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NOMENCLATURE

ai,bi Square of the roots of the characteristic equation
in the absorber and moderator, respectively

A^Bjj^Cjl Constants determined from the boundary conditions

D.^ Parameters for empirical fit of total flux

E Energy, or Least squares error

f(E>Qr) Angular flux

fj/nbc) Spherical harmonics component of angular flux

i,J,k,l,m,n Summation indices

fy /*(£=) Associated spherical harmonics (see p. 224,
reference 24)

Q('r,-Q-) Neutron source

Qj>„(;c) Spherical harmonics component of neutron source

R^m Elements of solution vectors

E Field position vector

dr. Differential volume element

r Distance perpendicular to cylinder axis

B
S Spherical harmonics component of scattering oross

section

T Matrix containing coefficients of the A
1 , Bif and

Cjl as given by the boundary conditions

v Neutron speed

X Column matrix containing the Aj_, Blt and C*

x^ Elements of X

z Distance along cylinder axis

t-*i)?~Qx. Radial relaxation constants in absorber and mod-
erator, respectively
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& Angle between jq. and the z- axis

£^ Relaxation constant in z direction

Jf Average cosine of scattering angle

£ Total macroscopic cross section, Z^ + £5

I* Macroscopic absorption cross section

Z$ Macroscopic scattering cross section

Ztr Macroscopic transport cross section, Z. -JfcZs

P Angle between r and the projection of jql onto a
plane perpendicular to the z- axis

$0:) Total neutron flux

& Unit vector in the direction of neutron motion

d£- Differential solid angle



1.0 INTRODUCTION

In the microscopic theory of thermal neutron chain reactors

one of the important quantities which must be determined is the

thermal utilization (8,24). The thermal utilization depends on

the ratio of the number of neutrons absorbed in the moderator to

the number absorbed in the fuel. In a homogeneous reactor this

ratio is Independent of the total flux, $ , but In heterogeneous

reactors it depends on the flux distribution in both the fuel

and moderator.

Several methods are used in the determination of the absorp-

tion ratio and the suitability of a given method depends, among

other things, on the optical thickness of the absorber. For a

thin absorber, a "first flight" calculation can be used (14).

The neutron blackness, which is defined as the probability that

a neutron Incident upon a body will be absorbed by it (19), of

an absorber depends on the angular distribution of the entrant

neutrons and this can be determined only by an exact solution of

the transport equation. If the entrant distribution can be

approximated as that described by diffusion theory (2), Stuart's

blackness chart (18) can be easily used to calculate the ratio

of absorption in the moderator to absorption in the fuel. Numer-

ical methods can be used ('6), but this is time consuming and

each problem must be worked individually.

A simple method for calculating the absorption ratio is to

calculate the total flux distribution In the lattice from the

diffusion theory unit cell model. As Is well known (1,24), the



ratio determined by this method is lower than the experimental

ratio. The experimental flux shows a greater depression, both

in the fuel and in the immediately surrounding moderator, than

does the simple calculation. The use of the P, or higher approx-

imations to the one speed transport equation reduces this discrep-

ancy, but does not account for temperature effects (24). Never-

theless, the simple methods, just because they are simple, are

widely used. Fictional cross sections are sometimes used to give

better results between theory and experiment (26), but it is not

clear that cross sections adjusted to give agreement in one lat-

tice will yield agreement in another lattice.

Another "parameter" which could be adjusted to correct for

the faults of the simple theory is the dimension of the absorbing

medium. By experimentally determining an equivalent radius for

different absorbers, moderators, and physical dimensions, a param-

eter would be available which could be used to give the correct

results by the use of a simple calculation. The general useful-

ness of such a parameter depends on how well the equivalent radius

could be predicted, as a function of lattice parameters, from the

results of a relatively few experiments.

The theory, including appropriate boundary conditions and

computer programs, and the experimental feasibility of obtaining

an equivalent radius for the P-^ approximation by making flux

measurements in assemblies having exponential z-dependence is the

subject matter of this work. A study of this problem for the P,

approximation is being made by Porath (15).



2.0 THEORY

2.1 The Spherical Harmonics Approximations

Extensive treatment of the Boltzmann equation can be found

in many references (4,14,24). In this work only a brief discus-

sion of the general equation is presented; however particular

attention is placed on the P, approximation to the spherical har-

monics component form of the Boltzmann equation in cylindrical

geometry. It is assumed that the diffusing medium is homogeneous

and isotropic. Only the monoenergetic, time-independent model

for neutron transport is studied.

The general Boltzmann integro-differential equation is1

v^t = -•&&*(£&,*>*) - Zb&,Bte)i&,£>£,*)

(1 )

where f(r rQ.,E,t)drdfl:dE is the number of neutrons in the volume

element dr. having energies between E and E + dE whose directions

of motion lie in the solid angle d£ about £-, multiplied by the

neutron speed v; I s(fc,t,E*E',£^a]!£u)
/
is the cross section for

changing the neutron energy and direction E& into the range dE
7

,

dg£ at E and •£' due to collisions; and

%&£**,*) = S*&j£Zskt,&*>-Qil-*±) (2)

is the cross section for any type of scattering.

The first term on the right side of Eq.(l) represents the

1 The coordinate system, spherical harmonics, and much of the
nomenclature used in this work nre the same as those of Weinberc
and Wigner (24), and Kofink (12).
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losses due to the straight ahead motion of the neutrons. The

second term on the right side accounts for losses due to absorp-

tion and scattering out of the phase space. The gain of neutrons

is represented by the third and fourth terms on the right side of

the equation. The third term accounts for all types of sources,

and the fourth term accounts for the gain resulting from the

scattering of neutrons into the phase space from any other region.

Davison (4), and others (8,14,24), point out that the assump-

tion of a monoenergetic thermal-neutron group can be Justified

only for slightly absorbing media in regions away from sources

and boundaries. This assumption has yielded results which agree

reasonably well with experiment, however, even when the above

restrictions do not apply (24). The energy-independent thermal

neutron group is used throughout the rest of this work.

Using the restrictions that the medium is homogeneous and

isotropic and that the system is monoenergetic and time independ-

ent, the Boltzmann equation reduces to

-£%?&&) ~ iPfoj) +JWfli',J8.
/

.^te
/

-*2) +<?&£) - o (3)

Only cylindrical geometry is considered, and the coordinate

system is the same as that of Weinberg and Wlgner (24), and

Kofink (12). These coordinates are: the z- axis of the cylinder;

the distance r- from the axis of the cylinder; the angle e between

Or and the z- axis; and the angle p between r- and the projection

of a In a plane perpendicular to the z- axis.

In this system of coordinates the Boltzmann equation for

neutron transport is given by Eq.(4).



-g/j»A r./»c a ?fifc»>fttf> . sine sin^ M,y>9t *) e.bS€>Wt>x,&>p)r dr i r dp 7y*
('4)

- tf(t>%,0,f) + Jd*'#r>s0^ter-£) + 90:,*) = o

Meghreblian and Holmes (14) show that, since the scattering

medius is, by assumption, homogeneous and isotropic, the cross

section £ s
(-fik*y can be a function only of the angle 6 between

xj, and*. This angular dependence can be conveniently represented

as a series of spherical harmonics of the first kind (11).

Z6 (s£*-fp = gs,Pf(coi0 ) (5)

Using the orthogonality relation

Jda 6gfe)^) = *&fek*>k&> * 13k
*"*-*'

(6)

the scattering cross section is

2* =Jte Z/-3-'+4r) - 4ffS (Y)

The average cosine of the scattering angle is given by

XT = corgi z,
J*&'«*4 z,(4+±l _ Jx Z'£t r^° SWXtC&4> ^ " *s

. ('8)

To realize the full advantage of decomposing the scattering

cross section into spherical harmonics, the same is done for the

angular flux.

Ms*) ~£*ster>*>k>M (9)

The associated spherical harmonics, P^Cfl-). are the same as

those of Weinberg and Wigner (24). The moments are given by

GMn>) = 7F/^to6^) do)
The £ = and 7-1 terms of Eq. (10)' have a simple physical

interpretation, but the higher order terms have no simple phys-

ical meaning. The total neutron flux at r is obtained by inte-

grating Eq.(9) over all directions*. Using the orthogonality

relation, the total flux is given by Eq.(ll).



$(r,j) = [faffati) = Wfar,}) (11)

The z- component of the total neutron current is

/Jr>& ~ fazwefciS) * f^^Aj) (12)

and the r- component of the total neutron current is

fr
t%$ s jd-S-w anp %,-&) = -*g K,!^) -?

itJnfi (13)

To obtain the spherical harmonics component form of the

Boltzmann equation, the source term is expanded in terms of the

associated spherical harmonics and the addition formula

is used with Eq.(5) and then substituted into Eq.(4). Eq.(9) is

substituted into Eq.(4) and tho resulting equation is multiplied

by Py„(4-)dA and integrated over all st. Using the recursion

relations

si*'&M» « Ll(zA$^0'& - (U-O^ ftletyiiJho (15)

the spherical harmonics component form of the Boltzmann equation

is obtained.

4*r**«W£w -U*-WCftp -4,E»^^
* ^ [£ - ^J£V^ - E,m^ £, r

,p . ££ £<<

p

( 16)

where

In the PL approximation to the spherical harmonics component



form of the Boltzmann equation, It is assumed thai ¥# = for

/ ? L. For L equal to 1 this assumption leads to the same equa-

tions as diffusion theory, hut with a different diffusion

coefficient.

In the P, approximation the total neutron flux Is described

by a second order differential equation, whereas in the P* approx-

imation the total flux must satisfy a fourth order differential

equation. The P, approximation should give a more accurate

description of the total flux in regions rear boundaries, sources,

and strong absorbers, where the flux Is a rapidly varying func-

tion.
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2.2 Solutions for Particular Conditions

The spherical harmonics component form of the Boltzmann

equation in cylindrical geometry was solved for two different

cases. Both cases consist of a two region medium which is rad-

ially symmetric. In this work the central region is referred to

as the absorber, and the surrounding region as the moderator. A'

condition of symmetry which must be satisfied for both cases is

that there be no current around the z- axis.

The first case, which in this work is called the z-depen-

dent case, is a two region medium having sources at the z =

plane and having one surface of the moderator exposed to a vacuum.

The second case is the unit cell problem with an isotropic source

in the moderator.

In a non-multiplying medium with sources at z 0, GFlasstone

and Edlund (9) show, that in regions away from sources and the

finite end of the cylinder, the z-dependence of the total neutron

flux can be described by a decaying exponential. For this reason,

and because of the simplicity of the boundary conditions, it was

assumed that the medium extends to infinity in the positive z-

dlrection.

Letting yf - 1 - 4VSf/Laf+£l*.l (jp)

and using the assumption

+ fts W«> Av^r) + C4 Ufi
Jo,) Kjar)] t

Uy ( 19 )

in Eq.(l6), the solution for the z dependent case with linear

anisotropic scattering is derived in Appendix A and is given



here for the T-z approximation.

In the absorber (central region):

bir
>fi

'- Z/M^l^i"* (20)

In the moderator (surrounding medium):

t lu&DLtM&rt * (-ifCi^Uu^le^
(21)

Letting j= !+£(£ + gO (22)

the roots of the characteristic equation in the absorber are

A
2
- +o£ * 4fjD + a-i*8%V^y*;*J = a*

**.*.7 (23)

For i / 1 the roots of the characteristic equation in the

moderator (Vfc2) are obtained from the above relations by replacing

absorber values of yo and Vj, with moderator values. For i - 1

?- gf - /fjli-^l- i**fc H,/3S-^J = bx ( 24

)

Although there are 8 roots in each region, only the 4 pos-

itive values are retained because A must be positive in order to

have a decaying exponential and the Bessel functions of positive

argument are not independent of the Bessel functions of negative

argument.

The RfK (<0 are given in Table 1. Except for 1 = 1, the

R/fcCg.*') are calculated from the same relations by replacing

absorber values of /, and yt with moderator values and by replac-

ing *< with §^ and a± with blt

Using the relations <r = -IX, f = «, l* /mfc'2S + l)/4Tr]^ z r^
for if m odd, and a^R2/ + l)/4tj 4 « R^ for ^«i even, where
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Table 1

Elements of Solution Vectors
for the z-Dependent Case

f m
.1 = 1.2

*W^y R^C-U)

1

1 3*oVaj 1

1 1 3Wa ,V2 -A/c(4 V2

2 (3A
i -a

J
)N

J
1 5/iX/a4

2 1 ocjXNjV6 -2X/^Je> -5(2Ai-a4 )M//6

2 2 o»-NjV§/2 (#+7)/«?/6 -5*iV»4l^

3 3X(5^-3a
j

)N
j
/5 A yi(5^-a

4
)/a

4

3 1 3V3^(5Xi -a
J
)N /10 -(3/f-7)/2«,V3 -X(l5A2'-lla

4
)M/2/3

3 2 9A*Jn /V30 A(3A*--7)/«jy30 -5>*i.(3X2-a
4
)/a4/T0

3 3 3^JN./2V5 (X^)/^*^ -V5 4̂X/2a4

a
J
N

J

= ('aj-3 y» yA-7y.)/(a -7) M = y^a^

'nie RA^(?i^ are OD"tained from the R/„(<*i) "by using moderator

values of V and ylf replacing a-^ with blf replacing <*x by £i.

and then multiplying by (-l)m .
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1 is the square root of -1, the coefficients in Table 1 can he

comp?red with the coefficients in the work performed by Tralli

and Agresta (23). In particular; the R
52 («i), R2o(°0> R^t ^),

and R-,-z( d4 ) should be compared.

The unit cell model is frequently used in heterogeneous

reactor calculations. Some of the assumptions which are called

for in this model are; the Blowing down density is constant in

the moderator and zero in the fuel, the fuel lattice is broken

up into a number of identical unit cells, and the fuel elements

are so long that the z-dependence of the flux can be neglected.

Using the same notation as was used in the z- dependent case,

and assuming that

i/r) r ^ ^(til^Lr) iCLSM(<*)Wiri ('25)

the solution for the unit cell problem with an isotropic source

term and linear anisotropic scattering is derived in Appendix A

and is given here for the P, approximation.

