H < I

•H (U

3 r D fJ N

o
in
1—

i

a
AJ <—

-

« cd

T3 -U

«H T3
«

a u i—

I

a <U j_i

—

i

e c

e £
r i a U II

LD
v~^

en

01 X
^J tH

cd

c 13 en

o tu

•H B =
"0
M C >

f 1

S -o

'J

1

aj u

X
en -a

u 3

o u &
3

tj

0)

a ^
a OJ

CU T3
ii i -C

i OJ
u e

Q IW II

a a a
IT! a IT) a in

<\I 00 rt •-1

a
IT)

(M TO/ m Hrt). ?3B<1 psonpay



125

1

mm • m
• «o o -h cio o o o m mm m \o cm m •

ii II II ii

£ £ DO 0)u ao c i-i o
13 -H < Q U
*H <U I

3 x a) oj cm
o o

1-1 4J U U •

a V 3 3 4J
3 3 o <u aqqco ca a a

a a
O

in

«U .—v
cd tti

eg

cd
4J ~

o OJ JJ

a E C

e u II

a u o «
W u -

OJ H

CTJ

c e 3
H

TJ
oc to

c >

x o
U -

CI —

i

•H
U T3
03 -'

a .h
s go en
cj

•

(4 TO/ * Hrt) s^d pa^npa^



126

T
m

• «o o -. r~o ul <*> o o mM H n M (N •

ll II II ll II ll

JZ H M 0)

o -h •< a
3 X 41 QJ N

U U 3 3 u
3 3 o o OJQ Q CO en Q

LD

o
a
It
r\j

a
o
a
C\l

a
a
10

o
a

a
a
m

a
a
in

i

CO

eH
-a

o
y
i

x

o
u
u
cu

u
a)

a

a CO -H

a D- H
e o
o w



127

U"l ^nm cn
* *o o Oo m en o m

en •—i m cm CM

II it n ii II II

OJ . •d
U —1 U

£ X 00 CO
•u ao C >H
T3 "H < Q
•H CU I3 as cu cu N

CJ CJ 3 3 4J
3 3 o O eg uQQuman

a
a
03

o
in

e
n u
in

^^
4J -

aj i-(

u 0) *

CO x) en

c B 3
•H
-a 00 C3

C >
•H

( i o E -a

o
CJ

1

X Cft T3
i

M o a.
3
13 n-l

u ?!
cu j= o

UJ u " 6
1

J)a
OJ

c c
O -H
Cft ^H

(q to/ ra tfrl) Bqea paonps^



128

1

m cn • on
• »o O ^ in
O m n o m m
tn ^h <n cn <n •

] I I 1

/ x
II 11 II II it II

Duct

Width

Duct

Height

Source

Angle

Source

Dist.

Det.

Z-coord,

B
c

/ X

/ x

X

X

\ x "

/
x

X

X

X

- ^/x "

"~^---
<

X
—J 1

' '

03

CH
TJ
u

o
u
I

X
u
o
u
o
<D

u
0)

a

a
00

a
a
a

o
a
00

a
a
ID

a
o

o
Q
OJ

I

Q, r-<

S o
en

(M TO/ f yrt) B^Ba psonps^j
c



L29

1

m
u-t cm

• .0 oO m in oM 1-* <t m
ii ii ii il .=

201.6

=

.5209

1 1 I 1

>

>

Duct

Width

Duct

Height

Source

Angle

Source

Dist.

-a
u
a
o
u
1

N

u
a) y
Q «

X

X

x s^

X /

X >v
'

V^ x

.
X

\ x

i
1 1 1 1 L r

X

X

a
m
*<

«
jj .-^

CO co

-a u
CO

i-j -d
COa 4J rH

a 0) u

d a
X

B cu a

a
m

*j ii

o en

oj
4-1 -
XH

a qj n

c "0 Cfl

•H E 3
T3 H
cW 00 CD

a >
r i

tH
E -a

1

CO QJ

ai 4-t

X
CO "O

u OJ

a y a.
j-j 3

•a rH

o OJ

III JJ -C o
1 V w E

o tw il

O
0)

C d
o -H
CO ,H
•H

( 1 U T3

a
*—

'

a a

a
t\i

m
a
GO
C\J (M

O
o
<\]

o
CD

a
(\J CO

a
in

a —
i

(4 TD/ m tfrt) B3Ba paonps^
c



130

1

—

m -£> 'ji

m (sj . ^
. #o O -i •^
O m ia o m ^t
<n ~- «a- m c*j .

it I II H

JA jz oo en

O a co en

a
o

X
#***

F £
o U

'-o

1J -

V X

ol -a tn

C
•H

u
E 3

X! CC EQ

U c >

a o
o E -o

C3 0J

V
1

I* 'J

X
u 4J t.

-O H
8

u CJ

UJ
1 11

u E

Q

o
D ID

O
C\J

a
03

a
o
IT)

i

(R TO/ w tfrt) B3 Ba psonpsy



131

in \0 o*
in oj • £>

. .o O -i O
O m in o in *"1

M H ^ tO fl •

££ eon o
±J 00 C -H o
•v «H < Q y

3 X 0) <U N

o q w w a <o

a
Ol

a
a

a
Q

a
in

i

to

cH
a
M
o
o
u
I

X
u
o
4-1

u
0J

u
1)

c

U
CDH

CD

u H
a Ed

-J 4_>

F G
h 1)

h F

E 3
H

00 fl

a ^
e o
o w

(q TO/ ui yrt) B3BQ paonpsn



132

1

in v£> o
in cnj • m
• »o o —• ooo m o o o enn -t *o n m •

11 il il il it ii

UH U ti

r. -C -J) a Q
u Ml q •H
"TT i-i < U

riH

3 H 4J

1)

N
Jj u M u
ti u 9 3 u
a 9 aC C^ Efl w a

a
m

MU --N

ffl eg

•o u
«^ T3

M
4-1 r-l

a B «
a) ua e c

E u n

o
in

tj O EO

*J -

9.1
rH

jj
-a «

aj

a e a
t-H

T)
CO «j

c >
u H

a
o 3 oj

QJ hi

'J

1

U O

X W T3

M u a
o
u

3
-a H

91

u oj tau .e o
i/) 4J

i QJ <M
a

0)

c c
-H

•H

a CD -H

i i s o
<—

<

o en

o
CM

o
a

o
CD

a
CO

a a

(q to/ ui yrl) B3BQ psonpsy



133

in vo om cm • -a*
. -o o <-* —o in o o m fo

II 11 II II II II

i 1 1 1

X

Duct

Width

Duct

Height

Source

Angle

Source

Dist.

