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WARING’S NUMBER FOR LARGE SUBGROUPS OF Z∗p

TODD COCHRANE, DERRICK HART, CHRISTOPHER PINNER, AND CRAIG SPENCER

Abstract. Let p be a prime, Zp be the finite field in p elements, k be a

positive integer, and A be the multiplicative subgroup of nonzero k-th powers

in Zp. The goal of this paper is to determine, for a given positive integer s,
a value ts such that if |A| � ts then every element of Zp is a sum of s k-th

powers. We obtain t4 = p
22
39

+ε, t5 = p
15
29

+ε and for s ≥ 6, ts = p
9s+45
29s+33

+ε
. For

s ≥ 24 further improvements are made, such as t32 = p
5
16

+ε and t128 = p
1
4 .

1. Introduction

Let p be a prime, Zp be the finite field in p elements, Z∗p = Zp − {0}, and k be
a positive integer. The smallest s such that the congruence

(1) xk1 + xk2 + · · ·+ xks ≡ a (mod p)

is solvable for all integers a is called Waring’s number (mod p), denoted γ(k, p).
If d = (k, p − 1) then clearly γ(d, p) = γ(k, p) and so we assume henceforth that
k|(p− 1).

An alternate way of defining Waring’s number is in terms of sum sets. For any
subsets A,B of Zp and positive integer s we let

A+B = {a+ b : a ∈ A, b ∈ B}, sA = A+A+ · · ·+A, (s-times),

AB = {ab : a ∈ A, b ∈ B}, nAB = n(AB).

If A is the multiplicative subgroup of k-th powers in Zp and A0 = A ∪ {0} then
γ(k, p) is the minimal s such that sA0 = Zp. Put t = |A| = (p− 1)/k.

From the classical estimate of Hua and Vandiver [10], and Weil [22] for counting
the number N(a) of solutions of (1) over Zp,

(2) |N(a)− ps−1| ≤ (k − 1)sp
s−1
2 , for a 6= 0,

one immediately obtains

(3) γ(k, p) ≤ s if |A| ≥ p 1
2+

1
2s ,

where A is the group of k-th powers. In particular, γ(k, p) ≤ 2 if |A| ≥ p3/4

and γ(k, p) ≤ 3 for |A| ≥ p2/3. It is reasonable to conjecture that γ(k, p) ≤ 2 if

|A| � p
1
2+ε and that γ(k, p) ≤ 3 if |A| � p

1
3+ε, but no further progress has been

made in this direction. However, for s ≥ 4, improvements in the lower bound on |A|
in (3) are available. The goal of this paper is to obtain the best available estimates
of this type. Our results are summarized in Table 1 below. For a given positive
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Table 1. Record breaking values for Waring numbers

s ts Exponent Proof

2 p
3
4 .75000 (3)

3 p
2
3 .66667 (3)

4 p
22
39+ε .56411 Section 6.1

5 p
15
29+ε .51725 Section 6.2

6 p
11
23+ε .47827 Theorem 6.1

7 p
27
59+ε .45763 Theorem 6.1

8 p
117
265+ε .44151 Theorem 6.1

16 p
27
71+ε .38029 Theorem 6.1

24 p
5
14+ε .35715 Section 8

32 p
5
16+ε .31250 Section 8

48 p
5
17+ε .29412 Section 8

64 p
5
18+ε .27778 Section 8

96 p
5
19+ε .26316 Section 8

128 p
1
4 .25000 Section 8

392 p
5
21+ε .23810 Section 8

2888 p
10
53+ε .18868 Section 8

integer s, we let ts denote the smallest known value such that for any k, p with
|A| ≥ ts we have γ(k, p) ≤ s. The values given in the table are Big-O estimates,
where the constant depends on ε whenever ε is present. For s > 8 we have chosen a
sampling of special values to serve as benchmarks. Multiples of 8 are used because
of the convenience of applying the Glibichuk-Konyagin 8AB theorem; see Lemma

8.1. For 6 ≤ s ≤ 12 the best admissible value we have found for ts is p
9s+45
29s+33+ε (see

Theorem 6.1), sharpening the result of Schoen and Shkredov [16, Theorem 2.6],

who obtained ts = min
{
p

2s+2
5s−3 , p

s+5
3s+3

}
. For s > 12 some further improvements are

available by appealing to estimates of T3(A) (see (17)), but we have not carried out
these computations here.

