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CHAPTER I

INTRODUCTION

Fluid control systems are widely employed in the control

of chemical and petroleum installations, aircraft, machine

tools and farm machinery. New applications are continuously

being made. This is especially true in the newest field of

fluid control known as Fluidics.

The physical variable to be controlled by a fluid control

system differs according to the function of the system. It

may be one or more of the following:

1

.

speed

,

2. temperature,

3. displacement,

k. velocity,

5. flow of fluid,

6

.

pressure

,

7. humidity,

etc .

According to whether a liquid or a gas is used as the

working fluid, fluid control systems are classified into

hydraulic systems or pneumatic systems (l) *. In general,

pneumatic systems are cheaper to manufacture and less costly

to operate than hydraulic systems. Because of these charac-

* Numbers in parentheses refer to items of references.



teristics, pneumatic control systems are widely used in chem-

ical and petroleum industry and in other specialized branches

of engineering.

This report presents an analysis of a simple pneumatic-

type pressure-control-system which is shown schematically in

Fig.l. The object of this pressure-control-system is to

maintain the pressure of a compressible fluid in a tank (or a

Comparator
Pneumatic
controller

Input

Spring loaded
diaphragm

Valve B

Final control
element

~j—L-—
- Mass-flow

in

Supply
pressure

Valve D

Tank, or vessel

Fig.l. Schematic representation of the pressure-
control-system considered in this report.



vessel) approximately constant as demand (or disturbance)

flow through valve B varies. Such pressure-control problems

can be found in the distillation columns of chemical process

plants (<d)

.

If a change, say a small decrease, in outflow occurs,

the pressure in the tank is increased. This increase in

pressure is "sensed" by the comparator which transmits an

error signal to the pneumatic controller. The controller in

turn transmits a pneumatic signal to the final control element

by forcing air to flow into the upper chamber of the pneumatic

actuator which is part of the final control element. Due to

the increase in pressure, the spring loaded diaphragm sepera-

ting the two chambers of the actuator is forced to move down-

ward, thus reducing the valve opening of valve D. This reduc-

tion of valve opening causes a decrease of fluid flow into the

tank, thereby reducing the pressure in the tank.

If the change in outflow is an increase in magnitude, the

control action is reversed.

This type of control system, where the input is fixed, is

known as a regulating system. A control system in which the

input is varied is termed a servo-system.



CHAPTER II

FLOW THROUGH A VALVE

Flow through an orifice is a very idealized form of fluid

flow. However, many actual flow situations can be approximated

by this kind of flow, a typical example is flow through a

valve. Flow through a short line can also be considered as

flow through an orifice without causing significant error.

Consider Fig. 2 which shows an orifice through which a

compressible fluid flows from station 1 to station 2. Let the

pressure, density, velocity, elevation of the fluid at station

1 be P , p , V , Z and that at station 2 be p , P , V , Z_

respectively. Before an analysis is made, it is advantageous

to make the following assumptions:

Fig. 2. Flow through orifice.



1. The fluid obeys the perfect gas law P=9U T, where

P, £> and T are the pressure, density and temper-

ature respectively of the fluid and R the gas
S

constan t

.

2. Pressure, velocity, density and temperature are

uniform across stations 1 and 2.

A. Polytropic Flow Through an Orifce

In flowing from station 1 to station 2, the fluid in

general undergoes a polytropic process in which

p—
jj = c, a constant. (2.1)

If the process is isothermal (very low velocity) ,n=l

;

if it is adiabatic (very high velocity) , n=k, where k is the

ratio of constant pressure specific hea,t to constant volume

specific heat.

Equation (2.1) can be rewritten as

P = c e
n

. (2.2)

Differentiating gives

dP = ncpn~ d£

When this is substituted into Bernoulli's equation for com-

pressible fluid flow

\-p- + gZ + — = constant (along a streamline),

the result is



nc\p d£> + gZ + — = constant. (2.3)

When the first term is integrated, equation (2.3) becomes

nc n-1 „ V
2

- P + gZ + — = constant.
n-1 v b 2

This can be rewritten as

,2n P „ V
-= + gZ + — = constant .

n-1 e ° / 2

Applying this into the orifice shown in Fig . 1 results in

2 2

n 1 „ 1 n 2 __ 2
=r ?x

t*x * 7 " sir e2
* "a * 7 <

After grouping and noticing that (Z„-Z ) is negligible, the

above equation reduces to

2 2
v, - v!r p. p^—

* - sibfor ' -S")
• < 2 -">

2 •— <=1 Si

Assume the flow is steady, i.e., mass flow at station 1 equals

mass flow at station 2, then

dl^ dM

dt dt

Let A., and A be the cross-sectional areas at station 1 and

station 2 respectively, the above expression is equivalent to

Q.
A
1
V
1

= ^2A 2
V
2 .

Solving for V.. gives

v ^A 2
V
2

1
=

Vl •

When this is substituted into equation (2.4), the result is



e2A 2
2 n

i - (-=-=)
'1 1

P P

n_1
^1 ?2

Solving for V2 yields

P P
2n , 1 2 v

e2A
2-

1 - (tit)
?i
a
i

(2.5)

^2 P
2 Vn

After replacing —— by (p
-

) and simplifying, equation (2.5)
?1 1

becomes

p
2 i-yn

1 - (fr)
1

A 2 P
2 2/n'

1 - (jr) (/)A
l *1

(2.6)

Expression (2.6) gives the theoretical velocity of the

flowing fluid at station 2. In fact, the actual velocity is

slightly less than the theoretical due to friction. Let a

velocity coefficient K be introduced here, such that thev

actual velocity is

where

V2a = K
v
V
2

K = f (Reynolds number).

The cross-sectional area at station 2 would be difficult

to measure, but A , the cross-sectional area of the orifice,
o '

is easily measured. Let K be the ratio of A to A , i.e.,



where

A o " K„A «»d CO

K = f (Reynolds number).