In the absorber:

In the moderator:

ftUr) - ^/L^Oc^JnJkx^ (26)

WO = $ &/&> R^S.'O + Mflfc **fc«I*J + f9 Sh*mo ('27)

Letting <p 1 + fcf$+-g>i) (22)

the roots of the characteristic equation in the absorber are

<*l
s ^sLL+d-m^/ssf^J (28)

<** * 7
The ot± are calculated using absorber values of Y, and ft

and the q are oaloulated from the same equations by using
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moderator values of V and yA . As with the z-dependent case,

only the positive roots need be retained.

The Rf^oLiY are given in Table 2. The R/M (^')' are calcu-

lated from the same relations by replacing absorber values of

V
rf and ^ with moderator values.

Table 2

Elements of Solution Vectors
for the Unit- Cell Model

* m Ra(Kj)
.1 = 1.2

R/*( '«*

)

1.

1 1 3^/=tjV2

2 5N/4 1

2 2 -5NjV678 l/YS

3 1 3*jNjV5/8 «^i/2V3

3 3 -3^NjV5/8 ^3/2^"

Nj = 1 - 3^V<</
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2.3 Boundary Conditions

The exact boundary condition at an interface between media

is that the angular flux shall be continuous. This implies that

the moments shall be continuous. The exact condition at a free

surface is

^Ofifl) - O for 4Et inward, (29)
r on the free surface.

In the spherical harmonics component form, an infinite number

of terms are required in order to satisfy either of these con-

ditions.

Three methods (4) are generally employed in approximating

Eq.(29). The first is collocation wherein f(r,£) is made equal

to zero at the required number of points &*• Next is Mark's

boundary condition where one imagines the vacuum to be a medium

with zero scattering cross section and requires the angular flux

to be continuous. The last consists in employing a set, Z«M (&-),

which is orthogonal to the angular flux in the region for Jh

inward, and then making
J:

f (r,£-)Z^ (^r)da- equal to zero for r on

the free surface and jQ* inward. The set of Z^n.) is usually

chosen from the spherical harmonics of odd order £t since this

set automatically includes the physical requirement that the in-

ward neutron current is zero. These are called Marshak's bound-

ary conditions and can be expressed as

jffc&){JrJa)<lSL =o for 4t inward, r on the free ('30)
surface, all m7 / odd and £ L

where Lis the maximum / in an odd order approximation to the

spherical harmonics component form of the Boltzmann equation.
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In the Pt approximation, for L less than about 5 or 7,

Marshak's boundary conditions lead to the best convergence (4).

These pre the boundary conditions which were used in this worlc.

As is shown in Appendix A and as can be seen from the solu-

tions for the f^trjz), for radial symmetry

Wr«>> = ^ii<«*> (31)

Using this stipulation, the angular flux for the z-dependent case

becomes

+ f
lb

(r,}){;(3C0s'
,

-i) - £/fy)v£ cos <j> sine coso + ^(r^fLtoszfistrfe

1 ?3o(r^)i(scoi
s
& - 3 cose) - £,ftp±Ji cospsme (sce^a --0

i ^(y^z^cosz.^ yrfe cos e - ^/ipf vGr tossfis/ne

For large R, the outer boundary of the system, Eq.(30)

becomes

J (f(*#>£>%J£&*ete4d> - O for all m, /odd and 6. L

.

(33)

Substituting Eq.(32) into Eq.(33)
N and performing the indi-

cated integrations

(32)

for P10

for P

for P

for P

11

30

31

KA*) t£fc£/*»£ =o (34-a)

£/*.*) t£iZhfc£ - £&/*,>) +£&&<*,)) = (34-b)

?4//,p+;£ft/*,p-£Vi&tep*£Htep = o (34-d)

?#£//,,) t J-^ £#,£> -- o (34-e)

-#•«*) + i&ftp +i*y**> + £^£/'.p --o (34-f)

Davison (4) shows that the number of conditions which need

to be satisfied at a free surface is equal to the number of even

order moments, N(j?=even), and the conditions to be satisfied at

an interface between media is 2N(^»even) . The use of either

for P^2

for PT,
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Marshak'B boundary conditions or the requirement that the angular

flux shall be continuous introduces N(/«odd) - N(/=even) N excess

conditions.

Most applications of the spherical harmonics method have

been to cases where the number of odd order moments was equal to

the number of even order moments. For cases in which the number

of odd order moments is greater than the number of even order

moments, Davison (4) suggests, by means of an intuitive argument,

that it should be better to make the moments for all m with Jl <

L-l continuous first and then to make the "predominately normal"

moments of order L" continuous. The same consideration should

apply to the choice of the P^(h-) in Eq.(33).

The above problem does not arise in the unit cell problem.

Since the z- dependence is neglected, the angular flux should be

symmetric about any plane perpendicular to the z- axis. This

means that

Ur
}
e,<p) = -P(r,7r-9

t 4,) ('35)

From an inspection of Eq.(32) it is seen that this condition can

be satisfied if only such ffw(r) are retained as have / + m even.

In addition to the requirement that the angular flux shall

be continuous at the interface, the usual condition used in the

unit cell problem is that the angular flux shall be symmetric

about the cell boundary FL. That is,

$(t<.>o><t>) = ?(£c>&,7r-0>) ('36

)

Since only the t/m (r) with A m even are retained, an inspection

of Eq.(32) shoves that this condition can be satisfied if it is

required that Eq.(37) be satisfied.
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fi,60 *£/0 = i&> - ° (37)

It is noted that the number of even order moments is equal

to the number of odd order moments so that the number of bound-

ary conditions is equal to the number of unknowns.
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3.0 DISCUSSION AND RESULTS

3.1 Consideration of Boundary Conditions

In order to apply the equations -which have been derived for

the P^ approximation to the z-dependent case, an appropriate

choice of boundary conditions must be made. For a two region

problem with known cross sections and dimensions, Eqn''s (20), (21),

and (23) show that there are 13 unknowns which must be determined;

X and 4 each of the A^, B^, and Cj. It was shown that there are

a total of 17 available boundary conditions; 10 from the require-

ment that the angular flux be continuous at the interface, 6 from

Marshak's boundary conditions at the free surface, and 1 from the

source condition. In order to have a meaningful solution, one of

the unknowns, say A-^, must be determined by the source condition.

This leaves 12 unknowns to be determined from 16 equations. Of

these 16, any 8 of the 10 obtained by matching moments- at the

Interface plus any 4 of the 6 obtained from Marshal's conditions

form an appropriate set of 12 equations in 12 unknowns.

Two procedures for solving the set of 16 equations are to

select the "best" 12 equations or to retain all 16 equations and

minimize the error in some manner. Most work with the p, approx-

imation has been to cases where the number of available equations

is equal to the number of unknowns (3,12), and as far as is known

to the author, no extensive effort has been made to determine

which equations should be used when there are excess equations.

As mentioned previously, Davison ('4) gives an intuitive argument

for the appropriate choice. Trail i and Agresta (23)' treat a
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problem similar to the previously described unit cell model except

that they consider a finite cylinder. For their problem there are

12 unknowns and 14 equations. They retain all 14 equations.

Which of the two procedures gives the better approximation to the

exact solution of the transport equation is not known, however it

is much easier, and is consistent with the method used in the P,

approximation, to choose the "best" boundary conditions.

Any appropriately chosen combination of the 12 homogeneous

equations can be solved by arranging the equations so that the

following matrix equation applies.

TX » C38)

Where X is a column matrix containing the A^, Bj , and Cif and T

is a square matrix containing the coefficients of the unknowns as

given by the 12 equations. Iii principal, the application of

Cramer's Rule and the reduction of the determinant yields an

explicit equation for the A which make the determinant of T equal

to zero. Because of the oscillatory nature of the Jm ('r) and

Y^r), there may be an infinite number of these A K . For each

value of \, any 11 of the 12 equations can, in principal, be used

to determine all the x^ in terms of one of the x^ say A]_. The

complete solution is then the sum of all these solutions, and for

the z-dependent case has the following form:

In the absorber:

fi*ft i> = ! !/*W«fJJkftfxr) £
Kly

(39

)

In the moderator:
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where the R^n , <x , and q are determined from the same relations as

before, and the a*, as well as the a|, bJ, and cj in terms of a£,

are determined from the "best" boundary conditions. The only un-

knowns in the above equations are the A* and these can be deter-

mined from the source condition, or equivalently from the spec-

ification of the flux at some position.

In order to get some idea as to which boundary conditions

should be used, the problem was, at first, simplified by consid-

ering a one region medium having a free surface, and containing

the origin. For this problem the complete solution is Eq.(40) if
k v

the C are set equal to zero. Knowing Br from the source condi-

tion, A n and the remainder of the By are then determined from

Marshak's boundary conditions. This reduces the number of pos-

sible combinations of boundary conditions to 15.

Instead of considering all 15 possibilities however, it was

seen, by reasoning along the lines suggested by Davison (4), that

any combination which includes the equation resulting from the

use of P^q in Marshak's boundary conditions, Eq.(30), should give

a poor approximation to the requirement that the Inward angular

flux be zero, because f is the predominately "tangential moment"

of order 3. This supposition was checked by using what was con-

sidered to be one of the better combinations using the P,Q . This

was called Case 1 and used the equations resulting from the use

of p10» pn» p30» and p31 in EQ»(33). By comparing Fig. 1 with

Fig. 8 it was seen that Case 1 gives a much poorer approximation

to the desired condition than does the P-^ approximation. Thus,

all combinations containing Eq.(34-c) were tentatively rejected.
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Of the remaining 5 combinations, one does not contain the equa-

tion resulting from the use of P,, . This combination defeats the

purpose of Marshak's boundary conditions because it no longer

contains the stipulation that the inward neutron current be zero.

Of the remaining 4 combinations, the results obtained using the

P10 , P , P,.,, and P32 in Eq.(33) should be similar to the re-

sults obtained by the use of the P1Q , P,., P,2 » and P-^, since

the f and f-,, are the "most normal moments" of order 3.
31 33

In view of the above considerations, 3 additional combina-

tions of the P/»m were used in Eq.('33V. These are; Case 2, the

P10 , P
13

, P
51

, and P^J Case 3, the P10 , P11 , P32, and P-^; Case

4, the P-q, P^lt P,
2 , and P^. In all 4 cases only the first

harmonic in Eq.(4o)was used, and for every calculation, B^ was

arbitrarily set equal to 1000.0. Two different media were

studied, iron which has a reasonably large absorption cross sec-

tion, and graphite which has a small absorption cross section.

Radial dimensions of 25.0 and 35.81 mean free paths, ££, were

used. The cross sections used are listed in Table 3.

Table 3

Cross Sections Used in
Study of Boundary Conditions

Medium Zi(c*-Q Me**) ItthaOl

Iron 0.222 0.933 1.144

Graphite 2.83xl0~ 4 0.404 O.38I

Some of the results are shown in Figures 1 through 8. The

angular flux at the boundary is plotted as a function of
<f>

for
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various values of 0. In addition, the figures contain a curve

for which the ©-dependence of the angular flux has been removed

by integration over the ©-dependence of sl. This curve is

( 4l)
_vs ;J§/4p toy -YF^^fy) coi 3jz>

where R is the radius of the outer boundary and Eq.(32) has been

substituted into the integrand. Since the integral of sin© from

to 7T is equal to 2, Eq.(4l) is also equal to twice the angular

flux averaged over- the ©-dependence of_a. Also given in the fig-

ures is the partial inward flux

J J
Afc.j , e>t) suede ty

« zvib (A,%) + £ if ft (fy)

+ *?«/«,*)-** fi/J8tf) ^2)

The parametric dependence of f(R, z,e,^>) with & for s ;jr/t is

shown only in Fig. 3 and 7, the cases where iron was the medium

under consideration, because the angular flux is almost symmetric

about e - V/l for the graphite medium. There was a slight de-

crease in the graphite angular flux for e 717/t. , but it was

small. The B
±

and the value of X which describe these curves

are given in Table 4.

These curves clearly eliminated Case 1 from further consid-

eration and possibly indicated that Case 3 should be rejected

also. Cases 2 and 4 appear to satisfy the condition that the

angular flux should be zero for Jl inward about equally well.

In order to proceed further it was necessary to consider

the two region problem and thus to make a choice of which 8 mom-

ents should be matched at the interface. Since Davison "s (4)

suggestion (Case 2) gave good results at the free surface, his
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Table 4

Constants Used in Figures 1 Through 8

B
±

= 1000.

Fig. B2 *5 B4 X

1 -1.405xl0"25 -9. 9 83x10"20 9.462xl0" 56 0.074597

2 -1.733x1c--27 -1.302xl0"21 -4.601xl0~4° 0.079432

3 -2.586xl0"28 -1.806xl0~18 1.208x10-56 0.70001

4 -3.776xlO"18 -2.373xl0""14 -1.337xl0"27 0.10347

5 -3.363xl0-27 -3.74lxl0~21 -1. 840x10-57 0.079375

6 -1.745xl0-27 1.651xDO"21 -1.049xl0" 39 0.079431

7 -5.546xl0-28 3.262x10-18 -9. 174x10" 37 0.69998

8 0.0 0.0 0.0 0.079498

suggestion for which moments to match at the interface was heav-

ily relied upon. As previously mentioned, he suggests that all

moments having / < L-l plus the predominately normal moments of

order L be matched at the interface.

The results of Case 2 indicate that the moments of order 3

which should be considered are the f^ and f-,,. Case 3 Indicates

that the f,
2

and f-^ should be considered, while Case 4 suggests

"the fjlf f-^, and f-^. Neither Case 2 nor Case 3 conflicts with

Davison's suggestion concerning the 6 moments having / < 2, but

Case 4 does. Since the spherical harmonics used in Case 4 all

contain at least some normal component, all "normal moments" were

matched first and then the remaining moments, starting with / =

until the required number of equations were obtained. Thus, the
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f20 and f-^Q were not made equal at the interface for Case 4.

Using these rules for Cases 2, 3, and 4, the total neutron

flux distribution, $ , was calculated for a central region of iron

and a surrounding region of graphite. The cross sections of

Table 3 were used.

The distribution calculated for Case 3 was completely unreal-

istic, peaking very sharply right at the interface, and Case 3

was eliminated. The distribution for Cases 2 and 4 are shown in

Fig. 9.

It was seen that there is nothing in Fig. 9 which indicates

a preference between Cases 2 and 4. To obtain a better compar-

ison, the angular flux distribution at the Interface was calcu-

lated with the computer program described in Appendix C. A rod

radius of 2.54 cm, moderator radius of 50.0 cm, and the cross

sections of Table 3 were used. Only one harmonic was used and

A
±
was arbitrarly set equal to 1.0. The results are listed in

Tables 5 and 6. As is shown in Appendix A, f(r,z,a,*>) =

f(r, z,e,-0>), therefore only values for p between and ir are

listed.

