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INTOODUCTION

Transportation problems involving optimizing objective cost

function of the linear form can be regarded as a generalization

of the assignment problems and thus can be solved by the Simplex

Method of Linear Programming, But the special Transportation

Methods like Northwest Corner Method, Unit Penalty Method, or

Vogel's Approximation Method are developed, which are easy to

apply and are less tedious methods than the Simplex Method

(2, 7, 9).

Transportation problems involving optimizing objective cost

function of non-linear type are solved by methodology of Dynamic

Programming (1). Recently attempts were successfully made to

solve these transportation problems, involving non-linear cost

function, with the Discrete Maximum Principle (5)» The Maximum

Principle for continuous processes was originally developed by

Pontryagin (d), and the Discrete version of this Maximum Prin-

ciple was independently proposed by Chang (3) and Katz (6) and

was developed further by Fan and V^ang (5)«

The aim of this report is to find and to show a method of

solving the transportation problems involving optimizing objec-

tive function of the linear form, with the application of The

Discrete Maximum Principle, To show the application of this

Discrete Maximum Principle to the transportation problems in-

volving linear cost function, two specific examples are solved

and explained in detail. In the first problem, the optimal

solution is derived by the application of this method for the



problem with two origins (say factories) where the resource is

located, and five destinations (say warehouses) where demand for

this resource exists. In the second problem, consideration is

given to the problem with three origins and four destinations.

In either case of these problems, all the feasible solutions are

derived in order to represent the application of this technique.

£«xaniples 3 and 4 are solved, showing the method of attacking and

solving this type of problem in order to achieve optimal solution

easily and directly by following the general rules mentioned on

pages 22 to 25.



THE DISCRETE iMAXIKUM PRINCIPLE

The following is an outline of the general algorithm of

The Discrete Maximum Principle given by Fan and V.ang (5)»

Figure 1 represents a multistage decision process consisting

of N stages in sequence. The state of the process stream denoted

by an s-dimensional vector, X, is transformed at each stage ac-

cording to the decision made on the control actions denoted by

t-dimentional vector, Q, Tlie transformation of the process

stream thus resulted at the n^" stage is given by the trans-

formation operator,

X? = T? (xg-1; e»), (1)^

The optimization problem is to find the sequence of Q^, sub-

ject to condition, oc° ^ e" ^JB^, n = 1, 2,...., N, which will

minimize X^, with X^ preassigned, i = 1, 2,,,,,, s.

The procedure for finding the optimal sequence of Q^ which

minimizes X., is to introduce an s-dimensional covariant vector,

2,^, and a Hamiltonian function H^ satisfying

^-t Z2l?(xr^;«") ,2,
i=l

n *" J., fc,«***, n\ jl ^ jl, fc,««««, 8

1
The superscript, n, indicates tiie stage number, and the

exponents will be written in parenthesis like (X^)^.
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•V n
Xj = -~~r-» n = 1, 2,,..., N; i = 1, 2 , s (3)

4"^ = X vn-1 » " = 1» 2,...., N; i = 1, 2,...., s (4)
^±

^i " ^ij J ^ " ^» 2 s (5)

and to determine the optimal sequence of control actions, 0*^,

such that H'^ = minimum, n = l, 2,...., N---- ------ (6)

where o
j^j is the kronecker delta ( "ij == 1» if i = j and

S^. = 0, if i ?^ j).

For the problem in which the final values of stc?te varia-

bles, say X^ and X? are to be kept constant equal to given

values Wq and \iy^, respectively, that is

X« = Wg and X« = Wi, (7)

then the general algorithm is still applicable with the modifi-

cation in equation (^), as follows:

ij r- (» 1, for i ^ j

2i = ^ ii(= 0, for i 7^ a, b, j - - (8)
(= Cji^, some constant when i = a, b.

The missing conditions for i = a and i = b are made up by

equation (?)•

If the formulation of the problem is such as to maximize

NXj, the determination of the optimal sequence of the control

actions ©", (see equation (6)) must be such that

H^ = maximum, n=l, 2,..,., N -- - -- - - - - - -- (9)



STATEMiSNT OF THE TRANSPORTATION PROBLaW

The problem is schematically shown in Fig, 2 on pa^e 7,

where i = 1, 2,...., s, are the number of origins (factories)

where tne resource is located, and n = 1, 2,,,.,, N, are the

number of destinations (warehouses), where the demand for this

resource exists.

&J = number of units of the resource supplied from the i^^

origin to the n^^ destination,

p
C£ = the cost incurred in supplying one unit of this re-

source from the i^^ origin to the n^^ destination.

s N
Then C ^ = IZ IZ C? 9? represents the objective cost

i^l n=»l

function which is to be minimized and is subjected to the fol-

lowing conditions:

(i) e? ^

{±i) YZ ®? "= ^ » number of units of the resource required
i=l

by the n^^ destination, n - 1, 2,,,.., N,

N
(iii) m ®i

= ^'±» number of units of the resource available
n^l

^h
St the i origin, i = 1, 2,...., s.
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FORMULATION OF TRANSPORTATION PR0BLE^1 IN TERKS OF THE
DISCRKTIi MAXIMUM PRINCIPLi.

The following is the formulation of the transportation prob-

lem given by Fan and V^ang (5)i

In the case of transportation problem as shown by Fig. 2

on page 7i we can v/rite the transformation operator as follows:

4 = ^i"^ + ©i; X^ = 0; x5 = Wi (10)

where xj, for i = 1, 2,.,,., s-1, are the number of state

variables representing the total number of units of resource

supplied from the i^^ origin to the first n-destinations. It

must be noted that though there are "s" origins in the problem,

there are only (s-1) state variables. This is due to the fact

that the demand by each destination is preassigned; hence the

number of units supplied from the s origin to the n^ destina-

tion can be obtained by subtracting the sum of the units supplied

to the n^^ destination by (1) to (s-1) origins from the total

number of units required by the n destination. That is to

say that

8-1 ^

As our objective is to minimize the total cost of Lrans-

portation, we state this objective in terms of the s state

variable and we rewrite the same in terms of the transformation

operator as follows:
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s
X? = xr^ * n c; ej; XO = (11)

i=l

n = 1, 2, . , . .
, N.

