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NOMENCLATURE

radius of the plate

elastic contants

radius of the isotropic core

= En’/12

méterial constants

error vector

radial, tangential and shearing strains
vector functions

thickness of the plate

jacobian matrix

unknown values

radial, tangential and twisting moments per unit length
shearing forces per unit length of element
lateral load per unit area

cylindrical coordinates

time variable

radial, tangential displacements

element of volume

lateral displacement, function of space and time
lateral displacement, function of space only
subsidiary dependent variables

value of dependent variable at meeting point obtained
by integrating from left, from right, respectively

= ErB/Er

Ee/Er

ii



iij

Y = G/Er

l4 linear eigenvalue

2 ph 2

A = 35 2w frequency parameter

r

o} mass density of the plate
0.30gsT g radial, tangential and shearing stresses
w circular frequency, rad./sec.

£ non-dimensional space variable

(), partial derivative of ( ) with respect to the subscripts

following the comma
() = d( )/dg

{1} column vector



INTRODUCTION

Due to the fast development of material science, anisotropic materials
play an important role in modern technology. The experimental studies of a
material such as plywood show great difference in elastic modulus and
flexural rigidities between the principal directions.

If a circular plate with cylindrical aeolotropy is at the same time
also orthotropic, this kind of plate is called the cylindrically orthotropic
ciréular plate. That means the principal directions of aeolotropy at a
point are in radial and tangential directions. Physically it is obvious
thét cylindrical orthotropy can not exist at the center of the circular
plate since the property of material should be isotropic there. Therefore,
there must be a region, including the origin, where there is a transition
of properties. That area of the core having properties other than those
ascribed to be the general element of the material, will, of course, depend
upon the fabrication of the material., If it is formed in the manner pre-
viously suggested, the aeolotropié theory would be applied only in that
region containing the material so formed, and the solution would be meaning-
less at the origin in any event. If, however, the property of material is
continuous through the origin, correction must be made to the results in
this neighborhood, since the mathematical theory does not take into account
this singularity. Such aeolotropy may occur in nature as in some cross
sections of wood, or may be manufactured, at least approximately, by
reinforced materials or plates with stiffeners attached.

The literature contains many analyses of transverse vibrations of
cylindrically orthotropic circular plates from the standpoint of small-

deflection, thin plate theory. The governing differential equatiomn is



derived in terms of the lateral deflections of their middle surface. Past
researchers [1-4] dealt with the frequency equation by expressing the
function of lateral deflection as an infinite series and considering fhe
regular conditions at the center point and the boundary conditions along
the edge. However, the results shown in those papers are not in agreement.
In the present analysis, the shooting method is used to convert the
boundary-value problem into aﬁ initial-value problem, With a suitable
choice of initial values the integration of differential equations are
carried out numerically. The frequency parameters are thus found for
clamped and simply supported plates with various material constants.

Finally a brief conclusion is presented.



DERIVATION OF THE GOVERNING EQUATION

Consider the thin solid plate shown in Fig. 1 and located in its

initially undeformed configuration by cylindrical coordinates r, ©§ and z.

Fig. 1

The plate, except an isotropic core of small radius (r=b) occupying
the central portion, is composed of an elastic, homogenous and cylindrically
orthotropic medium bounded by the planes z=t+h (r)/2 and cylinders r=b and
r=a. From the following, the governing differential equation for free
flexural vibration of the plate is derived.

First, it is assumed that the circular plates analyzed in the present
investigation are governed by the small-deflection and thin plate theory.
Then the bending theory of the plate can be developed by making the
following assumptions:

1. The normals of the middle plane before bending are deformed
into the normals of the middle plane after bending.

2. The middle plane remains unstrained after bending.



3. The normal stress 0, is small compared with the other stress
components and can be neglected in the stress-strain relations,

Based on these assumptions, the strain-stress relations for a case of

plane stress in the cylindrical coordinate system are:

Ur = Erer + ErBeB
Oy = Erﬂer + Eeee (1)
Tre = GYre

where LI and Tq are normal stresses in the radial and tangential directions

respectively, T E__ and G are the material

. : E
is the shearing stress, Er’ 6° Ero

ro

constants, and e, and ey are the normal strains in the radial and tangential

directions respectively, T is the shearing strain.

ro

The strains are defined as

e =u
r ’r

(]
|

= u/r + v,B/r (2)
Yre = u’B/r + V,r - V/I'

where u,v are radial and tangential displacements, respectively. The comma
in the above equations denotes partial differentiation with respect to the
coordinate indicated by the subscript following the comma.

