A LISP INTERPRETER: SCANNER AND PARSER

by

DAVID CLARENCE BOSSERMRAN

B.G.S., University of Nebraska at Omaha, 1969

A MASTER'S BEPORI
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas
1977

Arrroved by:

ié%éiiProfgggor ?

LD p
R+

(777 _
867 TABLE OF CONTENIS

23
Document

SECTICN NAME CHAPTER ONE PAGE
PROJECT CONCEPTS AND DESIGN

1.1 INTRODUCTION.........Il........III..'.....I.I....I 1
1.2 IIISP IANGUBGE ® 8 99 ¢S 89S S S e " SO ST &0 9SS SS9 8 eSS S T a9 en 1

1.3 P INTERPRETER SYSTEM DISIGN ..cccceccscccccanses
1 LISP DRIVER cccecccccsccacsscsancscscssscsscsnns
2 INITIALIZER DBIVER csccecsccccccecscccscannass
3 READ HCDBLE a9 0 9 F 09 T 00D 9D S SO EE eSS eTE® eSS
4 SCANNER DRIVEE ..ccccscccscccscaccscaccssoanns
5

IHTERPBETER DBIVER - @ % 99" *9 800 SF e ST e S B

ErpWpooN

1.4 MCDULE CONSTRUCTION AND INTERACTION .ccoccccscescss 4

1!5 IETEBDETA 8/32 299 & S ST S WS TS S TT S8 ST T OESS S ESTTE SRS 5

1.6 SUHHBRI ® e e¢ o9 & 689 . & 008 ¢S O ¢ @ e 9 ¢ dd ¢S SE P e e OO SO e e 8eae 5

CHAPTER TWO
READING THE USER'S PROGRAHN

2.1 IHTRODUCTION % @0 S 9 S ST S S ST S SET TS FTETW SIS B SLEDE S GS 7

2.2 BSPECIFICS ® & 8 o0 9 8 FE T e S Td $E S0 e S E s 4 S e E S e Bae

PBRBHETEBS ® 9 8 8 99 OO 0TSSP S PSS eSS A SSeS ee P

INPBT e &8 % ad 8 9 0SS 9 @S eaE S SO e @S e s P s oS e DA

WK =
W0 o9~

OUTPUT S S S 49 O C SO E SO ST OSSP EESEEE S S ESEEES SO SES

SECTICN NAME

3.1 INTRODUCTION

3.9

CHAPTER THREE
SCANNER

311-1 GRAHHAE ® 8 8 9 48 90 S S 0 SO STE UE OSSN EET OSSO e NS TSRS
3.1.2 OVERVIEW

ISCAN

® 9o ® 9 @ & % & 9 O & 8 B e® %8S O ESER S e S " eSS e w0

B 8 @ 8 &8 ® 08 599 P S S8 S S 0SS SO 0N &9 40 8 e S e F e e et e e wes

H S % & S8 98T § OGS OSSO TS ST PSS S S S EESE S vES
PAREHETERS * 4 % 988 9 99 89 ST 5SS S AT TESAES EA e

INPUT ® 8 5 268 98 S0 EE6S 0SS ¢ A0S0 0SS SO 0EESTSE SAES

INUMBR

3.4.1 INPUT
3.4.2 OUTPUT

JACDRS
3.5.1 INPUT
3.5.2 OUTPUT

OUTPUT 9 &0 0 U S S0 D EE S S ES SE TS S WSS S S SSEES e e

HODULAR ORGAHIZATION % 8 @ e 5% 8 dEdSs TS eSS S S N

OVERVIEWR

® 9 @ 20 9 S 8 SO0 80 SO 08 8 G B SO O SS G S SN S S eSS eSS

® 9 9 289 TS ST SO ST NSO 0SSP ESS S S SeER eSS

% 2 @8 8 9 0 96 SO 9SS S S S SEE 80 ST S BE eSS

® 8 ® 89 8 8 6 6O W S 0S4 S TS A S E NS PO OEE ST ST S E

e P e PO S SEE S OSS S SSS A ES T ESS S Se eSS e

CKSPCE ® 9 ® 2% ® 8 6 4 99 S 9 O SO 8 S S S 88 SO ¢S e S S e e d S eSS 00 e

ISINIT 9 % 98 S8 S 90O T S0 S E ST S T ESS S SEe SSd E S ASES e A

ISSMTE

3.8.1 INPUT
3.8.2 OUTPUT

s
-
L]
-

Y
9
9
9

M

c
1
2
3

K

@ ® ® 4 5 ¥ 9 S § 9 S 9 4 G0 A S W ST eSS ¢8OS ¢ ESS T E eSS e 00

® 9 8 9 9 WS 40 S S eSS S SE TSSO ES

@ ® P 99 8 6 980 G0 E ST PO E A ST PSSP S aAsSRE e Res

®® 8 A9 96 % 09 8 e ST GO S T SIS S OSSN SES N EASEESSE AT

INPUT B @ SS9 S P S S S S PSS A TS SEECES T SEEE e e S

OUTPUT ® % 5 0 2 S 2SS S eSS H A S TS SN SO S A A eSS S SA

OVERVIEW

P @ 9 6 8 50 0 9 99 S S S TS SO PSS SEe T e eE e s 9 e aeSs

ii

PAGE

11
11
13

13

14
15
16
16
16
17

19
20
21

21
21
21

22

22

23
24
24

25
25
26
26

SECTICHN NAME CHAPTER FOUR PAGE
EARSER

Bs1 IRTRODUCTION sessucasvsiscosssanonsnsnnusowmsnnevis 20
u-1-1 OVERVIEW S % 4 8 8 S PSSR S e ESES GEES A D E S eSS e e 28
u‘1l2 DRIVEB ® % ® 9 5 @ 99 9 8 86 S S 8 E S S SS A NS s eSS eEs S e e 30

B.2 JETIREE .ccecccssscssscscnsoscinssosssvnsccsssnsnsns JI2
4.2.17 INPUT ecccecccssccscacnssscsccancsacssccannsse 32
B.2.2 OUTPUT ccecaseacacsacossnccnssasannccnanscnnss 33
§.2.3 OVERVIEW .cccecsnccssccccscssccssnnassnnssses 33

u-a VBBBLE 5 9 % 29 P U T OTE TS ST OSSO OESs ESEESSsed s seeEE a S 3“
“I3.1 PABAEETERS PASSED 48 # 99 T QST ESIST S EESEE S 35
l'.3-2 OVERVIEH S " e 8BS 480 SS SN SSSE 0O ASE S S SESTS FA ST 35

u‘.u ILPBRN L B BB B B B L B B B B B B B B B L B B I B O L I B LB B B B 36
u.s IEEBRN AND IPEBCD W e sSSP EEESE S NES PG s edse e 37

u.6 LEARH AND HxTEhB % @ 0% S E eSS EE v d S se 8D e TS s S E eSS 37
u.6-1 OVERVIE“ e 8 ® & S0 e S S 0 9 OO S S 8 s S S S e d e e e e eSS e 38

407 LEFST * @ 8 9 9 E 5 0P S P 0 SR PO S S TE S PSR EEEF R SRS e O eS 38

u.7.1 IHPUT 4 8 ® 9868 8 S 98 eSS e T @ eSS S EDSE ISP " ESE SIS S ea 39
ol ol OQUTPUT wimwiw sk & owid 5w @ 008 w08 o) &% wiaie 0is i 5 9 W@ ew e wdie 39
u47-3 OVERVIEH T 9 A8 SN S PSS S ST IS PSP SE SR S S eSS e SeR 39

uIB LELTR BND IPBOCL T 8 9 ¢S S 5 % 6 S S E S S 4SS S OES S OEEE ST TS uo

CHAPTER FIVE
INTERDATA 8/32 INFORKMATION

5-1 INTERDBTA 8/32 S 8 8 89 TP S S SO e S PS e S e S e S SeT s sene %S SES 42

5.2 EARDHARE ® 24 408 S QA S TS S G S S VTS ST PGS S S LSOO CA '42

iii

SECTICN NAME CHAPTER FIVE PAGE

HBRE @ S o W B e PSS e LSS EOT R eSS E PSS s edS s I eSS ed e u‘3

1 COMMON DATA s.cvecscsenesransasacsaccscsncasa U3
2 DOUBLE ERECISION .occccssacsccscancssnasancne Ul
3 JOB COKTRCL LANGUAGE cceeecoscsacasacsenecsacs 45
u DO“NTIHE ® e % 8 g 85 e s addaesse PSS Foede s @SS ew e s uﬁ

5.3 SCFT

SLT

L.
Seds
5.3.
-

5.“ BCHTIHE JCI— ® 9 @ BS D S90S T 9 H T SRS AS T LTSS ST ESa e us

CHAEFTER SIX
TESTING

5‘1 IEIHODUCTIGN o % PP 0 P P Pe PSS S P AT TSNS E SO0 se S e e q‘B
6.2 LIVEL OF TESTIRG 9 &% & &9 9 B S S 8 S E eSS S PSS S FSES PSS SO e eSS us
6.3 TEST PBOGEAH 8 TS &Y AsE S AT G PE AT S LS d S d e e e e QS

6.” TOKEHS e ® ® s ¢ @8 S 9405 % e S e d G e e S ¢+A SN s e Ee S % Oe g e 9 e s ug

6-5 NCDES e 9 % 29 590 ¥SU %S OCESSS e FSS S0 AR SIEE DTS e e 50

APPENDICES

BAFPENLIX B ceececccacnsccsvsanscncuscasancancccasasnccnas D1
APPENDIY B cvcevcncccsusssscsescccessssncnccscsnonnsenes D2
APPENITX C cocecccccccncessannsecsscsssnesccconcancnsns Db
APPENRLIX D ccecevcsvsenassscevsccvosccnssccnnccsvacsncns OB
APFENLIX E cvecececsascecsaconsssossancssunacscnsancnnsana 81
APEENDIX F ceccscocsssocosscaccssasssosssavannsnsnnsances 112
AEPENLIX G sevevscessncscosssocncnsvevecnncsanansasanes 113

iv

ILIUSTRATIONS

FIGURE 1-1 LISP INTERPRETER SYSTEM DISIGN ..ceecasncccs
FIGURE 2-1 READ FCDULE REIATICNSHIP iccccecccecccacass
FIGURE 3-1 SCANRER MODULES RELATIONSHIP cecccceccccces
FIGUBRE 3-2 INITIAL TOKEN FCRMAT .ccvsccscsacaanasannas
PIGURE 3-3 ISTKGN MODULAR RELATIONSHIP scacccccsscnsss
FIGUFE 3-4 SCANNER HIGH-LEVEL ALGORITHM ..c.ccececocses
FIGURE 3-5 EXPANDED TOKREN FORMAT eccccacancenscaasnnsses
FIGUREF 4-1 INTERPRETER MODULAR RELATIONSHIP ..cccecaae
PIGURE 4-2 GENERAL TREE FEFRESENTATION ..ccecccccccces
4-3

FIGURE

i

HIGH"LEVEL EAFSE ALGORITHH ssss s s nsesess e

Chapter 1

FRCJECT CCNCEETS ANL LESIGN

1.1 IFTRODUCTICN

In this paper a portion of a LISP Interpreter is
proposed for use on minicomputers. The development of the
interfreter was done 1in the FORTRAN Language. The purpose
of the project was:

(1) To design a LISP Interpreter.

(2) To code the scanner and parser in a high-level
language.

(3) To exercise the program on the INTERDATA 8/32
computer.

Fefore the details of the fprogram are discussed,

prcgram concepts will be addressed, and a discussion of the

interaction with the INTERDATA 8/32 will be presented.

1.2 LISP IANGUAGE

The IISP language is a LISt Processing language. It is
designed primarily for symbtolic data fprocessing and has been
used extensively in solving mathematical protlems, working
with electrical circuit theory, game playing and other
applications of artificial intelligence.

LISP is a formal mathematical language. As such, it is
possible to give a clear, concise and complete definition of
it. ILue to these qualities, it 1is an excellent language to
work with in designing, coding and implementing an
intergreter.

This project deals with the implementation of the LISP
1

2
1.5 Programming Language. It is not restricted at all by
the design structure of the scanner or parser. 1In fact, the
scanner and parser modules were designed for maximup

portatility and adaptahility.1

1.3 LISF INTERFRETER SYSTEF DESIGHN-

The interpreter!'s system design consists of one driver
module and five major subsystem driver modules. (See Figure

1-1.) Each module will ke discussed separately.

13.1 LISP DRIVER

The LISP DRIVER module contains two major categories of
data: (1) information concerning the module itself; and (2)
the ccnmon data declared for intersukroutine use. The code

for this module is in APPENDIX B.

1.3.2 INITIALIZER DRIVER

The function of +the INITIALIZER module is to: (1)
contrcl memory management; (2) initialize the function
tables; and (3) initialize the argument talkles. This driver
and its functional routines were prerared by Lee R. Whitley

and are discussed in his report.

—————————————— e e

1 John McCarthy et al., LISP- 1.5 Programmer's Manual
(Camtridge: The M.I.T. Press, 1973), p.1.

LISP INTERPRETER SYSTEM DESIGN

LISP INTERPREIER

DRIVER
EEAD SCANNER INTERFRETER WERITE
INITIALIZER
Figure 1-1
1«3.3 READ MOLULE
The read routine 1is responsible for: (1) requesting

memory space from the memory management routines; and (2)
reading the user's progranm intc addressable storage
locations. The code for the read routine is found in

APEENLIX C.

1.3.4 SCANNER DRIVER

The scanner routine is a driver routine. It calls the
token generator routine and symbol table search routines.
It causes the user's program to be scanned. From this scan
an address array is generated showing: (1) the location of
each symtol/string in the user's ©program; (2) the length of
each symbol/string; (3) its keyword, /function status; and (4)
its lccation within a keyword/function table, if applicable.

The scanner code is in APEENDIX L.

1.3.5 INTERPRETER DRIVER

The interpreter performs twc major functions. It
initially creates a general tree representation of the
user's program. Cnce the general tree has leen created, it
is passed to the execution modules. The general tree
construction modules are in APPENDIX E. The execution
routines have not been completed and are to ke the subiject
of a future reports. The interpreter module is in APPENEIX

1.4 MQODULE CONSTRUCTION AND INTERACTION

The modules utilized in this interpreter were designed
using a top-down structured programming approach. Each
module has been restricted to one path into the module and
one path out wupon completion of its function. Each module

has also been restricted in the numker of 1lines of code

5
which it contains. No module contains more than 100 lines
of executakle code.

The modular concepts have also Leen implemented in
module interaction, Except for =several modules calling
memory management routines, no modules interact outside the
span ¢f control of a mutual driver. Any passing of data is

done through call parameters or commcn storage.

1.5 INTERDATA 8/32

The INTERDATA 8/32 Computer was used to test the
interrreter. It provided an excellent contrast of small vs
large computer procedures. The INTEKLCATA is a very reliable
computer but, due to the newness of its hardware and
software, caused many protlems during project completion.
The INTERDATA and its peculiarities will be discussed in

greater detail in Chapter 5.

The project discussed in this report is one part of a
three part effort to develop a high-level language LISP
interyreter., The specific parts of the interpreter covered
by this report are: (1) the READ module; (2) the SCANNER
modules; and (3) a portion of the INTERPRETER modules. 11ll
portions covered Lty this report are complete and have been
tested.

The INTERDATA 8,/32 was used to test the interpreter

modules. It provided an excellent vehicle for the testing

6
as it demonstrated the pitfalls and frustrations to be
encountered on a computer which is relatively new and
without complete maintenance and software packages.

BAlthough users working on smaller computers will find
that more time and effort is required to accomplish tasks,
this report shows that with perseverance and hard work,

compaIlable results to large computer cutput can be obtained.

Chapter 2

READING THE USER'S PROGRAM

2.1 INTRODUCTION-

This chapter presents information concerning the
specifics and regquirements of the read module. The read
module (named INREAD) does not drive any other modules. 1Its
function is simply to read the user's program intoc storage
so that the program may be processed Lty other modules. The

code for INREAD is in APPENDIX C.

2.2 INREAD SPECIFICS

The INREAD module is designed to read the user's
program into storage. The module is called from the LISP
INTERERETER DRIVER module and has +the relationship shown in
Figure 2-1. ©Note that INREAD only calls one module, ISINIT.
ISINIT is the routine that gets space from memory management

when required.

2.2.1 PARBMETERS

The INREAD parameters are: (1) IFIRST, the beginning
logical address in memcry of the user's program; (2) IDONE,
the ending logical address in memcry of the user's progranm;
and (3) ISTART, the 1last logical address passed to the
routire by memory management. The IFIRST and IDONE

variatles are used by the scanner rcutines to convert the

user's program into a sequence of tokens.

READ MODULE RELATIONSHIP

LISP

INTERFRETER

DRIVER

INREAD

ISINIT

Figure 2-1

2.2.2 1INEBEUT

The input required by the INREAD module are: (1) the
user's program; and (2) a portion of an array called ISPACE
which is acquired from memory M®management. As stated in

chapter one, the user's program will be read from a file

9
created by the user. The file may be created by sitting at
a terminal and typing it, or by allocating space for the
file at a termipal and reading cards from the card reader
into the file. The association of the input file with the
reader logical urnit in the program is done after the program
tasks are loaded. In the interpreter, all reader logical
units are logical unit £, Therefcore, if the wuser created
his input file and called it INPROG, his assignment would
be:

AS 5,INPROG

The other input required by this program is the logical
addresses of space allocated by memory management to store
the user's program. Logical addresses in this sense mean
the array elements allocated. A ccntiguous block of space
is requested so that 1later processing can te efficiently
accomplished. Contiguous space is assured by sending a code
to the memory management routine. 2 cocde of IBLOCK=0 causes
contiquous space allocation whereas a code of IBLOCK=1
informs the memory routines that headers may ke written for

the space acquired.

2.2.3 OUTPUT

The output rroduced by INREAD is: (1) the user's source
prcgram stored in an array called 1ISPACE; {(2) space
allocated to enter the level of parentheses; (3) the array
element which contains the start of the user'’s program; and
(4) the array element which contains the ending of the

user's progranm.

10

The user's source program with appropriately numbered
parentheses is retained until execution of the program is
cospleted. This is done for several reasons. First, it
provides a list file of the program for output purposes. :
Second, it allows for error marking if desired in later
implementations. Finally, it is required Lecause other
modules simply point to the various keywords/strings
contained in the progranm. Therefore, there is no
requirement for any rewriting of strings into any storage
space.

Fote that space is also allocated for the numbering of
parentheses. This is done so that the parentheses levels,
when determined can be retained. This precludes having to
call a 1level determining routine every time the 1level is
required. It also enbances the tree construction in the

INTEREEETER modules.

1

Chapter 3

SCANNER

3.1 INTRODUCTICN

This chapter presents information concerning the
scanner modules. The scanner modules are designed to: (1)
scan the user's program and record each string's position
and length; and (2) update the token to provide information
concerning whether a string is a keyword, and if so, in
which symktol table it is found and its 1location within the
table.