Hence, from the above equation, it is noticed that the

problem of minimizing the total cost of transportation has

turned to the problem of minimizing the s state variable Xg

by choosing the values of qJ, i = 1, 2,.,,,, s-1, and n = 1, 2,

••••, N, for the process described by the equations (10) and

(11).

HeTice, changing the problem in terms of Hamiltonian function

equation (2) we have

h" = E^ Z? (X?"^ -^ ©i) + Zfl (C^ ^ fc ^i «i) (12)

n = 1, 2,,.,., N

and applying equation (4) to the above equation (12), we have

^n-1 _ "bti

-z" - (13)

1 "" X, X|*»(*, S"" JL f n^^j., <^,*»*«, w

and zn-1 = liSl-

» z^ - (U)

But from equation (8) page 5t

Zg =» 1 as i = 8 )

N ><15)
and ZJ = C., for i = 1, 2,...., s-1; (as W. are prescribed)
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Hence, from equations (Ik) and (15) we have

Zs = 1| I'or i = s and n = l,2,.,.,,N
)

) (16)
ana ^± - ^^» i'or i = 1, 2,,,,., s-l; and n = 1, 2,...., lO

Therefore, the Harniltonian equation (12) can be written as

H° = e' Zi (x?-' - e?) . x^-^ . E c? 9f (17)
i=l i=l

n ~ J.} <cj»»*», i«*

Since the values of X^, i = 1, 2,,.,,, s-l, are prescribed

N
by Vtfj^, i = 1, 2,...,, s-l, the values of Zj^^ i = 1, 2,...., s-l,

are undetermined at the beginning of the calculation. The

values of Q^, i - 1, 2,,,.., s-l, are determined in such a way

that H is the absolute miniioum, by selecting the values of Zj^

in a particular chosen limit, so as to make the computed values

of X-i, i = 1, 2,...., s-l, equal to the given values of \'i^,

But the values of zj and x"" for n = 1, 2,,..., N are each

considered as constants at each step in the minimization of the

Hamiltonian equation (17); hence, it is possible for us to de-

fine and minimize only the variable part of this HanJlltonian

equation, which is as follows:

H? = E^ z? e? * fc c? e? (i8)

i=l i=l

n ^ X, <&,••••, i^»
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EXAMPLE (1) IvITH TlvO ORIGINS AND FIVE DESHNATIONS

The problem is represented by Table 1. Values of cj (in $),

D and W^ are shown in this table, and total number of units re-

quired by n-destinations is equal to the total number of units

supplied from the i-origins, i.e.,

N s

H ^-H Wi.
n=l i=l

It is required to allocate the number of units of resource in

such a way as to minimize the total cost of transportation.

Table 1. Transportation cost and requirement s,

2 7 9 19

3 1 k 13

4 d 2 5

5 6 10 6

Wi 22 2a
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Solution:

Considering the variable part of the Hamiltonian equation

(18), page 10, we get the general form of the variable part of

the Hamiltonian equation for this problem as follows:

Hv = r^zje? + |: c5 e?. n = 1, 2. H

, ,11 _,n _n _n .n ^n .n
/. Hv = Zi ©1 + Ci ©1 + C2 ©2

but ©2 = ^'^ - ®1»

/. f^ = (Zi -H C? - C§) ©1 -H Cl D^; n = 1, 2, N (19)

Substituting n = 1 in the above equation (19), we have the

variable part of the Hamiltonian equation for the first origin

as,

i4 = (zj + c]; - C2) ©1 + c\ D^

»(zJ+5)ei+2S- - (20)

From this equation (20), we see that

(a) H^ is minimum, when oj = and if zj > -5

(b) H^ is minimum, when ©1 = 7 and if zj <-5

The conditions (a) and (b) are shown in Fig, 3> page 13.

In a siiuilar manner, for the rest of the stages, n - 2, 3»

4, and 5. The values of Z^^ and ©1 are determined which makes

i^, a minimum. These values of z" and ©5 are shown in Table 2,

page 14.
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Fig, 3. Covariant vector z|, showing selection of 9|
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Table 2. Conditions nocessary for 1% to be
minimum.

n
iiinimura of il^, occurs at

^1 : ^1

1 :

: > -5

7 < -5

2 :

;
> 2

: 19 < 2

3 ;

: > 3

: 13 < 3

4 :

: > -6

: 5 < -6

5

: > 4

6 < 4

But by equation (16) page 10, Zi = Ci for n = 1, 2,...., N,

hence Z^ = Z^ = z{ = Z^ = zj, are all equal to some constant

value. Thus, the values of z|f for all n = 1, 2,,..., N, re-

presents the same value Z^ which is equal to some constant

value. For these above values of Z^, we have Fig. 4 on page 15

»

showing limiting values of covariant vectors 2^ representing the

positions of the stnges n = 1, 2,...., 5 vfith respect to one

another. From this Fig, /+, we notice thet there are four pos-

sible liraitlnc values for Z-^, within vjhich Z-^ will be equal to

all values of Z^, for n=l, 2,...., 5. These possible limiting

values for Z-^ are as follows:



15
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(a) -6< Z^< -5

(b) -5< Zj^< 2

(c) 2< Zj^< 3

(d) 3< 2i< 4

Now considering these four possible limiting values of Z-%,

we will derive all the feasible solutions as follows:

Solution from limiting value, -6 < ^i < -5s

Now comparing the values of Z]Li o^ ^H the stages n = 1,

2,...., 5, <'s shown in Table 2, with the above limits of Z-^, we

assign values to Qi and thus derive the following solution:

Table 3. Step 1 of solution for limiting
value -6 < Zt < -5,

i

tt

1 1 : 2 ; D"

I 7 7

2 19 19

3 13 13

4 5 5

5 6 6

This above solution does not satisfy our end-point con-

ditions of ^i = 22 and W2 = 2^, as in the above case ^i ~ ^5

and V,2 = 5« Hence, to get the feasible solution with these

•nd-point conditions, we refer to Fig. 4, page 15 . From this
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figure we notice that the limiting values of Z-j^ shown in Table 3

were given by the stages (4) and (1). Hence, it is possible for

us to adjust the values of ©J and ©2 ^^ ®i ^^^ ®2* ^^ this case

it is only possible to adjust the values of Q^ and ©2? therefore,

the value of ©j; = 7 is changed to ©^ = 0, and that of ©2 = to

©2=7- Hence we have Step 2,

Table k» Step 2 of solution for limiting
value -6 < Z^ < -5.

d"

1 7 7

2 19 19

3 13 13

4 5 5

5 6 6

Still, the above does not satisfy our end-point conditions of

\*l
= 22 and W2 = 28. Hence, we again refer to Fig. 4 and notice

that Stage (2) is the next stage to Stage (1); hence, by changing

the values of ©^ and ©2 to ©^ = 3 and ©2 = 16, satisfying end-

point conditions of Vii = 22, and ^2 = 28; we have the feasible

solution as follows:



Id

Table 5. Feasible solution for limiting
value -6 < Z-^<i -5

.