This calculation clearly showed that Case 2 gives a better

approximation to the requirement that the angular flux be contin-

uous at the interface. Therefore, Case 2, which constitutes the

equations suggested by Davison (4), were used In the remainder

of this work.
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Table 5

Angular Flux at Interface for Case 2

33

e P f (moderator) f(absorber) difference

degrees degrees (n/cm -sec/ (n/cm2- sec/ (n/cm2- sec/
steradian) stersdian) stersdian)

all values 2.923 2.905 0.018

30 1.692 1.741 -0.049
18 1.756 1.795 -0.039
36 1.947 1.958 -0.011
54 2.251 2.228 0.023
72 2.635 2.584 0.051
90 3-040 2.978 0.062
108 3.400 3.349 0.051
126 3.666 3.643 0.023
144 3.824 3.835 -0.011
162 3.897 3.936 -0.039
180 3.917 3.966 -0.049

60 1.387 1.492 -0.105
18 1.432 1.518 -0.086
36 1.602 1.640 -0.038
54 1.960 1.938 0.022
72 2.507 2.438 0.069
90 3.134 3.046 0.088
108 3.658 3.588 0.070
126 3.935 3.914 0.021
144 3.960 3.998 -0.038
162 3.860 3.949 -0.086
180 3.802 3.906 -0.104

90 1.606 1.606 0.0
18 1.587 1.587 0.0
36 1.604 1.604 0.0
54 1.808 1.808 0.0
72 2.273 2.273 0.0
90 2.893 2.893 0.0

108 3.435 3.435 0.0
126 3.692 3.692 0.0
144 3.640 3.640 0.0
162 3.450 3.450 0.0
180 3.352 3.352 0.0



Table 5 (continued)
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& P f ( moderator) 1 f ('absorber) difference

degrees degrees (n/cm2-sec/ (n/cm2-sec/ (n/cm2-sec/
sterodlan) steradlan) steradian)

120 1.478 1.373 0.105
18 1.465 1.379 0.086
36 1.480 1.442 0.038
54 1.632 1.654 -0.022
72 1.986 2.055 -0.069
90 2.480 2.568 -0.088
108 2.959 3.028 -0.069
126 3.271 3.292 -0.021
144 3.373 3.335 0.038
162 3.346 3.260 0.086
180 3.318 3.214 0.104

150 1.431 1.382 0.049
18 1.457 1.418 0.039
36 1.540 1.529 0.011
54 1.700 1.723 -0.023
72 1.937 1.988 -0.051
90 2.228 2.290 -0.062
108 2.525 2.576 -0.051
126 2.777 2.800 -0.023
144 2.953 2.942 0.011
162 3.051 3.012 0.039
180 3.082 3.032 0.050

180 all values 2.172 2.190 -0.018



Table 6

Angular Flux at Interface for Case 4

35

9
<P f (moderator) f(absorber) difference

degrees degrees (n/cm^-sec/ (n/cm -sec/ (n/cm -sec/
steradlan) steradlan) steradian)

all values 2.357 4.129 -1.772

30 0.667 1.716 -1.049
18 0.767 1.816 -1.049
36 1.062 2.110 -1.048
54 1.527 2.575 -1.048
72 2.115 3.164 -1.049
90 2.757 3.805 -1.048
108 3.368 4.417 -1.049
126 3.880 4.928 -1.048
144 4.249 5.297 -1.048
162 4.465 5.514 -1.049
180 4.536 5.585 -1.049

60 1.618 1.335 0.283
18 1.675 1.392 0.283
36 1.870 1.586 0.284
54 2.243 1.959 0.284
72 2.785 2.502 0.283

. 90 3.403 3.120 0.283
108 3.947 3.663 0.284
126 4.295 4.011 0.284
144 4.427 4.144 0.283
162 4.427 4.144 0.283
180 4.410 4.127 0.283

90 2.646 1.858 0.788
18 2.627 1.839 0.788
36 2.623 1.836 0.787
54 2.743 1.955 0.788
72 3.036 2.248 0.788
90 3.425 2.638 0.787

108 3.742 2.955 0.787
126 3.845 3.057 0.788
144 3.729 2.942 0.787
162 3.536 2.748 0.788
180 3.444 2.657 0.787



Table 6 (continued)

Z>t

degrees degrees

f( moderator) f( absorber) difference

(n/cm^-sec/
steradian)

(n/cm2-sec/
steradian)

(n/cm -sec/
steradian)

120

150

180

1.412
18 1.438
36 1.548
54 1.806
72 2.233
90 2.760
108 3.252
126 3.588
144 3.733
162 3.753
180 3.744

0.291
18 0.369
36 0.600

.
54 0.977
72 1.472
90 2.031
108 2.583
126 3.060
144 3.415
162 3.629
180 3.700

all values 1.743

1.302
1.328
1.438
1.696
2.122
2.649
3.141
3.477
3.623
3.642
3.634

1.211
1.289
1.520
1.897
2.392
2.951
3.503
3.980
4.335
4.549
4.620

3.120

0.110
0.110
0.110
0.110
0.111
0.111
0.111
0.111
0.110
0.111
0.110

-0.920
-0.920
-0.920
-0.920
-0.920
-0.920
-0.920
-0.920
-0.920
-0.920
-0.920

-1.377
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3.2 Practical Solutions

The most difficult practical problem encountered in the use

of the P-^ approximation to the Boltzmann equation for neutron

transport in the z-dependent case is the solution of the matrix

equation, Eq.(38). In the z-dependent case the determinant of T

must be set equal to zero and the A* determined before the x£ can

be determined in terms of, say, x£. This problem is not encoun-

tered in unit cell calculations, because A is zero and the equa-

tions resulting from the application of the boundary conditions

are Inhomogeneous. Even in the one region z-dependent problem,

however, T is a 4x4 matrix, each term of which is a complicated

function of A , and to expand the determinant to obtain the char-

acteristic equation for A does not appear profitable. A trial

and error procedure using hand calculation methods is also out

of the question. In the two region problem 16 different Bessel

functions, some having as many as 10 different arguments, the

various R^, plus the value of the 12x12 determinant must be

determined for each trial.

The computer programs described in Appendices C and D use a

linear interpolation procedure to select succeeding values of A

in an attempt to make the determinant of T equal to zero. The

"round off error" in the calculation of a 12x12 determinant can

be significant, and it was found that the matrix had to be ordered

so that each diagonal element was at least of the same order of

magnitude as the largest element in the same column. This was

particularly important for the equations at the outer boundary.
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Because the dimensions of the moderator were large, the equations

at the outer boundary contained both very large and very small

numbers- (the Im and Km of large argument).

Considerable round off was encountered regardless of how the

matrix was ordered, and a special subroutine was developed which

expanded the numbers to 18 digits, performed the determinant or

matrix calculations,, and then reduced the answers to 8 digits for

further use in the program. This eliminated the large errors

which had occurred with the 8 digit arithmetic.

It was not expected that the value of the determinant could

be made exactly equal to zero, however the magnitude of the error

was quite unexpected. The results of a typical calculation are

shown in Table 7, where the "slope" is defined as the- rate of

change of the determinant of T with A.

Determinant
of T

Table 7

The Determination of Lambda

Slope AxlO2

3.210xl08°

-3.394xl080

-6.753xl078

1.8l7xl077

-1.228xl074

5.629xl075

-6.604xl082

-6.473xl082

-6.647xl082

-6.653xl082

-1.791x1083

9.0000000

10.000000

9.4861780

9.4757459

9.4760192

9.4760191

It is seen from the table that the best X obtainable still

leaves the magnitude of the determinant quite large. The slope
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is very large, however, and the determinant changes sign when the

'best 1 X is changed by the smallest available increment. For all

practical purposes, then, this 'best" A is probably the correct A.

If the determinant of T were exactly equal to zero it would

make no difference which 11 of the 12 equations were used to

determine the x* in terms of x, . Since the determinant was not

zero, x-^ was arbitrarly set equal to 1.0, each of the 12 equa-

tions were deleted in turn, and the x* were calculated from the

remaining equations.

The maximum difference in any one of the x, was approx-

imately 1 in the fourth digit, and this occurred in only one case

and for only one x.. The maximum difference in the calculated

total flux, j$ , at any position was approximately 5 in the seventh

digit. This error is probably less than the error due to round

off in the rest of the program.

Since the values of the x. are, for the purposes of this

work (the accuracy in $ is more important here), independent of

which 11 equations are used to determine them, the 'best 1 value

of A was taken to be the correct value.



40

3*3 Application of Theory-

It is well known (1,8,24) that the P-* approximation to the

Boltzmann equation for neutron transport does not predict as

large a total flux depression in an absorber as does the exact

solution to the transport equation. One way of increasing the

depression in the PL approximation is to use a fictional absorber

dimension which Is larger than the actual dimension by an amount

Just large enough to give the same ratio of average moderator

total flux to absorber total flux as is given by the exact solu-

tion. What is more Important, from the practical point of view,

is to find an equivalent radius such that the total flux described

by the PL approximation describes the actual distribution found

in a real medium, irregardless of whether or not the actual dis-

tribution is described by the exact solution of the transport

equation.

The method proposed in this work for finding this equivalent

radius is to find the radius which makes the theoretical expres-

sion fit the experimental points as accurately as possible. A

computer program which is described in Appendix D was developed

for this purpose. The fit is made by a trial and error procedure

which strives to minimize the sum of the weighted squares of the

residuals between the theoretical expression and the experimental

values. The weighting factor is the reciprocal of the standard

deviation squared (22).

In order to test this program, experimental points in and

near an iron rod embedded in a graphite medium were obtained by a
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procedure and with the appartus described in Appendix B. These

points were not intended to give an accurate description of the

neutron flux and several correction factors were neglected.

Foulke (7) gives a description of these factors, and only a sum-

mary of some of these effects is given here.

A' hardening of the neutron spectrum occurs in the iron rod

due to preferential absorption of the low energy neutrons in the

outer regions of the rod.

Unequal activation on different sides of the foils can occur

since foils are seldom thin for neutrons or for the electrons

produced by the induced radioactivity. The difference in activ-

ity on two sides of a foil depends on the flux gradient near the

foil. As can be seen from Figures 1 through 8, this effect

should be more pronounced in and near the iron rod if the foil

is placed perpendicular to the z- axis.

A foil depresses the flux in a region around itself and

since the foils in this experiment were part of a continuous

strip of gold, the activity induoed at any point in the strip

was influenced by the presence of the rest of the strip.

Since gold has a large resonance at about 5 ev, the average

energy of the flux which induoes the activity is slightly differ-

ent than the average energy of the neutrons present in the system.

In addition to the errors introduced by the neglect of these

corrections, other errors were introduced from an unknown souroe.

A hump in the neutron flux appeared approximately two inches from

the edge of the rod in every activation and the cause of this

hump is unknown.
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The results obtained by fitting the theoretical expression

to data taken from Table B-l is shown in Figures 10 through 15.

The effect of the errors mentioned above on these results is

probably much less than the effect caused by the use of an iron

absorption cross section which was much too large (see Appendix

B). Figures 10, 12, and 14 show the best fit obtained by using

1, 2, and 3 harmonics, along with the equivalent radii which

resulted. Fig. 11 illustrates the relative effects of using 1,

2, and 3 harmonics for the actual rod radius of 0.5 in. Higher

harmonics would presumably give better results, but three har-

monics should be sufficient if the measurements are not made too

close to the source. Fig. 15, which uses only the data out to

the hump mentioned above, illustrates the type of fit which might

be expected from a good analysis of an equivalent radius. The

fact that the fit is so good in this case appears to be the

chance result of a lot of compensating errors.

It is to be noted that the A of Eq.(39), which describe

the curves in the above mentioned figures, were determined solely

on the basis of how well the resulting expression for the total

flux fit the experimental points. They therefore presumably have

no relation to the A? which would be determined by a source con-

dition.

The cross sections and moderator radius which were used to

obtain these fits are discussed in Appendix B. No extensive

study of the change in equivalent rod radius as a function of

cross sections was made. However, the graphite absorption cross

section was increased from 2.53x10"^ cm-1 to 8.6x10"^ cm-1 and
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the resulting increase in the 1 harmonic equivalent rod radius

was- only 0.4$. A rough estimate of the effect of changes in the

iron absorption cross section can be obtained by the use of the

P, approximation and Fig. 13.

The ratio of the flux at the edge of the rod to the flux at

the center is 1.40 for the P-^ approximation shown in Fig. 13.

This is the same ratio as predicted by the P^ approximation for

the unit cell model using the same Xa, of 0.259 cm"1 . The exper-

imental flux ratio in Fig. 13 is about 1.27. Other factors

remaining constant, the absorption cross section would have to be

reduced to 0.17 cm-1 in order for the P, unit cell model to give

the Bame ratio. Even if the actual iron absorption cross section

(0.229 cm""l) had been corrected to an effective neutron temper-

ature (14) and used in these calculations it is doubtful if the

1 harmonic equivalent radius would have been as large as the

actual rod radius. It is quite possible, however, that the 3

harmonic radius would have been at least as large as the true rod

radius.
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3*4 Conclusions

When the P^ approximation to the Boltzmann equation for

neutron transport is used in cylindrical geometry which does not

have symmetry about planes perpendicular to the z- axis, appli-

cation of the usual boundary conditions gives rise to excess

equations (4). Of the combinations studied here, the desired

conditions were most nearly met by matching all moments for / < 3

and the normal moments of order 3 (the f^ and ty^) at the inter-

face along with the use of the P1Q , P
1;L , P51 , and P33 in

Marshals' s boundary conditions.

The angular flux obtained by matching all moments having

m f plus the f00 and f
1Q at the interface, along with the use

of the P
1;L

, P
51 , P-^2, and P-j^ in Marshak's boundary conditions

gave a good approximation at the outer boundary, but was found

lacking at the interface. Even so, the total flux obtained by

using these conditions shows a greater depression in the absorber

than the flux obtained by using the preferred boundary conditions,

and may more nearly approximate the total flux as described by

the exact solution of the Boltzmann equation.

