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Abstract

It is essential to test the adequacy of a specified regression model in order to have cor-

rect statistical inferences. In addition, ignoring the presence of heteroscedastic errors of

regression models will lead to unreliable and misleading inferences. In this dissertation, we

consider nonparametric lack-of-fit tests in presence of heteroscedastic variances. First, we

consider testing the constant regression null hypothesis based on a test statistic constructed

using a k-nearest neighbor augmentation. Then a lack-of-fit test of nonlinear regression null

hypothesis is proposed. For both cases, the asymptotic distribution of the test statistic is

derived under the null and local alternatives for the case of using fixed number of nearest

neighbors. Numerical studies and real data analyses are presented to evaluate the perfor-

mance of the proposed tests. Advantages of our tests compared to classical methods include:

(1) The response variable can be discrete or continuous and can have variations depend on

the predictor. This allows our tests to have broad applicability to data from many practi-

cal fields. (2) Using fixed number of k-nearest neighbors avoids slow convergence problem

which is a common drawback of nonparametric methods that often leads to low power for

moderate sample sizes. (3) We obtained the parametric standardizing rate for our test statis-

tics, which give more power than smoothing based nonparametric methods for intermediate

sample sizes. The numerical simulation studies show that our tests are powerful and have

noticeably better performance than some well known tests when the data were generated

from high frequency alternatives. Based on the idea of the Least Squares Cross-Validation

(LSCV) procedure of Hardle and Mammen (1993), we also proposed a method to estimate

the number of nearest neighbors for data augmentation that works with both continuous

and discrete response variable.
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Chapter 1

Introduction

Lack-of-fit test in regression has received a lot of attention recently. The classical lack-of-

fit test with replication is given by Fisher (1922). Neill and Johnson (1984) provided a

review of linear regression lack-of-fit test procedures in the case of nonreplication. Neill

and Johnson (1985) proposed such a test by generalizing the pure error-lack of fit test

based on a consistent estimate of the experimental error variance. Based on near replicate

clusters, Neill (1988) presented a lack-of-fit test in nonlinear regression for both cases of

replication and nonreplication. In all these preceding tests, random errors are assumed to

have a constant variance and some assume that errors are normally distributed. Therefore,

these tests are only applicable to homoscedastic regression problems. The lack-of-fit test of

constant regression is a special case of testing for a nonlinear regression models.

Nonparametric lack-of-fit tests where the constant regression is assumed for the null

hypothesis have been considered by many authors. The order selection test by Eubank and

Hart (1992), the rank-based order selection test by Hart (2008), and the Bayes sum test

by Hart (2009) are among the top few that are intuitive and easy to compute. Alternative

version of the order selection test was given in Kutchibhatla and Hart (1996), which has

more straightforward calculation of the p-value. A classical textbook review of extensive

efforts in nonparametric lack-of-fit tests based on smoothing methods is available in Hart
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(1997). Hart (2008) extended the order selection method of Eubank and Hart (1992) to

rank-based test under constant variance assumption so that the test statistic is relatively

insensitive to misspecification of distributional assumptions. These two order selection tests

show excellent performance in low frequency alternatives. However, they may have low

power in high frequency alternatives.

In a more recent paper Hart (2009), several new tests based on Laplace approximations

were proposed to better handle the high frequency alternatives. In particular, one test with

overall good power is the Bayes sum test with statistic of the form

B =
n∑
j=1

ρj exp(nφ̂2
j/(2σ̂

2)) with ρj = j−2, j = 1, 2, . . . , n. (1.0.1)

It is a modified cusum statistic with a better use of the sample Fourier coefficients φ̂1, . . . , φ̂n

arranged in the order of increasing frequency. Hart (2009) gave two versions of critical value

approximation, one based on normally generated data and the other based on bootstrap

resampling of the residuals under the null hypothesis of constant regression. It is interesting

to note that even though the response variable may not be from normal distribution, the

normal approximation approach tends to give even higher power than the bootstrap ap-

proach. An explanation of this is that the Bayes sum test started with the canonical model

that the estimators of the Fourier coefficients are normally distributed and here the sample

Fourier coefficients φ̂j = n−1
∑n

i=1 Yicos(πjXi), j = 0, . . . , n−1 are approximately normally

distributed for large sample size. So the Bayes sum test works well for large sample size

and is more powerful than the order selection test and the rank-based order selection test.

For intermediate sample size, the two different approximation methods may produce very

different coefficients and therefore different empirical distributions. As a result, the two

versions of approximation of the Bayes sum test could produce very different results.

Beyond the aforementioned potential different results due to the two approximations of

the Bayes sum test critical values, another motivation for us to write this dissertation is that

the practical data may have variances vary with the covariate whereas the order selection

(OS), rank-based order selection (ROS), and Bayes sum test were derived for homoscedastic
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regression problems. The scale parameter of the error term is assumed to be a constant in

these three tests. Even in such case, different estimators of the scale parameter may be used

assuming either the null or alternative hypothesis is true.

To deal with the presence of heteroscedasticity for testing the no-effect null hypothesis,

Chen et al. (2001) proposed a new test statistic in addition to bootstrapping the Kuchibhatla

and Hart (1996) version of the order selection test. The proposed test statistic of Chen et al.

(2001) (denoted by Thet,n), has the following form

Thet,n = max
1≤k≤n−1

1

k

k∑
j=1

φ̂2
j

V̂ar(φ̂2
j)
, (1.0.2)

where φ̂2
1, ..., φ̂

2
k are sample Fourier coefficients and Var(φ̂2

j) = (1/n2)
∑n

i=1 σ
2(xi) cos2(πjxi)

which might be estimated by V̂ar(φ̂2
j) = (1/n2)

∑n
i=1 e

2
i cos2(πjxi). The approximate sam-

pling distribution of the test statistics was obtained using wild bootstrap method. In the

case of heteroscedasticity, Chen et al. (2001) showed that the asymptotic distribution of the

Kuchibhatla and Hart (1996) version of the order selection test depends on the unknown

variance function of the errors. Furthermore, they showed that the statistic Thet,n is more

robust than that of Kuchibhatla and Hart (1996) to heteroscedasticity and has better level

accuracy. Chen et al. (2001) showed that wild bootstrap technique has an overall good per-

formance in terms of level accuracy and power properties in the case of heteroscedasticity.

This test was derived under the null of constant regression. In addition, our experience

found that the test could have low power under high frequency alternatives.

In this dissertation, we consider a nonparametric lack-of-fit test of both constant regres-

sion and nonlinear regression models in presence of heteroscedastic variances. We construct

the test statistics based on a fixed number of k-nearest neighbor augmentation defined

through the ranks of the predictor variable. These tests are defined as a difference of two

quadratic forms, both of which estimate a common quantity but one under the null hypoth-

esis and the other under the alternatives. The regression function under the null hypotheses

appear in one of the two quadratic forms. The asymptotic distributions of the test statis-
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tics are obtained under the null and the local alternatives for a fixed number of nearest

neighbors. For data from high frequency alternatives, our tests have better power than the

available tests.

The idea of using k-nearest neighbor augmentation to construct test statistic was first

proposed by Wang and Akritas (2006) for analysis of covariance model, and further used in

Wang et al. (2008) for a diagnostic test and in Wang et al. (2010) for a test of independence

between a response variable and a covariate in presence of treatments. Wang et al. (2008)

defined their test statistic for lack-of-fit test in the constant regression setting. They con-

sidered each distinct covariate value as a factor level. Then they augmented the observed

data to construct what they called an artificial balanced one-way ANOVA (see section 2.1

for further description of the augmentation). This way of constructing test statistics has

great potential to gain power over smoothing based methods. However, we found that the

asymptotic variance of the test statistic in Wang et al. (2008) seriously underestimate the

true variance for intermediate sample sizes. As a consequence, their type I error changes

drastically as the number of nearest neighbors k changes regardless of the error distribution.

In particular, their test has highly inflated type I error rates when k is small and becomes

very conservative when k gets large. Moreover, type I error of their test depends on the

sample size n. Figure 1.1 presents the relationship between the type I error and the number

of nearest neighbors used in augmentation for our test and the test of Wang et al. (2008)

when the error term was generated from a normal distribution. This gives the typical pat-

tern of the type I error as a function of k with data of different sample sizes. Results for

error terms generated from other distributions are presented in Section 3.2.2.

For the test of constant regression null hypothesis, we present an asymptotic variance

formula for the test statistic that is very different from that in Wang et al. (2008). In the

special case of homoscedastic variance, our derived asymptotic variance contains one more

term (a function of k) than that in Wang et al. (2008). This explains the unstable behavior

of the type I error pattern of their test. On the other hand, our test has consistent type I
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error rates across different sample sizes and different k values and they are very close to the

nominal alpha levels (see Figure 1.1 and section 3.2.2). A discussion is also given in this

dissertation to analytically explain how our test corrects the bias of the test of Wang et al.

(2008).

Figure 1.1: Relationship between type I error and the number of nearest neighbors k for

data generated under Model M0 in section 3.2.2 with error term from normal distribution

for varying sample sizes. GSW: our test; WA: the test of Wang et al. (2008).

Beyond the aforementioned test of constant regression, we also consider the test of

nonlinear regression, which was not studied in Wang et al. (2008). Moreover, we give a

procedure to estimate the number of nearest neighbors. Our idea extends the Least Squares

Cross-Validation (LSCV) procedure of Hardle et al. (1988) in regression to the current k-

nearest neighbor augmentation based on ranks. Extensive numerical studies are presented

for both the test of constant regression and nonlinear regression cases. The numerical results

show that our tests have encouragingly better performance in terms of type I error and power

compared to the available tests.

This dissertation is organized as follows. Chapter 2 provides a review of the literature
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on some available methods of testing lack-of-fit in both cases of constant and nonlinear

regression null hypothesis. Chapter 3 considers the nonparametric lack-of-fit test of constant

regression in the presence of heteroscedastic variances. Chapter 4 presents the lack-of-fit test

of a nonlinear regression model. Chapter 5 introduces the method of selecting the number of

nearest neighbors. Chapter 6 provides a summary and suggested plans for future research.

In addition to the lack-of fit setting with continuous response variable and covariate, our

test is also valid when the response variable is a discrete or categorical variable. Earlier

work in this setting includes Hosmer and Lemesbow (1980) that gave a goodness-of-fit test

for multiple logistic regression model, Brown (1982) that proposed a goodness-of-fit test for

the logistic model based on score statistics, McCullagh (1986) who studied the conditional

distribution of the deviance and Pearson statistics for log-linear model for Poisson data

and logistic model for binomial data, Su and Wei (1991) that proposed a lack-of-fit test for

the mean function in a generalized linear model based on partial sum of residuals, among

others. All of the aforementioned tests assume that the data come from a particular para-

metric distribution. Nonparametric lack-of-fit test in a general setting without specifying a

parametric distribution is still an open topic that deserves further attention.

6



Chapter 2

Literature Review

In this chapter, a review of some available nonparametric lack-of-fit tests is given. we

discuss methods of testing constant regression hypothesis such as the order selection test

of Eubank and Hart (1992), rank-based order selection test of Hart (2008), Bayes sum

test of Hart (2009) and an ANOVA-type nonparametric diagnostic test for heteroscedastic

regression models of Wang et al. (2008). Further, other lack-of-fit test procedures in linear

and nonlinear regression are mentioned.

2.1 Order selection test

The order selection test by Eubank and Hart (1992) is one of the most intuitive methods to

test the “constant regression” or “no-effect” hypothesis. In this section, a review of order

selection test is given. Consider the regression model of the form

Yj = r(xj) + εj, j = 1, 2, ..., n, (2.1.1)

where xj = (j − 1/2)/n, j = 1, 2, ..., n, r is a function that is square integrable over [0,1],

and ε1, ε2, ..., εn are independent and identically distributed with finite fourth moments,

E(εj) = 0, and V ar(εj) = σ2.

The goal is testing the constant regression or “no-effect” null hypothesis which can be

7



specified as:

H0 : r(x) = C for each x ∈ [0, 1], (2.1.2)

where C is an unknown constant.

Assuming that the function r is piecewise smooth on the interval [0,1], then Fourier

series might be used to represent r as the following:

r(x) = C + 2
∞∑
j=1

φj cos(πjx), (2.1.3)

where

φj =

∫ 1

0

r(x) cos(πjx)dx, j = 1, 2, .... (2.1.4)

Testing the constant regression or “no-effect” hypothesis (2.1.2) is equivalent to test:

H0 : φ1 = φ2 = ... = 0. (2.1.5)

The function r might be estimated using the following truncated series

r̂(x;m) = Ĉ + 2
m∑
j=1

φ̂j cos(πjx), (2.1.6)

where φ̂j = 1/n
∑n

i=1 Yi cos(πjxi) for j = 1, 2, ..., n − 1, Ĉ =
∑n

i=1 Yi/n , and m is the

smoothing parameter of r̂(x;m) which satisfies 0 ≤ m < n. It is clear that having m = 0

strongly supports the null hypothesis of constant regression and for m ≥ 1 support goes for

the alternative hypothesis. Define

Tn = max
0<m<n

1

m

m∑
j=1

2nφ̂2
j

σ̂2
, (2.1.7)

where σ̂2 is a consistent estimator of σ2. The order selection test rejects the null hypothesis

of constant regression or “no-effect” hypothesis (2.1.2) when the statistic Tn is large. The

limiting distribution of Tn is given by

lim
n→∞

P (Tn ≤ t) = exp

{
−
∞∑
j=1

P (χ2
j > jt)

j

}
≡ F (t), (2.1.8)

8



where t is the observed value of Tn and χ2
j has chi-squared distribution with j degrees of

freedom. Using (2.1.8), the P-value for the observed value t is approximately 1− F (t).

This test has a good power in the case of low frequency alternatives. On the other hand,

it might have low power at high frequency alternatives for moderate sample sizes. This

test is not valid for heteroscedastic regression problems when the error term has variance

depends on the covariate.

2.2 Rank-based order selection test

Rank-based order selection test was proposed by Hart (2008). It is an extension to the

order selection test of Eubank and Hart (1992). In this test, the same structure of the

order selection method was applied to ranks instead of the raw data. To test the “no-effect”

hypothesis in (2.1.2), define the following test statistic

Rn = max
0<m<n

1

m

m∑
j=1

2nφ̃2
j

1/12
, (2.2.1)

where

φ̃j =
1

n

n∑
i=1

Ui cos(πjxi) for j = 1, 2, ..., n− 1

and

Ui =
Rank(Yi)

n+ 1
, i = 1, 2, ..., n.

Under the null hypothesis of constant regression and the same assumptions of the order

selection test without moment conditions required, the test statistic Rn has the same limiting

distribution of Tn which was defined in (2.1.7). That means

lim
n→∞

P (Rn ≤ r) = exp

{
−
∞∑
j=1

P (χ2
j > jr)

j

}
≡ G(r), (2.2.2)

where r is the observed value of Rn and χ2
j has chi-squared distribution with j degrees of

freedom.
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Similar to order selection test, rank-based order selection test shows a good performance

at low frequency alternatives and has low power in the case of high frequency alternatives

for moderate sample sizes. Also it is only valid for homoscedastic regression problems.

2.3 Bayes sum test

Bayes sum test is one of several tests based on Laplace approximation proposed in Hart

(2009). This test has an overall good power at high frequency alternatives and competitive

with available tests at low frequency alternatives. A review of Bayes sum test is given in

this section. Consider the model of the form

Yj = µ(xj) + εj, j = 1, 2, ..., n+ 1, (2.3.1)

where µ(xj) is an unknown regression function, xj = (j−1/2)/(n+1), j = 1, 2, ..., n+1, and

ε1, ε2, ..., εn+1 are independent and identically distributed with N(0, 1). Fourier coefficients

φ1, φ2, ... were used to characterize the function µ. These Fourier coefficients φ1, φ2, ..., φn

are estimated by the sample Fourier coefficients φ̂1, φ̂2, ..., φ̂n where

φ̂j =

√
2

(n+ 1)

n+1∑
i=1

Yi cos(πjxi), j = 1, 2, ..., n.

To test the constant regression or “no-effect” null hypothesis H0 : µ(x) = C where C is a

constant, Hart (2009) proposed the Bayes sum statistic of the form

Bn =
n∑
j=1

ρj exp

(
nφ̂j

2

2σ̂2

)
with ρj = j−2, j = 1, 2, ..., n, (2.3.2)

where σ̂2 =
∑n

j=1 φ̂j
2
. The test statistic Bn is a weighted sum of exponentiated squared

Fourier coefficients. It was derived from Bayesian point of view based on posterior probabil-

ities. The posterior probabilities was approximated using Laplace method and the weights

ρ1, ρ2, ..., ρn in (2.3.2) depend on prior probabilities. To approximate the critical value of

the test statistic, two methods were given in Hart (2009). One method was done by gener-

ating data from normal distribution and the other by using bootstrap resampling from the

residuals under the null hypothesis.
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Bayes sum test by Hart (2009) is a useful method for lack-of-fit test that can be powerful

at high frequency alternative. Furthermore, It is more powerful than order selection test of

Eubank and Hart (1992) and rank-based order selection test of Hart (2008) for large sample

size. However the variance of the error term is assumed to be a constant in the Bayes sum

test. That means it is not applicable when data have variances varying with the covariate

(i.e. heteroscedastic regression problem).

2.4 An ANOVA-type nonparametric diagnostic test

for heteroscedastic regression models

In this section a discussion of an ANOVA-type nonparametric diagnostic test for het-

eroscedastic regression models is given. This test was proposed in Wang et al. (2008).

Consider the heteroscedastic nonparametric regression model of the form

Yi = m(xi) + σiεi for i = 1, 2, ..., n, (2.4.1)

where σ2(.) is an unknown variance function, m(.) is an unknown regression function, the

errors ε1, ε2, ..., εn are independent variables with mean 0 and variance 1, and x1, x2, ..., xn

are the design points on [0,1] satisfying∫ xi

0

r(x)dx =
i

n
for i = 1, 2, ..., n,

where r(x) is a continuous density on [0,1], . This test can be used for testing the null

hypothesis of a constant regression or “no effect” hypothesis:

H0 : m(x) = C for all x, (2.4.2)

where C is an unknown constant. The form of the test statistic is similar to that of the

classical F -statistic in analysis of variance. They constructed the test statistic based on

the idea of considering each distinct covariate value as a factor level. Augmentation for the
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observed data have been considered to construct what is called “an artificial” balanced one-

way ANOVA. This augmentation is done by considering a window Wi around each covariate

value xi that contains the k nearest covariate values.

Let

Wi =

(
j : |F̂ (Xj)−F̂ (Xi)| ≤

k−1

2n

)
,

where F̂ (x) = n−1
∑n

j=1 I(Xj ≤ x) denote the empirical distribution of X. To define the

test statistic, consider the structure of balanced one-way ANOVA with n groups and k

observations per group. Let Vij, i = 1, 2, ..., n and j = 1, 2, ..., k denote the jth observation

in group i. Define

MST=
k

n−1

n∑
i=1

(
V i· − V ··

)2
and MSE=

1

n(k − 1)

n∑
i=1

k∑
j=1

(
Vij−V i·

)2
. (2.4.3)

Consider the test statistic MST −MSE but with replacing Vij by Yj , j ∈ Wi in (2.4.3)

for testing the “no effect” hypothesis. This test statistic can be written as a quadratic form

V′AV where V = (Yj, j ∈ W1, ..., Yj′ , j
′ ∈ Wn) is the vector of all the observations in the

artificial one-way ANOVA and

A =
nkn − 1

n(n− 1)kn(kn − 1)

n⊕
i=1

Jkn −
1

n(n− 1)kn
Jnkn −

1

n(kn − 1)
Inkn ,

where Id is the d-dimensional identity matrix, Jd is a d× d matrix with all elements equal

to 1, and
⊕n

i=1 is the Kronecker sum. Under the null hypothesis and certain conditions, the

quadratic form (n/kn)1/2V′AV is asymptotically equivalent to the quadratic form

(
n

kn
)1/2(V −C1N)′Ad(V −C1N),

which involves a block diagonal matrix Ad where

Ad = diag{B1, ...,Bn}, where Bi =
1

n(k − 1)
[Jk − Ik]

and N = nk. This result helps to obtain the asymptotic normality for the test statistic.

Under H0 in (2.4.2) and for fixed k, the asymptotic distribution of the test statistic is

n1/2(MST −MSE)→ N

(
0,

2k(2k − 1)

3(k − 1)
τ 2
)
, (2.4.4)
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where τ 2 =
∫ 1

0
σ4(x)r(x)dx, r(x) is a positive continuous density on [0,1] and σ2(x) is the

unknown conditional variance function of Y given X = x. τ 2 can be estimated by

τ̂ 2 =
1

4(n− 3)

n−2∑
j=2

R2
jR

2
j+2, (2.4.5)

where Rj = Yj − Yj−1, j = 2, 3, ..., n.

Consider the local alternatives H1 : m(x) = C + (nk)−1/4g(x) where g(x) is a Lipschitz

continuous function on [0, 1]. For fixed k and under H1, the asymptotic distribution of the

test statistic is

(
n

k
)1/2(MST −MSE)→ N

(
γ2,

2(2k − 1)

3(k − 1)
τ 2
)
, (2.4.6)

where γ2 =
∫ 1

0
g2(t)r(t)dt− (

∫ 1

0
g(t)r(t)dt)2.

2.5 Others

Many lack of fit tests in regression have been proposed in the literature. Some of earlier

work will be mentioned in this section. The classical lack of fit test with replication is given

by Fisher (1922). A review of linear regression lack of fit test procedures in the case of

nonreplication is given by Neill and Johnson (1984). One such tests has been proposed

by Neill and Johnson (1985). To find a useful test in the case of nonreplication, Neill and

Johnson (1985) generalized the pure error-lack of fit test based on a consistent estimate

of the experimental error variance. Using near replicates, this test was compared by Neill

and Johnson (1989) with other available tests which is used for assessing the adequacy

of a proposed linear regression model in the nonreplication case. In another paper, Neill

(1988) presented a lack of fit test in nonlinear regression regardless of replication availability.