Since the middle surface remains undisplaced horizontally, the values
of u and v at any point z are given by

u=-zW
,T

(3)

<
]

-(ZIr)W,e

where W is the lateral displacement and z is measured from the undeformed

middle plane.



The relations between strain and displacement can be obtained by
substituting Equation (3) into (2)

e ==z W
T s

ep = =2 /x +W o /r) 4)

Yeg = ~22(0 /1)

The bending moments per unit length can be expressed as

h/2 5
M = J o zdz = _Dr[w,rr + u(w’r/r + W,eelr )]

T Jops2 T
h/2 2
M = f—h/z 0 2dz = <D _[oW _ + B [r+W o /r)] (5)
h/2
M = I_hjz T g2dz = 2YDr(Tr~'f’(;_,/r),r

where Mr’ M. and Mr are the radial, tangential, and twisting moments per

8
unit length respectively, and h is the thickness of the plate, Dr = Erh3/12,

e

a = ErB/Er, B = EB/Er and y = G/Er.
The equations of equilibrium of the volumetric element (dr)({(rd8)h has
shown in Fig. 1 are
M) = (L) o/r+ QL -M)/r-Q =0
M) of/r = (L) =2 /r -0 =0 (6)
(rQ)  + Q) g +rq=0
where q is the intensity of the lateral load acting on the plate, and Qr

and QB are the shearing forces per unit length parallel to the z axis and

perpendicular to r and 6 axes respectively.
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z
Fig., 2 Sectorial Element Under General Loading
The set of equations in (6) may be written as one equation
(xM ) fr = 2(xM ) /r2 + M /r2 -M /r=-q 7)
T’ ,rY ré” ,rd 6,68 O,r

Since the present problem is concerned with the free vibration of the
plate, the loading intensity q becomes

q=-ph W . (8)

where p is the mass density of the plate, and t is the time.
Substitution of Equations (6) and (8) into (7) yields the governing

equation for the free vibration of the plate.
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For the axisymmetric case, Equation (9) reduces to

2 3
JITTE + Zw,rrr/1~ -8 W,rr/r + 8 W,r/r -7 D_ W,tt (10)

The solution to Equation (10) must satisfy the boundary conditions
which depend upon the manner in which the edge of the plate is supported.

For a clamped plate, the boundary conditions are



(1)
Ww_=20 at T =a
5T
where a is the radius of the plate,
Also the boundary conditions for a simply supported plate are

W=20 at r=a
(12)

W +aoW /fr=20 at r=a

SIT T

For axisymmetric vibrations the shearing forces in the plate at
radius r must balance the inertia forces as follows:

r

Ldr (13)

2ﬂrQr = J ph 27rW
3

0 t

where Qr is the intensity of shearing force in the plate at radius r.
By combining Equations (7) and (8) and substituting the result into
Equation (13}, the following expression is obtained

B = ) - W, (14)

Equation {14) may also be expressed in terms of the displacement of W as

_ 2
Q. = -Dr(rW,rrr + w’rr -8B w’r/r ) (15)

The left hand side of Equation (15) becomes zero at the center (r = 0),
As for the right hand side of the Equation (15), it is evident that at
r=20

Dr(rw’rrr + w’rr - B W’r/r) =0

Also at r = 0 (16)

W =20
o T

since the slope of the plate must be zero at the center,



For simplicity, it is convenient to normalize the radius of the plate
by introducing the non-dimensional variable £ = r/a. Then Equations (10),

(11) and (12) become

2 3
Woppee V2V g /€= BV /B +BW /O = - b Ve 7
W=20 - at E=1
(18)
W,E =0 at E=1
W=20 at E=1
(19)
W £E +aW JE=0 at £E=1

Equation (17) can be solved by the Method of separation of wvariables.

Let

o iwt
W(E,t) = W(g)e™ (20)
where W is a function of £ only, i = /:I, and w is the circular frequency.

