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Abstract	

Climate	models	for	central	United	States	predict	increasing	temperatures	and	

greater	variability	in	precipitation.	Combined,	these	shifts	in	environmental	

conditions	impact	many	ecosystem	properties	and	services.	Long‐term	climate	

change	experiments,	such	as	the	Rainfall	Manipulation	Plots	(RaMPs),	can	be	used	to	

address	soil	community	responses	to	simultaneous	manipulation	of	temperature	

and	temporal	variability	in	precipitation.	The	RaMPs	experiment	is	located	in	a	

native	tallgrass	prairie	at	the	Konza	Prairie	Biological	Station	and	has	been	

operational	since	1998	providing	the	potential	to	address	responses	to	long‐term	

environmental	manipulations.	To	test	whether	community	composition,	richness,	or	

diversity	respond	to	environmental	change,	more	than	40,000	fungal	amplicons	

were	analyzed	from	soil	samples	collected	in	2006.	The	data	suggest	that	soil	fungal	

communities	are	compositionally	resilient	to	predicted	environmental	change.	This	

is	the	case	both	for	the	community	composition	overall	as	inferred	from	ordination	

analyses	as	well	as	analyses	of	variance	for	each	of	the	most	common	Operational	

Taxonomic	Units	(OTUs).	However,	while	this	study	suggests	compositional	

resilience,	further	studies	are	required	to	address	functional	attributes	of	these	

communities	and	their	responses	to	environmental	manipulations.		

	 	



	

Introduction	

	

Water	and	temperature	are	major	abiotic	factors	that	influence	grassland	carbon	

exchange	on	an	ecosystem	level	both	above‐	and	belowground	(Xu	et	al.	2004;	

Davidson	&	Jansens	2006).	These	factors	are	also	fundamental	drivers	of	the	

heterotrophic	respiration	that	is	estimated	to	account	for	30‐50%	of	the	total	soil	

respiration	in	most	terrestrial	systems	(Raich	&	Schlesinger	1992;	Bond‐Lamberty	

et	al.	2004),	although	estimates	may	vary	widely	depending	on	biome/ecosystem	

(compare	Hanson	et	al,	2000;	Wan	&	Luo	2003;	Chen	et	al.	2009).	The	significance	of	

the	soil	respiration	and	the	large	contribution	of	soil‐inhabiting	microbial	

communities	to	CO2	flux	emphasize	their	importance	and	underline	the	need	to	

better	understand	the	compositional	and	functional	attributes	of	these	communities,	

particularly	so	in	the	face	of	predicted	future	environmental	conditions	(Bargett	et	

al.	2008;	Drigo	et	al.	2008).		

	

Grasslands	are	important	biomes.	They	comprise	approximately	32%	of	the	natural	

vegetation	of	earth’s	surface	(Adams	et	al.	1990)	and	store	28‐37%	of	the	terrestrial	

organic	soil	carbon	(Lal	2004).	The	function	and	composition	of	the	plant	

communities	in	grassland	ecosystems	have	been	proposed	to	be	sensitive	to	

variability	in	climatic	conditions	(Knapp	&	Smith	2001;	Gao	&	Reynolds	2003).	In	

grassland	ecosystems,	shifts	in	timing	of	precipitation	–	not	in	the	total	quantity	–	

can	be	important	controls	of	plant	productivity	(Knapp	et	al.	2002;	Fay	et	al.	2011),	

soil	respiration	(Harper	et	al.	2005;	Fay	et	al.	2011),	as	well	as	function	and	

structure	of	soil	communities	(Zeglin	et	al.	2013).	As	soil	moisture	and	its	variability	

are	major	controls	of	the	broad	scale	function	and	composition	of	the	soil	

communities	on	various	spatial	(Brockett	et	al.	2012)	and	temporal	scales	(Zeglin	et	

al.	2013),	more	detailed	evaluation	of	community	responses	to	long‐term	

manipulations	are	timely.		

	



IPCC	(2007)	predicted	that	effects	of	changes	in	extreme	events	–	both	increases	in	

the	duration	of	droughts	and	in	the	per	event	precipitation	volumes	–	may	exceed	

those	expected	for	changes	in	average	precipitation	leading	to	more	variable	

precipitation	regime	and	soil	moisture	in	mesic	ecosystems	(Knapp	et	al.	2008).		

While	such	changes	in	the	per	event	volume	of	rainfall	as	well	as	in	their	frequency	

have	been	suggested	to	lead	to	rapid	alterations	in	soil	processes	as	well	as	

aboveground	community	composition	(Knapp	et	al.	2002;	Fay	et	al.	2003;	Harper	et	

al.	2005;	Swemmer	et	al.	2007;	Fay	et	al.	2011),	consequences	of	such	alterations	for	

belowground	microbial	communities	have	received	comparatively	less	attention	

(Chou	et	al.	2008;	Zeglin	et	al.	2013).	This	major	gap	prohibits	our	understanding	of	

the	soil	community	responses	to	changes	in	soil	water	that	far	exceed	those	

witnessed	for	dominant	plants	(Huxman	et	al.	2004;	Ogle	&	Reynolds	2004;	

Schwinning	&	Sala	2004),	tend	to	be	more	dynamic,	and	responsive	to	pulse	events	

(Austin	et	al.	2004;	Ogle	&	Reynolds	2004;	Carbone	et	al.	2011).		

	

While	both	water	and	temperature	are	major	abiotic	controls	of	grassland	

ecosystem	carbon	exchange	(Xu	et	al.	2004;	Davidson	&	Jansens	2006;	Fay	et	al.	

2011),	the	effects	of	altered	precipitation	are	not	as	well	understood	as	those	of	

elevated	CO2	or	temperature	(Weltzin	et	al.	2003).	Studies	focusing	on	the	

interactions	of	multiple	global	change	drivers	may	be	fewer	yet	(Bardgett	et	al.	

2008).	The	responses	to	interacting	climatic	drivers	of	soil	communities	and	their	

function	tend	not	to	be	additive	(Shen	et	al.	2009;	Hayden	et	al.	2012;	Matias	et	al.	

2012).	Accordingly,	experimental	manipulations	that	combine	multiple	global	

change	factors	are	necessary	to	elucidate	the	potentially	synergistic	responses	of	

soil	systems.	Increased	soil	temperatures	tend	to	stimulate	soil	respiration	directly	

through	positive	responses	by	acceleration	of	both	autotrophic	and	heterotrophic	

metabolism	(Rustad	et	al.	2001;	Melillo	et	al.	2002;	Shen	et	al.	2009).	Alternatively,	

higher	soil	temperatures	may	shift	soil	function	indirectly	through	increases	in	

nitrogen	mineralization,	primary	production,	and	litter	production	(Stromgren	&	

Linder	2002;	Pendall	et	al.	2004).	Warming	may	also	reduce	overall	microbial	

biomass	(Frey	et al.	2008)	and	increase	(Castro	et	al.	2010)	or	decrease	(Allison	&	



Treseder	2008;	Hayden	et	al.	2012)	fungal	abundance.	Overlaid	with	changing	

average	temperatures,	changes	in	soil	water	potential	may	directly	and	indirectly	

control	soil	community	metabolic	and	physiological	activities	by	affecting	substrate	

availability	via	litter	production	and	substrate	diffusion	(Skopp	et	al.	1990;	

Davidson	&	Janssens	2006;	Bardgett	et	al.	2008).	Warming	may	amplify	these	effects	

–	potentially	as	a	result	of	greater	rate	of	water	loss	from	the	soil	profile.	Sheik	et	al.	

(2011)	reported	that	with	elevated	temperatures,	water	budgets	regulated	

microbial	populations.	More	importantly,	they	concluded	that	timing	of	the	

precipitation	events	is	critical	for	microbial	populations.		