The scanper driver routine is called ISCAN. ISCAN
calls the routines ISTKGN and ISSMKTIB to accomplish its
missicn. The relationship of the modules is shown in Figure

3=,

3.1.1 GRAMHEAR
The grammar used by the interpreter consists of the
follcwing reductions:

(1) <LETTER>::= A|BlclID...l2|SPECIAL CHARACTERS

(2) <NOMBER>::= ol 1]2]3...]19

(3) <BLANES>::= CNE OF MORE ELANKS

(4) <ATOMIC SYMBOL NON-NUMERIC>::=<LETTER><ATCM PART>

(5) <ATOMIC SYMEOL NOUMERIC>::=<ATOMIC SYFKBOL INTEGER>|
<ATOMIC SYMEOL FLOAT>

(6) <ATOKIC SYMBCL INTEGER> : :=<NUMBER> |

<NUMBER><ATOMIC SYMBOL INTEGER>

12
(7) <ATOMIC SYMBOL FLOAT>::=<ATOMIC SYMBOL INTEGERD.|
<ATOMIC SYFBCL INTEGER>.<ATOMIC SYMEOL INTEGER>|
0.<ATOMIC SYMBOL INTEGER>
(8) <ATOM PART>::=<NULL>|<NUMBER><ATOM PART>|
<LETTER><ATOM PART>
(9) <S-EXPRESSICN>::=<ATOMIC SYMBOL NON-NUMERIC>|
<ATOMIC SYMBOL NUMERIC |
(<LIST>)
(10) <LIST>::=<S—-EXERESSICN>|
<S—-EXFRESSION><SEPARATERS><LIST>
(11) <SEPARATERS>::= <BLANK>|<BLANK.>?2

The atomic symbol, or atom, is the most elementary type
of S—-expression. It can ke numeric or non-numeric. If the
string is non-numeric, it is considered a 1literal atom and
consists of a string of capital letters and decimal digits
having a letter as the first character. The atomic symbol
is called atomic because it is taken as a whole and not
viewed as individual characters.

S-expressions are non-atomic. They are built of atonmic
symbels and punctuaticn marks. The S-expression is always
surrcunded by a set of parentheses and always has two parts,
a left part and a right part. Either part can be a null
string., The S-expression can be either: (1) an atom; (2) a
pair cf atoms separated Ly a dot or spaces; or (3) a pair of

S-exrressions separated by a dot or spaces.3

——————————— . o i ———

2 1bid., p.S8.
3clark Weissman, LISP 1.5 Primer (Felmont, California:
Dickenson Publishing Company, Inc., 1967), pp.5-6.

13

3.1.2 OVERVIEW

The user's program is scanned in two separate phases.
The first phase, using the ISTKGN modules, causes: (1) a
token to be stored for each string, left parenthesis and
right parenthesis; and (2) all space delimiters and period
delimiters to be ignored. Each token generated contains the
logical address and length of a fparenthesis or string in
storage. These tokens are expanded in the second phase of
the scan.

The ISSHTE modules perform the remainder of the scanner
operation. They process each initial token and determine if
the tcken represents a keyword found in the keyword tables.
If so, the token is expanded to record in which table the
keyword was found and where within the takle it was found.
If not, the token is expanded to reccrd that the string is
program unique, Once all tokens are expanded, control is
returned to the LISP INTERPRETER DEIVER and a parse of the

tokens is begun.

3.2 ISCAN

The ISCAN module causes tokens to ke generated which
provide: (1) the location of a string in memory; (2) the
length of the string; (3) the key wcrd table that the string
is listed in, if applicatle; and (4) the location of the
string within the table, if applicatle.

The ISCAN routine does no processing of the user's

program per se. It simply acts as a driver routine and

14

calls the routines ISTEKGN and ISSMTE in that order. ISTKGHN
is responsible fcr identifying strings and recording their
location and length. ISSMIB is responsitle for performing
the table lookup function to complete the token. The ISCAN

module's code is located in APPENDIX D.

SCANNEEF MKOLULES RELATIONSHIP

LISP

INTERPRETER

ISCAN

ISTEGN ISSMTB

Figqure 3-1

3.3 ISTIKGN

The ISTKGN module causes the first two items of a

15
general token to be processed and placed in a token array.
The array created will remain in existance until the user's
prcgram has completed execution. The space acquired from
memnory management will again be contiguous space to
facilitate future processing.

ISTEGN is not a driver module. Its purpose is to
process each array element containing the user's program and
call the appropriate sukroutine: (1) if a parenthesis is
encountered; (2) if a string is enccuntered; and (3) if a
null s-expression is encountered.

The format of the initial token generated by ISTKGN is
as shcwn in Fiqure 3-2. In the ISSMIB routines the tokens
generated by ISTKGN will be expanded to show the location of

the strings within keyword tables, if applicatle.

INITIAL TOKEN FORMAT

BEGINNING ALCDRESS LENGTH

Pigure 3-2

3.3.1 PAEAMETERS
The ISTEGR vrparameters are: {1) IFIRST, which
represents the first element in the array ISEACE containing

the user's program; (2) IDONE, which represents the 1last

16
element in the array ISPACE containing the user's program;
(3) IJUMP, which represents the first element in the array
ISEACE containing the tokens generated; and (4) ISTART,
which is initially equal to IDONE and is updated to
represent the last element in the array ISPACE containing a

tocken.

3.3.Z INPUT

The majority of +the input to this routine is done
throuc¢h parameters passed. The only other dinput is the
array elements allocated, upon request, by memory management

to stcre the tokens generated.

3.3.3 OUTPUT

The output generated by this routine is a sequence of
tokens representing the beginning address and length of each
string in the user's progranm. These tokens are stored in
the array ISPACE and their locations are passed to other
routines ty passing the beginning element (IJUMP) and the

ending element (ISTART).

3.3.4 MODULAR ORGANIZATION

Although the routine ISTKGN is not solely a driver
module, it does call three other mcdules to process the
syebols. Those modules in turn call the module ISINIT to

acguire space from memory managenment. The modular

7

relationship is shown in Fiqure 3-3.

ISTKGN MODULAR RELATIONSEIP

ISTRGN

INUMBER IADDRS CKSECE

ISINIT

Figure 3-3

3.3.5 OVERVIEW

The high-level algorithm used by the scanner is showun
in Figure 3-4, As the algorithm shows, ISTKGN accomplishes
its function Ly iooking at every character represented in

the user's program. Because parentheses are used abundantly

18

in LISP programming to show levels, the module first looks

SCANNER HIGH-LEVEL ALGORITHM

DO WHILE NOT END CF FILE;
GET NEXT CHABRACTER

CASE 1 CHARACTER IS LEFT PARENTHESIS
GET TOKEN SPACE
PUT LCCATICN AND LENGTH=1 IN SPACE

CASE

L%]

CHARACTER IS RIGHT PARENTHESIS; NUMCHR=0
GET TCKER SEACE
PUT LOCATION AND LENGTH= 1 IN SFPFACE

CASE 3 CHARACTER IS BRIGHT PARENTHESIS; NUMCHR GT O
GET TOKEN SPACE
PUT STRING AND NUMCHR IN SPACE
CET TOKEN SPACE
PUT LCCATICN OF PARENTHESIS AND
LENGTH=1 IN SPACE

CASE CHARACTER IS SPACE; NUMCHR=0
IF LOCATION-1 IS LEFT PARENTHESIS AXD
LOCATICN+1 IS RIGHT PARENTEESIS
THEN: GET SPACE
FUT LOCATION AND LENGTH=1 IN SPACE
ELSE: NULL

CASE 5 CHARACTER IS SPACE; NUMCHR GT O
GET SPACE
PUT LCCATICN-NUFKCHR AND LENGTE IN SPACE

CASE € CHARACTER IS PERIOD; NUMCHR=0
NULL

CASE 7 CHARACTER IS NOT CASE 1 — CASE 6
INCREMENT NUMCHR

ENL LC WHILE;

Figure 3-4

19

to see if an element contains a parenthesis. If so, the
routine INUMBR is called to process it. If it is a left
parenthesis the level number assigned to it will be one
greater than the 1last left parentkesis wunless a right
parenthesis has appeared since the last 1left parenthesis.
If this is the case, it will <carry the same number as the
last left parenthesis as it is at the same level. If the
parenthesis encountered is a right parenthesis, INUKBR is
called to assign it the proper number. Whenever INUMBR is
called, a token is generated.

If the element processed is not a parenthesis, it could
ke a delimiter (space or period) or a string. If it is a
string, a counter is incremented and processing continues
until a parenthesis or delimiter is encountered.

Cnce a delimiter is encountered, the string represented
by the 1length counter is placed in the token array. One
excertion to this procedure is made. If a space is
encountered, and the length <counter is =zero, the routine
called ICKSPC is called to check the space to see if it is
in fact a null string. If so, a token is generated. A null
string is defined as a left parenthesis, single blank
character, and a right parenthesis. If any other
combinations of parentheses and blank characters occur they

will not te recognized as a null string.

3.4 IKUMBR

—

The INUMER routine is responsitle for numbering

20
parentheses. The parentheses' numkers are called level
numbers and are stored in memory in the space allocated when
the user's program was read. (See Paragraph 2.2.3.) After
storage they are used by the parser to determine arqument
and S-expression length. They are also available to be
printed Ly the WRITE modules for user convenience. The
rovtine must deal with two major situationmns. The first is
the situation of a left parenthesis. The procedure then is
to simply number the parenthesis with the appropriate
nunbex. The second situation is the case of a right
parenthesis which closes a string. In this case the routine
is required to comstruct a token for the string and a token
for the parenthesis. The code for INUMER is in APPENDIX D,
The only other module called by INUMER is ISINIT to get

space to store the tokens generated.

3.4,.1 INBUT

The input data to the INUMBR routine are: (1) whether
the element is a left or a right parenthesis (INB); (2) the
location of the array element pointer (I); (3) the number of
characters found in the string; and (4) the current
parenthesis level (N).

Cf course, there 1is a continuing glotal input from
menory management. This input provides the space to store

the tckens generafed.

21

3.4.2 OUTPUT
The output data are provided to allow modules to
properly continue processing. IPROCE 1is a code which keeps
ISTKGN from double processing an element., ISTART is passed

so that the end address of the token array can be set.

3,5 IADDRS

The IADDRS rcutine is called when a string exists and a
space delimiter is encountered. The existence of a string
is kncwn because NUOMCHF is greater than zero. Note that the
period delimiter does not enter intc this routine because
pericd delimiters are preceded by a space and succeeded Lty a
space., Thus, a period is essentially read and skipped. The

code for IADDRS is in APPENDIX D.

3.5.1 INPUT

The input required for the IALDRS routine consists of
those variables necessary to identify the end of the string
{(I), and the length (NUMCHR). With this data the necessary
token can be generated

In this module, an additional input is required from
memory management. Memory management must provide the array

element to store the token generated.

3.5.2 0OUTPUT

The data output by this module are; (1) the token

22

rerresenting the beginning address and the length; and (2)
the pcinter to the array element which contains the token.

The varialkle IPROCE is assigned a code value and passed

back to the <¢alling routine, This code prevents double

processing of an element.

3.6 CESPCE

—

The CKSPCE routine performs the function of testing
blank characters, when NUMCHR is egual to zero, to see if
the tlank character rerresents a null string. To acconmplish
this task, the routine requires one look kack and one look
forward. The look back and loock <fcrward are done to see if
the space is surrounded by parentheses.

CESPCE only requires the pointer to the klank character
in the source program. Using that pcinter a look back and
lock fcrward can be accomplished. IPROCE is used as stated

abcve, as is ISTART.

3.7 ISINIT

Although the ISINIT routine is not wused only Ly the
ISCAN routines, it will ke discussed at this time. The
ISINIT routine is a utility routine used to get space from
memnoIy Ranagement.

Three paramefers are passed tc ISINIT. The two input
parameters are: (1) NUMRQD, the number of array elements
required from ISFACE; and (2) IBLOCK, a code which informs

mesory management when contiguous storage is needed and when

23
to cancel it. If 1IBLOCK equals 1, contiquous storage is
required. If IBLOCK equals 0, contiguous storage is either
no lcnger required or not required at all. The output
parameter ISTART contains the teginning array element
allocated Lty memcry management.

As a utility routine ISINIT is called Ly any routine
requiring space in memory. The <code for ISINIT is in

APPENLIX D.

3.8 ISSMTE-

ISSMTB processes the tokens generated by ISTKGN and
expands them. In the expanded token, a takle location and
takle are added to the already existing beginning address
and length. The code for ISSMTB is found in APPENDIX D.
The fcrmat of the expanded token is shown in Figure 3-5.

The digit representation fcr the token is: (1)
Beginning Address=(4 digits); (2) Length=(2 digits); (3)
Table Location= (2 digits); (4) Table=(1 digit); and (5)
Mark=(1 digit). The beginning address and length are the
same as determined in ISTKGN. The number placed in the
tatle field is the number of the keyword table in which the
string was found. The table location field contains the
element within the table which represents the string. The
keyword tables are initialized by the INITIALIZER modules
and remain in stotage until execution is complete. The mark
field is not wused by the scanner or parser. It was
implemented to ke used by the execution modules. For

exangle, in Figure 4-2, CAR is represented in token form as

24
1030310. This shows that it is stored in position one of
the user's program and has a length of 3. It is also

contained in keyword table 3 in position 1.

EXPANDED TOKEN FORMAT

BEGINNING ADDRESS LENGTH TABLE LOCATIION TABLE MARK

Figure 3-5

3.8.1 INPUT
The input data to ISSKTE are the array containing the
tokens generated inm ISTKGN along with the beginning (IJUMP)

and ending (ISTART) pointers. No other input is required.

3.8.2Z O0OUTPUT

ISSMIB outputs an eyxpanded token array. It requires no
additional space from memory management. IFINSH 1is output
as a pointer to the last element in the token array. As the
expanded tokens occupy the same array elements as the tokens

generated in ISTKGN, no other pointers are required.

25

3.9 ISYHCR
ISYMCK is called by ISSHNTB. It takes the data passed
from ISSMTE and conducts a table search of the appropriate
key word table to see if a match of data occurs. The
purpose of this routine is to provide to ISSMTB the table
number and table location of a string. If the string is not
found, zeroes are returned indicating a program unigue

string. The code for ISYMCK is in APPENDIX D.

3.9.1 INPOT

The input data, T and ILNGTH, are used to load a dummy
array (ICCNVT) with the string being processed. However, if
the length is greater than 12, a return to the calling
routine is made, This is because none of the key words are
greater than twelve. Eecause FOFTEAN only allows eight
characters to be stored in a double word, all words of
lengtt nine through twelve are truncated to eight. BAll key
words of length eight to twelve are in the same table. This
causes no great concern kecause +the eight character key
words and the truncated words are unigue. The one caution
to be made is to the user. He or she must be aware of this
peculiarity to preclude the use of a character string which
would match a truncated word. The strings im question are
DIFFEREN, EVALQUQOT, INIERSEC, LEFTSHIF, REMAINDE, FACTORIZ,

and UNSPECIA,

26

3.9.2 OQUTPUT
The output provided by ISYMCK consists of the takle in
which a string is found (ITABLE), the location within the
taltle (ILOCAT}, or QO for ITABLE anpd ILOCAT if the string is

either too long or not found.

3.9.3 OVERVIEW

The usert's program is stored one character to a full
word. This was done for ease <¢f processing in other
modules. In this module the data in up to eight full words
must be compacted into one doutle word. This is
acconplished through a core-to~core read.

For convenience the string data is read into an eight
element array. A process called ENCODE is then performed.
ENCOLF causes the string to be read and changes the format
from 24 to A1. Thus, only the first byte of each word is
read. However, +the INTERLATAR routine requires a Llock of
132 bytes to use the ENCOLE function. The format shows the
132 tytes, but only the first eight are wused in the
comparison.

To compact the first eight characters into one double
word the INTERDATA ©process called DECODE is performed. Ry
writing the first eight bytes of the ENCODED block 1into a
double word (ICHECK), using a format of A8, the string is
then in the same format as the strings found in the keyword
taktles.

After this 1is accomplished, a normal table 1lookup

procedure is followed. BEBach table is of the same length,

27
and as such scme tables have empty elements. To preclude
having to search all elements in a table, all empty elements
are filled with a sentinel represented Lty '<'., 1If the
sentinel is encountered before a match is found, a return to
the calling routine is made. If not, IFOUKD, is set to 1

and a return is made.

28

Chapter u

PARSER

4.1 INTROCUCTION-

This charter presents information concerning the
implesmentation of the INTERPRETER modules. The INTERPRETER
modules are designed to: (1) construct nodes to ©provide a
general tree representation of the user's progranm; (2)
execute the user's progranm.

This project is only concerned with the first case and
will not address the execution phase at all. The general
tree construction routines require the interaction of eleven
modules. The modules are called depending on the string
being processed. The modular relationship of the

INTERERETER is shown in Figure 4-1.

4,1.1 OVERVIEW

The INTEREFRETER modules perform a parse of the user's
program using the expanded tokens generated in ISSMTB. The
parse consists of looking at the tcken representations and
creating a general tree. The nodes used for the tree are
discussed in section 4.2 relow. The creation of a general
tree representation of a short prcgram is shown in Figure
4-2.

The figure shows the relationship between the nodes of
the tree. Each node consists of sixteen tytes. The sixteen

bytes allowed are divided, from left to right as follows:

29

FIELD LENGTH DESCRIPTION
1 L LCCATION
2 4 LENGTH
3 4 SON
4 3 EROTHER
57 1 MARK

The LCCATION field contains the logical address in storage
of the expanded token being represented by the node. The
LENGTH field contains the number of expanded tokens
rerresented by the node, if the node LOCATION field points
to a left parenthesis expanded token. If it does not, the
LENGTE field is zero as the node represents only one
expanded token. The SON field points to the next level
sukordinate node. The BROTHER field points to a node of
equal status at the same level, The MAREK field is designed
to be wused in testing and future applications. It has no
carrent significance and is set to 2. For example, in
Figure 4-2, CAR has the one argument (A B). The son field
of the CAR 1node contains a 2, indicating that the arqunment
is fcund in node 2. ©Node 2 represents a string starting
with the expanded token array element 162 and has a length
of 4 (from the LENGTH field). Node 2 is not terminal since
it has a pointer in its SCN field. Following the pointer,
it can be seen that ncde 3 (&) is a son of node 2. Node 3
represents a terminal node because its SON field is null.
Its brother field contains a pointer to B. The tree
representation is then cemplete. |

To create this tyre of general tree regquires the use of
the high-level algorithm shown in Figure 4-3. Note that the
entire algorithm 1is based on processing parentheses or

strings. The separators have been eliminated during the

30

scanning process.

INTERPRETER MODULAR RELATICNSHIE

INTERPRETER

IGTREE EXECUTER

MEMCRY

MANAGEMENT

Figure 4-1

4.1.2 DRIVER

The driver module for the interpreter modules is called
by the LISP INTERPRETER DRIVER. It in turn calls the module
IGTREF which generates a double word array of tokens
representing a general tree, Eventually, the driver will

also call the necessary module to cause the execution of the

31

program.
The driver mcdule receives the beginning array address
and the ending array address of the tokens generated Ly
ISCAN. It will pass on to the executer the beginning and

ending addresses of the nodes representing the general tree.

GENERAL TREE REPRESENTATION

PRCGEAM: CAR (A B)

EXPANLED TOKENS:
STRING TOKEN AREAY ELEMERNRT

CAE 1030130 1€1
(5010110 162
A 6010000 163
B 8010000 164
) 9010210 165

GENERAL TREE NCDES:

NODE NODE NUHBER
161000000020002 1
16200040003CC02 2
163000000000042 3
16400000000C002 4

TREE STRUCTURE

161 gooo 009} 000 2

162 0004 0003 000 2
1

163 | 0000 0000 004 2

164 0000 0000 000 2

Figure 4-2

32

BIGH-LEVEL PARSE ALGORITHH

DO WHILE ALL TCKENS NOT PRCCESSED;
GET NEXT NODE
CASE 1 INITIRAIL KCDE
GET FIRST TOKEN;

FROCESS INTO NOLE;
PROCESSES ALL SAME LEVEL NODES;

CASE 2 NEXT NCDE ON STACK
IF TERMINAL
THEEN: GET NEXT NOLE
ELSE: PROCESS SON INTO KNODE

Figure 4-3

4.2 IGTREE

The general tree routine is designed to produce an
array of double words which represent a LISP program. Each
double word contains information fields which provide the
data necessary to traverse the general tree.