1
n

•

•
•

•

•

1 8
•
•

•

2

•

1 7 7

2 3 16 19

3 13 13

4 5 5

5 6 6

with the total cost - YZ l1 ^i ®i
i=l n=l

» 1252.00.

In a similar way considering the remaining possible limit-

ing values for Zn
, given by b, c, and d, we determine the feasible

solutions as shown on the follov/ing pages.

The solution from limiting value -5 < Zj^ < 2, is shown in

Table 6, page 19. This solution in Table 6 is not a feasible one

as end-point conditions "^j^
" ^2 and Wg = 2S are not satisfied.

Hence, to make this solution a feasible one, we again refer to

Fig. 4 and notice that this time the limiting values of 2-j^ are

given by stages (1) and (2). Hence, adjusting the value of

©^ = 3 and ©I ~ i^» *^® have the same feasible solution as shown

by Table 5 above, with cost of i;?252.00.



Solution from limiting value, -5 < Z-j^ < 2:

19

Table 6. Step 1 of solution for limiting
value -5 < Z-j^ < 2,

n
i ; 1 1 2 ;

1

°"

1 7 7

2 19 19

3 13 13

4 5 5

5 6 6

Solution from limiting value 2 < Z^ < 3:

Table 7. Step 1 of solution for limiting
value 2 < Z-^ < 3:

1
n

:

I 1
•
•

•
•

•
•

2 ; D°

1 7 7

2 19 19

3 13 13

4 5 5

5 6 6
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With the similar reasoning as in cases (a) and (b), we ad-

2 2
just the values to 0]_ = 3 and ©2 ^ 1^> ^^^ have the same feasible

solution as shown by Table 5i with cost of ^^252,00,

Solution from limiting value 3 < Z^^ < 4:

Table ^. Step 1 of solution for limiting
value 3 < Z^ < 4.

i
n

1 2 D^

1 7 7

2 19 19

3 13 13

4 5 5

5 6 6

In the above solution W-j^ 7^ 22 and W2 ^ 2^; hence, we refer

to Fig. 4 and notice that the limiting values of 'L-^ are given

by stage (3) and stage (5), but it is only possible to change

the values of 0^ and 6^ to ©^ = 13 and ©| = 0. Still this does

not satisfy the end-point conditions of Vi.-^ = 22 and W2 = 2S.

So, again referring to Fig. 4| we notice that stage (2) is the

nearest stage to stage (3), and hence, changing the values of

©^ and ©2 to ©^ = 3 and ©2 = 1^» ^® satisfy the end-point con-

ditions, \i\ = 22 and \i2 "* ^S. Thus we have the same feasible

solution as siiown by Table 5, with cost of ^252.00,



Thus by selecting any limiting value of Z-, , we get the

optimal solution (as shown by Table 5) with cost of :i^252,00.

It must be noted that solving the above problem by regular

transportation methods we get the same optimal solution.

21
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GENERAL RULES AND STEPS TO BE CARRIED OUT FOR SOLVING
THE PROBLEI^'iS WITH TiiREE OR MORE ORIGINS

(1) Enumerate all "Fixed States,"

Fixed State is the state (origin) in v^hich values of O's

are fixed. This occurs when a state has (N-1) number of stages

with W = 0; and hence, the remaining one stage must have the

value of 9 » W,

(2) Enumerate all "Fixed Stages,"

Fixed Stages are those stages in which values of Q's are

fixed. This occurs when (s-1) number of states have d = 0; and

hence, the remaining one state must have the value of Q = D^,

(3) "Common Stages."

Common Stages are those stages which are common in forming

the limiting values of Zj^, Zg,,.,., of the particular combina-

tion (of limiting values of Z^, Z2,,,..) which is selected for

solving tne problem. It must be noted that there may be more

than one comimon stage in a combination.

(4) Selection of stages for assigning the values of ©^s

must be carried out in the following manner:

(a) As mentioned in (1) above, in the case of Fixed

State, we have one stage with the value of © = W, First

preference must be given to these stages.

(b) Second preference must be given to the stages

which have maximum number of 0*s equal to zero. That is,

the number of O's equal to zero is one less than the number

of 0*5 equal to zero in the Fixed Stage.

(c) Third preference must be given to the stages
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which have number of Q*s (equal to zero), which is less

by one than in the case of (b).

(d) This preference of the stages is carried on until

the group of stages v/hich do not contain a single value of

© equal to zero. Thus, last preference is given to the

stages which do not have a single Q equal to zero.

(5) Preferences in selecting the stages in any of the above

cases, b, c, and d of (4), must be given in the following manner:

(a) First preference must be given to the common

stages. If there is more than one common stage, then any

combination of selection in preference of these stages will

give the optimal solution.

(b) Second preference must be given one by one to any

one of the stages which are forming the limiting values of

^1» ^2»-«»»» ®^ that particular combination (of limiting

values of Z^, Z2,....) which is taken into consideration

for solving the problem. Then any one of these combina-

tions of these stages will give the optimal solution.

(6) The metnod of assigning the values to 0*s.