K is known as the coefficient of contraction.
c

The actual mass-rate of flow through the orifice is then

5? KvKcA o e2V2
/ (2.7)

Substituting equation (2.6) into equation (2.7) and denoting

dM . • , . .— by M results in

M K K A
V c o

2n . 1 )02

-lV
x
;r2

n-l_

1 " (/)
"

1

K
c
A
o 2 P

2 2/n
l - (-£-*) (/)

l l

(2.8)

Define

K
d

=
K K
v c

KcA o 2 Pp 2/n
(2.9)

where

K = f (Reynolds number, — ).

2
P
2

2/n
Replace £> by p (- ) , equation (2.8) then becomes

1

2nM " KdA o fcl *&
n-1 -i

1 " (p
2

)
"

P
2 2/n

(p^) . (2.10)
1

K in expression (2.9) is known as the discharge coeffi-



cient. In many cases, it has constant values if A Q«A^ and

the flow Reynolds number is high. At very low velocity, it

varies with the Reynolds number.

B. Critical and Subcritical Flow

For control valves the length of the high-velocity flow

stream is quite short and experimental data has shown that

the effects of heat transfer are insignificant (3). Therefore

when applying equation (2.10), n=k can be used for control

valves

.

It should, however, be remembered that for very low

velocities, i.e., when P_ and P are nearly equal, the flow

through the valve is approaching an isothermal process.

The mass-flow rate as a function of pressure ratio for

n=k=1.4 is shown in Fig.3» where P.. and ft are assumed const-

ant .

When P approaches zero, equation (2.10) shows that M

also approaches zero (curve ABO) . This is an obvious absurdity.

In order to make this clear, experiments were performed by

scientists, and the resulting data revealed that the actual

mass-flow rate curve was represented by curve ABC instead of

ABO (k). In other words, the mass-flow rate remains constant

after reaching its maximum value (point B). The pressure at

which the maximum flow rate occurs is called critical pres-

sure. The part of flow for which the pressure P is higher
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.2 75 7528

Pressure ratio P2/^l

Fig. 3- Mass-flow rate as a function of pressure
ratio for adiabatic flow.. (n=k=1.4)

than the critical pressure (part AB) is known as subcritical

(or subsonic) flow, the the other part (part BC) is termed

critical (or sonic) flow. The velocity of critical flow is

equal to the acoustic velocity in the fluid at critical

pressure (4 )

.

P
2Let r = — and replace n by k for adiabatic flow,
1

equation (2.10) becomes

M " K
d
A
oA /E& Vi 2/k

(2.10a)
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Define E -

k-1 2

2k
p ek-1 l rl

1
k

- r
k

r

It is clear that M is a maximum when E is a maximum. Differ-

entiating the above expression with respect to r, considering

K , , A , Pn , P, and k as constants, yields
d o N l 1

2-k
dE 2k

P Pdr k-1 1\L
2

k
r
— Vk-i
k k+1 7

dEWhen -j— is equated to zero and solved for r, which represents

the critical pressure ratio, it results in

k_

(2.11)
/_2_vk-1r

c = (k7I>

where the subscript c denotes critical. Substituting this

into equation (2.10) gives the critical mass-flow rate,

denoted by M ,* c

k+1

M ^iVkPPl^" 1
c d o\/ M. l v k+l / (2.12)

The above equation shows that, for critical flow through

an orifice, the mass-flow rate is independent of the down-

stream pressure P . If K, and k are assumed constant, M isda. c

proportional to the square root of the product of P and P
,

the pressure and density of the upstream fluid.

. K = "SnVeTI (2.13)

* See Appendix A.
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where K is a constant of proportionality and equal to
m

k + 1

XdAo'Wkljfj-)''-
1

in this chapter, characteristics of flow through an

orifice is discussed. As mentioned at the beginning of this

chapter, this idealized form' of flow can be applied to flow

through valves which will be treated in later chapters.

Equations (2.10) and ^2.12) will be used for describing

subcritical and critical flow respectively through a valve.



CHAPTER III

STEADY STATE FLOW ANALYSIS FOR THE CONTROLLED SYSTEM

Figure k shows the tank of the system being considered.

Fluid flows into it through a control valve D and discharges

into the atmosphere through valve B. Let V be the volume of

the tank, P the fluid pressure in the tank, and M. , M
fe

the

mass-flow rates through valves D, B respectively. For steady

fluid flow, the rate of mass flow is independent of time, and

?ank

V c = const.

Valve D
-Valve B

Fig

.

k . Fluid flow through valves and tank,

so is the pressure of the fluid in the tank. There is, there-

fore, no change in mass stored in the tank if P is fixed and

the temperature inside the tank is assumed constant. If,

however, P changes, the mass-flow rate changes also. Hence it

is desirable to construct steady state curves to relate the

mass-flow entering and leaving the tank and the fluid pressure



Ik

in the tank. A method from which such curves can be construc-

ted is discussed in the following paragraphs.

Before starting, let the following assumptions be made:

1. The working fluid is a perfect gas.

2. The outside pressure is atmospheric pressure.

3. The pressure P is uniform throughout the tank.

k. The flow entering and leaving is one dimensional.

5. The walls of the tank are infinitely rigid, i.e.,

V is constant,
c

6. The discharge coefficient K for valves B and D

is constant. (A « A , Reynolds number high).

7. The supply pressure P and supply temperature T s

to valve D are constant.

Since the heat conductivity of a gas is low and the

velocity for gas flow is usually high, the heat transfer

between a unit mass of the gas and the surroundings is

generally negligible. It is therefore reasonable to assume

the flow adiabatic.

A. Steady Flow Through Valve D

A, = f(x)

Fig . 5 • Flow through valve D.

There are two

possible types of flow

through valve D, viz.,

critical and subcriti-

cal. They are discussed

separately as follows.
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1. Critical flow. This happens when the pressure ratio

P / 2 ,k-l
P ^ ^k+l'
s

The critical flow equation in this case is

k+1

\ /kpP (r-^r-)
1"" 1

(3.1)inc d d\/ v s s N k+l' x
'

where Ad is the area of the valve opening in valve D through

which fluid flows. It is a variable quantity such that

Ad = Ad (x), (See Fig. 5)-

For convenience, it is desirable to make the steady state

mass-flow-pressure characteristics nondimensional . This can be

done by defining a maximum mass flow rate as follows,

k+1

"max - K^max^W^" 1

• ^l
When equation (3.l) is divided by equation (3.2), the

result is

Define

_inc _d

max max

t M,
M

4
= TinCinC
"max '

- Ad
d Ad ,

max

(3.3)

equation (3*3) then becomes



M. = A
,mc d

16

('J.*)

All quantities in the above equation are dimcnaionloss.
T

They are said to be normalized. M. is termed normalizedinc

mass-flow rate and A. normalized area, and equaation (3.k) is

the normalized equation for critical flow through valve D.