The IGTREE module acts as a ccntrol routine and calls

the afppropriate subroutine bhased on the character being

processed. The ccde for IGTREE is in APPENDIX E.

4.2.1 INEUT

The input required to successfully execute this module

33
are: (1) IJUME, the beginning array element of the expanded
tokens being processed; (2) ISTART, the last array element
containing the expanded tokens being processed; (3) the
tokens stored in ISPACE; (4) the user's program stored in
ISEACE; (5) the double word array to be filled by nodes; and
(6) additional space in ISPACE to create a stack.

The space reguired in the doulkle word array is similar
to the space used to store the user's progranm. It must be
contiquous and must remain in storage until the execution of

the user's program is complete.

4.2.2 OUTPUT

IGTREE will output the beginning and ending array
element containing the nodes constructed to represent the
user's program. The nodes are stored in a double word array
and will remain in the array until execution is complete.
This allows the execution modules to access them as

required.

4,2.3 OVERVIEW

IGTREE begins the processing by extracting the ISPACE
array element address of the first symtol in the user's
program from the first token. It then determines if the
character at that address is a character, left parenthesis,
right parenthesis, or a period. If it is a right
parenthesis or a pericd, a fatal errcr message is returned

and the prograrm is terminated.

34

I1f the item 1is a character, the routine VARBLE 1is
called to process it. If it is a 1left parenthesis, the
routine ILPARN is called to process it. The continual look
at a character and process it is a 'do while' coperation. As
PORTRAN does not have a 'do while' =statement, a continuous
loop GO TO is wused with the exit parameter being the
processing of all nodes.

When VARBLE or ILPARN 1is called, a new node 1is
constructed. The pointer NITPT will always point to a node
that reguires ¢grocessing until all nedes are terminal.
Thus, the node to be processed is determined by extracting
the scn from the next node to be processed. The son field
is the only field that contains a temporary address. Until
the SOK field is set to point tc the double word array
element representing the son, it is set to point to the
ISPACE element regresenting the token of the first character
of the SCN. The first character in conjunction with the
lengtt acquired from the temporary stack provides the

necessary data to continue processing.

4.3 VAEBLE:

The VARBLE routine is designed to process strings. It
accomrlishes its function Lky: (1) placing the token address
within ISFACE in the location field; (2) if the string is
followed Ly a left parenthesis, flace the token address
within ISPACE in the SON field; (3) if the string is
followed by a 1left parenthesis, call a routine to find the

rightmost same level —rparenthesis; and (4) if the entire

35
prcgram has not been processed, continue steps 1-3 until
complete.

Ey following the above preccedures, the first pass of
the wuser's program will produce all top 1level =strings.
These top level strings will point to each other in a
hierarchy of first found to second and so forth wuntil n-1
points to n. The pointing at the same 1level is done by
filling the brother field of a node. ZEach top 1level node
will contain in its son field the token address of its next

level string.

4.3.1 PARAMETERS PASSED

The parameters passed by VARBLE are: (1) I, the token
storage array element bLeing processed; (2) IFINIT, the
ending address of the token array; (3) MNXTPT, the pointer to
the next node to be processed; (4) IDSTA, a pointer to the
first node of the general tree; (5) ISETC, the pointer to
the last node of the general tree; (€) ISTART, a pointer to
the last available space of a temporary stack; (7) IEARPT, a
pointer to the temporary stack which contains the length of
the next node to be processed; and (8) ICODE, a code which

precludes double processing.

4.,3.2 OVERVIEW
VARBIE is called from several routines and is called to
process strings. Different treatment is required if the

string is the 1initial item processed, or if the string

36
occurs after a set of parentheses. Thus, early in the
routine there are conditional statements which cause
branching to the appropriate part of the routine.

The node is initialized by multiplying the token's
address Ly 1000000000000.D0 and placing the result in a
double word array element obtained from merory management.
Note that INTERDATA requires that a numker as 1large as the
node te handled as a dculkle precisicn number. If the .DO is
not rlaced at the end of the number, there will occur an
overflow loss of data and the results stored will not be
precise.

Cnce the lkasic node is created, tests are nmade to see
if it has a son and/or brother. If so, the node is updated
to pcint to the son token's and/or krother token's array
address. Processsing is then continued. Hhen a son's
address is placed in the parent ncde, 1its length is alsec

stocred on a tempory stack. The combination of the address

and length will facilitate future processing.

4.4
ILPAEN.

JLPARN 1is a driver nmodule. It performs the basic
function of «c¢alling the appropriate routine to process a
left parenthesis. TIf +the left parenthesis is the first
token being prcéessed, LPFST is called. If the left
parenthesis is encountered later in the program, LPLTR is

called.

31

4.5 IFFARN AND IEERCD

IEPARN and IFEROD are error routines. If a right
parenthesis 1is encountered for processing, an error is
detected. This is due to the way in which parentheses are
processed., When a node contains a left parenthesis, the son
of that node 1is assigned the length of the node minus two.
Using this approach, matched right parentheses are disposed
of at the same time as the left parenthesis.

I1f a period is encountered for processing, an error is
again apparent. This 1is because period separators are
skipped during processing just like sraces.

Eoth modules print an appropriate error and return a

fatal error code which causes program termination.

4,6 LEARN AND NXTPAR

LPARN 1is designed to find the furtherest same-level
right parenthesis such that the +token after the right
parenthesis is nct a <same-level 1left parenthesis. This
finds all the sub-expressions of an S-expression. It
accomplishes this mission with the aid of <routine NXTPAR.
When a same-level right parenthesis is found NXTPAR is
called. NXITPAR then looks ahead to the next character. 1If
it is a same-level left parenthesis, processing is continued
until another same-level right level rarenthesis is found.

The code for LPARN and NXTPAR is found in APPENDIX E.

38
4.6.1 OVERVIEW

LEARY is called when a left parenthesis has been found.
By the time LPARN is called a parent node for the left
parenthesis has already been created. The routine then
assigns the level of the left parenthesis to a wvarible
called LEVEL. It then enters a loop to look at each
character, in order, to find the right parenthesis with the
same level nunter.

Cnce a right parenthesis with the same level number is
found, NXIPAR is called. NXTFAR is designed to look ahead
one character. If the look ahead causes the pointer IFINIT,
the pcinter to the last character, to be exceeded, a return
is made immediately. If +the next character is a left
parenthesis, control is returned to LPARN and processing
continues +to find the appropriate 1right parenthesis. If
not, a return to LPARN is made with a code of 1 meaning the

next character is not a left parenthesis.

4.7 LEFST

IEPST is called if the first expanded token encountered
by IGIREE is a left parenthesis. 1Its purpose 1is to create
double word nodes reprecsenting the top level of the user's

prcgram and then to return control to IGTREE for further

processing.

39

4.7.1 INPUT

The input to LPFST consists of: (1) I, the address in
the expanded token array of the first character/string to be
processed; (2) IFINIT, the address in the expanded token
array of the last charactery/string of the user's progranm.
The input is wused to establish the Fkounds of a do 1loop to

process the program and create general tree nodes.

4.7.2 OUTPUT

The output from LPFST consists of: (1) IEARET, the
pointer to the next element on the length temporary stack;
(2) ISETD, the last double word array element obtained from
memory management; (3) IDSTA, the first double wvord array
element oltained from memory management; (4) ISTART, the
last element of the length temporary stack; and (5) NXTPT, a
pointer to the next node to be processed. The output
parameters allow IGTREE to continue to process the nodes
generated without double processing a node or asking for an

element address that dces not represent a node.

4.7.3 OVERVIEW

LPFST processes the initial level of nodes, if the
first expanded token representing the user's program is a
left parenthesis. It rerforms its functions by getting the
necessary doulkle word space from memory management and
filling the space with node representations. The nodes are

generated in the format discussed in IGTREE and portrayed in

40

Figure U-2.

The code for LPFST is in APPENDIX E.

4.8 LELTR AND IPROCL

LPLTR 1is designed to process S—-expressions found
between two same level parentheses. 1This entails creating a
son nede and putting a pointer to that node in the parent's
SON field,

The length of the new parent node representation is
retrieved from the length temporary stack. It must be
remenmbered that LPLTR is only called when a left parenthesis
is fcund as the first character of a SON field. Therefore,
a loop 1is entered to look at all characters between the
first left parenthesis and the last character in the length.
When the same level right parenthesis is found IFROCL is
called. IPROCL performs a similar functiocn to NXTPAR.
However, it is mecre powerful.

IPROCL first looks at the code passed. If the code is
equal to 1, a brother is being processed. The brother field
is set to point to the next node.

If the code is equal to 0, the parent node's son field
is set to point to the next node tc ke acquired from memory
rapagenment.

After acquisition, the creaticn of a parent node is
accomrlished for the string being processed. Then the
lengtk of the string is stacked on the length temporary
stack.

After the new parent node is created a one character

01
loock ahead is executed. If the next character exceeds the
lengtk of the string, a return is made. If not, and the
next character is a left parenthesis, a return is made. If
not, and the next character is a varialble, the brother field
is set and VARBLE is called.

The code for LPLTR and IPROCL is in APPENDIX E.

42

Chapter 5

INTERDATA 8/32 INFORMATICN

5.1 INTERDA

s e e e s e

=]

8/32

The INTERDATA 8,32 computer used to test the
intergreter is owned by the Computer Science Department and
is lccated in their computer facility. It has 64K bytes of
memory and all required peripheral devices to enter, process

and output a LISP progran.

5.2 HARDWARE

The INTERDATA 8/32 hardware proved to Le very reliable
during the period of writing and testing this project. This
is nct to say that no protlems occurred. There were faulty
memocry problenms, disk overheat protblens, and console
problems. However, none of the prcblems cccurred because a
high level language LISP interpreter was being run.

Cne hardware characteristic does affect the manner in
which the user's program must be entered in the system. The
card reader (Mcdel 08041€P, True Data Corporation) does not
have a capability for sensing an end of file and causing
that status to ke relaved. Therefore, the user must read
his program into a local file and assign the local file name
to the reader logiéal unit number when he desires to execute
his program. If he attempts to assign the card reader to
the reader 1logical unit npumber, he will receive an error

message informing him that the card reader is empty.

43

5.3 SCFTHARE

The software package supplied with the INTERDATA 8/32
copsists of: (1) nonproduction INTERTAT2 software; and (2)
software generated by the personnel 1in the Computer Science
Department. Generally speaking, the =software caused the
greatest time delays in completing this project. The major
sources for the delays were: (1) system crashes caused Ly
the =software when 1legal commands were entered at the
terminals; (2) faulty software which caused undecodeatkle
error messages; and (3) a FORTRAN compiler that cprovides
only bare essentials and little or no extensions to the
FORTEAN language.

Scme specific problems/peculiarities that occurred, and

the sclutions developed or implemented are discussed belovw.

5.3.1 COMMON DATA.

A protlem occured when certain combinations of letters
were used in conjunction with certain specification
statenments. An examrple of this type of error was the
addition to commcn of an array called IAIIST when IARG had
been specified INTEGEE*2., The program would compile, but
upon execution a task error of 'WEONG PROG' would appear.
After several déys cf debugging and tracing, it \was
determined that a change of name <c¢ould cause the error to
disarrear. When an INTERDATA representative visited the

department, the ©problem was brought to his attention. He

44
was nct aware of any solution to the problem although he did
recall that the problem had surfaced at other installations.
Because this one f*glitch'! was critical, a call was made to
the INTERDATA software manager in Chicago. He knew
immediately what our problem was and provided a patch
solution. He was able to convey, over the phone, that there
was e€rroneous data stored in two addresses of the Task
Establisher Task (TET) program. The addresses along with
the rroper data to be read into those addresses were passed
to our software people. The data changes took approximately
two minutes. The lesson learned was to contact the software
people when a thorough analysis at KSU provided no insight

into the problem.

5.3.2 DOUBLE ERECISION

The INTERDATA FORIRAN compiler dces not have the power
that the IEBM compiler has. There are few extensions to the
Easic FORTRAN requirements of a compiler. A case in point
is the treatment of double precisicn numbers. This project
required a set of sixteen consecutive digits to act as node
representations of a general tree structure. An integer
representation was ruled cut due to the limited number of
integer digits allowed., 13 double precision number contains
exactly the sixteen digits required. The IBEM compiler has
an extension to its compiler that treats any numerical
operation performed during assignment +to a double precision
variatle as a double precision numker. Thus, if IDSPAC were

declared as double precision and the assignment

45
IDSPAC=961*%10000C0000. were made, IDSPAC would contain
96100C000000.. However, INTERDATA does not contain this
extension. To cbtain the same results from the INTERDATA
ccmpiler all numkters in an operation that produce more than
ten digits must end in '.00Y. The atove example would be
entered as 961*1000000000.L0 to obtain the same assignment.
Failure to do this causes the overflow of the least

significant digits to be lost at each step in an operation.

5.3.3 JOB CONTRCL LANGUAGE

The Fjob control 1language on the INTERLDATA does not
provide any significant problems. It is not as powerful or
as ccmplete as IBM JCL. For example, when executing a
FOEKTEAN program, the user must: (1) assign his obiject file
to tke proper 1lcgical unit; (2) assign his data to the
proper reader lecgical unit; (3) assign his output to the
proper printer 1logical unit; (4) load his own program for
execution; and (5) start the execution. This lack of
automatic assignments plus requirenments for extensive user
interaction in the execution of a program, causes many
typographic errors and an increased time to run a progranm.
A run time comparison of the general tree portion of this
prcject was made. On the IBM computer it took 1 minute and
48 seccnds from the time the start tutton on the card reader
was fpushed until " the printer stcpped printing. On the
INTERIATA computer, the same program took 4 minutes and 12
seconds. Both runs were made in the early morning hours

when little or nc other activity was being processed.

46

5.3.4 DOHWN TIME

When working with the INTERDATA 8/32 a considerable
apount of frustration is generated as a result of the
frequent crashes encountered. Equally as frustrating, is
the amount of time the computer is not available for use due
to maintenance backlog and environmentally created failures.
An example of down time due to maintenance tacklog is the
period of approximately two weeks when there was a bad piece
of memory. The bad mnemory had to ke partitioned out of
possiltle use. The partition size used almost 30% of
availakle space. This caused considerable inconvenience
because at the same time a PASCAL package was being tested
for delivery. If, during this period, a user wanted to be
sure of getting enough space to work when he wanted, he had
to use the computer in the 1late evening and early morning
hours. An example of environmental failures is the
recurring loss o¢f one disk drive duvue to the heat in the
computer room. The climatic control devices in the computer
facility are archaic and do not, during cold periods, keep

the room at an aprropriate operating temperature.

5.4 RCNTIME JCL

The runtime JCL for this program is in APPENDIX F.
PART 1 shows the JCL to read a deck of cards into a file
called INREAD. FART II shows the JCL required to establish

the tasks for the program and FART 1III shows the JCL

47

required to rumn the progran.
Luring the completion of this project, the JCL has
changed three times. The data in APPENDIX F is the rost
current. User's will have to verify the JCL prior to use,

to insure that nc changes have been made.

48

Chapter 6

TESTING

6.1 INTRODUCTICN

The scanner and parser were tested on the INTERDATA
8/32 using test programs with varying levels of difficulty.
The <=implest test was the input of atom 'At. A more
difficult test is the one found in APPENDIX H which is a
factorial program with a trace ortion. The factorial
program allows a good test of most of the subroutines

written.

6.2 LEVEL OF TESTING

The factorial test program requires a tree construction
with 19 levels. In addition, it provides several branches
to brcther nodes with subsequent breakdowns. Therefore, the
test of this program tests each subroutine except LPFST and
LPROCE., LPPFST and LPROCE were tested using programs such as

(A B)(C D) and (A . B) and were found to function properly.

6.3 TEST EROGRAM-

EART I of APPENDIX H shows the program being tested.
Note that althougﬂ it is a relatively short program, it has
three nodes at the initial 1level, TLEFINE, TRACE, and
FACTORIAL. It also has a parenthecses level count that goes

as high as 9. Although 9 is the highest 1level achieved in

49
this test program, levels are actually limited only by the
user's program. The program and the parentheses levels are
shcwn in FART II of APEENDIX G to illustrate how the program
is stcred in memory. The subroutines used to accomplish
PART 1 and PART II of +the test were INREAD, IXSCAN, ISTKGN

and INUMBR.

6.4 TCKENS

he token generations are shcwn in PART III nad and
PART IV of APPENDIX H. PART III shows the incomplete token
generated Ly the routines called by ISTEGN. The incomplete
tokens contain only the address within the array ISEACE and
the length of the string. The last two digits contain the
length and the first four contain the address. The first
token represents the string DEFINE which is found in array
element 8 and has a length of 6.

The expanded tokens are found in PART 1IV. The
expancsion is done in mcdule ISSMTB and the modules it calls.
As stated previously, an expanded token contains the keyword
tatle in which a string is found, and its 1location within
the takle, if applicable. Again

the first token shows that DEFINE is in table numkter 6
(same as length) at positicon number 2. The table number is
the second digit from the right and the 1location is the
third and fourth digit. Position numkter 1 is not used. It
was originally intended to be used as a mark field. It was
left as such for rossible use by the EXECUTER.

Token numker 9, N in the program, is a program unique

50
token as it was not found in a keyword table. The zeroes in
position 2 through 4 indicate the program unique string.

A comparison of the extended tokens and the test
pregram shows a one for one match of all strings/symbols.
The ccomparison also shows a correct length applied for each
string/symkol as well as a correct array element address.
When dots or spaces were used in test programs, the results

were also perfect.

6.5 BCDES

The test program causes a total of thirty-four nodes to
te generated. The node construction has been discussed in
Chapter Four. The nodes generated Lty this program are in
PART V of APPENDIX H.

The first three nodes represent strings which are at
the highest level. These strings, as discussed before, are
DEFINE, TRACE, and FACTORIAL. DEFINE is represented by node
1 and points to the level 1 parentheses subordinate to it,
and also points to TRACE as a brother node. The TRACE node
points to the level 1 parentheses sukordinate to it, and
also to FACTORIAL as a brother node. FACTORIAL has no
additional brother so it only rpoints to the 1level 1
parentheses subordinate +to it. This type of continual
breakdown is repeated until the entire program is processed

and represented hy_a general tree.

51

APPENCIX A

McCarthy, John; Abrams, Paul W.; Edwards, Daniel J.;
Timothy P.; angd Levin, Michael I. LISP 1.5
EFrogrammer's Manual. Cambridge: The H.I.T
1973.

Weissman, Clark. LISE 1.5 Primer. Belmont, California:
Dickenson Publishing Company, Inc., 1967.