(a) In the case of Fixed Stage, the values of ©'s of

the first preferred stage must be assigned in such a way

as to satisfy the end-point condition (i.e., the value of

Ififj^) of the state, which corresponds to the value of G,

equal to the requirement of the stage (destination) which

is D^. If this is not possible, then assign all possible

values to 0*s of this first preferred stage and then
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satisfy the previously mentioned W^ by assigning the

values to 8»s of the subsequent preferred stage, (Hence,

all the alternatives must be carried out.) In case this

does not satisfy the above-mentioned end-point (VJ^^), then

above steps must be repeated with the subsequent preferred

stages until the end-point is satisfied. (Generally this

does not happen, and even if this occurs, then all the

altt^rnatives must be carried out.)

(b) In the case where there is no Fixed State, then

assign all possible values to 0»s of the first preferred

stage. This will give more than one alternative. Then

assign the values to the 6*s of the subsequent preferred

stage in such a way as to satisfy Ifi;^, which corresponds to

the assigned values of 9's of the first preferred stage.

In case this aoes not satisfy the above-mentioned end-point

(Wj^}, then above steps ruust be repeated, v/ith the subse-

quent preferred stages, until the end-point is satisfied.

(Generally this will not occur, and even if this occurs,

then all alternatives must be carried out.)

(c) Whenever the values of Wj^ are satisfied as men-

tioned in the above cases (a) and (b), then all the

possible values must be assigned to Q*s of subsequent

stage. This will give more than one alternative. Then

the process must be repeated by assigning- the values to

the ©»s of the subsequent preferred stages in such a way

as to satisfy Wj^, v;hich corresponds to the assigried values
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of G's of the above-mentioned stage. If \-.^ is not satis-

fied, then steps must be repeated as mentioned in (b).

(7) Best approach of selecting the limiting values of

^li ^2»

It will always be preferable to try to achieve optimal so-

lution by selecting the limiting valuey of Z'^, Z2,.... in such a

way as tne limits of these Z's are positive and negative, i.e.,

-p < i^i < +q, v/here p and q are soae constants.
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EJCAMPLE (2) vara THREE ORIGINS AND FOUR DESTINATIONS

The problem is represented by the follov/ing Table 9. Values

of Ci, (in 4), D and Wj^ are given; and tho total number of units

required by n-destinstions is equal to the total number of units

|L n #-
supplied from i-origins (i.e., LI I^ - I_. ^^i). It is required

n=l i=l

to allocate the number of unita of recource in such o way as to

minimise the total cost of transportation.

Table 9« IVansportatlon costs and requirements.

i : 1 : 2 : 3 :

D^i

n • * i

1 2 a 5 21

2 4 2 1 19

3 7 3 5 13

4 2 6 10 17

H 15 20 35 70

Considering the variable part of the Hamiltonian equation (1^),

page 10, we have

H?
s-1 s

tl 4 Qi + t ^i ®i» n = 1, 2 ,N
i=l i=l

but i = 1, 2, and 3

H?

hv

ZV ttV + 2.0 9" ^- c? Qr + Co e" + Co «
;n j^n
•1 ^1

n ^n
'2 ^2 '?

,n ^n
'2 ^2

n ^n
3 ^3

but ©5 = D^ - e; - e^

= (z; + c^; - c^) e; ^ {z'^ 4- c^ . G^) g^ 4- c5 D^ (21)
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Substituting n = 1 in the foregoing equation, we have the vari-

able part of the Hamiltonian equation for the first destination

as

H^ = (zj + cj - C3) ©2 + {zl + C2 - C^) ©2 "*" ^3
°^

(zj - 3) ej + (Z^ + 3) ©^ + 105

From this we see that

(a) Hy is minimum, when ©j^ = and ©2 = and if Z^^ > 3

and Z2 > -3.

(b) l4 is minimxim, when ^ ©^ ^ 21 and ©2 = and if

zi < 3 and Z2 > -3.

(c) H^ is minimum, when ©]; = and ^ ©2 - 21 and if

ZJ^ > 3 and z| < -3

.

(d) H^ is minimum, when ^ ©j; ^ 21 and ^ ©^ ^ 21 and if

z]; < 3 and Z^ < -3.

In a similar manner by substituting the remaining three

values of n = 2, 3 and 4, we get the similar types of results as

shown by the above conditions, a, b, c, and d, at which the

minima occvirs. These conditions are shown in Table 10 on the

next page,

12 3 L
As shown before by equation 16, page 10, Z-j^, Z-j^, Zj, and Zj

are all equal and constant (C^), and similarly Z^, Z~, z|, and Zj

are all equal and constant =» C2. From the values of Zj^ and Z2
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Table 10. Conditions necessary for l^ to be minimum.

Stages
1
Solut:Lens! Minim;jm of 1^ occurs at:

n
; «? : «5 ; h ;

^2

: a > 3 > -3

1

: b ^ ©1 ^ 21 < 3 > -3

: c ^ ©^ ^ 21 > 3 < -3

\ d ^ ©^ ^ 21 ^ q\ ^ 21 < 3 < -3

: a > -3 > -1

2

: b t£ ©2 ^ 19 < -3 > -1

: c =2 ©1 ^ 19 >-3 < -1

! d ^ ©^ ^ 19 ^ ©1 ^ 19 < -3 < -1

: a > -2 > 2

3
;

b ^ ©J
^ 13 < -2 > 2

c ^ ©^ ^ 13 > -2 < 2

d ^ ©3 ^ 13 ^ ©1 ^ 13 < -2 < 2

a > ^ > /f

4 i

b i q4 ^ 17 < S > 4

c ^ ©^ ^ 17 > 6 < 4

: d C ^ ©^^ 17 ^ ©1 ^ 17 < g <c 4



a9

(of Table 10), for n = 1, 2, 3, and 4, we draw the Figs. 5 and 6,

showing limiting values of covariant vectors Z-^ and Z2, as shown

on page 30. From Fig. 5> we see that there are three possible

liciiting values for Z^^, within which Z, will be equal to all the

values of zj for stages n = 1, 2, 3» and 4. These possible

limiting values for L-^ are as follows:

(ai) -3<^i<-2

(bj^) -2<Zi<3

(cj^) 3<2i<^

Similarly from Fig. 6, we see that there are three possible

limiting values of Z2, within which Z2 will be equal to all the

values of Z2 for stages n "^ x^ 2, 3f and 4* These limiting

values for Z2 are as follows:

(32) -3<22<-l

(b2) -1<:Z2<2

(C2) 2<Z2<4

Now considering the above limiting values of Zi and Z2, we

see that there are nine possible combinations for the solution

of this problem, and these are

I -3<;Zi<-2 and -3<Z2<-1

II -3<Zi<-2 and -1<Z2<2

III -3<;Zi<-2 and 2<Z2<4

IV -2<Zx< 3 and -3<Z2<-1

V -2<Zi< 3 and -1<Z2<2

VI -2<Zi< 3 and 2<Z2<4

VII 3<Zi^ 3 and -3<22<-l
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2 3

^] ^ -< '*^

10 -8-6-4-2 2 4 6 8 10

Fig. 5. Limiting values of covariant vectors Z-j_.