Most lack of fit tests in the case of nonreplication depend on clustering techniques of the

observations. One technique for choosing near replicates based on maximin power clustering

criterion and implementation of this criterion are presented in Miller et al. (1998, 1999). In

a recent paper, Miller and Neill (2008) proposed several tests based on different groupings of
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the data for detecting general lack of fit (between-cluster, within-cluster, and mixtures of the

two pure types) in both cases of replication and nonreplication. All of the aforementioned

tests assume that the random errors have a constant variance and some assume that errors

are normally distributed. This means that these tests are only applicable in the case of

homoscedastic regression problems.

Some other work has been done on lack-of-fit test include Hausman (1978), Ruud (1984),

Newey(1985a; 1985b), Tauchen (1985), White (1982), White (1987), and Bierens (1990).

Most of these tests are not consistent for general alternatives. Others proposed consistent

nonparametric lack-of-fit test procedures using some smoothing techniques (cf Lee (1988);

Yatchew (1992); Eubank and Spiegelman (1990); Hardle and Mammen (1993); Zheng (1996);

Horowitz and Spokoiny (2001); Guerre and Lavergne (2005); Song and Du (2011)). Some of

them are difficult to compute in addition to complicated conditions that are hard to justify.

Some require estimation of the bandwidth parameter and different bandwidth parameter

values may give different results. All of the aforementioned methods require the response

variable to be continuous. A nonparametric lack of fit test of regression models with het-

eroscedastic random errors was proposed by Li (1999). However, the test of Li (1999) is

not applicable in our case since Li (1999) assumes that the variance is a known function of

unknown parameters. In our case the variance function is completely unknown.
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Chapter 3

Nonparametric lack-of-fit test of

constant regression in presence of

heteroscedastic variances

3.1 Theoretical results

3.1.1 The hypotheses and test statistic

Let (Xj, Yj), j = 1, . . . , N , be a random sample of the random variables (X, Y ). Let

f(x) and F (x) denote the marginal probability density function and cumulative distribution

function of Xj, respectively. Denote Var(Yi|Xi = x) = σ2(x) and εi = Yi − E(Yi|Xi).

We would like to test whether a given function m0(x) correctly specifies the conditional

mean regression function of Y given X. That is, we are testing the hypothesis:

H0: E(Y |X = x) = m0(x) , where m0(.) is a known function (3.1.1)

against:

H1 : E(Y |X = x) = m(x), which depends on x through other functions instead of m0(.).

This formulation works for both continuous and categorical response variable Y . Assume
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that we do not have duplicate observations for each value of X. In regression settings, the

nonlinear conditional mean regression E(Y |X) is often estimated through pooling obser-

vations from neighbors by one of the smoothing methods, such as loess, smoothing spline,

kernel estimation, etc. For smoothing spline or kernel method, the number of observations

in a window essentially needs to go to infinity as the sample size goes to infinity. K-nearest

neighbor approach is a popular method for classification but the theory for fixed k is very

difficult for general regression. In this research we use fixed number of k-nearest neighbor

augmentation to help define a statistic for conducting lack-of-fit test. This augmentation is

done for each unique value xi of the predictor by generating a cell that contains k values

of the response Y whose corresponding x values are among the k closest to xi in rank. We

consider k to be an odd number for convenience. Let c denote an index defined by the

covariate value Xj1 where c = j1 and let F̂ (x) = N−1
∑N

j=1 I(Xj ≤ x) denote the empirical

distribution of X. We make the augmentation for each cell c by selecting k − 1 pairs of

observations whose covariate values are among the k closest to Xj1 in rank in addition to

(Xj1 , Yj1). Let Cc denote the set of indices for the covariate values used in the augmented

cell (c). Thus for any pair (Xj, Yj) to be selected in the augmentation of the cell (c), the dif-

ference between the ranks of Xj and Xj1 is no more than (k−1)/2 if Xj1 is an interior point

whose rank is between (k − 1)/2 and N − (k − 1)/2, i.e., N |F̂ (Xj1)− F̂ (Xj)| ≤ (k − 1)/2.

For Xj1 whose rank is less than (k − 1)/2 or greater than N − (k − 1)/2, the difference

between the ranks of Xj and Xj1 is no more than k − 1. This idea was first proposed by

Wang and Akritas (2006) and further used in Wang et al. (2008) and Wang et al. (2010) for

different problems. Wang et al. (2008) derived their test statistic for lack-of-fit test in the

present regression setting by considering each distinct covariate value as a factor level. Then

they augmented the observed data by considering a window around each xi that contains

the kn nearest covariate values to construct what they called an artificial balanced one-way

ANOVA. Similar augmentation was considered in Wang et al. (2010) when there are more

than one treatment. Their results can not be applied here since the asymptotic variance
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calculation is ill-defined when there is no treatment factor as in our lack-of-fit setting.

Let Rct, t = 1, . . . , k, denote the augmented response values in cell (c) under the null

hypothesis. Define gNk(X1, X2) = I
(
N |F̂ (X1)−F̂ (X2)| ≤ k−1

2

)
to be the indicator function

that the difference between the ranks of X1 and X2 is no more than (k− 1)/2. Let BN and

WN denote the average between-cell and within-cell variations defined as the following:

BN=
k

N−1

N∑
c=1

(
Rc· −R··

)2
and WN=

1

N(k − 1)

N∑
c=1

k∑
t=1

(
Rct−Rc·

)2
,

where Rc· = k−1
∑k

t=1Rct, R·· = N−1
∑N

c=1Rc·. Note that BN and WN can be easily calcu-

lated since they resemble the mean squares statistics for an ANOVA model. The calculation

is on the augmented data. In most cases in the literature, BN/WN is used for constructing

the test statistic when BN has fixed degrees of freedom. However, in our case, the degrees

of freedom for BN is N − 1, which goes to infinity. Therefore, the statistic typically used in

this case is
√
N [(BN/WN)− 1] (see Wang and Akritas (2011)), which involves showing that

√
N(BN −WN) converges in distribution to normality and WN converges in probability to a

constant. With augmented data, it is complicated to show that WN converges in probability.

So we use the difference BN −WN to construct the test statistic instead of BN/WN . This

test statistic is similar to that proposed in Wang et al. (2008).

To express BN and WN in terms of the original data, we can write

BN =
k

N−1

N∑
j1=1

[
1

k

N∑
j=1

Yj gNk(Xj1, Xj)−
1

Nk

N∑
j2=1

N∑
j=1

Yj gNk(Xj2, Xj)

]2
+Op(N

−1)

WN =
1

N(k−1)

N∑
j1=1

N∑
j=1

[
Yj gNk(Xj1, Xj)−

1

k

N∑
j2=1

Yj2 gNk(Xj1, Xj2)

]2
+Op(N

−1).

In the next section, the asymptotic distribution of the test statistic will be given.
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3.1.2 Asymptotic distribution of the test statistic under the null

hypothesis

Asymptotic variance and distribution of our test statistic

Even though the test statistic is easy to calculate, the derivation of the asymptotic distri-

bution is challenging since the augmented data in neighboring cells are correlated. In this

section, we give the asymptotic distribution of the test statistic derived with a different

strategy than that proposed in Wang et al. (2008) even though we have the same test statis-

tic. To find the asymptotic distribution for our test statistic, we first simplify it by finding

its projection. Specifically, define

Vct = Rct − E(Rct|X), where X = (X1, . . . , XN)′. (3.1.2)

Then we project BN onto the space

extended span{Vc, c = 1, . . . , N}, where Vc = (Vc1, · · ·, Vck)′, (3.1.3)

of the form
∑N

c=1 aigc(Vc), where gc(Vc) is some function that is possibly nonlinear. This

projection will help us to split BN into two terms, one of which includes a summation over

c and the other over c and c′ for c 6= c′:

BN = PB(V) + SB(V), where V′ = (V′1, . . . ,V
′
N),

and
PB(V) =

k

N

N∑
c=1

V
2

c·, SB(V) =
−k

N(N−1)

N∑
c6=c′

V c·V c′·, (3.1.4)
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where V c· = k−1
∑k

t=1 Vct. Then PB(V) is in the space defined in (3.1.3) and BN −WN =

(PB(V)−WN) + SB(V) = TB + SB(V), where

TB =
1

(k − 1)N

N∑
c=1

k∑
t6=t′

VctVct′ =
1

(k − 1)N

N∑
c=1

k∑
t6=t′

(Rct − E(Rct|X))(Rct′ − E(Rct′ |X))

=
1

(k − 1)N

N∑
j 6=j′

(Yj − E(Yj|X))(Yj′ − E(Yj′|X))
N∑
c=1

I(j ∈ Cc)I(j′ ∈ Cc)

=
1

(k − 1)N

N∑
j 6=j′

(Yj − E(Yj|X))(Yj′ − E(Yj′|X))Kjj′ , (3.1.5)

and Kjj′ =
N∑
c=1

I(j ∈ Cc)I(j′ ∈ Cc). (3.1.6)

Note that the term in (3.1.5) is closely related to the expected covariance between every

pair of response values with correlation induced by their dependence on X. The Kjj′ in

(3.1.6) serves as a weight function which connects the response locally with the empirical

distribution function of X. The TB term in (3.1.5) is more intuitive than
√
N(BN −WN) to

evaluate the lack-of-fit. However, TB can not be calculated from the sample since E(Y |X)

is unknown. On the other hand,
√
N(BN −WN) can be directly obtained from the sample.

We assume the following condition to obtain the result under the null hypothesis:

Assumption (A): For all x, suppose that F (x) is differentiable and the fourth conditional

central moments of Yj given Xj are uniformly bounded.

The advantage of using small k instead of a large k can be seen here. Even though

SB(V) is a quadratic form, only nearby cells have correlated observations due to the fixed

number of nearest neighbor augmentation. On the other hand, when the number of nearest

neighbors tends to infinity, the augmented data in a lot more cells will be correlated and

therefore, SB(V) might diverge and the derivation of the asymptotic distribution will require

unnecessarily strong conditions on the magnitude of the correlation. It is straightforward

that SB(V) = OP (N−1) with small k. Therefore,
√
NSB(V) is asymptotically negligible.

We state it in Lemma 3.1.1 without proof.
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Lemma 3.1.1. (Projection of BN) Let SB(V) be as defined in (3.1.4). If the Assumption

(A) is satisfied, then

√
NSB(V)

p→ 0 , as N →∞,

where the notation
p→ denotes convergence in probability.

To obtain the asymptotic distribution of the test statistic under the null hypothesis, we

work with

√
NTB =

√
N

N(k − 1)

N∑
j 6=j′

(Yj − E(Yj|X))(Yj′ − E(Yj′|X))Kjj′ (3.1.7)

where Kjj′ is defined in (3.1.6). We first give the large sample behavior of the variance of

this term.

Theorem 3.1.2. Under Assumption (A), λN = Var(
√
NTB) converges as N →∞ and

lim
N→∞

λN = E( lim
N→∞

δN),

where

δN =
∑N

j<j′
4σ2(Xj)σ

2(Xj′ )

N(k−1)2 [[k − |j′∗ − j∗|]2 + [k − |j′∗ − j∗|]

−2I
(
|j′∗ − j∗| ≤ k−1

2

)
+O(N−1)

]
I(|j′∗ − j∗| ≤ k − 1), (3.1.8)

and j′∗, j∗ are the ranks of Xj′ and Xj among the covariate values X1, . . . , XN .

To estimate the asymptotic variance, let j∗ be the rank of Xj among all covariate values.

Then a consistent estimator of limN→∞ λN is

λ̂N =
N∑
j<j′

4σ̂2(Xj)σ̂
2(Xj′)

N(k−1)2

[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]−2I

(
|j′∗−j∗|≤

k−1

2

)]
I(|j′∗−j∗|≤k−1),

where σ̂2(Xj) is the sample variance based on the augmented observations for the cell

determined by Xj, i.e.,
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σ̂2(Xj)=
1

k−1


N∑
l=1

Y 2
l gNk(Xl, Xj)−

1

k

(
N∑
l=1

YlgNk(Xl, Xj)

)2
 .

Note that Kjj′ are bounded counts and (3.1.7) is a clean quadratic form as defined in

de Jong (1987). The Central Limit Theorem for clean quadratic forms (Proposition 3.2)

in de Jong (1987) can be applied to obtain the following result. We skip the details of the

proof.

Theorem 3.1.3. Under H0 in (3.1.1) and Assumption (A),

√
N(BN −WN)

d→N(0, lim
N→∞

λN), as N →∞,

where the notation
d→ denotes convergence in distribution.

Comparison with the result of Wang et al. (2008)

Wang et al. (2008) expressed their test statistic as a quadratic form V′AV where V is the

vector of all the observations in their artificial one-way ANOVA and

A =
nkn − 1

n(n− 1)kn(kn − 1)

n⊕
i=1

Jkn −
1

n(n− 1)kn
Jnkn −

1

n(kn − 1)
Inkn ,

where Id is the d-dimensional identity matrix, Jd is a d×dmatrix with all elements equal to 1,

and
⊕n

i=1 is the Kronecker sum. Then they showed that the quadratic form (n/kn)1/2V′AV

is asymptotically equivalent to another quadratic form involving a block diagonal matrix.

This result was used to show the asymptotic distribution of the test statistic. Their approach

requires significant effort to derive the quadratic form in matrix form in addition to further

difficulty to find its projection. On the other hand, Our approach is straightforward and

has a much simpler form compared to Wang et al. (2008).

Wang et al. (2008) showed that the asymptotic variance of their test statistic is

2k(2k − 1)

3(k − 1)
τ 2, (3.1.9)
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where τ 2 =
∫ 1

0
σ4(x)r(x)dx, r(x) is a positive continuous density on [0,1], and σ2(x) is the

unknown conditional variance function of Y given X = x.

Note that our asymptotic variance formula for the test statistic is very different from that

in Wang et al. (2008). In the special case of homoscedastic variance (i.e. σ2(x) = C, where

C is some positive constant) and under H0, our derived asymptotic variance (limN→∞ λN)

contains one more term (2C2(k − 2)/(k − 1) ) than that in Wang et al. (2008) as shown

below:

λN = E(δN), where

δN =
N∑
j<j′

4σ2(Xj)σ
2(Xj′)

N(k−1)2
[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]

−2I

(
|j′∗−j∗|≤

k−1

2

)
+O(N−1)

]
I(|j′∗−j∗|≤k−1)

=
N∑
j<j′

4C2

N(k−1)2
[
[k−|j′∗−j∗|]2 + [k−|j′∗ − j∗|]

−2I

(
|j′∗ − j∗| ≤

k − 1

2

)
+O(N−1)

]
I(|j′∗ − j∗|≤k−1) (3.1.10)

If we replace the summation in (3.1.10) over the original sample index j, j′ by the summation

over the ranks j∗, j
′
∗ and denoting

M(|j′∗−j∗|) =
[
[k − |j′∗−j∗|]2+[k−|j′∗−j∗|]−2I

(
|j′∗−j∗|≤ k−1

2

)
+O(N−1)

]
I(|j′∗−j∗|≤k−1)

and m = (|j′∗−j∗|), we get

δ∗N =
N∑

j∗<j′∗

4C2

N(k−1)2
M(|j′∗−j∗|)

=
4C2

N(k−1)2

k−1∑
m=1

(N −m)M(m)

=
4C2

N(k−1)2

k−1∑
m=1

(N −m)

[
[k−m]2+[k−m]− 2I

(
m≤ k−1

2

)
+O(N−1)

]
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As N →∞, we have

lim
N→∞

δ∗N =
4C2

(k−1)2

k−1∑
m=1

[
[k−m]2+[k−m]−2I

(
m≤ k−1

2

)]
=

2k(2k − 1)

3(k − 1)
C2 +

2(k − 2)

(k − 1)
C2, (3.1.11)

and

E( lim
N→∞

δ∗N) =
2k(2k − 1)

3(k − 1)
C2 +

2(k − 2)

(k − 1)
C2. (3.1.12)

We can see the asymptotic variance of Wang et al. (2008) in (3.1.9) is equal to the first

term in (3.1.12) for the homoscedastic case. As a result, their asymptotic variance is biased

and their type I error rate depends on k (see Figures 1.1, 3.4, and 3.5). In a homoscedastic

case under the alternative hypothesis, the asymptotic variance of Wang et al (2008) remains

to be the same as that under H0, which completely ignores the dependence of Y on X

through the mean regression function. Our variance formula for the test statistic relies on the

quadratic function M(|j′∗−j∗|) of pairwise difference in ranks of the observed covariate values.

In the heteroscedastic case, the expected value of σ2(Xj)σ
2(Xj′) in our asymptotic variance

formula (see (3.1.8)) is less than the τ 2 in Wang et al. (2008)’s asymptotic variance formula

(3.1.9). In addition, the product is intermingled with the quadratic function M(|j′∗−j∗|) of

pairwise difference in ranks of the observed covariate values and therefore can not be taken

outside of the expectation. Further discussions will be given in Section 3.2.2.

3.1.3 Results under local alternatives

Consider the sequence of local alternative conditional expectations EN(Y |X = x) that

approach the conditional expectation of Y given X under the null hypothesis m0(x) =

E0(Y |X = x) in the order of N−1/4. We can write the sequence of local alternative condi-

tional expectations as

m(x) = EN(Y |X = x) = m0(x) +N−1/4A(x), (3.1.13)
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where A(x) is a univariate function of x. This alternative is valid for either discrete or

continuous response variable and it allows the data to have different conditional variance

under the local alternatives from that under the null. For example, if Y |X has a Poisson

distribution with mean m(x) under the alternative, then the variance is m(x) instead of

m0(x). Suppose (Xi, Yi), i = 1, . . . , N are observed data under the local alternatives in

(3.1.13). Let Q = {Qct; c = 1, . . . , N, t = 1, . . . , k} be the augmented response values

under this alternative hypothesis. Note that Qct is equal to the observed response variable

whose covariate value is one of the following:
X(t) if c < (k − 1)/2

X(c+t−(k+1)/2) if (k − 1)/2 ≤ c ≤ N − (k − 1)/2

X(N−k+t) if c > N − (k − 1)/2.

Then, Qct can be written as Qct = εct +E(Qct|X), where E(Qct|X) includes the conditional

mean under the null hypothesis and departure from the null at the rate of N−1/4. Note that

εct = Qct−E(Qct|X) satisfies the null hypothesis and can be viewed as the augmented data

for Zi = Yi−
(
m0(Xi) +N−1/4A(Xi)

)
, whose conditional mean satisfies the null hypothesis

but with V ar(Zi|Xi) equal to V ar(Yi|Xi) under the alternative hypothesis. As in previous

section, without loss of generality, we can assume m0(x) is a constant otherwise it can be

subtracted from the response variable and work with (Xi, Yi −m0(Xi)) directly.

For convenience, define Act to be the A(x) function evaluated at the covariate value

for augmented observation Qct. Let Ac· = k−1
∑k

t=1Act, A·· = N−1
∑N

c=1Ac·, Qc· =

k−1
∑k

t=1Qct, Q·· = N−1
∑N

c=1Qc·, εc· = k−1
∑k

t=1 εct, and ε·· = N−1
∑N

c=1 εc·. Denote

BN(Q) and WN(Q) to be the average between-cell variations and the average within-cell

24



variations under the local alternatives, respectively. That is,

BN(Q) = k(N−1)−1
N∑
c=1

(
Qc· −Q··

)2
= k(N−1)−1

N∑
c=1

[
(εc· − ε··) +N−1/4

(
Ac· − A··

)]2
= k(N−1)−1

N∑
c=1

[
(εc· − ε··)2 +N−1/2

(
Ac· − A··

)2
+ 2N−1/4

(
Ac· − A··

)
(εc· − ε··)

]
,

and

WN(Q) = {N(k−1)}−1
N∑
c=1

k∑
t=1

(
Qct −Qc·

)2
= {N(k−1)}−1

N∑
c=1

k∑
t=1

[
(εct − εc·) +N−1/4

(
Act − Ac·

)]2
= {N(k−1)}−1

N∑
c=1

k∑
t=1

[
(εct − εc·)2 +N−1/2

(
Act − Ac·

)2
+2N−1/4 (εct − εc·)

(
Act − Ac·

)]
.

Then the test statistic can be written as

√
N(BN(Q)−WN(Q)) =

√
N

(
k(N−1)−1

N∑
c=1

(εc· − ε··)2 − {N(k−1)}−1
N∑
c=1

k∑
t=1

(εct − εc·)2
)

+ ∆N,1 + ∆N,2 −∆N,3 −∆N,4, (3.1.14)

where

∆N,1 =
√
Nk(N−1)−1

N∑
c=1

[
N−1/2

(
Ac· − A··

)2]
(3.1.15)

∆N,2 =
√
Nk(N−1)−1

N∑
c=1

[
2N−1/4

(
Ac· − A··

)
(εc· − ε··)

]
(3.1.16)

∆N,3 =
√
N{N(k−1)}−1

N∑
c=1

k∑
t=1

[
N−1/2

(
Act − Ac·

)2]
(3.1.17)
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and

∆N,4 = 2
√
N{N(k−1)}−1

N∑
c=1

k∑
t=1

(εct − εc·)
(
N−1/4

(
Act − Ac·

))
. (3.1.18)

The following additional condition is needed for the result under the alternative hypoth-

esis:

Assumption (B): Suppose that Xi has bounded support [a, b] and A(x) is locally Lipschitz

continuous on [a, b]. That is, for each z ∈ [a, b] there exists an L > 0 such that A(x) is

Lipschitz continuous on the neighborhood BL(z) = {y ∈ [a, b] : |y − z| < L}. Further, we

assume that the fourth central moments of A(Xi) are uniformly bounded.

Before we give the asymptotic distribution of the test statistic under the local alterna-

tives, we state the following results.