	

In	contrast	to	broad	microbial	community	responses	to	environmental	

manipulations,	few	studies	have	explored	the	responses	of	general	soil	fungal	

communities	–	particularly	to	interacting	environmental	factors.	Fungal	community	

responses	to	warming	would	be	expected,	because	fungal	respiration	tends	to	

increase	with	temperature	(Hacskaylo	et	al.	1965;	Malcolm	et	al.	2008)	although	in	

the	long‐term	the	communities	may	adapt	to	the	changing	environmental	conditions	

(Malcolm	et	al.	2008).	Studies	that	have	targeted	the	effects	of	elevated	temperature	

have	reported	different	and	contrasting	responses	(Bardgett	et	al.	1999;	Compant	et	

al.	2010):	experimental	warming	may	increase	diversity	of	soil	fungi	(Allison	&	

Treseder	2008),	decrease	(Allison	&	Treseder	2008;	Hayden	et	al.	2012)	or	increase	

(Castro	et	al.	2010;	Ziegler	et	al.	2013)	fungal	abundance	or	biomass,	change	relative	

taxon	abundances	(Allison	&	Treseder	2008;	Deslippe	et	al.	2011;	Anderson	et	al.	

2013),	or	have	minimal	effects	on	richness,	diversity,	and	community	composition	

(Allison	et	al.	2010;	Papanikolaou	et	al.	2010)	depending	on	the	ecosystem.	In	

addition	to	the	ecosystem	level	context	dependencies	(Compant	et	al.	2010),	

interacting	environmental	drivers	may	further	modulate	the	fungal	community	

responses	(Hayden	et	al.	2012).	For	example,	Rygiewicz	et	al.	(2000)	showed	that	

soil	fungal	community	responses	to	elevated	temperature	differed	between	[CO2]	

treatments.	Heterotrophic	fungal	communities	and	their	responses	to	shifts	in	

environmental	conditions	are	particularly	important,	because	they	are	essential	in	



carbon	and	nutrient	cycling	(Dighton	2003),	comprise	a	large	recalcitrant	

belowground	carbon	sink	(Treseder	&	Allen	2000),	and	may	be	affected	directly	by	

the	shifts	in	the	environmental	drivers	or	indirectly	through	the	responses	in	plant	

communities	(Cregger	et	al.	2012).	Anderson	et	al.	(2013)	observed	that	both	

elevated	CO2	and	elevated	temperature	influenced	the	fungal	community	

composition.	These	authors	emphasized	the	importance	of	considering	the	

community	responses	in	the	context	of	the	plant	host,	as	decoupling	direct	effects	of	

environmental	conditions	and	indirect	effects	modulated	via	plant	communities	are	

essential	to	understand	the	complexities	of	soil	community	dynamics	(Bardgett	et	al.	

2008).	The	plant	community	dependent	responses	are	particularly	important	for	

root‐colonizing	mycorrhizal	communities.	Studies	focusing	on	those	fungal	guilds	

have	reported	increases	in	ecto‐	and	arbuscular	mycorrhizal	mycelium,	species	

richness,	as	well	as	root	colonization	in	response	to	experimental	warming	(Staddon	

et	al.	2003;	Clemmensen	et	al.	2006;	Heinemyer	et	al.	2006;	Hawkes	et	al.	2008;	

Deslippe	et	al.	2011;	Büscher	et	al.	2012),	although	these	responses	are	unlikely	to	

be	universal	(Olsrud	et	al.	2010).	Experimental	warming	may	also	lead	to	shifts	in	

the	relative	abundances	of	soil	inhabiting	fungi	and	bacteria	(Zhang	et	al.	2005;	

Rinnan	et	al.	2007;	Frey	et	al.	2008).		

	

Soil	moisture	also	strongly	influences	fungal	communities	structurally	and	

functionally	(Toberman	et	al.	2008;	Bell	et	al.	2009;	Baldrian	et	al.	2010;	Castro	et	al.	

2010;	Hawkes	et	al.	2011;	Schmitt	&	Glaser	2011;	Cregger	et	al.	2012).	Variability	in	

soil	moisture	may	shift	biomass	or	ratios	of	fungi	and	bacteria	within	a	growing	

season	(Clark	et	al.	2009;	Gray	et	al.	2011;	Cregger	et	al.	2012;	Baldrian	et	al.	2013),	

in	response	to	pulse	events	(Fierer	et	al.	2003;	Zeglin	et	al.	2013),	or	in	response	to	

experimental	manipulations	of	soil	moisture	(Nazih	et	al.	2001;	Cregger	et	al.	2012;	

Zeglin	et	al.	2013).	Some	recent	studies	have	suggested	that	soil	fungal	communities	

are	highly	responsive	to	changes	in	soil	moisture	within	and	across	years	(Hawkes	

et	al.	2011).	These	responses	translate	to	changes	in	fungal	abundance,	community	

composition,	and	further	to	function.	Perhaps	somewhat	surprisingly,	Hawkes	et	al.	



(2011)	concluded	that	fungal	communities	during	low	soil	moisture	were	more	

diverse	and	abundant	than	during	high	soil	moisture.	Furthermore,	these	responses	

in	fungal	communities	were	rapid,	reversible,	and	repeatable,	thus	highlighting	the	

community	plasticity	in	terms	of	possessed	environmental	or	physiological	

tolerances	(Cruz‐Martinez	et	al.	2009).	The	community	dynamics	resulting	from	the	

rapid	changes	in	soil	moisture	preceding	and	following	rainfall	pulse	events	may	

mask	the	long‐term	dynamics	of	fungal	responses	to	available	soil	moisture	

(Hawkes	et	al.	2011;	Cregger	et	al.	2012).	Such	short	term	dynamics	on	the	scale	of	

days	are	further	overlaid	by	seasonal	dynamics	in	soil	moisture	that	further	drive	

the	soil	fungal	community	structure	and	function	(Hawkes	et	al.	2011;	Cregger	et	al.	

2012).	Fundamentally,	soil	moisture	is	a	pivotal	driver	of	fungal	biomass	(Frey	et	al.	

1999)	and	the	communities	respond	rapidly	to	changes	in	available	moisture.		

	

Environmental	change	factors	do	not	operate	in	isolation.	Predicting	the	

interactions	among	multiple	drivers	is	problematic	based	on	single	driver	

experiments	(Shaw	et	al.	2002;	Larsen	et	al.	2011).	Therefore,	concerted	

manipulations	of	multiple	environmental	drivers	are	essential.	The	primary	goal	of	

this	contribution	was	to	utilize	an	existing	experiment	that	has	simultaneously	

manipulated	temperature	and	precipitation	timing	in	a	tallgrass	prairie	ecosystem	

(Fay	et	al.	2000,	2002,	2003).	Previous	studies	using	this	experimental	

infrastructure	have	observed	responses	in	plant	growth	and	aboveground	annual	

net	primary	production	(ANPP)	(Knapp	et	al.	2002;	Fay	et	al.	2011),	leaf	carbon	

assimilation	(Fay	et	al.	2011),	soil	CO2	efflux	(Harper	et	al.	2005;	Fay	et	al.	2011;	

Zeglin	et	al.	2013),	as	well	as	soil	microbial	community	biomass	and	exoenzyme	

activities	(Zeglin	et	al.	2013).	Collectively,	these	studies	have	observed	that	the	long‐

term	manipulation	of	the	rainfall	frequency	has	increased	the	amplitude	of	the	intra‐

annual	soil	moisture	variability	reducing	the	average	soil	water	availability	(Fay	et	

al.	2011)	leading	to	reduced	rainfall	use	efficiency	(Fay	et	al.	2011)	and	to	reduced	

soil	microbial	community	carbon	use	efficiency	(Zeglin	et	al.	2013).	The	elevated	

temperature	treatments	in	turn	have	advanced	plant	phenology	in	spring,	increased	

winter	soil	CO2	efflux,	and	reduced	summer	soil	CO2	efflux	(Fay	et	al.	2011).	These	



treatments	have	also	shifted	the	biomass	allocation	among	the	major	plant	

functional	groups	via	reduction	of	forb	ANPP	(Fay	et	al.	2011).	In	sum,	the	effects	of	

elevated	temperature	seem	to	differ	between	cooler	and	warmer	seasons	and	have	

major	consequences	on	fundamental	ecosystem	processes.	These	studies	also	

highlight	the	shifting	relative	importance	of	the	temperature	and	rainfall	

manipulations:	early	in	the	growing	season	the	ecosystem	processes	were	most	

strongly	driven	by	the	elevated	temperature,	whereas	the	precipitation	

manipulations	and	the	resultant	variability	in	the	soil	moisture	had	more	

pronounced	effects	later	in	the	season	(Fay	et	al.	2011).		