32 b2 C2

•5-4-3-2-1012345

Fig. 6. Limitirig values of covariant vectors Z^
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VIII 3<^1<S arid-l<Z2<2

IX 3<^1<^ and 2<Z2<4

From these nine combinations of Z-^ and Z2, we will derive

all feasible solutions as follows:

Solution from combination I, -3<^i< -2 and -3< Z2< -1:

Comparing the values of Z-^ and Z2 for n =» 1, 2, 3i and U$

(as shown in Table 10) with the above limits of Z]^ and Z2, we

determine values of tt? and ©5> which makes H^ (for n = 1, 2,

3 1 and 4) minimum. These values are shown in Table 11, page 32.

From Table 11, we make the following Table 12, showing

limiting values of control actions ©'s.

Table 12. Limiting values of O's.

i: 1
•

• 2 • 3
• nn
* 1.

n . •
•

•
• •

I ^ - ^i
- 21 e* 21

2 • Jg g2 ^"2 19 19

3 ^ qI^ 13 ^ ©^ ^
*^2 13 13

4 ^
©5|;

^ 17 ;£
*^2 17 17

H 15 20 35 70

* n n
6 shows that ©1 = 0, which is fixed by values of Z*^,
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n.
Table 11, Conditions necessary for Kv*s to be minimum.

Stage 1 (a) »i i

(b) =^ ttj ^ 21

(c) «i 1^

(d) =^
©J

^ 21

0^ =

f q\ f 21

5^ el ^ 21

:^ ©1 =^ 21 ana «2 = ^

Stage 2 (a)

(b)

(c)

(d)

©2 =

^ qI f 19

©f =

5^ ©f ^ 19

C|^0

©^ ?^

^ ©I
£ 19

=^ ©2 =^ 19

©^ = and =£ ©2 - 19

Stage 3 (a)

(b)

(c)

(d)

^{^

^ ©^

^13

^ 13

=^ ©^ =^ 13

=«
©I

^ 13

1

st .•. ^ ©^ ^ 13 and ^ ©^ =^ 13

Stage /». ! (a) Q^T^ e^ /

; (b) ^
©J

^ 17 4^^
:

(c) e^T^o ^ ©^ ^ 17

;
(d) ^ ©j* :^ 17 =s ©^ ^ 17

•
«

•

=^
©J

^ 17 and ^ ©^ ^ 17
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Now following the general rules and steps shown before on

pages 22-25 1 we derive the optimal solution for Table 12 as

follows:

First preference will be from stages (1) and (2), but stage

(2) is the common stage (see Figs. 5 and 6); hence, first pre-

ference is given to stage (2), second preference to stage (1),

third preference to stage (3), and last to the remaining stage

(4), Thus we have the following solutions:

a ib

15
/o

e

«

19

6 : 2nd
/21: choice /1

5

€ 16 : 2nd
/6: choice

«

19 : 1st choice:1st choice

In case Ig, we notice that it i s not possible to satisfy

the end-point condition (W2) which we are supposed to fulfill,

as the assignment of ©J "^ ^9 was made by the first preferred

stage (2). In case of I^, we are able to satisfy end-point

conoition of V»o = 35; hence, we continue with this one alter-

native which satisfies Wo = 35 and neglect the other. Sim-

ilarly we neglect I^ as one of the alternatives of I^, satisfies

ena-point condition Wo = 35. Thus we continue with this alter-

native giving 3rd preference to stage (3)*

lb

3

5

e

10
/o /13

16

19

3rd choice
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bl

5 e 16

• 19

10 3

17

*b2

5 e 16

• 19

13

10 7

Note that vhile considering 3rd choice of stage (3)| we go

for both the alternatives as shown by 1^^ *^^ ^b2 ^^ove, as per

our general rules, 6 (c), page 24. Total cost i fZ ll (C? g?) )

i=l n=l

given by I^^^^ is ^290. a'), while that of I^^g is ^210.00. ITius we

have I52 as an optimal solution.

In a similar way (as I above) we will derive the optimal

solution from the remaining eight combinations of Z^ and '^2 one

by one as follows:

Solution from combination II, -3<23^<-2 and -1< Z2< 2:

Table 13, Limiting values of ©'s.

i :

n
DH

X £ q\£ 21

*^ ©5 - ^3

e

6

e^ ^ 13 ^ ©2

^
©I

^ 13

>^ ^ 17

19

21

19

13

17

wi 15 20 35
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15

6

II.

<B

6

19

let choictj 5

10
/o

"1

e

/13

16

19

2n(l choice

IIbl

5 e 16

e • 19

10 3

17

-"^ba

5 « 16

§ • 19

13

10 7

Note that we do not continue II^* as Hb satisfies V;^ = 35,

This combination 11 has given us the same solutions as !•

Solution from coBibination III, -3<^x'^*'^ ^^^ 2<Z2<4j

Table 14. Limiting values of &*s.

3 :
Dn

2

3

4

^ ej ^ 21

^ »5 ^ ^5

«

19

e

^ 0^ ^ 17 ^ 0^ ^ 17

21

19

13

17

Wi 15 20 35
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Here we notice that stage (2) is the fixed starv:e and also

notice that state (2) is also a fixed state, and we are not able

to satisfy our end-point condition of V.2 - 20, as D^ is only 17.

Hence, it is not possible to have a feasible solution by this

combination.