The estimate in (3) yields no information for groups of size
√
p and so one of the

targets in recent years has been the determination of γ(k, p) for subgroups A of size
|A| > p1/2. Glibichuk [5] obtained γ(k, p) ≤ 8 for such groups. This was improved

by Schoen and Shkredov [16, Theorem 4.1] to γ(k, p) ≤ 6 for |A| > p
41
83+ε. Further

improvements were made by Shkredov and Vyugin [19, Corollary 5.6], γ(k, p) ≤ 6

for |A| > p
33
67+ε, and Schoen and Shkredov [17, Corollary 49], γ(k, p) ≤ 6 for

|A| > p
99
203+ε = p.48768...+ε, both under the assumption that −1 ∈ A. Hart [8]

obtained γ(k, p) ≤ 6 for any A with |A| > p
11
23+ε = p.47826...+ε. Here we extend his

method to values of s ≥ 6. In order to obtain γ(k, p) ≤ 5, the best we have been

able to do is to take |A| > p
15
29+ε. The next milestone will be to obtain γ(k, p) ≤ 5

for |A| � p1/2.
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Bounds on Gauss sums immediately yield estimates for Waring’s number. Let

ep(·) = e
2πi·
p and put

Φk = max
λ,p-λ

∣∣∣∣∣
p∑
x=1

ep(λx
k)

∣∣∣∣∣ .
It is elementary that

∣∣N(a)− ps−1
∣∣ < Φsk, and so

γ(k, p) ≤
⌈

log p

log (p/Φk)

⌉
.

In particular,

(4) Φk ≤ (1− ε)p ⇒ γ(k, p)�ε log p,

and

(5) Φk ≤ p1−ε ⇒ γ(k, p) ≤
⌈

1

ε

⌉
.

Bounds of the first type, (4), are discussed in [11] and [2]. Bounds of the latter
type, (5), follow from the ε-δ exponential sum bound of Bourgain and Konyagin
[1]: For any δ > 0 there exists a constant ε = ε(δ) such that if |A| � pδ then
Φk � p1−ε. Consequently, there exists a constant c(δ) such that if |A| > pδ then
γ(k, p) � c(δ). Glibichuk and Konyagin [6] showed, using a completely different
method, that one can take c(δ) = 41/δ. We employ the methods of Glibichuk and
Konyagin in this paper to deal with the cases where s > 8 in Table 1, and so the
values we obtain reflect this order of magnitude. For small s we use the machinery
developed by Schoen and Shkredov [16], [17] and Shkredov and Vyugin [19], which
in turn makes use of exponential sum estimates and additive energy estimates of
Heath-Brown and Konyagin [9], and Konyagin [12].

Montgomery, Vaughan and Wooley [13] have conjectured that

Φk �
√
kp log(kp).

This would imply that if |A| > pδ, then γ(k, p) ≤ c
δ , for some constant c, and

consequently ts ≤ pc/s, which is best possible, up to the determination of the
constant c.

Remark 1.1. With the aid of a computer, one can determine explicit upper bounds
for γ(k, p) for small k. Small [20],[21] and Moreno and Castro [14] have provided
tables of such values. For instance, γ(2, p) ≤ 2 for all p, γ(3, p) ≤ 2 for p > 7,
γ(4, p) ≤ 2 for p > 29, γ(4, p) ≤ 3 for p > 5, γ(5, p) ≤ 2 for p > 61, etc.

One can also obtain an explicit determination of γ(k, p) when k is very close to
p in size. For instance γ(p− 1, p) = p− 1, γ(p−12 , p) = p−1

2 and for p ≡ 1 (mod 4),

γ(p−14 , p) = a−1 where a is the positive integer satisfying a2 +b2 = p, a > b, b ∈ Z;
see [2]. See [2] and [3] for further discussion of estimates when |A| is small.

2. Estimating the number of solutions of (1)

In this section we outline the standard method of estimating the number of
solutions of a Waring-type congruence such as (1). For any subset B of Zp and
positive integer `, let

(6) T`(B) = |{(x1, . . . , x`, y1, . . . , y`) : xi, yi ∈ B, x1 + · · ·+ x` = y1 + · · ·+ y`}|,
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and E(B) := T2(B), the additive energy of B. Set

(7) ΦB = max
p-λ

∣∣∣∣∣∑
x∈B

ep(λx)

∣∣∣∣∣ ,
where ep(·) denotes the additive character e

2πi
p · on Zp. We call a subset B of Zp

an A-invariant set if AB ⊆ B, that is, AB = B.
For any a ∈ Fp let Ns(B, a) denote the number of s-tuples (x1, . . . , xs) with

(8) x1 + x2 + · · ·+ xs = a, xi ∈ B, 1 ≤ i ≤ s.

Theorem 2.1. Let A be a multiplicative subgroup of Zp, B be an A-invariant subset
of Zp and a be a nonzero element of Zp. Then for any positive integers s, r with
r ≤ s/2, we have ∣∣∣∣Ns(B, a)− |B|

s

p

∣∣∣∣ < Φs−2rB Tr(B)ΦA/|A|.