52

APPENDIX B

ook ko ko sk ko sk ok ok ok ook dkdkok ke ok sk ko ok ok ok ok ke ok sk e ke ok ok Xk
THIS ROUTINE IS A DRIVER ROUTINE TO CALL THE READ
EOUTINE. THE READ ROUTINE WILL READ A DECK CF CARDS
EEPRESENTING A LISP PROGRAM. AT TBE SAME TIME IT WILL
LEAVE SPACE TO NUMBER ALL PARENTEESES ENCOUNTERED.
Fkkkk ok kok ko ek ke ok kkdkkk kb okk ok kgkkk gk
THIS DRIVER WAS WEITTEN EY:
ookl dokok ook ook dok kR ko ok
* *
* DAVID C. BOSSERFKAN *
* OCTOBER 1976 *
* b
sk kdkokokokok ok ok kkkkkk kK
INTEGER*2 IARG
DOUBLE PRECISION FUNCT, IDSPAC
COMMON/TABLE/FUNCT (8, 24) , IARG (8, 24)
COMMON/SEACE/IFTARL (50) , ISPACE (2000)
1, IPUSED, IFREE,IPSIZE,ISI ZE
COMEON/DCUBLE/IDSPAC (500)
CALL INREAD (IFIRST,IDONE,ISTART)
deokkkokkkkk ko okkok ok kkok ko kkok bk ok kb kk ke kkkk ko ko kokkkkkk
AFTER THE BEAD EOUTINE HAS COMPLETED ITS FUNCTION,
CCNTBOL IS RETURNED TO THIS PROGRAM. UPON RETURN ALL
AVAILABLE PROGRAM DATA HAVE BEEN STORED IN MEMCRY. AT
THIS TIME THE DRIVER ROUTINE CALIS ANOTHER DRIVER

FCUOTINE CARLLED ISCAN. ISCAN WILL CALL THE NECESSARY

53
FODULES TO SCAN THE DATA STCREL 1IN MEMORY.
T L s e T T T
CALL ISCAN(IFIRST,ILCOCNRE,IJUMP,ISTART,IFINSH)
CALL INTERP(IJUMP,IFINSH,IDSTA,IDSTOP,ISTART)
STOP

END

54

APPENLIX C

SUBROUTINE INKEAD (IFIRST,ICONE, ISTART)
kokkokdrkokokkokoedokdkdookok ke ok e ek ek keok ok ke ek bk ok ko k okl okk ok kk ok kk
THIS ROUTINE IS DESIGNED TO READ A LISE PROGRAM TG BE
EROCESSED. THE READING OF DATA IS ACCOMPLISHED IN THE

FOLLOWING MANNER:
1. THE TISINIT FOUTINE IS CALLED TO OBTAIN SPACE TO
FEAD
A CARD.
2. A CARD IS READ INTO THE SEACE ACQUIRED.
3. THE ISINIT ROUTINE IS CALLED TO OBTAIN SPACE TO
NUMBER ALL PARENTHESIS.
4. CONTINUE THE STEPS 1-3 UNTIL ALL CARDS ARE READ.
2 2 3k 3 o 3 ok o $x 3 o e o e sde e e s ol o She e e e o e ek o ok ook ok ke ok sk sk kol ke ke sl ok e e e sk ok
THE INREAD ROUTINE WAS WRITTEN BY:
Sdkokac ke ko ko kg kkkkk ko k
* *
* DAVID C. BOSSERMAN #
* OCTOBER 1976 *
* %*
ok ko koo sk ko oksk ek ke ko ke ok
ki okrokkk koo fkk ok koo ok kok Rk ook ok okkokok ok okok - kK kK
SPECIFIC INREAD DATA ARE AS FOLLOWS:
FUNCTION NAME - INREAD
DOMAIN:
(I) INPUT - THE USER'S LISP PROGRAM.

(II) GLOBAL DATA - PORTION OF AN ARRAY CALLED

55
ISPACE
FROM MEHMCRY MANAGEMENT.
EANGE:
1. THE USER'S SQURCE PROGEAM STOREL IN ISPACE.
2. A PLACE TO ENTER PARENTEHESES NUMBERS IN ISPACE.
3. THE START ARRAY SUBSCRIPT WHICH FERTAINS TO THE
USER'S PRCGEAHM.
L, THE END ARRAY SUBSCRIPT WHICH PERTAINS TO THE
USER'S PROGRAH.
FULE-OFP-CCRBESEONDENCE:
INREAD CAUSES THE USER'S PROGEKAM TO EE PLACED 1IN THE
SPACE ALLOCATED BY THE MEMORY MANAGEMERT ROUTINES. 1IT
ALSO RESERVES A PORTION OF THE PROGRARM STORAGE AREA TO
BEE USED FCR EABENTHESES NUMEERINC.
ook ok ok Aok ok ook kb ko ko ok okok ok okokok kR Aok R Rk ok ko ok ok kR Rk kK X
INTEGER*2 IARG
DOUELE EFRECISICN FUNCT
COMMON/TABLE /FUNCT (8,24) ,IARG (8,24)
COMMON/SPACE /IPTABL (50) , ISPACE (2000)
1,IPUSED,IFREE,IFSIZE,ISIZE
*kkkkkkkkokkokkokkk kR Rk kR dokokkk kR kR kR Rk Rk kkk Rk Rk k kR Rk F
THE SPACE RCUTINE IS CALLED. NUMRQD REPRESENTS TEHE
NUMBER OF SFACES THAT THIS ROUTINE REQUIRES FROM
MEMORY MANAGEMENT AT A TIME. ISTART IS THE ADDRESS IN
THE MEMORY THAT DATA IS BEING READ INTO. ONLY 80
RCRDS ARE PKSSED AT A TIME (ONE CARD LENGTH) SO THE
ISTOP PARAMETER REPRESENTS THE STOP POINT IN MEMORY.
THE SAME WILL HOLD TRUE LATER WHEN NUMBERS ARE

ASSOCIATEL WITH THE PARENTHESES. IBLOCK IS A CODE

56
FEPRESENTATICN TO MEMCRY MANAGEMENT INFORMING IT THAT A
CONTIGUOUS BLOCK OF MEMORY IS REQUIRED. THEREFORE, NO
HEADER COUNIS WILL EE WRITTEN UNTIL AN IBLOCK=1 IS
SENT.
dedckidk ki kkkkkk ki kkkokdkok kbR dkk ko ko k kR kR kR
N=0
IFIRST=0
ISTART=0
ISTCP=0
NUMRQD=80
IBLCCK=0
¥k e ddk ke el deokofok ok ke ek ke sk ek ok bk ok ko ok ok Rk ok ok ke ok ok ok ko ok ok %k
} ROUTINE CALLED ISINIT IS CALLED TC ACCUIRE SPACE FROH
EEMORY MANAGEMENT, THE ISINIT ROUTINE IS TEE ONLY
[IRECT LINK RITH MEMORY MANAGEMENI FRCM THIS ROUTINE.

s e o s ok o o ko ok ook sl ok o o ol ok ol ok ol ol sl ool ok dkokeokok ke b ok Rk koo ok kR ok ROk Rk ok

10 CALL ISINIT(NUMRQD,ISTART,IELOCK)

e ook o ok e ok ok akokol ookl ok dokokokokok okl Rk e kakok ok ok Kok Rk ok ok kR ok kR ok K
A VARIABLE CALLED IFIRST IS INITIALIZED WITH THE FIRST
ISTART PASSEL. IFIRST WILL ALLOW SUBSEQUENT ROUTINES
TO BEGIN AT THE FIRST MEMORY STIORAGE ICCATION. AN IF
STATEMENT IS INCLUDED TO PRECLUDE REINITIALIZATION OF
IFIRST.

T e T P T T

IP(IFIRST.EQ.0) IFIRST=ISTART
ISTCP=(iSTAET+HUHBQD)—1
R T T T T T T2 T

A CARD IS READ.

Codkkkokkkkpkkkkokkkkkokkdk ok kk ko k bk rkkkokk kR ok kR ok kR ok ok k ok ok

57

READ (5,500, END=505) (ISPACE(II),II=ISTART,ISTOP)
€00 FORMAT (80A1)
kg ko ko ko hodk ek ok ok ko ko kol k k%
ISINIT IS CALLED TO GET AN ALCDITIONAL 80 WORDS OF
SPACE. THIS SPACE WILL BE USED EVENTUALLY TO NUMBER
THE FROGRAM'S PARENTHESES. CUERRENTLY A LOOP IS ENTERED
10 SET ALL VALUES TO SPACES.
koo kk Fd ok kol ok ke ok ok o sk ok ook ok ok sk ek ok k3 %

CALL ISINIT(NUKRQD,ISTART,IELCCK)

ISTOP= (ISTAFT+NUMRQD) -1

DO 600 I=ISTART,ISTOP

ISPACE(I)=* °*
600 CONTINODE

GO TO 10
505 ISTCP=ISTOP-80

IDONE=ISTOP

NUMRQL=-80

IBLOCK=1

CALL ISINIT(NUMRQD,ISTART,IELOCK)

ISTART=ISTART-1

RETURN

END

58

APPENDIX D

SUBROUTINE
ISCAN (IFIRST,IDONE,IJUMP,ISTART,IFIKSH)
kkkrkkRkk gtk hkki ok hhkkk Rk kkkkk kR kkkk kR kk

TBIS MODULE IS A DRIVER MODULE FOR TWO SEPARATE MODULES

AS FOLLOWS:

1. ISTRGN - THE SCANNER TOKEN GENERATOR MODULE IS
DESIGNED TO SCAN THE CATA INRPUT BY THE
INREAD ROUTINE. IT THEN GENERATES
AEPROPRIATE TOKENS REPRESENTING THE LISP
PROGRAMN.

2. ISSMTB — THE SCANNER SYMBOL TAELE MOLULE IS DESIGNED
TO ACCEPT INPUT FROM ISTEGN AND PROCESS
IT. PROCESSING CONSISTS CP SEARCHING THE
CCMMON KEY WORD TAELES 1IN AN ATTEMPT TO
FIND THE STRING REFRESENTED BY THE TOKEN.
IF IT IS PFOUND THE TAELE NUMBER AND
LOCATION WITHIN THE TABLE ARE ADDED TO THE
TOKEN. IF NOT, ZEEROES ARE ADDED TO THE
TOKEN TO SHOW THAT THE TCKEN POINTS TO A

FROGEAM UNICUE STERING.

Rdkkd Rk kR kR kR ok kR ook ok kR ko kR ok ok Rk ok ok kb kk
Fdkrkkckrkdkddordkkdkokkdokkddokkkk dokh Rk dok kdkdkkkkok Rk
THE SCANNER HODULE-HAS WRITTEN AS A CRIVER ROUTINE BY:
*kokkkkkkhkkkkkkokkk ahkhkk
@ *

¥ DAVID C. BOSSERMAN *

59
* OCTOBER 1976 *
* *
o oo ok o ok ok ok ook ook ok ook Rk

o o ek o o o ol e ool ok ol ol oot o ol o o ok s oo ol ok o et sl ol e kol sk ok ok ook ok ok ok

SPECIFIC SCANNER DATA ARE AS FOLLOWS:
FONCTION NAME - ISCAN
DOMAIN:
(I} INPUT - THE ARRAY CALLED ISPACE FROM INREAD.
THE BEGINNING ADDRES:E OF THE USER'S
ERCGRAN.
THE ENDING ADDRESS OF THE USER'S
EROGRAM.
(II) GLOBAL DATA:
1. FUNCTIONW NAMES USED IN LISP STORED AS
CCHMMON DATA.
2. KEY WORDS USED IN LISP - STORED AS
CCMHON DATA.
RANGE: A TOKEN ARRAY REPRESENTING THE SCURCE FROGRAM.
RULE-CF-CCRRESFONCENCE:
ISCAN READS THE DATA READ INTO <STORAGE BY INREAD ANLC
MATCHES:
1. EACH PARENTHESIS TO ITS PROPER LEVEL NUMBER.
2. EACH KEY RORD OR FUNCTION NAME TO B STCRED CCMMON
SYMBOL TARLE.
IT TEEN PASSES THE TOKENS GENERATED T0 THE INTERPRETER FOR
PARSING.
3l 2 o e e e e e o kol e ek ke ek ok sk ok ok sk kR ek ok ok Rk kb kR ko ko sk ok k%K
CALL ISTKGN(IFIRST,ICONE,IJUMP,ISTART)

CALL ISSMTE (IJUMF,ISTART,IFINSH)

RETURN

END

60

61
SUBROUTINE ISTKGN (IFIRST,IDONE,IJUMP, ISTART)
Rdckdokkkokk Rk dokkkdokok ok dok ok kR ok Rk kR R kR R Rk ok ko Rk
THIS MNODULE EERFCRMS THE FUNCTION OF READING A USER'S
PRCGRAM CHARACTER BY CHARACTER AND:
1. NUMBERING EACH PARENTHESIS.
2. IDENTIFYING DELIMITERS.
3. PROVIDING THE START POINT AND LENGTH CF EACH
STRING IR THE USER'S PROGRAHN.
Rk kdkok kR kR kR Rk R ok Rk kR kR Rk kR kok ok k Rk kR Rk kE
THE TCKEN GENERATICN MODULE WAS WRITTEN BY:
*EkkkkkRkR Rk kR dkkkkk
* *
* DAVID C. BOSSERMAN *
* OCTCBER 1976 *
* *
kdkokkdkkkkkkE Rk kKR
FR kR RRRok R Xk Rk Rk ko kR kR kR ok Rk kokdok kR Rk
SPECIFIC TOKEN GENERATION TATA ARE AS FOLICHKS:
FUNCTICN NAME - ISTKGN C DCMAIN:
(I) INPUT - THE ARRAY CALLED ISPACE.
THE BEGINNING ADDRESE OF THE USER'S
FERCGRAMNM.
THE ENDING ADDRESS OF THE USER'S
EROGRAHN.
THE ADDRESS OBTAINED FRCH ISINIT TO
fLBCE ADDRESSES ANT LENGTHS OF STRINGS.
(II) GLOBAL DATA:
THE DELIMBITERS FOR LISP PROGRAMS.

RANGE: AN ARRAY OF STRING ADDRESSES AND IENGTHS TO BE USED

62
BY THE ISSMTB MODULE. THE FORMAT CF THE ADDRESS
ARRAY ELEMENT IS:
ok kkkk Rk Rk kR Rk Rk Rk kR Rk ARk Rk k
* * *
* BEGINNING ADDRESS * LENGTH *
* * *
Rk R AR kokkd ok kR ko kk ok kR kK
RULE~-CF-CORRESPONDENCE:
CONVERT THE USER'S PROGRAM INTO AN ARRAY HWHICH
CONTRINS THE LOCATICN AND THE LENGIH OF ALL STHRINGS IN
THE PROGERAM.
T T e T T T T T PR e e T L
A DC LOOP IS ENTERED TO PROCESE EACH CHARACTER. THE
PRCCESSING STARTS AT ISTART AND ENDS AT IDONE. NOTE THAT
THE VARIABLE IJUMP IS INRITIALIZED W®ITH THE FIRST ARRAXY
SUBSCEIPT TQO HELP QOTHER MODULES FIND THE BEGINNING OF THE
ADDRESS RETURNED FRCH ISINIT. IT WILL EE PASSED AT THE END
OF THE MOLULE.
R R T R e R PP R E R L2 L PR RS AR AL
INTEGER*2 IARG
COUBLE PRECISION FOUNCT
COMMON/TABLE/FUNCT (8, 24) , IARG (8,24)
COMMON/SEACE/IPTAEL (50) ,ISPACE(2000)
1, IPUSED,IFREE,IPSIZE,ISIZE
IPROCE=0
IJUMP=0
NUMRCD=1
NUMCHR=0

IBLCCK=0

63
ICOUNT=0
ISK1IP=0
N=0
DO 100 I=IFIRST,IDONE
INCR=1
IDEC=-1
ICOUNT=ICOUNT+1
IF (ICOUNT.GT.80) ISKIP=ISKIP+1
IF(ISKIP.GT.80) ICOUNT=1
IF (ISKIP.GT.80) ISKIE=0
IF (ICOUNT. GT.80) GO TO 100
Sdkkkkkkkkkk hkkkkok ko kkk ok kkkk ko kk ik kg kkkk
FIRST THE CHARACTER IS CHECKED T0 SEE IF IT IS A
PARENTHESIS. IF IT IS, A NUMBER IS ASSIGNED TO IT AND IT IS
PLACEL IN THE APPROPRIATE ARRAY POSITION RESERVED IN INREAD.
% o 3 3 ok ook e ok e ok ok R ok ok ol ok o e sl o s ok o ol ok o e ke b e ke o ok ok ol o sk e ok ok ook e ok okokok
1F (ISPACE(I).EQ.' (') CALL INUMBR(I,INCR,N,IPROCE,
INUMCHR, ISTART)
IF (ISPACE(I).EC.') ') CALL INUMBB(I,IDEC,N,IPROCE,
1NUMCHR, IST ART)
Fhkdkkkkkkkkr kkok ko kkkkkk kb ko kopkk ko ok kpkk
A CHECK IS MADE AT THIS POINT TO DETERNINE IF MATCHED
PARENTHESES ARE BEING CONSTRUCTED. IF NOT, AN ERROR MESSAGE
IS PRINTED.
sk b ok ook o ok o ok ok ook o ok ok ok ook ol 3 ok ool ook ok kool ok ok ok sk ok ok okl o k dkok ok ok
ILINE= (I/80)+1
IPOSIT=I
IF (N.LT.0) WRITE(6,10) ILINE, IPOSIT

10 FORMAT (* ' ,*"MISMATCHED PARENTHESES FOUNLC AT LINE

64
1,13,' POSITION ',I2,' .')
fd ko kkk d ke ook koo ok ko ko k ko xk kR kkkxk
NEXT THE CELIMITERS '.' AND ' ' ARE CHECKED. IF A SPACE IS
ENCOUNTERED, THE COUNTER NUMCHR IS CHECKED TC SEE IF IT IS
GREATER THAN 0. IF SO, A STRING HAS BEEN IDENTIFIED.
ANCTHER CASE IS THE EMPTY EXPRESSION OR NIL. THEREFORE, IP
A SEACE IS ENCOUNTERED, A LOOKBACK AND LCOKFORWARD IS
ACCOMELISHED TO DETERMINE IF THE SPACE REPRESENTS A NIL.
% 3% 3k 3k %k 3 3 % ok ok 3ok 3 o 3k 3k ok ok ok 2k s ok e 3 ok ok 3 o ok ok ok o o ok e e ok ofe o ok ke okl ok ek ook ok
IF (ISPACE(I).EC.'.".AND.NUMCHE.CT.0) GG TO 100
IF(ISPACE(I) .EQ." '.AND.NUMCHR.GT.0) CALL IADDES
1(I,NUMCHR, IERCCE,ISTART)
IF (ISPACE(I).EC."' '.AND.NUMCHE.EQ.0) CALL CKSPCE
1(I, IPROCE, ISTART)
IF (IPROCE.NE.999) NUMCHR=NUMCHR+1
IF (ISPACE(I).EQ.' ') NUMCHR=NUMCHR-1
IF (IPROCE. NE.999) GO TO 100
IF(IJUMP.EQ.0) IJUMP=ISTART
NUMCHR=0
IPRCCE=0
100 CONTINUE
s o 3 o o ook ok ok ok ok 3 o ok dokok ok o ok ok o ko ok ok ok ko ok kR ok ok ek kolok ok ok ook ok
ISINIT IS CALLED TO FELEASE THE ROUTINES FROM PROVIDING

CONTICUOUS SPACE.

e ok o e o o ok ok e e ook ok ok o sk ook ok o ok ok s o ool ok ok ok ke e e e ok ol ok e e ale e ok o ale ok ok ek skokoke ke ok

NUMRQD=0
IBLOCK=0
CALL ISINIT (NUKRCD,ISTART,IBLOCK)