The equivalent radii obtained by fitting the theoretical

curve to the experimental data were in error because of the neg-

lect of correction factors, the use of inaccurate cross sections,

and uncertainty in the "cleanness" of the counted activity. In

spite of these errors the results indicate that with a good exper-

imental determination of the flux and with the correct cross sec-

tions, a good determination of the equivalent radius is possible.
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3.5 Suggestions for Further Study-

Much of the experimental work in the determination of an

equivalent rod radius is still to be done. In addition to cor-

recting the faults of the experimental method used in this work,

a study of the effect of changes in both scattering and absorp-

tion cross sections on the equivalent radius should be made.

This analysis could be made rather easily with slight modifica-

tions of the computer program described in Appendix D, and it

would show which cross sections should be known with the most

accuracy. It appears, for example, that the exact value of the

moderator absorption cross section is unimportant as long as it

is small compared to the scattering cross section.

Since the higher harmonics die out with increasing distance

from the source, there should be a region where the total flux

is described almost entirely by the first harmonic. By making

parallel measurements along the axis of the rod, one should be

able to determine whether or not the contribution of the higher

harmonics is significant. If the flux can be adequately described

by the first harmonic, a conriderable amount of computer time can

be saved.

If the total flux can be described with the use of only the

first harmonic, there is a possibility that the z-dependent model

can be replaced by an equivalent unit cell model. The require-

ment at the cell boundary is that the fn , f^, and f^ be zero.

An estimate of an appropriate cell boundary could be obtained by

plotting the fn , f
31 , and f^ from the z-dependent model and
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determining the position at which this requirement is most nearly-

satisfied. If the unit cell model can he used, the determination

of the equivalent rod radius would be greatly simplified.

Although the boundary conditions used in this work give a

good approximation to the desired conditions, one further pos-

sible combination might be considered. Case 4 was treated rather

inconsistently in that some of the moments which were used at the

outer boundary were neglected at the interface. Since Case 4 did

give a good approximation at the outer boundary, better results

might be obtained by neglecting the f10 and f,
Q

at the interface

as well as at the free surface.
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(A-l)

APPENDIX A

Solution of the P3 Approximation to the
Boltzmann Equation for a Z-Dependent
Problem and for the Unit Cell Problem

The spherical harmonics component form of the Boltzmann

equation for monoenergetic neutrons at steady state in a homo-

geneous, isotropic media, for cylindrical geometry, using the

?fm (&) and nomenclature of Kofink (12)', is:

-(I- ifnlUty) + Q*n (*p = °

where

* —
a^AiJ

— *" —2717=1) liW '

fm Wfl *7=i

For the z-dependent case it was assumed that Q^,* = and

that the neutron sources are in the z = plane. Noting the

following relations for the modified Bessel functions of integer

order m (25)

.

Hr+ »&ImJ<*r) = t£r-"Tllm.xM = «l>r)

[£+ aPlKmtl(4i) = E/r" TJCjf-r) = -«&£>)
U" 3)

it is seen that a solution of the form

may satisfy the homogeneous part of Eq.(A-l).

Setting Qim equal to zero, placing Eq.(A-4) into Eq.(A-l),
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(A-6)

(A-7)

defining

if - i - <WVi)X (A-5)

and equating coefficients of like terms yields the following

relations.

Comparison of the above relations shows- that

Therefore, only the relations for the R/m(«*y are studied.

If there is no net flow of neutrons around the axis of the

cylinder, the condition of symmetry to be satisfied is

?(*?,*>*) * $(r,z,6r <p) (A-8)

This means that only such combinations of f?w('r,z)p,w (ja)
s as con-

tain cos(m^) need be retained. For any m / 0, the angular flux

contains pairs of the form

By requiring t^mM m (-l)mf//Hf the symmetry condition is satisfied.

This also requires that

h-" ~ (~$
m
R*.m (A-10)

Using the above restrictions for the V^ approximation to the

Boltzmann equation (R,m = for / 7 3), and assuming linear aniso-
tropic scattering ( Bj m for J 7 2), the following set of equa-

tions were obtained from the relations for the R
/M

(a) in Eq.(A-6).
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1 -%JTo R
33

1 -4
Y?

R
32

1 ^* -fv5 R
31

-8* 9L-/1

1

1

7*

-*

R30

R22

(A-ll)

-*fs- -tyti fctf 1 --4 -* R21

-ffi -4£
7

1 ** J
R20

* »* % Rll

-t* -¥ *l -K R10

-t*.
-X
3 K ^0

Using a Crout-type reduction, the above matrix was arranged

so that the first four rows were the same aB above, the first

four columns of rows 5 through 10 contained zeros, and the

remainder of the matrix was as shown below.

10
<f

o

A

-*£

XE/hYZ DVS/2A

(i<*-A*)E/AV§' -VgX(^ + D)/2A

AE D-2Xi

C

B -A(8o^+9Az +I>.35)

-A 3*.

R22

R21

R20

<11

R10

R,00

CA-12)

=
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where

A- = a
z
+ £-7 D = <*

£-3^>W>£ E = 3>i+7 (A-13)

B = (8>i + 7) (**+>*) -35 n (1-14)

C « 9(1*+ X*)2 -(35+27ye >i + 28Yo)(<*
2
+ ^) + l05yo yi (A-15)

Applying Cramer "s Rule, and setting the determinant of the

matrix equal to zero, the characteristic equation is

ABC: = (1-16)

Designating the roots of this equation in the following manner,

A
z
+ c£ =^3[l-(i -iosy Xi/zsfj'*] - 9£

aS 4 = fjEi+a-mUiM^y = a i^i

X + wf = 7
(1-17)

A" +
«<J

tr 3^/^+7) = a
4

where 5 = i + Y (^ + ŝ Vt ) (1-18)

the general solution for the moments is

The R^m , as given in Table a-1, were obtained by separately

placing the roots into the matrix and arbitrarily setting one of

the Rjn equal to 1.

For a medium as shown in Pig. A-l, the cylinder is unbounded

in the positive z- direction and the boundary conditions are

Llm fj»w(r,z) =0 (all r) (A-20)
z-»+«> '

f,„('0,z) is finite (1-21)

In addition, the moderator «± will be imaginary. Desig-

nating the roots of the characteristic equation for the moderator

by bi and using ^ instead of ctit the b^ ^ , and R^C^V for
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Table A-l

Elements
for the

of Solution Vectors
Z-Dependent Case*

i m
.1 = 1.2

Ra,(«>) R^(^)

1

1 3/oX/a 1

1 1 3y«otj/aj V2" -A/*«V2

2 (3*-^ 1 5>lVa
4

2 1 otjX^ V6 -2Vo< s /6 -5(2Al-a
4
)M/V6

2 2 ^N^/2 (A
i
+7)/«<1

1V6 -5nVa4V5"
3 3A(5A2-3a

J
)N

J
/5 A ^i.(5A

2-a4 )/a4

3 1 3V3ctj(5A2 -aj)Nj/lO -fVf-Dfrxjfi -A(15AMla4 )M/2V3

3 2 9AotJNj/V30 X(3Az-7)/c<tV3b -5y1(3A
i-a4 )/a4V30

3 3 34-NJ/2V5 ('X*+ 7)7204^ -V5 >ioC,A/2a
4

Vj =
( ar 3V<' yi "7Y,'

)/(aj"7) M = *i/a4«4

#The Rjjt'fo) are obtained from the R^f'o^)' by using moderator

values of a; and V± , replacing a- with b, , replacing *, by £t

and then multiplying by (-l)m .
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Absorber

Vacuum

Moderator

Vacuum

Fig. A-l Geometry for the Z-Dependent Case

i ? 1 are calculated In the same manner as the corresponding

relations in the absorber. For 1=1 the RfJUfc} are given in

Table A-l and g L
is given by

A
1

-^ = fj U-a-mai/is-f)'*] = hx (A-22)

Then, the moments for this geometry become, for the absorber

(central region)

&A ji s
Jx
^AWX„^rt e

A'y
(A-23)

while for the moderator (surrounding medium)

+ J2
tUiSMi I* (&*» + MFC ^fexrtj e"*

1* (A-24)
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Solution for the Unit Cell Model
with Isotropic Source Term

In the unit cell model it is assumed that the z-dependence

of the angular flux can be neglected, and that the symmetry con-

dition given by Eq.(A-lO) applies. It is also assumed that the

slowing down density is zero in the fuel and constant in the mod-

erator. Thus, the equations are homogeneous in the fuel only.

For the equations in the absorber and for the homogeneous

part of the equations in the moderator Eq.(A-4) and Eq.(A-6) will

apply with X = 0. It is seen from Eq.(A-ll) that with A « the

R^C^cy having S + w odd are completely independent of the R/M (<*.)

with J-+ m. even. However, the angular flux should be symmetric

about any plane perpendicular to the z- axis. This requires that

$(r,e>
}^ - fYr.r-e, 0) (A-25)

By retaining only the moments with J + n even this condition will

be satisfied.

Applying the above modifications to Eq.(A-ll), and using

Cramer's rule on the resulting matrix yielded the following char-

acteristic values.

< * fsili-^i-my^/s^f^tl (A-26)

e* - 7

where g is given by Eq.(A-l8).

Assuming that there is a constant isotropic source term in

the moderator and no neutron source in the absorber, the solution

for the unit cell model in the absorber (central region) is

i. fr1 = A ^ *'M **<***

O

( A-27

)
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while in the moderator (surrounding medium)

iiM = %*»*(&fe*JeA* +(-i?Ct&feir>J +|fU (a-28)

where the R^,( «A ) are given in Table A-2.

Table A-2

Elements of Solution Vectors
for the Unit Cell Model

£ m
.1 = 1.2

**<"**

1

1 1 3*l/«iV2

2 5N /4 1

2 2 -5N.V6/8 1/V6

3 1 3*,N
j
Y3/8 <**/2V3

3 3

]

-3*^75/8

J. 8 1 - 3**ty«J

<V2^5
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APPENDIX B

Experimental Work

In the experiment described here, a steel rod was inserted

into the thermal column of a reactor and gold "foils" were used

to measure the neutron flux in and near the rod. This experiment

was conducted in order to provide experimental data for a test of

the computer code described in Appendix D, to illustrate a pos-

sible procedure for the determination of an "equivalent rod

radius*,' and to provide a rough comparison between experiment and

theory.

The thermal column of the Argonaut Reactor at Argonne Nat-

ional Laboratory, Argonne, Illinois was used for this experiment.

Details of the Argonaut Reactor, its thermal column, and the

"standard" one-slab loading used here can be found in several

references (13,21).

A special arrangement which was first used by L. Seren (17)

is shown in Fig. B-l. These special stringers replaced the reg-

ular J-10 (central) and J-ll stringers in the Argonaut thermal

column. A one inch diameter steel rod, 24-inches in length, was

placed near the core end of the stringer in the position provided

and the remainder of the one-inch channel was filled with one-

inch graphite cylinders. The two-inch channel was filled with

1 and 15/16 -inch graphite cylinders-.

The 24-inch steel rod v&s cut into sections 10, 8, and 6

inches long. Slots £ inch deep and 1/16 inch wide were cut dia-
metrically into both ends of the 10-lnch section. The 6-inch
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section was placed at the core end of the stringer, and the three

sections were placed end to end so as to give the appearance of a

solid rod having foil slots approximately 6 and 16 Inches from

the core end of the rod (or approximately 13 and 23 inches from

the core end of the J-10 stringer). The Cadmium-ratio at these

two points is 15 and 45, respectively (20)
v

.

Foils and Counting Facilities

Two types of foils were used to obtain the fine structure

near the iron rod. One was a uniform gold wire with a 32-mil

diameter. The other was a gold ribbon i-inch wide by 2-milB

thick. Both types of foils were cut into strips approximately

5i-inches long.

The counting system used with the gold wire is shown in Fig.

B-2. The shielded end-window G. M. tube was a Nuolear Chicago

Model 3031B, serial 344, with U. S. Govt, number 93541. The

scaler and power supply were designated by U. S. Govt, number

92121. The central lead shield had originally been designed with

a i inch diameter opening at the top and with an intersecting

wire channel of approximately £ inch diameter. The central open-

ing was reduced to 1/16 inch by insertion of a small lead plug.

The intersecting wire channel was reduced to approximately l/l6

inch by means of plastic tubing.

The gold ribbon was counted in an end window gas flow pro-

portional counter. The counter had U. S. Govt, number 92665, and

the scaler and power supply had U. S. Govt, number 92130.
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Experimental Procedure

The 5£ Inch long foils were placed along the foil grooves

and through the steel rod so that one end of the foil was flush

with the edge of the J-ll stringer. The reactor was operated at

a nominal power of 75 watts for one hour. The stringers were

removed with the aid of a threaded rod which screwed into the end

of the special stringers. After removal of the foils the iron

rod was allowed to "cool" overnight before reusing.

The gold wire was counted in the apparatus shown in Fig. B-2.

The wire was visually positioned with the aid of the mounted

scales whose smallest division was 1/16 inch. The portion of the

wire which had been in or near the rod was counted at l/l6 inch

intervals. The remainder of the wire was counted at l/8 inch

intervals. The wire was counted for pre- set times ranging from

2 to 8 minutes, depending on the count rate. The appropriate

counting time was chosen so that the standard deviation of the

total count at any position was less than 2% of the total count.

The gold ribbon was cut into foils approximately 1/20 of an

inch in length by taping the ribbon on graph paper and cutting

the ribbon at each division. Every foil which had been in or

near the rod was counted and every third foil was counted for the

remainder of the region. The foils were counted in the gas flow

end window proportional counter for pre- set times. The same

criteria was used to determine the counting time as was used for

the gold wire. After counting, each foil was weighted on an

electric balance.
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Treatment of Raw Data

All counts were corrected for background, and those taken

with the 0. M. tube were corrected for dead time. The dead time

correction for the proportional counter was insignificant. The

activity was then corrected for decay of the gold nuclei using

the well known exponential decay law and a half life of 2.70 days

(5). Since only relative activities were of interest, the meas-

ured activity at a given position was corrected to the activity

present when the first section of the wire or ribbon was counted.

The data taken with the gold ribbon was placed on a milligram

basis by dividing the activity of each foil by the weight of the

foil. All counts obtained from a given 5i-inch gold strip were

then placed on the same time basis so that relative count rates

at different positions could be compared.

The data processed in the above manner are tabulated in

Tables B-l through B-3. The deviation listed is the standard

deviation of the net count rate. In computing the standard devi-

ation for the activity from the gold ribbon it was assumed that

the standard deviation in the weights of the foils was 0.025 mg.