Special cases of this theorem have appeared throughout the literature. Letting
B = A, we have that (8) is solvable, and consequently γ(k, p) ≤ s, provided that

(9) |A|s+1 > p Φs+1−2r
A Tr(A).

Note that with N∗s (a) denoting the number of solutions of (1) with the xi nonzero,
we have N∗s (a) = ksNs(A, a) and so we obtain the estimate∣∣∣∣N∗s (a)− (p− 1)s

p

∣∣∣∣ < Φs+1−2r
A ksTr(A)/|A|.

The estimate in (2) is (essentially) recovered on setting r = 1 and using the ele-
mentary estimate ΦA ≤ k−1

k

√
p+ 1

k , coming from
∣∣∑p

x=1 ep(λx
k)
∣∣ ≤ (k − 1)

√
p.

Proof. We have for any a ∈ Z∗p,

pNs(B, a) =

p∑
λ=1

∑
x1∈B

· · ·
∑
xs∈B

ep(λ(x1 + · · ·+ xs − a)).

Since B is A-invariant, we have Ns(B, ax) = Ns(B, a) for any x ∈ A, and so

p|A|Ns(B, a) =

p∑
λ=1

∑
x∈A

∑
x1∈B

· · ·
∑
xs∈B

ep(λ(x1 + · · ·+ xs − ax))

= |B|s|A|+
∑
λ6=0

∑
x∈A

∑
x1∈B

· · ·
∑
xs∈B

ep(λ(x1 + · · ·+ xs − ax))

= |B|s|A|+
∑
λ6=0

(∑
x∈A

ep(−λax)

)(∑
x∈B

ep(λx)

)s
.

Thus for any positive integer r ≤ s/2 and a ∈ Z∗p, we have

(10)

∣∣∣∣Ns(B, a)− |B|
s

p

∣∣∣∣ < Φs−2rB ΦA
p|A|

∑
λ∈Fp

∣∣∣∣∣∑
x∈B

ep(λx)

∣∣∣∣∣
2r

=
Φs−2rB ΦA
|A|

Tr(B).

�



ON WARING’S NUMBER (MOD p) 5

3. Energy Estimates

The first estimate we give is valid for any subset A of Zp.

E(A) = p−1
p−1∑
λ=0

∣∣∣∣∣∑
x∈A

ep(λx)

∣∣∣∣∣
4

=
|A|4

p
+ p−1θΦ2

A

p−1∑
λ=1

∣∣∣∣∣∑
x∈A

ep(λx)

∣∣∣∣∣
2

=
|A|4

p
+ p−1θ′Φ2

Ap|A| =
|A|4

p
+ θ′|A|Φ2

A,

for some real numbers θ, θ′ with |θ| ≤ 1, |θ′| ≤ 1. In particular, for any subset A,

(11) E(A) ≤ |A|
4

p
+ |A|Φ2

A.

For multiplicative subgroups A, we have the elementary bound ΦA ≤
√
p, and

consequently |E(A)− |A|
4

p | ≤ |A|p. Thus, for multiplicative groups with |A| > p2/3,

we have E(A) ∼ |A|4/p (in the appropriate sense).
For subgroups of smaller size, improvements are available. Heath-Brown and

Konyagin, using the method of Stepanov established that for any multiplicative
subgroup A of Zp, with |A| < p2/3, we have E(A) � |A|5/2. The constant was

made explicit in the work of Cochrane and Pinner [4, Theorem 2.2]: For |A| < p2/3,

(12) E(A) ≤ 16
3 |A|

5/2.

For subgroups of size |A| � p
6
11 , Shkredov [18, Theorem 34] obtained the improve-

ment

(13) E(A)� |A| 229 log
2
3 |A|.

Schoen and Shkredov [17, Corollary 48] obtained a new kind of upper bound on
E(A), expressing it in terms of |A| and |2A|: For any multiplicative subgroup A

with |A| � p1/2, E(A)� |A| 3118 |2A| 49 log
1
2 |A|. This was improved by Shkredov [18,

Theorems 30, 34] to

(14) E(A)� |A| 43 |2A| 23 log |A|,

for any multiplicative subgroup A with |A| � p
9
17 , improving on (13) if |2A| �

|A| 53 log−
1
2 |A|. Hart [8] made a slight improvement, replacing the log |A| in (14)

with log
1
2 |A|, for |A| � p

9
17 . Indeed, he showed that for |A| � p

2
3 ,

(15) E(A)� max{|A| 43 |2A| 23 log
1
2 |A|, |A||2A|2p−1 log |A|}.

We note that in the inequalities of this paragraph the set 2A may be replaced by
A−A.