Lemma 3.1.4. Under Assumptions (A) and (B) and as N →∞,

(1) ∆N,2
p→ 0 ,

(2) ∆N,3
p→ 0 , and ∆N,4

p→ 0 ,

where ∆N,2, ∆N,3 and ∆N,4 are defined in (3.1.16), (3.1.17) and (3.1.18), respectively.

Theorem 3.1.5. For the sequence of local alternatives EN(Y |X) in (3.1.13) and under the

Assumptions (A) and (B), the limit limN→∞ λNA exists and

√
N(BN(Q)−WN(Q))

d→N(kσ2
A, lim

N→∞
λNA),

where λNA is defined similarly as λN in Theorem 3.1.2 but with σ2(Xj) calculated under the

alternatives in (3.1.13) and

σ2
A =

∫ ∞
−∞

A2(x)f(x)dx−
(∫ ∞
−∞

A(x)f(x)dx

)2

= Var(A(X)).

Note that λN in Theorem 3.1.2 and λNA in Theorem 3.1.5 share the same formula except

that σ2(Xj) = V ar(Yj|Xj) in λNA needs to be calculated under the alternatives in (3.1.13).
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For example, if Y given X has a Bernoulli distribution, then the conditional variance of Y

given X under the local alternatives in (3.1.13) is σ2(x) = EN(Y |X = x)(1 − EN(Y |X =

x)) = m(x)(1 − m(x)), which is different from that under the null hypothesis E0(Y |X =

x)(1− E0(Y |X = x)) = m0(x)(1−m0(x)).

In heteroscedastic regression, it is common in the literature to write Yi = m(Xi)+σ(Xi)ei

with ei independent of Xi. In this formulation the entire error term σ(Xi)ei is uncorrelated

with Xi. In the ideal case that there is no lack-of-fit, such definition is reasonable. However,

when there is a lack-of-fit exist because a wrong regression function is specified, the error

term still contains some systematic information of E(Yi|Xi). So it is possible that the error

resulting from the specified regression function is still correlated with Xi.

3.2 Examples

3.2.1 Numerical simulation and comparisons

In this section, we present the results of a simulation study conducted to investigate the

type I error and power performance of our test. The test has a parameter k to specify the

number of nearest neighbors for data augmentation. The inference for our test requires the

k to be a small, odd, and positive integer. We report the results for k = 3 and 5 and denote

them as GSW3 and GSW5, respectively. This is for the user to have an idea of how the test

behaves with a given k. Furthermore, we report the results of our test with k selected from

3 and 5 using our considered method that will be explained in Chapter 5 and denote it as

GSW. For the GSW applied to each generated data set, the value of the k is selected using

k̂ in (5.0.1) and our test with parameter k̂ is used to obtain the p-value.

For comparison, we also report the corresponding results for the order selection (OS) test

of Eubank and Hart (1992), the rank based test (ROS) of Hart (2008), the bootstrap order

selection test (BOS) of Chen et al. (2001), and the Bayes sum test of Hart (2009). As argued

in Section 7.1 of Hart (1997), evenly spaced design points should be used for calculation of
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these four test statistics even when they are unevenly spaced. So the generated covariate

values in increasing order were replaced by evenly spaced design points on (0,1) for all four

tests. For the bootstrap order selection test (BOS), we apply the wild bootstrap algorithm

of Chen et al. (2001) based on the residuals Yi − Ȳ , i = 1, . . . , n, and use the test statistic

Thet,n in (1.0.2) with 1000 bootstrap samples for each replication. For the Bayes sum test, we

use the statistic in (2.3.2) that has been reported to have good power from comprehensive

simulation study in Hart (2009). For approximation of the p-values of the Bayes sum test

Hart (2009) gave two versions of the approximation, one assuming normality (BN) and one

using the bootstrap (BB). For the BN, a random sample of the same sample size as the data

was generated from the standard normal distribution and the Bayes sum test statistic was

calculated from the data so generated regardless of the actual distribution of the response

variable. The process was repeated 10,000 times independently and the p-value was obtained

based on the empirical distribution of these 10,000 values. For the BB, 10,000 bootstrap

samples were drawn from the empirical distribution of the residuals Yi − Y , i = 1, . . . , n

rather than the normal distribution and the p-value approximation was carried out similarly.

The scale parameter σ2 for a given data set Y1, . . . , Yn in both BB and BN statistics was

estimated by σ̂2 = (n− 2)−1
∑n−1

i=2 (0.809Yi−1− 0.5Yi− 0.309Yi+1)
2 as was suggested in Hart

(2009).

The values for the covariate X were independently generated from Uniform(0, 1) while

the response values were independently generated according to the following five models for

i = 1, . . . , n. An intermediate sample size of n = 50 was used in all cases.

• Model M0: Yi = 10 + εi;

• Model M1: Yi = 10 cos(qπXi) + εi;

• Model M2: Yi = 10 sin(qπXi) + εi;

• Model M3: Yi = e−2Xicos(qπXi) + εi;

• Model M4: Yi = 0.2e−2Xicos(qπXi) + εi,
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where q in Models M1 −M4 represents the frequency. We first consider q = 8, which is

a higher frequency than the simulation study reported in Hart (2009). A lower q value is

considered in later section. The data for the error term εi in each model were independently

generated with one of the four different types of error distribution:

• εi ∼ Uniform(−0.1, 0.1);

• εi ∼ Normal(0, 0.022);

• εi = Vi/30, where Vi follows t-distribution with 5 degrees of freedom (This case is

denoted as T (5)/30 in Table 3.1);

• εi = Xi · ei where ei ∼ Uniform(−0.1, 0.1). This is a heteroscedastic regression model

and denoted as X · U(−0.1, 0.1) in Table 3.1.

Model M0 serves as the null model to obtain the type I error rates for all tests. For each

error distribution, the data were generated from Models M0 through M4 with sample size

n = 50 for 2,000 times and the rejection rate (percent of rejections) at significance level 0.05

is reported in Table 3.1.

It can be seen that the type I error estimates for all tests were below or close to the

nominal level 0.05 for all models with homoscedastic errors. The Bayes sum test with

Bootstrap approximation for the critical value (BB) is very conservative in these cases as

the type I error rate is less than 1% (mostly zero). For the heteroscedastic regression model,

the variance of the error depends on the covariate while the conditional mean of the response

variable given the covariate is a constant under the Model M0. In this case, the BB test is

still conservative whereas all the other tests become liberal.

The columns M1 to M4 in Table 3.1 show the power comparison for the different combi-

nations between Models M1-M4 and the four types of error distribution. The powers of our

test with k = 3 (GSW3) and that with k̂ (GSW) are very close to each other and higher

than all other tests in all cases. The Bayes sum test with normal approximation for the
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Table 3.1: Rejection rate under H0 and high frequency alternatives with sample size n = 50

Model (q=8)

Error Method M0 M1 M2 M3 M4

BB 0.00 97.85 98.50 85.40 18.85

BN 4.65 100 100 99.05 80.80

U(−0.1, 0.1) ROS 4.05 69.60 80.95 63.55 11.10

OS 4.45 76.25 89.91 69.20 17.00

BOS 5.35 65.00 91.35 40.15 10.25

GSW5 3.95 100 100 96.75 81.20

GSW3 4.00 100 100 99.75 95.30

GSW 5.45 100 100 99.75 94.20

BB 0.05 98.20 98.25 87.80 80.40

BN 4.25 100 100 99.65 99.05

N(0, 0.022) ROS 4.10 72.95 78.85 68.30 50.40

OS 4.25 79.45 86.85 69.15 59.25

BOS 4.40 65.20 91.40 43.15 35.20

GSW5 3.55 100 100 96.35 95.15

GSW3 4.05 100 100 99.85 99.75

GSW 4.90 100 100 99.70 99.60

BB 0.00 98.20 98.65 85.80 45.20

BN 4.25 100 100 99.40 92.25

T (5)/30 ROS 4.35 73.05 79.55 66.10 22.15

OS 4.45 79.60 87.95 68.05 31.70

BOS 3.50 64.95 91.45 41.35 17.95

GSW5 2.55 100 100 96.20 89.10

GSW3 3.00 100 100 99.90 98.20

GSW 3.00 100 100 99.80 98.15

BB 0.10 97.85 98.50 86.40 65.50

BN 7.80 100 100 99.30 95.45

X · U(−0.1, 0.1) ROS 6.10 69.30 81.35 67.30 32.65

OS 6.95 75.90 89.10 70.50 45.45

BOS 5.40 65.05 91.40 42.65 24.70

GSW5 6.50 100 100 96.95 94.55

GSW3 7.30 100 100 99.80 99.25

GSW 7.83 100 100 99.70 99.50
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critical value (BN) has power close to our test. The order selection test (OS), the rank based

test (ROS), and the bootstrap order selection test (BOS) fall far behind. The low power

performance of BOS in the case of high frequency alternatives was mentioned in Chen et al.

(2001) and they suggested to use smoothing squared residuals to deal with that but did not

give details. For all different types of error distribution, the Bayes sum test with bootstrap

approximation for the critical value (BB) has good power for Models M1 and M2 whereas

power becomes low for Models M3 and M4. It is noticeable that the power of our test is

1 for Models M1 and M2 for all different types of error distribution and very close to 1 for

Models M3 and M4. In addition, the power for the order selection test (OS) was slightly

higher than that for the rank based test (ROS) in all cases.

Models M3 and M4 are similar except that Model M4 has lower signal to noise ratio

than Model M3. With the lower signal to noise ratio, there are surprisingly big drops in the

power for the four tests BB, ROS, OS and BOS. To have a closer look at the performance

of all tests in even lower signal to noise ratio cases, we also considered the model Yi =

Ce−2Xicos(8πXi) + εi with C = 0.1, 0.12, 0.14, 0.16, 0.18 and εi ∼ Uniform(−0.1, 0.1). The

empirical power curves are given in Figure 3.1. It is obvious that our test (GSW) has

consistently higher power than the other tests.

Above discussions are for high frequency alternatives with q = 8 and intermediate sample

size n = 50. When sample size increases while the frequency stays the same, the power of

each test also increases. For sample size of 100 (see the columns 3 to 8 of Table 3.2), the

empirical power is 1 for all four tests (Bayes sum test, order selection test, rank based test,

and our test) under Models M1-M3. The power of BB for Model M4 is the lowest among all

methods for all error distributions. The OS and ROS have power below 1 for the uniform

error case. The rest of the tests have power close to 1 for Model M4. For the heteroscedastic

error model, our test has better type I error control (5.3% and 5.5% for GSW3 and GSW5

respectively) than BN, OS, and ROS (more than 7% type I error).

To examine how the power of these tests changes with the sample size, we generated
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Figure 3.1: Power plot for data with low signal to noise ratio.
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data with model Yi = N−1/4A(Xi) + εi, where A(Xi) = 0.3e−2Xicos(8πXi) + εi, εi ∼

Uniform(−0.1, 0.1), for N = 15, 25, 50, 75, 100, 125, 150, 175, 200, 250. The GSW is our test

with k̂ selected from k = 3 and 5 based on (5.0.1). The empirical power of these tests are

presented in Figure 3.2. It is obvious that the proposed (GSW) test consistently has the

highest power over all the sample sizes considered.

It is worth mentioning that for lower frequency alternatives the differences among the

power of the four tests will reduce. For example, when q = 2 and n = 50, the power for

Models M1-M3 for all tests become 1. For Model M4, the power of BB is below 1 and the

rest of the tests have power close to 1 (see the last six columns of Table 3.2).

Even though the Bayes sum test (BN) showed a comparable performance to our test

GSW in some cases, the running time of BN is much longer than GSW. In particular, the

average running time from 10,000 runs from BEOCAT cluster machines for GSW is 0.03

second while that for the Bayes sum test is 9.7 seconds. So the GSW is more than 300 times

faster than the Bayes sum test.
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Figure 3.2: Power plot for different sample sizes
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Table 3.2: Rejection rate under H0 and high frequency case with sample size n=100 and

low frequency case with sample size n=50

Error Model q=8, n=100 q=2, n=50

BB BN ROS OS GSW5 GSW3 BB BN ROS OS GSW5 GSW3

U(−0.1, 0.1) M0 0.0 5.2 4.5 4.7 3.5 3.8 0.0 4.6 4.0 4.4 4.0 4.0

M4 87.2 100 92.8 95.9 100 100 93.5 100 99.2 99.9 99.8 99.9

N(0, 0.022) M0 0.0 5.2 5.5 5.5 2.9 2.8 0.0 4.2 4.1 4.2 3.5 4.0

M4 100 100 100 100 100 100 100 100 100 100 100 100

T (5)/30 M0 0.0 4.8 4.8 5.0 3.0 2.7 0.0 4.2 4.3 4.4 2.5 3.0

M4 98.0 100 99.9 99.4 100 100 98.4 100 100 100 100 100

X · U(−0.1, 0.1) M0 0.0 7.6 7.9 7.0 5.5 5.3 0.1 7.8 6.1 7.0 6.5 7.3

M4 99.9 100 99.9 100 100 100 100 100 100 100 100 100
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3.2.2 Numerical comparison with Wang et al. (2008)

To explain the difference between the performance of our test and that in Wang et al.

(2008), we present the results of numerical studies of the type I error conducted. For

each error distribution in the previous subsection (see the first column in Table 3.2), data

were generated from Model M0 with different sample sizes (n = 15, 25, 50, 75, 100, 200) and

different values of the number of nearest neighbors (k = 3, 5, 7, 9, 11) for 20,000 times. The

rejection rate at different significance levels (α = 0.10, 0.05, 0.01) is given in Figures 1.1, 3.3,

3.4, and 3.5.

For the heteroscedastic case, both methods are liberal when n = 15 and n = 25. When

the sample size n gets bigger our type I error becomes close to the nominal level but the

type I error of Wang et al. (2008) still changes sharply as k varies (See Figure 3.3).

Figure 3.3: Relationship between type I error and the number of nearest neighbors k for

data generated from Model M0 with heteroscedastic error distribution. GSW: our test; WA:

the test of Wang et al. (2008).

For the models with homoscedastic error distribution, it is obvious that the type I errors
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of our test are consistent across different sample sizes and different k values and they are

very close to the nominal levels as shown in Figures 1.1, 3.4, and 3.5. On the contrary, the

test of Wang et al. (2008) has unstable type I error. Their type I error changes drastically as

k changes. In particular, their test is very liberal for small k and becomes very conservative

when k gets large. Moreover, their type I error depends on the sample size n.

Figure 3.4: Relationship between type I error and the number of nearest neighbors k for

data generated from Model M0 with uniform error distribution. GSW: our test; WA: the

test of Wang et al. (2008).

Even for homoscedastic case, the calculation of the test statistic depends on the covariate

through the nearest neighbor augmentation. However, the asymptotic variance formula

(3.1.9) of Wang et al. (2008) does not depend on X when the variance of the response

variable is constant. These two facts do not agree with each other. For example, we

generated data under Model M0 (Yi = 10 + εi), Model M2 (Yi = 10sin(qπXi) + εi), and

Model M4 (Yi = 0.2e−2Xicos(qπXi)+εi) where q = 8 and the error term εi in each model was

generated from two different distributions εi ∼ Uniform(−0.1, 0.1) and εi ∼ Normal(0, 0.022).
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Figure 3.5: Relationship between type I error and the number of nearest neighbors k for

data generated from Model M0 with Student t error distribution. GSW: our test; WA: the

test of Wang et al. (2008).

The process was repeated 2,000 times using n = 50 and k = 3. The asymptotic variance of

Wang et al. (2008) was calculated using formula (3.1.9). The sample variance of 2,000 test

statistics was also computed. The results are reported in Table 3.3. Even though the data

are under the alternative hypothesis, the asymptotic variance formula of the test statistic of

Wang et al. (2008) remains the same as that under the null hypothesis (i.e. formula (3.1.9)).

Empirical evidence suggests that this is not right (see Table 3.3). For models with uniform

error, the asymptotic variance is 5.55× 10−5, whereas the sample variances from 2,000 runs

are 5.4 × 10−5, 4.97, and 4.89 × 10−4 when the data were generated with Models M0, M2,

and M4, respectively. They are very different from each other. This happens because their

asymptotic variance is biased and does not give the true variance of their test statistic. The

bias comes from the missing second term of (3.1.12). Our test statistic is identical to theirs

but our calculation of the asymptotic variance depends on the covariate values.
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Table 3.3: Wang et al. (2008)’s asymptotic variance and sample variance of 2,000 test

statistic values
Error Model Asymptotic Variance Sample variance

M0 5.40× 10−5

U(−0.1, 0.1) M2 5.55× 10−5 4.97

M4 4.89× 10−4

M0 7.85× 10−7

N(0, 0.022) M2 8× 10−7 0.55

M4 5.19× 10−5

3.2.3 Application to gene expression data from patients undergo-

ing radical prostatectomy

In this subsection, we present application of our test to gene expression data from patients

undergoing radical prostatectomy in order to predict the behavior of Prostate cancer. This

data set was collected between 1995 and 1997 at the Brigham and Women’s Hospital from 52

tumor and 50 normal prostate samples using oligonucleotide microarrays containing probes

for 12600 genes and expressed sequence tags (the data is available at

http://www-genome.wi.mit.edu/MPR/prostate). The data shows heterogeneity and has a

binary response variable which is the patient outcome (tumor or normal). Applying our

test to the expression data from each gene, we identified 980 genes that are significantly

associated with the response variable after Bonferroni correction (p ≤ 0.001/12600). On the

other hand, Singh et al. (2002) used permutation test to identify important genes. They

found 456 genes whose expression values are significantly correlated with patient outcome

(p ≤ 0.001). Note that the significance declared by Singh et al. (2002) is at 0.001 level

without any multiple comparison adjustment. Ours are obtained at the same significance

level but with the Bonferroni control which is a very conservative method for multiple

comparison adjustment. With such conservative control, we still identified more than twice

of the genes than Singh et al. (2002). It is worth mentioning that our test was developed
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under very general assumptions that are expected to hold true for the microarry data here.

These results suggest that our test is much more powerful than the permutation test of

Singh et al. (2002). Furthermore, we performed k-nearest neighbor (KNN) classification on

the data for the top i genes (i genes with smallest p-values, i= 1,2,....980) to predict the

patient outcomes. The leave-one-out cross validation (LOOCV) was used as a validation

method. The parameter k in KNN was estimated with the training part of the data in

LOOCV procedure by the profile pseudolikelihood method of Holmes and Adams (2003).

The leave-one-out accuracy curve with increasing number of selected top i genes is shown

in Figure 3.6. We would like to comment that these genes were obtained individually. Our

simple application of the test is not meant to find the best combination of genes that have

the best classification accuracy. Even under such circumstances, the top genes found with

our test give good LOOCV accuracy.

Figure 3.6: The leave-one-out accuracy curve with increasing number of selected genes.
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3.3 Technical proofs

Proof of Theorem 3.1.2.

We can write λN = Var(
√
NTB) = E(Var(

√
NTB|X)) + Var(

√
NE(TB|X)).

It is clear that Var(
√
NE(TB|X)) = 0 since by the definition of TB in (3.1.5),

E(
√
NTB|X) = E

(
N−1/2

(k − 1)

∑
j 6=j′

(Yj − E(Yj|X))(Yj′ − E(Yj′|X))

∣∣∣∣∣X
)
Kjj′ = 0 a.s.

Therefore, we only need to consider E(Var(
√
NTB|X)) to obtain λN . Let tjj′ = (Yj −

E(Yj|X))(Yj′ − E(Yj′|X))Kjj′ . Then

N(k − 1)2E(Var(
√
NTB|X)) = E

[
Var

(∑
j 6=j′ tjj′ |X

)]
= 2E

(∑
j 6=j′ E(t2jj′|X)

)
= 2

∑
j 6=j′ E

[
σ2(Xj)σ

2(Xj′)K
2
jj′

]
.

Let X(j∗) be the order statistic for Xj so that j∗ is the rank of Xj among {Xj1 , j1 = 1, . . . , N}.

Then

λN =E(Var(
√
NTB|X)) =

4

N(k − 1)2
E

{∑
j<j′

σ2(Xj)σ
2(Xj′)E

[
K2
jj′

∣∣Xj, Xj′ , j∗, j
′
∗
]}

=
4

N(k − 1)2
E

{∑
j<j′

σ2(Xj)σ
2(Xj′)[E

2(Kjj′|Xj, Xj′ , j∗, j
′
∗)

+Var(Kjj′|Xj, Xj′ , j∗, j
′
∗)]} . (3.3.1)

To find the conditional expectation, without loss of generality, assume that Xj < Xj′ , so

that j∗ < j′∗. Let

Λjj′ = E (I(j ∈ Cc, j′ ∈ Cc)|Xj, Xj′ , j∗, j
′
∗)

= P (Xj ∈ Cc, Xj′ ∈ Cc|Xj, Xj′ , j∗, j
′
∗) =

∫ Xj+Dj

Xj−Lj

f(x)dxI(j′∗ − j∗ ≤ k − 1),

where Dj = the upper k/2 spacing and Lj = the lower (k/2 − (j′∗ − j∗)) spacing from Xj.

Applying Taylor’s expansion twice, we can write

Λjj′=
{

[F (Xj+Dj)−F (Xj−Lj)]+Op(N
−2)
}
I(j′∗−j∗ ≤ k − 1).

39



From the properties of spacings in Pyke (1965), we have

E(F (Xj+Dj)−F (Xj−Lj)|Xj, Xj′ , j∗, j
′
∗)=[k−(j′∗−j∗)]/(N+1) · I(j′∗−j∗ ≤ k−1).