	

To	elucidate	compositional	responses	of	the	soil	fungal	communities,	we	analyzed	

fungal	Internal	Transcribed	Spacer	(ITS)	regions	from	samples	collected	from	this	

ongoing	experiment	via	high	throughput	sequencing	in	combination	with	sample‐

specific	DNA	tagging.	This	allowed	taking	advantage	of	a	well‐replicated	experiment	

and	testing	hypotheses	on	responses	of	fungal	diversity	and	community	

composition	to	the	environmental	manipulations	and	their	interactions.	We	

hypothesized	that	fungal	communities	‐	their	diversity,	richness,	and	composition	‐	

will	change	due	to	alterations	in	the	frequency	‐	but	not	in	the	amount	‐	of	

precipitation,	changes	in	temperature,	and/or	the	combination	of	these	two	

environmental	drivers.	These	studies	were	strongly	motivated	by	our	previous	

results	(Zeglin	et	al.	2013)	that	suggest	that	the	microbial	communities	are	dynamic	

on	multiple	temporal	scales	functionally	and	compositionally,	but	did	not	

specifically	target	specific	compositional	constituents	of	the	fungal	communities.		

	

	 	



Materials	and	Methods	

	

Site	description	

The	study	was	conducted	at	the	Konza	Prairie	Biological	Station	(KPBS,	39˚05’	N,	

96˚35’	W),	a	Long–Term	Ecological	Research	(LTER)	site	representative	of	native	

tallgrass	prairie	in	the	Flint	Hills	of	eastern	Kansas,	USA.		KPBS	spans	3,487	ha,	and	

the	vast	majority	of	the	site	remains	undisturbed	by	agriculture.		The	vegetation	is	

dominated	by	native	C4	grasses:	big	bluestem	(Andropogon	gerardii),	indian	grass	

(Sorghastrum	nutans),	little	bluestem	(Schizachyrium	scoparium)	and	switch	grass	

(Panicum	virgatum)	(for	a	complete	list	of	vascular	plants	at	the	KPBS,	see	Towne	

2002).	The	Flint	Hills	are	generally	characterized	by	shallow	soils	overlaying	chert‐

bearing	limestones	and	shales	(Ransom	et	al.	1998)	and	our	site	is	classified	as	

typical	chernozern	according	to	the	Food	and	Agriculture	Organizations	(FAO)	soils	

classification	used	by	the	United	Nations.	Topographic	relief	divides	the	landscape	

into	upland	plateaus	with	shallow	soils,	slopes	with	outcrops	of	limestone,	and	

lowlands	with	deeper	alluvial	and	colluvial	soils.		January	mean	temperature	is	–3˚C	

(range	–9	to	3˚C)	and	the	July	mean	is	27˚C	(range	20	to	33˚C).	Annual	precipitation	

averages	835	mm,	75%	of	which	falls	in	the	growing	season	between	April	and	

October.		

	

Rainfall	Manipulation	Plots	(RaMPs)	

The	RaMPs	experiment	was	established	in	1997	and	has	been	operational	since	May	

of	1998.	Twelve	sheltered	RaMPs	and	three	non‐sheltered	reference	plots	are	

located	on	a	gently	sloping	(1‐2%)	site	with	relatively	deep	(75‐120cm	to	

limestone)	Irwin	silty	clay	loams	(fine,	mixed,	mesic	Pachic	Argiustolls).	Because	

shelters	reduce	midday	photon	flux	density	by	ca.	18%	and	may	thus	impact	

photosynthesis	and	carbon	flow	into	the	soil,	the	present	study	excluded	the	non‐

sheltered	reference	plots	and	the	experimental	design	considers	only	the	twelve	

sheltered	RaMPs.		The	experimental	site	is	managed	by	annual	spring	burning	

(typically	in	late	March),	a	common	management	practice	that	controls	woody	

vegetation	and	generally	enhances	productivity	of	the	dominant	perennial	grasses.		



	

Each	RaMP	comprises	a	fixed‐location,	14	x	9	m	rainout	shelter	over	intact,	native	

grassland	(Fay	et	al.	2000,	2003).		Each	shelter	consists	of	a	clear	(UV	transparent)	

polyethylene	roof	to	exclude	natural	rainfall,	two	4	m3	reservoirs	to	collect	and	store	

up	to	10	cm	of	rainfall,	and	an	overhead	irrigation	system	to	reapply	(at	2.5	cm	hr‐1)	

the	stored	rainfall.		Thus,	the	shelter	design	allows	for	complete	and	efficient	

experimental	control	of	the	quantity,	timing	and	variability	in	rainfall	inputs	(Fay	et	

al.	2000).	Rainfall	is	applied	to	each	RaMP	using	13	sprinkler	heads	to	ensure	

uniform	application	over	each	plot.	A	subset	of	the	RaMPs	contains	micro‐

meteorological	stations	for	comparison	with	unsheltered	plots.	Each	shelter	covers	

a	central	6	x	6	m	sampling	area,	with	a	substantial	surrounding	buffer	(0.8	m	wide).	

A	1.2	m	deep	subsurface	barrier	limits	lateral	water	movement	into	and	out	of	each	

experimental	plot.	The	large	rainout	shelter	size	relative	to	the	plot	size	is	effective	

at	minimizing	lateral	(windblown)	rainfall	inputs	to	the	central	sampling	area,	and	

soil	moisture	in	the	plots	vary	independently	from	the	surroundings	(Fay	et	al.	

2000).		

	

Precipitation	and	Temperature	Treatments	

The	RaMPs	experiment	has	proceeded	in	phases	outlined	in	detail	in	Fay	et	al.	

(2011).	From	1998	to	2001,	the	RaMPs	were	assigned	to	one	of	four	rainfall	

treatments	in	a	completely	randomized	block	design	(4	RaMP	treatments	+	one	

reference	plot	in	each	of	three	blocks).	Treatments	were	factorial	combinations	of	

two	within‐season	temporal	rainfall	distribution	patterns	(ambient	or	altered	

rainfall	timing,	detailed	below)	combined	with	two	growing	season	rainfall	

quantities	(100%	or	70%	of	natural	rainfall	amounts).		These	manipulations	occur	

only	during	the	growing	season,	when	>	75%	of	the	annual	precipitation	falls.	In	

2002,	the	simple	drought	treatment	(30%	reduction	in	quantity)	was	eliminated	

(see	Fay	et	al.	2002,	2003	for	detailed	analyses	including	the	drought	treatments)	to	

increase	sample	size	for	the	rainfall	timing	manipulations	(n=6)	and	to	prepare	for	

the	addition	of	the	warming	treatments.	The	former	drought	treatment	plots	

retained	their	prior	rainfall	timing	treatment	(ambient	or	altered	timing),	but	since	



2002	after	elimination	of	the	drought	treatment,	all	plots	–	controls	as	well	as	the	

altered	interval	plots	–	receive	an	amount	equal	to	100%	of	ambient	rainfall	

quantities.	In	spring	2003,	two	4	m2	temperature	manipulation	plots	were	installed	

in	each	RaMP	(and	each	non‐sheltered	reference	plot),	modifying	the	experiment	to	

a	split‐plot	design,	with	precipitation	as	the	whole‐plot	treatment	and	warming	as	

the	subplot	treatment.	The	final	split‐plot	design	comprises	two	precipitation	

treatments	each	with	six	replicates	(2002).	Each	RaMPs	plot	includes	four	heat	

treatment	plots	(since	2003)	–	two	heated	plots,	one	ambient	temperature	plot	with	

a	non‐heated	lamp	structure	and	one	control	plot	where	no	structure	has	been	

installed.	Thus,	the	experiment	allows	for	assessing	the	impacts	of	increased	

temperature	and	altered	rainfall	as	well	as	their	interactive	effects.		