2. Subcritical flow. This occurs in valve D when the

pressure ratio

k

- •> (-g-) k_1
P
s
> v k+l'

The subcritical flow equation for valve D is

2k
Wins = KdAd

/

\/( kTl)esP

k-1

i - (I )

k
d >r s

2/k

When this is divided by equation (3. 2),. the result is

M. = Adins

k+1
2, k+1 v k-1

k-l V 2 '

k-1 _
k

1 - P

t: Pwhere P = — . Simplifying gives
s

M

k + 1
yk / k-i

k-1
k -1

1 - P

(3-5)

(3.6)

(3.7)'ins

Equation (3. 7) represents the normalized equation for

subcritical flow through valve D.

B. Steady Flow Through Valve B

Like that for valve D, either critical or subcritical
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flow may occur in this valve according to whether the pressure

ratio is greater than or less than the critical pressure ratio.

1. Critical flow. In this case, the pressure ratio must

be

a < (-2-)^ v k+l ;

k
k-1

./

P

or

P>(^)
k-1

a *

Ab = f(y)

Fig. 6. Flow through Valve B

Dividing both sides by the

positive quantity P s gives

& v 2 ' N

where

N "P.

The mass-flow rate for critical flow through valve B ij

k+1

M
bc = V^^dr^"

1

13.9)

where Ab is the area of the valve opening in valve B through

which fluid flows. In general, Ab = Ab (y). (See fig. 6.)

Dividing equation (3. 9) by equation (3.2) yields

Mbc = Ab\/ P I (3.10)
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where

M
Mbe

Ab =

be

'max

Admax

P J*
After replacing — by P , equation (3..10) becomes

"s

k+1,
2k

Mbc = A
b
p (3.11)

which is the normalized equation for critical flow through

valve B.

2. Subcritical flow. This occurs when

k

^ v 2 ; N •

The flow equation in this case is

k-1 -,

P k
1 " (^)

P
a

2/k
(3.12)

Normalizing as before and using P g = NPa yields

_2 /k+lvMbs = Ab\/k^l(~2~ )

k+1 k+1
k-1 k

1 - (NP)

1-k..
k

(NP)

2

"k

(3.13)

Kith 1he normalized equations for critical and subcriti-

cal flow for valves D and B, it is possible to plot steady-

state curves relating pressure and mass-flow rate with areas

of valve openings as parameters. This is illustrated by the

following example.
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C. Illustrative Example

The working fluid is air with constant P s of 100 psia.

The flow is assumed adiabatic. Plot the flow curves for valves

B and D.

For air, k=1.4. The critical pressure ratio for valve D

is
l.k

2 1 ' t*~ 1
•

P c =
( 1.4+l)

= 0.528.

When 0<P^ 0.528, the flow through valve D is critical,

and the normalized flow equation is

M. = A^,
inc d

(3.1*0

When 0.528 <P^1, the flow is subcritical. From equation

(3*7) » the normalized mass-flow rate can be shown to be

t 0.715 r _0.286
M
ins " 3 ' 36 AdP V

1
""

P
'

(3#15)

The ratio of supply pressure to atmospheric pressure

_• 100 _ , QN " 157/
6 ' 8

*

Substituting this into equation (3.8) gives the critical

pressure ratio for flow through valve B

l.k
• , ,, n 1.4-1

cb v 2 ' *6.8'

= O.2766 .

It is clear that when P = 0.1^7, there will be no flow
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through valve B, because the pressure in the tank is the same

as. the atmospheric pressure. This can be checked by substi-

tuting P = — = 0.1^7 into equation (3. 13), the result is

M, =0.
bs

Subcritical flow through valve B occurs when 0.1^7 <P

<0.2786, and the normalized flow equation (3. 13) reduces to

_0.286
M
bs

= O.98 AjA/P - 0.578 . (3.16)

For Oo2786^P<l, the flow is critical. From equation

(3.11) t it is seen that the normalized mass-flow rate through

valve B is

0.857
Mbc = A

b
P

' (3.17)

Flow curves can now be plotted using equations (3.1U)

through (3.17) for various values of A, and A^ . These are
d. b

shown in Fig. 7-

_ P
A given desired steady state pressure P = ,

° in the
o IOO

tank corresponds to a vertical line in Fig. 7. Then for any

given steady state outflow M, , which is a function of a\ , the
b b

inlet valve D must have an area A., such that M, = M . , whichd b in

is the necessary condition for steady state flow with pressure

P in the tank,
o

It is seen that the steady state flow curves can be

divided into 3 regions, depending on the steady state value
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1.0

.8

.6

*b

.4

.2

-.2

-.4-

M.
in

-.6

-.8"

1.0 X

P s = 100 psia.

Pa = 14.7 psia.

Valve B

I
.2 ' .4 .6 .8

Region Region i Region
1 I 2

AJ =0.2
a

A. =0.4
a

A . =0.6
d

AJ =0.8a

A^ = 1.0
d

Valve D

Fig . 7 • Dimensionless mass-flow rate as a function
of pressure ratio for adiabatic flow.
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P in the tank. In region 1, the flow through valve B is

subcritical while that through valve D is critical; in region

2, flow through both valves are critical; in region 3» the

flow through valve B is critical while that through valve D

is subcritical.

If the supply pressure should be less than 3«59Pa t

regions 1 and 3 would overlap and the flow through both

valves would be subcritical. Since the supply pressure in

many actual cases will be higher than this, such a situation

will not be considered in this analysis.

The steady state curves shown in Fig. 7 are useful in

deriving the dynamic relationship for P(t) when unsteady flow

conditions exist. This will be done in Chapter IV.