Therefore, for Xj1 6= Xj and Xj1 6= Xj′ , we have

E(Λjj′ |Xj, Xj′ , j∗, j
′
∗) =

{
[k−(j′∗− j∗)− 2I(j′∗ − j∗ ≤(k −1)/2)]/(N+1) +Op(N

−2)
}

×I(j′∗ − j∗ ≤k − 1); (3.3.2)

if Xj1 = Xj (or symmetrically Xj1 = Xj′), then

Λjj = I(j′∗ ∈ CX(j∗)
) = I (j′∗ − j∗ ≤ (k − 1)/2) . (3.3.3)

Collecting terms from (3.3.2) and (3.3.3), we have

E (Kjj′ |Xj, Xj′ , j∗, j
′
∗) =

(
k−(j′∗−j∗) +Op(N

−1)
)
I(j′∗ − j∗ ≤ k − 1). (3.3.4)

Now consider the conditional variance. Note that when Xc ∈ {Xj, Xj′}, the term in Kjj′

is a constant. Therefore,

Var (Kjj′ |Xj, Xj′ , j∗, j
′
∗)=Var

(∑N
c=1I(j ∈Cc)I(j′ ∈Cc)I(Xc /∈{Xj, Xj′})

∣∣∣Xj, Xj′ , j∗, j
′
∗

)
=
∑N

c1=1

∑N
c2=1 {E[I(j ∈ Cc1)I(j′ ∈ Cc1)I(j ∈ Cc2)I(j′ ∈ Cc2)|Xj, Xj′ , j∗, j

′
∗]

−E[I(j ∈ Cc1)I(j′ ∈ Cc1)|Xj, Xj′ , j∗, j
′
∗]E[I(j ∈ Cc2)I(j′ ∈ Cc2)|Xj, Xj′ , j∗, j

′
∗]}

×I(Xc1 /∈ {Xj, Xj′})I(Xc2 /∈ {Xj, Xj′})

=
∑N

c=1E [I(j ∈ Cc)I(j′ ∈ Cc)I(Xc /∈ {Xj, Xj′})|Xj, Xj′ , j∗, j
′
∗]

−
∑N

c=1[E(I(j ∈ Cc)I(j′ ∈ Cc)|Xj, Xj′ , j∗, j
′
∗)]

2I(Xc /∈ {Xj, Xj′}),

where the last equality is due to the fact that the indicator functions involving c1 and c2

are conditionally independent when c1 6= c2 and neither c1, c2 is Xj or Xj′ . Plugging (3.3.2)

through (3.3.4) into the right hand side of the equation above, we obtain

Var(Kjj′ |Xj, Xj′ , j∗, j
′
∗)=

[
(k− (j′∗−j∗))−2I

(
j′∗−j∗≤

k−1

2

)
+Op(N

−1)

]
I(j′∗−j∗≤k−1).(3.3.5)
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Putting (3.3.4) and (3.3.5) into (3.3.1), we have

λN =
N∑
j<j′

E

{
4σ2(Xj)σ

2(Xj′)

N(k−1)2

[
[k−(j′∗−j∗)]2+[k−(j′∗−j∗)]−2I

(
j′∗−j∗≤

k−1

2

)
+Op(N

−1)
]
I(j′∗−j∗≤k−1)} .

Next, we will show that the limit of λN exists. Note that

λN = E(δN), where

δN =
N∑
j<j′

4σ2(Xj)σ
2(Xj′)

N(k−1)2
[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]

−2I

(
|j′∗−j∗|≤

k−1

2

)
+Op(N

−1)

]
I(|j′∗−j∗|≤k−1).

It is clear that [[k−|j′∗−j∗|]2] I(|j′∗−j∗| ≤ k−1) and [k−|j′∗−j∗|] I(|j′∗−j∗| ≤ k−1) are both

at least 1, therefore,
[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]− 2I

(
|j′∗−j∗|≤ k−1

2

)
)
]
I(|j′∗− j∗| ≤ k−1) is

nonnegative. Consequently, δN is a summation of nonnegative terms.

Under Assumption (A), the conditional variance of Yj given Xj is uniformly bounded

(i.e. there exists a constant C > 0 such that σ2(Xj) ≤ C for all j). We have

δN =
N∑
j<j′

4σ2(Xj)σ
2(Xj′)

N(k−1)2
[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]

−2I

(
|j′∗−j∗|≤

k−1

2

)
+Op(N

−1)

]
I(|j′∗−j∗|≤k−1)

≤
N∑
j<j′

4C2

N(k−1)2
[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]

−2I

(
|j′∗−j∗|≤

k−1

2

)
+Op(N

−1)

]
I(|j′∗−j∗|≤k−1) (3.3.6)

If we replace the summation in (3.3.6) over the original sample index j, j′ by the summation

over the ranks j∗, j
′
∗ and denoting

M(|j′∗−j∗|) =
[
[k−|j′∗−j∗|]2+[k−|j′∗−j∗|]−2I

(
|j′∗−j∗|≤ k−1

2

)
+Op(N

−1)
]
I(|j′∗−j∗| ≤ k−1) ,
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then we have

δN ≤
N∑

j∗<j′∗

4C2

N(k−1)2
M(|j′∗−j∗|). (3.3.7)

As shown in (3.1.11), the right hand side of the inequality (3.3.7) converges to

2k(2k − 1)

3(k − 1)
C2 +

2(k − 2)

(k − 1)
C2, (3.3.8)

which is finite for finite C and fixed k > 1 (note that in our augmentation, k is a finite odd

integer with minimum value of 3). Note that δN is the summation of nonnegative terms

(with probability 1) due to the fact that M(|j′∗−j∗|) ≥ 0. Hence the limit of δN exists as a

result of the Comparison Test in calculus.

The convergence of λN = E(δN) is due to the Dominated Convergence Theorem after

noticing that the expectation of (3.3.8) is finite. Applying the Dominated Convergence

Theorem to λN , we get limN→∞ λN = limN→∞E(δN) = E(limN→∞ δN). This completes the

proof.

The following lemma will be needed in the proof of Lemma 3.1.4.

Lemma 3.3.1. For locally Lipschitz continuous function A(x) on a bounded support [a, b],

we have

A(Xi)I(i ∈ Cc)− A(Xj)I(j ∈ Cc) = Op(N
−1),

uniformly in i, j = 1, 2, ..., N , for a given c = 1, 2, ..., N .

Sketch Proof of Lemma 3.3.1.

Recall that f(x) and F (x) are marginal probability density function and cumulative

distribution function of Xj, respectively. Let Y1, Y2, ..., YN be independent Exponential

random variables with mean 1, and U1, U2, ..., UN be independent Uniform random variables
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on (0, 1). Without loss of generality, assume that X1, X2, ..., XN are ordered. Define Di =

Xi−Xi−1, for 2 ≤ i ≤ N . Then from the properties of spacings on page 406 of Pyke (1965),

there exists an ai ∈ [a, b] such that F (ai) ∈ (U(i−1), U(i)) and Di = (N − i + 1)−1 Yi {1 −

F (ai)}{f(ai)}−1 for 2 ≤ i ≤ N . For j > i,

Xj −Xi = Di+1 +Di+2 + ...+Dj

=

j∑
l=i+1

1

N − l + 1
Yl

1− F (al)

f(al)

≤
j∑

l=i+1

1

N − l + 1
Yl

1− U(l−1)

f(al)

≤ 1

inf l∈[i+1,j] f(al)

j∑
l=i+1

1

N − l + 1
Yl (1− U(l−1))

= K∗
j∑

l=i+1

1

N − l + 1
Yl (1− U(l−1)),

where K∗ is some positive constant.

Note that the random variables Yl and U(l) are independent, 1 ≤ l ≤ N , and U(l−1) has

Beta(l − 1, N − l + 2) distribution. Therefore,

E

(
1

N − l + 1
Yl (1− U(l−1))

)
=

1

N − l + 1
E(Yl) E(1− U(l−1))

=
N − l + 2

(N − l + 1)(N + 1)

= O(N−1), (3.3.9)
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and

V ar

(
1

N − l + 1
Yl (1− U(l−1))

)
=

1

(N − l + 1)2

{
E(Yl)

2 E(1− U(l−1))
2 −

(
E(Yl) E(1− U(l−1))

)2}
=

1

(N − l + 1)2

{
2

[
(l − 1)(N − l + 2)

(N + 1)2(N + 2)
+

(N − l + 2)2

(N + 1)2

]
− (N − l + 2)2

(N + 1)2

}
=

1

(N − l + 1)2

{
2(l − 1)(N − l + 2)

(N + 1)2(N + 2)
+

(N − l + 2)2

(N + 1)2

}
=

1

(N + 1)2(N + 2)

{
2(l − 1)(N − l + 2)

(N − l + 1)2
+

(N + 2)(N − l + 2)2

(N − l + 1)2

}
≤ 1

(N + 1)2(N + 2)

{
2(N + 2)(N − l + 2)2

(N − l + 1)2

}
(3.3.10)

= O(N−2), (3.3.11)

where the inequality in (3.3.10) is due to the fact that 2(l − 1) < (N + 2)(N − l + 2). Due

to (3.3.9) and (3.3.11) and by Theorem 14.4-1 in Bishop et al. (2007), we have

1

N − l + 1
Yl (1− U(l−1)) = Op(N

−1), for all l = 2, ..., N.

Consequently, for Xi, Xj in the same cell,

Xj −Xi ≤ K∗
j∑

l=i+1

1

N − l + 1
Yl (1− U(l−1)) = Op

(
j − i
N

)
= Op(N

−1), (3.3.12)

where the last equality in (3.3.12) is due to j− i ≤ 2k since Xi, Xj are included in the same

cell.

From the local Lipschitz continuity of A(x) on [a, b] , when N → ∞, the following

condition is satisfied for any two Xi, Xj inside the same cell

|A(Xj)− A(Xi)| ≤ L∗|Xj −Xi|, for i, j ∈ Cc, (3.3.13)

where L∗ is a positive constant.

From (3.3.12) and (3.3.13), we have

|A(Xj)− A(Xi)| = Op(N
−1), for i, j ∈ Cc.
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This completes the proof.

Sketch Proof of part (1) of Lemma 3.1.4.

From (3.1.16), we have

∆N,2 =
√
Nk(N−1)−1

N∑
c=1

[
2N−1/4

(
Ac· − A··

)
(εc· − ε··)

]
By Lemma 3.3.1 and Assumption (B),

Ac· = k−1
k∑
t=1

Act = k−1
N∑
i=1

A(Xi)I(i ∈ Cc) = A(Xc) +Op(N
−1) (3.3.14)

and

A·· = N−1
N∑
c=1

Ac· = A(X) +Op(N
−1), (3.3.15)

where A(X) = N−1
∑N

c=1A(Xc). Therefore, ∆N,2 can be written as

∆N,2 =
√
Nk(N−1)−1

N∑
c=1

[
2N−1/4

(
A(Xc)− A(X)

)
(εc· − ε··)

]
+ op(1)

Denote Uc = A(Xc)− E(A(Xc)) and U · = N−1
∑N

c=1 Uc, then we can write

∆N,2 = 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

(
A(Xc)− A(X)

)
(εc· − ε··)

]
+ op(1)

= 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

(
[A(Xc)− E(A(Xc))]− [A(X)− E(A(Xc))]

)
× (εc· − ε··)] + op(1)

= 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

(
Uc − U ·

)
(εc· − ε··)

]
+ op(1)

= 2kN
−1
4

√
N

(N−1)

[
N∑
c=1

Ucεc· −N U · ε··

]
+ op(1)

= 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

Ucεc·

]
− 2kN

1
4

(N−1)

[√
N U ·

] [√
N ε··

]
+op(1). (3.3.16)

First we will show that [ √
N

(N−1)

N∑
c=1

Ucεc·

]
= Op(1) (3.3.17)
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and therefore the first term in (4.2.76) is op(1). Note that E(εc·|X) = E(Qc·−E(Qc·|X)|X) =

0 and Uc is a function of Xc. Therefore, we have

E

[ √
N

(N−1)

N∑
c=1

Ucεc·

]
=

√
N

(N−1)

N∑
c=1

E [UcE(εc·|X)] = 0, (3.3.18)

and

V ar

[ √
N

(N−1)

N∑
c=1

Ucεc·

]

=
N

(N−1)2
E

[
N∑
c=1

Ucεc·

]2

=
N

(N−1)2
E

[
N∑
c=1

U2
c ε

2
c· +

N∑
c 6=c′

Ucεc·Uc′εc′·

]

=
N

(N−1)2

[
N∑
c=1

E
(
U2
c ε

2
c·
)]

+
N

(N−1)2

[
N∑
c 6=c′

E (UcUc′εc·εc′·)

]
. (3.3.19)

Denote the first term and second term in (4.2.79) as υN,1 and υN,2, respectively. Then

υN,1 =
N

(N−1)2

[
N∑
c=1

E
(
U2
cE(ε2c·|X)

)]

=
N

(N−1)2

[
N∑
c=1

E
(
U2
cE((Qc· − E(Qc·|X))2|X)

)]

=
N

(N−1)2

N∑
c=1

E

U2
cE


(

1

k

N∑
i=1

(Yi − E(Yi|X))I(i ∈ Cc)

)2
∣∣∣∣∣∣X



=
N

k2(N−1)2

N∑
c=1

E

{
U2
cE

{(
N∑
i=1

(Yi − E(Yi|X))2I(i ∈ Cc)

+
N∑
i 6=i′

(Yi − E(Yi|X))I(i ∈ Cc)(Yi′ − E(Yi′ |X))I(i′ ∈ Cc)

)∣∣∣∣∣X
}}

=
N

k2(N−1)2

N∑
c=1

N∑
i=1

E
{
U2
cE((Yi − E(Yi|X))2

∣∣X)I(i ∈ Cc)
}

(3.3.20)

=
N

k2(N−1)2

N∑
i=1

N∑
c=1

E
{
U2
c σ

2(Xi)I(i ∈ Cc)
}
, (3.3.21)
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where the equality in (4.2.80) is due to the fact that Yi and Yi′ are independent when i 6= i′.

Similarly,

υN,2 =
N

(N−1)2

[
N∑
c6=c′

E (UcUc′E(εc·εc′·|X))

]

=
N

(N−1)2

N∑
c 6=c′

E

{
UcUc′E

{(
1

k

N∑
i=1

(Yi − E(Yi|X))I(i ∈ Cc)

)

×

(
1

k

N∑
i′=1

(Yi′ − E(Yi′|X))I(i′ ∈ Cc′)

)∣∣∣∣∣X
}}

=
N

k2(N−1)2

N∑
i=1

N∑
c 6=c′

E
{
UcUc′E((Yi − E(Yi|X))2

∣∣X)I(i ∈ Cc)I(i ∈ Cc′)
}

=
N

k2(N−1)2

N∑
i=1

N∑
c 6=c′

E
{
UcUc′σ

2(Xi)I(i ∈ Cc ∩ Cc′)
}
, (3.3.22)

Consider individual terms under the summation in (4.2.81) and (4.2.82). By Cauchy-

Schwarz inequality and Assumptions (A) and (B),

E
{
U2
c σ

2(Xi)I(i ∈ Cc)
}

≤ E
{
U2
c σ

2(Xi)
}

≤
[
E(U4

c )
] 1

2

[
E
(
σ2(Xi)

)2] 1
2

=
[
E(U4

c )
] 1

2

[
E
(
E((Yi − E(Yi|X))2

∣∣X)
)2] 1

2

≤
[
E(U4

c )
] 1

2

[
E
(
E((Yi − E(Yi|X))4

∣∣X)
)2] 1

2

< ∞. (3.3.23)
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Similarly,

∣∣E {UcUc′σ2(Xi)I(i ∈ Cc ∩ Cc′)
}∣∣

≤ E
{
|UcUc′|σ2(Xi)I(i ∈ Cc ∩ Cc′)

}
≤ E

{
|UcUc′|σ2(Xi)

}
≤

[
E (UcUc′)

2] 1
2

[
E
(
σ2(Xi)

)2] 1
2

=
[
E
(
U2
c

)] 1
2
[
E
(
U2
c′

)] 1
2

[
E
(
E((Yi − E(Yi|X))2

∣∣X)
)2] 1

2

≤
[
E(U4

c )
] 1

2
[
E(U4

c′)
] 1

2

[
E
(
E((Yi − E(Yi|X))4

∣∣X)
)2] 1

2

< ∞. (3.3.24)

Note that Xi can only be used to augment at most 2k cells. That is, if the rank of Xi is

r, then Xi can not be used to augment cells whose x values have ranks not in the set of

positive integers {max{1, r − k}, ...,min{r + k,N}}. Therefore, the summation over c in

(4.2.81) and that over c and c′ in (4.2.82) each contains no more than 2k terms. As a result,

the two terms υN,1 and υN,2 are O(1) and therefore,

V ar

[ √
N

(N−1)

N∑
c=1

Ucεc·

]
= O(1). (3.3.25)

Due to (4.2.78) and (4.2.85), the proof of (4.2.77) is complete by applying Theorem 14.4-1

in Bishop et al. (2007).

Next, we will show that the second term in (4.2.76) is op(1). The second term in (4.2.76) is

−2kN
1
4

(N−1)

[√
N U ·

] [√
N ε··

]
.

Using the same technique of the proof of (4.2.77), it can be shown that[√
N ε··

]
= Op(1).

In addition, [√
N U ·

]
= Op(1) (3.3.26)
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is a result of Central Limit Theorem (CLT) applied to U1, ..., UN since they are i.i.d. due to

the fact that X1, ..., XN are i.i.d..

Consequently,

∆N,2 = Op(N
−1
4 ) +Op

(
N

1
4

N − 1

)
+ op(1) = op(1), as N →∞.

This completes the proof.

Sketch Proof of part (2) of Lemma 3.1.4.

First we will show that

∆N,3
p→ 0, as N →∞. (3.3.27)

From (3.1.17), we have

∆N,3 =
√
N{N(k−1)}−1

N∑
c=1

k∑
t=1

[
N−1/2

(
Act − Ac·

)2]
= {N(k−1)}−1

N∑
c=1

k∑
t=1

[(
Act − Ac·

)2]
.

By Lemma 3.3.1, we have
(
Act − Ac·

)
= Op(N

−1). Thus,

∆N,3 = Op(N
−2) (3.3.28)

and therefore ∆N,3 is op(1). This completes the proof of (3.3.27).

Next, we will show that ∆N,4
p→ 0. From (3.1.18), we have

∆N,4 = 2
√
N{N(k−1)}−1

N∑
c=1

k∑
t=1

(εct − εc·)
(
N−1/4

(
Act − Ac·

))
.

By Hölder’s inequality,

|∆N,4| ≤

[
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(εct − εc·)2
] 1

2
[

2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(
N−1/4

(
Act − Ac·

))2] 1
2

(3.3.29)

Now we will show that

N∑
c=1

k∑
t=1

(εct − εc·)2 = Op(N). (3.3.30)
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We can write

N∑
c=1

k∑
t=1

(εct − εc·)2 =
N∑
c=1

k∑
t=1

ε2ct − k
N∑
c=1

ε2c· (3.3.31)

Note that

E

{
N∑
c=1

k∑
t=1

ε2ct

}
= E

{
E

(
N∑
c=1

k∑
t=1

ε2ct|X

)}

= E

{
E

(
N∑
c=1

N∑
i=1

[
(Yi − E(Yi|X))2I(i ∈ Cc)

]
|X

)}

=
N∑
c=1

N∑
i=1

E
{
E
(
[Yi − E(Yi|X)]2 |X

)
I(i ∈ Cc)

}
=

N∑
c=1

N∑
i=1

E
{
σ2(Xi)I(i ∈ Cc)

}
= O(N), (3.3.32)

where the last equality in (4.2.42) is due to the fact that σ2(Xi) is uniformly bounded by

Assumption (A) and the summation over i in (4.2.42) contains only k terms.

50



Consider

E

{
N∑
c=1

k∑
t=1

ε2ct

}2

= E

E
[ N∑

c=1

k∑
t=1

ε2ct

]2∣∣∣∣∣∣X


= E

E
[ N∑

c=1

N∑
i=1

[Yi − E(Yi|X)]2 I(i ∈ Cc)

]2∣∣∣∣∣∣X


= E

{
E

([
N∑
c=1

N∑
i=1

[Yi − E(Yi|X)]4 I(i ∈ Cc)

]

+

[
N∑
c=1

N∑
i 6=i′

[Yi − E(Yi|X)]2 I(i ∈ Cc) [Yi′ − E(Yi′|X)]2 I(i′ ∈ Cc)

]

+

[
N∑
c 6=c′

N∑
i=1

[Yi − E(Yi|X)]2 I(i ∈ Cc) [Yi − E(Yi|X)]2 I(i ∈ Cc′)

]

+

[
N∑
c 6=c′

N∑
i 6=i′

[Yi − E(Yi|X)]2 I(i ∈ Cc) [Yi′ − E(Yi′ |X)]2 I(i′ ∈ Cc′)

]∣∣∣∣∣X
)}

=
N∑
c=1

N∑
i=1

E
{
E
(
[Yi − E(Yi|X)]4 |X

)
I(i ∈ Cc)

}
(3.3.33)

+
N∑
c=1

N∑
i 6=i′

E
{
σ2(Xi)σ

2(Xi′)I(i, i′ ∈ Cc)
}

(3.3.34)

+
N∑
c 6=c′

N∑
i=1

E
{
E
(
[Yi − E(Yi|X)]4 |X

)
I(i ∈ Cc ∩ Cc′)

}
(3.3.35)

+
N∑
c 6=c′

N∑
i 6=i′

E
{
σ2(Xi)σ

2(Xi′)I(i ∈ Cc)I(i′ ∈ Cc′)
}

(3.3.36)

= O(N2), (3.3.37)

where the equality in (4.2.47) is due to the fact that σ2(Xi) and E
(
[Yi − E(Yi|X)]4 |X

)
are

uniformly bounded by Assumption (A) and the summation over c in (4.2.43) and (4.2.44)

and that over c and c′ in (4.2.45) and (4.2.46) each contains no more than 2k terms.