Det.

Z-coord

B
c

X

X

X /

X

X \

X

X \

X

X

i
1

' « '

w X

\ s

o
in

a
a

a
IT)

O a
CD

a
LT>

a
«3-

o a
[M

O
IT)

a ^
i

T3 4J

to

c
H
13
^
O

a
i

X
M
o
u
u
a)

u
<u

a

a *

e c
o en

(q to/ in Hrt) B3BQ paonpay



134

u-t vO O
• *o O —

* r-
O ui O O u"i -«

je .c 00 n o
t-i DC c •H a
17 < a a

qi

9 X 4J

u
a;

a
M

u i_j M i-i

U u 3 a t-i

3 9 o Va a W CO a

o
in

a

iJ
a
•-H

a m
x a
<u c.

X
-J <U

*"> -C

e 4J II

a IB

ID
s

—

JJ -

0) 0) ..

iJ T3 tn

a o o
c S P

•H 00 cfl

-d c >

a
1j

S -a
a si

0) W
a U -H

X CO X)
s

•J a.
3
a h

.u 0)

tj ai -o

o
in

1) £ §

I 0) >U 1!

Q
"J

e c
-h

01 rH
•H

CO -Ha
o e O

o in o
OJ

a
ina"

(q fo/ m tfrt) b3hq psonpay



135

APPENDIX B

Presented in this section is the computer code used to evaluate the

single scatter models developed in Chapter 3. This code was written for

a Hewlett Packard Model 9816 computer. The code is written in Hewlett

Packard BASIC, version 2.1.

The input data consists of the duct dimensions, source location and

strength, and the detector distance from the duct wall. These

quantities are input interactively at the start of the program

execution. The parameters describing the duct, as well as the

calculated model components, are then displayed on the screen.

Reduced data values are generated for detector X-coordinates

ranging from -150 cm to 150 cm. The calculated values and descriptive

data are then stored on a 3V" mini-diskette under a file name input by

the user.

Plots of the data were obtained used an earlier written utility

plotter code. This plotter code accessed the data files and produced

the plots on a Hewlett Packard 7470A Plotter.
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This program calculates the radiation field resluting from gamma
rays streaming through straight rectangular duets in a concrete
wall. The method of calculation is based upon simplified single
scatter scattering points . The following program was designed
to satisfy conditions of the gamma ray streaming experiment con-
ducted by the Department of Nuclear Engineering at Kansas State
University (see reference 2 of this thesis).

Written by: Kyle R. Thompson
Spring Semester, 1985
Department of Nuclear Engineering
Kansas State University

Definition of variables:
Dosnl = Array variable representing the dose from the near lip
Dosfl = Array variable representing the dose from the far lip
Doswl = Array variable representing the dose from walll
Dosw2 = Array variable representing the dose from wall2
Dostw = Array variable representing the dose from the top wall

Dosdir a Array variable representing the dose from the
directly penetrating radiation

Duct_width = Width of the duct (cm)

Duct_height = Height of the duct (cm)

Duct_length = Length of the duct (cm)

Sourcr_angle = Angle formed by a line from the source to the center
of the duct entrance and the Z-axis

Source_dist = Distance from the source to the center of the duct
mouth

Source_strength = Source strength (Curies)

N = Gamma ray yield of the source
Energy = Energy of the source gamma rays ( MeV

)

X0,Y0, & Z0 = Source location
Xd.Yd, 4 Zd = Detector location

C = Distance from the back of the duct wall to the
detector

Collimator = Angle of collimation nearest the duct wall (measured
from the collimator centerline)

Be = Buildup correction factor

PRINTER IS 1

OPTION BASE 1

DEC

DIM Dosnl ( 101 ), Dosfl ( 101), Doswl ( 101 ),Dosw2( 101 ) ,Dostw( 101), Dosdir (101)
DIM Dostot(101),Xxx(101)
COM /Main/ Source_angle, Source_strength, Energy ,N,Duct_width,Duct_height

, Duct_length,X0,Y0,Z0,Xd,Yd, Zd, Be, Reduction
INPUT "What is the duct width (cm) ?" ,Duct_width
INPUT "What is the duct height (cm) ?",Duct_height
INPUT "What is the duct length (cm) ?",Duct_length
INPUT "What is the source angle (degrees) ?" ,Source_angle
INPUT "What is the source distance to the duct entrance (cm) ?",Source_
dist
INPUT "What is the Co-60 nominal source strength (Curies) ?" ,Source_str
ength

N=2
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510 Energy=1.25
550 ! Days since experimental source calibration.
560 INPUT "How days since May 31 was the source used ?",Date
570 XO=Source_dist*SIN(Source_angle)
580 Y0=0
590 ZO=-Source_dist*COS(Source_angle)
600 Yd=0
610 INPUT "What is the detector distance from the duct wall (cm) ?",C
620 Zd=C+Duct_length
630 Wall_density=2.2
610 ! ""Determination of horizontal collimator angle nearest the duct wall**
650 ! **** Collimation angle i3 different for the different sources. *»»*

660 Collimator=5
670 IF Source_strength=.5 THEN Collimator=15
680 ! **** Determination of actual source strength used in experiment ****

690 IF Source_strength=10 THEN Source_strength=8. 1 l6»EXP(-.000361«(Date-1 )

)

700 IF Source_strength=.5 THEN Source_strength=.17l1*EXP<-.00036l*(Date-1)

)

710 Reduction; (Source_dist/ 100) 2/Source_strength
720 Format: IMAGE 5D,X,4D.3D,X,4D.3D,X,4D.3D,X,4D.3D,X,4D.3D,X,4D.3D,X,4D.3D
730 !