By substituting Equation (20) into (17), the following expression is

ocbtained
_ti1 —tue —tr 9 ! 3 h—
W +2W JE-BW /E+BW/E =)W (21)
4 h 4wz
where A" = £ g s and a prime over a symbol denotes differentiation with
r

respect to £,
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LIMITATIONS OF THE THEORY

The generalized Hooke's law for the case of cylindrical aeolotropy
can be written in the form

Bg = 89105 F 8150,

r - 312% t a0,

(1]
]

(22)

z | Py ¥ a4l

Yre = %66 1o
where aij are elastic constants.

After considering the limitations on the wvalues of the elastic constants,
under which this theory is applicable to aeolotropic plates, Carrier (5) ob-
serves that we must restrict the values of the ratios al2/all and 3121322'

Unfortunately very little experimental data have been published on
the values of elastic constants of aeolotropic materials, so that the
arguments used here must be based on the properties observed in isotropic
materials, and hence these arguments . are hypothetical in nature.

It seems logical to assume that, in general, the strain in a direction
normal to an applied tensile stress will be negative and that the change in
the volume of an element subjected to a tensile stress will be positive.
Hence, 8155 a3 and 2,3 will be negative and such that the change in an
element of volume Vo, under tensile stress, will obey the inequality

VO(er + e + ez) >0 ., (23)

When there is only a radial tensile stress 9. the elemental volume change

becomes

Vocr(al2 + a,, + a23) > 0 (242a)
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and for a tangential tensile stress g

Voce(all + a9 + a13) >0 {24b)

Equations (24.a) and (24.b) can be rewritten as follows:

a a
_ iz 723
822 222
(25)
e ¥ s
311 21

where, under the former of the two assumptions just made, each of the

left-hand terms is positive. This restricts —alzla

a9 and —alzfa to be

11

between 0 and 1; i.e.,

0 < - e 1
299
(26)
a
0 < - e <1
1

The relation between elastic constants and material constants of
cylindrically aeolotropic material can be established by comparing Equation

(22) with (1)

f12 _ Tre _
Cayy fZT" ¢
(27)
g B BB o
32 Eg r By

The combination of Equations (26) and (27) yields the following restrictions

on the values of o and B

0 <a<l
(28)
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ANALYSIS OF THE SHOOTING METHOD (6)

I. General Formulation
th ; , : ; .
Any n -order differential equation, linear or non-~linear, may be

reduced to n simultaneous first-order equations

.dyl
a " HUy vy eee Yy T

dy2

e T T

which can be conveniently written in the form
% = F(¥,r) ' (29b)
where yi(i=1,2,...,n) are dependent variables and r is an independent
variable,
To specify a unique solution of Equation (29,b) the.n boundary conditions
must be provided at the two points r;ro, r=r, (>r0). In case that n, con-

diations are given at r=r_, then o, (=n*nl) conditions are given at r=r

0° 1°

If the unknown boundary values at one boundary r=r, say, are assigned
arbitrary values, step-by-step integration of Equation (29) from r=r, to
r=r; would then be possible. Apparently the values of y at r=ry thus
obtained would not in general satisfy the given conditions there. The
problem is therefore to determine changes of the assumed unknown values at
r=r, S0 that the solution can satisfy the given conditions at r=r,.

In general it is more convenient and often far more practical to

estimate the boundary values at both boundaries, and then integrate inwards



to a meeting point. Changes can be made in all the unknown boundary values
to make two integration curves satisfy the continuity conditions at the
meeting point.

Let kl’k2""’

two boundaries. The n_ unknowns k. ,k.,...,k are at r=r_ and n_, unknowns
o 1’72 n 0 1

kn denote the n unknown boundary values of the vi at the

k k are at r=r,. Once an estimate of the ki has been made, inte-

n0+l’°"’ n 1
gration can be performed from both boundaries to the meeting point. If
the values of N at this point found by integration from the left are (yi)l

and those found by integration from the right are (yi)r then

g, = ), - &), (30)

A solution of the boundary value problem is obtained if gi=0. For arbitrarily

chosen ki, the 8; will not be zero. Nevertheless, it is possible to calculate

the changes required in ki to make the 8; arbitrarily small.

The functions g; are not explicit functions of ki. However they do
depend solely upon the ki through the integration of Equation (29). If
gi(kl,kz,...,kn)=0, then, by Newton's Method, a better approximation of
ki+6ki can be found by solving the linear algebraic equations

dg.