RETURN

END

65

66
SUBROUTINE INUMBR(I,IRB,N,IPROCE,NUMCHR,ISTART)
Ao o o o ok o e o ok ok ok ko o ok ok ok ok ok koo kR ok koo R ok
THIS KOUTINE WAS WRITTEN BY:
ook ootk e o o Kok ok ok Aok ok oK K K %
* *
* DAVID C. BOSSERMAN

* OCTOBER 1976 *

* *
e 3k e e 3 e 3 o e o e e e Ak g ok ke ok ok ok
3 3 o 3k 33k 3k A ok ok o ok o 3 ok oo ok ok ok koo e ol ok e e ok 3ok o ok ol o ok s oo e o ek e ok Aok ek ok %
THE INUMER ROUTINE IS A UTILITY ROUTINE WHICH KEEPS TRACK OF
THE CURRENT PARENTHESIS LEVEL NUMBER ARD UEDATES IT. THE
ROUTIXE THER ASSIGNS THE APPROPRIATE RUMEER TO THE SPACE
ALEEADY AILOCATED INK INEEAD. WHEN PRINTED, THE NUMBER WILL
APFEAF DIRECTLY BELOW THE APPLICABLE PARENTHESIS. THE FIRST
DETERMINATION TO BE MADE IS WHETHER NUMCHR IS ECUAL TO O.
IF SC, THE PARENTHESIS STANDS ALONE ANC IS PROCESSED
STARTING AT LINE 10 AS A PARENTHESIS. IF ©NOT, R STRING
PRECEFDS THE PARENTHESIS AND THE STRING MUST BE PUT IN TOKEN
FCRM BEFORE THE FARENTHESIS IS PROCESSED.
3 S 2 3 e o s ode ok o sl e ke o ok e ok sk o ok e e e o ok ok ok 3k e e e ofe ok o ke ke o ok kool ok ok ok sk ke 3k

INTEGER*2 IARG

DOUELE PRECISION FURCT

COMMON/TABLE/FUNCT (8,24) ,IARG (8,24)

COMMON/SPACE/IPTABL (50) ,ISPACE (2000)

1,IPUSED,IFRE%,IPSIZB,ISIZE

NUMRQD=1

IBLOCK=0

IF (NUMCHR.EQ.O0) GO TO 10

67
s ok o ok o o ook oot o ook oo o ool o o o ook ok o o o o okl ook ook ook ok o ok e o ok ok ok ok ok ok ok ok
J REPFESENTS THE ARRAY EIEMENT LOCATION IN ISPACE WHERE THE
BEGINNING CHARACTER OF A STRING IS FOUND. TKLOC BEERESENTS
THE LCCATION AND THE LENGTH.
ke o ok e o ol ol ol o ok ko kb ok ok ok R ke ok kR ko kk kR kR ok kb ok kR k%
J= (I-NUMCHR) *100
TKLOC=J+ NU MCHR
CALL ISINIT (NUMRQD,ISTART,IBLOCK)
ISP ACE (ISTART) =TKLOC
e ok 3 ok ook ook o ok ko o okok skokok ok ok Rk ok kok ok bk ok okokokok bk Rk Kk Rk kX
INE IS A COUNTER USED TO KEEP THE PARENTHESIS NUMBER
CORRECT. NOTE THAT A RIGHT LEPT PARENTHESIS CCOMBINATION HAS
THE SAME NUMEER. THUS, A RIGHT PARENTHESIS DOES NOT
SUBTEACT FROM THE NUMBER.
sk o o ok e o ek o o ok ke ok e o o ol ook o o ook o st ok ok ok ok o ok o ok ok ok kR ok R ok
10 IF(INB.EC. 1) INB=N+INB
IF (INB.EQ.-1) JJ=-1
IF (INB.EQ.-1) INB=N
N=INB
ISPACE (I+80) =INB
1F (JJ.EQ.-1) N=N-1
Ja=0
IPROCE=999
TKLOC= (I%100) +1
CALL ISINIT(NUMRQD,ISTART,IBLOCK)
ISPACE (IST ART) =TKLCC
RETURN

END

68
SUBROUTINE IADDRS(I,NUMCHR,IPROCE ,ISTART)
oo o et oo ot ok ol ol o o ok ook o o ok R o oK oK ol ko ok ok 0k e ok 30k Bk sk ok ok ok ok &
THIS EOUTINE WAS HWRITTEN BY:
Aok gk ook ook ok ok ok R dok kK%
* *

¥ DAVID C. BOSSERMAN =

* ¥
* OCTCBER 1976 *
* %

s ok ook o ok sk ok kodok kol kokok ok ok ok ok
e ok o o ok ok ok ok ok ok ok o ok ok ok ok o sk ok ook ok ok ko ok ok Rk okok ok ok Kok
THIS FCUTINE IS WRITTEN TO PROCESS TEE DATA TC BE PLACED IN
AN ARFAY ELEMENT. THE DATA FPROCESSEL PROVILES THE LOCATION
WITHIN A PROGRAN OF A STRING AND ITS LENGTH. THIS ROUTINE
IS ONLY CALLED WHEN A SPACE OR PERIOD DELIMITER IS
ENCOUNTERED AND NUMCHR IS GREATER TEAN ZERO.
3 3 3 3 ok e 3 ok 3 e kol e 3 o e sk ok e o o ot e s ke ok e s o o e i e ok e o e o e o o ok o ofeooke ook ko sk sk
INTEGER*2 IARG
DOUBLE PRECISION FUNCT
COMMON/TABLE/FUNCT (8,24) ,IARG (8,24)
COMNON/SPACE/IPTABL (50) ,ISPACE (2000)
1,IPUSED,IFREE,IPSIZE, ISIZE
NUMRQD=1
IBLOGK=0
J= (1-NUMCHR) * 100
 TKLOC=J+NUMCHR
IPRCCE=999
CALL ISINIT (NUMRQD,ISTART,IBLOCK)

ISPACE (ISTART) =TKLOC

RETOURN

END

69

SUBRCUTINE CKSPCE(I,IPRCCE,ISTART)

70

kkpdkkkckkkkkkdk kokk ok kokkok kR okkk ok ek gk ko k kb ok kR ko kkkk

THIS FCUTIKE WAS WRITTEN EX:

o o oo ke ok ook ok skkokoRokok Kok kR kR
* *
* DAVILD C. BCSSERMAN *
* OCTCBER 1976 *
* *
ok koo ok ook ok skkok ok kokok kR ok ok K

e o oje o o e o e e R st e oo ke e ke e e ek e e ke e el ek ek ok e ko sk ko Mk ek ek k

THIS EQUTINE IS WRITTEN TO PROCESS TEE DATA TC BE PLACED IN

AN AREAY ELEMENT. IT IS SPECIFICALLY CHECKING THE
CHARACTER TO SEE IF IT IS A NIL.
¢ 3 ok ok ok o 3 o ok ook o ookt ook o ok ok skolok ok ook ok ok ok ok ook ok ok ook ok ok ook ok

INTEGER*2 IARG

COUBLE PRECISION FUNCT

COMMON/TABLE/FUNCT (8, 24) ,IARG (8,24)

CCMMON/SFACE/IETAEL (50) ,ISPACE(2000)

1,IPUSED,IFREE,IPSIZE,ISIZE

NUMRCD=1

IBLOCK=0

IF(ISPACE(I-1).NE."(') RETURN

IF(ISPACE(I+1).NE.')') RETURN

TRLOC= (I*100) +1

IPROCE=999

CALL ISINIT(ﬁUHRCD,ISTART,IBLGCK)

ISPACE (ISTART)=TKLOC

RETURN

END

SPACE

71
SUBROUTINE ISINIT (NUMRQD,ISTAKT,1BLOCK)
Ao o e e ook e ok ok ot okt ool ok ok stk ok ok ok ol ook ook aaoR ORI b ok R kok R Rk R
THE SCANNER INITIALIZER ROUTINE IS DESIGNED TC INTERACT RITH
THE MEMORY MANAGEMERT ROUTINE. ITS PURPOSE IS TO ACQUIRE

SPACE FROM MEMORY MANAGEMENT.
3 3 ok ok o o ok sk o ook ok oo e ootk o o o o ok ok ok o o ok ol ok e ook ok ok ke ok ok R ok ok ok ok ok Rk

3 2l o o o e e e 3 o o o ok e e e e e e o e e ofe o e o e o ofe e e o e sl ade o ok o sk ke o gk ke ofe ol ol ol ook

THE SCANNER INITIALIZER ROUTINE WAS WRITTER AS B OUOTILITY

ROUTINE BY:

ok o o o ok o o o ok kb ke o e okl o ok ok e ok

* #

* DAVID C. BOSSERMAN *
* OCTOBER 1976 *
* *
¥k ok dokok kokk Rk kokkk ok kk kK

ok A o o e e s ok ok kel o ok ok ool e o ok skl ok o ok ookl e kol e e e e ek ok ke ok koo ok ok ok

SPECIFIC INITIALIZER DATA ARE AS FOLLOWS:
PUNCTION NAME: ISINIT
DOMAIN:
(I) INPUT : NUMBER OF WORDS REQUIRED FRCM FREESEACE.
(IT) GLOBAL DATA: THE DECLARED ARRAY REERESENTING
FREESPACE.
RANGE: THE LOWER AND UPPER LOGICAL ADDRESS FOR THE
THE FREESPACE ARRAY TO EE USEL FOR
TOKEN GENERATION.
RULE CF CORRESEONDENCE:
ISINIT REQUESTS FROM MEMORY MANAGEMENT TEE LCGICAL ADDRESS

OF AVAILAELE FREESPACE TO BE USED FOR TOKEN GENERATICN.

o 3% ok 3 o o 3 o ok ok ook o ool kool ook ok ok ok kol o o ok okl o ook o ok o 3ok ok ok kK ok ok

CALL GETBLK (NOMRCD,ISTART,IBLOCK)
RETURN

END

72

73
SUBRCUTINE ISSMTB(IJUMP,ISTART,IFINSH)
3 3 s o e o s ol ofe o ook o o e o el ok o o ok o ok ok o ol ofe ofe ko ok 3 e e ok ok ke e oo ke ook ol ok

THIS MODULE PERFORMS THE FUNCTION CF COMPARING THE ADDRESS
ARRAY TOKENS WITH THOSE FOUND IN THE KEY WORD/FUNCTION
TABLES. IF THE VALUES ARE NROT FOUNL, TBEY ARF MARKED AS 00.
AT THIS TIME THE ADLCRESS ARRAY TOKEN IS EXPANCED TO SHOW NOT
ONLY TBE LOCATION OF THE SYMBOL TIN THE USER'S PRBOGRAM BUT

ALSO THE TABLE LOCATION IF FOUND, OR A O IF ¥NCT FOUND.

A% 3 3 o o o ok ok ok e 3ok ok o o sk o o ok ke ok e ae ok o ok o ok o e 3l ol o ok e ak e o ol e o ol e e ok ok el e
3 3 e v e ok o e o 3k sl s sk o 3fe sk sk ol e 3 ke ol ok e ol ke ae o ol Sl e ofe e ok ke ik ook e ol ok ok o ob oo ol oo ol
THE SYMBOI TABLE IDENTIFICATION MODULE WAS WRITTEN BY:
o kokdeokdk ook ko kokdookk ok kokkk
* %
* DAVID C. BOSSERMAN *
* OCTCBER 1976 *
%* *
Fkkek ko ko kokokkkk g kkokk
3 3 3 3 o 3 3 % 3k e ok akok ok ke 3k o ok e ok 3k ok o o 3 ok e el of s o o e e o ode ook o ook ok ok ok ok
SPECIFIC SYMEOL TABLE DATA ARE AS FOLIOWS:
FUNCTICN NAME - ISSMTB
LCOBAIN:
(I) INPUT - THE BEGINNING ALDRESS OF THE ADDRESS
ARBRAY GENERATED IN ISTKGN.
THE ENDING ADDRESS OF THE ADDRESS ARRAY
GENERATED IN ISTKGN.
(II) GLOBAL DATA:
THE AFRAY CALLED ISPACE.

THE KEY WORD/FUNCTION TABLES.

RANGE:

74
AN ARRAY CF STEING/SYMBOL ADDCEESSES AND LENGTHS AND
THE TABLE LOCATION OF THOSE STRINGS/SYMBOLS. THE

FORMAT OF THE FUIL TCKEN ARRAY IS:

¥k dkckkkkokkkkpokkkkkokkkkkkkkkok ko ek kkkk kk kp kd ok kokk kkkxk
* * * * %
* BECINNING ADDRESS * LENGTH * TABLE LOCATION * TABLE *
* * * * *
ok o 2 3k 3 3 o 3 ok ok ofe 3 o e Aol o o ofe 3 ode e o oo s o ol ok ol o sl e o koo o e ok ok ok ik ol o e koo ol e sk ok ook
RULE-CE-CORRESPONDENCE:

USE THE ADDRESS ARRAY GENERATED IN ISTKGN AND ADD
POINTERS TO THE SYMBOL TAELE LOCATION OF THE SYMBOLS
CONTAINED IN THE USER'S PRCGRAM, IF APPLICABLE.

koo ok ok ock koo okokok ko eokck ok ko ok ok ko ok kck ok ok ok ko sk ok dk sk ok ko ok %k
INTEGER*2 IARG
DOUBLE PRECISION FUNCT
COMMON/TABLE/FUNCT (8,24) ,IARG (8,24)
COMMON/SPACE/IPTABL (50) ,ISPACE (2000)
1,1PUSED,IFREE,IPSIZE, ISIZE
IBLOCK=0
IFINSH=IST ART
Fkkdkkkkkk ok ko kkk kckkkkk ko kkk kxR ke p ok kgkk
A DO ICOP IS ENTERED TO PROCESS EACH SYMBCL FRCM THE ADDRESS
ARRAY.
e 3k o o 3 o o o a3 e ofe 2 ok e o s o o df ok ol e o o ok e ok e e ol ol e ok ke ol ok o ke ok ok ok ool ook ok ko
DO 100 I=IJUMP,IFINSH
###**********i**#*#************ Ik ko kkkkk
SUBROCTINE ISYMCK, SYMBCL CHECK, IS CALLEL TO CHECK THE
USER'S STRINGS AGAINST KEY WORD/FUNCTIONS FOUND 1IN THE

GLCBAI DATA TAELES.

75
ALTHCUGH A DOUBLE WORD WILL ONLY CONTAIN EIGHT CHARACTERS,
THE FIRST 8 CHARACTERS OF ALL KEYWORD/FUNCTICNS ARE UNIQUE.
THEE USER ¥EUST BE CAUTICNED NOT TO USE THE UNIQUE 8 OR LESS
LETTEF COKBINATICHNS IN HIS PROGRAM UNLESS HE DOES 1IN FACT
WANT THE KEYWORD,/FUNCTION TO APPLY. EVEN THCUGH THE USER'S
PROGRAM WILL HAVE GREATER THAN 8 CHARACTERS, THEY WILL EBE
FPOINTED TIC BY THE TCKEN GENERATED.
T T T e TR P T P PR e TP T T T T e

IADDR=ISEACE(I) /100

ILNGTH=ISPACE (I} - (IALDR*100)

CALL ISYMCK(I,ILNGTH,ITABLE,ILOCAT,

1ISTART)

3k 3 o e e ok o o ekl ok o o ool s ook ok o kol o o ok ok akkokok ol ok ok ok kiR ok kR K

THE AEOVE CONDITICNAL EXPRESSION HAVE SERVELC TO CALL THE
APFROERIATE ROUTINE TO PROCESS THE SYMBQIS INVOLVED, ©NOTE
THAT IF A SYMBOL IS PROCESSED BY A SUEROCUTINE AND NOT FOUND,
ITABLE AND ILCOCAT REMAINS ZERO. THEREFORE, ANY SYMBOL NOT
FOUNT OR GREATER THAN 12 CHARACTERS IS AUTOMATICALLY MARKED
WITH A ZERO. AFTER THE STRING IS PROCESSED, THE TABLE
NUMBEER AND LOCATICN WITHIN THE TABLE ARE PASSED BACK TO THE
CALLING ROUTINE IN THE VARTABLES ITABLE AND TLOCAT
RESPECTIVELY, THIS DATA IS THEN PROCESSED INTO THE

COMPLETED SYMBOL TOREN. THE TABLES ARE NUMBERED AS FOLLOWS:

0 - THE EROGRAM UNIQUE SYMBOL.

L - ONE CHARACTER SYMBOL TABIE.

2 - TWO CHARACTER SYMBOL TABLE.

3 &= THREE CHARACTER SYMBOL TABIE.
] - FCOR CHARACTER SYMBOL TAELE.

tn
|

FIVE CHARACTER SYMBOL TABLE.

76

6 = SIX CHARACTER SYMBOL TAELE.
1 - SEVEN CHARACTER SYMBOL TABLE.
8 - EIGHT CHARACTER SYMRBROL TAELE.

ok ok ok ok ok kool oekook kol kokok ook ok ok ok ok Rk ok ok ok bk okolokk Rk okok
ISEACE(I)=({((IACDR*10Q) +ILNGTH)*10000)
+((ILCCAT*100) +ITABLE*10))
IFOUND=0
100 CONTINUE
BETURN

END

17
SUBROUTINRNE
ISYMCK (I, ILRGTH, ITABLE, ILOCAT,IFOUND,ISTART)

3 oo ook ook akode ot ol o ook oo kol ok kool o skl ROk kR R o kKRR ok ok kR ok
THIS MODULE IS DESIGNED TO SEARCH THE GLOBAL KEY WORD/
FUNCTION TABLES AND RETURN THE TABLE NUMBER AND POSITION
WITHIN THE TABLE, IF A MATCH OCCURS BETWEEN THE STRING BEING
TESTEL AND THE TAELE.

o ok ok 6 okt ok ok koo ok ok ok ok ok ok ok ook ok ok R Rk ok ok ok ok

e b o o o ok ook ok ook ok otk o okok ok skoloR sk ki koloR sk akok skokok ok ok ok ok Rl
THE SYMEOL CHECK MCDULE WAS WRITTEN BY:

ke et ok o ok o e ok ok sk ok ok ok koK
* %
¥ DAVID C. BOSSERMAN *
* OCTOBER 1976 *
* *
Ak kodok ook ok ok ok Kok Kok ok ok ok
0 3 ook ol e o ok o o b o ok ook o ok ok ook o ok ok o ek o ok okl ot o ok sk Rokokokak ok ok ok ok
SPECIFIC SYMBOL CHECK DATA ARE AS FOLIOWS:
FUNCTION NBME — ISYMCK
DOKAIN:
(I). INPUT - THE STARTING ADDRESS OF THE STRIRNG
TO BE PROCESSED.
(II). GLOBAL DATA:
THE ARRAY CALLED ISPACE.
THE KEY WORL/FUNCTIOR TABLES.
RANGE: THE TABLE ﬁUHBER AND POSITION WITHIN THE TABLE,
IF A STRING MATCH IS FOUND.
ROULE-CF-CORRESPONDENCE:

ACCOMPLISH A SEARCH OF KEY WORD/FUNCTION TABLES TO SEE

78
IF TBE STRING USED BY THE USER IS A KEY WORL/FUNCTION, AND
RETURN TAELE INFORMATION IF SO.
ok A 3 s ok o o o o o ook o o o o afe ol e ok o ol o ok o ok ok ol e e ol sk o o e ofe e ol e e ok ok ke sk e e e ok o ok

INTEGER*2 IARG

DIMENSION ICONVT(8), IPACK (33)

DOUELE PRECISION FUNCT, ICHECK, IDSPAC

COMMON/TABLE/FUNCT (8, 24) ,IARG (8,24)

COMMON/SPACE/IPTABL (50) ,ISPACE (2000)

1,IPUSED,IFREE,IPSIZE, ISIZE

COMMON/DOUBLE/IDSPAC (500)

o e 3 o e o o o ol ok ol e o o ok ook e e o o o ok e ok ok o o ok e ok sk ok kool ok ol el e e e sl ol e ol ke ke
FIRST, THE ADCRESS OF THE STRING IN ISPACE IS DETERMINED.
NEXT, THE LENGTH OF THE STRING IS EXIRACTED. IF THE LENGTH
IS ECUAL TO 9-12, IT IS CHANGED TO & EECAUSE ONLY A FULL
WORD (8 BYTES) CAN BE CHECKED AT ONE TIME. IF THE LENGTH IS
GREATER THAN 12, A RETURN TO THE CALLING PROGRAM IS MADE.