This figure was arrived at by the following considerations:

Since the foil weights could be read accurately to 0.1 mg, the

maximum error Bhould be 0.05 mg. If it is assumed that the

"maximum" error is of the order of twice the standard deviation,

then 0.025 mg is the standard deviation In the weight of a given

foil. The combined standard deviation was then calculated in the

usual manner (5).
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Table B-l

Processed Experimental Data for 1" Rod
Using Gold Wire at Approximately 23"

from Core End of J-10 Stringer

Distance from Counts per Distance from Counts per
Rod Center 4-min Rod Center 4-mj.n
(1/32) -inches (1/32)-inches

-33 12292 t 115 21 11114 * 108
-31 12219 t 115 23 11755 * 111
-29 12050 * 114 25 11938 * 112
-27 11937 * 113 27 12039 * 112
-25 11552 i 111 29 12158 * 113
-23 11159 i 109 31 12164 * 113
-21 11104 + 109 33 12327 4 113
-19 10925 £ 108 37 12741 i 115
-17 10504 * 106 41 12775 * 115
-15 10146 X 104 45 12808 * 115
-13 9615 L 101 49 12916 * 116
-11 9235 +

99 53 12983 * 116
-9 8768 +_ 97 57 13033 * 116
-7 8836 +

97 59 13406 i 118
-5 8710 ^ 96 61 13235 * 117
-3 8438 *j 95 63 13004 * 116
-1 8462 t 95 65 13190 i 117
1 8435 X 95 69 13188 * 117
3 8387 X 95 73 13508 *• 118
5 8613 ± 96 77 13546 i 118
7 8783 X 97 81 13864 * 119
9 8922 X C7 85 13661 * 118

11 9347 ± 99 89 13257 i 117
13 9744 X 101 93 13230 t 116
15 10325 X 104 97 13174 * 116
17 10585 X 106 101 13179 •t 116
19 11046 X 108 105 13162 * 116
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Table B-2

Processed Experimental Data for l w Rod
Using Gold Wire at Approximately 13"

from Core End of J-10 Stringer

Distance from
Rod Center
(1/32) -inches

-34
-32
-30
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2

2
4
6
8

10
12
14
16
18
20
22

Counts per
2-min

13478
13173
12886
13021
12844
12438
12379
12038
11753
11350
11107
10860
10695
10246
10036
10063
9982
10115
10059
10001
10112
10439
10637
10950
11062
11593
11893
12100
12358

i 118
* 117
* 116
* 116
* 115
i 113
* 113
* 112
* 110
i 108
* 107
* 106
* 105
* 103
* 102
* 102
* 102
* 102
* 102
* 102
* 102
* 104
± 105
* 106
* 107
* 109
* 110
± 111
* 113

Distance from
Rod Center
(1/32) -inches

24
26
28
30
32
34
36
38
40
42
44
46
48
50
54
58

• 62
66
70
74
78
82
86
90
94
98

102
106

Counts per
2-min

12424
12935
12983
13322
13671
13569
13659
13840
13682
13860
13949
13992
13959
14007
14375
14562
14763
14941
14769
14894
15081
15189
14766
14617
14261
14168
14061
14086

* 113
± 115
* 115
* 117
* 118
* 118
± 118
* 119
* 118
* 119
* 119
* 119
± 119
* 119
± 121
* 122
* 122
* 123
* 122
* 123
* 124
* 124
± 122
* 122
* 120
* 120
± 119
* 119
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Table B-3

Processed Experimental Data for l" Rod
Using Gold Ribbon at Approximately 13"

from Core End of J-10 Stringer

Distance from Counts3 per Distance from Counts per
Rod Center 2-min per mg Rod Center 2-min per mi

(1/40) -inches (1/40)-inches

-50 15391 £ 66 8 10017 *• 48
-48 15580 £ 70 10 10093 * 48
-46 15530 A 71 12 10293 * 48
-44 15268 4 65 14 10996 * 60
-42 15345 1 71 16 11552 * 49
-40 14982 A 75 18 11947 •* 57
-38 14630 ± 62 20 12471 * 57
-36 14508 1 63 22 13269 * 63
-34 14728 ± 67 24 13660 * 60
-32 14095 1 64 30 14318 i 64
-30 13718 X 58 36 14796 * 67
-28 13375 1 56 42 15032 * 62
-26 13125 ± 60 48 15178 ± 63
-24 13009 A 58 54 15374 * 70
-22 12734 1 60 60 15738 * 71
-20 12364 1 58 66 15797 * 67
-18 11715 A 51 72 16105 - 76
-16 11133 1 53 78 16307 * 67
-14 11056 4 55 84 16261 * 69
-12 10905 ± 51 90 16217 *• 71
-10 10481 i 53 96 16024 *. 65
-8 10297 1 52 102 16604 * 79
-6 10107 A 52 108 16145 * 69
-4 9956 £ 49 114 16652 a 74
-2 9857 A 50 120 16622 * 68

9798 X 48 126 16636 * 71
2 9678 A 46 132 16399 ± 65
4 9714 ± 48 138 16707 * 68
6 9739 A 50 144 16917 * 77



71

Moderator Radius and Cross Sections

In order to use the P^ approximation to the Boltzmann equa-

tion as described in the theory, the absorption and transport,

or scattering cross sections in both moderator and absorber, as

well as the physical dimensions of both moderator and absorber,

must be known. Although the dimensions of the absorber were well

known, the dimensions of an equivalent free surface cylindrical

moderator to replace the actual thermal column and surrounding

shield had to be estimated.

An attempt was made to determine the equivalent moderator

radius by making traverse flux measurements in the Argonaut ther-

mal column and fitting the data with a series of orthogonal Bessel

functions of the first kind of zero order. As predicted by diff-

usion theory, the equivalent radius would then be the point where

the resulting curve goes to zero.

The use of Just the first term of the series yielded an

equivalent radius of approximately 30 inches, which is the actual

dimension in the direction of the measurements and also in the

direction along the length of the 5£ inch fine structure foils.

The data was- so erratic however, that higher harmonics yielded

unbelievable equivalent radii.

Inasmuch as the flux shape in and near the absorber should

be a slowly varying function of moderator radius, for large radii,

and since the first harmonic yielded a radius close to the actual

radius, the equivalent moderator radius was taken as 30.0 inches.

No direct information was available on the thermal column
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cross sections, however a measurement was available which shows

the exponential decrease of the flux along the length of the

thermal column, so the absorption cros-s section was calculated

from the equation obtained from the P]_ approximation

where y s - tyti and z is the direction along the length of the

thermal column. The scattering cross section was taken to be

0.285 cm"1 at a graphite density of 1.6 g/cm^ (16), y was deter-

mined by Springer ('20)' to be 0.0370 cm""1 , and a and b were taken

to be the actual physical dimensions of 24 and 30 inches. The

absorption cross section of the moderator was thus calculated to

be 2.53x10"^ cm"1 .

The scattering cross section of the iron rod was taken as

0.947 cm"1 (16). At the time of this analysis the iron absorp-

tion cross section was not known, and the value of 0.259 cm"1

waa assumed (20). It was later found that the actual absorption

cross section, as determined by several measurements at Oak Ridge

National Laboratory, is 0.229 cm""1 .

The total flu:: should not be a rapidly varying function of

the rod absorption cross section and a similar comparison between

theory and experiment would be expected if the correct cross

section had been used.
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APPENDIX C

Description and Explanation of IBM-1620

Computer Program used to Calculate the

Angular Flux at the Interface

This program calculates the angular flux distribution- at

the interface between two media by using the P^ approximation

to the Boltzmann equation for a system having cylindrical geo-

metry and exponential flux dependence in the z-directlon. The

program was written in FORTRAN.

The angular flux for this approximation is

f(V, },e>t(p) =XtL(r,y>(lJe,*) (0-1)

where fprK * (-l)mfj mt and the fpM are as follows:

In the fuel (central region),

&* ft P * Ja &/<> IJ«+tr) £** ( c-2

)

In the moderator (surrounding region),

+ ik/fctffcl-teirt * (-OX /C^zrxK*
2
*

( °"3)

The Rj>„, * , and £ are given in Appendix A. The A., Blf . and

C
jL

can be determined from two sets of boundary conditions with

this program. One set, which is called Case 2, matches all mom-

ents except the f^
Q

and f^2 at the interface, and uses the equa-

tions obtained by using the P10 , Pni P
31 , and P

33
in Marshal "s

boundary conditions at the moderator free surface. The other set

called Case 4, matches all moments except the f2Q and f, at the

interface, and uses the equations obtained by using the p.-, P,..

,

P"32» and P-53 in Marshak's boundary conditions.
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The unknowns A^, Bj_, C*, and A. are determined with the use

of the matrix equation TX « 0, where X is a column matrix con-

taining the A£, B*, and Cif and T is a square matrix containing

the coefficients as given by. the boundary conditions. The cor-

rect value of A. is taken to be the one which makes the magnitude

of the determinant of T the smallest. A., is arbitrarly set equal

to 1.0 and the other x^ are determined from the first 11 equa-

tions. The determinant of T and the x, are calculated with the

aid of a special subroutine, CRAM(X), which uses 18 digit arith-

metic and performs a Crout reduction with an auxiliary matrix

using the method described by Hildebrand (10 ). The value of the

determinant is calculated by multiplying together the diagonal

elements of the auxiliary matrix.

Special subroutines are used to calculate the values of the

zero and first order Bessel functions and the recursion relatione

are used to calculate all higher order functions except the

J2(£i2 r ) and Jj(&i.zr) evaluated at the interface. The argument

is small in this case and the first two terms of the series expan-

sion are- used.

The Rj>w are stored in the C0EF(I,j) matrix, the <*<;, and £,•

are stored in TERM(J), the &± and bA of Table A-l are stored in

ROOT(J), and the N^'a^ and NjCbi) of Table A-l are stored in

OFR('J).

The proper sequence for loading the input data is shown in

the source program. The meaning of the symbols is given in

Table C-l.
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Table C-l

Input Data

Symbol Explanation

MM38
MM12

mm

GAM0(1
GAM0(2
GAMl(l)
GAMl(2)
SIGF
RF
SIGM
RM
CRIT1
DL
AL

(This was used In program testing)
= When A unknown
s 1 When A is known from a previous calculation

and only angular flux is deBired
= 1 For Case 4 "boundary conditions
» 2 For Case 2 boundary conditions
la/l in fuel
I a/x in moderator
Tir/l in fuel
Ztr/l in moderator
I in fuel (cm-1)
Rod radius (cm)
I in moderator ( cm~l

)

Moderator radius (cm)
Convergence criteria for X (1.0x10"^)
Increment in A
Trial \

Most of the output is self explanatory, however all input

data is printed out immediately after being read in, and this

output is unlabled. The dimensions on all output data is in CGS

units. The meaning of all symbols and words used in the output

is given in Table C-2.

Approximately one and one-half minutes is required for one

calculation of SUM. If the original estimate of A is reasonably

close to the correct value, the interpolation converges after

about three trials (approximately 5 minutes). A rough first

estimate of A can be obtained from the ^ approximation for a one

region medium.
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Table C-2

Output

Symbol Explanation

DELTA LAMBDA

R(I+1)-

PHI
P
THETA
SUM
SLOPE
LAMBDA
IN FUEL
IN MODERATOR

FLUX INYfARD

ANGULAR FLUX

« (Difference of new A. and old \ Is zero,

program continues)
Values are listed in the following order:
A2 ,A3 ,A4,C1

,C2,C3,C4,B1 ,B2,B3,B4

(note that A*-^ = 1.0)
(radians)

Angular flux
& (radians)
Value of determinant of T
Change in SUM divided by change in A
A
Angular flux evaluated using f,„ of Eq.(C-2)
Angular flux evaluated using f tm of Eq.(C-3)

AVERAGED OVER THETA J ffr,},e,f>)<S"i0<J0

The sense switches do not alter the program when in the off

position. The changes which occur when they are in the on posi-

tion are given in Table C-3«

Table C-3

Sense Switches

Switch Operation When Switch On

1
2

3
4

Not used
Causes SUM, SLOPE, and LAMBDA to be typed after
each trial
Causes CRAM(X) subroutine to type out T matrix
Not used
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LOGIC DIAGRAM
FOR

APPENDIX C

Start:

Read in

Program

Read in

Data

Calculate ROOT(J), CFR(J)

Set MMM = III =JJKK =

Set ALI = 2xAL

Form
TEST = ALI-AL

Calculate

BESEL(I,

and COEFU,

I

,j, -(^wls
:
est/avr

Set

TEST=-TEST

No

Form T Matrix

(Depends on MM)
Calculate and

Print X(J)

Set JJKK=0

Yes

(Is JJKK=Q)

Is MMI2=0

No

Form

Augumented
T Matrix

Print

SUM.AL
SLOPE

Print

FORMAT
601

<i

IF SENSE
SWITCH 2

Calculate

SUM =

Calculate

f
IO'

f
2l »

f
IO »

flh

f22' f33 ,f30> SSR

Tl

ON
Print SUM
SLOPE, AL

Calculate

SLOPE
OFF

Set SUM I = SUM,
ALI=AL
AL = AL-SUM/SLOPE

(Is 1 1 J =0

Print SUM, Set 111= I,

ALI=AL, SUMI = SUM
AL=AL+DL

Calculate

f
3l'

f
20

(If MM-

Set JJKK=0,
f
30

= SSR

( Is JJKK=C?