	

In	the	present	study,	a	total	of	four	treatment	combinations	were	included;	(1)	

Ambient	precipitation	regime:	In	six	of	the	twelve	RaMPs,	collected	rainfall	is	

reapplied	to	the	plots	each	time	a	natural	rainfall	event	occurs.		Rain	gauges	outside	

the	RaMPs	and	an	in‐line	flowmeter	allow	confirmation	that	precipitation	amounts	

applied	inside	the	RaMPs	equal	the	amounts	of	rain	falling	outside.	(2)	Altered	

precipitation	regime:	The	remaining	six	RaMPs	receive	a	treatment	that	imposes	a	

predicted	rainfall	regime	of	increased	temporal	variability	in	rainfall	inputs	and	soil	

moisture	relative	to	ambient	precipitation	patterns.	This	is	achieved	by	lengthening	

the	current	ambient	dry	intervals	between	rainfall	events	by	50%.	For	example,	a	2‐

week	period	between	ambient	rainfall	events	would	be	lengthened	to	3	weeks.	Any	

rainfall	during	these	experimentally	lengthened	dry	periods	is	stored	and	applied	as	

a	single	larger	event	at	the	end	of	the	dry	interval.	The	total	amount	of	growing	

season	rainfall	applied	in	this	treatment	is	identical	to	ambient,	only	the	event	size	

and	temporal	distribution	of	inputs	are	altered.	For	the	purposes	of	the	experiment,	

an	event	is	defined	as	precipitation	>5	mm	in	a	24	hr	period.	Lesser	amounts	are	

almost	entirely	intercepted	by	the	canopy	(Seastedt	1985).	A	50%	increase	in	dry	

intervals	was	based	on	analyses	of	20+	years	of	growing	season	rainfall	patterns	at	

Konza	Prairie	from	which	the	average	storm	size	and	frequency	was	calculated	and	

deviations	assessed.	This	analysis	ensured	that	the	treatment	selected	resulted	in	a	



rainfall	regime	fundamentally	altered	from	typical	ambient	patterns.	(3)	and	(4)	

Increased	air	and	soil	temperatures	with	ambient	or	altered	rainfall	patterns:	Each	

RaMP	is	divided	into	four	2	x	2	m	subplots.	Overhead	rectangular	IR	lamps	(Kalglo	

MRM‐1215	1500‐W	model)	are	suspended	at	ca.	1.5	m	above	the	canopy	in	two	

subplots,	whereas	one	subplot	serves	as	a	blank	lamp	control	and	another	subplot	

as	a	no‐treatment	control.	The	lamps	simulate	climate	warming	increasing	day	(0.4‐

0.6°C)	and	night	(1.0‐1.5°C)	canopy	temperatures	as	well	as	soil	temperatures	

(annual	mean	~1°C	at	5	cm	soil	depth)	by	enhancing	downward	IR	flux	(~70	W	m‐2)	

(Fay	et	al.	2011).	In	contrast	to	rainfall	treatments,	warming	occurs	year	round.	

While	any	experimental	warming	approach	has	its	limitations,	IR	lamps	are	a	widely	

used,	and	are	a	preferred	option,	for	warming	experiments	under	field	conditions	

(Shaver	et	al.	2000).	We	raise	the	lamps	during	the	growing	season	as	vegetation	

height	increases	to	maintain	a	constant	IR	flux	at	the	canopy	surface,	and	avoid	

unrealistic	radiation	loads	on	the	canopy.	For	the	analyses	described	here,	we	

selected	one	elevated	temperature	treatment	and	its	corresponding	control	in	each	

of	the	twelve	RaMPs	canopies	(total	of	24	experimental	units).	

	

Soil	sampling	and	DNA	extraction	

For	each	experimental	unit	(six	replicates	for	each	of	the	four	experimental	

conditions),	two	2.5	cm	diameter	10	cm	deep	cores	were	collected	in	June	2006,	

pooled,	and	homogenized.		From	each	composite	sample,	visible	roots	and	large	

rocks	were	removed	and	genomic	DNA	was	extracted	from	a	10	g	subsample	using	a	

standard	soil	DNA	extraction	kit	(UltraClean	Mega	Soil	DNA	Kit,	MoBio,	Carlsbad,	

CA).		After	extraction,	the	DNA	was	diluted	to	~5	ng	μl‐1	and	stored	at	‐80C.		

	

Amplification	and	454‐sequencing	of	the	Internal	Transcribed	Spacer		

The	extracted	DNA	was	used	to	amplify	soil	fungal	communities	using	primers	with	

a	bias	towards	fungi	(ITS1	and	ITS2;	White	et	al.	1990)	designed	to	amplify	the	

highly	variable	Internal	Transcribed	Spacer	1	(ITS1).		To	allow	direct	454‐

sequencing,	we	synthesized	primer	constructs	which	incorporated	the	454‐primers	



(Margulies	et	al.	2005)	similarly	to	Jumpponen	&	Jones	(2009).		Between	the	454‐	

and	ITS1	primers,	we	included	a	5‐bp	DNA‐tag	unique	to	each	experimental	unit	

(Supplemental	Table	S1).		

	

To	amplify	the	fungal	ITS1,	the	PCR	reactions	[5	µl	of	Green	GoTaq	Flexi	PCR	buffer	

(Promega,	Madison,	Wisconsin),	2.5	mM	MgCl2,	200	µM	dNTP,	0.2	µM	each	forward	

and	reverse	primers,	one	unit	GoTaq	Hot	Start	DNA	polymerase,	and	5ng	soil	

extracted	DNA]	were	run	for	25	cycles	at	94°C	for	1	min,	54°C	for	1	min,	72°C	for	2	

min,	and	a	final	10	min	extension	at	72°C	on	MasterCyclers	(Eppendorf,	Hamburg,	

Germany).	From	each	sample,	the	fungal	ITS	was	amplified	in	three	separate	

reactions,	individual	reactions	pooled,	and	cleaned	using	an	AmPure	PCR	cleanup	kit	

(Agencourt	Bioscience,	Beverly,	MA).		One	sample	failed	amplification	and	was	

omitted	from	further	analyses.	A	total	of	100	ng	of	each	differentially	DNA‐tagged	

PCR	product	were	pooled	and	sequenced	on	a	GS20	genome	sequencer	at	454	Life	

Sciences	(Branford,	CT).		The	data	are	available	through	Sequence	Read	Archive	

(BioProject	PRJNA219046;	BioSamples	SAMN02351567	–	SAMN02351589).		

	

Bioinformatics	and	OTU	designation	

The	sequence	data	were	analyzed	as	previously	described	(Jumpponen	&	Jones,	

2009).	Briefly,	sequences	were	removed	if	they	contained	no	valid	primer	sequence	

or	DNA	tag,	contained	ambiguous	bases,	or	were	outside	of	the	set	length	threshold	

of	85	bp	to	130	bp.	The	remaining	reads	were	aligned	with	CAP3	(Huang	&	Madan,	

1999)	and	assigned	to	operational	taxonomic	units	(OTUs)	at	97%	similarity.	The	

data	were	parsed	by	sample	to	calculate	the	OTU	frequencies	and	counts	for	each	

sample.		From	this	output,	SAS	(SAS	Institute	Inc.,	Cary,	NC)	was	used	to	calculate	

richness	and	diversity	indices	as	previously	described	(Jumpponen	&	Jones,	2009).	

We	estimated	a	number	of	diversity	indexes	(Table	1;	SObs	–	observed	number	of	

OTUs;	Simpson’s	D;	Shannon’s	H’;	Fisher’s	;	and,	evenness	based	on	the	ratio	of	

Shannon’s	H’	and	the	natural	logarithm	of	the	richness).	To	further	explore	

organismal	coverage,	species	accumulation	(Mao	Tau	rarefaction)	curves	were	



generated	using	EstimateS	(Colwell	2006).	Although	we	were	tempted	to	estimate	

the	extrapolative	richness	metrics,	our	analyses	indicated	that	our	sampling	depth	

was	inadequate	for	meaningful	extrapolative	estimators	(see	Simpson’s	D	in	Table	

1).		

	

OTU	frequencies	were	analyzed	based	on	OTUs	assigned	at	97%	sequence	similarity	

and	the	singletons	omitted	as	recommended	by	Tedersoo	et	al.	(2010).	The	non‐

singleton	OTUs	were	analyzed	as	a	proxy	for	species‐level	resolution	for	treatment	

effects	in	SAS	(SAS	Institute,	Cary,	NC).	Student’s	t‐test	(	=	0.05	for	hypothesis	

f(OTU)	>	0)	was	used	to	identify	OTUs	whose	frequencies	were	either	too	low	or	too	

variable	to	provide	meaningful	inferences	on	their	responses	to	treatments.		

The	taxon	affinities	for	fungal	OTUs	were	based	on	BLAST	queries	(Zhang	et	al.	