S depakofokkokokokok ook okokkok ok ok okdodeok koo skl ke ke ok e ok kok kR ok

ITAELE=0

ILOCAT=0

IADDR=ISEACE(I) /100

N=IINGTH
IF({N.GE.9) .AND. (N.LE.12)) N=8
IF(N.GT.12) RETURN

o 3% 3 s o e g o o o o e ook ok A s 3k ofe sl o o o ok ool sl s sl ol sl dle ok e s o e e e sl ok o o e o gl ok e e o
THE AERAY USED TC CONVERT THE STRING IS INITIALIZED WITH
BLANKS. THIS IS FOLLOWED BY ASSIGNING TO EACH ELEMENT OF

THE AERAY (UP TO 8) ONE CHARACTER OF THE STRING.

e 3 3 3 e e e et b ool ok gk koo d o ok ok ok ook oo o e ok e ko ok ate e ook ok o o ok kol kol b kR K

79
5 ICCNVT (R)}=" *
LO 7 J=1,N8
IPT=IADDR+ (J-1)
ICCNVT {J)=ISPACE (IPT)
7 CONTINUE
3o ok ko R ko b kR R B ko Rk ko ko ok ok ko ok ok ok oKk ok
AN ENCODE ROUTINE IS USED TO READ THE CONVERSION ARRAY. THE
CONVEESION ARRAY HOLDS ONE CHARACTER PER EIEMENT IN AN A4
FORMAT. THUS, CNE CHARACTER AND TEREE SPACES ARE 1IN EACH
ELEMENT. THE ENCODE CAUSES EACH ELEMENT TC BE READ, BUT
ONLY THE FIRST BYTE (TIHE CHARACTER BYTE) IS READ AND THE
SPACES SEIFPPED. THE ENCCDE ARRAY IS 33 ELEMENTS BECAUSE
INTERCATA REQUIRES A MINIMUM CF 132 BYTES PER ENCODE.
LT LT Ty T e T e e e T T TP TP TS
ENCODE (IEACK,6) ICONVT
6 FORMAT (334 1)
ok k ko dokok R ko kR kR R ok Rk kR R kR Rk ARk Rk Rk Rk Rk Rk kkk
A DECCDE IS ACCCHMELISHED TO COHNVERT THE ENCCDED BLOCK TO &
DOUBLE WORD.
o ok ok o ok ol KRR o ook ok o ok ek ok ok K ok ok ok dok koK
DECODE (IFACK, 10) ICHECK
10 FORMAT (A8)
LO 100 J=1,24
ok ok ok kbR ok ok b ok ok Aok ook R koK ok ok R ok Rk ok R ok Rk R K
THE AFPROPRIATE KEY WORD/FUNRCTION TAELE IS SEARCHED. THE
LAST ELEMENT IN EACH TABLE IS REPRESENTED BY A '<', 1IF THE
TERMINAL SYMBOL IS FOUND EEFORE A MAICH, A RETURN IS MADE.

e o ook g e ok e ok koo ok ook ok kool ok ke sk cleok ok ok iokok Rk koR kol ook Rk ok kR ROk R R

IF (ICHECK. EQ.FUNCT (N,J)) GO TO 200

100

THE

IF (FUNCT (N ,J) .EQ.'<') GO TO 150
CONTINUE

3 3 3k 3k e A % o ok e o kel ke ok Ak o o e e o ale e o o sk ok o ol e Aok ek e e A ok ok ok ek kg kR ke

80

AFEROFRIATE TABLE AND LOCATION AERE SET, IF A MATCH IS

MALE . IFCUND IS A SIGNAL TO THE CALLING ROUTINE AS

WHE

150

200

THBER A MATCH WAS MADE.
3 o o ook ok o ok o e ok o ok ok ook o o ook o ook ok ok ok ok dkokokok ook R kdok ook oKk Kok
N=0
J=0
ITAELE=N
}LOCET=J
IFOUND=1
RETURN

END

TO

81

APPENLCIX E

SUBROUTINE INTERP (IJUMP,IFINSE,IDSTA, ILSTOP,ISIART)
T e T T T TR T
INTERE IS A DRIVER MODULE WHICH CUERRENTILY CALLS ONLY THE
ROUTINE WHICH CCHNSTRUCTS A GENER2ZL TREE OF TBE USER'S
PROGRAHM. THE ROUTINE IS CALLED FRONM THE IISP INTERPRETER

CRIVEE.

Ak ok o o o ook ok o o o o seok o ok ol adook o ok ok ok ke ok o o ok o ook o ok o e o o ek ke kol ok ok ok ok oK kK
ok s o o o o o o ek o o ok oo ok o o ok o ok ok ok o o sl o e 3k o ok ok 2ok 3k ok otk ok ok o ok ok ok ok
THIS DRIVER WAS WRITTEN EY:

ko dokokeok ok ok kol ok ok ok ok ok Rk ok

* *

* DAVID C. EBOSSERMAN *

* OCTCEBER 1976 %

* *

3 ok ok o ook ok 3ok ok ok ok okok ok ke koK

LR+ LR S22 2Rt 2 2R 222 RS 222 R R EE R R R 2 R T

SPECIFIC INTERERETER DATA ARE AS FOLLOWS:
FUNCTION NAME - IRTERP
COMAIN:
(I) INPUT
— THE BEGINNING ADDRESS OF THE TOKEN ARRAY.
- THE ENDING ADDRESS OF THE TCKEN ARRAY,
(II) GLOBAL DATA
- THE ARRAY CALLED ISPACE.
- THE ARRAY CALLED IDSPAC.

RANGE: A SERIES CF NODES REPRESENTING A GENERAL TREE

82
OF THE USER'S PEOGRAM.
RULE-CF-CORRESFONDENCE
CONSTERUCT A GENEBAL TREE STRUCTURE FROM THE TOKENS GENERATED
IN ISCAN.
e ok o ok o sk ok ok ook ok R kol ok o ok ok ook ok ok ok ok dokok ok ok bk Aok ok ok okokok ok ok
ICODE=0
KRITE (6, 1)
1 FORMAT (* " ,2X,"INTERP WAS CALLEC.")
CALL IGTREE(IJUMP,IFINSH,IDSTA,IDSICF,ISTART,IECODE)
IF (IECODE. EC.999) RETURN
RETURN

END e

83
SUBRQUTINE
IGTREE (IJUMP, IFINSH,IDSTA,IDSTOP,ISTART,IECGDE)

% ok % e o e e ok ok ek A @ odeookooje s e s afeofe o s ook ofe e s o ofe ok ok ok ok e ok o ok e ok ke okl ek ke e ke sk %
THE GENERAL TREE ROUTINE IS DESIGNEL TO PROLUCE AN ARRAY OF
DOUBLE WORDS WHICH REPRESENT A LISP PRCGRAHM, EACH DOUBLE
WORD CONTAINRS INFORMATICN FIELLS WEICE PROVIDE THE DATA
NECESSARY TO CONSTRUCT A GENERAL TREE. THF SIXTEEN BYTES

ALLOWED ARE DIVIDED, FROM LEFT TO RIGHT AS FCLLOWS:

FIELD LEXNGTH DESCRIPTION
1 4 LOCATION
2 b LENGTH
3 4 SON
4 3 BROTHER
5 1 MARK

THE FOUTINE ACTS AS A CONTROL ROUTINE AND CALLS THE
APPROERIATE SUBROUTINE BASED ON THE CHARACTER BEING
PROCESSED.
s b o oot ook o okokodok s o ook ok ok ok ook sk ok ok ok s ol ook ook sk ok ok o ook ok sk okokok ok kol ok R ek
THIS EOUTINE WAS WRITTEN BY:
Wk ok kdokkokokokok ok ok ok kokok ok k&
* *
* DAVID C. BOSSERMAN *
* NOVEMBER 1976 *
* *
e 3k 3 2 o 3 ofe ok e ke ek o 3 ok e e e e o o ol kg
DOUELE PRECISION IDSEAC
CCHMON/SEACE/IPTAEL (50), ISPACE (2000)
1, IPUSED, IFREE,IPSTZE, ISI ZE

COMMON/DCUEBLE/IDSPRAC (500)

84

WRITE (6,1)
1 FORMAT (* *,2X,'IGTREE WAS CALLED.')

N=0

ICODE=0

NXTPT=0

I=IJUMP
R e e R T2 S T
A FOINTER IS INITIALIZEL TO CONTROL A STACK WHICH WILL HOLD
THE LENGTH OF SCN NODES. THE POINTER IS CALLED IPARPT AND
IS SET INITIALLY TO ZERO. AT THE SAME TIME A VARIAELE
IFINIT IS ASSIGNED THE VALUE OF IFINISH. TIFINIT WILL BE
USED THROUGHOUT THE GENERAL TREE OFERATIONS TO CONTROL THE
END LIMIT OF THE STRING FEING PROCESSED.

e e i s e T T TP T T T T P T T ™

IPAERPT=0

IFINIT=IFI NSH

ISETD=0

IDSTA=0

T P P P T T T

A NUMEERED STATEMENRT IS USED TO PERFORM IN THE SAME MANNER
AS A FL1 DO WHILE STATEMENT. THE STATEMENTS FOLLOWING THE
LINE NUMBERED 10 ARE TO BE EXECUTED UNTIL ALL SON NODES ARE
PROCEESED DOWN TO THEIR TERMINAL NODE. THBE EXIT FROM THE
LOCP IS DEPENDENT UFON THE POINTER WEICH POINTS TO THE NEXT

NOLE BEING PROCESSEL EXCEEDING THE NOLES AVAILABLE.

FR Rk Rk kR Rk kR kAR R R Rk kR kKRR Rk SRRk k kR AR b e R ek k&
e oo o e ook e ok ool o o o o ook ook ol ook ok s ko ook ook ok sk kool ok ok ok ok ok R
THE AILLRESS ARRAY TCKEN IS PROCESSEL TO YIELT THE ADDRESS OF

THE STRING TO BE PROCESSED.

85

Aok ok ok Rk o Rk kR R Ok KRR kR R Rk Rk R Rk X R Rk ok Rk kR Rk Kk
10 IF(I.EQ.0) GO TO 20

Aok e ok ok K o R R R ROl R R OR ROk R Rk kKRR R B Rk ok ok AR kKK %
TERMINAL NCDES HAVE NO LENGTH, OR SON., THEREFCRE, I IS SET
TO ZEFC ®HEN ONE IS FRCCESSED. IF PROCESSING IS ALLOWED
WITH I=0, AN ERROR CONDITION WILL RESULT. IF I=0 A TRANSFER
IS MALE TO PROCESS THE NEXT NODE.

3 3 % o ok e o ke o o sk sk ok o ok o o ok o 3 o ok o o e ok e o oo e o ok ofe e sl e o ok e o o ot ok e ook kol ok ok ke

IADDR=ISPACE (I) /1000000
kb kkbkkkkk bk ke ko kkkkk ok ok ok ko kR kk
ONCE THE ADDRESS IS DETERMINED, FOUR POSSIBILITIES EXIST.
IF THE SYMBOL/STRING LOCATED AT THE ADDRESS IS A RIGHT
PARENTHESIS OR A PERIOD, AN ERROR IS APPARANT AND A TRANSFER
WILL BPE MADE TO PRINT AN APPROPRIATE ERRCR MESSAGE. IF A
LEFT EARENTHESIS IS ENCOUNTERED, THE SUEROUTINE TO PROCESS
PARENTHESES IS CALLED. IF THE FIRST THREE CONDITIONS ARE
NOT MET, THE SYMBOL,/ TOKEN IS TREATED AS A VARIABLE AND THE
VARIAELE SUBROUTINE IS CALLED.
3 ok 3 ok 3 o o ok e o A ook o o ok e ook Ak ok % o ok ok ol e ok o e s ale ok o koo ok ok ok ok ke 3k ook ke ook ko ok ok ok ok

IF ((ISPACE (IADDR) . RE.' (') .AND. (ISPACE (IADDR) .NE.

1') ') .AND. (ISPACE (IADDR) .NE.'. ")) CALL VARBLE(I,

ZIFINIT, NXTEFT,IDSTA,ISETD,ISTART,IPARET,ICODE)

IF (ISPACE (IADDR) .EC. ' (') CALL ILPARN(I,IFINIT

1,NXTPT, IDSTA,ISETD,ISTART,IPAKPT)

1F (ISPACE(IADDR) .EQ.') ') CALL IRPARN(IECGCDE)

IF (ISPACE(IADDR) .EC.".') CALL IFEROD (ILECCDE)

IF (IECCDE. EC.999) KETURN

WRITE (6, 100) (IDSPAC (J) ,J=IDSTA,ISE1D)

kppkkpkkkk bk kdkokkkk ok ki okkgokk ok k ok ok kok ok ko kk k%

86
THE CCMBINATION CF NXTET (THE POINTER TO THE NEXT NODE TO BE
PROCESSED) AND ISETD (THE POINTER TOC THE LAST PARKENT NODE
CONSTFUCTED) ARE COMPARED. IF NXTPT EXCEEDS ISETD, THE 'DO
WHILE' LOGCP IS EXITED, INDICATING THAT THE GENERAL TREE IS
COMPLETE.

kRt kkkkokhkk kR dokkkokdokkdkokoR Rk Rk Rk R Rk Rk ok S ok kR Rk ok

20 IF(NXTPT.GT.ISETD) GC TC 150
s o o ok o o e e o o e ook o ook o o okl oo ok skl kol o o koo ek ok s o o ol ek ok ok
IN THF CALLED ROUTINES, A POINTER CALLED NXTPT HAS BEEN SET
TO TEF TBE NEXT NODE T0 BE PROCESSED. THE NCDE PROCESSING
IS DCNE WITH ONLY ONE PASS. THEFEFORE, WHEN NO BROTHERS
ARE BEING PROCESSED, THE ROUTINE WILL CONTINUE A CYCLE OF
PROCESSING THE NEXT NODE — CREATE A SON NODE, CREATE A SON
NODE AND/OR A BROTHER NODE, INCREMENT THE PCINTER ~ PROCESS
THE NEXT NCDE. THE VARIAELE I REPRESENTS THE ADDRESS ARRAY
LOCATION OF THE NEXT STRING/TOKEN TO BE PROCESSED.
P I T T T T T T I T m

INTER=IDSPAC (NXTET) /100000000 .D0

I=((IDSPAC (NXTET) - (INTER*100000000.T0)) /10000.D0)

IDSPAC (NXTPT) =IDSPAC (NXTPT)+1.

NXTPT=NXTPT+1

WRITE (6,100) IDSEAC (NXTET-1)
100 FORMAT (' ',2X,'IDSPAC= ',F17.0)

WRITE (6,101) I,IFINIT,NXTPT,IDSTA,ISETD
101 FORMAT(' *,2X,I4,2X,I4,2X,I3,2X,I3,2%,I3,2X,I3)

GC TO 10)
150 IDSTOP=ISETD

RETURN

END

87
SUBROUTI NE
VARBLE (I, IFINIT, NXTPT,IDSTA,ISETD,I START,IPARET,ICODE)
0k % o ook ok o ok o skookoio o ok ok ok ok ok ok ekl ok o ok ol ok ok ok ok ok ok ook ok R
THIS FOUTINE IS DESIGNED TO:

1. PLACE THE VARIABLE'S LOCATION WITHIN THE ADDRESS
ABRAY INTC THE LOCATION FIELD OF A DOUBLE WORD
NODE.

Z. IF THE VARIABLE IS FOLLOWED BY A LEFT
PARENTHESIS, PLACE THE ADDRESS OF THE LEFT
PARENTHESIS IN THE SON FIELD OF THE NCDE.

3. IF THE VARIABLE IS FOLLOWED BY A LEFT
PARENTHESIS, FIND THE FURTHEREST SAME LEVEL
RIGHET PARENTHESIS.

4. IP THE STRING TO THE RIGHT OF THE SALE
LEVEL RIGHET PARENTHESIS IS A VARIABLE,

COMPLETE ITS DOUBLE WORD NODE USING STEPS
1-4.
3 % % %k 3 ok ok 3k %k 3k akok 3k 3 s 3 3k 3k oo sk 3 ok e s e 3k S e 3k 3 e 3 3 o o o ol ok ook ool ok ok ool koo ok
THIS FCUTINE WAS WRITTEN EY:
e o o o S oo b ok i ke ok ok ok o ok ok Kok
* *
* DAVID C. BOSSERMAN *
. NOVEMBER 1976 *
%* *
3 okok ok ok ok kK R Rk kR Kok kK
COUBLE PRECISION IDSPAC

COMMON/SPACE/IPTABL (50) ,ISPACE (2000)

1,IPUSED,IF REE,IPSIZE, ISIZE

COMMON/DOUBLE /IDSPAC (500)

88
WRITE (6, 1)
1 PORMAT (* ',2X,'VARRBLE WAS CALLED.')
IMOLDFY=0
NUMROD=1
IBLOCK=0
LENGTH =0
IF (ICODE.EC.1) GO TO 10
IADDR=ISFACE (I) /1000000
IF (NXTPT.GT.0) LENGTH=ISPACE (IPARPT)
IF (NXTPT.GT.0) IPARPT=IPARPT+1
IF (NXTPT.GT.0) IFINIT= (I+LENGTE)-1
IF (NETPT.GT.0) NCODEPA= (NXTPT-1) +IMODFY
IF (NXTPT.GT.0)
IDSPAC (NODEPA) =I DSPAC (NODEPA)—- (I*10000.)
IP (NXTPT.GT.0)
ILSPAC (NODEPA)=IDSEAC (NODEEA) + ((ISETC+1) ¥10000.)

3 3 st e e e e s e ok e ke e sl sk ok ek ok ek ko ok kel fe ke ok ok k% LR LR RS SRS S
THE DATA TO OBTAIN A DOUELE WORD FROM MENMORY MANAGEMENT IS
INITIALIZED. AFTER THE DOUBLE WORD IS REQUESTED, THE START
POINT OF THE GENERAL TREE ARRAY IS CAPTURED BY TEHE VARIABLE
IDSTA. THEN THE ADDRESS ARRAY LOCATICN (IADDR) IS PLACED IN
THE LCCATION FIELD COF THE DOURLE WORD. AS ALL FIELDS OF THE
DOUBLE WORD WILL NOT EE COMPLETED IN ONE PASS, A POINTER
CALLEL NXTPT IS KEPT UP 1O DATE. THIS PCINTER POINTS TO THE
DOUBLE WORD NODE TO BE PROCESSED WHEN AN OPERATION IS
COMPLETED. INITIALLY IT WILL BE THE FIRST COUBLE WORD. THE
LAST FIELD OF THE DCUBLE WCRD IS A MARK FIELL. A ONE IN THE
MARK FIELD REPRESENTS THAT THE LOCATION FTELD AND LENGTH

FIELD OF THE NODE HAVE BEEN COMPLETIED NCTE THAT FOR A&

89
VARIABLE THE 1EKGTH IS 0. FOR A SET OF PARENTHESES THE
LENGTE WILL BE FROM THE LEFT TO THE RIGHT IN TERMS CF
ADCRESS ARRAY ELEMENTS.
T T T T e

10 CALL ISINIT (NUMRCD,ISETD,IBLOCK)

IF(IDSTA.EQ.Q) IDSTA=ISETD

IF(NXTPT.EC.0) NXTPT=ISETD

c=1

IDSPAC(ISETD) =C*1000000000000.D0+1.