(Is JJKK = d

Calculate f-

in moderator

Calculate

in fuel
32

Calculate f

in fuel
20

Calculate f20
in moderator

Calculate and
Print Inward
Flux

Calculate and
jr Print

/f sin0d0
o

I
Calculate and
Print f(e|t 4>.)
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iterate: for
AT BOUNDARY*

LAMBDA AND CALCULATES ANGULAR DISTRIBUTION
BOTH IN MODERATOR AND IN FUEL

9

10

11

30
90

91
93
9 2

601

110

112
111

DIMENSION T(12»13)»X(12) .ROOT (8) .TERM (8

)

»ARG<20)
DIMENSION BESEL(20.4) »GAMO(2) .GAMK2) »COEF( 10 , 12 ) > CFR ( 6 )

FORMAT ( E 16 . 7 » F 1 6 • 7 E 16 . 7 • E 16 . 7

)

FORMAT (F 16. 7/)
FORMAT (f-'l 6. 7, El 6. 7, El 6. 7/)
FORMAT! I5»I5»I5»I5tI5»I5)
F0RMAT(E16.7»E16.7,E16.7,F16.7/

)

FCRMAT(E16.7»E16.7/)
F0RMAT(E14.7,I6.E14.7)
READ '+.MM38.MM12.MM

4.MM33.MM12.MM
1»GAM0{ 1) ,GAM0(2) ,GAMK 1 ) .GAMK2)
1.GAMOI 1) ,GAMO(2) .GAMK 1) .GAMH2)
1»SIGF»RF»SIGM.RM
l.SIGF,RF»SIGM»RM
1.CRIT1 .DL.AL
3.CRIT1 .DL.AL

TYPE
READ
TYPE
READ
TYPE
READ
TYPE
J = l

K = l

K1=J+1
A=l. +GAMO(K)*(.8 + 27.*GAMl(K)/35.)
ROOT! J)= 3 5.*A*( 1,-SORT(1.-108.*GAMO(K)*GAM1(K)/(35.*A**2) ) J/18.
ROOT! J+l)=- 35.*A*(l.+SORT( 1.-108. *GAMO(K)*GAMKK )/( 3 5.*A**2) ) )/18.
ROOT( J+2) =35.*GAM1 (K )/ !8.*GAM1 (K)+7.

)

ROOT! J+3) =7.
DO 9 I=J,K1
CFR( I ) = ( ROOTf I )-GAM0(K)*< 3 .*GAM 1 ( K ) + 7. ) )/(ROOT( I )*(ROGT( I ) -7. ) )

IF( J-l )3»10,11
J = 5

K = 2

GO TO 12
MMM =

JJKK
AL1=2.*AL
II 1=0

KKK-0
TEST=AL1-AL
IFITEST )91 .92,93
TEST=-TEST
IFITEST/AL
PRINT 601
FORMAT! 17H
GO TO 316
5 L = ,*, l * • * ?

no i i i j=\ ,n

I FU-5) 112.111 .112
TERM! J)=SQRT(ROOT(J)-SL)
CONTINUE
TERM! 5

)

^SQRT ( SL-ROOT ( 5 )

)

DC 113 J=l ,':

CRITl)316»9'n94

DELTA LAMBDA - 0/)
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202

11?

12 4

118

119
121

116

125

120

122
117
123

114
206

13!

130

132

ARC (J)

ARG (
J+

A R G ( J +

*\ n r
;
j .l

ARG (J-1

CO 11

A

IF< J-5
BESEK
BESEK
A= -1.

B= -A
GO TO
BESEK
BESEK
GO TO
IFU-9
BESEK
BESEK
A = l.
B^A
GO TO
BFSFL!
BESELI
IF( J-9
BESEK
BESEK
GO TO
A = l.

GO TO
IF( J-l
ifu-i
BESEK
BESEK
CONTIN
A = -l.
B-A
C---A

L = l

M=2
K = L

DO 130
COEF(

1

COEF(2
COEFI3
C0EFI4
C0EFI5
CCEF(6
C0EF(7
COEFd
COEF(8
GOEF(9
IF(M-2
L = 5

= T E R M ( J ) * S I G F * R F

'. )-TERM( J+4)*S IGM*RF
C s--h?c- ( JA-I )

12 )

- TF Pv ( J+ 4 ) * S I GM*RM
!M=APG(J + 12)
J-l *20

) 1 1 5 » 1 1 3 » 1 \ o

J*1)=TZER( »RG( J)

)

J»2) = IONE( ARG( J) )

123
J*1)=YZER(ARG(
J»2)=YONE(ARG(
120
) 121 » 116*122
J.1)=KZFR(ARG(
J»2)=KONE(ARG(

123
J»1)=JZER(ARG(
J*2)^JONE(ARG(
)12O,125»120
J»3)=( ARG (J >**

J,4)=< ARG (J)**
114

124
3 ) U 5 , 11 fi , l 1 7

7)121tll6tll5
J»3)=2.*A*BESE
J,4)=4.*A*BESE
UE

J) )

J) )

J) )

J))

J) )

J) )

7 )*( l.-ARG( J)**2/12. )/8.
3)*(1.-APG( J)**2/16.)/48.

LIJ.2) /ARG( J)
KJ,3)/ARG( J)

+B*BESEKJ»1)
+B*BESEKJ,2)

J = L»M
»J) =A
»J) =B*6.*TERM(
, J) =A*3.*GAM0(
.J) =A*(3.*SL-R
» J) =C*TERM( J)*
*J) =-B*3.*(SL-
. J) =3.*AL*COEF
C* J

)

=A*3.*AL*(
.J) =C*TERV( J)*
* J) =B*9.*TFRM(
) 132, K?, 131

i)*AL*CFR(J)
K)*AL/ROOK J)

OOT( J) )*CFR(J)
COEF(3.J)/AL
ROOK J J )*CFR( J)
( 6 , J )

5.*SL-3.*ROOK J) )*CFR(J)/5.
CCEF(6»J)/2.
J)*(5.*SL-ROOT(J) )*CFR(J)/1C.
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136

131
135

13 '4

142

K=2
A = -A
C = -C
M=L
GO TO 133
IFIM-M 135,135»134
L = 6

3^-B
GO TC
K = l

A = -l.
J - 3

conn i

C0EF(2
cocr(3
CCEF(4
CCEFI5
C0EF(6
C0FF!7
C0EF(8
C0FF(9
COEFt 1

CCEFd
CCEF(2
C0EF(3
C0EF(4
C0EF(5
C0EF(6
CCEF17
C0EF(8
C0EF19

136

J)=0.
J) =-A*5.*GAMl IK)*(2.*SL-R00T( J) )/( TERM( J)*RCOT ( J)

)

I) .A

J) =A*5.*GAM1 IK.) *AL/POOT ( J)

J) =-A*AL/TERM(J)
J)=-C0EF(4iJ)
J) =-A*5.*GAMl (K)*(3.*SL-R00T( J) )/ROOT( J)

J)=-TFRMU)*C0EF(4»J)/2.
J)=-A*GAMi (K)*AL*( 15.*SL-11.*ROOT( J) ) / ( 2 .*ROOT ( J )

J
' TERM ( J } )

»J >=A*GAM1 (<)*( 5.*SL-R00T( J) )/ROOT( J)

J+l) = 0.0
J+l) =-A*2.*AL/TERM( J+l

)

J+D-0.0
J+1)=A
J+l)=C.O
j+1 )=-A*(SL+ROOT( J+l

)

)/(SL-Rn0T( J+l) )

j+1 )=-a*al*( ^.*£L-R0nT( J+L ) ) / ( SL-ROOT ( J+l )

)

J+l )^A*(SL+ROOT( J+l ) ) /( 2.* TERM (j+l j

)

J+l )--A»(3.*SL-R00T( J + l ) )/(2.*TERM( J + l) )

CCEF(10*J+1)-A*AL
IF( J- 3) 141,140,141

14C J = 7

A- -A
K^2
GO TO 142

14 1 00 146 K=5*8
00 147 J=I » 1C

147 C0EF(J»K+4)=COEF(J»KJ
I F(K— 5

]

146,146*148
14e CO 149 J=2,8,3
149 COEF( J,K) ~-COEF( J > K )

C0EF(9,K>=-C0FF(9»K)
146 CONTINUE
211 DO 150 J=l ,12

DC 151 KM, 3.2
151 T(K»J)=C0EF(K»J)*BESEL(J»1 )

IF(MM-1 )713. 714*71°
714 T (4 ,J)=C0EF(9.J)*BFSEL( J.2)

GO TO 715
7 13 T('4,J)=C0EF (4,J)*BESEL< J.l )

715 DO 15? K.= 2.5»3
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152 T(K »J)=CO'r 'r (<»J)*"f: SEL ( J»2 )

T (6,J)=COE<r (6*J)*BESEL(J»3)
I F(MM-1 ! 73C , 730»731

73 T(7,J)=C9EF( 7,J)*BESEL(J»3)
GO TC 150

731 T(7»J)=C0EF(9»J)*BE5ELU»2)
150 T(8,J)=CCEF(e*J)*8E5EL(J»4)

DO 155 J=9»12
DC 155 K=1.4

155 T(J,K)=0.0
DO 156 J=5»12
T(9»J) =C0EF(1»J)*SESEL( J+8.1) + 2 . *COEF ( 5 , J ) *BESEL ( J+8 , 2 ) /3

.

T (9»J) = T(9,J)-(C0EF(4.J)*8ESEL( J+8 , 1
) -COEF ( 6 , J ) *BESEL ( J+8, 3) )/8.

IF(MM-1 }720»721,720
72 T( 10,J)=?.*COEF(^ » J ) *BESEL ( J+8 » 1 ) /3. +COEF ( 2 » J } *BESEL ( J + 9 2 ) / 4

.

GO TO 722
721 T(10,J)=-C0EF(6,J)*BESEL( J+8,3)/48. +8 . *COEF ( 9 , J ) *BESEL

(

J+8 ,2 ) /2 1

.

T(10»J)=T(10»J) +(COEF( 1,J)M. +7 . *COEF ( 4 , J ) / 16 . ) *BESEL ( J + 8 , 1 )

722 I F(MM-l) 723. 723*724
72 3 T( ll»J)=COEF(2»J)*BESEL(J+8.2)/8. +4. *COEF ( 7 » J ) *6ESEL ( J + 8 . 3 J /35 .

GO TO 725
72 4 T( ll»J)=-COEF(6.J)*3ESEl( J+8»3)M8. +8 . *COEF ( 9 » J ) *BESEL ( J + 8 »2 ) /21.

T(ll»Ji=T(ll*J) +(C0EF(l,J)/4. +7.*COEF(4,J ) / 16. )*BESEL ( J + 8 » 1

)

72 5 T(12»J)=-COEF(l , J ) *BESEL ( J^-8 , 1 ) /4 . +8 . *COEF ( 8 , J ) *BESEL ( J+8 .4 ) /35.
T(12tJ)=T(12tJ) +COEF(4»J)*BESEL( J+8»l)/16.

156 TU2.J)=T(12*J) +3.*COEF(6.J)*BESEL(J+8.3)/16.
160 IF( JJKKJ1 160*1160 »944

1160 IF(MM12)161»161»3 C'2

161 IF(MM38)902»PU2.90l
902 SUM=CRAM( -12.

)

GO TO 299
901 X( 1 )=CRAM( 12.

)

PRINT 610
610 FCRMAT15X7H R(I+1)/)

DO 935 J=l ,10
93^ PRINT 1,X(J)

PRINT 2»X( 11 )

JJKK=1
GO TO 211

944 DC 945 J=l ,8
94 5 ARG(J)= -T(J.l)

DO 946 J=l,8
DO 94 6 K=l,3

946 ARG(J)=ARG(J) -X ( K ) *T ( J ,K+ 1 )

F00=ARG( 1

)

F21=ARG<2)
F10=ARG(3)
F11=ARG(5 )

F22=ARG(6 )

F33=ARG{ 8)
SSR=-COEF( lO»l)*BFSEL(ltl)
F30=C.
DO 1618 J =1,3
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1618 S5R=SSR -X(J)*C0EF(10.J+] )*BESEL< J+l»l)
DO 1619 J=4»ll

1619 F3O=F30 +X ( J ) *COEF ( lu , j+l ) *BESEL ( J+l » 1

)

1513 IFIMM-1 )8, 500, 501
500 F31=ARG(4)

F32=ARG(7)
IF(JJKK)1500, 1500,1501

1501 F20=0.
DO 1502 J=4,ll

1502 F20 = F20 +X ( J ) *COEF ( 4 , J + l ) *BESEL ( J + l , 1 )

GO TO 502
1500 F20= -C0EF(4,1)*BESEL(1,1)

DO 1503 J=l»3
1503 F20=F20 -X ( J ) *COEF ( 4 , J+l

)

*BESEL ( J+l , 1

)

GO TO 502
531 F31=ARG(7)

F2C=ARG(4)
IF{ JJKK)1521 ,1521*1522

1522 F32=0.
DO 1523 J=4,ll

1523 F32 = F3? +X ( J ) *COFF ( 7 , J+l ) *BESEL ( J + l , 3 )

GO TO 502
1521 F32 = -COEF(7»l)»BESEL(l,3)

DO 1524 J = l,3
1524 F32=F32 -X ( J ) *COEF ( 7 , J+l ) *BESEL ( J+l , 3

)

502 IF(JJKK)503, 503,504
504 PRINT 698
698 FORMATC20X13H IN MODERATOR/)

GO TO 505
503 PRINT 699
699 FORMAK20X8H IN FUEL/)
505 PRINT 622
622 FORMAT(7X4H PHI.13X2H F.12X6H THETA/)

THETA=0.
F=F00 +F10 +F20 +F30
PRINT 666, F, THETA

666 FORMATI3X13H ALL VALUES , E16. 7 , E 16. 8 )

DO 350 1=1 ,5

PHI=0.0
THETA=THETA+, 5235988
CY=COS( THETA)
SY=SIN< THETA)
IF( 1-3)351 ,532,351

5?2 CY=0.
351 DO ^50 J=l ,1

1

CPHI=COS(PHI )

CPHI2=COS(2.*PHI )

f PHI3=COS(3.*PHF )

IF( J-6J37.1 ,372*371
372 CPHI=0.U

CPHI3=0.0
371 F=F00 +F10*CY -F11»SY*CPH1 + F20* ( 3 . * ( C Y**2 ) -1 . ) / 2

.

F = F-F21*SY*CY*CPHI + F22* ( SY**2 > *CPH I 2/2

.
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F=F +F30*(5.*(CY**3)-3.*CY)/2 < +F32*( SY**2 )*CY*CPHI 2/2,
F=F-F31*SY*(5.*(CY**2)-1. )*CPHI/2. -F33* ( SY**3 ) *CPHI 3/2.
IF(J-1)359,359,358

359 PRINT 1 »PHI »F,THETA
GO TO 35U

358 PRINT 1 »PHI tF
35 PHI = PHI +.3141593

THETA=3. 1415927
f-= FOO -F1U + F20 -F3G
PRINT 666,h,THFTA
PRINT 531

631 FORMAT (YX4H PHI,3X33H ANGULAR FLUX AVERAGED OVER THFTA/)
PI = 3.1415927
PHI = 0.0
DO 766 I =1,11
CPHI=COS(PHI )

CPHI2=COS(2.*PHI

)

CPHI3=COS(3.*HHI

)

I F ( I -6 ) 382,381,382
381 CPHI=C.O

CPHI3=0.0
382 FA=2.*F00 -P I*F11*CPHI /2. +2 .*F22*CPHI 2/3

.