From (4.2.42) and (4.2.47), we have

V ar

{
N∑
c=1

k∑
t=1

ε2ct

}
= O(N2). (3.3.38)
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Due to (4.2.42) and (4.2.48) and by Theorem 14.4-1 in Bishop et al. (2007), we have

N∑
c=1

k∑
t=1

ε2ct = Op

(
E

{
N∑
c=1

k∑
t=1

ε2ct

})
+Op

{V ar{ N∑
c=1

k∑
t=1

ε2ct

}}1/2
 = Op(N). (3.3.39)

Similarly, it can be shown that the second term in (4.2.41) is Op(N) and therefore the proof

of (4.2.40) is completed.

From (3.3.28), (3.3.29) and (4.2.40),

|∆N,4| ≤

[
2
√
N

N(k − 1)
Op(N)

] 1
2 [
Op(N

−2)
] 1

2

= Op(N
−3/4) = op(1), as N →∞.

This completes the proof.

Sketch Proof of Theorem 3.1.5.

The proof of the existence of limN→∞ λNA is similar to that for limN→∞ λN in Theorem

3.1.2. Now we will show that

√
N(BN(Q)−WN(Q))

d→N(kσ2
A, lim

N→∞
λNA).

From (3.1.14), we have

√
N(BN(Q)−WN(Q)) =

√
N

(
k(N−1)−1

N∑
c=1

(εc· − ε··)2 − {N(k−1)}−1
N∑
c=1

k∑
t=1

(εct − εc·)2
)

+∆N,1 + ∆N,2 −∆N,3 −∆N,4

=
√
N(BN(ε)−WN(ε)) + ∆N,1 + ∆N,2 −∆N,3 −∆N,4, (3.3.40)

where ∆N,1,∆N,2,∆N,3, and ∆N,4 are defined in (3.1.15), (3.1.16), (3.1.17), and (3.1.18),

respectively. The BN(ε) and WN(ε) are the average between-cell and within-cell variations

for augmented observations with Zi = Yi −
(
m0(Xi) +N−1/4A(Xi)

)
as the response. Note

that the conditional mean of Zi given Xi = x satisfies the null hypothesis. But V ar(Zi|Xi =

x) is equal to V ar(Yi|Xi = x). The result of Theorem 3.1.3 implies that

√
N(BN(ε)−WN(ε))

d→N(0, lim
N→∞

λNA), (3.3.41)
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with λNA calculated with the same formula as λN in Theorem 3.1.2 but with σ2(Xj) calcu-

lated under the alternative hypothesis. By Lemma 3.1.4, we have

∆N,i
p→ 0, as N →∞, for i = 2, 3, 4. (3.3.42)

Thus, we only need to consider ∆N,1 to obtain the asymptotic mean under the alternatives.

Note that A(X1), A(X2), ..., A(XN) are i.i.d. since X1, X2, ..., XN are i.i.d.. From (3.3.14)

and (3.3.15), we can write ∆N,1 in (3.1.15) as

∆N,1 =
√
Nk(N−1)−1

N∑
c=1

[
N−

1
2

(
Ac· − A··

)2]
=k(N −1)−1

N∑
c=1

(
A(Xc)− A(X)

)2
=kσ̂2

A,(3.3.43)

where σ̂2
A is the sample variance of A(X1), A(X2), ..., A(XN). By Weak Law of Large Num-

bers,

kσ̂2
A

p→ kσ2
A = kVar(A(X)) = k

[∫ ∞
−∞

A2(x)f(x)dx−
(∫ ∞
−∞

A(x)f(x)dx

)2
]

(3.3.44)

as N →∞ and k stays fixed.

From (3.3.42), (3.3.43) and (3.3.44), we have

∆N,1 + ∆N,2 −∆N,3 −∆N,4
p→ kσ2

A. (3.3.45)

From (3.3.40), (3.3.41) and (3.3.45) and by applying Slutsky’s theorem, we have

√
N(BN(Q)−WN(Q))

d→N(kσ2
A, lim

N→∞
λNA).

This completes the proof.
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Chapter 4

Nonparametric lack-of-fit test of

nonlinear regression in presence of

heteroscedastic variances

4.1 Introduction

Even though there are plenty of studies for lack-of-fit in linear regression models (cf. Neill

and Johnson (1984, 1985, 1989), Eubank and Hart (1992), Hart (2008), Miller and Neill

(2008)), we found that lack-of-fit tests in nonlinear regression has not received much atten-

tion. The existing literature include for example, Neill (1988) proposed such a test based on

near replicate clusters. This test is a modified version of the classical linear regression lack of

fit test of Fisher (1922) and can be used in both cases of replication and nonreplication. Neill

and Miller (2003) generalized the clustering based test of Christensen (1989, 1991) to the

nonlinear case. Li (2005) presented a test for assessing the lack of fit of nonlinear regression

models based on local linear kernel smoothers. All the preceding tests assume normality

or constant variance for the random errors. Therefore, these tests are not appropriate for

heteroscedastic regression problems.

However, practical data may have variances vary with the covariate i.e., the errors are
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heteroscedastic. In such cases, ignoring model heteroscadisity will lead to incorrect and mis-

leading inferences. This issue is explained in the following example from the Engineering

Statistics Handbook for ultrasonic reference block study. In this study, the data consist

of a response variable (ultrasonic response) and a predictor variable (metal distance). The

Handbook used this data to demonstrate nonlinear process modeling and the use of trans-

formations to deal with the violation of the assumption of constant variances for the errors.

The scatter plot for this data is given in Figure 4.1.
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Figure 4.1: Ultrasonic Reference Block Data

Based on the plot and scientific and engineering knowledge, the scientists decide to fit

the following theoretical model

y =
exp(−b1x)

b2 + b3x
+ ε, (4.1.1)

where b1, b2, and b3 are parameters to be estimated.

To check the validity of the suggested model in (4.1.1), diagnostic plots were used and

these plots show that the variance of the errors is not constant (see also the residuals plot
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against the independent variable, Metal Distance in Figure 4.2).
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Figure 4.2: Residuals plots from fit to untransformed data

To deal with the violation of non constant variance, the scientists suggested to fit a

model with a square root transformation for the response variable i.e.

y1/2 =
exp(−b1x)

b2 + b3x
+ ε. (4.1.2)

The diagnostic plots show that the model (4.1.2) appear to satisfy the model assumptions

better than model (4.1.1). Careful examination of the residuals plot of model (4.1.2) still

(see Figure 4.3) shows some nonrandom pattern. This means that there might be lack of fit

or a constant variance violation. Consequently, its important to develop a test for assessing

the lack of fit for nonlinear regression models and accounting for heteroscedasticity.

In this chapter, we propose a nonparametric lack of fit test in nonlinear regression models

in the presence of heteroscedastic variances. The proposed test is an extension of the lack

of fit test of constant regression considered in Chapter 3 to the nonlinear regression models.

Our test is valid for both continuous and discrete response variable. We constructed the test

56



1 2 3 4 5 6

−0
.5

0.0
0.5

1.0

Metal Distance

Re
sid

ua
ls

●

●

●

●

●

● ● ●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●
●

●

●●

●

●

●

●

●

● ●

●
●

●
● ●

●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●●

3 4 5 6 7 8 9

−0
.5

0.0
0.5

1.0

Fitted Response

Re
sid

ua
ls

●

●

●

●

●

●●● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●●

Figure 4.3: Residuals plots from fit to transformed data
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statistic using k-nearest neighbor augmentation defined through the ranks of the predictor.

This augmentation is done on the residuals from the fitted model under the null hypothesis

of nonlinear regression. This idea of using k-nearest neighbor augmentation to develop test

statistics was used earlier by Wang and Akritas (2006), Wang et al. (2008), and Wang et al.

(2010) for different purposes.

In addition to the aforementioned lack of fit tests, Kuchibhatla and Hart (1996) proposed

a new version of the order selection test of Eubank and Hart (1992). The test of Kuchibhatla

and Hart (1996) was used for testing lack of fit in nonlinear regression models. In particular,

consider the nonlinear regression model

Yj = G(xj;θ) + εj, j = 1, . . . , N,

where xj = (j − 0.5)/N , Y1, ..., YN are the observed responses, θ is a vector of unknown

parameters, the errors ε1, ..., εN are independent and identically distributed with E(εj) =

0, and V ar(εj) = σ2. Let θ̂ denote the estimate of θ, then residuals can be defined as

ej = Yj − G(xj; θ̂), j = 1, ..., N . To test the null hypothesis H0 : E(Y |X = x) = G(x;θ),

Kuchibhatla and Hart (1996) constructed a test statistic based on the residuals of the

following form:

SN = max
0<m<N

1

m

m∑
j=1

2Nφ̂2
j

σ̂2
, (4.1.3)

where σ̂2 is a consistent estimator of σ2 and φ̂j = 1/N
∑N

i=1 ei cos(πjxi), j = 1, ..., N − 1.

The test statistic SN in (4.1.3) was also used in Hart (1997) for the same purpose. To

find critical values of the test statistic SN , Kuchibhatla and Hart (1996) and Hart (1997)

suggested using large sample approximation or bootstrap algorithm. They showed that the

power of the test statistic SN converges to 1 under fixed alternatives when N goes to infinity.

However, they did not give theory on the limiting distribution of the test statistic SN in

the case of testing the null hypothesis of nonlinear regression models. Kuchibhatla and

Hart (1996) suggested that wild bootstrap of Hardle and Mammen (1993) might be used to
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handle the presence of heteroscedastic errors, which was considered in Chen et al. (2001)

for testing constant regression in heteroscedastic case. In Kuchibhatla and Hart (1996)

and Hart (1997), no numerical studies were reported for testing nonlinear regression null

hypothesis. They only reported numerical studies for testing constant regression or linear

regression null hypothesis. One drawback of the bootstrap method is the need of extensive

computations which is time consuming.

For heteroscedastic nonlinear regression models, lack of fit tests have been considered

by few authors. For example, Li (1999, 2003) proposed such tests based on a cosine-series

smoother and a comparison of nonparametric kernel and parametric fits. However, these

tests are assuming that the variance is a known function of unknown parameters which is

not the case of our proposed method.

In addition to the preceding references, the literature on lack of fit test includes the

following papers: Hausman (1978), Ruud (1984), Newey(1985a; 1985b), Tauchen (1985),

White (1982), White (1987), and Bierens (1990). Most of these tests are not consistent for

general alternatives and some of them need extensive computation. Based on smoothing

techniques, consistent nonparametric lack-of-fit tests were studied by some authors (cf Lee

(1988); Yatchew (1992); Eubank and Spiegelman (1990); Hardle and Mammen (1993); Zheng

(1996); Horowitz and Spokoiny (2001); Guerre and Lavergne (2005); Song and Du (2011)).

However, some of these tests have the drawbacks of being computationally complicated

and having conditions that are hard to justify. In contrast of our proposed test, all of the

proceeding methods require the response variable to be continuous.

4.2 Theoretical results

4.2.1 The hypotheses and test statistic

Consider the model

Yj = G(Xj;θ) + εj,
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where G is a known function, θ is a vector of unknown parameters (θ1, ..., θp)
T with p <∞,

and (Xj, Yj), j = 1, . . . , N , is a random sample of the random variables (X, Y ). Let f(x) and

F (x) denote the marginal probability density function and cumulative distribution function

of Xj, respectively. Denote ε∗i = Yi − E(Yi|Xi).

We consider testing the hypothesis:

H0: E(Y |X = x) = G(x;θ) (4.2.1)

against:

H1: E(Y |X = x) 6= G(x;θ), (4.2.2)

in the presence of heteroscedastic variances (i.e. Var(Yi|Xi = x) = σ2(x) ). Similar to

Chapter 3, fixed number of k-nearest neighbor augmentation will be used to construct a test

statistic for conducting lack-of-fit test. This augmentation is done for each unique value xi

of the predictor by generating a cell that contains k values of the response Y whose corre-

sponding x values are among the k closest to xi in rank. We consider k to be an odd number

for convenience. Let the indicator function that the difference between the ranks of X1 and

X2 is no more than (k − 1)/2 be defined by gNk(X1, X2) = I
(
N |F̂ (X1)−F̂ (X2)| ≤ k−1

2

)
,

where F̂ (x) = N−1
∑N

j=1 I(Xj ≤ x) denote the empirical distribution of X.

Denote

v(Xc;θ) = G(Xc;θ)−G(θ), where G(θ) = N−1
N∑
c=1

G(Xc;θ). (4.2.3)

We assume the following conditions:

Assumption (C):

• (C1) For all x, suppose that F (x) is differentiable and the fourth conditional central

moments of Yj given Xj are uniformly bounded.

• (C2) Assume that Xi has bounded support χ = [a, b] and the function G(x;θ) :

χ×Rp → R is locally Lipschitz continuous with respect to its first argument x. That
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is, the function G is continuous and for each (x0;θ0) ∈ χ×Rp there are neighborhoods

U(x0) ⊆ χ, V (θ0) ⊆ Rp and a scaler L > 0 such that |G(y; s)−G(z; s)| ≤ L|z− y| for

all z, y ∈ U(x0) and s ∈ V (θ0).

• (C3) ∂v(x;θ)

∂θ
and ∂2v(x;θ)

∂θ2 exist.

• (C4) E
[
∂v(X;θ)
∂θm

∂v(X;θ)
∂θl

]2
<∞ and E

[
∂v(X;θ)
∂θm

∂2v(X;θ)
∂θlθu

]2
<∞ for m, l, u = 1, ..., p .

• (C5) There exist τN →∞, such that τN(θ̂m − θm) = Op(1) for all m = 1, ..., p, where

θ̂ = (θ̂1, ..., θ̂p)
T is an estimate of θ.

Condition (C5) specifies that θ̂ is a consistent estimator of θ at rate τN . Such θ̂ with

different rates from nonlinear regression has been considered by various authors. For exam-

ple, for homoscedastic nonlinear regression models, Jennrich (1969) derived consistency and

asymptotic normality of the least squares estimator under standard sufficient conditions. In

particular, he showed that
√
N(θ̂−θ) is asymptotically normally distributed. Under certain

conditions imposed on the nonlinear mean regression function, the asymptotic normality of

√
τN(θ̂ − θ) is derived by Wu (1981), where τN →∞ as N →∞. For heteroscedastic non-

linear regression models, an M-estimation and preliminary test estimation based procedures

are considered by Lim (2009) and Lim et al. (2010). Under some regularity conditions,

they derived the asymptotic distribution of the M-estimators and showed that
√
N(θ̂ − θ)

converges to normality. In all above examples, condition (C5) is satisfied.

Let B∗N and W ∗
N be defined as the following:

B∗N =
k

N−1

N∑
j1=1

[
1

k

N∑
j=1

Yj gNk(Xj1 , Xj)−
1

Nk

N∑
j2=1

N∑
j=1

Yj gNk(Xj2 , Xj)− v(xj1 ; θ̂)

]2

W ∗
N =

1

N(k−1)

N∑
j1=1

N∑
j=1

[
Yj gNk(Xj1 , Xj)−

1

k

N∑
j2=1

Yj2 gNk(Xj1 , Xj2)

]2
.

Let ect = Rct−Gct(θ) and e∗ct = Rct−Gct(θ̂) where Rct, t = 1, . . . , k, are the augmented

response values in cell (c) under the null hypothesis in (4.2.1) and Gct(θ) is the G(x;θ)
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function evaluated at the covariate value for augmented observation Rct. Note that ect

satisfies the null hypothesis of constant regression that we considered in Chapter 3 and can

be viewed as the augmented data for Zi = Yi−G(Xi;θ), whose conditional mean satisfies the

null hypothesis in (3.1.1). Then B∗N and W ∗
N can be expressed as the average between-cell

and within-cell variations, respectively. They can be written as the following:

B∗N=
k

N−1

N∑
c=1

(e∗c· − e∗··)
2

and W ∗
N=

1

N(k − 1)

N∑
c=1

k∑
t=1

(e∗ct−e∗c·)
2
,

where e∗c· = k−1
∑k

t=1 e
∗
ct and e∗·· = N−1

∑N
c=1 e

∗
c·.

We consider the test statistic B∗N −W ∗
N for testing the hypothesis in (4.2.1).

4.2.2 Asymptotic distribution of the test statistic under the null

hypothesis

Note that e∗ct = Rct − Gct(θ̂) = Rct − Gct(θ) + Gct(θ) − Gct(θ̂) = ect + Gct(θ) − Gct(θ̂).

Let Gc·(θ) = k−1
∑k

t=1Gct(θ) and G··(θ) = N−1
∑N

c=1Gc·(θ). Then, B∗N and W ∗
N can be

written as

B∗N =
k

N−1

N∑
c=1

(e∗c· − e∗··)
2

=
k

N−1

N∑
c=1

(
ec· +Gc·(θ)−Gc·(θ̂)− e·· −G··(θ) +G··(θ̂)

)2
=

k

N−1

N∑
c=1

[
(ec· − e··)2 +

([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])2
+2 (ec· − e··)

([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])]
(4.2.4)
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Similarly,

W ∗
N =

1

N(k−1)

N∑
c=1

k∑
t=1

(e∗ct − e∗c·)
2

=
1

N(k−1)

N∑
c=1

k∑
t=1

[
ect +Gct(θ)−Gct(θ̂)− ec· −Gc·(θ) +Gc·(θ̂)

]2
=

1

N(k−1)

N∑
c=1

k∑
t=1

[
(ect − ec·)2 +

([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])2
+2 (ect − ec·)

([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])]
(4.2.5)

Let

B′N =
k

N − 1

N∑
c=1

(ec· − e··)2 , and W ′
N =

1

N(k − 1)

N∑
c=1

k∑
t=1

(ect − ec·)2 , (4.2.6)

then the test statistic can be written as

√
N(B∗N −W ∗

N) =
√
N(B′N −W ′

N) + ∆N,1 + ∆N,2 −∆N,3 −∆N,4, (4.2.7)

where

∆N,1 =
k
√
N

N−1

N∑
c=1

([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])2
(4.2.8)

∆N,2 =
2k
√
N

N−1

N∑
c=1

(ec· − e··)
([

Gc·(θ)−G··(θ)
]
−
[
Gc·(θ̂)−G··(θ̂)

])
(4.2.9)

∆N,3 =

√
N

N(k−1)

N∑
c=1

k∑
t=1

([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])2
(4.2.10)

∆N,4 =
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(ect − ec·)
([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])
.(4.2.11)

We state the following results before giving the asymptotic distribution of the test statis-

tic.

Lemma 4.2.1. If the Assumption (C2) is satisfied, then

G(Xi;θ)I(i ∈ Cc)−G(Xj;θ)I(j ∈ Cc) = Op(N
−1),

uniformly in i, j = 1, 2, ..., N , for a given c = 1, 2, ..., N .
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The proof of Lemma 4.2.1 is similar to the proof of Lemma 3.3.1 in Chapter 3 and is

thus skipped.

Lemma 4.2.2. If the Assumptions (C1), (C3), and (C4) are satisfied, then

Var

[
N∑
c=1

(ec· − e··) (
∂v(Xc;θ)

∂θ
)

]
= (O(N))Jp as N →∞,

where Jp is an p× p matrix of ones.

Proof

We can write

Var

[
N∑
c=1

(ec· − e··) (
∂v(Xc;θ)

∂θ
)

]

= E

{
Var

([
N∑
c=1

(ec· − e··) (
∂v(Xc;θ)

∂θ
)

]∣∣∣∣∣X
)}

+Var

{
E

([
N∑
c=1

(ec· − e··) (
∂v(Xc;θ)

∂θ
)

]∣∣∣∣∣X
)}

= E

{
Var

([
N∑
c=1

(ec· − e··) (
∂v(Xc;θ)

∂θ
)

]∣∣∣∣∣X
)}

+ Var

{
N∑
c=1

(
∂v(Xc;θ)

∂θ
)E (ec· − e··|X)

}
.