CHAPTER IV

DERIVATION OF TRANSFER FUNCTION FOR THE CONTROLLED SYSTEM

As shown in Chapter III, the equations for the flow of a

compressible fluid through valves can be either linear or.

nonlinear. In the derivation of a transfer function, it is

usually the case to combine several equations together. Diffi-

culties will arise when combining these equations in their

original form if any are nonlinear. It is, therefore, desir-

able to use some technique to overcome these difficulties. In

this chapter, the Taylor series expansion will be used to

transform the nonlinear (exact) equations into linear (appro-

ximate) equations.

A. Unsteady Flow Through Valve D.

It is shown in Chapter III that the mass-flow rate thr-

ough valve D is a function of the pressure in the tank and

the displacement of the control element of the valve, if the

supply pressure and temperature are assumed constant. This

can be expressed mathematically as

Min = f(P,x) (h.l)

where P and x are functions of time. Expanding the above in

a Taylor series for two variables about an initial-steady-

state-operating point M^n , P and x gives



2k

Dm
"in = in +

<g>p

iH (x - x ) + higher order
terms.

(4.2)

where the partial derivatives are evaluated at an initial-

steady-state-operating point P = P Q , and x =

x

Q . The partial

derivatives for valve D can be graphically evaluated from the

upper half of the steady-state-characteristic curves shown in

Fig. 7 in Chapter III, or from the analytical expression for

M-^n . If a restriction is made that (P -P ) and (x - x Q ) are

small, the higher order terms can be neglected, only the lin-

ear terms of the Taylor series remain.

Let

P - PQ = *P
,

x -

x

Q = Ax
,

m. - m . = -Am.:-,.
in mo in

The "A variables" are functions of time. Equation (k.2) then

reduces to

2M H

Am

Define

^inl
?P

?M_

AP 2x Ax (*.3)

x,

L

pi Tp o >

?M ±1
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equation (4.3) then becomes

AM. = a
n AP + a ax (4.4)in pi x x '

Equation (4.4) is a linearized equation. The values of

a and a vary according to whether the flow is critical

(regions 1 and 2 in Fig. 7) or subcritical (region 3 in Fig. 7).

Both are defined analytically in Appendix B.

B. Unsteady Flow Through Valve B

By me an s of the same technique used in section A, the

linearized equation for the unsteady mass-flow rate through

valve B can be shown to be

AM,
b

b=
?P

2M

p AP 57 p Ay (4.5)
1 o •

*o xo

Define
<

a
P 2

b=
dp Po •

x o

a
y Po »

xo

equation (4.5) then becomes

Ah
o

= a
p2

4P + ayA y . (4.6)

Again the values of
1 a and a vary according to whether the

flow is critical (regions 2 and 3 in Fig. 7) or subcritical

(region 1 in Fig. 7). Both are defined analytically in Appendix

C.
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MJ

Valve B
l_

Control volume X

1

V = constant
c

—( P

Valve D

Tank

Fig. 8. Control volume' for unsteady flow analysis.
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C. Derivation of the Transfer Function

In the analysis of unsteady flow, it is helpful to intro-

duce to the controlled system a control volume, which is shown

by dotted lines in Fig. 8. Applying the equation of continuity

for unsteady flow gives

-^(mass-flow rate in) + £ (mass-flow rate out) + 75t(?V c ) =0.

This can be expressed for small changes in variables for the

system of Fig. 8 as

-^M.
n

+ AMb
+ V^9 = 0. (I».7)

From equations (k.k) and (4.6), it is seen that the above

equation can be expressed as

~( a
p2 " apl

)AP + a
x
Ax " ay^y ' V

cA <? *
(4.8)

The values of the "a's" differ in different operating regions

as defined in Fig. 7, and will be discussed later.
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From the perfect gas relation

P y*

it can be shown that

1-k

e=£(f
8

)(f )

k
p • (*.9.>:

s s

This is a nonlinear expression. After linearizing, the

following expression is obtained.

p
Af>+ lipoAP (4 - 10)

Po •
Po

where the changes in variables ^P= (P - P ), AP = (P - P )

and £p = (6* - P ) are assumed samll

.

The analytical expression for the partial derivatives

are

1-k

3p
1 ?s

P° k

P
o s s '

Po

l-2k

l-k,P8 w P° k
•

n " 2 ( P )(? Po
'P ° k s *s

Po

The second expression is zero because P is a constant and

therefore P = 0. Substituting these into equation (4.10)

gives

1-k
! Ps P D k .Ae = k (p )(p ) ap . (u.ii)

s s ,
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Define

1-k

a
f

=:
1 Ps p ^ k

expression (4.1l) then becomes

Af = a
p
AP

Substituting this into equation (4.8) results in

"<> - a JAP + a 2\x - a Ay = a V AP ,pi 7 x y LXJ e c *

rearranging yields

a v ^P +
<
a
P 2 " a

P i
MP = a

x Ax " ay^y
.

{k ' 13)

This is a linearized differential equation relating the pres-

sure change in the tank to the displacement of the control

elements of valves D and B. It is valid only when the changes

of all variables from a given initial -steady-state-operating

point are small.

When equation (4.13) is Laplace -transformed into the s-

domain, assuming zero initial conditions, and solved for

AP(s), the result is

AP(s)
a Ax(s) - a AY(s)

= — *
, (4.l4a)

aVs + (a_-a_)
e c p2 pi 7

Let

a
a
xt

X
( h 1 - N

a - a > l*«15*l
P2 pi

a
a
yt " a - a '' (4.15b)

p2 pi
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a V
T

a f-\ ;

»
^'^c)

p2 pi

equation (4.l4a) then becomes

a AX(s; - a AY(s)
AP(«) = — «

. (k.lkh)
Ts + 1

Equation (4.l4b) is the transfer function for the con-

trolled system shown in Fig. 8* The output is the fluid pressure

in the tank and the input is the displacement of the control

element of valve D. The displacement of the control element

of valve B serves as a disturbance to the system. The quantity

T is known as the time constant for the system.