**** Calculate buildup correction factors ****

740 IF Duct_height=30.5 THEN
750 Bc=.75+.273/COS(Source_angle)-.305*C/Duct_length
760 ELSE
770 Bc=.991-.232/COS(Source_angle)-.142*C/Duct_length
780 END IF

790 ASSIGN SRoad TO 1

800 CALL Prt_info(Collimator,ep.oad)
810 ASSIGN SRoad TO *

820 Source_3trength=Source_strength*N* 3 • 7E+ 1

830 !
**»* Calculate the gamma ray streaming radiation field »*««

840 PRINT
850 PRINT TAB( 13) ("Values predicted from models (microR m"2/Ci h)"
860 PRINT " XX NLlp FLip WalU Wall2 TWall Direct To

tal"
870 PRINT " (cm)"
880 FOR Xd=-150 TO 150 STEP 3

890 1=1+1

900 Xxx(I)=Xd
910 Dosnl(I)=FNNlip
920 Dosfl(I)=FNFlip
930 Dosw1(I)=FNWall1
940 Dosw2(I)=FNWall2
950 Dostw(I)=FNTwall*2
960 Dosdir ( I ) =FNDir ( . 1 .Collimator

)

970 Dostot ( I ) =Dosnl ( I ) +Dosf1 ( I ) +Dosw 1(1) +Dosw2( I ) +Dostw ( I ) +Dosdir ( I

)

980 PRINT USING Format ;Xd,Dosnl (I) ,Dosfl(I) ,Dosw1 (I) ,Dosw2(I) ,Dostw(I)
, Dosdir (I), Dostot (I)

990 NEXT Xd
1 000 Source_strength=Source_strength/N/ 3 . 7E+ 1

1010 ! **«• Smooth and store data «**»

1020 CALL Smooth(Dosnl(«),Dosfl(»),Dosw1(«),Dosw2(»),Dostw(»), Dosdir (»),Dost
ot (»), I,Xxx(»), Be, Collimator)

1030 END
1040 ! a********************************************** *********#****»*#**»«*i*

1050 !
»»*««««»»»»«» START OF SUBROUTINES «»•»««•«««•»«

1060 I
»••«»•»••»»•••*»•»•••»•»»«»••••«»»»•«•»»»«»»«•»••«»«»»•«»•»»«»»«••»•••»
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1070 DEF FNNlip
1080 !

*»•»*»«»*««*»*»»*»»»»»»*«»•**»«*»*«««««»»«*»«»»«»*«»«*»«»*»*»»«*<»*«»»•

1090 ! ""Subroutine to calculate the dose contribution from the near lipl.*"
1100 ! Definition of variables:
1110 I X,Y,Z = Location of scatter point
1120 ! Alpha 1 = Angle between incident photon path and X-axis
1130 I Alpha2 = Angle between scattered photon path and Z-axis
11 to I R1 = Distance between source and scatter point
1150 ! R2 = Distance between scatter point and detector
1160 ! Theta_scat = Scatter angle
1170 ! Escat = Energy of the scattered photon (MeV)
1180 ! Klein = Klein-Nishina cross section
1190 ! Response = Dosimetric response function
1200 I P2 = Exit path length in concrete of the scattered photon
1210 ! Dose = Dose from lipl ( microR m'2/Ci h)

1220 I
•»»»»»»««*»«»««»»•»*»»»»*»*»*»**»»**»«»»»*»»»«»»*»«»»»*»»«»»*««»«*««»*«

1230 COM /Main/ Source_angle,Souroe_strength, Energy, N,Duct_width,Duct_h
eight ,Duct_length ,X0 ,Y0, Z0,Xd ,Yd , Zd , Be .Reduction

1210 COM /Bup/ K1,K2,K3,Kl
1250 IF Xd)=Duct_width/2 THEN RETURN
1260 X=Duct_width/2+1
1270 Y=0
1280 Z=1
1290 Alpha1=ATN((Z-Z0)/(X0-X))
1300 Alpha2=ATN((X-Xd)/(Zd-Z))
1310 R1=SQR((X-X0)"2+(Y-Y0)

A
2+(Z-Z0)"2)

1320 R2=SQR(CX-Xd)"2+(Y-Yd) A 2+(Z-Zd)'
,

2)

1330 Sd=(X-X0)«(Xd-X)+(Y-Y0)»(Yd-Y)+(Z-Z0)»(Zd-Z)
1310 Theta_scat=ACS(Sd/(R1«R2))
1 350 Klein=FNKlein( Energy , Theta_scat , Escat , )

1360 Response=FNResponse(Escat)
1370 P2=(Duct_length-Z-X/TAN(Alpha2)-Duct width/TAN(Alpha2)/2)/C0S(Alph

a2)
1380 IF Xd)Duct_width/2 OR P2<0 THEN P2=0
1390 Constant =SIN( Alpha 1)»SIN(Alpha2)»EXP(-FNMu(E3cat)»P2)»FNBup(Bc, Esc

at,P2)
1100 Con3tant=Constant»(1+K1*Escat"K2/(K3»EXP(K1*Escat)-1) 2)
1110 Dose=Duct_height»Source_strength«Response«Klein/(1*PI«R1'2»R2'2»FN

Mu ( Energy ) »FNMu ( Escat )
) "Constant 'Reduction

1120 RETURN Dose
1130 FNEND !

»""""« End of Subroutine ...«.««.«.