For higher order T`(A) we have the following estimate of Konyagin [12, Lemma
5] for any multiplicative group A: For any positive integer ` ≥ 3 there exists a

constant c` such that if |A| < p
1
2 then

(16) T`(A) ≤ c` |A|2`−2+1/2`−1

.
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This was improved by Shkredov [18, Theorem 34] in the case ` = 3 to

(17) T3(A)� |A| 15136 log
2
3 |A| � |A|4.1945,

for |A| < p
1
2 .

4. Bounds for ΦA and Φ2A

The following lemma, a generalization of [12, Lemma 3], is a key tool for bounding
exponential sums in terms of energy estimates.

Lemma 4.1. Let A,B be subsets of F∗p such that B is A-invariant. Then, for any
positive integers j, ` we have

ΦB ≤ p
1

2j`T`(A)
1

2j`Tj(B)
1

2j` |A|−
1
j |B|1− 1

` .

The proof of the lemma is provided in the Appendix for the convenience of the
reader.

For the case of a multiplicative subgroup A of Z∗p, we deduce from Lemma 4.1
that

(18) ΦA ≤


p

1
2 , j = 1, ` = 1;

p
1
4 |A|− 1

4E(A)
1
4 , j = 2, ` = 1;

p
1
8E(A)

1
4 , j = 2, ` = 2;

p
1
12 |A| 16E(A)

1
12T3(A)

1
12 , j = 2, ` = 3.

The second and third bounds above were obtained by Heath-Brown and Konyagin
[9], and the fourth bound by Konyagin [12]. Inserting the energy estimates (12),
(13), (14) and (17), yields estimates for ΦA, as given in (20). Hart [8] obtained a

new estimate for |A| � p
1
2 :

(19) ΦA � p
1
8 |A|− 1

8 |2A| 14E 1
8 (A) log

7
16 |A|.

Inserting the energy estimates (13) and (14) (with the improved log
1
2 |A|) yields yet

two more estimates for ΦA. The various estimates are summarized below.

(20) ΦA �



p
1
8 |A| 1118 log

1
6 |A|, for |A| � p

6
11 , by (13), (18)c;

p
1
8 |A| 1

24 |2A| 13 log
1
2 |A|, for |A| � p

1
2 , by (14),(19);

p
1
8 |A| 1372 |2A| 14 log

25
48 |A|, for |A| � p

1
2 , by (13), (19);

p
1
4 |A| 1336 log

1
6 |A|, for |A| � p

6
11 , by (13), (18)b;

p
1
4 |A| 1

12 |2A| 16 log
1
4 |A|, for |A| � p

9
17 , by (14),(18)b;

|A| 38 p 1
4 , for |A| < p2/3, by (12), (18)b;

√
p, any A, by Gauss.

The labels (18)a,b,c,d refer to the four different inequalities in (18). The first es-
timate is due to Shkredov [18, Corollary 3.7], and the sixth to Heath-Brown and
Konyagin [9]. For |A| < p.383, further improvements are available using (18)d to-
gether with (17). Further applications of Lemma 4.1 with higher j, l yield nontrivial

estimates for ΦA for |A| as small as p
1
4+ε, as shown by Konyagin [12]. We shall

have no occasion to use these here. For |A| < p
1
2 the first three inequalities in (20)

should be used, while for |A| > p
1
2 the latter four are preferable. For |A| < p

1
2 ,

inequality (20)b is the optimal choice for |2A| < |A|5/3, and (20)c is the optimal
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choice for |A| 53 < |2A| < |A| 3118 (ignoring log factors). For |A| > p
1
2 , (20)e is the

optimal choice for |2A| < |A| 53 (and |A| � p
9
17 .)

Setting B = 2A in Lemma 4.1, we obtain analogous bounds for Φ2A, namely,

(21) Φ2A ≤


p

1
2 |2A| 12 |A|− 1

2 , j = 1, ` = 1;

p
1
4 |2A| 34 |A|−1E(A)

1
4 , j = 1, ` = 2;

p
1
6 |2A| 56 |A|−1T3(A)

1
6 , j = 1, ` = 3.

Inserting the energy estimates (13), (14), with the
√

log |A| improvement, and (17),
yields,

(22) Φ2A �


p

1
2 |2A| 12 |A|− 1

2 , for any A;

p
1
4 |2A| 34 |A|− 3

8 , for |A| < p
2
3 , by (12), (21)b;

p
1
4 |2A| 34 |A|− 7

18 log
1
6 |A|, for |A| < p

6
11 , by (13), (21)b;

p
1
4 |2A| 1112 |A|− 2

3 log
1
8 |A|, for |A| < p

9
17 , by (14), (21)b.

The first and second bounds were obtained by Schoen and Shkredov [16, Lemma
2.1, Lemma 2.4].