Solution from combination IV, -2<Z3^<3 and -3<Z2<-1:

Table 15, Limiting values of Q's,

n
2 1 3 ;:

d"

1 ^ e^ ^ 21 e 21

2 • =^ ©1 =^ 19 19

3 « ^ ©1 ^ 13 13

4 ^ ©^ ^ 17 =^ ©^ ^ 17 17

^i 15 20 35

Here v;e have the following alternatives for solutions

A and B,

Solution a:

1st choice for stage (1)

2nd choice for stage (2)

3rd choice for stage (3)

4th choice for stage (4)

Solution B:

1st choice for stage (1}

2nd choice for stage (3)

3rd choice for stage (2)

4th choice for stage (4)
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A.

15 e

/19
19

/O

Solution for A

1st choice

2nd choice

15

e :: 21

5
;

i 14

13
1

!

2 :

Note that the optimal solution (A2) with the optimal cost

of (^210.00 is different from the optimal solution obtained in

I and II. Similarly we go for the second alternative of B,

15

e

B,

6

/13

Solution for B

6 :1st choice

Bb

13
/O

2nd choice

Bal

/13

Ba2

Bbl Bb2

21

13
/O

15 6 ^ 15 e 6

e 3 16 3rd choice • 19

e 13 • 13

17

e 21 6 21

e Id 1 3rd dioice • 5 14

e 13 • 13

15 2 15 2
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Note that here we have three feasible solutions, Bg^, B^)]^, and

B^2» with cost of M>249.00, ;|249.00, and $210.00, respectively.

Hence, with B also we obtained the same optimal solution as A2,

Solution for combination V, -2<Z-j^<3 and -1< Zg^ 2:

Table 16. Limiting values of Q's.

ill
;

n
• •

2

*
•

*
•

•
•

3 ; D"

1 =^ q]; ^ 21 6 21

2 • e 19 19

3 e 0^ 03 ^ 13 13

4 ^ gj[
=^ 17 0^4^ 17 17

Wi 15 20 35

5 (B 16 2nd choice

6 e 19

13 1st choice

10 7

19 e 3

e 19

13

Here we have optimal solution given by V^ with the cost of

$210.00, In case of V^ we are not able to satisfy ^i - 15 and

hence, '^2 " 20, Therefore, the solution is not feasible.

Solution for combination VI, -2<Z]^<:3 and 2<Z2<4:
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Table 17. Limiting values of e«s.

n
i

•

•
•

•
•

1 2
•

•
•

•
•

3 D^^

1 ^ «1. 21 e 21

2 e e 19 19

3 6 e 13 13

4 ^ «4. 17 ^1 ^ 17 17

Wi 15 20 35

The foregoing solution is not feasible, as State (2) is the

Fixed State and we are not able to satisfy end-point condition

of V*2 ~ 20,

Solution from combination VII, 3<Z.j^<^ and -3<Z2<-1:

Table IS. Limiting values of ©'s.

i • 1 • 2 • 3 : d'^

n
• • •

•

•

1 e e 21 21

2 • ^ O^ :^ 19 19

3 e ^ 0| ^ 13 13

4 15 ^ ©4 ^ 17 17

^ 15 20 35
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VII VII,

• e 21 • • 21

e 7 12 2nd choice • 5 14

• 13 t 13

15 2 1st choice 15 2

In the above case vve have Fixed State (1) and fixed Stage

(l), so first v/e fulfill the end-point conditions of ^-^ = 15 and

D^ - 21. Then first preference must be given to Stage (4) (see

general rule 4 (a), page 22). Here cost incurred by solution

Vllg is v220.00 and that by VII^ is .-^210.00. We have optimal

solution given by VII^^.

Solution from combination VIII, 3<Z-^^<S and 2<Z2<4:

Table 19 • Limiting values of O's.

• •

i ' 1 I 2 3 : m
n • •

* *

1 • e 21 21

2 • e 19 19

3 • o-g3 jC 13 13

4 15
4C

^ 17 17

WjL 15 20 35

The above solution is not feasible as Vt'-^ is already greater

than 35

•
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Solution from combination IX, 3<Zi<d and 2<Z2<4!

Table 20. Limiting values of 0»s,

i :

n !

1 : 2

—J

; 3 : on

1 • ® 21 21

2 • « 19 19

3 • e 13 13

4 ^ q4 i 17 ^ g^ ^ 17 17

.^i 15 20 35

In the above case v/e cannot have feasible solution as we

cannot satisfy the values of Vj^,

Thus we have two optiraal solutions with cost of ^^210*00

as follows:

Table 21, Optimal solution A. Table 22. Optimal solution B.

i :

n :

1 : 2
•

•
•

: 3 :

• 1

D« i
.

n

1
1

-^
:

^ : 3 :
on

1 5 16 21 1 Q 21 21

2 19 19 2 5 14 19

3 13 13 3 13 13

4 IC 7 17 4 15 2 17

^^i 15 20 35 70 ^'i 15 20 35 70

Thus we see that any combination of Z^ and Z^, which has

a feasible solution, must give us the optimal solution directly
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oy following ths general rul9s and steps givsn on pu.-MQ 22-25.

It ouist also bs noted that solving this above problem, with

regular transport^ition methods, we get the eaiM optimal solution.
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EXAMPLE (3) WITH THREE ORIGINS AND FOUR DESTINATIONS

The problem is represented by Table 23 shown below, and it

is required to find the optimal solution with minimum of cost.

Table 23. Transportation costs and requirements.

i
i

n :

1 : 2 i 3 ; D"

1 I 5 3 19

a 5 3 7 29

3 2 7 5 23

4 4 9 7 19

Wi 27 24 39 90

VJe have equation (21) on page 26:

H? (Z? + C?'1 " ^1

From which we get

c^) e?H. (z5+ c| - J^) ©5+ c5 (D^)

H.^. =

(z

= (Z3 -

= (4 -

2) ©]; + (Z^ i- 2) ©^ + 3(19)

2) ©^ + (z| . 4) ©2 + 7(29)

3) ©^ + (Z^ + 2) ©^ + 5(23)

3) ©J
+ (z| + 2) ©I

+ 7(13)

From the above equations of Hy* for n = 1, 2, 3, and 4, we

determine conditions necessary for Hy's to be minimum, as shown

in Table 24.
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Table 24. Conditions necessary for Hy's to be minimum.