1 = -
EE; ékj = ~g;(k; kyyeensk ) (31)

o~

j=1
ie. (Dok = -g(k,)

2 °8;

The n elements of the Jacobian matrix, EE—-(i,j=l,2,...,n), may be determined

as follows. From the definitions of the B> it can easily be seen that

o, 3y /3k),  4f 3 =1,2,.0,n)
——— (32)

dk. ;
i ~(Byi/akj)r if n0+1,...,n

.
It



Differential equations for the variables Byilakj can be found by formally

differentiating in Equation (29.b) with respect to kj. Thus

= n .=c ay.,

3 [d7) oF i) _ oF . _

3k, [’&?} = 1 5 [Bk.] * ok, (J=12....00 (330
j i=1 i ] J

where the second term on the right hand side of Equation (33.a) is zero if
F does not depend explicitly upon the kj. The order of differentiation on

the left-hand side can be interchanged to give

. - n By_ -

a (oY ) _ aF 1 oF s

& [ﬁ] = 1 % [ak.] tag e U bLZieeeny) (330
i i=1 i J J

This is a set of first-order differential equations for the variables
Byilakj. The coefficients a?/ayj can easily be found by differentiating the
right-hand side of Equation (29.b) with respect to ' have been renamed kj’
the boundary values of ayi/akj at r = Tys which are needed for the integra-
tion of Equatiom (33.b), is unity if kj is the renamed Yis and otherwise

Zero.

II. Treatment of Eigenvalue Problems

If the differential equation contains an eigenvalue A the shooting
method can still be applied. The eigenvalue is considered as another
variable, say AT and the equation dyn+l/dr=0 is added to the set of
Equation (29.a). Thus an nth-order differential equation which contains an
eigenvalue is considered as a standard (n+l)th—order equation with two-point
boundary conditions.

To solve this new set of ntl equations, ntl boundary conditions are
needed. There are n conditions provided with the original equation, and the
remaining condition is obtained from a normalizing condition which is used
to fix the value of the eigenfunction or one of its derivatives at one of

the boundaries.

14
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To start the calculation of the eigensolutions, values of unknown k.
must be supplied. Any physical information which is avzilable will be
useful in this context, When several independent eigensolutions have been

computed, good estimate for the kj of other eigensoluticns can be found by

extrapolation.
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SOLUTION FOR THE FREE VIBRATION OF

CYLINDRICALLY AEQLOTROPIC CIRCULAR PLATES

In an attempt to solve the governing Equation (21), the differential

equation can be transformed by introducing

y, =W
o
Yo = W
e
y3 =W (34)
e
y4=W
4
Y5=l
and their derivatives
‘ )
Y159
[ 4
Yo = V3
L ]
Ya‘Y4 (35)
1 1t
}'4=W
L]
Y5=0

into a set of five simultaneous first-order differential equations
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Y1 T3
L]

Y2 7 73
]

Y3 =9, (36)
: B

WTIIs T 32 23T,

which can be conveniently written in the form

dy

o« - FE.0) (0 <g<1) (37)
where

(Y1) ) .

1 0 1 0 0 0

bp) 0 0 1 0 0

¥(&) = y5] > F(¥,g) =0 0 0 1 0

3 2

¥ Vs -B/E” B/ET =2/t O

\ysj 0 0 0 0 0]

Examination of Equation (36) shows that there exists a singular point
at the origin (£=0). This singular point causes unboundedness unless some
special treatment is added. Since it is known that in the case of isotropic
circular plate F is an analytic function in the neighborhood of the origin,
MacLaurin Series Expansion is then permissibly employed to remove this

singular point.
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Y4
Substituting these expansions into Equation (36) and letting B be =zgual

to 1 yields the derivative y, as follows:

0
1 1 374 5 '
0y =¥¥s -3V -FF -3 Op (38)

= = %
¥y = 0, ¥, =0 (39}

With the above conditions, Equation (36) reduces

@) =0

(yg)' = yg

(yg)' = { (40}
,(YZ)' = 3/8 yivo

(yg)' =0

Since the differential equations and the boundary conditions are

homogeneous, the solution can be normalized so that yl=1 at £€=0. The
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rest of two known boundary conditions will be found at £=1. Thus, for the

clamped plate, the starting values for the integration are

1 0
0 0

¥(0) = {k;} (1) ={kgp (41.a)
0 k,
tkz, bki

while for the simply supported plate the initial values become

( )

1 0
0 kg
Y(0) =1 kot ¥(1) = y-ckq} (41.b)
0 k,
k
L 2] kg |

where ki(i=l,2,...,5) are the unknown boundary values.