5. Lower bounds for |2A|

From the Cauchy-Schwarz inequality,

|A|2 =
∑
x

1A ∗ 1A(x) ≤ |2A| 12E(A)
1
2 ,

and so

(23) |2A| ≥ |A|4/E(A).

Inserting the energy estimate in (12) one obtains |2A| � |A| 32 , a result first obtained
by Heath-Brown and Konyagin [9]. Their result was made numeric by Cochrane

and Pinner [3] : |2A| ≥ 1
4 |A|

3
2 , for |A| < p

2
3 . For |A| > p

2
3 it is elementary (see [3])

that |2A| ≥ p
2 .

Inserting the energy estimate of Hart (15), one obtains [8, Theorem 10],

(24) |2A| �

{
|A| 85 log−

3
10 |A|, if |A| � p

5
9 log−

1
18 |A|;

|A|p 1
3 log−

1
3 |A|, if p

5
9 log−

1
18 |A| � |A| � p

2
3 .

The lower bound of order |A| 85 for |2A| was first obtained by Shkredov [18, Corollary

31], but for the shorter interval |A| � p
1
2 . Using [18, Theorems 30,34], the interval

can be improved to |A| � p9/17, still short of what we obtain in (24).
Stronger lower bounds on |A − A| are available in the works of Schoen and

Shkredov [16, Theorem 1.1] and Shkredov and Vyugin [19, Theorem 5.5], the latter

being |A − A| � |A| 53 log−
1
2 |A| for |A| � p

1
2 . (Note: Although [19, Theorem 5.5]

was stated for sum or difference sets, the proof only holds for difference sets A−A.)

6. Hybrid counts

Let A be the group of k-th powers in Z∗p and a ∈ Z∗p. In this section we estimate
the number Nj,l(2A,A, a) of solutions to the equation

(25) x1 + x2 + · · ·+ xj + y1 + y2 + · · ·+ yl = a,
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with xi ∈ 2A, 1 ≤ i ≤ j, and yj ∈ A, 1 ≤ j ≤ l. If one can show that Nj,l(2A,A, a)
is positive for any a ∈ Z∗p, then it follows that γ(k, p) ≤ 2j+ l. Now, since 2A is A-
invariant, we have Nj,l(2A,A, ay) = Nj,l(2A,A, a) for any y ∈ A, and so, following
the proof of Theorem 2.1, we have

p|A|Nj,l(2A,A, a) = |2A|j |A|l+1+

p−1∑
λ=1

(∑
x∈2A

ep(λx)

)j∑
y∈A

ep(λy)

`∑
y∈A

ep(−λay).

One then has many options for bounding the error term (the second term on the
right-hand side) in terms of ΦA, Φ2A, Tj(A) and Tj(2A). The method we employ
in the following cases (assuming j ≥ 2) is to simply say

(26) |Error| ≤ Φj−22A Φ`+1
A

p−1∑
λ=1

∣∣∣∣∣ ∑
x∈2A

ep(λx)

∣∣∣∣∣
2

< Φj−22A Φ`+1
A |2A|p,

and thus Nj,l(2A,A, a) is positive provided that

(27) |2A|j−1|A|`+1 > Φj−22A Φ`+1
A p.

6.1. The case s = 4. It is already known that 4A ⊃ Z∗p for |A| > p
2
3 and so we

may assume p
5
9 � |A| � p

2
3 . By (27), N2,0(2A,A, a) is positive provided that

|2A||A| > p ΦA.

Using ΦA � |A|
3
8 p

1
4 , we see that it suffices to have

|2A||A| 58 � p
5
4

Using |2A| � |A|p 1
3−ε we see that it suffices to have |A| � p

22
39+ε.

6.2. The case s = 5. By (27), we see that N2,1(2A,A, a) is positive provided that

|2A||A|2 > Φ2
Ap.

Using ΦA < |A| 38 p 1
4 (valid for |A| � p

2
3 ), and the two lower bounds on |2A| in

(24) we see that it suffices to have |A| � p
10
19+ε = p.52631...+ε. We assume now

that |A| � p.5264. In particular |A| � p
9
17 , and so using the stronger bound

ΦA � p
1
4+ε|A| 1

12 |2A| 16 we see that it suffices to have |2A| 23 |A| 116 � p
3
2+ε. Then,

using |2A| � |A| 85−ε, we see that it suffices to have |A| � p
15
29+ε.

6.3. The case s ≥ 6. .

Theorem 6.1. For s ≥ 6 we have that if |A| � p
9s+45
29s+33+ε then sA ⊇ Z∗p.

We note that this inequality recovers the estimate of Hart [8, Theorem 13] for the

case s = 6, |A| � p
11
23 , but note the correction to the statement of his theorem,

where the exponent was given to be p
33
71 due to an arithmetic error.