1110 DEF FNFlip
1450 ] a**********************************************************************

1160 ! "'Subroutine to calculate the dose contribution from the far lip2.""
1170 ! Definition of variables:
1180 ! X,Y,Z = Location of scatter point
1190 I Alpha 1 = Angle between incident photon path and X-axis
1500 ! Alpha2 = Angle between scattered photon path and Z-axis
1510 ! R1 = Distance between source and scatter point
1520 I R2 = Distance between scatter point and detector
1530 I Theta_scat = Scatter angle
1510 I Escat = Energy of the scattered photon (MeV)
1550 ! Klein = Klein-Nishina cross section
1560 ! Response = Dosimetric response function
1570 ! P2 = Exit path length in concrete of the scattered photon
1580 ! Mu = Attenuation coefficient in concrete for photons f> Energy
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1590 ! Mua = Attenuation coefficient in concrete for photons I Escat

1600 ! Dose = Dose from lip2 (microR m"2/Ci h)

1610 !
»•»»»••••»»»«»«•»»»»»»»«»•«•»*«»•*»»»»»»»»«»»«•«•«»»»««**» »••«»»*»»««••

1620 COM /Main/ Source_angle , Source_strength, Energy ,N,Duct_width,Duct_h

eight ,Duct_length ,X0 ,Y0 , Z0 ,Xd ,Yd , Zd , Be .Reduction

1630 COM /Bup/ K1,K2,K3,K4
1640 IF Xd(=-Duct_width/2 THEN RETURN
1650 X=-Duct_width/2-4
1660 Y=0
1670 Z=4

1680 Alpha1=ATN((Z-Z0)/(X0-X))
1690 Alpha2=ATN((Xd-X)/(Zd-Z))
1700 R1=SQR((X-X0)'2+(Y-Y0)"2+(Z-Z0)'2)
1710 R2=SQR((X-Xd)'2+(Y-Yd)*2+(Z-Zd)',

2)

1720 Sd=(X-X0)»(Xd-X)+(Y-Y0)»(Yd-Y)+(Z-Z0)«(Zd-Z)
1730 Theta_scat=ACS(Sd/(R1»R2))
1740 Klein=FNKlein(Energy,Theta_scat, Escat, 0)

1750 Response=FNResponseCEscat)
1760 P2=(Duct_length-Z+X/TAN(Alpha2)-Duct_width/TAN(Alpha2)/2)/C0S(Alph

a2)
1770 IF Xd(-Duct_width/2 OR P2(0 THEN P2=0

1780 Mu=FNMu(Energy)
1790 Mus=FNMu(Escat)
1800 Constant =EXP(-Mus«P2)»FNBup (Be, Escat, P2)
1810 Constant 1=SIN( Alpha 1)»SIN(Alpha2)/(Mu»Mus)-SIN( Alpha 1 )»SIN(Alpha2)

«C0S( Alpha 1)/(Mus*Mu»C0S( Alpha 1 )+Mu»Mu«SIN(Alpha2)

)

1 820 Constant 2=Constant 1 +SIN ( Alpha 1
) »SIN ( Alpha2 ) / (Mu»Mus ) »K 1 »Escat'K2/

(

K3»EXP(K4»Escat)-1)"2
1830 Constant 3=Constant2-SIN( Alpha 1)«Mus/ (SIN (Alpha2)»Mu)»K1«Escat"K2/(

Mus/SIN(Alpha2)«(K3*EXP(K4»E3cat)-1)-Mu/C0S(Alpha1)r2
1840 Constant=Constant*Constant3
1850 Dose=Duct_height»Source_strength«Response«Klein/(4»PI»Rr2«R2'2)»C

onstant "Reduction
1860 RETURN Dose
1870 FNEND !

«»»«»»•««• End of Subroutine »«»»»»••»»

1880 DEF FNWain
1890 I

»«»««•»»»«•»*«»««««»»»»»»»»««»»»»•»»»»»»»•«»»»»»»»»»*»«»»«»•»»»•»»•»«»»

1900 I
»»»• Subroutine to calculate the dose contribution from wain. »»**

1910 I Definition of variables:
1920 I X,Y,Z = Location of scatter point

1930 ! Alpha 1 = Angle between incident photon path and X-axis

1940 ! Alpha2 = Angle between scattered photon path and Z-axis

1950 ! R1 = Distance between source and scatter point

1960 ! R2 = Distance between scatter point and detector

1970 ! Theta_scat = Scatter angle
1980 ! Escat = Energy of the scattered photon (MeV)

1990 ! Klein = Klein-Nishina cross section
2000 ! Response = Dosimetric response function
2010 1 P2 = Exit path length in concrete of the scattered photon

2020 1 Mu = Attenuation coefficient in concrete for photons 8 Energy

2030 I Mus = Attenuation coefficient in concrete for photons § Escat
2040 I Dose = Dose from walll (microR m~2/Ci h)

2050 1
»«»»»»»»»*«»«»»*»»»»«»«*«»»»«»»«*»»«»»**»»******««*•««•««««««»**«»»««««

2060 COM /Main/ Source_angle, Source_3trength, Energy ,N,Duct_width,Duct_h

eight ,Duct_length ,X0,Y0 , Z0,Xd ,Yd , Zd , Be .Reduction
2070 COM /Bup/ K1,K2,K3,K4
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2080 IF Xd(=-Duct_width/2 THEN RETURN
2090 X=-Duct_wldth/2
2100 Y=0
2110 Z=Duot_width/TAN(Souroe_angle)/2
2120 Alpha1=ATN((Z-Z0)/(X0-X))
2130 Alpha2=ATN((Xd-X)/(Zd-Z))
2140 R1=SQR((X-X0)"2+(Y-Y0)'2+(Z-Z0)"2)
21 50 R2=SQR ( (X-Xd

) '2+(Y-Ydr 2+( Z-Zd
)
'2

)

2160 Sd=(X-XO)»(Xd-X)+(Y-YO)«(Yd-Y)+(Z-ZO)»(Zd-Z)
2170 Theta_scat=ACS(Sd/(R1»R2))
2180 Klein=FNKlein(Energy,Theta_scat,Escat,0)
2190 Response=FNResponse(E3cat)
2200 P2=(Duct_length-Z-Duct_width/TAN(Alpha2))/C0S(Alpha2)
2210 IF Xd(-Duot_width/2 OR P2(0 THEN P2=0
2220 Mu=FNMu( Energy)
2230 Mus=FNMu(Escat)
2240 Constant =EXP'-Mus»P2)«FNBup( Bo, Escat ,P2)«TAN( Alpha 1

) »Duot_width
2250 Constant USIN(Alpha2)»C0S( Alpha 1)/(Mus»COS( Alpha 1 )+Mu«SIN(Alpha2)

)