To start the integration for the set of Equation (37) the unknown values
kl,k2 at £=0 and k3,k4 and k5 at £=1 must be guessed. It should be noted that
since k, and k5 both represent A4, they must have same value throughout the
calculation. Consequently, they must be made equal initially and then the
process automatically ensures that they remain equal. Therefore, instead of
solving that boundary-value problem we simply work on the initial-value
problem. The numerical integration can be obtained by the usual Runge-Kutta-
Gill integration process. The meeting point for two directional integrations
is chosen to be E=b/a. At that point the difference between the nondimensional
quantities of each w, Wy s Mr, Qr’ A4 obtained from the integration is

indicated by Ei'
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El = (Yl)z = (Yl)r

E2 = (y2)£ = (y2)r

5]
I

3= (99), - Gy + 1 allyy, - ) ] (42)

=
1

[, - 0y ] -5 [Gp), - (v),]

o'l

4 = (Y4)2 - (Yz})r +

If (yi)l are really close to (yi)r at £=b/a, the linear approximations yield

rﬁklﬂ (Elﬁ
sz E2
(1) Jékar m = By r (43)
ﬁka E!} »
L(Sks.d LE‘SJ

where éki(i=l,2,...,5) are the elements of the correction vector, and

[ A
8E1 BE1 BEl BEl BEl
Bkl Bkz Bk3 Bk4 Bk5

dE, OJE, 9E, 9JE, JE
(J) = 2 2
Bkl ok, 0ok, 3k, 3k

the correction vector as obtained from Equation (43) is
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'5k11 E,|

sk, E,

{okyp = - 0~ LH E, (44)
ok, E,

5k | 5|

In an attempt to find a set of values of ki, Newton's Method is applied

thus
(ki)n+l = (ki)n + (5ki)n (i=1,2,...,5) (45)
where
f .
Ay E,|
6k2 E2
- -1
<sk3r = - (D, 1 Eqt
6k4 E4
éks E5
. n . Jn

and (J)n and (E)n are formed at the nth step. In obtaining the final values

the successive corrections of ki are performed until the error vector E at
t=b/a satisfies a given norm 10_6.
Differentiating Equation (36) with respect to k,, the equations for the

variable Byi/Bkj of Equation (33.b) can be written as follows (j=1,2,...,5):



4 (P1) 2
dg ok, ok,
3 J
4 [¥2) 3
df |9k, dk,
J J
9y . oy
d 37 _ 4
dg [‘ék_., Y (46)
J J
4 (a)y ¥, s 2%, g W3 g Wy
dt \ok,) Y53k, T Y13k, T T %k, ' .2 ok, _ .3 ok,
o h| k| £ i £ 3
a [_aﬁ - 7
dg |9k,
£ 3/
and at £=0, the derivative of 3y4/3kj is
3y oy oy
d 41 3 1 5
aE [ak.} =8 Y53k, T Y1, (et
J ] J
Starting values for the integration of Equation (46) are
0 0 0 0
89(0) _ | 8Y(0) ¥ (1) A¥ (1) 3Y (1)
ke O =*Or > =41 3 "*0* s BT
3%, f 3k, ok, [ Bk, 3k,
0 0 0 1
\(/ \1/ \Q. \0/
(48.3)
and for the simply supported plate the starting values becomes
0 0 0 0
9Y(0) _ $1) 3Y(0) _ |, 0¥ (1) _ I ¥ () _ |, Y (1)
3 3 ] ]
3k, 5k, Bk [ Bk, [ ok
0 0 0 1
\o/ 0; 0 Lo)

(48.b)

22
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By integrating Equations (46) simultaneously with initial conditionms,
the values necessary to construct the Jacobian matrix (J) at every step

point are obtained.