FA=FA-PI*F31*CPHI/16. -P I *3 . *CPHI 3*F33/ 16

•

PRINT 1, PHI, FA
766 PHI = PHI +.3141593

FIN=PI*(2.*F00 +F11 +F31/8. -F33/8.)
PRINT 638»FIN

638 F0RMAT(E16.7.14H = FLUX INWARD/)
IF(JJKK)8,8,1512

1512 JJKK=0
F30=SSR
GO TO 1513

299 IF( I I I ) 300,300,304
300 111=1

PRINT 602, SUM
602 F0RMAT(E16.7,6H = SUM/)

AL1=AL
SUM1=SUM
AL=AL+DL
GO TO 90

304 SLOPE=( SUM-5UM1)/(AL-AL1)
IF(SENSE SWITCH 2)330,313

330 IF(KKK)314»314,315
31 '\ KKK.= 1

PRINT 6'V,

315 PRINT 3, SUM, SLOPE, AL
313 SUM1=SUM

AL1=AL
AL=AL-5UM/SLOPE
GO TO 90

316 PRINT 604
604 FORMAT(8X4H SUM,9X6H SLOPE, 11X7H LAMBDA/)

PRINT 3, SUM, SLOPE, AL1
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352
317

319

319

DO 317 J=] ,12
T( J,13)= -T( J,l

)

DO 318 J=l.ll
DO 318 1 = 1 ,1!
T( J.I )=T( J,I+1 )

DO 319 J=l»ll
T(Jtl2)=0.
T(12»J)=0.
MM38=1
CC TO 161
END
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APPENDIX D

Description and Explanation of IBM-1620

Computer Program used to Determine an

Equivalent Radius

This program uses an interpolation procedure to calculate

the fuel rod radius which makes the sum of the weighted squares

of the residuals "between experimental and theoretical values of

the total neutron flux a minimum. The program was written in

FORTRAN.

The total neutron flux in a two region cylindrical medium

is described by the P^ approximation to the Boltzmann equation

for neutron transport. The total flux is proportional to fQQ

and the general fiM can be written in the form

fi-Ay* = j^-Oi^ (D-l)

where in the fuel (central region)

G,>p '- iA^tJ^IJ^Xr)e
Kiy

(D-2)

and in the moderator (surrounding region)

f i^erf^ 1^** + ufctu$ide x*2*
(D" 3)

The R^, v n ,
and <s„ are given in Appendix A. The aJ, B1 ," n*

and Cn , in terms of aJ s 1.0, and the A* are calculated numer-

ically in this program by the method described in Appendix C and

in the Discussion. For boundary conditions, all f Jm except f

and f
32

are matched at the interface, and the equations obtained

by using P
1Q , Pn , P31 , and P33 in Marshall's boundary conditions

at the moderator free surface are used.
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By considering only the radial variation of the flux at the

points r,, and defining

the sum of the weighted squares of the residuals can be written

as

E = i^E|D,^-$.f (D-5)

where Wi is the weighting function and $y is the experimental

value of the total flux at the point r*.

In this program an initial estimate of the rod radius is

used to calculate the F^*, the D^ are determined by the least

BquareB procedure, E is- calculated, the rod radius is changed,

and the process is repeated. After three values of E have been

calculated, new values of the rod radius are predicated by a

second order polynomial of E as a function of rod radius. This

process continues until the change in the rod radius, divided by

the rod radius, is less- than a specified precision.

The program Is arranged so that it may be taken off the

computer after any given A has been determined or after E and a

new rod radius have been calculated, without destroying the

mechanism which has been set up to predict new values of A. and

rod radius. The previous values must be used as input in the

succeeding calculation however.

The proper sequence for loading the input data is shown in

the source program. The meaning of the symbols is given in

Table D-l.
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Table D-l

Input Data

Symbol Explanation

NMOD
MMM

GAM0(1'
GAM0(2
GAMlll'
GAM1(2'
SIGP
SIGM
RM
CRIT1
CRIT2
FACTR

DIV1

DLTRF
EERR(l)

EERR(2) V

RRF(1'
RRF('2|

phi(j;
K
W(J)

A

NC
RF
ADD1
DL
AAL(J)
AALO(J)
SLOPE(

J

INDEX(

J

Number of data points
= when no previous value of E is known

when one previous value of E is known
when two previous values of E are known
in fuel
in moderator
in fuel

- 1
= 2

ltr/Z
Ztr/z in moderator
t in fuel ( cm-1 )

t in moderator (cm~l
Moderator radius (cm,
Convergence criteria for A (l.OxlO-8 )

Convergence criteria for rod radius
Factor used to convert radial position of data
points into CGS units
Factor used to convert radial position of data
points into CGS units
Increment in rod radius
Next to last value of E if MMM - 2
Last value of E when MMM = 1
Last value of E when MMM = 2
Rod radius corresponding to EERR(l)
Rod radius corresponding to EERR(2j
Data points in order from center out
Any integer
Reciprocal of square root of weighting factor,
in order from center out
Radial position of data points in order of
increasing r (any units)
Number of harmonics
Trial rod radius (cm)
1.0x10-7 (used to increment X slightly)
Increment in X
Trial Aj in order of increasing J up to j n NO
cT

J'n£w^P^
evioUS calculation, in order of Increasing 1

SLOPE(J) from preceding calculation
* if Aj unknown
» 1 if Aj known
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All of the output is labled, however some of the Input data

is printed out immediately after being read in, and this output

is unlabled. The dimensions on all labled output is in CGS

units. The meaning of all words and symbols used in the output

is given in Table D-2.

Table D-2

Output

Symbol Explanation

DELTA LAMBDA =

DELTA RADIUS -

BUM
SLOPE
LAMBDA"
R(ltl)'

COEFICIENTS
CALCULATED FLUX
RADIUS

ROD RADIUS
ERROR

(Difference of new A and old A is zero,
program continues)
(Difference of new rod radius and old rod
radius is zero, problem is finished and
program goes back to start)
Value of the determinant of T
Change in SUM divided by change in A

Values are listed in the following order:
A"2 ,A3 ,A"4, cl» c2» c3» C4,B1 ,,b2 ,B3 > B4
(note that An = 1.0)

Di of Eq.(D-lT
Total neutron flux at r.
Radial position of CALCULATED FLUX and of
experimental data points
Fuel rod radius
E (Least squares error)

If the initial estimate of A is reasonably close to the

correot value, approximately 5 minutes of computer time is

required to determine the correct \ and the corresponding x, for

each harmonic used. For 37 data points, approximately 5 addi-

tional minutes is required to calculate the error and a new rod

radius after / has been determined. An additional 5 minutes is

required for each additional harmonic.
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The sense switches do not alter the program when In the

off position. The changes which occur when they are In the on

position are given in Table D-3.

Tahle D-3

Sense Switches

Switch Operation When Switch On

1 Punch R(T-KLV
Punch RP, CALCULATED FLUX, and RADIUS

2 Print SUM, SLOPE, and LAMBDA' after each trial
3 Causes CRAM(X) subroutine to type out T matrix
4 Interpolation for rod radius is bypassed,

new values- of RF must be read in
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Start:

Read in

Program

LOGIC DIAGRAM
FOR

APPENDIX D

MS. m.
Begin Data
Read in

Read RF
Calculate ROOT(J),CFR(J)
Set INDXI(J)=0, RFI=2XRF
AALI(J) = 2XAAL(J)

Form
TEST=RFI-RF

Punch
EER.RF

Punch
FORMAT
1601

-^-Ofes)^ (Is TEST = >

Set
LNC=LNC+I

Set III sO,
AL = AAL(LNC)
ALI = AAL (LNC)

9p_

Set
LNC =

Is ITESTI/RF
YesPX = CRIT2

Form
TEST = ALI-AL

Punch
FORMAT 601

-+—presV-—(Is TEST = 6)

Go to LOOP
(See next page)

Punch SUM,
SLOPE, AL

NO Is ITESTI/ALX
i CRIT I

A*iYes,

Form Augumented
T matrix and
Calculate X(J)

Calculate TERM(LNC)
BESEL(I,J), COEF(I,J),
T matrix

-(noV-(is INDEX(LNC) = 0>

Punch X(J)

Calculate ERR

Punch RF
Punch FLUX
and RADIUS

f SENSEX
;WITCH 1/

I

SWI

Go to 902
(next page)

Calculate f. ( r.)

Store TLRM(LNC), X(J)
Set AAL(LNC)=AL,
AALI(LNC)=ALI

Calculate and
Punch Coefficients

{ H0\+-<Is LNC =NC>—*-(jesV
Set INDEX(J) =

INDXI(J) = 2
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LOGIC DIAGRAM (CONT'D)
APPENDIX D

ON

If MMM-

Punch RF, ERR
Set EERR(3) = ERR
RFI =RRF(3)=RF

LOOP

If SENSE
SWITCH 4

OFF

Increment RF
Punch new RF
Set RRF(J) = RRF(J+|)
EERR(J) = EERR(J+I)

Punch ERR,RF
Set RRF(I) =RF
EERR(I) =ERR

Punch ERR, RF
Set MMM = 2

RFI = RRF(2)=RF
EERR(2)=ERR
RF=RF f DLTRF

Set AALO(J)=AAL(J)
Increment AAA(J)

Go to 888
(Preceding page)

'If SENS
.SWITCH 4 ON

Set MMM=I, RFI=RF
RF = RF + DLTRF
AALO(J) =AAL(J)
Increment AAL(J)

Go To 80
(Preceding poge)

Is 111 =

©"*

902
Calculate

SUM = ITI

If INDXKLNO-I

Print SUM
Set III =

I

ALI= AL
SUMI =SUM
AL=AL+DL

Go to 90
(Preceding page)

NO
^Ki>

Calculate

SLOPE

If SENSE
SWITCH 2 ON

Print SUM
SLOPE, AL

Set INDXI(LNC)=|
SUMI=SUM, ALI=AL
AL=AL-SUM/SLOPE
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C LEAST SQUARES PROGRAM USING UP TO 4 HARMONICS, P3 APPROXIMATION
C

DIMENSION T( 12,13) »X (12) , ROOT (8) ,TERM(8) ,ARG(20)
DIMENSION PHI(50),R(5C),W(50),ALSIG(4)»BTSIG(4)»ENSIG(4)
DIMENSION BESEL(50,4) ,GAM0(2) ,GAM1 (2),COEF(8»12),CFR(6)
DIMENSION OMSIGU) »Z(36) , TEEM (32) »AAL(4) ,AALK4) »INDEX(4)
DIMENSION SLOPE (4) ,AAL0(4) iRRF(3) ,EERR(3) ,INDX1(4)

1 FORMAT(Elb.7,E16.7,E16.7,E16.7)
2 FORMAT (E16. 7/)
3 F0RMAT(E16.7,E16.7,E16.7/)
4 FORMAT ( 15, 15,15, 15,15,15)
5 F0RMAT(E16.7,E16.7,E16.7,E16.7/

)

6 FORMAT! E16. 7 , E 16. 7/

)

7 FORMAT(E14.7,I6,E14.7)
C

8 READ 4,NM0D»MMM
PRINT 4,NM0D,MMM
PUNCH 4,NM0D,MMM
READ l,GAMO( 1) ,GAM0(2) ,GAM1( 1 ) .GAMK2)
PUNCH 1,GAM0( 1) ,GAM0(2) ,GAM1( 1 ) ,GAM1(2)
READ 1,SIGF,SIGM,RM,CRIT1
PUNCH 1,SIGF,SIGM,RM,CRIT1
READ 1,CRIT2,FACTR,DIV1,DLTRF
PUNCH 1 ,CRIT2,FACTR,DIV1,DLTRF
READ l.EERR(l) ,EERR(2) ,RRF ( 1 ) , RRF ( 2

)

PUNCH l.EERR(l) , EERR ( 2 ) ,RRF ( 1 ) , RRF ( 2

)

DO 15 J=l,NMOD
READ 7, PHI (J) »K»W( J)

15 W( J)=1./(W( J)**2>
DO 16 J=l,NMOD
READ l.A

16 R(J)=A*FACTR/DIV1
READ 4,NC
PUNCH 4»NC

888 READ 1,RF,ADD1,DL
DO 3115 J=1,NC
READ 1,AAL( J) ,AAL0( J) ,SLOPE( J)
READ 4,INDEX( J)

AAL1(J)=2.*AAL( J)
INDXK J)=0

3115 PUNCH 1 »AAL( J) ,AALO( J) ,SLOPE( J)
PRINT 3»RF,ADD1,DL
PUNCH 3»RF,ADDl,DL

C

J = l

K = l

12 Kl-J+1
A = l. +GAMU(K)*(.8 + 27.*GAMHK)/35. )

ROOT(J)- 3 5.*A*(1.-SQRT(1.-108.*GAM0(K)*GAM1(K)/(35.*A**2)
) )/18.

RGOTf J+1)=35.*A* (l. + SQRTl 1
.
- 1 08 . *GAM0 ( K ) *GAMl ( K ) / ( 35.*A**2) ) )/18.