As can be seen from Fig. 7 in Chapter III, a , = rr~ is
pi OY

dh .

exther negative or zero, while a = -^ is always positive,

therefore T is always positive. Since a . . a and T arext yt

functions of the initial steady-state-operating point, they

will take on different values depending upon the region in

which PQ is located. Their analytical expressions are given

in Appendix D.

The magnitude of T for each of the three possible opera-

ting regions defined in Fig. 7 can be qualitatively evaluated

as follows:
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*
Region a _ has.. a n is or has.. .*. T will have..

_£2 __El

1 maximum values smallest values

2 minimum values largest values

3 minimum values maximum values smallest values

These qualitative results for T will be used to aid in

qualitatively analyzing the transient response of the system

to a step type disturbance in Chapter VII.

* T is evaluated qualitatively using equation (4.15c).



CHAPTER V

DERIVATION OF TRANSFER FUNCTIONS FOR THE

FINAL CONTROL ELEMENT

In order to control the pressure in the tank shown in

Fig. 8, it is necessary to (1) measure the pressure in the

tank, (2) compare this pressure with a signal which represents

the desired pressure to form an error signal, (3) operate on

this error signal with a controller to produce a manipulated

output signal and (h) use this manipulated output signal to

position valve D. This can better be explained by means of a

block diagram which is shown in Fig. 9-

Comparator

Final
control
element
(valve D)

Measurement

Controlled
system
(tank)

AP

Fig. 9. Illustrative block diagram of the systei
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The linearized transfer function for the controlled

system was derived in Chapter IV. In this chapter, the trans-

fer function for the final control element will be derived.

Figure 10 shows a schematic representation of the final

control element commonly used in pressure control systems. It

is composed of two parts, the actuator and the control valve

D. The actuator consists of two chambers separated by a

spring loaded diaphragm. A pneumatic signal from the control-

ler passes through a line into the upper chamber and so forces

the diaphragm to move downward. This causes valve D to

decrease its valve opening and therefore reduces the fluid

flow into the tank. If,
Fluid from
controller

iaphragm

Actuator

Sprin/

tD-^i-"

L Valve D

Fig . 10 . Schematic represen-
tation of the final
control element.

however, the pressure

in the upper chamber is

higher than that in the

controller, reversed

action results.

Since the line con-

necting the controller

with the actuator is

"short", it may be

assumed that the resis-

tance of the line can

be lumped into an ori-

fice of area AQ , i.e.,
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the pressure drop across the line is equivalent to that across

an orifice.

Analyses of the upper and the lower portions of the final

control element are discussed separately as follows.

A. Transfer Function for the Upper Chamber

For convenience, two separate diagrams are drawn for the

final control element, so that the analyses can be made more

clearly.

The upper portion of the final control element is shown

in Fig. 11. Let P. be the

pressure of the fluid

from the controller, M^

the- mass-rate of flow in-

to the chamber, Av the

effective area of the

diaphragm, Pv the fluid

pressure in the chamber,

Vv the instantaneous

volume and Vvo its

original volume when

x = 0, i.e., Vv(x=0)=VVQ ,

then

vv = Vvo - Av* (5-1)

Fig. 11. Schematic repre-
sentation of the
upper portion of
the final control
element

.

Differentiating with respect to t gives

V -y — "AyX (5.2)
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Applying the equation of continuity for unsteady fluid

flow into the chamber results in

A + |^vvv) = ° (5-3)

where p is the density of the fluid in the chamber.

Equation (5«3) can be rewritten as

-M, +f V + PV = (5-M

Substitution of expressions (5.1) and (5.2) into equation (5»M

yield s

-Mk + (V - Avx)pv - Avfvx = . (5-5)

From the relation

p yn
e = o (-2—)

it is clear that

1-n

_, 1 vTmax . ,
pv ,

n

ev = £<p
—

)(?— )
pv .

(5.6)
max rmax

where P and P are the density and pressure respectivelymax max

of the fluid at the maximum controller, output pressure, which

is usually 15 psig, or approximately 29-7 psia.

When these are substituted into equation (5*5) » it results

in

1-n
-, P P n P Vn

-M + (V -A x)— = 1-
) P - A p ( ) x =v v vo v y n Pmav

V Pm ' v v~max V P '
x - u .

max max max

(5.7)



Define

H. = (V - A x)i -r

1 v vo v 'n P
max . v ,

^P '

max max

1-n
n

P ir^ma v 1 TD '

yn

v vmax x Pmax

equation (5»7) then becomes
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(5.8a)

(5.8b)

- AM
k
+^H

X
- AH

2
= .

"M
k

+ H
l " H

2 " ° ' *

This equation can be redefined in terms of small change of

the variables about an initial operating point as follows,

(5.9)

All quantities in the above equation are nonlinear

functions. When n is assumed constant, they can be expressed

by «

M, = f(P. ,P ),k x k v >

H
l = f ( x>VPv ),

H
2

= f(x,P
v ).

In order to obtain a linear differential equation, they must

be linearized using the same technique as before.

M,

Am = —

-

k p.

H.

AH
n

=
1 x

AP +
ko

vo

p
APV ,

A*- +

H, H,

Ap ""»"
xo v P

vo

Pvo

vo

Pvo

(5.10)

X
APV , (5.11)

Pvo

Pvo



36

H 2
AH 2 =

-J-

H 2
• Ax + -—
x rv

• APV , (5.12)Ao

Pvo Pvo

where all the partial derivatives are evaluated at an initial-
•

steady-state-operating point

P = P
V VO ;

P = P JV VO J /.'

p = p
k ko

,

X X
° »

X = X .
o

•

AM
k , AH-» A^ 2

are d e fin ecl as follows:

Alik
= li

k - Ko .
'.'".-'

AH
1 " H

l " H
lo , .

AH
2 = H

2 " H
2o .

Again the change in all " Avariables" must be small for

equations (5 .10) , (5 . 11 ) and (5.12) to be valid.

By letting

Pko
Pvo

Vi — —\
Pko

*
— D =

V Pv

^vo

expression (5.10) then becomes

AMk . bk APk - bvAPv . (5.13)
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The analytical expressions for b and b are given in Appendix
K. v

E.