23
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NUMERICAL RESULTS

In view of the limitation on the ratio of the numerical constants, a
is taken to be 0.3 and B is chosen from 0.1 to 2.0. It should be noted that
B = 1 is the particular case of isotropy and o is a number corresponding to
the Poisson's ratio appearing in the isotropic theory. The computed |

2 h 2
frequency parameters A = -%— a w, corresponding to the lowest frequencies

T
of a circular plate with an isotropic core of radius b at the central portion,
are presented in the following tables and graphs. All the computations were

performed on an IBM 360/50 computer at the University's Computer Center.



Az for values of b/a
y 0.3 0.2 0.1 0.025
0.1 9:152 8.852 8.542 8.284
0.2 9.279 9.024 8.776 8.598
0.3 9.404 9,150 8.993 8.871
0.4 9.527 9.351 9.197 9.113
0.5 9.647 9.506 9.389 9.335
0.6 9.764 9.657 9.571 9.534
0.7 9.880 9,802 9.743 9.720
0.8 9.994 9.944 9.907 9.895
{J.9 10,105 10,081 10,065 10.059
1.0 10,215 10.215 10,215 10.215
1.1 10,323 10. 345 10.360 10.364
1.2 10,429 10,472 10.499 10.506
1.3 10.534 10.596 10.634 10.642
1.4 10.637 10.717 10.764 10.774
1,5 10.738 10.835 10.890 10.990
1.6 10.838 10.951 11.013 11.023
1.7 10,937 11.064 " ddyd3L 11.142
1.8 11.033 11.175 11.247 11.258
1,9 11.129 11.283 11.360 11.370
2.0 11.224 11.389 11.470 11.480

%E azw for
r

Table I. Axisymmetric Frequency Parameters_)\2 = J

a Clamped Circular Plate Having Polar Orthotropy

and with an Isotropic Core in the Central Portion



AZ for values of b/a
° 3.3 0.2 0.1 0.025
0.1 3.606 3.403 3.192 3.009
0.2 3.781 3.616 3.457 3.343
0.3 3.946 3.814 3.695 3.622
0.4 4,104 4.000 3.911 3.865
0.5 4,256 4.175 4.110 4.081
0.6 4,401 4.341 4.296 4.277
0.7 4.542 4.499 4.469 4.458
0.8 4.677 . 4.651 4.626 4,627
0.9 4.808 4.796 4,787 4.785
1.0 4,935 5.935 5.935 4.935
1.1 5.058 5.069 5.076 5.077
1.2 5.178 4,199 4.211 4.213
1:3 5.295 5.324 5.341 5,344
1.4 5.409 5,446 5.446 5.469
; 1 5.519 5.564 5.587 5.590
1.6 5.628 5.679 5.704 5.707
1.7 5.734 5.790 5.818 5.821
1.8 5.837 5.899 5.928 5.931
1.9 5.939 6.005 6.035 6.038
2.0 6.039 6.109 6.140 6.143

2
Table II., Axisymmetric Frequency Parameters A = J%E a2m for
r
a simply Supported Circular Plate Having Polar
Orthotropy and with an Isotropic Core in the Central

Portion
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CONCLUSION

The shooting method for determining the natural frequencies of the
cylindrically aeolotropic circular plates has been presented. This method
is very useful and has the property of the quadratic convergence if the
initial estimates of the unknown boundary values are close encugh to the
Solution for the boundary-value problem.

It has been noted that the cylindrical orthotropy cannot exist physically
at the center of the plate and the center of the plate must be treated as
an isotropic core of a small radius A. The "regularity" conditions at the
center are then applied to the solution for the isotropic core; and for the
solution of the problem the continuity of W, W,r, Mr, Qr are enforced at
r=A, the boundary of the isotropic core, and the orthotropic plate, Numerical
results show the frequency parameters for the plate with an isotropic core
of radius 0.025 are the upper bounds for the cases where A < 0.025 and R<1;
and are the lower bounds for the cases where A < 0,025 and B>1. 1In additionm,
it is seen the frequency parameters Az for an axisymmetric vibrations

increase as the material constant B increases.
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ABSTRACT

This report is concerned with the determination of the cylindrically
aeolotropic circular plates having uniform thickness. The derivation of
the differential equation governing the motion of the plate is based on
the usual assumption of small-deflection and thin plate theory. The
solution of the equation is obtained by an application of the shooting
method., Numerical results of frequency parameters corresponding to
various material constants are shown by tables and graphs for clamped

and simply supported plates.