Proof. If |A| > p1/2 it is already known by the work of Shkredov [18, Corollary 32]
and Hart [8, Theorem 13 or 14] that 6A ⊇ Z∗p, so we may assume that |A| � p1/2.

If |2A| < |A|5/3, we estimate N2,s−4(2A,A, a), noting that it will be positive (by
(27)) provided that

|2A||A|s−3 > pΦs−3A .
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Using ΦA � p
1
8+ε|A| 1

24 |2A| 13 , we see that it suffices to have

|A| 2324 (s−3) � p
5+s
8 |2A| s3−2.

Since |2A| < |A|5/3, the latter holds provided that |A| � p
9s+45
29s+33+ε.

If |2A| ≥ |A|5/3, and s is even, say s = 2n, we estimate Nn,0(2A,A, a), noting
that it will be positive (by (27)) provided that

|2A|n−1|A| > pΦn−22A ΦA.

Using Φ2A � p
1
4+ε|2A| 34 |A|− 7

18 , ΦA � p
1
8+ε|A| 1372 |2A| 14 , we see that it suffices to

have

|2A|
n+1
4 |A| 7

18n+
1
24 � p

n
4 + 5

8+ε.

Since |2A| > |A|5/3, the latter holds provided that |A| � p
18n+45
58n+33+ε = p

9s+45
29s+33+ε.

If |2A| ≥ |A|5/3, and s is odd, say s = 2n+ 1, we estimate Nn,1(2A,A, a), noting
that it will be positive provided that

|2A|n−1|A|2 > pΦn−22A Φ2
A.

Using Φ2A � p
1
4+ε|2A| 34 |A|− 7

18 , ΦA � p
1
8+ε|A| 1372 |2A| 14 , we see that it suffices to

have

|2A|n4 |A| 7
18n+

31
36 � p

n
4 + 3

4+ε.

Since |2A| > |A|5/3, the latter holds provided that |A| � p
9n+27
29n+31+ε = p

9s+45
29s+33+ε. �

7. Lower bounds for |nA| for n > 2

From the higher order energy estimate of Konyagin, (16), one easily obtains the
following lemma.

Lemma 7.1. For any positive integer ` and multiplicative subgroup A of Z∗p with

|A| < p2/3 if ` = 2, and |A| < √p if ` ≥ 3, we have |`A| � |A|2−
1

2`−1 .

Proof. By the Cauchy-Schwarz inequality,

|A|2` =

∑
a∈Zp

N`(A, a)

2

≤ |`A| ·
∑
a∈Zp

N`(A, a)2 = |`A| · T`(A),

and the result follows from (16). �

In particular, we have that for |A| < p1/2,

|3A| � |A| 74 , |4A| � |A| 158 .

These results can be superseded by using the following result of Shkredov and
Vyugin [19, Corollary 5.1, part 3].

Lemma 7.2 (Shkredov-Vyugin). Let A be a multiplicative subgroup of Z∗p and

B1, B2, B3 be A-invariant sets such that |B1||B2||B3| � min{|A|5, p3|A|−1}. Then∑
x,y

B1(x)B2(y)B3(x+ y)� |A|−1/3(|B1||B2||B3|)2/3.
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Letting B3 = B1 +B2, the lemma implies that for

(28) |B1||B2||B1 +B2| � min{|A|5, p3|A|−1},

we have

|B1||B2| =
∑
x,y

B1(x)B2(y)B3(x+ y)� |A|−1/3(|B1||B2||B1 +B2|)2/3,

and consequently

(29) |B1 +B2| �
√
|B1||B2||A|.

Lemma 7.3. For any multiplicative subgroup A of Z∗p we have the following.

a) If
√
|2A| |A| < p then |3A| �

√
|2A| |A|.

b) If |A| � p1/2 then |3A| � |A| 95−ε.

Proof. Suppose that
√
|2A| |A| < p. Let B1 = A, B2 = 2A. If |A||2A||3A| � |A|5,

then |3A| � |A|4/|2A| >
√
|2A| |A|, since |2A| < |A|2. If |A||2A||3A| � p3/|A|

then |3A| � p3/(|A|2||2A|) >
√
|2A| |A|, by the hypothesis that

√
|2A| |A| < p.

Otherwise, hypothesis (28) holds and we obtain the result of the lemma from (29).

To prove part (b), first note that if |A| � p
1
2 , then the hypothesis in part (a)

holds trivially, and so |3A| �
√
|2A||A|. The result then follows upon inserting the

lower bound |2A| � |A| 85−ε. �

Lemma 7.4. For any multiplicative subgroup A of Z∗p with |A| � p
1
2 , we have

|4A| � |A|2.