From equations ( 5 • 8a ) and (5«8b), it is seen that

?H
1

9x

"3h
1

?h
x_ ' 9p~
o v

, and - -
x_ £PO V

are zero because x_ and P„„ are
x Q

vo

p prvo prvo

^vo ^vo

zero at a steady-state-operating point

.

By letting

2^
b
p

=
2?P

V
x >Ao

*Vo

Pvo

b. = ~-^
x 0-x. pvo *

*o

expressions (5.11) and (5.12) become

AHi = b£ APV , (5.14)

Ah
2

= b^i . (5.15)

The analytical expressions for b. and b. are given in Appendix
P x

F.

Substituting expressions (5«13), (5.l4) and (5. 15) into

equation (5. 9) results in

-bk^Pk + bv APv + b£APv - bi Ai = .

This can be rewritten as

b^^Pv by APv = bk ^Pk + b.. Ak
. (5-16)
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Equation ( 5 . 16 ) is a linearized first order differential

equation relating the fluid pressure in the chamber (shown in

Fig. 11) to the output pressure of the controller and the

displacement of the control element in valve D. It must be

remembered that it is valid only when the changes AP . AP .

v v

4 p
k

and Ax are small. When Laplace-transformed into the s

domain, assuming zero initial conditions, equation (5.16)

becomes

(o
p
s + bv)APv (s) = b

kAPk (s)
h
k
sAx(a),

Solving for AP (s) yields

f

bk APk (s) + biS Ax(s)
APv (s) = . (5.17)

b£s + bv

The above equation represents the transfer function of

the upper portion of the final control element, the output

being Al"v (s). It will be shown later that the coefficient of

A,X(s) becomes an inner-loop feedback function in the overall

closed-loop system.

B. Transfer Function For the Lower Portion

of the Final Control Element

The lower portion of the final control element is shown

schematically in Fig. 12. Let Kv be the spring constant, B

the viscous damping of the fluid, m the mass of the moving

parts, F the flow forces acting on the valve and F the1 c

coulomb friction forces due to seals.

The upward force due to the pressure difference on the
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diaphragm is

Spring
(kv )

in

Valve D

Fig. 12. Schematic repre-
sentation of the
lower portion of
the final control
element

.

F = (P - P )A
x v a v' v

This force is balanced by

the reactive forces which con-

sists of the inertial force of

the moving parts, the damping

/ force of the fluid, the spring

resistance, the coulomb fric-

tion forces due to seals and

the flow force of the fluid on

the valve , i.e.,

(P o - P)A -mx-Bx-kx
a v' v v v v

- F
:]
|-F

f
= 0. (5.19)

The flow force F , in

general, is a function of the

rate of change of the momentum flux entering and leaving the

valve and the pressure drop across the valve. If the working

fluid is air or some other gas, the density is very small.

Therefore the flow force can be considered insignificant.

If a double ported valve is used, the design is such that

the net pressure force on the valve is approximately zero. In

general the pressure forces will be small unless very high

pressure drops exist across the valve.

In the general case, the coulomb friction forces from the

seals may be significant. Figure 13 shows the coulomb friction



ko

Coulomb
friction

P.

-F,

/

Fig. 13. Coulomb friction
force as a
function of
velocity.

force as a function of x. It

is seen that this function is

discontinuous at x = 0. Thus

is is not possible to take

into account the coulomb

friction force in terms of a

linearized transfer function.

Since the damping and

inertial forces are small, it

is clear that the spring

resistance and the coulomb

friction are the dominant forces in this case. Therefore it

must be kept in mind that instability caused by friction may

occur in some cases, especially for type 1 and type 2 systems

(5). However, it will be shown in Chapter VI that this is a

type system, and therefore there is less danger of instab-

ility resulting from coulomb friction forces. Therefore it

will be assumed that the coulomb friction force can be neg-

lected as a factor which would cause instability in the

system.

When the flow forces and coulomb friction force are

neglected, equation (5. 19) reduces to

(5.20)

This linear equation can be redefined in terms of small

changes of the variables about a given initial-steady-state-

(P d - P )A -mx-Bx-kx = 0.* a v' v v v v
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operating point as follows

-A AP - m Ax. - B A.x _ k Ax = .v v v v v

Taking the Laplace transform, assuming zero initial condi-

tions, and solving for ^X(s) yields

A ,
.

-Av APv (s)
-Ax(s) =

. (5.21)
mv s + Bv s + kv

/

Equation (5.21) represents the transfer function for the

lower portion of the final control element. It is valid for

any magnitude change of the variables since equation (5.20)

is itself a linear differential equation.



CHAPTER VI

ANALYSIS OF THE SYSTEM BY BLOCK DIAGRAM APPROACH

A block diagram is very helpful in system analysis and is

used to obtain the open-loop and closed-loop transfer func-

tions of a system (7). It consists of a series of blocks lin-

ked together by line segments. Each component of the system is

represented by a block in the block diagram and the directions

of information flow are represented by arrows on the line seg-

ments. The transfer function of each component is written in

the appropriate block, thus indicating the relation between

the signals entering and leaving the component.

The block diagram of the system discussed in this report

is shown in Fig.l4. It consists of two loops. The inner loop

represents the final control element. For the outer feedback

loop a first order lag has been included to account for the

transmission line between the tank and the comparator in the

same way as was done for the transmission line between the

controller and the final control element.

In order to simplify the block diagram, it is useful to

derive the expression for the closed-loop transfer function.

Consider the system shown in Fig. 15, the closed-loop transfer

function can be obtained as follows.*

The output of the system is

C = G(R - HC)

.

Grouping yields c(l + GH) = GR

.
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Solving for — results in
H

R

(6.1)

- C

Fig . 15 . Illustrative control
system for obtaining
formula for closed-
loop transfer
func tion.

R 1 + GH •

The above formula can

be used to obtain the trans-

fer function for any single-

looped block diagram. Care

must be taken that if the

feedback is positive, the

plus sign in expression (6.1)

must be changed to minus.

Applying this to the inner loop of Fig. 15, we can obtain

the closed-loop transfer function of the final control element.