ROOT( J + 2) =35.*GAMKK)/(8.*GAM1 (K)+7. )

ROOT( J+3) =7.
DO 9 1 = J » K

1
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V CFRU ) = (ROOT( 1 l-GAMO ( K ) * ( 3 •*GAM1 ( K, ) + V. ) )/(ROOT( I )*(ROCT( I )-7. ) )

IF ( J-l Jo.lL. 11
10 J = 3

K = 2

GO TO 12
11 RF1=2.*RF
80 TEST=RF1~RF

IF(TEST)81»82»83
81 TEST=-TEST
8 3 IF(TES1 /RF-CRIT2) 1316.900,900
82 PRINT 1601

1601 F0RMATU7H DELTA RADIUS = 0/)
GO TO 1316

C

C FROM HERE TO 1800 FINDS EIGEN-VALUE AND E IGEN-VECTORS
C

900 DO 1800 LNC=1»NC
111=0
KKK =

AL=AAL(LNC)
AL1=AAL1(LNC)

90 TEST=AL1-AL
IFITEST )91 ,92,93

91 TEST=-TEST
93 IF(TEST/AL-CRIT1)316.94.94
92 PUNCH 601

601 FORMAT* 17H DELTA LAMBDA = 0/)
GO TO 316

94 SL=AL**2
110 DO 111 J=l,8

IF( J-5 ) 112 .1 11 . 112
112 TERM( J)=SORT(ROOT( JJ-SL)
111 CONTINUE

TERM(5)=SQRT(SL-ROOT(5)
)

DO 113 J=l»4
ARG( J)=TERM( J)*SIGF*RF
ARG( J+4)=TERM( J+4)*SIGM*RF
ARGIJ+8 )=ARG( J + 4)
ARG( J< 12) =TERM( J+4) *SIGM*RM

113 ARG( J+16) -ARG( J+12)
DO 114 J=l,20
IF(J-5)115,118.119

115 BESEL(J,1)-I2ER(ARG(J)
)

BESEL(J,2) = I0NE(ARG( J) )

A- -1.
124 B- -A

GO TO 123
118 BE5EL(J»1)=YZER(ARG( J) )

BLSEL( J,2)=Y0NE(ARG(J) )

GO TO 120
119 IF(J-9) 121,116,122
121 BESEL(J.1)=K2ER(ARG( J)

)

BCGELl J.2 J=KONE(ARG( J) )
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A = l.
B = A

CC TO 123
116 BE5EL(J.1)=JZER(ARG( J)

)

BESEL(J»2)=JONE(ARG(J)

)

IFU-9) 120.125.12C
125 BESELU.2 ) = I ARG ( J ) **2 ) * ( 1 . -ARG ( J ) **2/ 12 • )/8.

BE5ELU »4> = ( ARG( J)**3)*( 1 . -ARG ( J ) **2/ 16 . )/48.
GO TO 114

120 A=l.
GO TO 124

122 IFU-13) 115,118,117
117 I F ( J-17 ) 12 1 . 116 , 115
123 BE5ELI J ,3 ) =2 .*A*EESEL ( J, 2) /ARG( J) +B*BESEL ( J , 1 )

BESEL(J»4)=4.*A*BESEL(J,3)/ARG(J) +B*BESEL ( J , 2 )

114 CONTINUE
A = -l.
B = A

C^-A
L = l

M = 2

K = L

133 DO 130 J^L.M
C0EF(1.J)=A
C0EF(2,J) =B*6.*TERM( J)*AL*CFR(J)
COEF(3»J)=A*3.*GAM0(K)*AL/ROOT( J)

COEF (4, J)=A*(3.*SL-R00T( J) )*CFR( J)

COEF (5. J) =C*TERM( J ) *COEF ( 3 » J

)

/AL
C0EF(6.J) --B*?.*(SL-ROOT( J) )*CFR( J)
C0EF(7,J) =8*9.*TERM(J)*(5.*SL-ROOT< J) )*CFR( J)/10.

130 C0EF(8,J) -C*TERM< J)*C0EF(6. J) /2.
IFIM-2) 132,132,131

132 L = 5

K = 2

A = -A
136 C=-C

M = L

GO TO 133
131 IF(M-5) 135,135,134
135 L = 6

B = -B
GO TO 136

134 K = l

A = -l.
J^3

142 COEF (1,J) -0.
COEF(2» J) =-A*5.*GAMl ( K ) * ( 2 .*SL-ROOT ( J ) )/( TERM( J)*ROOT( J) )

COEF(3,J) =A
COEF (4, J) =A*5.*GAMl(K)*AL/ROOT(J)
COEF(5,J) =-A*AL/TERM(J)
COEF(6,J) =-C0EF(4, J)
COEF (7, J) =-A*GAMKK)*AL*( 15. *SL-1 1 .*ROOT ( J ) )/( 2#*ROOT ( J )*TERM( J )

)

COEF (8, J) =-TERM(J)*C0EF(4, J) /2.
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CCEF( l.J-f 1

C0EF(2»J+1
C0EF(3,J+1
C0EF(4,J+1
C0EF<5,J+1
C0EF(6, J+l
C0EF(7.Jt-1

C0EF(8,J+1
IF( J-3) 14

1

140 J=7
A = -A

GO TO 142
141 DO 146 K=5»

DO 147 J=l,
147 C0EF(J,k+4)

IF(K-5) 146,
148 DO 149 J=2,
149 COEF(J,K)=-

C0EF(7,K)=-
146 CONTINUE

DO 150 J=l,
DO 151 K=l»

151 T(K,J)=COEr
T (4»J)=C0EF
DO 152 K=2i

152 T(K.J)=COEF
Tt6,J)--C0EF
T(7,J)=C0EF

150 T(8,J)-^C0EF
DO 155 J=9,
DO 155 K=l

,

15 5 T ( J , K ) - .

DC 156 J = 5,
T(9,J) =COE
T(9,J) - T(

Tl 10,J)=2.«
T (11,J)=-C0
T( 11»J)=T( 1

T( 12»J)=-C0
T(12»J)=T(1

156 T( 12»J)=T( 1

IF( INDEX(LN
902 5UM=CRAM(-1

IF( INDXKLN
298 IF(II1 1300,
300 111=1

PRINT 602. SUM
602 FORMAT ( E 16.7 »6H

AL1=AL
SUM1=SUM
AL=AL+DL
GO TO 90

= 0.0
=-A*2.*AL/TERM( J+l

)

- .

= A
-0.0
=-A*(SL+ROOT( J+l) )/(SL-ROOT( J+l)

)

= -A*( 3.*SL-ROOT( J+l ) )/(2.*TERM( J + l) )

=A*(SL+ROOT( J+l ) )/ (2.* TERM (J+l )

)

140*141

8

8

=COEF( J,K)
146, 148
8,3
COEF( J.K

)

COEF(7,K)

12
3,2
( K,

(4,
5,3
(K,

( 6,

( 7,

J)*BESEL( J»l

)

J)*BESEL( J»l

)

J)*BESELU»2 )

J)*BESEL(J»3

)

J)*BESEL( J»2 )

J)*BESEL( J, 4

)

1 2

F(l
9,

J

CO!
EF(
ltJ
EF(
2,

J

2 ,J

C) )

2.)
O-
300

•J)*BESEL( J + 8,1 ) +2.*COEF(5»J)*BE£EL( J+8.2J/3.
)-(C0EF(4, j)*BESEL( J + 0,1) -COEF ( 6 , J ) *BESEL ( J + 8,3) )/8.
F(3,J)*BESEL( J+8,1) /3. +COEF ( 2 » J ) *6ESEL( J+8 »2 ) M.
6»J)*BESEL/(J + 8,3)M8. +B.*COEF ( 7 , J ) *BESEL ( J+8 , 2 ) /2 1

.

) +(COEF(l,J)/4. +7.*C0EF(4,J)/16. )*BESEL( J+8,1)
liJ)*BESEL( J+8, 1 )/4. +8.*COEF(8,J)*BESEL( J+8,4)/35.
) +COEF(A,J)*BFSEL( J+8,1 )/16.
) +3.*COEF<6, J)*BESEL( J+3,3)/16.
902,902,352

1 )298,?04,313
,304

SUM/ )
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3 04 SLOPE (LNC) = ( SUM-SUM 1 )/(AL-ALl )

IF (SENSE SWITCH 2)330,313
33C IF(KKK)31*>314»31?
3H KKK = 1

PRINT 6 0-'+

604 FORMAT(8X4H SUM.9X6H SLOPE.11X7H LAMbDA/)
315 PRINT 3»SUM.SLOPE(LNC) »AL
313 SUM 1= SUM

INDX1(LNC)=1
ALl^AL
AL=AL-SUM/SLOPE(LNC)
GO TO 90

316 PUNCH 6 0't

PUNCH 3 .SUM. SLOPE (LNC) ,AL1
352 DO 317 J= 1 * 1

2

317 T( J, 13)= -T( J.l

)

DO 318 J=l»ll
DO 318 1 = 1 .11

318 T( J.I )=T( J.I+1 )

DO 319 J=l .11
T(J»12)=0.

319 T( 12»J)=0.
X(l )=CRAM( 12.

)

IFISENSE SWITCH 1)932.933
932 PUNCH 610
610 FORMAK5X7H R( 1+1 )/)

DO 935 J=l ,10
935 PUNCH 1 »X( J)

PUNCH 2.X ( 11 )

933 DO 1780 J=l,9
K8=J +8*(LNC-1)
K9=J+ 9*(LNC-1)
IF( J-8) 1781 .1781.1 780

1781 TEEM(K8)=TERM< J)
178 Z(K9)~X(J)

AAL1 (LNC) =AL1
1800 AAL(LNC)~AL

COMPUTES LEAST SQUARES ERROR AND STARTS ITERATION ON RF

DO 2101 K=1»NC
INDEX(K)-0
INDX1 (K)=2
J=l +3*<K-1)
ALSIGtK )=TEEM(J)*SIGF
BTSIG<K)=TEEM( J+1)*SIGF
ENSIG(K)=TEEM( J+4)*SIGM

2 101 OMSIG(.".)-TFCM( J+5)*SICM
DO 235 K=l ,NMOD
IF(R(K)-RF)235. 235.236

23 5 CONTINUE
236 NROD=K-l

DO 2001 J=l,12
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20C1
DO 20G1
T (>. ,K) =

DO 240
DO 240
L = l + 9*

K =

1=1 ,NMOD
(K-l)

IF ( I-NROD) 241*241 #242
241 BESELl

I

»K)=IZER(ALSIG(K)»R( I ) ) + Z ( L) *IZER

(

BTSIG ( K ) *R ( I )

)

GO TO 240
242 BESELIIiK) ~Z ( L + 3 ) *YZER ( ENS I G ( K ) *R ( I ) ) +Z ( L + 4 ) *KZER ( OMS IG ( K ) *R ( I )

)

6ESCL(

I

»K)=BESEL( I »K) + Z ( L + 7 ) * JZER ( ENS I G ( K. ) *R ( I )

)

BESEH

I

»K)=BESEL( I >K) +Z ( L+8 )

*

IZER (OMSIG ( K ) *R ( I )

)

24U T(K*13)=T(K»13) + W ( I ) *BESEL ( I »K ) *PH I ( I

)

DO 244 K=1.NC
DO 244 J=K»NC
DO 2 44 I=l,NMCu

244 T(K»J)=T(K»J) +W( I ) *BESEL ( I » J ) *BESEL( I ,K

)

IF(NC-1 )8, 245, 246
245 X( ] )=T(1»13)/T(1»1)

GO TO 2248
246 K2=NC-1

DO 247 K=l *K2
K1=K+1
DO 247 J=K1.NC

247 T(J»K)=T(KtJ)
NC1=NC+1
DO 248 J=NC1»12

248 T(J,J)=1.
X(l )=CRAM( 12.

)

2248 PUNCH 668
668 FORMAT(2X12H COEFICIENTS)

DO 2249 J=1.NC
2249 PUNCH l.X(J)

IFtSENSE SWITCH 1)555.5555
555 PUNCH 667, RF
667 F0RMAT(E16.7,13H = ROD RADIUS/)

PUNCH 633
633 FORMAT! 1X16H CALCULATED FLUX.5X7H RADIUS/)

5555 ERR=0.
DO 2250 I=l,NMOD
A = 0.

DO 2251 J=1,NC
2251 A-A +X( J)*PESEL( I »J)

IF(SENSE SWITCH 1)2520,2250
2520 PUNCH 7, A, I ,R( I

)

2250 ERR^EPR +W( I
) * ( A-PHI ( I )

) **2
C
C SWITCH 4 OFF FOR ITERATION ON ROD RADIUS
C

IFtSENSE SWITCH 4)1200,1199
1199 IFCMMM-1) 1 20U, 1201 t 1202
1200 RRFf 1)=RF

EERRt 1 J=ERR
PUNCH 666, ERR
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666 FCRV,AT(El6.7t9H = ERROR/)
PUNCH 667, RF
IF(5ENSE SWITCH 4)888,1198

119 8 MMM=1
RF1=RF
RF=RF +DLIRF
DO 1900 J=1»NC
AAL0(J)=AAL( J)

19C0 AAL(J)=AAL(J)*(1. +ADD1

)

GO TO 30
1201 MMM=2

RF1=RF
RRF(2)=RF
EERR(2)-ERR
PUNCH 666, ERR
PUNCH 667, RF
RF=RF +DLTRF

1119 DO 1901 J=1,NC
SLP=(AAL( J)-AAL0( J) ) / ( RRF( 2 ) -RRF ( 1) )

AAL0( J)=AAL( J)

1901 AAL(J)=AAL(J) + ( RF-RRF ( 2 ) ) *SI_P

GO TO 80
1202 RRF(3)=RF

RF1=RF
EERR(3)=ERR
PUNCH 667, RF
PUNCH 666, ERR
DO 1907 J-1,12
DO 1907 K=l»13

1907 T(J,K)=0,
DO 1908 J=4.12

1908 T(J,J)=1.
DC 1910 J=l,3
T( J.l )=1.
T(J,2)=RRF( J)

T( J,3)=RRF( J)**2
1910 T( J,13)=EERR< J)

X(

1

)=CRAM( 12. )

RF= -X(2)/(2.*X(3) )

PUNCH 667, RF
DO 1911 J = l,2
EERR(J)=EERR( J+l)

1911 RRF(J)=F,RF( J + l )

GC TO 1119
1316 PUNCH 666,ERR

PUNCH 667, RF
GO TO 8

END
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A study Is made of the possibility of using a fictional

"equivalent rod radius" to accurately predict the neutron flux

depression in strong absorbers by the use of the P^ approx-

imation to the Boltzmann equation for monoenergetic neutron

transport.

The theory, appropriate boundary conditions, and the re-

quired computer programs were developed for determining the

equivalent rod radius from experimental measurements in assem- -

blies having exponential flux dependence in the z- direction.

Only cylindrical geometry is considered in the theoretical

development.

Application of the commonly applied boundary conditions

yielded 16 equations with which to determine 12 unknowns. A

study of possible boundary conditions was made, and one com-

bination of 12 equations was found to give a good approximation

to the desired physical conditions. It is felt that the same

seleotion rule can be used to determine "correct" boundary

conditions for higher order PL approximations, when L is odd.

Although much of the experimental work is still to be

accomplished, the preliminary experimental work performed here

strongly indicates that the determination of good "equivalent

radii" is entirely feasible.