Note that, for ect there exists some j ∈ Cc such that ect = (Yj − E(Yj|X)). Thus

E(ect|X) = E ((Yj − E(Yj|X))I(j ∈ Cc)|X) = E ((Yj − E(Yj|X))|X) I(j ∈ Cc) = 0,

and

E (ec· − e··|X) = 0. (4.2.12)

Therefore, by using (4.2.12) we have
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Var

[
N∑
c=1

(ec· − e··) (
∂v(Xc;θ)

∂θ
)

]

= E

{
Var

([
N∑
c=1

(ec· − e··) (
∂v(Xc;θ)

∂θ
)

]∣∣∣∣∣X
)}

= E

{
E

([
N∑
c=1

N∑
c′=1

(ec· − e··) (ec′· − e··)
(
∂v(Xc;θ)

∂θ

)(
∂v(Xc′ ;θ)

∂θ

)T]∣∣∣∣∣X
)}

=
N∑
c=1

E

{
E

([
(ec· − e··)2

(
∂v(Xc;θ)

∂θ

)(
∂v(Xc;θ)

∂θ

)T]∣∣∣∣∣X
)}

+
N∑
c 6=c′

E

{
E

([
(ec· − e··) (ec′· − e··)

(
∂v(Xc;θ)

∂θ

)(
∂v(Xc′ ;θ)

∂θ

)T]∣∣∣∣∣X
)}

=
N∑
c=1

E

{(
∂v(Xc;θ)

∂θ

)(
∂v(Xc;θ)

∂θ

)T
E
(

(ec· − e··)2
∣∣X)}

+
N∑
c 6=c′

E

{(
∂v(Xc;θ)

∂θ

)(
∂v(Xc′ ;θ)

∂θ

)T
E ((ec· − e··) (ec′· − e··)|X)

}
. (4.2.13)

Next we will show that the first and second terms in (4.2.13) are O(N). Denote

acc′ =
(
∂v(Xc;θ)

∂θ

)(
∂v(Xc′ ;θ)

∂θ

)T
. Then the first and second terms in (4.2.13) can be writ-

ten respectively as

E

{
N∑
c=1

accE
(

(ec· − e··)2
∣∣X)}

= E

{
N∑
c=1

accE
(
e2c·|X

)}
− 2E

{
N∑
c=1

accE (ec·e··|X)

}

+E

{
N∑
c=1

accE
(
e2··|X

)}
(4.2.14)
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and

E

{
N∑
c 6=c′

acc′E ((ec· − e··) (ec′· − e··)|X)

}

= E

{
N∑
c 6=c′

acc′E (ec·ec′·|X)

}
− 2E

{
N∑
c 6=c′

acc′E (ec·e··|X)

}

+E

{
N∑
c 6=c′

acc′E (e··e··|X)

}
. (4.2.15)

Consider the first term in (4.2.14) and (4.2.15) and denote them by SN,1 and SN,2 re-

spectively, then

SN,1 = E

{
N∑
c=1

accE
(
e2c·|X

)}

= E


N∑
c=1

accE


(

1

k

N∑
i=1

(Yi − E(Yi|X))I(i ∈ Cc)

)2
∣∣∣∣∣∣X



=
1

k2
E

{
N∑
c=1

accE

{(
N∑
i=1

(Yi − E(Yi|X))2I(i ∈ Cc)

+
N∑
i 6=i′

(Yi − E(Yi|X))I(i ∈ Cc)(Yi′ − E(Yi′ |X))I(i′ ∈ Cc)

)∣∣∣∣∣X
}}

=
1

k2

N∑
c=1

N∑
i=1

E
{
E((Yi − E(Yi|X))2

∣∣X)accI(i ∈ Cc)
}

(4.2.16)

=
1

k2

N∑
i=1

N∑
c=1

E
{
σ2(Xi)accI(i ∈ Cc)

}
, (4.2.17)
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and

SN,2 = E

{
N∑
c6=c′

acc′E (ec·ec′·|X)

}

= E

{
N∑
c6=c′

acc′E

{(
1

k

N∑
i=1

(Yi − E(Yi|X))I(i ∈ Cc)

)

×

(
1

k

N∑
i′=1

(Yi′ − E(Yi′ |X))I(i′ ∈ Cc′)

)∣∣∣∣∣X
}}

=
1

k2

N∑
i=1

N∑
c 6=c′

E
{
E((Yi − E(Yi|X))2

∣∣X)acc′I(i ∈ Cc)I(i ∈ Cc′)
}

(4.2.18)

=
1

k2

N∑
i=1

N∑
c 6=c′

E
{
σ2(Xi)acc′I(i ∈ Cc ∩ Cc′)

}
, (4.2.19)

where the equality in (4.2.16) and (4.2.18) is due to the fact that Yi and Yi′ are independent

when i 6= i′. Note that Xi can only be used to augment at most 2k cells. That is, if the

rank of Xi is r, then Xi can only be used to augment cells whose x values have ranks in

(r− k, r+ k). Therefore, the summation over c in (4.2.17) and that over c and c′ in (4.2.19)

each contains no more than 2k terms. In addition, by Cauchy-Schwarz inequality,

∣∣E {σ2(Xi)accI(i ∈ Cc)
}∣∣

≤ E
{
σ2(Xi)|acc|I(i ∈ Cc)

}
≤ E

{
σ2(Xi)|acc|

}
≤

[
E
(
σ2(Xi)

)2] 1
2

E((∂v(Xc;θ)

∂θ

)(
∂v(Xc;θ)

∂θ

)T)2
 1

2

=
[
E
(
σ2(Xi)

)2] 1
2

[
E

((
∂v(Xc;θ)

∂θ

)[(
∂v(Xc;θ)

∂θ

)T (
∂v(Xc;θ)

∂θ

)](
∂v(Xc;θ)

∂θ

)T)] 1
2

=
[
E
(
σ2(Xi)

)2] 1
2

[E ([trace(acc)] acc)]
1
2 . (4.2.20)
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Note that the elements of E ([trace(acc)] acc) are

E

([
p∑

m=1

(
∂v(Xc;θ)

∂θm

)2
](

∂v(Xc;θ)

∂θl

)(
∂v(Xc;θ)

∂θu

))
, for any integers l, u ∈ [1, p]

=

p∑
m=1

E

((
∂v(Xc;θ)

∂θm

)2(
∂v(Xc;θ)

∂θl

)(
∂v(Xc;θ)

∂θu

))

≤
p∑

m=1

[
E

(
∂v(Xc;θ)

∂θm

)4
] 1

2
[
E

(
∂v(Xc;θ)

∂θl

∂v(Xc;θ)

∂θu

)2
] 1

2

(4.2.21)

by assumption (C3), the terms in (4.2.21) are all bounded. Further, by assumption (C1),

σ2(Xi) = E((Yi − E(Yi|X))2
∣∣X) ≤ E((Yi − E(Yi|X))4

∣∣X) <∞.

Therefore, the terms in (4.2.20) are all bounded. Similarly,

∣∣E {σ2(Xi)acc′I(i ∈ Cc ∩ Cc′)
}∣∣

≤ E
{
σ2(Xi)|acc′|I(i ∈ Cc ∩ Cc′)

}
≤ E

{
σ2(Xi)|acc′|

}
≤

[
E
(
σ2(Xi)

)2] 1
2

E((∂v(Xc;θ)

∂θ

)(
∂v(Xc′ ;θ)

∂θ

)T)2
 1

2

<∞,

Hence, the elements of SN,1 and SN,2 are O(N). Similarly, it can be shown that the second

and third terms in (4.2.14) are o(SN,1) and the second and third terms in (4.2.15) are o(SN,2).

This completes the proof.

Lemma 4.2.3. Under Assumption (C) and as N →∞,

(1) ∆N,1
p→ 0 ,

(2) ∆N,2
p→ 0 ,

(3) ∆N,3
p→ 0 ,

(4) ∆N,4
p→ 0 ,

where ∆N,i; i = 1, 2, 3, 4 are defined in (4.2.8), (4.2.9), (4.2.10), and (4.2.11), respectively.
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Proof of part (1) of Lemma 4.2.3

By Assumption (C2) and Lemma 4.2.1, we have

Gc·(θ) =
1

k

k∑
t=1

Gct(θ) =
1

k

N∑
i=1

G(Xi;θ)I(i ∈ Cc) = G(Xc;θ) +Op(N
−1),

and

G··(θ) =
1

N

N∑
c=1

Gc·(θ) =
1

N

N∑
c=1

G(Xc;θ) +Op(N
−1) = G(θ) +Op(N

−1).

Therefore,

Gc·(θ)−G··(θ) = G(Xc;θ)−G(θ) +Op(N
−1) = v(Xc;θ) +Op(N

−1), (4.2.22)

where v(Xc;θ) is defined in (4.2.3). Similarly,

Gc·(θ̂)−G··(θ̂) = v(Xc; θ̂) +Op(N
−1). (4.2.23)

Consequently, ∆N,1 in (4.2.8) can be written as

∆N,1 =
k
√
N

N−1

N∑
c=1

([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])2
=

k
√
N

N − 1

N∑
c=1

{
v(Xc;θ)− v(Xc; θ̂) +Op(N

−1)
}2

=
k
√
N

N−1

N∑
c=1

{(
v(Xc;θ)−v(Xc; θ̂)

)2
+2
(
v(Xc;θ)−v(Xc; θ̂)

)
Op(N

−1)+Op(N
−2)

}
(4.2.24)

Using Taylor’s expansion, we can write

v(Xc; θ̂) = v(Xc;θ) + (θ̂ − θ)T
∂v(Xc;θ)

∂θ
+Op

(
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)
,

where

∂v(Xc;θ)

∂θ
=



∂v(Xc;θ)
∂θ1

∂v(Xc;θ)
∂θ2
...

∂v(Xc;θ)
∂θp

 and
∂2v(Xc;θ)

∂θ2 =



∂2v(Xc;θ)

∂θ1
2

∂2v(Xc;θ)
∂θ1θ2

. . . ∂2v(Xc;θ)
∂θ1θp

∂2v(Xc;θ)
∂θ2θ1

∂2v(Xc;θ)

∂θ2
2 . . . ∂2v(Xc;θ)

∂θ2θp
...

...
. . .

...

∂2v(Xc;θ)
∂θpθ1

∂2v(Xc;θ)
∂θpθ2

. . . ∂2v(Xc;θ)

∂θp
2

 .
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Thus, we can write

∆N,1 =
k
√
N

N − 1

N∑
c=1

{[
(θ̂ − θ)T

∂v(Xc;θ)

∂θ
+Op

(
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)]2
+2

[
(θ̂ − θ)T

∂v(Xc;θ)

∂θ
+Op

(
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)]
Op(N

−1) +Op(N
−2)

}
=

k
√
N

N − 1

N∑
c=1

{[(
(θ̂ − θ)T

∂v(Xc;θ)

∂θ

)2

+Op

((
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)2
)

+Op

(
(θ̂ − θ)T

∂v(Xc;θ)

∂θ
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)]
+Op

(
N−1(θ̂ − θ)T

∂v(Xc;θ)

∂θ

)
+Op

(
N−1(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)
+Op(N

−2)

}
= ψ

N,θ,1 + ψ
N,θ,2 + ψ

N,θ,3 +Op(N
−3/2), (4.2.25)

where

ψ
N,θ,1 = (θ̂ − θ)Tk

[ √
N

N − 1

N∑
c=1

∂v(Xc;θ)

∂θ

(
∂v(Xc;θ)

∂θ

)T]
(θ̂ − θ),

ψ
N,θ,2 = Op

(
k
√
N

N − 1

N∑
c=1

(θ̂ − θ)T
∂v(Xc;θ)

∂θ
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)
and

ψ
N,θ,3 = Op

(
k

N
(θ̂ − θ)T

[ √
N

N − 1

N∑
c=1

∂v(Xc;θ)

∂θ

])
.

Denote (θ̂ − θ)T = (∆1, ...,∆p)
T , then

ψ
N,θ,2 = Op

(
k
√
N

N − 1

p∑
m=1

p∑
l=1

p∑
u=1

∆m∆l∆u

N∑
c=1

∂v(Xc;θ)

∂θm

∂2v(Xc;θ)

∂θlθu

)

= Op

(
k

p∑
m=1

p∑
l=1

p∑
u=1

∆m∆l∆u

[ √
N

N − 1

N∑
c=1

∂v(Xc;θ)

∂θm

∂2v(Xc;θ)

∂θlθu

])
.(4.2.26)

Since X1, ..., XN are i.i.d., we have (∂v(X1;θ)

∂θ
), ..., (∂v(XN ;θ)

∂θ
) are i.i.d.,

(∂v(X1;θ)

∂θ
)(∂v(X1;θ)

∂θ
)T , ..., (∂v(XN ;θ)

∂θ
)(∂v(XN ;θ)

∂θ
)T are iid, and for any integers m, l, u ∈ [1, p],

{∂v(Xc;θ)
∂θm

∂2v(Xc;θ)
∂θlθu

; c = 1, ..., N} are i.i.d. as well. Therefore, under the assumptions (C3)
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and (C4), Central Limit Theorem (CLT) can be used to show that[ √
N

N − 1

N∑
c=1

∂v(Xc;θ)

∂θ

]
= (Op(1))1, (4.2.27)[ √

N

N − 1

N∑
c=1

∂v(Xc;θ)

∂θm

∂2v(Xc;θ)

∂θlθu

]
= Op(1), (4.2.28)

and [ √
N

N − 1

N∑
c=1

∂v(Xc;θ)

∂θ

(
∂v(Xc;θ)

∂θ

)T]
= (Op(1))Jp. (4.2.29)

Since (θ̂ − θ) = (Op(τ
−1
N ))1 from assumption (C5) and from (4.2.27), (4.2.28) and

(4.2.29), we have

ψ
N,θ,1 = Op(τ

−2
N ), ψ

N,θ,2 = Op(τ
−3
N ), and ψ

N,θ,3 = Op(N
−1τ−1N ) (4.2.30)

Putting (4.2.30) into (4.2.25), we have

∆N,1 = Op(τ
−2
N ) +Op(τ

−3
N ) +Op(N

−1τ−1N ) +Op(N
−3/2) = op(1),

as k stays bounded and N →∞. This completes the proof.

Proof of part (2) of Lemma 4.2.3

From (4.2.9), we have

∆N,2 =
2k
√
N

N−1

N∑
c=1

(ec· − e··)
([

Gc·(θ)−G··(θ)
]
−
[
Gc·(θ̂)−G··(θ̂)

])
Using (4.2.22) and (4.2.22), ∆N,2 can be written as

∆N,2 =
2k
√
N

N − 1

N∑
c=1

(ec· − e··)
(
v(Xc;θ)− v(Xc; θ̂) +Op(N

−1)
)

Using Taylor’s expansion, we can write

v(Xc; θ̂) = v(Xc;θ) + (θ̂ − θ)T
∂v(Xc;θ)

∂θ
+Op

(
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)
.

Therefore,
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∆N,2 =
2k
√
N

N − 1

N∑
c=1

(ec· − e··)
(
−(θ̂ − θ)T

∂v(Xc;θ)

∂θ
−Op

(
(θ̂ − θ)T

∂2v(Xc;θ)

∂θ2 (θ̂ − θ)

)
+Op(N

−1)
)

= −2k(θ̂ − θ)T

[ √
N

N − 1

N∑
c=1

(ec· − e··)
∂v(Xc;θ)

∂θ

]

−2kOp

(
(θ̂ − θ)T

[ √
N

N − 1

N∑
c=1

(ec· − e··)
(
∂2v(Xc;θ)

∂θ2

)]
(θ̂ − θ)

)

+Op

(
2kN−1

[ √
N

N − 1

N∑
c=1

(ec· − e··)

])
(4.2.31)

Next, we will show that[ √
N

N − 1

N∑
c=1

(ec· − e··)
∂v(Xc;θ)

∂θ

]
= Op(1) (4.2.32)

Since E (ec· − e··|X) = 0 from (4.2.12), then we have

E

[ √
N

N − 1

N∑
c=1

(ec· − e··)
∂v(Xc;θ)

∂θ

]

=

√
N

N − 1

N∑
c=1

E

{
E

[
(ec· − e··)

∂v(Xc;θ)

∂θ

∣∣∣∣X]}

=

√
N

N − 1

N∑
c=1

E

{
∂v(Xc;θ)

∂θ
E (ec· − e··|X)

}
= 0 (4.2.33)

From Lemma 4.2.2, we have

Var

[ √
N

N − 1

N∑
c=1

(ec· − e··)
∂v(Xc;θ)

∂θ

]
= (O(1))Jp (4.2.34)

With (4.2.33) and (4.2.34) hold, the proof of (4.2.32) is complete if we apply Theorem

14.4-1 in Bishop et al. (2007). Similarly, it can be shown that[ √
N

N − 1

N∑
c=1

(ec· − e··)
∂2v(Xc;θ)

∂θ2

]
= (Op(1))Jp, , (4.2.35)
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and [ √
N

N − 1

N∑
c=1

(ec· − e··)

]
= Op(1). (4.2.36)

From assumption (C5), we have

(θ̂ − θ) = (Op(τ
−1
N ))1 (4.2.37)

Putting (4.2.32), (4.2.35), (4.2.36) and (4.2.37) into (4.2.31), we have

∆N,2 = Op(τ
−1
N ) +Op(τ

−2
N ) +Op(N

−1) = op(1),

as k stays bounded and N →∞. This completes the proof.

Proof of part (3) of Lemma 4.2.3

From (4.2.10), we have

∆N,3 =

√
N

N(k−1)

N∑
c=1

k∑
t=1

([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])2
By Lemma 4.2.1 and Assumption (C2),

Gct(θ)−Gc·(θ) = Op(N
−1)

and

Gct(θ̂)−Gc·(θ̂) = Op(N
−1).

Thus,

∆N,3 = Op(N
−3/2), (4.2.38)

and therefore ∆N,3 is op(1). This completes the proof.

Proof of part (4) of Lemma 4.2.3

From (4.2.11), we have

∆N,4 =
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(ect − ec·)
([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])
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Using Hölder’s inequality and (4.2.10),

|∆N,4| ≤

[
2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

(ect − ec·)2
] 1

2

×

[
2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])2] 1
2

=

[
2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

(ect − ec·)2
] 1

2

[2 ∆N,3]
1
2 (4.2.39)

Now we will show that

2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

(ect − ec·)2 = Op(N
1
2 ). (4.2.40)

We can write

2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

(ect − ec·)2 =
2
√
N

N(k − 1)

N∑
c=1

[
k∑
t=1

e2ct − ke2c·

]

=
2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

e2ct −
2k
√
N

N(k − 1)

N∑
c=1

e2c· (4.2.41)

Note that

E

{
2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

e2ct

}
=

2
√
N

N(k − 1)
E

{
E

(
N∑
c=1

k∑
t=1

e2ct|X

)}

=
2
√
N

N(k − 1)
E

{
E

(
N∑
c=1

N∑
i=1

[
(Yi − E(Yi|X))2I(i ∈ Cc)

]
|X

)}

=
2
√
N

N(k − 1)

N∑
c=1

N∑
i=1

E
{
E
(
[Yi − E(Yi|X)]2 |X

)
I(i ∈ Cc)

}
=

2
√
N

N(k − 1)

N∑
c=1

N∑
i=1

E
{
σ2(Xi)I(i ∈ Cc)

}
= O(N

1
2 ), (4.2.42)

where the last equality in (4.2.42) is due to the fact that σ2(Xi) is uniformly bounded by

Assumption (C1) and the summation over i in (4.2.42) contains only k terms.

74



Consider

E

{
2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

e2ct

}2

=
4N

N2(k − 1)2
E

E
[ N∑

c=1

k∑
t=1

e2ct

]2∣∣∣∣∣∣X


=
4

N(k − 1)2
E

E
[ N∑

c=1

N∑
i=1

[Yi − E(Yi|X)]2 I(i ∈ Cc)

]2∣∣∣∣∣∣X


=
4

N(k − 1)2
E

{
E

([
N∑
c=1

N∑
i=1

[Yi − E(Yi|X)]4 I(i ∈ Cc)

]

+

[
N∑
c=1

N∑
i 6=i′

[Yi − E(Yi|X)]2 I(i ∈ Cc) [Yi′ − E(Yi′ |X)]2 I(i′ ∈ Cc)

]

+

[
N∑
c 6=c′

N∑
i=1

[Yi − E(Yi|X)]2 I(i ∈ Cc) [Yi − E(Yi|X)]2 I(i ∈ Cc′)

]

+

[
N∑
c 6=c′

N∑
i 6=i′

[Yi − E(Yi|X)]2 I(i ∈ Cc) [Yi′ − E(Yi′|X)]2 I(i′ ∈ Cc′)

]∣∣∣∣∣X
)}

=
4

N(k − 1)2

{
N∑
c=1

N∑
i=1

E
{
E
(
[Yi − E(Yi|X)]4 |X

)
I(i ∈ Cc)

}
(4.2.43)

+
N∑
c=1

N∑
i 6=i′

E
{
σ2(Xi)σ

2(Xi′)I(i, i′ ∈ Cc)
}

(4.2.44)

+
N∑
c 6=c′

N∑
i=1

E
{
E
(
[Yi − E(Yi|X)]4 |X

)
I(i ∈ Cc ∩ Cc′)

}
(4.2.45)

+
N∑
c 6=c′

N∑
i 6=i′

E
{
σ2(Xi)σ

2(Xi′)I(i ∈ Cc)I(i′ ∈ Cc′)
}}

(4.2.46)

=
4

N(k − 1)2
{
O(N2)

}
= O(N), (4.2.47)

where the first equality in (4.2.47) is due to the fact that σ2(Xi) and E
(
[Yi − E(Yi|X)]4 |X

)
are uniformly bounded by Assumption (C1) and the summation over c in (4.2.43) and

(4.2.44) and that over c and c′ in (4.2.45) and (4.2.46) each contains no more than 2k terms.
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From (4.2.42) and (4.2.47), we have

V ar

{
2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

e2ct

}
= O(N). (4.2.48)

Due to (4.2.42) and (4.2.48) and by Theorem 14.4-1 in Bishop et al. (2007), we have

2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

e2ct = Op(N
1
2 ). (4.2.49)

Similarly, it can be shown that the second term in (4.2.41) is Op(N
1
2 ) and therefore the

proof of (4.2.40) is completed.

From (4.2.38), (4.2.39) and (4.2.40),

|∆N,4| ≤
[
Op(N

1
2 )
] 1

2
[
Op(N

−3
2 )
] 1

2

= Op(N
−1
2 ) = op(1), as N →∞.

This completes the proof.

To obtain the asymptotic distribution of the test statistic
√
N(B∗N − W ∗

N) in (4.2.7)

under the null hypothesis, we only need to consider the first term
√
N(B′N − W ′

N) since

the other four terms (∆N,i; i = 1, 2, 3, 4) are asymptotically negligible by Lemmas 4.2.3.

Note that B′N and W ′
N are the average between-cell and within-cell variations for augmented

observations with Zi = Yi−G(Xi;θ) as the response. Note that the conditional mean of Zi

given Xi = x satisfies the null hypothesis of constant regression in (3.1.1). Therefore, the

asymptotic distribution of
√
N(B′N −W ′

N) can be obtained by applying Theorem 3.1.3 in

Chapter 3. This result is given in the following Theorem. We skip the details of the proof.