AxLs)
APk (s)

-Avbkaxt

(b£s+bv )(mv s +Bvs+kv ) + Avb£s

The denominator on the right side of equation (6.2) can be

multiplied out, like powers of s grouped together, and then

refactored into the following form:

(6.2)

AX(s) -A b. a .v k xt (6.3)
^Pk (s) " bpmv (s + Cl )(s

2
+ 25a>n s +<)

where Cj.yand cJn have values such that equation (6.3) is

equivalent to equation (6.2).

-A b. a .v k x tLet c = , the block diagram of the system thenK bpmv

reduces to that shown in Fig.l6.



Valve B

Ay(s) *- ayt

Controller Final control element

«t(a)
k (.)

(s+CiJCs +25«^s+^)

bph s+bvh

*»5

Tank

AP

Ts+1
U2.

Fig . 16 . Block diagram of the system after simplifying

Setting AY(s) equal to zero, we can obtain the forward-

loop transfer function (7)>

ckGk (s)
G(s) =

( s+Cl ) ( s
2
+250)n s +a)n ) (Ts+1

)

(6.4)

and the open-loop transfer function,

b, c. G. ( s )h k k v '

G(s)H(s) =

( s +Cl ) ( s
2+25«ns+a£) (Ts+1 ) ( bph s+bvh )

. (6.5)

Since there are no open-loop poles at the origin, this is a

type system.

Assume a proportional controller is used, such that

G (s) = K. The closed-loop transfer function of the whole

system can be obtained by applying formula (6.l) once more.
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AP(s) ckK (
bph s +bvh)

** iV ' (s + C]L )(s +25'&>
n s+«il

)(Ts + l)(b^h s+bvh ) + ckKbh

In most cases a pressure control system will operate with

AP.(t) = constant and the disturbance ratio is of interest.

The disturbance ratio is defined as

AP( S )
-ayt (s^c 1 )(s

2
+ 2>f6<;n 8 +gOn )(b^

)h s +bvn )

Ay? -)
=

2
2 *( 6 '7)

v > l»+C1 )(a +22?»n s+A)n )(Tfl +l)(b^h 8+bvh ) ckKbh

In general, it is desired to minimize the steady state

effect of any disturbances. That is, a disturbance Ay(tj =

step change should have minimum effect on AP(t)
s s

For a step change Ay(t) = Ay (AY(s) = ), the final
s

value theorem can be applied to find Z\P(t) as follows,S3

AP(t) = lim sAP(s) ,88
s-*0

A . ,

- ayt c l"nbvhAy
AP(t)

ss
= —^ . (6.8)

c l<°nbvh + ckKbvh

Therefore, in order to minimize the effect of distur-

bance Ayo on AP(t) gs when using a proportional controller,

the gain of the controller K must be very high.



CHAPTER VII

USE OF ROOT LOCUS PLOT FOR

TIME DOMAIN ANALYSIS

The open-loop transfer function for the system considered

is given by equation (6.5) • It is known that the root-locus

diagram starts at the open-loop poles for K=0 and for all

finite values of K gives the location of the closed-loop poles

as defined by equation {6.6).

Because T, the time constant of the tank, is directly

proportional to V , the volume of the tank, it will in general

be quite large. However, as indicated in Chapter III, the

magnitude of T is also affected by whether the system is oper-

ating in region 1, 2, or 3 as defined in "Fig.7* In regions 1

and 3» T will have its minimum values, while in region 2, T

will have its largest values. But in general, regardless of

the operating region, Yt will be the smallest open-loop pole,

while c-^, bvh/b ' h , and the poles for the quadratic factor

2 2
(s +2~$o3 s+tA^) will be larger in magnitude. Therefore the open-

loop poles for K = will be typically located as shown in

2 2
Fig. 17 • The roots of (s +25*^3+*^) have been assumed real

("£>1, overdamped) . They could be assumed complex (^<£ 1 , under-

damped) without changing the characteristics of the root-locus

plot

.

The angles of asymptotes for the root-locus plot are (6)
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Fig. 18. Typical root-locus plot with a proportional
controller.
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Although the intersection of the asymptotes with the

real axis cannot be determined quantitatively, it can be

qualitatively estimated. The resultant root-locus plot is

shown in Fig. 18.

It was shown in Chapter VI that to minimize the effect

of disturbances on ZlP(t), the gain K must be high if a pro-

portional controller is used. However, from the root-locus

diagram it can be seen that a high gain will cause two bran-

ches of the root locus to approach the jco axis and the system

will be oscillatory. For operation in region 2, the system

will be least stable for a given K because the open-loop pole

location -7T is closest to the imaginary "axis.

Therefore it can be concluded that' use of a proportional

controller with K very large to minimize the effect of distur-

bances on the controlled variable AP(t) can result in an

oscillatory system, or an unstable system if K is large

enough

.

The system can, however, be stabilized by means of com-

pensation, thus improving its performance characteristics.

Consider now the case when a derivative-plus-proportional

controller with transfer function

Gk (s)
= K(T

k s + 1)

is used. T. is the time constant of this controller. Substi-k

tuting this into equation (6.6) gives the new open-loop trans-
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fer function

b,c. Jv(T. s + l)

G(s)H(a) = =
h k

2

k
. (7.1)

( s + Cjl) ( s + 2fO)n s + COn ) (Ts + 1) (b^h s+bvh )

The disturbance ratio in this case will be

AP(s) -ayt (s-t-Cl j (s
2
-H25a;n s-t-^) (b^h s+bvh )

^Y^ (s + c 1 )(s
2
+ 25«;nS+^)(Ts +l)(b

^h8+bvh ) + bhckK(Tks+l)

The final value theorem is applied here again for a step

change Ay(t) = Ay
fl

i giving

AP(t; = lim sAP(s) ,
s s

s-»o

2
-a .c^ b , Ay

AP(t)
8B

.- 7j 1 n vh o_
# (?#I)

c l^nbvh + ckbvhK

This is exactly the same as equation (6,.8), therefore high

gain of the controller is again desirable to minimize the

effect of disturbances.