2000)	against	nt	database	(Supplemental	Table	S2).	To	minimize	the	number	of	

environmental	“unculturable	fungus”	matches	to	our	queries	with	fungal	sequences,	

we	additionally	applied	an	Entrez	limit	(Eukarya[ORGANISM]	NOT	environmental	

samples[FILTER]	NOT	unculturable[ALL	FIELDS])	(Supplemental	Table	S3).	To	

provide	a	broader	taxonomic	context,	all	non‐singleton	OTUs	were	assigned	to	

classes	based	on	the	fungal	lineage	information	for	the	top	ranked	matches	among	

the	ten	that	were	retrieved	from	BLAST	queries.	The	class‐level	resolution	was	

chosen	to	increase	classification	recovery	with	the	short	(<130bp),	partial	ITS1	

reads	(see	Porter	and	Golding	2011).		For	these	analyses,	the	OTU	frequencies	were	

summed	for	each	experimental	unit	and	taxon,	and	analyzed	for	treatment	effects.		

	

Statistical	analyses	

	

Data	were	tested	for	normality	and	homogeneity	of	variance	(Milliken	and	Johnson	

1984).	Observed	variance	heterogeneity	was	corrected	through	log10	

transformation.	The	main	(Warming,	Precipitation)	and	interactive	

(Warming*Precipitation)	effects	were	analyzed	in	JMP	(SAS	Institute	Inc.,	Cary,	NC)	

The	effects	“Block”,	“RaMP(Precipitation)”	and	“RaMP(Warming,Precipitation)”	



were	considered	random	effects	in	the	mixed	model	analysis	of	variance	(ANOVA).	

We	also	examined	taxon	(class,	OTU)	level	responses.	For	the	analyses	on	the	level	

of	a	class,	the	OTU	frequencies	were	summed	for	each	experimental	unit	and	taxon,	

and	analyzed	for	treatment	effects	using	mixed	models	ANOVA.	To	limit	the	number	

of	OTUs	considered	in	these	analyses,	we	included	only	those	OTUs	that	occurred	on	

average	at	frequencies	significantly	greater	than	zero	(Student’s	t‐test;		=	0.05	for	

null	hypothesis	f(OTU)	=	0);	these	analyses	identified	a	total	of	226	OTUs	that	were	

analyzed	using	the	mixed	models	ANOVA	as	described	above.	To	minimize	the	risk	

of	Type	I	errors,	we	used	False	Discovery	Rate	(FDR)	correction	to	identify	classes	

and	OTUs	most	likely	to	respond	to	the	experimental	manipulations.	To	examine	

community‐level	differences,	the	OTU	frequencies	were	analyzed	using	Nonmetric	

Multidimensional	Scaling	(NMS)	in	PC‐ORD	(Version	4.1,	McCune	and	Mefford	

1999).	Because	the	low	frequency	OTUs	may	have	disproportionate	effects	on	these	

ordination	analyses,	we	omitted	OTUs	that	did	not	occur	in	at	least	six	(or	25%)	of	

the	experimental	units.	Pairwise	community	distances	were	estimated	using	

Sørensen	index	and	analyzed	using	Nonmetric	Multidimensional	Scaling	(NMS,	

Mather	1976).	The	optimal	number	of	dimensions	(k)	was	selected	based	on	Monte	

Carlo	test	of	significance	at	each	level	of	dimensionality	comparing	40	runs	with	

empirical	data	against	50	randomized	runs	with	a	step‐down	in	dimensionality	from	

6	to	1	and	a	random	seed	starting	value.	Three‐dimensional	solution	(k	≥	3)	yielded	

stress	values	smaller	than	those	in	randomized	runs	(P	=	0.0196)	and	was	selected	

for	final	configuration.	To	estimate	the	treatment	level	responses	of	the	

communities	the	axis	scores	were	analyzed	in	JMP	(SAS	Institute	Inc.,	Cary,	NC)	as	

described	above.			



Results	

	

General	data	description	

	

To	characterize	soil	fungal	communities,	a	total	of	45,564	sequences	that	passed	the	

quality	control	were	analyzed.	More	than	20%	of	the	total	sequence	yield	was	

omitted	because	of	missing	primer	or	DNA‐tag	sequences,	length	(<85	or	>130bp),	

or	ambiguous	nucleotides.		

	

The	sequences	were	assigned	to	a	total	of	1,642	fungal	OTUs,	315	of	which	occurred	

only	once	in	the	dataset.	Excluding	groups	that	had	no	clear	taxonomic	affinities,	

these	OTUs	represented	a	total	of	19	classes	and	62	orders.	The	data	were	strongly	

dominated	by	Agaricomycetes	(Basidiomycota;	56%	of	the	sequences)	followed	by	

Eurotiomycetes	(Ascomycota;	9.7%)	and	Leotiomycetes	(Ascomycota;	6.1%);	7.4%	

of	the	sequences	could	not	be	assigned	to	a	class	(Fig.	1;	Supplemental	Table	S4).	

The	eleven	most	common	classes	that	were	present	in	an	excess	of	1%	of	the	total	

sequencing	yield	constituted	more	than	99%	of	the	acquired	sequences	with	the	

exception	of	unknown	sequences	(7.4%).	Although	taxonomic	information	is	

desirable,	it	is	necessary	to	exercise	caution	with	these	taxon	assignments	as	the	

GS20‐generated	short	reads	presented	a	challenge	for	OTU	taxon	assignments,	

especially	in	less	inclusive	taxonomic	ranks	below	order	level	(Porter	and	Golding	

2011).	Examination	of	the	average	bit	scores	(92.1	±	40.8),	e‐values	(9.1	x	10‐8	±	7.9	

x	10‐7),	and	coverage	(56.4	±	26.3)	indicate	considerable	uncertainty	in	the	taxon	

placement	based	on	these	data.	However,	when	the	most	common	OTUs	were	

examined	in	more	detail,	they	were	consistently	placed	in	the	same	phylum	and	

class	suggesting	that	these	assignments	are	likely	to	represent	correct	affinities.	The	

inconsistencies	that	we	observed	were	likely	results	from	misidentified	or	

erroneously	annotated	reads	in	the	database	(see	Jumpponen	&	Jones	2010	for	

more	detailed	discussion).		

	

Richness	and	diversity	responses	to	environmental	manipulations	



	

The	initial	analyses	indicated	that	the	total	number	of	sequences	per	experimental	

unit	varied	across	the	treatments:	there	was	a	significant	interaction	(F1,10	=	5.56,	P	

=	0.0421)	between	the	warming	and	altered	precipitation	treatments	(Tables	1	and	

2).	The	sequence	yields	in	the	control	treatment	(ambient	precipitation	and	ambient	

temperature)	were	higher	than	in	the	experimentally	warmed	treatments	under	

ambient	precipitation	regime.	Because	differing	sampling	intensities	may	lead	to	

bias	and	erroneous	conclusions	(Gihring	et	al.	2011),	the	data	were	analyzed	with	

equalization	of	the	sampling	effort	(1,095	random	sequences	were	subsampled	per	

experimental	unit).	Rarefaction	analyses	indicated	that	the	sampling	effort	was	

inadequate	to	saturate	the	organismal	richness	in	these	samples	(Fig	2).	After	

subsampling,	the	observed	OTU	richness,	diversity	estimators	and	evenness	were	

insensitive	to	the	experimental	manipulations	and	did	not	differ	significantly	among	

the	treatments	(Tables	1	and	2).		

	

Taxon	responses	to	the	environmental	manipulations	

	

To	explore	the	overall	community	responses,	OTU	frequencies	were	analyzed	using	

NMS	ordination	after	omission	of	the	infrequent	OTUs	(OTUs	that	occurred	in	<	6	

plots).	This	lead	to	a	dataset	with	211	OTUs	that	were	best	resolved	in	k	≥	3	

dimensions.	Fungal	communities	were	unresponsive	to	the	experimental	

manipulations	and	the	treatments	were	indistinguishable	in	these	NMS	analyses	

(Fig	3).	To	provide	an	estimate	of	organismal	responses,	those	fungal	OTUs	that	

were	abundant	and	invariable	enough	(based	on	t‐tests	at		=	0.05)	were	selected	

for	further	analyses.	The	t‐tests	identified	a	total	of	226	among	the	1,327	non‐

singleton	OTUs	that	occurred	on	average	at	frequencies	significantly	greater	than	

zero.	Overall,	16	of	these	OTUs	(7.1%)	showed	significant	responses	to	the	

experimental	treatments	or	their	interaction.	After	correcting	for	multiple	

comparisons	(FDR),	none	of	these	responses	remained	significant	(Supplemental	

Table	S5).		