Theorem 4.2.4. Under H0 in (4.2.1) and Assumption (C),

√
N(B∗N −W ∗

N)
d→N(0, lim

N→∞
λN) as N →∞,

where

λN =
∑N

j<j′ E
{

4σ2(Xj)σ
2(Xj′ )

N(k−1)2 [[k − |j′∗ − j∗|]2 + [k − |j′∗ − j∗|]

−2I
(
|j′∗ − j∗| ≤ k−1

2

)
+O(N−1)

]
I(|j′∗ − j∗| ≤ k − 1)

}
, (4.2.50)

and j′∗, j∗ are the ranks of Xj′ and Xj among the covariate values X = (X1, . . . , XN)..
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4.2.3 Asymptotic distribution of the test statistic under local al-

ternatives

Consider the following sequence of local alternative conditional expectations

m∗(x) = EN(Y |X = x) = E0(Y |X = x) +N−1/4H(z;γ), (4.2.51)

where E0(Y |X = x) = G(x;θ) is the conditional expectation of Y given X under the null

hypothesis in (4.2.1), H(z;γ) is a known function, z varies continuously with x, and γ is

a vector of unknown parameters (γ1, ..., γq) with q < ∞. To express the dependence of z

on x, we write H(Z(x);γ) sometimes. In majority of situations, when it is clear, we just

use the simple notation H(z;γ). Let Q∗ct; c = 1, . . . , N, t = 1, . . . , k be the augmented

response values under the local alternatives in (4.2.51). Denote Gct(θ) and Hct(γ) to be the

G(x;θ) and H(z;γ) functions evaluated at the covariate value for augmented observation

Q∗ct, respectively. Then, we can write Q∗ct as

Q∗ct = ε∗ct + E(Q∗ct|X) = ε∗ct +Gct(θ) +N−1/4Hct(γ),

where ε∗ct = Q∗ct−E(Q∗ct|X) can be viewed as the augmented data for Mi = Yi−G(Xi;θ)−

N−1/4H(Zi;γ). Note that the conditional mean of Mi given Xi = x satisfies the null

hypothesis of constant regression in (3.1.1), but with Var(Mi|Xi) equals to Var(Yi|Xi) under

the alternative hypothesis in (4.2.51).

To define the test statistic under the local alternatives, let rct = Q∗ct − Gct(θ) and

r∗ct = Q∗ct − Gct(θ̂). Also, denote B∗N(Q∗) and W ∗
N(Q∗) to be the average between-cell

variations and the average within-cell variations under the local alternatives, respectively.

Then B∗N(Q∗) and W ∗
N(Q∗) can be written as the following

B∗N(Q∗)=
k

N−1

N∑
c=1

(r∗c· − r∗··)
2

and W ∗
N(Q∗) =

1

N(k−1)

N∑
c=1

k∑
t=1

(r∗ct − r∗c·)
2
,

where r∗c· = k−1
∑k

t=1 r
∗
ct and r∗·· = N−1

∑N
c=1 r

∗
c·. Then the test statistic under the local

alternatives is defined as
√
N(B∗N(Q∗)−W ∗

N(Q∗)). This statistic has the same form as that

under the null hypothesis.
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The following additional condition is needed for the result under the local alternatives:

Assumption (D): Suppose that Xi has bounded support χ = [a, b] and the function

H(z;γ) : χ × Rq → R is locally Lipschitz continuous with respect to its first argument.

Further, assume that the fourth central moments of H(Zi;γ) are uniformly bounded.

Lemma 4.2.5. If the Assumption (D) is satisfied, then

H(Zi;θ)I(i ∈ Cc)−H(Zj;θ)I(j ∈ Cc) = Op(N
−1),

uniformly in i, j = 1, 2, ..., N , for a given c = 1, 2, ..., N .

The proof of Lemma 4.2.5 is similar to the proof of Lemma 3.3.1 in Chapter 3 and is

thus omitted.

In the following theorem, the asymptotic distribution of the test statistic under local

alternatives is given.

Theorem 4.2.6. Under the Assumptions (C) and (D), the limit limN→∞ λNA exists and

√
N(B∗N(Q∗)−W ∗

N(Q∗))
d→N(kσ2

H , lim
N→∞

λNA),

where λNA is defined similarly as λN in Theorem 4.2.4 but with σ2(Xj) calculated under the

alternatives in (4.2.51) and

σ2
H =

∫ ∞
−∞

H2(Z(x);γ)f(x)dx−
(∫ ∞
−∞

H(Z(x);γ)f(x)dx

)2

= Var(H(Z;γ)).

Proof

Note that r∗ct = Q∗ct−Gct(θ̂) = ε∗ct+Gct(θ)+N−1/4Hct(γ)−Gct(θ̂). Let ε∗c· = k−1
∑k

t=1 ε
∗
ct,

ε∗·· = N−1
∑N

c=1 ε
∗
c·, Hc·(γ) = k−1

∑k
t=1Hct(γ), and H ··(γ) = N−1

∑N
c=1Hc·(γ). Recall

that Gc·(θ) = k−1
∑k

t=1Gct(θ), and G··(θ) = N−1
∑N

c=1Gc·(θ). Then, B∗N(Q∗) and W ∗
N(Q∗)
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can be written as

B∗N(Q∗) =
k

N−1

N∑
c=1

(r∗c· − r∗··)
2

=
k

N−1

N∑
c=1

(
ε∗c· +Gc·(θ) +N−1/4Hc·(γ)−Gc·(θ̂)

−ε∗·· −G··(θ)−N−1/4H ··(γ) +G··(θ̂)
)2

=
k

N−1

[
N∑
c=1

(ε∗c· − ε∗··)
2

+
N∑
c=1

([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])2
+2

N∑
c=1

(ε∗c· − ε∗··)
([

Gc·(θ)−G··(θ)
]
−
[
Gc·(θ̂)−G··(θ̂)

])
+N−1/2

N∑
c=1

(
Hc·(γ)−H ··(γ)

)2
+2N−1/4

N∑
c=1

(
Hc·(γ)−H ··(γ)

) ([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])
+2N−1/4

N∑
c=1

(ε∗c· − ε∗··)
(
Hc·(γ)−H ··(γ)

)]
. (4.2.52)

Similarly,

W ∗
N(Q∗) =

1

N(k−1)

N∑
c=1

k∑
t=1

(r∗ct − r∗c·)
2

=
1

N(k−1)

[
N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)
2
+

N∑
c=1

k∑
t=1

([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])2
+2

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)
([

Gct(θ)−Gc·(θ)
]
−
[
Gct(θ̂)−Gc·(θ̂)

])
+N−1/2

N∑
c=1

k∑
t=1

(
Hct(γ)−Hc·(γ)

)2
+2N−1/4

N∑
c=1

k∑
t=1

(
Hct(γ)−Hc·(γ)

) ([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])
+2N−1/4

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)
(
Hct(γ)−Hc·(γ)

)]
.
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Then, we can write the test statistic as

√
N(B∗N(Q∗)−W ∗

N(Q∗)) =
√
N(BN(ε∗)−WN(ε∗)) + ∆N,1 + ∆∗N,2 −∆N,3 −∆∗N,4

+ ∆N,5 + ∆N,6 + ∆N,7 −∆N,8 −∆N,9 −∆N,10, (4.2.53)

where ∆N,1,∆N,3 are defined in (4.2.8), (4.2.10),respectively, and

∆∗N,2 =
2k
√
N

N−1

N∑
c=1

(ε∗c· − ε∗··)
([

Gc·(θ)−G··(θ)
]
−
[
Gc·(θ̂)−G··(θ̂)

])
(4.2.54)

∆∗N,4 =
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)
([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])
(4.2.55)

∆N,5 =
k

N−1

N∑
c=1

(
Hc·(γ)−H ··(γ)

)2
(4.2.56)

∆N,6 =
2k
√
N

N−1

N∑
c=1

N−1/4
(
Hc·(γ)−H ··(γ)

)([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])
(4.2.57)

∆N,7 =
2k
√
N

N−1

N∑
c=1

(ε∗c· − ε∗··)N−1/4
(
Hc·(γ)−H ··(γ)

)
(4.2.58)

∆N,8 =
1

N(k−1)

N∑
c=1

k∑
t=1

(
Hct(γ)−Hc·(γ)

)2
(4.2.59)

∆N,9=
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

N−1/4
(
Hct(γ)−Hc·(γ)

)([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])
(4.2.60)

∆N,10 =
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)N−1/4
(
Hct(γ)−Hc·(γ)

)
, (4.2.61)

and BN(ε∗) = k
N−1
∑N

c=1 (ε∗c· − ε∗··)
2
, WN(ε∗) = 1

N(k−1)
∑N

c=1

∑k
t=1 (ε∗ct − ε∗c·)

2
are the av-

erage between-cell and within-cell variations for augmented observations with Mi = Yi −(
G(Xi;θ) +N−1/4H(Zi;γ)

)
as the response. Note that the conditional mean of Mi given

Xi = x satisfies the null hypothesis of constant regression in (3.1.1). But V ar(Mi|Xi) is

equal to V ar(Yi|Xi).

Therefore, the result of Theorem 3.1.3 in Chapter 3 implies that

√
N(BN(ε∗)−WN(ε∗))

d→N(0, lim
N→∞

λNA), (4.2.62)
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where λNA is defined similarly as λN in (4.2.50) but with σ2(Xj) calculated under the

alternatives in (4.2.51).

By parts (1) and (3) of Lemma 4.2.3,

∆N,i
p→0, as N →∞, for i = 1, 3. (4.2.63)

Also, the proof that

∆∗N,i
p→0, as N →∞, for i = 2, 4., (4.2.64)

is similar to the proof of parts (2) and (4) in Lemma 4.2.3.

In addition, we will show in Lemma 4.2.7 that

∆N,i
p→0, as N →∞, for i = 6, 7, 8, 9, 10. (4.2.65)

Thus, we only need to consider ∆N,5 in (4.2.53) to find the asymptotic mean of the test

statistic under the local alternatives. By Lemma 4.2.5 and Assumption (D), we have

Hc·(γ) =
1

k

k∑
t=1

Hct(γ) =
1

k

N∑
i=1

H(Zi;θ)I(i ∈ Cc) = H(Z(X(c));γ) +Op(N
−1), (4.2.66)

and

H ··(γ) =
1

N

N∑
c=1

Hc·(γ) =
1

N

N∑
c=1

H(Zc;γ) +Op(N
−1) = H(γ) +Op(N

−1), (4.2.67)

where H(γ) = N−1
∑N

c=1H(Zc;γ). Therefore,

∆N,5 =
k

N−1

N∑
c=1

(
Hc·(γ)−H ··(γ)

)2
=

k

N−1

N∑
c=1

(
H(Z(X(c));γ)−H(γ) +Op(N

−1)
)2

=
k

N−1

N∑
c=1

(
H(Zc;γ)−H(γ)

)2
+Op(N

−2) (4.2.68)

Since X1, X2, ..., XN are i.i.d., then H(Z1;γ), H(Z2;γ), ..., H(ZN ;γ) are i.i.d. as well.

Therefore, we can write the first term in (4.2.68) as

k

N−1

N∑
c=1

(
H(Zc;γ)−H(γ)

)2
= kσ̂2

H , (4.2.69)
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where σ̂2
H is the sample variance of H(Z1;γ), H(Z2;γ), ..., H(ZN ;γ). By the Weak Law of

Large Numbers,

kσ̂2
H

p→ kσ2
H =kVar(H(Z;γ))=k

[∫ ∞
−∞
H2(Z(x);γ)f(x)dx−

(∫ ∞
−∞
H(Z(x);γ)f(x)dx

)2
]
, (4.2.70)

as k stays fixed and N →∞.

From (4.2.68), (4.2.69), and (4.2.70), we have

∆N,5
p→ kσ2

H . (4.2.71)

Putting (4.2.62), (4.2.63), (4.2.64), (4.2.65), and (4.2.71) in (4.2.53) and by applying

Slutsky’s theorem, we have

√
N(B∗N(Q∗)−W ∗

N(Q∗))
d→N(kσ2

H , lim
N→∞

λNA).

This completes the proof.

Lemma 4.2.7. Under Assumptions (C) and (D),

∆N,i
p→0, as N →∞, for i = 6, 7, 8, 9, 10. (4.2.72)

where ∆N,i, i = 6, 7, 8, 9, 10, are defined in (4.2.57), (4.2.58), (4.2.59), (4.2.60), and

(4.2.61), respectively.

Proof of Lemma 4.2.7

First, we will show that

∆N,6
p→ 0, as N →∞. (4.2.73)

From (4.2.57), we have

∆N,6 =
2k
√
N

N−1

N∑
c=1

N−1/4
(
Hc·(γ)−H ··(γ)

) ([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])
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By Hölder’s inequality,

|∆N,6| ≤ 2

[
k
√
N

N−1

N∑
c=1

(
N−1/4

(
H(X(c);γ)−H(γ)

))2] 1
2

×

[
k
√
N

N−1

N∑
c=1

([
Gc·(θ)−G··(θ)

]
−
[
Gc·(θ̂)−G··(θ̂)

])2] 1
2

= 2 [∆N,5]
1
2 [∆N,1]

1
2

p→ 0, (4.2.74)

where ∆N,1 and ∆N,5 are defined in (4.2.8) and (4.2.56) and the convergence in probability

in (4.2.74) is due to (4.2.63) and (4.2.71). This completes the proof of (4.2.73).

Second, we will show that

∆N,7
p→ 0, as N →∞. (4.2.75)

From (4.2.58), we have

∆N,7 =
2k
√
N

N−1

N∑
c=1

(ε∗c· − ε∗··)N−1/4
(
Hc·(γ)−H ··(γ)

)
.

Using (4.2.66) and (4.2.67), we can be write

∆N,7 =
√
Nk(N−1)−1

N∑
c=1

[
2N−1/4

(
H(Zc;γ)−H(γ)

)
(ε∗c· − ε∗··)

]
+ op(1).

Denote Uc = H(Zc;γ)− E(H(Zc;γ)) and U · = N−1
∑N

c=1 Uc, then we can write

∆N,7 = 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

(
H(Zc;γ)−H(γ)

)
(ε∗c· − ε∗··)

]
+ op(1)

= 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

(
[H(Zc;γ)− E(H(Zc;γ))]− [H(γ)− E(H(Zc;γ))]

)
× (ε∗c· − ε∗··)] + op(1)

= 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

(
Uc − U ·

)
(ε∗c· − ε∗··)

]
+ op(1)

= 2kN
−1
4

√
N

(N−1)

[
N∑
c=1

Ucε∗c· −N U · ε∗··

]
+ op(1)

= 2kN
−1
4

[ √
N

(N−1)

N∑
c=1

Ucε∗c·

]
− 2kN

1
4

(N−1)

[√
N U ·

] [√
N ε∗··

]
+ op(1). (4.2.76)
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Next, we will show that [ √
N

(N−1)

N∑
c=1

Ucε∗c·

]
= Op(1) (4.2.77)

and therefore the first term in (4.2.76) is op(1). Note that E(ε∗c·|X) = E(Q∗c·−E(Q∗c·|X)|X) =

0 and Uc is a function of Xc. Therefore, we have

E

[ √
N

(N−1)

N∑
c=1

Ucε∗c·

]
=

√
N

(N−1)

N∑
c=1

E [UcE(ε∗c·|X)] = 0, (4.2.78)

and

V ar

[ √
N

(N−1)

N∑
c=1

Ucε∗c·

]

=
N

(N−1)2
E

[
N∑
c=1

Ucε∗c·

]2

=
N

(N−1)2
E

[
N∑
c=1

U2
c ε
∗2
c· +

N∑
c 6=c′

Ucε∗c·Uc′ε∗c′·

]

=
N

(N−1)2

[
N∑
c=1

E
(
U2
c ε
∗2
c·

)]
+

N

(N−1)2

[
N∑
c 6=c′

E (UcUc′ε∗c·ε∗c′·)

]
. (4.2.79)
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Denote the first term and second term in (4.2.79) as δN,1 and δN,2, respectively. Then

δN,1 =
N

(N−1)2

[
N∑
c=1

E
(
U2
cE(ε∗

2
c·|X)

)]

=
N

(N−1)2

[
N∑
c=1

E
(
U2
cE((Q∗c· − E(Q∗c·|X))2|X)

)]

=
N

(N−1)2

N∑
c=1

E

U2
cE


(

1

k

N∑
i=1

(Yi − E(Yi|X))I(i ∈ Cc)

)2
∣∣∣∣∣∣X



=
N

k2(N−1)2

N∑
c=1

E

{
U2
cE

{(
N∑
i=1

(Yi − E(Yi|X))2I(i ∈ Cc)

+
N∑
i 6=i′

(Yi − E(Yi|X))I(i ∈ Cc)(Yi′ − E(Yi′|X))I(i′ ∈ Cc)

)∣∣∣∣∣X
}}

=
N

k2(N−1)2

N∑
c=1

N∑
i=1

E
{
U2
cE((Yi − E(Yi|X))2

∣∣X)I(i ∈ Cc)
}

(4.2.80)

=
N

k2(N−1)2

N∑
i=1

N∑
c=1

E
{
U2
c σ

2(Xi)I(i ∈ Cc)
}
, (4.2.81)

where the equality in (4.2.80) is due to the fact that Yi and Yi′ are independent when i 6= i′.

Similarly,

δN,2 =
N

(N−1)2

[
N∑
c 6=c′

E (UcUc′E(ε∗c·ε∗c′·|X))

]

=
N

(N−1)2

N∑
c 6=c′

E

{
UcUc′E

{(
1

k

N∑
i=1

(Yi − E(Yi|X))I(i ∈ Cc)

)

×

(
1

k

N∑
i′=1

(Yi′ − E(Yi′ |X))I(i′ ∈ Cc′)

)∣∣∣∣∣X
}}

=
N

k2(N−1)2

N∑
i=1

N∑
c 6=c′

E
{
UcUc′E((Yi − E(Yi|X))2

∣∣X)I(i ∈ Cc)I(i ∈ Cc′)
}

=
N

k2(N−1)2

N∑
i=1

N∑
c 6=c′

E
{
UcUc′σ

2(Xi)I(i ∈ Cc ∩ Cc′)
}
, (4.2.82)

Consider individual terms under the summation in (4.2.81) and (4.2.82). By Cauchy-
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Schwarz inequality and Assumptions (C) and (D),

E
{
U2
c σ

2(Xi)I(i ∈ Cc)
}

≤ E
{
U2
c σ

2(Xi)
}

≤
[
E(U4

c )
] 1

2

[
E
(
σ2(Xi)

)2] 1
2

=
[
E(U4

c )
] 1

2

[
E
(
E((Yi − E(Yi|X))2

∣∣X)
)2] 1

2

≤
[
E(U4

c )
] 1

2

[
E
(
E((Yi − E(Yi|X))4

∣∣X)
)2] 1

2

< ∞. (4.2.83)

Similarly, ∣∣E {UcUc′σ2(Xi)I(i ∈ Cc ∩ Cc′)
}∣∣

≤ E
{
|UcUc′|σ2(Xi)I(i ∈ Cc ∩ Cc′)

}
≤ E

{
|UcUc′|σ2(Xi)

}
≤

[
E (UcUc′)

2] 1
2

[
E
(
σ2(Xi)

)2] 1
2

=
[
E
(
U2
c

)] 1
2
[
E
(
U2
c′

)] 1
2

[
E
(
E((Yi − E(Yi|X))2

∣∣X)
)2] 1

2

≤
[
E(U4

c )
] 1

2
[
E(U4

c′)
] 1

2

[
E
(
E((Yi − E(Yi|X))4

∣∣X)
)2] 1

2

< ∞. (4.2.84)

Note that Xi can only be used to augment at most 2k cells. That is, if the rank of Xi is

r, then Xi can not be used to augment cells whose x values have ranks not in the set of

positive integers {max{1, r − k}, ...,min{r + k,N}}. Therefore, the summation over c in

(4.2.81) and that over c and c′ in (4.2.82) each contains no more than 2k terms. As a result,

the two terms δN,1 and δN,2 are O(1) and therefore,

V ar

[ √
N

(N−1)

N∑
c=1

Ucε∗c·

]
= O(1). (4.2.85)

Due to (4.2.78) and (4.2.85), the proof of (4.2.77) is complete by applying Theorem 14.4-1

in Bishop et al. (2007).
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Next, we will show that the second term in (4.2.76) is op(1). The second term in (4.2.76) is

−2kN
1
4

(N−1)

[√
N U ·

] [√
N ε∗··

]
.

Using the same technique of the proof of (4.2.77), it can be shown that[√
N ε∗··

]
= Op(1).

In addition, [√
N U ·

]
= Op(1) (4.2.86)

is a result of Central Limit Theorem (CLT) applied to U1, ..., UN since they are i.i.d. due to

the fact that X1, ..., XN are i.i.d..

Consequently,

∆N,7 = Op(N
−1
4 ) +Op

(
N

1
4

N − 1

)
+ op(1) = op(1), as N →∞.

This completes the proof of (4.2.75).

Third, we will show that

∆N,8
p→ 0, as N →∞. (4.2.87)

From (4.2.59), we have

∆N,8 =
1

N(k−1)

N∑
c=1

k∑
t=1

(
Hct(γ)−Hc·(γ)

)2
By Lemma 4.2.5, we have Hct(γ)−Hc·(γ) = Op(N

−1). Therefore,

∆N,8 = Op(N
−2) (4.2.88)

and therefore ∆N,8 is op(1). This completes the proof of (4.2.87).

Fourth, we will show that

∆N,9
p→ 0, as N →∞. (4.2.89)
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From (4.2.60), we have

∆N,9 =
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

N−1/4
(
Hct(γ)−Hc·(γ)

) ([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])
By Hölder’s inequality and the definition of ∆N,1 in (4.2.8) and ∆N,8 in (4.2.59),

|∆N,9| ≤ 2

[ √
N

N(k−1)

N∑
c=1

k∑
t=1

N−1/2
(
Hct(γ)−Hc·(γ)

)2] 1
2

×

[ √
N

N(k−1)

N∑
c=1

k∑
t=1

([
Gct(θ)−Gc·(θ)

]
−
[
Gct(θ̂)−Gc·(θ̂)

])2] 1
2

= 2 [∆N,8]
1
2 [∆N,1]

1
2

p→ 0, (4.2.90)

where the convergence in probability in (4.2.90) is due to (4.2.63) and (4.2.87). This com-

pletes the proof of (4.2.89).

Finally, we will show that

∆N,10
p→ 0, as N →∞. (4.2.91)

From (4.2.61), we have

∆N,10 =
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)N−1/4
(
Hct(γ)−Hc·(γ)

)
Using Hölder’s inequality and (4.2.59),

|∆N,10| ≤

[
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)
2

] 1
2

×

[
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

N−1/2
(
Hct(γ)−Hc·(γ)

)2] 1
2

=

[
2
√
N

N(k−1)

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)
2

] 1
2

[2 ∆N,8]
1
2 (4.2.92)

It can be shown that

2
√
N

N(k − 1)

N∑
c=1

k∑
t=1

(ε∗ct − ε∗c·)
2

= Op(N
1
2 ). (4.2.93)
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The proof of (4.2.93) is similar to that of (4.2.40).