! I M I 1^1 I IM^I.I IIMII.. ..! .MM^ Ml _ I I M I
I I 11 I

I
I
!

I
I !— M.M I II » M— . Ii

: Minimiim of Hy occurs at:

1 «; s
•

^2
•

•
^1

: ^2

1
> 2 > -2

;

^
«i ^ 19 ^ ^2 ^ 19 < 2 < -2

2
> 2 > 4

;

dC

^i
^ 29 ^

«i
^ 29 < 2 < 4

3
> 3 > -2

:

j£

«i
^ 23 ^ ^2 ^ 23 < 3 < -2

4
> 3 > -2

:
^

«t
-^ 19 ^ ^2 ^ 19 < 3 < -2

Hence, v/e have Figs. 7 and S for limiting values of S»s, as

shown on page 45*

From Figs. 7 and ^, we note that though there are four

stages, we have only one possible combination of Z^ and Z2,

which must give us our desired optimal solution. This is

2<Zi<:3 and -2<72<4.

For this combination we derive Table 25, on page 46, show-

ing limiting values of Q's.

Vie note from said Table 25 that State (2) is Lhe Fixed

State with q| = 24 (i.e., D^) , and Stage (1) is the Fixed Stage

with ©i = 19. Then to satisfy D^ = 29, we have to assign ©3=5.

Now we have only two stages, (3) and (4), left for selection of

preference; but we notice that both these stages are common
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1,2 3,4

> M^ I-5-4-3-2-1012345

Fig. 7. Limiting values of covariant vectors Z-^,

1,3,4

I I-5-4-3-2-10123 45

Fig. 8. Limiting values of covariant vectors Z2.
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Tabla 25. Llraitins value of O's.

i :

n
1 ; 2 i 3 i

D^

1 6 « 19 19

2 e 24 5 29

3 £ ej =^ 23 e 23

4 ^ ©^ =^ 19 e 19

^i 27 24 39 90

stages. Then giving them first preference, one by one, we get

the following feasible solutions:

Solutions

A B

® © 19 fixed stage e e 19 fixed stage

(d 24 5 fixed stage e 24 5 fixed stage

a e 15 1st choice 23 e

19 (y 4 e 15 1st choice

Hence we have the above two feasible solutions, which are

both optimal solutions with total transportation cost of ^1^331. 00.

The same optimal solutions are derived by the regular

transportation methods.
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EXAMPLE (4) WITH FOUR ORIGINS AIID SIX DESTINATIONS^

The problem is represented by Table 26, as shown below, and

it is required to find the optimal solution v;ith minimum trans-

portation cost*

Table 26. Transportation costs and requirements.

i
\

n I

1 ! 2 i 3 : 4 :
^

1 9 7 6 6 4

2 12 3 5 d 4

3 9 7 9 11 6

4 6 7 11 2 2

5 9 5 3 2 4

6 10 5 11 10 2

v«i 5 6 2 9 22

From Equation (18) on page 10, we have

(Z5 + C5 - eg) ©5 + C]J D^.

From the above equation we determine the conditions necessary for

h5 for n = 1, 2,,..,, 6 must be minimum. These are shown in

Table 27 i page 4^.

This example is solved by **Unit Penalty Cost Method" on
pages 196 to 218 of Reference (9).
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tH,Table 2?. Conditions necessary for K^'s to be minimum.

D I

Minimum of Hy coccurs at:

^?
!

*"
1

3 ;

' z
1 : Z 2 : Z3

1 :

!

', > -3 > -1 >

0^©3;^4 0^02-4 0^©3^4
[ < -3 < -1 <

2
:

: > -4 > 5 > 3

,
0^C^^4 0^62-^ 0^©3^4

;

< -4 < 5 < 3

3
i

: > 2 > 4 > 2

\ 0^Q^^6 0=^q|^6 o^e^^6
;
< 2 < 4 < 2

if
'

;
> -4 > -5 > -9

: 0^q'1=^2 0^©^==S2 o^e^^2
:
< -4 < -^ < -9

5

•
: > -7 > -3 > -1

;
O^Q^k o^e|=^4 0=^©|^4 : < -7 < -3 < -1

6
: \ > > 5 > -1

: o^g^^2 o^e^^2 0^©|^2 : < < 5 < -1

From the above we have Figs. 9, 10, and 11 for limiting

values of Z»s, as shovm on page 49

•

Here there is a total of 64 possible combinations of Z-j^,

Z2, and Zo for getting our feasible solutions, but as mentioned

on page 25, Item (7), we will take one combination as follows:

0<Z^<2, -1<Z2<4 and-l<Z3<0

and we derive the following Table 2^,
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5 2,4 1 6 3

t I I I I

-10 -a -6 -4 -2 2 4 6 8 10

Fig. 9. Limiting values of covariant vectors Z^

4 5 1 3 2,6

I I

10 -g -6 -4 -2 2 4 6 S 10

Fig. 10. Limiting values of covariant vectors Z2.

5,6 1 3 2

I I I I I I

-10 -8-6-4-2 2 4 6 a 10

^ Z. ^

Fig. 11, Limiting values of covariant vectors Z-^.
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Table 2^. Limiting values of O's.

n
i !

<

1 !
2 «

•

3 4 : D^

1 e 6 ^ ©1
^3

^ 4 4

2 € ^ ^2 ^ 4 :£ ®3 ^ 4 4

3 ^ Q^ ^ 6 ^ ^2 ^ 6 c ^ ©3
®3 ^ 6 6

4 6 « 6 2 2

5 e 6 e 4 4

6 e ^ ^2 ^ 2 « 2

Wi 5 6 2 9 22

In the above case we notice that state (1) is the Fixed

State; hence ©? = 5, and so v^e must give first choice to stage

(3) while selecting the stages for their preference. Stages

(4) and (5) are also Fixed Stages; hence we have ©j*^
= 2 and

0? = if. Now there are two possibilities in selecting the

stages for their preference. These possibilities are shown

below, giving solutions A and B.