2260 Constant2=Constant1+Mus/SIN(Alpha2)*K1»EscatA K2/(Mus/SIN(Alpha2)»(
K3»EXP(K4«Escat)-1)-Mu/COS(Alphal)r2

2270 Constant=Constant*Constant2
2280 Dose=Duct_height»Source_strength«Response»Klein/(4«PI»R1"2»R2A2)»C

ons tant *Reduc t i on

2290 RETURN Dose
2300 FNEND I

«»*«»«*»•« End of Subroutine «•»«•»•••»

2310 DEF FNWall2
2320 ! »»«»»»»»»»»»»»««»*»»«»»»««»««»»«»»»»»»«•»»»»»»»«»»»««»»»»»»»»«»•*»»«»««

2330 !
»**« Subroutine to calculate the dose contribution from wall2. »»«*

2340 ! Definition of variables:

2350 I X,Y,Z = Location of scatter point
2360 ! Alpha 1 = Angle between incident photon path and X-axis

2370 ! Alpha2 = Angle between scattered photon path and Z-axis
2380 I R1 = Distance between source and scatter point
2390 ! R2 = Distance between scatter point and detector
2400 ! Theta_scat = Scatter angle
2410 ! Eacat = Energy of the scattered photon MeV
2420 I Klein = Klein-Nishina cross section
2430 I Response = Dosimetric response function
2440 ! P2 = Exit path length in concrete of the scattered photon
2450 I Mu = Attenuation coefficient in concrete for photons S Energy
2460 ! Mus = Attenuation coefficient in concrete for photons S Escat
2470 ! Dose = Dose from wall2 ( microR m'2/Ci h)

2480 ! J**********************************************************************

2490 COM /Main/ Source_angle, Source_strength, Energy ,N,Duct_width,Duct_h
eight ,Duct_length ,X0,Y0, Z0 ,Xd ,Yd , Zd , Be Reduction

2500 COM /Bup/ K1,K2,K3,K4
2510 IF Xd<=-Duct_width/2 THEN RETURN
2520 X=-Duct_width/2
2530 Y=0
2540 Z=Duot_width/TAN(Source_angle)
2550 Alpha1=ATN((Z-Z0)/(X0-X))
2560 Alpha2=ATN((Xd-X)/(Zd-Z))
2570 R1=SQR((X-X0)"2+(Y-Y0)"2+(Z-Z0) A

2)

2580 R2=SQR((X-Xd)"2+(Y-Yd) A2+(Z-Zd) A
2)

2590 Sd=(X-X0)»(Xd-X)+(Y-Y0)»(Yd-Y)+(Z-ZO)»(Zd-Z)
2600 Theta scat=ACS(Sd/(R1»R2))
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2610 Klein=FNKlein( Energy ,Theta_scat ,Escat ,0)

2620 Response=FNResponse(Escat)

2630 P2= (Duot_length-Z-Duot_width/TAN ( Alpha2 ) ) /COS( Alpha2

)

2610 IF Xd( -Duct_width/2 OR P2<0 THEN P2=0
2650 Mu=FNMu( Energy)
2660 Mus=FNMu(Esoat)
2670 Cc=Duct_height»Source_strength«Response»Klein/(4»PI»Rr2«R2'2)«EXP

( -Mus »P2 ) *FNBup ( Be , Es cat , P2

)

2680 Aa=-Mu/C0S( Alpha 1)-Mus/SIN(Alpha2)
2690 Bb=Kl»EscatA K2»Mu3/SIN(Alpha2)
2700 Dd=Mus/SIN(Alpha2)«K3*EXP(K4»Escat)
2710 Part 1=(FNExp( (Duct_length/TAN( Alpha 1 )-3,Duot_width/2)«Aa)-1 )/Aa

2720 Part2=Bb/(Dd+Aa)«(FNExp((Duct_length/TAN( Alpha 1)-3*Duct_width/2)»(
Dd+Aa))»(Duct_length/TAN( Alpha 1 )-3«Duct_width/2-1/(Dd+Aa) )+1/(Dd+Aa)

)

2730 Dose=Cc»SIN( Alpha 1)/Mu»(Part1+Part2) "Reduction

2710 RETURN Dose
2750 FNEND !

»»•»««»»«» End of Subroutine ••••••«•»»

2760 DEF FNTwall
2770 I

«««»*»»»»»»»»»•»««»»»»»«»»*»»»«»*»»**»»»*»»*»««»»»»»»»*»«*«»»»»*»•«•»««

2780 ! "'Subroutine to calculate the dose contribution from the top wall3.***

2790 ! Definition of variables:
2800 ! X,Y,Z = Location of scatter point
2810 ! Alpha 1 = Angle between incident photon path and X-axis

2820 ! Alpha2 = Angle between scattered photon path and Z-axis

2830 ! Betal = Angle between the X-axis and a line from the source to the

2840 I edge of near duct lip (lipD
2850 1 Beta2 = Angle between the Y-axi3 and a line from the source to the

2860 ! top lip of the duct
2870 ! R1 = Distance between source and scatter point

2880 I , R2 = Distance between scatter point and detector

2890 ! Theta_scat = Scatter angle
2900 I Escat = Energy of the scattered photon 'MeV

2910 1 Klein = Klein-Nishina cross section
2920 I Response = Dosimetric response function
2930 I P2 = Exit path length in concrete of the scattered photon

2910 ! Mu = Attenuation coefficient in concrete for photons <? Energy

2950 ! Mus = Attenuation coefficient in concrete for photons <? Esoat

2960 ! Dose = Dose from wall3 (microR m'2/Ci h]

2970 !
»»••••»»••••••••»•»»•»•»»••»»»»»»»•»»••»»»»»»••»•••••»»»•»»»»»»«»»»••»•

2980 COM /Main/ Source_angle,Source_strength, Energy, N,Duct_width,Duct_h
eight, Duct_length,X0,Y0,Z0,Xd, Yd, Zd, Be, Reduction

2990 COM /Bup/ K1,K2,K3,K1
3000 IF Yd)=Duct_height/2 THEN RETURN
3010 X=0
3020 Y=Duct_height/2
3030 Z=0
3040 R1=SQR((X-X0)'2+(Y-Y0)

/V

2+(Z-Z0)'
,

2)