	

To	provide	a	taxonomic	framework	for	organismal	responses	to	altered	

precipitation	and	experimental	warming,	the	fungal	OTUs	were	analyzed	at	a	level	

of	a	class	(Fig	4).	These	analyses	provide	broad	scale	information	on	the	organismal	

responses	to	treatments.	Among	the	nineteen	fungal	classes	detected	in	our	

samples,	only	Lecanoromycetes	were	responsive	and	decreased	in	frequency	in	the	

warming	treatment	(Supplemental	Tables	S6	and	S7).	Similarly,	Leotiomycetes	

seemed	to	be	marginally	responsive	to	precipitation	manipulations	and	

Tremellomycetes	marginally	responsive	to	warming	and	the	interaction	between	

warming	and	precipitation	(Fig	4).	However,	none	of	these	responses	were	

significant	after	the	FDR‐correction	for	multiple	comparisons.		

	

	



Discussion	

	

Our	current	study	aimed	to	test	hypotheses	on	fungal	community	richness,	

diversity,	and	compositional	responses	to	manipulations	of	the	precipitation	

frequency	as	well	as	temperature	in	a	long‐term	experiment	in	a	tallgrass	prairie	

ecosystem.	One	of	the	greatest	advantages	of	using	the	RaMPs	study	is	its	long	

duration	–	a	minimum	of	four	growing	seasons	of	altered	precipitation	interval	

treatments	and	three	growing	seasons	of	warming	treatments	at	the	time	of	

sampling	for	the	current	study.	Studies	reported	here	were	motivated	by	previous	

research	efforts	that	have	reported	plant	community	(Knapp	et	al.	2002),	process	

level	(Harper	et	al.	2005;	Fay	et	al.	2011)	shifts	and	changes	in	plant	(Fay	et	al.	

2011)	or	microbial	community	function	(Fay	et	al.	2011;	Zeglin	et	al.	2013)	as	a	

result	of	experimental	manipulation	of	environmental	conditions	in	the	course	of	

the	RaMPs	experiments.	Those	studies	reported	that	the	plant	communities	

characteristic	of	the	lowland	deep	soils	had	shifted	towards	communities	that	

resemble	the	more	xeric	upland	communities	as	a	result	of	the	precipitation	

manipulations	and	the	resultant	lower	water	availability�	(Knapp	et	al.	2002;	Fay	et	

al.	2002;	2003).	Other	ecosystem	properties	have	also	responded	to	these	

manipulations.	Most	importantly,	C	cycling	as	measured	by	CO2	flux	was	observed	to	

be�tightly	correlated	with	soil	moisture	(Harper	et	al.	2005;	Zeglin	et	al.	2013).	

Those	previous	studies	also	suggest	that	soil	CO2	flux,	plant	CO2	uptake,	and	the	

plant‐utilized	C�(inferred	from	ANPP)	are	all	reduced	by	altered�timing	or	reduced	

quantity	of	rainfall	(Fay	et	al.	2003;	2011;	Harper	et	al.	2005).	These	ecosystem	

process	level	responses	coincide	with	shifts	in	microbial	biomass	and	activity	

(Evans	&	Wallenstein	2012;	Zeglin	et	al.	2013)	that	seem	reversible	if	the	soil	

moisture	conditions	are	homogenized	across	the	long‐term	treatments	(Evans	&	

Wallenstein	2012).	The	observed	above	and	belowground	responses	suggest	that	

both	the	loss	of	C	from�soil	as	well	as	CO2	capture	by	the	plant�community	may	be	

reduced	by	lower	soil	moisture,	but	partly	compensated	by	the	extension	of	

metabolic	activity	by	warming	treatments	(Fay	et	al.	2011).	If	ANPP	reductions	are	

not	fully	offset	by	the	reduced	soil	CO2	fluxes	in	the	increased	rainfall	interval	



treatments	then	this	would	lead	to	an	increased	net	C	sequestration	over	time.	

Zeglin	et	al.	(2013)	proposed	that	changes	in	microbial	activities	and	biomass	in	the	

altered	precipitation	interval	treatments	could	partly	be	reduced	or	compensated	by	

more	stress	tolerant	microbial	communities	that	maintain	growth	at	lower	water	

potentials.	Our	current	study	specifically	examined	whether	the	soil	inhabiting	

fungal	communities	would	have	changed	compositionally	and	whether	those	shifts	

would	coincide	with	the	previously	observed	functional	shifts.		

	

Our	data	suggest	that	soil	fungal	communities	remain	largely	unaltered	and	are	

resilient	to	experimental	warming,	manipulation	of	precipitation	intervals,	or	their	

combination	–	leading	thus	to	rejection	of	our	original	hypotheses.	The	fungal	

communities	showed	very	few	responses	–	particularly	after	accounting	for	multiple	

comparisons	–	regardless	of	whether	the	community	composition	was	analyzed	for	

responses	of	individual	OTUs	or	for	overall	community	distinction	among	

treatments,	or	considered	in	terms	of	community	summary	statistics	such	as	the	

richness	or	diversity.	Our	observations	are	consistent	with	some	previous	studies	

(Papanikolaou	et	al.	2010;	Gutknecht	et	al.	2012;	Anderson	et	al.	2013)	but	in	

contrast	with	others	(Allison	&	Treseder	2008;	Castro	et	al.	2010;	Deslippe	et	al.	

2011;	Hayden	et	al.	2012).	Our	results	suggest	that:	(1)	soil	communities	are	

unresponsive	to	environmental	manipulations;	(2)	the	resident	communities	may	

adapt	to	the	changing	environmental	conditions	(Malcolm	et	al.	2008);	or	(3)	the	

soil	communities	are	adequately	plastic	to	withstand	environmental	extremes	

(Cruz‐Martinez	et	al.	2009;	Hawkes	et	al.	2011)	exaggerated	by	the	experimental	

manipulations.	It	remains	unclear	whether	our	studies	suffer	from	poor	statistical	

power	as	high	replication	is	difficult	to	achieve	in	large‐scale	experimental	

manipulations.	However,	previous	studies	have	observed	clear	responses	to	these	

manipulations	(Fay	et	al.	2003;	Harper	et	al.	2005;	Zeglin	et	al.	2013),	suggesting	

therefore	that	the	fungal	community	responses	are	likely	to	be	lesser	in	scale.		

	

Both	soil	temperature	(Hacskaylo	et	al.	1965;	Malcolm	et	al.	2008)	and	moisture	

(Frey	et	al.	1999)	are	important	drivers	of	fungal	growth,	metabolism	and	



physiology.	Yet,	the	effects	of	these	drivers	on	fungal	communities	remain	unclear	

and	studies	often	yield	contrasting	results	(Bardgett	et	al.	1999;	Compant	et	al.	

2010).	Interpretation	of	soil	community	responses	may	be	further	complicated	by	

indirect	effects	of	plant	communities	(Cregger	et	al.	2012;	Anderson	et	al.	2013),	

temporal	dynamics	that	may	take	place	on	multiple	time	scales	(Hawkes	et	al.	2011;	

Cregger	et	al.	2012;	Zeglin	et	al.	2013),	ecosystem	level	differences	(Compant	et	al.	

2010),	or	interacting	environmental	drivers	(Hayden	et	al.	2012).	Our	data	provide	

no	support	for	strong	soil	fungal	community	responses	to	environmental	

manipulations	in	the	RaMPs	experiment,	despite	a	relatively	long	manipulation	of	

the	environmental	conditions.	In	comparison,	many	warming	studies	take	place	for	

a	few	months	in	growth	chambers	(e.g.,	Büscher	et	al.	2012;	Anderson	et	al.	2013)	

and	precipitation	manipulations	are	limited	to	few	growing	seasons	(e.g.,	Cregger	et	

al.	2012;	Krashevska	et	al.	2012).	More	extensive	manipulations	(e.g.,	manipulation	

of	precipitation	over	5	years	in	Hawkes	et	al.	2011	and	manipulation	of	CO2	and	

temperature	for	5	years	in	Hayden	et	al.	2012)	provide	an	experimental	platform	to	

address	environmental	change	effects	in	more	relevant	time	scales.	However,	

community	turnover	may	mask	fungal	responses	to	environmental	manipulations	

(Cregger	et	al.	2012),	as	fungal	community	responses	may	be	rapid,	reversible	and	

repeatable	(Hawkes	et	al.	2011).	Taken	together,	it	is	important	to	tie	fungal	

community	analyses	to	a	short‐term	temporal	context	that	permit	assessment	of	

dynamics	suggesting	plastic	environmental	tolerances	(Cruz‐Martinez	et	al.	2009).	