WRITE (6,2) IDSPAC(ISETD)

2 FORMAT (* ' ,2X,*IDSPAC (ISETD)= ',F17.0)
e e P T
THE BCUTINE KNOW LOOKS AT THE NEXT ITEM IN THE ADDRESS ARRAY
TO DETERMINE ITS NATURE. NOTE THAT FIRST A CHECK IS MADE TO
SEE IF THE NEXT ITEM IS OUTSIDE THE ADDRESS AERAY. IF SO, A

RETUERN IS MADE,.
3ok o o ook o o ok ok oo ok ok oK ok ol o o ek ok o ook ok oK ook ok o ol R ok oK Kok Kok R ok X
I=1#1
IF(I.GT.IFINIT) RETURN
IF (ICODE.EC.1) RETURN
IADDR=ISPACE (I) /1000000
e s T T
THE ECSITION FCLLOWING THE VARIABLE 1S IDENTIFIED. IF THE
POSITICN IS A LEFT FARENTHESIS, ITS ARRAY LOCATION IS PLACED
(AS A TEMPORARY MEASURE) IN THE SON FIELD CF THE NODE. THIS
WILL BE USED LLTER T0 PROCESS THE REMAINDER OF THE
STRINGS/SYMBOLS FCUND IN THE ALCDRESS ARRAY.

3 3 3% 3 3k o ok e % 3k sk ok ook ok ok e ok sk ok ook ek ko ok ke oo ok ok ook ook sk ok kol ke ke ok

IF (ISPACE (IADDR) .EQ.' (')

30
IDSPAC (ISETD) =IDSPAC(ISETD) + (I1*10000.)
WRITE (6,2) IDSPAC(ISETD)
Aok Rdokokok ko ok R Rk Rk kR R ok ok kR R R kR R Rk kA ko k
IF THE NEXT POSITION IS A LEFT PRARENTHESIS, THE LPARN
SUBRCUTIINE IS CALLED TO FIND THE FURTHERMOST SAME LEVEL
RIGHT PARENTHESIS,
o o oo ok ok o ook ok oo kR ok ko ok ok ok ok okl ok Rk ok ok ok ook ok kR Rk
IF(ISPACE (IADDR) .EC.* (") CALL LPARN(I,IFINIT,
ISTART, IPARPT)
Fodokkokdokkokokok ok R ok ok d ok kokkdkdokok Rk ko ko ok Rk ok k%
IF THE DATA RETURKED SHOWS THAT A SAME LEVEL PARENTHESIS WAS
FOUNL AND THERE IS A NEXT SYMBOL, THE ERCTHER FIELD OF THE
KODE IS CCMPLETED.
R L T T L
IF(I.LE.IFINIT) IDSFAC{ISETD)=IDSPAC({(ISETD}+
((ISE1D+1.)*10.)
WRITE (6,2) IDSPAC (ISETD)
IF(I.LE.IFINIT) GO TO 10
kg dkdckkdkokdkokkkkkkdddk ok dokokkkkokok kb kg kkok dokdokokok ok dok ok gk
THE RECUIRED ADDRESS AREAY HAS BEEN SEARCHEL FOR THE SAME
LEVEL VARIABLES. THEREFORE, A RETURN IS MADE,
Rk kkkkkkiokdk ok dkokk kR rdokok Rk ok kR ko Rk ik Rk kR ok
RETURN

END

91

SUBROUTINE

ILPARN (I, IFINIT,NXTPT,IDSTA,ISETD,ISTART,IPARET)

100

WRITE (6,100)

FORMAT (* *,2X,'ILPARN WAS CALLEL.')

ook ko dok ek kb ok ook kR ek kb h R kk Rk kokokokk

THIS FCUTINE MAY EE ENTERED IN ONRE OF IWC CASES:

1. THE FIRST TORKEN OF A LISP PROGRAM MAY BE A LEFT
PARENTHESIS AND, THEREFORE, THE SAME LEVEL
CONTIGUCUS FARENTHESES EECOEES 2 PARENT NODE,

WITH OR WITHOUT BROTHERS ANRD OR SCRS.

2. THE SCN CF 2 PARENT NODE MAY EE A SET OF MATCHED

PARENTHESES,

TO HANDLE THESE EVENTUALITIES, THIS ROUTINE WILL FIRST

DETERMINE WHICH CASE APPLIES AND WRIIL CALL LPFST, 1IF CASE

ONE IS APPLICAEBLE AND LPLIR, IF CASE THO IS AFELICAELE.

IL 1153

Bk rkRkaokkde ok kool ok ook b ko ek ek ek ko ke ko h sk Rk ok dek

20

IF(IEARPT.NE.O) GO T0 20

IF (IPARPT.EC.0) CAIL LPFST(I,IFINIT,IPARPT,ISETD
1,IDSTA,ISTART NXTFT)

JF(I.GT.IFINIT} RETURN

CALL VARBLE(I,IFINIT,NXTPT,IDSTA,ISETD,ISTART
1,IPARPT,ICCLE)

RETURKN

CALL LPLTR(I,IFINIT,IPARPT,ISETL,ICSTA,ISTART
1,NXTET)

RETURN

END

92
SUBROUTINE IRPARN (1ECODE) C
Ak ok dkob o ko ekt kol ook ook Aok Aok ok kol bk ko kok ok ok ko okokok ok ok IF
THE INITIAL STRING PROCESSED IN THE GENERAL TREE STRUCTURE
IS A BIGHT PARENTHESIS, AN ERBROR CONLITION EXISTS. IF THAT
IS THE CASE, AND ERROR MESSAGE IS PRINTED AND THE VARIABLE
IECOLE IS SET TO 999. IECODE=999 WII1L CAUSE RETURN TO THE
LISP DRIVER.
ok d Rk Rk kkd kg dokk Rk ek kR kdokokk kkkk kR kF ahkk kR k kK
THIS ECUTINE WAS WRITTEN EY:
kR gk dokdk Rk kR kK
* *
¥ DAVID C., BOSSERMAN *

* NOVEMBER 1976 *

* *
A ok o ook ok ok ok ok ok Kok ook
WRITE (6,100}
100 FORMAT ("' ' ,2X,"ERROR****A RIGHT PARENTHESIS PRECEEDED
ALL CIHER STRINGS.")
IECODE=999
RETURN

END

93
SUBROUTIKRE IEFEROD (IECODE)
e o o ke e ool o o ke ook sl o ok ool o ook o ak ok ok Rtk ok oK R ok Rk Aok kR ok R ok
IF THE INITIAL STRING PRCCESSED IN THE GENERAL TREE
STRUCTURE IS A FEERIOD, AN ERROR CONDITION EXISTS. IF THAT
IS THE CASE AN ERROR MESSAGE IS PRINTED AND THE VARIABLE
IECODE IS5 SET TC 999. IECODE=999 WILL CAaUSE RETURN TO THE
LISP CRIVER.
e o o o o ook o o skl kol 3okl ok ok kol ok ok ok ok kR Kok ok ok ok ok okok kR kR ok ok ok
THIS FOUTINE WAS WRITTEN BY:
Rk kdoh ok ok Fokkdok Rk Rk kokk
* *
* DAVILC C. BOSSERMEAN *

* NOVEMBER 1976 *

* *
e o e ok o sk e o ool ke e ol o o e ol ook ol ok ok
WRITE (6,100)
100 FORMAT(' *,2X,'ERROR***%A PERIOD PRECEEDED ALL OTHER
STRINGS.')
IECCDE=999
RETURN

END

9y
SUBROUTINE LEARN (I,IFINIT,ISTART,IPARPT)
ok ke ko kR kR k kR ok Rk ke kkkk kh ok kk ok ko k%
THIS ECUTINE IS DESIGNED TO FIND THE FURTHERMCST CONTIGUOUS
SAME IEVEL RIGHT EARENTHERIS AND RETURN ITS LOCATION IN THE
ACCRESS ARRAY TO THE CALLING ROUTINE.
3 o o ok ook ok ok ok ok ok kkok ok ok ok ko K ok ok ok ok ok ok gk ok ok ok Aok ok ok ok kR R K
THIS EOUTINE WAS WRITTEN BY:
kkkk ek koo ke kokkkkk k¥
* *
* DAVID C. BOSSERMAN *
* NOVEMBER 1976 *
* *
dc 3 3k 3k e 3 e e ok ok ok e o e ok e 3l ol ook ol ok op ok
COMFMON/SEACE/IFTAEI (50) ,ISEACE (2000)
1,IFUSED,IFREE,IPSIZE, ISIZE
bk kok o ok dokok KoKk ok ok ko ok ok ok ok ok ok ko ok Rk Rk Rk Bk ok ok ko Rk ok
FIRST THE LEVEL NUMBER IS ASSIGNED TG A CHECK VARIABLE
CALLEL LEVEL.
e o 3 o e ok e ook e e koo ek ok el ke ok okl s ek i e ol ko sk ke sk ok ok sk ol ok ok ok ek ofe ek ok ok
WRITE (6, 1)
1 FORKAT (* ' ,2X,"LEARN WAS CALLEL.')
NUMRQD=1
IBLOCK=1
IPARST=I
LEVSAH=0
IADDR=ISEACE (I) /1000000
ICODE=0
N=TADDR+80

LEVEI=ISPACE (N)

95
e o ook ok Rl ok ool ke ak ok ke ok Rkl Rk Rk kR kR A Rk ok kR ok Rk k%
A DO LCOF IS ENTERED T0 CHECK ALL REMAINING ADDEESS ARRAY
ELEMENTS UNTIL A SAME LEVEL PARENTHESIS IS FOUND.
ek ik kdok pkkkdkkok ko kdok ok dokk koo R Rk ko k ok oh kR ok
DO 100 J=I,IFINIT
IADDR=ISEACE (J) /1000000
N=TIADDR+80
IF (ISPACE(IADDR) .EC.') ') LEVSAM=ISPACE (N)
Sk kpokokokkkokk ok ko kokkk ok ko kokokk ko ko kkk ok ko kk kb k%
A CHECE IS MADE TO SEE IF THE LEVEL IS A KATCH. IF SO &
ROUTINE IS CALLED TO CHECK THE NEXT POSITION. IF THE NEXT
POSITION IS A LEFT PARENTHESIS AND OF THE SAME LEVEL THE
SEARCE IS CONTINUED, IF NOT IT IS TERMINATED.
A o e koo ok o ook R o o stk ol ol koo skl ook ok ol ok kakok okl ok ok R kok sk ki kokok ok
1F (LEVEL.EC.LEVSAN) CALL NXTPAR (J,IFINIT, ICODE,
LEVEL,L)
LEVSAN=0
IF (ICODE.EQ.1) GO TO 200
100 CONTINUE
200 I=L
ok ol s ek ke sk ok ek ko ko ok sk kokok ok ok ok ko h kb kb kb h ko kkkk k¥
ONCE THE FURTHERMOST SAME LEVEL PARENTHESIS IS FOUND, THE
TOTAL LENGTH OF THE EELMENTS INCLULED BY THE PARENTHBESES IS
STACKEL. IPARPT WILL POINT TO THE INITIAL LENGTH ELEMENT.
EACH SAME LEVEL PARENTHESIS WILL BE REPRESENTED AT ONE TINE
OR ANCTHER IN THE STACK.
% 3 3 2k 3k o o e e e ok ko ok ok e ok o e ke 3k ok ke 3k e e o ke 3k e ok e ol ok ok sk ok ok ofe 3k sk ok ok ok ke ok sk dk ke ke ok
CALL ISINIT(NUMRQD,ISTART,IBLQCK)

ISPACE (ISTART)=L-IPARST

IF (IPARPT.EC.Q0) IPARET=ISTART
RETURN

END

96

97
SUBROUTINE NXTPAR(J,IFINIT,ICODE,LEVEL,L)

T T e T
THIS BOUTIINE IS CALLED AFTER A SAME LEVEL RIGHT PARENTHESIS
HAS BEEN FOUND IN SUBROUTINE LPARN,. THE EFURPOSE OF THIS
ROUTINE IS TO IOCK AT THE NEXT ELEMENT IN THE ADDRESS ARRAY.
IF IT IS AR LEFT FARENTHESIS ANLC OF THE SANE LEVEL, A CODE
OF 0 1S RETURNED TO LPARN. IF NOT, A CODE QOF 1 IS RETURNED.

Aok b ok ok ol ok ok b ok ook ok b dkokolok kakokok ok Rk ok koo ko ok Rk ok
THIS EOUTINE WAS WRITTEN BY:

Rokkgokkdoh Rk Rk Rk kR xR

* *

* DAVID C. BOSSERMAN *
* NOVEMBER 1966 *
* *
kdokkkkkkkkkkkkkRkx bk ks
COMEON/SEACE/IFTAEL (50) ,ISPACE (2000)
1,IEUSED,IFREE,IPSIZE,ISIZE
WRITE (6, 1)
1 FORMAT (' ',2X,'NXTPAR WAS CALLED.')
ICODE=1
I=J+1
IF(I.GT.IFINIT) 1I=1
JF(I.GT.IFINRIT) EETURN
iADDR=ISPACE(I}/1000000
IF(ISEACE(IADDR).EQ.'('} GO TO 10
L=I
RETURN
10 N=IADDR+80

LEVSAM=ISPACE (N)

IF(LEVSAM.EQ.LEVEL) ICODE=0
L=I
RETURN

END

98

99

SUBROUTINE
LPFST (I,IFINIT,IFARET, ISETL, IDSTA,ISTART, NXTPT)
ok o e e ek ok ook skokok gk oK ok otk ok ok ok ok ok ok ok Rk ok k kok ok ok R ok ok Rk ok ok
THIS ECUTINE IS CALLET IF THE FIRST TOKEN ENCOUNTERED IS A
LEFT FEARENTHESIS. ITS PURPOSE IS TO CREATE DOUBLE WORD
NOLES WITH THE FOLLOWING POSSIBILITIES:
1. IF THE ENTIRE EROGRAM IS INCLULEL IN THE SAME LEVEL
EARENTHESIS :

A. CREATE A DOUBLE WORD NODE WHOSE LCCATICN
FIELD CCNTAINS THE TOKEN ARRAY LOCATION OF THE
BEGINNING LEFT PARENTHESIS.

B. PLACE THE LENGTH IN THE LENGTH FIELD.

C. STACK THE LENGTH MINUS TWO ON THE STRING
LENGTH STACK.

D. PLACE THE ADDRESS OF THE NEXT TOEKEN TO BE
PROCESSED IN THE SON FIELD.

Z. 1F THE PROGRAM BEGINS WITH A LEFT PARENTHESIS AND
CUISIDE THE SAME LEVEL RIGHT PARENTBESIS IS FOUND
VARIABLES:

A. PROCESS AS IN 1.

B. CREATE BROTHER NODES AS APPLICABLE WITH

POLKT ERS.
¥ 3 okok ok ok Aok ok ok Z ko dokokote 3 ok ok aok ok okl ok Aok ok ok ok b ok ok ok ko ko %
THIS FCUTINE WAS WRITTEN EY:

S e T T T
* *
* DAVID C. BOSSERMAN *

* NCVEMBER 1976 *

* *

100
Rk kdkkk kR kR Rk kX

3 o e 3 3 e e ok ofe e e ok e ke koo ok ek ek ok ok b ke ko Rk kR kb ok ko kk ok ko kk k kR %

DOUBLE PRECISION FUNCT, IDSPAC
COMMCN/SFACE/IETARL (50),ISEACE (2000)
1,IPUSED,IFREE,IPSIZE,ISIZE
COMMON/DOUBLE /IDSPAC (500)
NUMECD=1
IBLOCK=1
e T Ty Y T P YT
TEE PIEST STEP IS TO ACQUIRE A DOUBLE WORD NCDE AND FILL THE
LOCATICN FIELD.
s P T T ST PP T e PR T T T
CALI ISINIT(NUMROD,ISETD,IBLOCK)
IDSTA=ISETD
NXTPT=ISETD
IDSEAC(ISETD)=I%*1000000000000.D0+1.
ook ok sk ok ok kool ko kR R ok ok ok R kR kR Rk R Rk kR kR kR
THE NEXT STEP IS TO FIND THE FURTHERMCST CCNTIGUOUS SAME
LEVEL EARENTHESES. THIS IS DONE BY SEARCHING THE PROGRAM
FOR TEE NEXT SAME LEVEL PARENTHESIS.
kkkkkokokokk kR kokk ik Rk ko dokkok kR kR Rk k Rk
K=0
IADDR=ISPACE (I) /1000000
N=IADDR+80
LEVEL=ISPACE (N)
L E L T P T T T e T
A [O LOOP IS5 ENTERED TO CHECK ALL REMAINING ADDRESS ARRAY

ELEMENTS UNTIL A SAME LEVEL PARENTHESIS IS FCUND,

Fkkkkkk kb bk ko ko kkk koo ke ko ok kbR ok okkk kK

101
LO 100 J=I ,IPINIT
K=J
IADDR=ISFACE (J) /1000000
N=IADDR+80
IF (ISPACE(IADDR) .EC.") ") LEVSAM=ISPACE (N)
IF(LEVEL.EC.LEVSAM) CALL LPROCE(J, IFINIT,ISTART,I,
1IPARPT, ISETD,IDSTA,NXTPT,IECODE)
IF (IECODE.EC.1) BETURN
LEVSAME=0
100 CONTINUE
RETURN

END

102
SUBROUTIKE LPROCE (J,IFINIT,ISTART,1,IPARPT,ISEID,
1IDSTA,NXTPT,IECODE)
ok ok o o o ook o ok ok o ook o ok oo o ok ok o ko ok o ok ko o ok ok ok ok ok ook ok
THIS EQUTINE IS ©DESIGNED TO FIND THE FUTBEERMOST SAME LEVEL
RIGHT PARENTHESIS WHEN CALLED FROM LPFST. IN ADDITION, IT
IS RESECNSIBLE FCR LOOKING FOR ALL FIRST LEVEL BROTHER
NOLES.
A e s o o o e ke ok el ook ok ok ok ok ok deokokok ok ok Bk ok ok R b KR R ko
ok ok ok ok k o ko ok ook ok ok ok koK ok kokokok Kok ok ok dkokok ko ook kR kR K
THIS EOUTINE WAS WRITTEN BY:
ok kdok R ok ook ok KRk Rk Rk kR
* *
* DAVID C. BOSSERMAN *
* NOVEMBER 1976 *
* *
Aok ok ok kR ko kR Rk Rk
a3 3 o o e e kol ok ook ok ol ok o ol oo o ook o ok ok ok ok okl e ok o ok ko ook ok ok ok ok ok
FIEST A TEST IS MADE TO SEE IF THE NEXT CHARACTER EXCEEDS
THE FEOGRAM LENGTH. IF SO0, THE LENGTH IS STACKED AND A
RETUEN IS MADE.
deokok ok ook Rokok ok fok Kook ok doR Rk koK kR Rk Rk ok ok ko kkokk koK
NUMERCD=1
IBLOCK=0
IECODE=0
ICODE=1
K=J+1
IF(K.GT.IFINIT) GO TC 100
IADDR=ISFACE (K) /1000000

IF (ISPACE (IADDR) .EQ."' (') GO TO 200

103

ol o e ok ok e o ok ook ool ook ok o o sk o b ok o ool o ok ook o o ok o kol ke ok ok ok ok ok

IF THE NEXT CHARACTER IS A PERICD CE RIGHT PARENTHESIS, AN

ERROR IS APPARANT AND APPROPRIATE ERKOR RCUTINES ARE CALLED.