3050 R2=SQR( (X-Xd) "2+(Y-Yd )" 2+( Z-Zd )" 2)

3060 Sd=(X-X0)»(Xd-X)+(Y-Y0)«(Yd-Y)+(Z-Z0)*(Zd-Z)
3070 Alpha1=ASN((Y-Y0)/R1)
3080 Alpha2=ASN((Y-Yd)/R2)
3090 Beta1=ATN(-Z0/(X0-Duct_width/2))
3100 Beta2=ATN(-Z0«2/Duct_height)
3110 Theta_scat=ACS(Sd/(R1«R2))
3 1 20 Klein=FNKlein ( Energy , Theta_scat , Esoat , )

3130 Response =FNResponse( Escat)
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3140 Gamma=ATN(ABS(Xd)/Zd)
3150 IF Gamma=0 THEN
3160 P2=0
3170 ELSE
3180 P2=(Duct_length/COS(Gamma)-Duct_width/SIN (Gamma )/2)/C0S( Alpha

2)

3190 END IF
3200 IF P2<0 THEN P2=0
3210 Mu=FNMu(Energy)
3220 Mus=FNMu(Escat)
3230 Bb=Duct_width«TAN(Beta1)/2
32^0 Ce=Duct_width»Source_strength»Response*Klein/(4«PI«Rr2»R2'2)»EXP(

-Mus«P2)»FNBup(Be,Escat,P2)
3250 Dd=K1»Escat A K2»Mus/SIN(Alpha2)
3260 Ee=Mus/SIN(Alpha2)»K3»EXP(K4"Escat)
3270 Ff=-Mu/SIN(Alpha1)-Mus/SIN(Alpha2)
3280 Part1=(FNExp(Bb»TAN(Beta2)«Ff)-1)/(TAN(Beta2)»Ff»Ff)-Bb/Ff
3290 Part2=Dd/(Ee+Ff) 2«(FNExp(Bb»TAN(Beta2)«(Ee+Ff ) )»(Bb-2/(TAN(Beta2)

»(Ee+Ff)))+Bb+2/(TAN(Beta2)»(Ee+Ff)))
3300 Dose=Cc»( Part 1+Part2) 'Reduction
3310 RETURN Dose
3320 FNEND !

»«»»»«»««» End of Subroutine «»»«»»««««

3330 DEF FNDir(Dbo, Collimator)
3340 ; ll<lt«H«i<i<>lililli»i><>l<«i>i>i<<><it<«<>t«iH«iiit<<>»i»><><»

3350 ! Subroutine to calculate the dose contribution from the direct penetration.
3360 ! Definition of variables:

3370 I Alpha = Angle formed between the X-axis and the photon path
3380 I R = Distance between source and detector
3390 ! Response = Dosimetric response function
3100 I Dapath = Path length traveled in concrete by the photons with the duct
3410 t absent
3120 I Path = Path length traveled in concrete by the photons with the duct
3130 ! present
3110 I Mu = Attenuation coefficient in concrete for photons § Energy
3150 ! Dbc = Buildup correction factor for the direct radiation component
3460 I Dose = Dose (microR m'2/Ci h]

3470 > »»««»*»«*»»»»»»»»»»**»«»«»*»»*«***»»*««*«**»•»»«»**«««*«.»«»»*»**»»»*

3480 COM /Main/ Source_angle, Source_strength, Energy ,N,Duct_width,Duct_h
eight, Duct_length,X0,Y0,Z0,Xd, Yd, Zd, Be, Reduction

3490 Test=ATN((Zd-ZO)/(X0-Xd))
3500 ! *»»* Test to see if direct beam is within collimated width »«•
3510 IF Test)=(90-Source_angle+Collimator) THEN RETURN
3520 R=SQR((X0-Xd)'2+(Y0-Yd)'2+(Z0-Zd)"2)
3530 IF X0>Xd THEN
3540 Alpha=ATN((Zd-Z0)/(X0-Xd))
3550 X=X0+Z0/TAN(Alpha)
3560 ELSE
3570 RETURN
3580 END IF

3590 Dapath=Duct_length/SIN( Alpha)
3600 Z= (X-Duct_width/2 ) »TAN ( Alpha

)

3610 IF Z)=Duct_length THEN
3620 RETURN
3630 END IF
3640 Path 1=Z/SIN( Alpha)
3650 IF X(=Duct_width/2 THEN PathUO
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3660 Z1=(X+Duct_width/2)*TAN( Alpha)
3670 Path2=(Duot_length-Z1)/SIN(Alpha)
3680 IF Z1>=Duct_length THEN Path2=0
3690 Path=Path1+Path2
3700 Mu=FNMu( Energy)
3710 Dose=EXP(-Mu*Path)*FNBup(Dbc, 1.25, Path )-EXP(-Mu»Dapath)«FNBup(Dbc,

1.25, Path)
3720 Dose =Dose«Source_strength»FNResponse ( 1 . 25 ) / ( 4»PI«R«R ) "Reduction
3730 RETURN Dose
3740 FNEND I

»«»»»»•«»» End of Subroutine ».»«..«...

3750 SUB PrtJ.nfoCCollimator.gRoad)
3760 !

»»»»**««»*»»»*«***•*»«»*«»»««»«»«•«****»»»»»«»«#«»»«»«*»*»*»»•«»»*»««*

3770 ! »»»• Subroutine to print duct configuration information. »»»»

3780 ! **********#***»*»#***«*»*#**»**«************>**********«»it***********t*

3790 COM /Main/ Source_angle, Source_strength , Energy ,N,Duct_width,Duct_h
eight ,Duct_length ,X0,Y0, Z0 ,Xd ,Yd , Zd , Bo , Reduction

3800 ALLOCATE Data* 256
3810 ASSIGN SLine TO BUFFER 256
3820 OUTPUT gLine USING "20X, •»»»«» Duot Configuration •»•»•"•"

3830 ENTER e%ine;Data$
3840 OUTPUT gRoad;Data$
3850 OUTPUT SLine USING """Duct Width = "" ,36X,4D.4D,2X,""cm""";Duct_wi

dth
3860 ENTER 0Line;Data$
3870 OUTPUT «Road;Data$
3880 OUTPUT SLine USING "'"'Duct Height = "" ,35X,4D.4D,2X,""cm""" ;Duct_h

eight
3890 ENTER eXinejData*
3900 OUTPUT 0Road;Data$
3910 OUTPUT SLine USING """Duct Length = "" ,35X,4D.4D,2X,""cm""";Duct_l

ength
3920 ENTER gLine;Data$
3930 OUTPUT §Road;Data$
3940 OUTPUT SLine USING """Source Elevation = "" ,30X,4D.4D,2X ,""cm""" ;Y