Solution A

First choice of stnf^e 3

Second choice of stag© 1

Third choice of stage 6

Fourth choice of stage 2

Solution B

First choice of stage 3

Second choice of stage 6

Third choice of stage 1

Fourth choice of stage 2
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<Solution A

Aa Ab

e $ 1 3
;

2nd choice ® e 1 3

e 4 : « 3 1

5 1 ;:l8t choice 5 1

§ ® © 2 :' fixed © € 6 2

e e 6 4 !'fixed © € © 4

€ 2 « : e 2 e

e e 2 2

e 4

5 1

e e e 2

• e 6 4

e 2 e

Solutions Aq and A^ are optimal solutions with total cost

of H12.00, while solution A^ has cost of 1114.00.

Solution B

Ba Bb B,

. © •

V 1

5
;

: 1 ; : :

©
'

: © • © :: 2 :

e i: © : © ,: 4 I

© ':2
: /O-

: © ::0 :

; /2;

1st
choice
fixed

fixed

2nd
choice

©

/O

1

©

©

©

2

4

/2

©

/o

B

« 3

5 1

©

a,l

1 3 3rd choice

1

© 2

© 4

©

•

«a,2

© 3

1

© ©

© ©

©

1

2

4

2

©

©

©

1

2

4

/2
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Solution from B^j

Bb .1 Bb ,2

• 6 1 3 3rd choice e e 3 1

e 4 «

5 1 5 1

« € © 2 e e © 2

6 6 ® 4 « 1^ 6 4

• 2 ® e e 2

Solution from B^j

^c.l Be ,2

® © 4

•

5 1

e e © 2

« © © 4

e © 2

« © 2 2 3rd choice

6 4

5 1

e © © 2

e © © 4

e 2 ©

iiolutlon Bg 2 is not feasible as V*2 - 2;

Solution B^ 2 is *'^ot feasible as V.^ = 2, and

Solution Be 2 is not feasible as W2 = 2.

From the above we again have the same two optimal solutions

witn cost of .i;ill2.00. These are represented by solutions Bg ^

and B^ j^, while feasible solution B«
-j^

is similar to A^ with

cost of $114.00.

It must be noted that the same optimal solution (similar

to Aq and B^, 1) is secured on page 217, Reference (9), by solving

tills problem with "unit penalty cost" method.



53

SUMMARY AND CONCLUSION

The "Discrete Maximum Principle" method reduces to a stand-

ard routine form for solving transportation problems involving

linear cost functions, vdth the sum of the demands (requirements)

of all the destinations equal to the sura of the supplies avail-

able at the origins.

From problem (2), it is noticed that any possible combina-

tion of the covariant vectors, Z-j^, Z2, , which gives a

feasible solution, will directly give an optimal solution with

the proper use of the general rules and steps shown on pages

22 to 25. But failure in following these rules will not give

the optiaial solution. It is also noticed that any transporta-

tion problem involving any number of origins and any number of

destinations and without slack variables is easily solved by

this method of the ''Discrete Maximum Principle" and it is easy

to get optimal solution directly.

In the case of transportation problems involving slack

variables and having two origins and any number of destinations,

the same above method is applicable with slight modification.

By assigning a unit value of cost per unit of resource (i.e.,

taking values of cj for slack variable as unity instead of

zero) for the slack variables and increasing other given cost

(i.e., Cj) by unity and proceeding in the same way as above,

we directly achieve the optimal solution for this problem. How-

ever, in the case of problems involving slack variables and hav-

ing more than two origins, this above method does not seem to be
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an applicable one. It may be possible to solve this type of

problem with modified approach of this technique. Hence, the

fui'ther work may be carried on, and it is quite possible to

obtain sane modified approach to solve this type of problem.

Lastly, it must be noted that transportation problems of

the above type (i.e., without slack variables), involving set-

up cost associated vjith each origin and destination, are not

possible to solve by the method of Linear Programming, but can

easily be solved by the above method of the "Discrete Maximum

Principle."
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The aim of this report is to develop and illustrate a

method of solving transportation problems involving an optimizing

objective function of linear form, through the application of the

"Discrete Maximum Principle." In order to do so, first an out-

line of general algorithm of the Discrete Maximum Principle, the

statement of the transportation problem, and the formulation of

the transportation problem In terms of the Discrete yiaximum

Principle are given in brief.

To show the application of the Discrete Maximum Principle

to transportation problems with linear cost functions, a simple

problem (iixample 1} with two origins and five destinations is

solved and explained in detail. For solving transportation

problems with three or more origins and any number of destina-

tions, the general rules and steps were found and are given

under a title "General Rules and Steps to be Carried out for

Solving the Problems Vdth Three or More Origins." By the ap-

plication of the above general r-ules and steps. Example 2, with

three origins and four destinations, is solved and explained in

detail. In a similar way t^xample 3, v/ith three origins and four

destinations, and Example 4, with four origins and six destina-

tions, are solved by applying the same general rules and steps.

This is done to show the method of attacking and solving this

type of problem in order to achieve an optimal solution easily

and directly.

The Discrete Maximum Principle reduces to a standard form

for solving transportation problems which do not involve slack

variables. It should be noticed that any possible combinations



of covariant vectors Z^, Zg,...., which give a feasible solution,

will directly give an optimal solution v/ith the proper use of the

general rules and steps. If, instead of the costs of transporta-

tion per unit of resource (i.e., C?)
, profits of transportation

per unit of resource are given, then the above method is appli-

cable; but instead of finding the values of Zj by minimizing the

Hamiltonian equations, we have io find the same by maximizing

these Hamiltonian equabions; and proceeding in a similar manner,

an optimal solution giving maximum profit is directly achieved.

For the problems involving slack variables and having two origins

and any number of destinations, the same above method is applica-

ble, if a unit value of cost per unit of resource is assigned to

the slack variables and other given values of Cj are increased by

unity. However, this method does not seem to be applicable to

problems involving slack variables and having more than two

origins. It may be possible to solve this type of problem with

modified approach of this technique.

Lastly, it should be noted that the transportation problems

of the above type (i.e., v/ithout slack variables), involving set-

up cost associated with each origin and destination, are not

possible to solve by the method of Linear Progranming, but can

easily be solved by the above method of the lyiscrete Maximum

Principle.