From (4.2.88), (4.2.92), and (4.2.93), we have

|∆N,10| ≤
[
Op(N

1
2 )
] 1

2 [
Op(N

−2)
] 1

2 = Op(N
− 3

4 ) = op(1), as N →∞.

This completes the proof.

4.3 Examples

4.3.1 Numerical studies

This section will present the results of a simulation study conducted to investigate the

performance of our test. Our test depends on a parameter k to determine the number

of nearest neighbors for data augmentation. In Chapter 5, a discussion will be given on

how to select the parameter k based on the idea of the Least Squares Cross-Validation

(LSCV) procedure of Hardle et al. (1988). The regression function in this adopted procedure

is estimated using k-nearest neighbors with neighbors defined through the ranks of the

predictor variable. Then k is selected from a set of small odd positive integers that minimizes

the leave-one-out Least Squares Cross-Validation error (see Chapter 5 for more details). For

data generated under alternatives, we found that large k tends to give larger least squares

error specially in the case of high frequency alternatives. For data augmentation, the smallest

odd positive integer value for k is 3. Consequently in this section, the results of our test

(denoted as GSW) are based on number of nearest neighbors equal to k = 3.

For comparison, we also report the corresponding results for the order selection test of

Kuchibhatla and Hart (1996) based on the test statistic defined in (4.1.3). Two versions of

critical value approximation are considered for this test, one based on bootstrap resampling

procedure as recommended by Kuchibhatla and Hart (1996) and Hart (1997) (denoted as

BOS), and the other based on wild bootstrap of Hardle and Mammen (1993) which was

suggested by Kuchibhatla and Hart (1996) to deal with heteroscedastic nonlinear regression
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models and used in Chen et al. (2001) for testing constat regression with heteroscedastic

errors (denoted as WBOS). In this study, we generated data from the following four models

with sample size N = 50:

• Model M0: Yi = e−b1Xi

b2+b3Xi
+ εi;

• Model M1: Yi = e−b1Xi

b2+b3Xi
+ cos(10πXi) + εi;

• Model M2: Yi = e−b1Xi

b2+b3Xi
+ sin(10πXi) + εi;

• Model M3: Yi = e−b1Xi

b2+b3Xi
+ 2e−2Xi cos(10πXi) + εi,

where the covariate values are independently generated from Uniform(0,1) and the parame-

ters b1, b2, b3 are considered to be −5, 20, 0.6, respectively. For each model above, the errors

εi were independently generated from each of the following four distributions:

• εi ∼ Uniform(−0.8, 0.8) (denoted as Unif);

• εi ∼ Normal(0, 0.2) (denoted as Normal);

• εi = Vi/3, where Vi follows t-distribution with 5 degrees of freedom (denoted as T );

• εi = 1.5Xi · ei where ei ∼ Uniform(−0.8, 0.8). This represents heteroscedastic errors

(denoted as Heter).

For all tests, Model M0 is considered as the null model to find the empirical type I error,

while Models M1,M2 and M3 are used to obtain the empirical power. For each model with

each error distribution, the data were randomly generated and the GSW, BOS, and WBOS

methods were applied to the data. Specifically, a nonlinear model of form M0 was fitted

with the nonlinear least squares method. The initial estimates of parameters b1, b2, b3 are

all set to be 0.001. Upon convergence, the residuals from the fit were obtained, which were

then used in the calculation of the test statistics for all tests. To obtain p-value for GSW,

we used asymptotic distribution in 4.2.4 for data generated under the null model (model
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M0) and that in 4.2.6 for data generated under the alternatives (models M1 −M3). The

procedure with both data generation and application of the three tests was repeated 2,000

times.

For the generated data, BOS and WBOS tests were applied as the following:

• Sort the data according to the predictor values xi, i = 1, 2, ..., N .

• Calculate nls (nonlinear least squares) fit, obtain residuals {e1, e2, ..., eN} and fitted

values {ŷ1, ŷ2, ..., ŷN}.

• Obtain (Wild) bootstrap samples (page 11 of Kutchibhatla and Hart (1996) and page

866 of Chen et al. (2001)) from residuals {e∗1, e∗2, ..., e∗N} and calculate bootstrap ob-

servations y∗i = ŷi + e∗i ,i = 1, 2, ..., N .

• Calculate nls fit using y∗i and xi ,i = 1, 2, ..., N , and get ê∗i .

• Obtain Fourier coefficients of BOS or WBOS test using {ê∗1, ..., ê∗N} and xi = (i −

0.5)/N .

The order selection test statistics were then calculated for bootstrap sample if the nonlinear

least squares fit can be obtained. Otherwise this bootstrap sample was discarded and a new

bootstrap sample was obtained to proceed. The resampling and calculation of the bootstrap

test statistic were repeated until 2,000 bootstrap test statistic values were obtained. The

bootstrap p-value is the proportion of the bootstrap test statistics greater than the observed

test statistic value. The resulted rejection rates are reported in Table 4.1 based on nominal

levels α = 0.01 and 0.05 for all tests. The last two columns (B BOS and B WBOS) in

Tables 4.1 and 4.2 represent the average number of bootstrap resamples needed to obtain

2,000 bootstrap test statistic values for BOS and WBOS tests, respectively.

The first 4 rows of Table 4.1 show the type I error estimates for all tests with the four

types of error distributions. For all tests, the type I error estimates are close to the nominal

levels in all cases.

91



Table 4.1: Rejection rate under H0 and high frequency alternatives with sample size N = 50

Model Error level 0.01 level 0.05 B BOS B WBOS

GSW BOS WBOS GSW BOS WBOS

unif 0.005 0.011 0.013 0.021 0.046 0.050 2679 2649

M0 normal 0.008 0.005 0.007 0.016 0.037 0.049 2702 2679

t 0.004 0.006 0.012 0.010 0.040 0.051 2709 2699

het5 0.008 0.005 0.016 0.023 0.041 0.067 2887 3074

unif 0.969 0.133 0.190 0.992 0.816 0.808 2442 2402

M1 normal 0.960 0.144 0.196 0.990 0.830 0.830 2445 2398

t 0.957 0.164 0.237 0.988 0.878 0.869 2462 2408

het5 0.980 0.174 0.340 0.996 0.903 0.949 2436 2363

unif 0.954 0.160 0.213 0.984 0.865 0.849 2331 2248

M2 normal 0.962 0.198 0.248 0.992 0.881 0.875 2340 2254

t 0.952 0.224 0.284 0.979 0.905 0.898 2348 2260

het5 0.981 0.276 0.377 0.997 0.937 0.959 2337 2226

unif 0.834 0.132 0.044 0.934 0.663 0.357 2262 2239

M3 normal 0.848 0.159 0.064 0.938 0.687 0.398 2253 2236

t 0.874 0.177 0.052 0.946 0.726 0.394 2235 2217

het5 0.913 0.180 0.062 0.974 0.725 0.465 2226 2206

Power comparison for the different combinations of Models M1 −M3 and the four error

distributions (Unif, Normal, T, Heter) are shown in the last 12 rows of Table 4.1. It can be

seen that the power of our test GSW is much higher than the other two tests in all cases.

For Models M1 and M2 and for all different types of error distributions, the power of WBOS

test is slightly higher than BOS test when α = 0.01 and these powers become close to each

other when α = 0.05. On the contrary, BOS has significantly higher power than WBOS

test for data generated under Model M3 regardless of the error distribution and level of

significance.

Models M1,M2,M3 in the previous simulation represent high frequency alternatives. To
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investigate the power performance of the three tests (GSW, BOS, WBOS) in the case of

low frequency alternatives, data were generated from the following model:

Yi =
e−b1Xi

b2 + b3Xi

+ cos(2πXi) + εi, (4.3.1)

with the four different error distributions and under the same setup used in the previous

simulation. Empirical power for all tests are given in Table 4.2. Table 4.2 shows that there is

not much differences between the power of the three tests in all the cases of error distribution

and level of significance.

Table 4.2: Rejection rate under low frequency alternatives in (4.3.1) with sample size

N = 50

Error level 0.01 level 0.05 B BOS B WBOS

GSW BOS WBOS GSW BOS WBOS

unif 0.997 0.999 0.999 0.999 1.000 1.000 2239 2101

normal 0.994 0.999 0.999 0.999 1.000 1.000 2223 2095

t 0.982 0.996 0.997 0.989 0.999 0.999 2210 2085

het5 0.998 1.000 1.000 1.000 1.000 1.000 2175 2043

It is worth to mention that BOS and WBOS tests require a lot more bootstrap samples

than the 2,000 specified because some of the bootstrap samples fail to produce successful

nonlinear least squares fit (see the last two columns in Tables 4.1 and 4.2).

To have a look at the power performance of these tests with various sample sizes, we

generated data from the following model

Yi =
e−b1Xi

b2 + b3Xi

+ e−2Xi cos(10πXi) + εi, (4.3.2)

with (b1, b2, b3) = (−5, 20, 0.6) and εi ∼ Uniform(-0.8,0.8) for N= 30, 50, 75, 85, 100, 115,

125, 130, 150, 175, and 200. The resulted empirical power curves of the three tests based

on α = 0.01 are shown in Figure 4.4. It can be seen that the power of our test GSW is

consistently higher than the power of the other two tests (BOS and WBOS). The power of

our test clearly converges to 1 faster than the BOS and WBOS as the sample size increases.
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Figure 4.4: Power plot for data generated under the model in (4.3.2) with different sample

sizes

4.3.2 Application to ultrasonic reference block data

In this section, we illustrate an application of our proposed test to the ultrasonic reference

block data, which was given in Figure 4.1. These data were provided by Dan Chwirut who

is a scientist at the National Institute of Standards and Technology (NIST). The data is

publicly available at the Engineering Statistics Handbook. As it was mentioned in the intro-

duction, the scientists suggested using square root transformation of the response variable

to deal with the violation of non constant variance. In particular, they suggested to fit the

data with the following model

y1/2 =
exp(−b1x)

b2 + b3x
+ ε (4.3.3)

The residual versus covariate and residual versus fitted value plots in Figure 4.3 still suggest

some nonrandom pattern exists.

We applied our proposed test GSW to assess the lack of fit of the suggested nonlinear
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regression model in (4.3.3) for the ultrasonic reference block data. The order selection test of

Kuchibhatla and Hart (1996) in (4.1.3) is also used for testing the adequacy of the suggested

model in (4.3.3). Bootstrap and wild bootstrap are employed to obtain the critical value

of the order selection test. The p-value of our proposed test GSW is 0. For the bootstrap

order selection BOS and wild bootstrap order selection WBOS tests, the p-values based

on 10000 resamples are 0.0214 and 0.0271, respectively. The p-values of GSW, BOS, and

WBOS indicate that our proposed test GSW has more power of detecting lack of fit in such

cases with the presence of heteroscedastic errors.
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Chapter 5

Selection of the number of nearest

neighbors

The number of nearest neighbors k in the proposed test statistics specifies the number of

values augmented in each cell. In this dissertation, our theory requires that k takes a finite

small odd integer. In simulations, we have found that the type I error remains close to the

nominal level for different small k values and stays stable for a broad range of sample sizes

and error distributions (see Figs. 1.1, 3.3, 3.4 and 3.5). Under the alternative hypothesis,

different k may lead to different power for our test statistics. This chapter discusses how to

select the parameter k.

Under the alternative hypothesis, our k-nearest neighbor augmentation is parallel to

regression using local constant based on k-nearest neighbors. For continuous response vari-

able, Hardle et al. (1988) suggest the Least Squares Cross-Validation (LSCV) method for

smoothing parameter (bandwidth) selection in kernel regression estimation. Chen et al.

(2001) recommend using the one-sided cross-validation procedure of Hart and Yi (1998)

to select smoothing parameter (bandwidth) for hypothesis testing. The number of nearest

neighbors k in our setting has a similar role as the smoothing parameter in kernel regression.

For categorical response variable, Holmes and Adams (2003) proposed an approach to
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select the parameter k in k-nearest neighbor (KNN) classification algorithm using likelihood-

based inference. Choosing k in this method can be considered as a generalized linear model

variable- selection problem. In particular, for multinomial data (yi,xi), i = 1, . . . n, where

yi ∈ {C0, ..., CQ} denotes the class label of the ith observation and xi is a vector of p

predictor variables, they considered the probability model

pr(yi = Ci|y[−i],xi, k) =
exp(z

(k,j)
i θ)∑Q

υ=0 exp(z
(k,υ)
i θ)

,

where y[−i] = {y1, . . . , yi−1, yi+1, . . . , yn} denotes the data with the ith observation deleted,

θ is a single regression parameter and z
(k,υ)
i is the difference between the proportion of

observations in class Cυ and that in class C0 within the k-nearest neighbors of xi, i.e.,

z
(k,υ)
i =

1

k

∑
j
k∼i

{I(yj = Cυ)− I(yj = C0)},

where the notation
∑

j
k∼i

denotes that the summation is over the k-nearest neighbors of xi in

the set {x1, ...,xi−1,xi+1, ...,xn} and the neighbors are defined based on Euclidean distance.

The prediction for a new point yn+1|xn+1 is given by the most common class in the k-nearest

neighbors of xn+1. Afterward, the value that maximizes the profile pseudolikelihood is chosen

to estimate the parameter k. However, this method is only valid when the response variable

is a categorical variable and the nearest neighbor is defined using Euclidian distance.

In our case, the response variable could be continuous or categorical and our nearest

neighbors are defined through ranks. So we do not recommend to use our test statistics

with an estimate of k obtained with aforementioned procedures. We consider an alternative

method to estimate k which uses ranks to define nearest neighbors and can be applied

in both categorical and continuous response cases. Here we adopt the idea of the Least

Squares Cross-Validation (LSCV) procedure of Hardle et al. (1988) to select the parameter

k. Different from Hardle et al. (1988) where the regression function is estimated using

kernel estimation, we consider k-nearest neighbor estimates with neighbors defined through

the ranks of the predictor variable. In the case of categorical response variable, suppose we
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have Q classes, then we re-code the response variable to have integer values from 1 to Q.

To estimate the class for the response variable, we use the majority vote (the most common

value) from the k-nearest neighbors. For tied situation where there are multiple classes

achieving the same highest frequency, one of them is assigned randomly to be the estimated

response. In the case of continuous response variable, the regression function is estimated

by the average of the k-nearest neighbors.

In leave-one-out procedure, for each c ∈ {1, . . . , N}, we eliminate (Xc, Yc) and use the

rest of the observations to estimate the regression function which then is used to predict the

response value Y at Xc. Here are the steps we use:

1. Find the observation in X[−c] = {all Xi,where i = 1, ..., N and i 6= c} such that the

absolute difference between this observation and Xc is minimized. Denote

J(c) = {arg min
j
|Xj −Xc|, where j = 1, ..., N and j 6= c}.

Then XJ(c) is the closest to Xc.

2. Find the k-nearest neighbors of XJ(c) in terms of rank. We use the corresponding Yi

values such that

N |F̂ (XJ(c))−F̂ (Xi)| ≤
k−1

2
for i 6= c,

to obtain the leave-one-out estimate of the regression function at Xc. That is

m̂k,−c(Xc)=

k−1
∑N

i=1,i 6=c Yi I
(
N |F̂ (XJ(c))−F̂ (Xi)| ≤ k−1

2

)
, continuous case

Mode of {Yi :all i 6=c such that N |F̂ (XJ(c))−F̂ (Xi)|≤ k−1
2
}, categorical case,

where the Mode is defined as the most frequently observed value in a set of numbers.

In case where the most frequently observed values are not unique, one of them is

randomly selected.

3. Repeat steps 1 and 2 for c = 1, ..., N to obtain all leave-one-out estimates.
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Then define the leave-one-out Least Squares Cross-Validation error as

LSCV (k) =
1

N

N∑
c=1

(m̂k,−c(Xc)− Yc)2

Finally, the number of nearest neighbors is estimated by

k̂ = arg min
k∈κ

LSCV (k), (5.0.1)

where the set κ consists of small odd integers.

When the response variable is categorical, the estimate of k from this algorithm depends

on how well the covariate values from different classes are separated and how many obser-

vations are in each class. For large class sizes, it is very possible that the resulting estimate

is much greater than 10 if we leave κ unconstrained. However, our theory requires k to be

a finite, positive, odd integer.

In the continuous case with k-nearest neighbor estimation, the average of a big proportion

of Y values is used to approximate the response variable if a large k value is utilized. As a

consequence, bigger k tends to give larger least squares error when the regression function

is under the alternative hypothesis. This is especially true when the regression function has

substantial curvature such as in high frequency alternatives. On the other hand, larger k

tends to give smaller least squares error when the data were generated under the constant

regression null hypothesis.

Figure 5.1 shows the typical pattern of LSCV (k) as a function of k for k = 3, 5, 7, 9

when the response variable was generated as (1) Yi = ei; (2) Yi = 2X2
i + ei; (3) Yi =

10 sin(8πXi) + ei; (4) Yi = 10 sin(8πXi) + eiXi; where ei and Xi are i.i.d ∼ N(0, 1).

Regardless of categorical or continuous responses, the smallest value for k is 3 (note:

k = 1 corresponds to the case of no data augmentation). In order to keep the least squares

error minimized under the alternative hypothesis and reasonable under the null hypothesis,

we recommend to let κ contain a few small integer values. For example, κ = {3, 5}, which

is a safe choice for both moderate and large sample sizes. This choice of κ was used in the
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Figure 5.1: Typical pattern of LSCV (k) versus k in continuous data.
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numerical studies of Chapter 3. The estimated k̂ based on (5.0.1) is recommended to be

used to perform the lack-of-fit tests given in Chapters 3 and 4.
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Chapter 6

Summary and Future Research

6.1 Summary

In this dissertation, we studied nonparametric lack-of-fit tests in presence of heteroscedastic

variances. The response variable can be discrete or continuous with unknown distribution,

while the covariate is assumed to be a continuous variable. Regardless of the response

variable being discrete or continuous, we formulate the hypothesis of constant regression

or nonlinear regression in terms of the conditional mean of the response variable given the

covariate. Assuming no replications were observed, our lack-of-fit tests first perform a data

augmentation using a small number of k-nearest neighbors defined through the ranks of

the predictor variable. The augmentation was done on the observed data for the constant

regression null hypothesis and on the residuals from the fitted model under the null hy-

pothesis of nonlinear regression. Then the test statistics were constructed by comparing

two quadratic forms, both of which estimate a common quantity but one under the null

hypothesis and the other under the local alternatives. We derived the asymptotic distribu-

tion of the test statistics under both the null and local alternative hypotheses. The theory

for the test of constant regression and that for nonlinear regression were presented sepa-

rately. The parametric standardizing rate is achieved for the asymptotic distribution of the

proposed test statistics. As a result, the proposed tests have faster convergence rate than
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most of nonparametric methods. This is a consequence of fixed number of nearest neighbors

augmentation. Numerical comparisons show that the proposed tests have good power to

detect both low and high frequency alternatives even for moderate sample size. The tests

are especially more powerful than some well known competing test procedures when data

were generated under high frequency alternatives. Comparing to bootstrap or smoothing

based methods, a clear advantage of the proposed tests is that the test statistics and their

asymptotic distributions are easy and fast to calculate.

For the test of constant regression null hypothesis, the asymptotic distribution of the

same test statistic was also given in Wang et al. (2008) but with a biased asymptotic

variance. We derived the correct form of the asymptotic distribution of the test statistic

under both the null hypothesis and local alternatives. The test of nonlinear regression was

not as widely studied as the constant or linear regression case. The proposed test statistic

in the test of nonlinear regression case is unique and is a completely new addition to the

lack-of-fit literature. Since the proposed lack-of-fit tests can be applied to regression models

with a discrete or continuous response variable without distributional assumptions, these

tests are widely applicable to many practical data.

In addition to the inference for fixed number of nearest neighbor augmentation, this

dissertation also provided a method to select the number of nearest neighbors based on

the idea of the Least Squares Cross-Validation (LSCV) procedure of Hardle and Mammen

(1993). We generalized the LSCV such that it works with our augmentation based on ranks

of the predictor variable and can accommodate the case of discrete response variable.

Putting everything together, the results in this dissertation offer a useful tool for lack-

of-fit test.

6.2 Future research

The proposed lack-of-fit tests can be simply applied to testing the equality of two regres-

sion curves when response values from both curves are available at every design point.
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In particular, suppose we observe (Y1, Z1), ..., (YN , ZN) at the same design points where

Yi = m1(xi) + ε1i and Zi = m2(xi) + ε2i. To test the null hypothesis H0 : m1(xi) = m2(xi),

we can define Y ∗i = Yi−Zi,i = 1, ..., N , then our lack-of-fit test of constant regression might

be applied to the data (Y ∗1 , ..., Y
∗
N). For future research, it might be of interest to extend

our test to cover the general case when the two responses (Yi, Zi) are not available at every

design point. This could be handled by combining our methodology in this dissertation with

that in Young and Bowman (1995).

Our tests in this dissertation were developed for regression models with only one predictor

variable. Extending the proposed tests to deal with the presence of more than one predictor

is another issue of interest. We might use Euclidian distance or any other approach to obtain

k-nearest neighbor augmentation to construct a test statistic similar to that we proposed in

this dissertation.

Additionally, the test procedure developed in this dissertation can be generalized to test

the fit of additive models of the form Y =
∑p

i=1mi(xi) + ε where m1, ...,mp are unknown

functions,x1, ...,xp are predictor variables,Y is the response variable, and ε is the error

term. In particular, it would be of interest to test the null hypotheses H0 : mi(xi) = 0,

where i = 1, ..., p.
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