Our	experiments	targeted	long‐term	responses	to	environmental	manipulations	and	

did	not	address	short‐term	temporal	dynamics.		

	

Studies	that	aim	to	address	interacting	environmental	change	drivers	are	few	and	

complex	to	interpret;	partly	because	responses	tend	not	to	be	additive	(Shen	et	al.	

2009;	Hayden	et	al.	2012;	Matias	et	al.	2012),	partly	because	interacting	

environmental	drivers	may	exaggerate	the	environmental	extremes.	Hayden	et	al.	

(2012)	analyzed	soil	bacterial,	archaeal	and	fungal	responses	to	elevated	CO2,	

elevated	temperature	and	their	interaction.	They	found	that	the	soil	organisms	

responded	differently	to	the	two	environmental	factors	and	their	interaction.	Fungi	



were	divided	into	three	distinct	groups	based	on	ambient	CO2,	elevated	CO2,	or	

when	elevated	CO2	was	combined	with	experimental	warming.	These	authors	

concluded	that	taxa	responded	differently	under	elevated	CO2	or	warming	and	that	

response	under	any	one	condition	could	not	be	used	to	predict	responses	to	

interacting	environmental	drivers.	In	our	study,	we	observed	no	obvious	responses	

to	increased	precipitation	intervals,	elevated	temperature,	or	their	combination.	

This	is	unexpected	as	previous	studies	show	that	the	altered	precipitation	intervals	

lower	the	average	water	potential	(Harper	et	al.	2005;	Fay	et	al.	2011),	thus	

controlling	soil	function	(Harper	et	al.	2005;	Zeglin	et	al.	2013)	as	well	as	above	

ground	productivity	(Fay	et	al.	2011).	Given	the	responses	in	function,	we	would	

have	expected	concomitant	community	responses,	because	elevated	temperature	

may	accelerate	microbial	metabolism	(Rustad	et	al.	2001;	Melillo	et	al.	2002;	Shen	et	

al.	2009)	or	increase	substrate	availability	in	soil	(Stromgren	&	Linder	2002;	

Pendall	et	al.	2004).	Simultaneously,	available	soil	moisture	–	or	lack	thereof	–	sets	

inhibitory	boundaries	(Sheik	et	al.,	2011)	even	if	the	temperature	might	still	be	

within	the	optimal	range	for	the	resident	soil	organisms.	Such	conditions	may	lead	

to	communities	that	are	more	resilient	or	stress	tolerant	(Zeglin	et	al.	2013).	Based	

on	our	data,	soil	fungal	communities	in	a	seasonally	dynamic	mesic	grassland	

system	that	undergoes	frequent	periodic	low	water	potentials	and	high	soil	

temperatures	are	well	buffered	and	incorporate	adequate	environmental	plasticity	

to	withstand	the	extremes	created	by	interacting	environmental	drivers.		

	

We	also	assessed	potential	taxon	(class,	OTU)	responses	to	experimental	

manipulations.	The	taxon	assignments	of	the	short	GS20	reads	should	be	considered	

with	caution	(Nilsson	et	al.	2009;	Vilgalys	2003).	However,	we	compared	the	

ranking	of	classes	in	this	study	to	those	reported	previously	in	the	same	tallgrass	

prairie	site	(Jumpponen	et	al.	2010).	Consistent	with	the	previous	studies,	the	soil	

fungal	communities	are	dominated	strongly	by	Agaricomycetes	and	Eurotiomycetes.	

In	contrast	to	the	relatively	high	proportion	of	Leotiomycetes	in	the	present	study,	

Leotiomycetes	were	relatively	infrequent	in	the	previous	study	and	outranked	by	

Dothideomycetes,	Sordariomycetes	and	Lecanoromycetes.	On	the	coarse	class‐level	



resolution,	we	saw	minimal	responses	to	our	experimental	manipulations.	

Notwithstanding,	while	the	database	assigned	taxonomic	affinities	even	to	the	

coarsest	levels	of	taxonomic	hierarchy	may	be	inaccurate,	OTUs	represent	

mathematical	creatures	and	differences	–	or	lack	there	of	–	among	them	are	

independent	of	taxonomic	hierarchy.	Consistent	with	the	diversity	and	richness	

estimators,	the	OTU	level	responses	in	our	dataset	were	few	and	none	were	

supported	after	correction	for	multiple	comparisons.	We	also	specifically	examined	

OTUs	assigned	to	Glomeromycota,	the	phylum	known	to	form	arbuscular	

mycorrhizas.	Despite	the	removal	of	most	roots	prior	to	DNA	extraction,	

approximately	3%	of	the	sequences	represented	Glomeromycota.	These	data	likely	

represent	extramatrical	hyphae	and	spores,	or	small	root	fragments	that	could	not	

be	removed	from	the	clayey	soil	matrix.	Our	analyses	suggest	that	despite	the	

reported	responses	in	the	above	(Fay	et	al.	2002;	2003)	or	below	ground	processes	

(Harper	et	al.	2005;	Zeglin	et	al.	2013),	there	were	no	strong	responses	to	the	

experimental	manipulations	among	the	arbuscular	mycorrhizal	symbionts.	Only	one	

Glomeromycotan	OTU	(OTU717)	seemed	responsive	(P	=	0.0308)	to	the	interaction	

between	warming	and	precipitation	prior	to,	but	not	after,	FDR‐corrections	

(Supplemental	Table	S5).			

	

Our	GS20	data	are	burdened	by	some	potential	problems.	First,	pooling	of	amplicons	

across	the	experimental	treatments	was	inaccurate	and	necessitated	corrections	for	

sampling	effort	(see	also	Ghiring	et	al.	2011).	Second,	the	short	GS20‐generated	454‐

sequences	provided	a	poor	taxonomic	framework.	However,	even	if	the	taxonomic	

classification	of	the	acquired	sequence	data	may	prove	inadequate,	the	OTU	

assignments	based	on	sequence	similarities	provide	an	estimate	of	organismal	

responses	(Liu	et	al.	2008).	Similarly,	since	community	analyses	based	on	the	

relative	OTU	frequencies	neither	require	nor	rely	on	approximation	of	taxon	

affinities,	the	estimates	of	the	community	turnover	are	likely	reliable.	These	issues	

are	important	when	considering	adoption	of	ultra‐high‐throughput	next‐generation	

sequencing	technologies	that	provide	enormous	data	volumes	but	relatively	short	

reads	(Porter	&	Golding	2011;	Caporaso	et	al.	2012;	Brown	et	al.	2013).	Finally,	the	



sequencing	depth	did	not	approach	saturation	of	the	organismal	richness	as	

suggested	by	our	rarefaction	analyses.	However,	successful	saturation	of	the	

organismal	richness	in	an	analysis	of	soil	microbial	communities	may	be	

unattainable	in	studies	seeking	statistical	power	instead	of	most	accurate	species	

richness	estimate	(see	Buée	et	al.	2009;	Roesch	et	al.	2007).	Furthermore,	we	chose	

to	use	the	relative	frequencies	of	common	and	abundant	OTUs	in	our	compositional	

analyses	as	reliance	on	the	infrequent	taxa	may	exaggerate	observed	community	

richness	or	differences	therein.	The	use	of	frequent	–	or	core	(Magurran	&	

Henderson	2003)	–	taxa	provides	reasonable	estimates	of	the	community	

compositional	shifts.	Sequencing	data	may	also	have	a	greater	resolution	or	

somewhat	different	view	of	the	resident	communities	than	DNA	fingerprinting	(e.g.	

Hayden	et	al.	2012)	or	phospholipid	fatty	acid	(e.g.	Gutknecht	et	al.	2012)	tools	

employed	in	other	recent	studies.		