3950 ENTER SLine;Data$
3960 OUTPUT SRoad;Data$
3970 OUTPUT SLine USING """Source Angle = "" ,34X,4D.4D,2X /'"degrees"""

j

Source_angle
3980 ENTER gLine;Data$
3990 OUTPUT §Road;Data$
4000 OUTPUT §Line USING """Source Distance = "" ,31X,4D.4D,2X,""cm""";X0

/SIN ( Source_angle

)

4010 ENTER gLine;Data$
4020 OUTPUT §Road;Data$
4030 OUTPUT SLine USING """Detector Elevation = "" ,28X,4D.4D,2X,""cm"""

;Yd
4040 ENTER §Line;Data$
4050 OUTPUT §Road;Data$
4060 OUTPUT 0Line USING """Detector Distance from Wall = "" , 19X,4D.4D,2

X , ""cm""" j Zd-Duct_length
4070 ENTER gLinejData*
4080 OUTPUT 0Road;Data$
4090 OUTPUT eLine USING """Collimator Angle = "" ,30X,4D.4D, 2X, ""degrees

"'"' Collimator
4100 ENTER §Line;Data$
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a Ray Source 1"" 1

"",31X,4D.4D,2X, ""Curies 1"1

"",1TX,4D.4D

4110 OUTPUT 0Road;Data$
4120 OUTPUT SLine USING "21X, ll,lCobalt-60 G,

4130 ENTER §Line;Data$
4140 OUTPUT SRoad;Data$
4150 OUTPUT SLine USING """Source Strength

" ; Souroe_strength
4160 ENTER SLine;Data$
4170 OUTPUT eRoad;Data$
4180 OUTPUT SLine USING """Gamma Ray Yield of the Source

»;N
4190 ENTER gLine;Data$
4200 OUTPUT §Road;Data$
4210 OUTPUT Eine USING """Energy of the Gamma Ray (average) = "" ,13X,4

D . 4D ,2X , " "MeV"" » ; Energy
4220 ENTER «Line;Data$
4230 OUTPUT gRoad;Data$
4240 OUTPUT SLine USING """Buildup Correction Factor- = "" ,21X,4D.4D,2X"

I
Bo

4250 ENTER 0Line;Data$
4260 OUTPUT gRoad;Data$
4270 OUTPUT §Line USING """Reduction Factor = "" ,30X,4D.4D,2X,""m 2/Cur

ie""";Reduotion
4280 ENTER SLine;Data$
4290 OUTPUT SRoad;Data$
4300 ASSIGN gLine TO *

4310 DEALLOCATE Data*
4320 SUBEND f

»»»««««««» End of Subroutine »««»»»»«»«
4330 SUB Smooth<Dosnl(«)

) D03fl(»),Dosw1(»),Do3u2(»),Dostw(»),Dosdir(»),Do3to
t(«), I,XxxC), Bo, Collimator)

4340 ! MMMMMMMMMMMMMMMMMMMMMHHHMMMMMMMMMMMMM
4350 I »««« Subroutine to Smooth and Store the Data »»

4370 I
«»»» Start of data smoothing section ««

4380 ! »»HH«m«»HH.Hn, 1 , ( , l»„,»m„„„„„ 1„ i»„„ ),„„„„„„,
4390 ALLOCATE SmKl)
4400 Step=ABS(Xxx(1)-Xxx(2)) I Distance between data values
4410 Dstep=INT(12/Step)
4420 FOR Ii=1 TO I
4430 IF Ii<=Dstep THEN
4440 A=1-Ii
4450 ELSE
4460 A=-Dstep
4470 END IF
4480 if Ii+Dstep)=I THEN
4490 Bb=I-Ii
4500 ELSE
4510 Bb=Dstep
4520 END IF
4530 Summ1=0
4540 SummmUO
4550 FOR Jj=A TO Bb
4560 Summ1=Summ1+1
4570 Summm1=Summm1+Dostot(Ii+Jj)
4580 NEXT JJ
4590 Sm1(Ii)=Summm1/Summ1
4600 NEXT Ii
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4610 I
»«»»»»»»«»«««»«*««»»»»»»»»»»o»»«»««»»»«»»»««»»«»»»»«»»»»»»»«»«»««»»«»«

14620 I »••» Start of data storage section »««»
14630 ! »«m«i»H»««<i«<«m«i>»»iu»Hi<iin»«.»»»m(. •«•««••*«••»•• •«•»•««
1)610 DISP "PRESS CONTINUE TO STORE DATA"
4650 PAUSE
4660 ALLOCATE Data$(3) 256
4670 INPUT "WHAT IS THE NAME OF YOUR ASCII FILE",Name$
4680 10: IMAGE 18X, "Values predicted from models (microR m"2/Ci hi"
4690 III IMAGE " XX NLlp FLlp Wall 1 Wall2 TWall Direct

Total Smoothed"
4700 13: IMAGE " (cm)"
4710 Format: IMAGE 5D,X,4D.3D,X,4d.3D,X,4d.3D,X,4D.3D,X,4d.3D,X,4d.3D,X,4d.3D,X

,4D.3D
4720 ASSIGN SBuf TO BUFFER 256
4730 CREATE ASCII Name* ,1/3+22
4740 ASSIGN 0Path TO Name*
4750 CALL Prt_info(Collimator ,SPath)
4760 OUTPUT SPath; "NUMBER OF DATA POINTS IS "4VAL$(D
4770 OUTPUT gBuf USING 10
4780 ENTER SBuf ;Data*( 1

)

4790 OUTPUT SPath;Data$( 1

)

4800 OUTPUT @Buf USING 11

4810 ENTER SBuf ;Data$( 1

)