A 3 ofx 2k ofe 2 o e ok ke o ok e e e 3k o e 30 ke o ok ok ol e e ode ok ke o ok e e e ook o Ak ol ook ok sk el ook

IF (ISPACE(IADDR) .EQ.'.') CALL IPEROL(IECODE}
IF (ISPACE(IADDR) .EQ.") ') CALL IRPARN(IECCDE)

s s o oo o ol ook e b o e o sl ok ot o ol ook o e ook e b o ool ol s ook o sk ook ok e ook ok

IF THE NEXT CHARACTER IS NCRE OF THE REOVE, IF IT REPRESENTS

A CHAEACTER STRING SO0 THE NODE BEING PROCESSED IS COMPLETED

AND SCBROUTINE VARBLE IS CALLEL.

50

kR kR Rkkk Rk ok kR kR kokk Rk ok ko kk Rk kkkk k ok k ok k k%

IF (IECODE.EQ.1) RETURN
LENGTH= (J-I)+1

CALL ISINIT (NUMRQD,ISTART,IBLOCK)

IF (IPARPT.EQ.0) IPARPT=ISTART

ISPACE (ISTART)=LENGTH-2

IDSPAC (ISETD) =IDSPAC (ISETD) + (LENGTH#100000000.D0)
IDSPAC (ISETD) =IDSPAC (ISETD)+ ((I+1)*10000.)
IDSEAC (ISETD) =IDSEAC (ISETD) + ((ISETL#¢1) *10.)
1=K

CALL VARBLE(I,IFINIT,NXTPT,IDSTA,ISETD,ISTART,
1IPARPT, ICODE)

IF(I.GT.IFINIT) EETURN
IDSPAC(ISETD) =IDSPAC (ISETD)+ ((ISETD+1) *10.)
IADDR=ISPACE(I) /1000000

IF (ISPACE (IADDR) ,EQ,'."') CALL IPEROL (IECODE)
IP (ISPACE (IADDR) .EC.*) ') CALL IRPARN(IECODE)
IF (ISPACE (IADDR) .NE.' (') GO TO 50

CALL ISINIT(NUMRCD,ISETD,IBLOCK)

104

IDSEAC (ISETD) = (I*1000000000000.L0) +1.

RETURN

o o s 3 e e e o gkl o ok 2k o ok ok ke 3k o ol 3 3l ke ke o ok e e o 3k ok o e ok o ke S e ok ke ofe e ok ok ok ok
THE LENGTH OF THE STRING IS DETERMINED AND STORED 1IN THE
PARENT NODE. THE SON FIELD IS SET IN THE PARENT NODE. THE
SON'S LENGTH IS STORED ON A TEMPORAEY STACK.

Fkkokk kg kkdekkkkkkkkkkkkkkkk kk ke kF krhpkkkkkik
100 CALL ISINIT(NUMRQD,ISTART,IBLOCK)

IF (IPARPT. EC.0) IPARPT=ISTART

LENGTH= (J-I)+1

ISPACE (ISTART) =LENGTH- 2

IDSEAC (ISETL) =IDSEAC (ISETD) # (LENGTE*100000000.D0)

IDSPAC (ISETD) =IDSEAC (ISETD) # ((1+1) #10000.)

1=K

BETORN

3 3 3 2 2 3 e 3 Aok o ok o o sk afe e ke o ok ok o ok ofe s ok 3l e ok 3 o o ok ofe o ok ok o 3k b ok ofe ok o ok ok bk
IF THE NEXT CHAERACTEFE TO BE PROCESSED IS ANOTHER LEFT
PABENTHESIS, IT REPRESENTS THE BEGINNING OF A BROTHER
STRING. TO GET READY TO PROCESS THE BROTHER THE NODE BEING
PROCESSED IS CCHMFLETED EY SETTING ITS LENGTH, SON AND
BROTHER FIELDS TC POINT TO THE APPROPRIATE DATA. THE STRING
LENGTE OF THE NODE'S SON IS STACKED AND THEN THE BROTHER
NOLE IS CREATED. AFTER CREATION, A RETURN IS KADE TO LBFST
TO CCNTINUE PRCCESSING.

e 3 3 e e 3l o 3l ok ek ol ol o ok o ke o ok 3k 3k 3k ok 3k ke e ook 3lobo ko ok ok ol ok S ok o ok ok ok ok ok ok
200 LENGTH =(J-I)+1

CALL ISINIT (NUMRCD,ISTART,IBLOCK)

IF (IPARPT.EQ.0) IPARPT=ISTART

ISPACE (ISTART) =LENGIB-2

IDSPAC(ISETL) =IDSPAC (ISETD)+ (LENGTH*100000000.D0)
IDSEFAC(ISETD)=IDSPAC(ISETD)+({I+1)*10000.)

IDSPAC (ISETD)=IDSPAC {(ISETD)+ ((ISETLC+1) *10.)

CALL ISINIT(NUMRQD,ISETD,IBLOCK)

IDSPAC(ISETL) =(K*#1000000000000.D0) +1.

I=R

RETURN

END

105

106
SUBROUTINE
LPLTR(I, IFINIT,IPARPT,ISEID,IDSTA ,ISTART,NRXTET)

#ok ok ook dokokodookok bk ook ok bk ok ok ok ok o ok ok ok okokokdoloR R ok ok ok ok ok
THIS EOUTINE IS DESIGNED TO PROCESS TEE STRING FOUND BETWEEN
TWO SAME LEVEL PARENTHESES. I IS AN TIN VARIAELE AND
REFRESENTS THE SCN CF A PARENT NOLE. TBE FIRST ACTION WILL
BE TO SET THE PARENT'S SON FIELD TQ ZERO. NEXT 1A DOUBLE
WORD NODE WILL BE OBTAINED AND THE PARENTI'S SON FIELD WILL
BE SE1 TO POINT TO THE SON NODE. THEN THE SON WILL BE
PROCESSED.

dokokok ok dok ok ok dkook bk kokk kb ok ok g ok kokokok ok ok dkob ok Rk gk dkokok Rk okok kR ok
THIS FOUTINE WAS WRITTEN BY:

Aok kAR R R SRR F KRR R A%
* *
% DAVID C. BOSSERMAN =
* NOVEMBEER 1976 *
* *
T I T Y

DOUELE PRECISION FGNCT, IDSPAC

COMMON/SPACE/IETARLY (50) ,ISPACE (2000)

1, IPUSED,IFREE,IPSIZE,ISIZE

COMMON/DCUELE/IDSFEAC (500)

NOUMROD=1

IBLOCK=1

LEVEL=0

LEVSAM=0

LEVNUH=0

WRITE (6, 1)

1 FORMAT(* ',2X,'LPLIR WAS CALLED.")

107
NODEPA= (NXTET-1)
IDSPAC (NODEPA) =IDSPAC (NODEPA) - (I*10000.)
ook o 3 o o s o o ok ook o s o ok 3 g o o o ok o o ok o o o o sl ol ok o o o o e o ok o ofe ok o oo ook o o ok ok o ok ok
THE LENGTH OF THE STRING IS RETRIEVED FROM THE STRING LENGTH
STACK.
Rk hphokokokkokokkokdk bk hokofkokok ook ek e ook k sk okokakak ok akok sk ko ek ek fedkeok e e e e ok
LENGTH=ISPACE (LPARET)
IPARPT=IPARPT+1
3k e 0 o oo e o ook o o ook o o ok o ook ok e o o o o el o oo ook o ot ok ok e ok o oot ook o ok ok ok ok ok ok ok ok
THE LENGTH REPRESENTS THE LENGTH OF TEE SAME LEVEL STRING.
HOWEVER, THE LENGTH COULD BE DIVIDED INTC SEVERAL BROTHER
NODES WHICH SHARE THE TOTAL LENGTE. TEEREFORE, A LOOP IS
ENTERED TO PROCESS THE STRING.
3 3 3 ok ok 3k ok ok ok o ok ok ok ook ol ke 3k ok ook ok ak 3 e 3 s ol ol 3k o ok ksl sfeale ol ofe e e ok e o ot o ol ok ook ok ol ek ook 3k
ICODE=0
IFINIT= (I+ LENGTH) -1
IADDR=ISPACE (I) /1000000
N=IADDR+ 80
LEVEL=ISEACE (N)
J3=1
DO 10 J=3J ,IFINIT
IADDR=ISEACE (J) /1000000
N=IADDR+80
IF(ISPACE (IADDR) .EQ.') ') LEVSAM=ISPACE (N)
IF (LEVEL.EQ.LEVSAN) CALL
LPROCL (I,J,ICOLE,ISETD,IELCCK, ISTART,
1NODEPA, IFINIT,NXTPT, IPARPT,ID STA)
LEVSAN=0

10 CONTINUE

108

RETURN

END

109

SUBROUTINE
IPROCL (1,3, ICODE,ISETD, IBLOCK,ISTART,NODEEA,IFINIT,

e o e s o ok ook ok e ok o o ok o s o o Aol ale o e ol o ok e o e ok ok e s ol o sk e o ke ok ke Sk oo e ok ok o ke sk gk ok ok
SUBRCCTINE IPROCL IS DESIGNED TO EBOCESS A SECOND SET OF
SAME LEVEL PARENTHESES AT THE BROTHER LEVEL. IT IS CALLED
BY ILELIR.

Ehfhdkkkkkkhkkk kb kkkkkkkkkkhkkkkkokhkkkkkk Ak d bk ki kk ok kk
THIS FCUTINE WAS WRITTEN BY:

ek koo hokokook ok ks ok ek ok ok
* *

* [LAVIDC C. EOSSERMAN *

* *
* NOVEMBER 1976 *
* *

o o ok ok 3 o ok e ok ke ok ok o o e ok ok ok ok sk sk

1NXTPT, IPARPT,IDSTA)

DOUELE PRECISION FUNCT, IDSPAC

COMMON/SEACE/IPTABL (50) ,ISPACE (2000)

1,IPUSED,IFREE,IPSIZE,ISIZE

COMMON/DOUBLE/IDSPAC (500)

WRITE (6, 1)
1 FORMAT (' *,2X,'IFRCCL WAS CALLEE.!')

NUMROD=1

IBLOCK=1
o3k ok ob ook ook ok ok ko sk doiokokoloRok ok ok ok ok sk ok ok ok ko ok ok sk ok ok sk kokok ok ook ok ok
IF TEE CODE PASSéD IS5 NOT EQUAL TO ZERO, THEN ONE PASS
THROUCHE IPROCL HAS BEEN MADE. THEREFORE, A SECOND SET OQF
SAME IEVEL PARENTHESES IS ABOUT TO BE PROCESSED. THE FIRST

ACTICK IS TO SET THE BROTHER FIELD TO POINT TO THE NEXT SET.

110
3 oo o ook o o ok R o ol ok R K oo K R o K ko Kk ok Rk kK
IF(ICODE.NE.Q)

IDSPAC (ISETD)=IDSEAC (ISETD)+ ((ISETD+1.)*10.)
T T L T e P e P Y T
SPACE 1S ACQUIRED TO CREATE A NEW NODE. THE NEW NODE WILL
CONSIST CF THE STARTING POINT OF A STRING INCLOSED BY

PARENTHESES.
3 ok o o ok ot o sk ok ootk s ok ok ok s ok ok ok ok ok ok koo ok ok ek ook ok ok ok ok
CALL ISIRIT (NUMRCD,ISETD,IBLOCK)

IDSPAC(ISETD) =I*1000000000000.D0+1.
T T e R P P T e T E s T e
IF TEF CODE EQUALS ZERO, THE PARENT NODE'S SON FIELD IS SET

TO POINT TO THE NODE JUST CREATED.
R T T ™
IF (ICODE.EQ.0)
ICSPAC(NODEPA) =IDSPAC(NODEPA) + (ISETD*10000,)
LENGTH= (J-I) +1
ook o ok ko ok o ot kool R ok ok o ok ok ok ke ol ok o ok ok ok ok Rk ok ok ok ko ok ok
THE LENGTH OF THE NEW SON NODE'S SON IS STACKED FOE FUTURE
PROCESSING.
R e e e T T Ll s
CALL ISINIT (NUMRCD,ISTART,IBLCCK)
ISPACE (ISTART) =LENGTH-2
R s T T e e e T T T T
THE LENGTE OF THE NEW NODE IS PLACEL IN THE LENGTH FIELD.
FREE ok ok ok KRR R R R R R R Rk
IDSFAC(ISETLC) =(LENGTE*100000000.D0)+IDSFAC (ISETD)

0 ok oo ol e o ook ok ook ook ool ok ke ok o ok ook 3k ok ok ok ok ol ok o ok o o ok o ok ok ok ook sk ok sk ok ok koK ok ok Rk

THE NEW SON'S ADDRESS IS PLACED IN THE SON FIELD. THIS IS A

111
TEMPOEARY POINTER AND WILL BE REPLACED IRTER BY THE ACTUAL
SON'S NODE ADDRESS.
ke kk ek kdokdedrkok ok kk ok kk ko kkkk bk kkokkkk kb ko kk ko k
IDSEAC (ISETL) =IDSPAC(ISETD) + ((I+1)#10000.)
ICODE=1
I=J+1
IF(I.GT.IFINIT) EETURN
IADDR=ISPACE (I)/1000000
IF (ISPACE (IADDR) .EQ.'.") I=I+1
3 % o ook o ok o e 3k 3k sk o sk ok ok o ol ook ol o o ol ol ok ok ade ol 3 ok o e o o e ol e ok o ok ok ok ok ok ok o o ok ol ok e dkok
IF THERE ARE STILL TOKENS TO BE PROCESSEL IN THE STRING AND
THE NEXT ONE IS NOT A LEFT PARENTHESIS, IT MUST REPRESENT A
VARIABLE. THEREFCRE, THE VARIABLE ROUTINE IS CALLED. NOTE
THAT TBE BROTHER FIELD IS UPDATED FIRST.
o ok ol 3k o o o ok e ok e ok ke s e e ok ko ool o o ok o o ok kol ook ook ok o o ok o ok ook 3o okokokok ok skok
IF (ISPACE(IADDR) .NE. ' (')
IDSPAC (ISETD)=IDSEAC (ISETLD) + ((ISETD+1)*
110.)
1F (ISPACE(IADDR) .NE.' (') CALL VARBLE(I,IFINIT
1,NXTPT,IDSTA,ISETD,ISTART, IPABRPT, ICODE)
RETURN

END

112

APPENDIX F

PART I

CARD DECK INPOUT JCL

1. ALLOCATE INDEXED FILE SPACE OF 80 CHARACTER
LENGTH RECORELS:
AL INREAD,IN,S80
2, READ THE CARLS FROM THE CARD READER (CR:) INTO THE
FILE:
ECOPYA CR:,INKEAD

PART II
ESTABLISH PROGRAM TASKS

COMEILE THE PROGRAM (LISP):

MFORT LISP

TASK PAUSED--EETURNED BY COMPUTER
CLOSE 1

As 1,SYS1:FVRTL.OEJ,SRO, 1

co

END OF TASK O0--BRETURNED BY COMPUTER

FART III
JCL TO0 RUN PROGRAHM

1. LCAD TASKS:
L0 LISP
2. BASSIGK LOGICAL UNITS:
AS 5,INREAD
AS 6,FR: -— PR:=PRINTER
3. START THE PROGRAM EXECUTION:
ST

APPENDIX G

PART I
PROGRAM
DEFINE ((
(FACTCRIAI (LAMBDA (N) (CCND ((ZEROP N) 1)
(T (IIMES N (FACTORIAL (SUE1 N)))))))
))
TRACE (T)

FACTORIAL (6)

PART II
PROGRAM HWITH PARENTHESIS LEVELS
DEFINE ((
12
(FACTORIAL (LAMBDA (N) (COND ((ZERQP ®) 1)
3 4 55 5 67 7 6

(T (ITIMES N (FACTCRIAL (SUB1 N)))))))

6 7 8 9 9876543
))
21
TRACE (T)
11

FACTCFIAL (6)

11

113

114

PART III
TOKEN ARRAY

806
1501
1601

16201
16309
17301
17406
18101
18201
18301
18501
18604
19101
19201
19305
19901
20001
20201
20301
32201
32401
32601
32705
33301
33501
33609
34601
34704
35201
35301
35401
35501
35601
35701
35801
35901
48101
48201
64305
64901
65001
65101
80109
81001
81101
81201

115

PART IV
EXPANDED TOKENS

8060260
15010110
16010110

162010110
163090980
173010110
174062260
181010110
182010000
183010210
185010110
186041840
191010110
192010110
193051150
199010000
200010210
202010000
203010210
322010110
324010000
326010110
327051650
333010000
335010110
336090980
346010110
347040840
352010000
353010210
354010210
355010210
356010210
357010210
358010210
359010210
481010210
482010210
643051050
649010110
650010000
651010210
801090980
810010110
811010000
812010210

PART V
NODES

961000000040022
999000000050032
1002000000060002
962003700070002
1000000300080002
1004000300090002
963003500100002
1001000000000002
1005000000000002
964003300110002
965000000120002
966003000130002
967000000140002
968000300160152
971002400170002
969000000000002
972000000180002
973000700200192
980001400220002
974000400230212
978000000000002
981000000250002
975000000000242
976000000000002
982001100260002
983000000000272
984000000280002
985000700290002
98€000000300002
987000400310002
988000C€00000322
989000000000002

116

117

" PART VI
GENERAL TREE
9610000000040022 999000000050032 1003000000060002
| ¥
962003700070002 1000000300080002 1004000300090002
963003500100002 1001000000000002 1005000000000002
964003300110002
‘
965000000120002
3
966003000130002
967000000140002
968000300160152 9710024001?0002
]
N
969000000000002 972000000180002
]
r [a
9730007002?0192 980001“002?0002
il |
r N
97“0004002%0212 978000000000002 9810000002%0002
] |
4 ! 4
975000000000242 976000000000002 982001100260002
|
(1
963000000000272 984000000280002
|
Y
985000700290002

.

966000000300C02

987000400310002

|

118

988000000000322

989000000000002

A LISF INTEFPRETER: SCANNER ANL PARSER

by

DAVIC CLARENCE BOSSERMAN

B.G.S, University of Nebraska at Omaha, 1969

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1977

B LISP Interpreter 1is a program which interprets
strings. This paper describes the design and format of
three rarts of a LISP Interpreter. The parts included are
the reader, scanner and parser.

211 parts are written in the FORTRAN language and have
been ' tested on the INTERDATA 8,32 computer. The reader
module reads the user's program into storage. The scanner
nodules convert the user's program intc numeric tokens which
are used as pointers by the other modules. The interpreter
modules: (1} construct a general tree representation of the
user's program; and (2) execute the user's prograam. The
execution modules have not been completed and are to ke the
sukject of a future report. The code for all modules
completed andé discussed as a part of this repcrt are
included in Appendices to the report.

The modules completed are to be integrated with memory
management modules and execution modules to form an
efficient high level 1language interpreter for wuse by
miniccmputers. As such, the read, scan and interpreter
modules are designed for maximum portakility with minimunm

adaptation.