	

The	stability	of	the	fungal	communities	may	be	explained	by	the	microbial	

persistence	in	soil	even	at	low	water	potentials	as	well	as	by	their	ability	to	respond	

and	gain	function	rapidly	even	after	small	precipitation	events	(Schwinning	&	Sala	

2004).	Overall,	across	a	variety	of	ecosystems,	soil	function	has	been	shown	to	

respond	rapidly	to	wetting	events	as	indicated	by	the	soil	CO2	efflux	(Liu	et	al.	2002;	

Fierer	&	Schimel	2003;	Smart	&	Penuelas	2005;	Sponseller	2007;	Chou	et	al.	2008;	

Chen	et	al.	2009;	Zeglin	et	al.	2013)	suggesting	that	resident,	metabolically	inactive	

organisms	rapidly	gain	their	metabolic	and	physiological	activities	after	unfavorable	

environmental	conditions.	Combining	warming	treatments	with	manipulation	of	

precipitation	may	further	exaggerate	loss	of	water	from	the	soil	profile	(Sheik	et	al.	

2011)	and	therefore	reduce	the	periods	of	metabolic	activity.	However,	we	have	no	

evidence	for	fungal	community	responses	to	combined	manipulation	of	

precipitation	intervals	and	temperature	in	this	study.	It	is	possible	that	repeated	

sampling	or	sampling	targeting	pulse	events	would	prove	more	informative	for	

identifying	community	responses	to	environmental	manipulations.		

	

The	stability	of	communities	in	a	mesic	tallgrass	prairie	ecosystem	is	perhaps	not	



completely	unexpected.	Ecosystems	and	environments	with	large	seasonal	

variability	in	precipitation	can	buffer	the	effects	of	climate	change	because	a	broad	

range	of	environmental	and	physiological	tolerances	likely	exist	in	the	resident	

microbial	communities	(Cruz‐Martinez	et	al.	2009;	Hawkes	et	al.	2011).	

Alternatively,	in	such	environments,	environmental	change	may	exaggerate	the	

severity	of	variation	or	increase	the	frequency	of	extreme	events,	leading	to	distinct	

communities	under	the	predicted	future	environmental	conditions	(Hawkes	et	al.	

2011).	Our	results	support	the	former	view.	However,	we	emphasize	that	these	soil	

community	responses	to	precipitation	may	be	strongly	influenced	by	seasonal	and	

pulse	dynamics.	For	example,	Chou	et	al.	(2008)	reported	that	soil	CO2	fluxes	did	not	

respond	to	rainfall	during	the	wet	season,	whereas	the	fluxes	increased	rapidly	and	

strongly	in	the	early,	drier	season	wet‐up	events.	These	findings	are	consistent	with	

Zeglin	et	al.	(2013),	who	observed	rapid	community	responses	to	pulsed	wetting	

events	in	the	RaMPs	experiment.	The	short‐term	and	seasonal	dynamics	likely	mask	

community	responses	to	experimental	manipulations.	For	example,	Cregger	et	al.	

(2012)	reported	that	seasonal	community	dynamics	far	exceeded	the	responses	to	

experimental	precipitation	treatments	in	a	piñon‐juniper	woodland	highlighting	the	

importance	of	including	either	multiple	sampling	occasions	or	controlling	for	the	

available	soil	moisture	at	the	time	of	sampling.	Additionally,	use	of	a	more	labile	

marker	such	as	rRNA	may	be	suitable	for	targeting	the	community	dynamics	in	

temporally	more	appropriate	context.		

	

It	is	likely	that	in	a	mesic	tallgrass	prairie	ecosystem,	where	most	of	the	

precipitation	falls	during	the	growing	season,	responses	of	microbial	communities	

fueled	by	changes	in	long‐term	shifts	in	soil	water	potentials	remain	small.	This	is	

not	to	say	that	the	function	of	those	communities	remains	unaltered.	Previous	

results	from	this	study	system	indicate	that	alterations	in	precipitation	lead	to	

reduced	soil	respiration	(Harper	et	al.	2005;	Fay	et	al.	2011)	raising	the	possibility	

of	functional	changes	that	remain	uncorroborated	in	our	compositional	analyses	of	

the	soil	communities.	A	portion	of	the	CO2	response	observed	in	those	studies	may	



also	be	an	autotrophic	response,	as	the	fluxes	were	measured	under	field	conditions	

with	intact	plant	root	systems.	

	

What	are	the	functional	consequences	of	environmental	change	in	the	long	term	

based	on	our	current	study?	Bardgett	et	al.	(2008)	reviewed	soil	community	

contributions	and	their	importance	as	a	carbon	interface	between	terrestrial	and	

atmospheric	carbon	pools.	While	studies	on	ANPP,	many	ecosystem	functions,	and	

soil	community	function	or	activity	(Fay	et	al.	2011;	Zeglin	et	al.	2013)	have	

highlighted	the	shifts	resulting	from	the	environmental	manipulations	in	the	RaMPs	

experiment,	our	data	suggest	that	the	soil	fungal	communities	are	largely	

unresponsive	to	manipulations	of	precipitation	frequency	and	elevated	

temperature.	Perhaps	the	most	important	conclusion	emerging	from	these	studies	is	

that	the	soil	communities	may	be	structurally	buffered	against	interacting	

environmental	change	drivers,	whereas	their	function	is	determined	by	

environmental	constraints	–	available	soil	moisture	in	particular.	Our	concurrent	

studies	on	soil	community	carbon	dynamics	suggest	that	the	measured	activities	

decline	with	reduced	soil	moisture,	leading	to	greater	carbon	storage	at	least	in	

short‐term	(Zeglin	et	al.	2013).	The	tight	coupling	of	above	and	below	ground	

processes	(Bardgett	et	al.	2008)	necessitate	estimating	the	whole	ecosystem	carbon	

budget	that	establish	whether	the	tallgrass	systems	serve	as	net	sinks	or	sources	in	

the	face	of	changing	environments.		
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FIGURE	LEGENDS	

	

Fig	1	–	Distribution	of	the	GS20‐derived	sequences	across	fungal	classes	for	all	

samples	in	the	RaMPs	study.	The	chart	shows	the	reads	assigned	to	most	common	

classes	(>	1%)	as	a	proportion	of	all	acquired	sequences.	Unknown	sequences	did	

not	return	a	phylum	level	classification	in	our	BLAST	queries.	Group	“Other”	

includes	Agaricostilbomycetes	(0.01%	of	all	sequences),	Chytridiomycetes	(0.03%),	

Entomophthoromycotina	(0.04%),	Microbotryomycotina	(1%),	

Neocallimastigomycetes	(0.06%),	Orbiliomycetes	(0.09%),	Pucciniomycetes	

(0.04%),	Tremellomycetes	(0.11%),	Ustilaginomycetes	(0.11%).	

	

Fig	2	–	Rarefaction	(Mao	Tau)	analysis	of	fungal	communities	in	the	RaMPs	

experiment	manipulating	the	precipitation	intervals	and	temperatures.	P	=	extended	

precipitation	interval,	W	=	experimental	warming,	W	x	P	=	W	and	P	treatments	

combined.	Horizontal	lines	show	the	treatment	means.	Text	box	on	the	upper	left	

corner	lists	treatment	means	±	standard	deviations.	Vertical	line	shows	the	

subsampling	level	for	the	richness	and	diversity	estimators.		

	

Fig	3	–	Nonmetric	Multidimensional	Scaling	(NMS)	ordination	of	the	fungal	

community	data	in	the	RaMPs	experiment	manipulating	the	precipitation	intervals	

and	temperatures	(mean	axis	score	±	standard	deviation).	Percentages	on	axes	

show	the	proportion	of	the	variance	represented.	Inserts	provide	the	mixed	model	

ANOVA	tables	testing	treatment	differences	for	each	of	the	axes:	P	=	extended	

precipitation	interval,	W	=	experimental	warming,	W	x	P	=	W	and	P	treatments	

combined.	P‐values	for	the	F‐test	values:	ns	–	P	>	0.05.	

	

Fig	4	–	Rank	ordered	responses	of	fungi	on	a	class	level	to	manipulation	of	

precipitation	intervals	and	experimental	warming	(mean	±	standard	deviation).	

While	most	fungal	classes	show	no	significant	response,	Lecanoromycetes	increase	

in	frequency	in	response	to	experimental	warming.	This	response	is	not	significant	

after	correction	for	multiple	comparisons.		
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