4820 OUTPUT SPath;Data$( 1

)

4830 FOR J=1 TO I

4840 Counter=Counter+1
4850 OUTPUT 9Buf USING Format ;Xxx( J) ,Dosnl( J) ,Dosfl(J) ,DoswK J) ,Do

sw2( J) ,Dostw( J) ,Dosdir( J) ,Dostot( J) ,SmK J)
4860 ENTER SBuf ; Data $( Counter)
4870 IF Counter=3 THEN
4880 OUTPUT gPath;Data$( 1 ) ,Data*(2) ,Data$(3)
4890 Counter=0
4900 END IF
4910 NEXT J

4920 FOR K=1 TO Counter
4930 OUTPUT SPath;Data$(K)
4940 NEXT K

4950 ASSIGN gPath TO »

4960 ASSIGN §8uf TO »

4970 SUBEND I
«»»««»»«»« End of Subroutine »»»»«.»««•

4980 DEF FNKlein(Energy,Theta_scat,Escat,Opt)
4990 ! »»««»«•««»«»»«»»«««»«»»»»»«»»««»««»»««»»««»»•*»«*»»»«««»««»»»»»••»»»»«
5000 ! »««» Subroutine to calculate the Klein-Nishina cross section. ««»•
5010 I Definition of variables:
5020 ! Energy = Energy of incident photon (MeV)
5030 ! Escat = Energy of scatter photon (MeV)
5040 I Theta_scat = Scatter angle degrees
5050 I Opt = Option variable
5060 ! Opt=0 —> Regular Klein-Nishina Cross Section
5070 I Opt = 1 —z> Energy Klein-Nishina Cross Section
5080 ! Klein = Value for the Klein-Nishina Cross Section
5090 ! ••i<H<nmiimmmi««mH»H..H»nmm«H<in«n.««m«.<
5100 Escat=Energy/(1+Energy/.511»(1-C0S(Theta_scat)))
5110 P=Escat/Energy
5120 Klein=.01196«P»(1+P»P-P»(1-C0S(Theta_scat) A 2))»2.2
5130 IF Opt THEN
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5140

5150
5160

5170
5180

5190
5200

5210

5220

5230
5240
5250
5260
5270
5280

5290

5300

5310
5320

5330
5340

5350
5360

5370
5380

5390
5400
5410

5420

5430
5440

5450
5460

5470
5480

5490

5500
5510

5520
5530
5540
5550
5560
5570
5580

5590
5600

RETURN Klein«P/(.01196*2.2)«.5»(2.8l8E-13) A
2

ELSE
RETURN Klein

END IF

FNEND I
MMMMM End of Subroutine MMMMM

DEF FNBup ( Bo , Energy , Path

)

if******************************************* a**************************
*»*« Subroutine to calculate the buildup factor. »»»»

Definition of variables:
Be = Buildup Correction Factor

Energy = Energy of photon MeV
Path = Path length photon travels (cm)

Lambda = Number of mean free paths traveled by the photon
K1,K2,K3, 4 K4 = Constants used in the buildup factor formula
I********************************************************************!*

COM /Bup/ K1,K2,K3,K4
Lambda=Path«FNMu (Energy)
K1=1.2858»Bc
K2=-.456
K3=. 09739
K4=-.8319

RETURN ( ULambda»K1»Energy'K2»EXP(Lambda«K3»EXP(K4«Energy) )

)

FNEND I
»««»»«•»«» End of Subroutine »«»...«»»»

DEF FNMu( Energy)

»•«» Subroutine to calculate the total attenuation coefficient. *»**

Definition of variables:
Energy = Energy of the photon (MeV)

RETURN 2. 2«. 0638 1 "Energy* (-.4 1851)
FNEND !

MMMMM End of Subroutine MM»MM»
DEF FNResponse( Energy)
iI>«l>ll><«l)l»><>Il«l»tlll<>i»il»<>«<Mlll>H<>lKlll<ll<>«»I<>l>
MM Subroutine to calculate the dosimetric response function. »»»•

Definition of variables:
Energy = Energy of the photon (MeV)
«*»»«««***«»»»»*«**»«»»*««*•**«»**«»»«* »****»«»»*•**««»»**»«»»*«*«»»»«

RETURN ( . 1 933+ . 04397«Energy- . 05492»Energy" 2+ . 1 889*Energy * 3) *Ener
gy»66.04
FNEND ! ««»»«»•«»» End of Subroutine »«•«•«»«••

DEF FNExp(Arg)
HIHMMHIMHinHHnmillHHMHHNIMMHHMHUHH »•«•»«•«»

•Subroutine to evaluate exponentials with arguments of large magnitude 11

IF ABS(Arg)(700 THEN RETURN EXP(Arg)
IF Arg(0 THEN RETURN
RETURN 1.E+300

FNEND !
»»»«»»««»« End of Subroutine •«««»..»«»
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ABSTRACT

A common problem encountered in radiation shielding is to

determine the effect of penetrations through a shield. Current

approaches to this duct streaming problem usually involve large

computer codes based on Monte Carlo and/or albedo techniques,, Often

these large codes provide an accuracy (at considerable expense) not

needed for many preliminary shielding analyses, and a need for simpler

methods to analyze gamma rays streaming through ducts is apparent,,

Simple approximate models were developed in this study to describe

the spatial variation in the radiation field transmitted through a

straight rectangular duct that is obliquely illuminated by gamma photons.

These models take into account single and multiple scattering from the

duct walls, as well as direct penetration by the photons. It was found

that the gamma-ray streaming could be adequately described by consider-

ing only the directly penetrating photons and photons that scatter in

the lips at the duct entrance and in the duct walls. Two techniques are

presented for modeling the contribution of photons reflected once from

the duct walls, namely a method based on the use of an empirical albedo

formula and a method in which scattering volumes in the duct walls are

represented by single effective scattering points,.

The composite model was compared to experimental benchmark,

streaming data both to test the validity and to evaluate an empirical

correction factor incorporated into the model,, These comparisons

showed that the simple models can provide a suitable description of the

radiation fields resulting from gamma rays streaming through straight

rectangular ducts, and are appropriate for use in preliminary shielding

and design calculations,,