Proof. Let B1 = B2 = Q, where Q is a subset of 2A such that Q is a union of
cosets of A and |Q| ≈ |A| 32 . We know that such a Q exists since |2A| � |A|3/2 for
|A| < p2/3. If |Q|2|2Q| � |A|5 then

|4A| ≥ |2Q| � |A|
5

|Q|2
≈ |A|2.

If |Q|2|2Q| � p3/|A| then

|4A| ≥ |2Q| � p3

|Q|2|A|
≈ p3

|A|4
� |A|2, for |A| � p

1
2 .

Otherwise, hypothesis (28) holds and, by (29), we obtain |4A| ≥ |2Q| �
√
|Q|2|A| =

|A|2. �

In order to beat |nA| > |A|2 for some n, a different approach is taken. For any
subsets X,Y of Zp let

X −X
Y − Y

=

{
x1 − x2
y1 − y2

: x1, x2 ∈ X, y1, y2 ∈ Y, y1 6= y2

}
.

The first ingredient we need is the lemma of Glibichuk and Konyagin, [6, Lemma
3.2].

Lemma 7.5. Let X,Y ⊆ Zp such that X−X
Y−Y 6= Zp. Then,

|2XY − 2XY + Y 2 − Y 2| ≥ |X||Y |.
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If A is a multiplicative subgroup and X,Y are A-invariant sets then∣∣∣∣X −XY − Y

∣∣∣∣ < |X −X||Y − Y |/|A|,
and so the hypothesis of Lemma 7.5 holds if |X−X||Y −Y | ≤ p|A|. Taking (X,Y )
to be (A,A), (2A,A), (2A, 2A) respectively, one obtains the following lemma.

Lemma 7.6. For any multiplicative subgroup A of Z∗p we have the following.

(i) If |A−A|2 ≤ p|A|, then |3A− 3A| ≥ |A|2.
(ii) If |2A− 2A||A−A| ≤ p|A|, then |5A− 5A| ≥ |2A||A|.
(iii) If |2A− 2A|2 ≤ p|A|, then |12A− 12A| ≥ |2A|2.

In order to pass from difference sets to sum sets, we use Ruzsa’s triangle inequal-
ity (see eg. Nathanson [15, Lemma 7.4]),

(30) |S + T | ≥ |S|1/2|T − T |1/2,

for any S, T ⊆ Zp, and its corollary, for any positive integer n,

(31) |nS| ≥ |S|
1

2n−1 |S − S|1−
1

2n−1 ≥ |S − S|1− 1
2n .

Lemma 7.7. For any multiplicative subgroup A of Z∗p, we have

(i) |7A| ≥ min{|2A||A| 12 , p 1
2 |A| 14 }.

(ii) |19A| ≥ min{|2A| 32 |A| 14 , p 1
2 |A|

1
2−

1
27 }.

Proof. By (30),

(32) |7A| ≥ |2A|1/2|5A− 5A|1/2.

If |2A− 2A||A−A| < p|A| then by Lemma 7.6 (ii),

(33) |7A| ≥ |2A|1/2|2A|1/2|A|1/2 = |2A||A|1/2.

Otherwise, |5A − 5A| ≥ |2A − 2A| ≥ p|A|/|A − A|. By (31), |2A| ≥ |A − A|3/4.
Thus,

|7A| ≥ |2A|1/2p1/2|A|1/2/|A−A|1/2 ≥ p1/2|A|1/2/|A−A|1/8 ≥ p1/2|A|1/4.

For part (ii) we again start with the triangle inequality,

|19A| ≥ |7A|1/2|12A− 12A|1/2.

If |2A− 2A|2 < p|A|, then by Lemma 7.6 (iii) and (33),

(34) |19A| ≥ |7A|1/2|2A| ≥ |2A|3/2|A|1/4.

Otherwise |2A − 2A| ≥ p1/2|A|1/2. In particular, |A|4 ≥ p1/2|A|1/2, that is, |A| ≥
p1/7. Then, by (31),

|19A| ≥ |9 · 2A| ≥ |2A− 2A|1−
1
29 ≥ p

1
2−

1
210 |A|

1
2−

1
210 ≥ p 1

2 |A|
1
2−

8
210 . �

Inserting the lower bound |2A| � |A| 85−ε from (24), we obtain

Lemma 7.8. For any multiplicative subgroup A with |A| � p5/9 log−
1
18 |A|, we

have
(i) |7A| � min{|A| 2110−ε, p 1

2 |A| 14 }.
(ii) |19A| � min{|A| 5320−ε, p 1

2 |A|
1
2−

1
27 }.
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Thus,

|7A| � |A| 2110−ε, for |A| � p
10
37 = p.27027...;

|19A| � |A| 5320−ε, for |A| � p.23171....

This process can be continued to generate further lower bounds on |nA|. For

example, using the lower bounds for |3A|, |4A|, and |8A| ≥ |3A| 12 |5A−5A| 12 , |9A| ≥
|4A| 12 |5A− 5A| 12 one obtains lower bounds for |8A|, |9A| respectively. See also [2]
for further lower bounds of this type.

8. An application of the Glibichuk-Konyagin 8AB theorem

The following lemma is due to Glibichuk [5], and Glibichuk and Konyagin [6].
See also Glibichuk and Rudnev [7] for a variation.

Lemma 8.1. Let A, B be subsets of Zp such that |A||B| ≥ 2p. Then 8AB = Zp.
Moreover if A is symmetric (A = −A) or antisymmetric (A ∩ −A = ∅) then it
suffices to have |A||B| ≥ p.

Let A be the multiplicative group of nonzero k-th powers, so that (nA)(mA) ⊆
(nm)A for any positive integers m,n. Thus, by Lemma 8.1, if |A||2A| ≥ 2p then

16A = Zp, while if |2A||2A| ≥ 2p then 32A = Zp. Using |2A| � |A| 85−ε we see that

it suffices to have |A| � p
5
13+ε, |A| � p

5
16+ε, respectively. The 16A bound is slightly

weaker than what we obtained from Theorem 6.1. Similarly if |A||3A| ≥ 2p then

24A = Zp; if |2A||3A| ≥ 2p then 48A = Zp. Using |3A| � |A| 95−ε, |2A| � |A| 85−ε,
we obtain the bounds for s = 24, 48 in Table 1.

Using |2A| � |A| 85−ε, |3A| � |A| 95−ε, |4A| � |A|2 (for |A| � p1/2) we obtain in
a similar manner the bounds for s = 64, 96, 128 in Table 1.

If |7A||7A| ≥ 2p then 392A = Zp. Using the lower bound in Lemma 7.8 for

|7A|, we see that it suffices to have |A| � p
5
21+ε. Finally, if |19A||19A| ≥ 2p then

2888A = Zp. Using the lower bound in Lemma 7.8 for |19A| we see that it suffices

to have |A| � p
10
53+ε. Clearly, one can continue obtaining further examples of this

type, but our interest in this paper is small s.

9. Appendix: Proof of Lemma 4.1

The lemma is an easy consequence of the following double Hölder inequality.

Lemma 9.1. For any nonnegative real numbers ai, bi, 1 ≤ i ≤ n, and any positive
real number `, we have

n∑
i=1

aibi ≤

(
n∑
i=1

ai

)1− 1
`
(

n∑
i=1

a2i

) 1
2`
(

n∑
i=1

b2`i

) 1
2`

.

Proof. By Hölder’s inequality, we have

(35)

n∑
i=1

aibi ≤

(
n∑
i=1

a
2`

2`−1

i

)1− 1
2`
(

n∑
i=1

b2`i

) 1
2`

.
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By another application of Hölder, we note that
n∑
i=1

a
2`

2`−1

i =

n∑
i=1

a
2`−2
2`−1

i a
2

2`−1

i

≤

(
n∑
i=1

a
2`−2
2`−1

2`−1
2`−2

i

) 2`−2
2`−1

(
n∑
i=1

a
2

2`−1 (2`−1)
i

) 1
2`−1

=

(
n∑
i=1

ai

) 2`−2
2`−1

(
n∑
i=1

a2i

) 1
2`−1

.

Inserting the latter bound into (35) yields the lemma. �

Proof of Lemma 4.1. Since B is A-invariant we have

|A|

(∑
x∈B

ep(λx)

)j
=
∑
y∈A

(∑
x∈B

ep(λyx)

)j
=
∑
x1∈B

· · ·
∑
xj∈B

∑
y∈A

ep(λy(x1 + · · ·+ xj))

=

p−1∑
b=0

n(b)
∑
y∈A

ep(λyb),

where

n(b) = |{(x1, . . . , xj) : xi ∈ B, 1 ≤ i ≤ j, x1 + · · ·+ xj = b}|.
By Lemma 9.1 and the elementary identities,

p−1∑
b=0

n(b) = |B|j ,
p−1∑
b=0

n(b)2 = Tj(B),

we obtain, for λ 6= 0,

|A|

∣∣∣∣∣∑
x∈B

ep(λx)

∣∣∣∣∣
j

≤

(
p−1∑
b=0

n(b)

)1− 1
`
(
p−1∑
b=0

n(b)2

) 1
2`

p−1∑
b=0

∣∣∣∣∣∣
∑
y∈A

ep(λyb)

∣∣∣∣∣∣
2`


1
2`

= |B|j(1− 1
` )Tj(B)

1
2` (T`(A)p)

1
2` .

Dividing by |A| and taking the j-th root of both sides yields the lemma. �
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