The angles of asymptotes for the new root-locus plot are

- 11 t
;;)

180
°

= ±k 5 °, ±135°,
5-

and the new root-locus plot is shown in Fig.19.

±f the zero of the derivative-plus-proportional control-

ler is located just to the left of the dominant pole -yT , the

zero will "cancel" this pole and the root-locus diagram is sh-

ifted farther to the left. The result is twofold: first, the

overall stability of the system is increased for a given

value of controller gain; second, the effect on the overall
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8 pi ane

cr

Fig. 19. Typical root-locus plot with a derivative-
plus-proportional controller.
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system stability due to changes in location of -Vt (for dif-

ferent operating regions as defined in Fig. 7) is minimized.

The system performance can be further improved using a

second or higher order controller. For example, if a control-

ler which introduces 3 negative zeros, the values of which are

such that intersection of asymptotes with the real axis is to

the left of the imaginary axis, is chosen, the root locus diag-

ram will lie entirely on the left half of the s-plane, because

the angles of asymptotes are then ±90 • This implies that no

matter how high the controller gain is chosen, the system is

still stable. On the other hand, increase in number of zeros

of the controller will complicate its design and structure,

thus making its manufacturing cost very high. Therefore, from

the economic point of view, selection of a second or higher

order controller cannot usually be justified in a pressure-

control-system.
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desired value, because of disturbances, will be kept small by

the feedback action of the closed-loop system. Therefore the

linearized analysis is especially applicable in this case.

The block diagram of the system is discussed in Chapter

VI. It consists of two loops. The inner loop represents the

final control element and the outer one the system feedback.

From the block diagram, open-loop and closed-loop transfer

functions are obtained. It turns out that the system analyzed

is fifth order.

The disturbance ratio (the ratio of controlled variable

to disturbance variable) is also obtained from the block

diagram. The steady-state relation of the output pressure to

a step disturbance reveals that in order to minimize the dis-

turbance effect, the gain of the controller must be high. It

is shown that the time constant associated with the tank is

quite large. Therefore, using root-locus methods, it is shown

that the time constant of the tank dominates the time domain

response because its corresponding open-loop pole location is

closest to the s-plane imaginary axis.

If a proportional controller is used, the system can

become highly oscillatory at the high values of controller

gain needed to minimize the effect of disturbances on the

controlled variable. It is shown, however, that the system

can be made more stable by use of a derivative-plus-propor-

tional controller. Higher gain values can then be used and

improved system performance obtained.



CHAPTER VIII

SUMMARY AND CONCLUSION

In this report the problem of controlling the pressure

of a compressible fluid in a tank (or vessel) is considered.

Examples of such pressure control problem can be found in the

distillation columns in chemical process plants. The control

of the pressure of a compressible .fluid in a tank is of inter-

est because the flow entering or leaving the tank through val-

ves may be either critical or subcritical depending upon the

ratio of downstream to upstream pressure at the valves.

It must be remembered that the analysis made in this

report is theoretical and therefore some deviation in the

response of such a system will be expected in an actual case.

The coulomb friction force due to seals in the pneumatic

actuator is disregarded because the system analyzed is type 0.

In type 1 and higher order systems, neglecting the coulomb

friction forces may create significant errors between theore-

tical and actual results.

In deriving the transfer functions for the system, non-

linear equations are linearized using the linear terms of

Taylor series expansion. This places the restriction that the

change of variable quantities from some initial-steady-state-

operating point must be small. Because the system analyzed

operates as a regulating system (input fixed) , the change in

the controlled variable (pressure in the tank) from its
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If a second or higher order controller is used, the sys-

tem performance can further be improved. But due to its com-

plication in structure, and therefore high cost in manufactur-

ing, use of such a controller is, in general, economically

prohibitive

.

/
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APPENDIX A

CRITICAL MASS-FLOW RATE

Substitution of r = (-—-) into equation (2.10a)

yields

M = KJL \ /(lT
1T)f1

P
1
(l -'TTT){i£t)c do \/ v k-l /v'l l x k+l /x k+l'

Vo\AiSi)e1 P1(^)(EfT)
k- 1

k + 1

KdMKiVsfr)""
1

•

where the subscript c denotes critical flow,
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APPENDIX B

ANALYTICAL EXPRESSIONS FOR a , AND a FOR CRITICAL
pi x

AND SUBCRITICAL FLOW THROUGH VALVE D

1. Critical flow. The flow equation in this case is

M. = K,A^(x) \/kPP (:—-)inc d d v
' \/. ^s s v k+l'

k+1
2 xk-1

(B.l)

Hence, it is clear that

a , = a , = ,pi pic >
(B.2)

a = a
x xc

= K

k + 1

^s s x k+l'
dx

(B.3)

2. Subcritical flow. The flow equation for sub-critical

flow through valve D is

2k
M. = K,A,(x) \/t^T ? P
ins d d x

' V k-1 \s s

k-1 _.

1 - (f)

k p 2/k

J s

Differentiating with respect to P gives

9
"— - Vd^VK"^

_i_

p

2=* y
2, P v k k+1 / P v

'

k^P ' k V P '

s s

2/k —
P x

/K
/ P V k

*<\ (#") " (#")

This can be rewritten as
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ins v s s

Vk
1-k

2(/-)
k

- (k+l)

dp

*VhH
2/k

k-l-i

i - if-)
k

After cancelling and simplifying, the above equation becomes

9m.
KdV x

)

ins

1-k "

?P

2k(k-l)(-^-)
\ 8

k-l-i

i - (f)

k

^s

When equation (B.4) is differentiated with respect to x,

the result is

3>M
xns

2x

Hence it follows

Kd \/ET Ps",

k-l^n

1 -
(-f-)

" 2/k d A (x)

("/-) —
8 dx

a , = a
v ins

pi pis £]

1-k

KdAd( x o)

P o k
2(—) - (k+l)

2k(k-l)-2 1 - <?*)
8 L s

p^ (k-l)/k-j
(B.5)

]
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APPENDIX C

ANALYTICAL EXPRESSIONS FOR a _ AND a FOR CRITICAL
p2 y

AND SUDCRITICAL FLOW THROUGH VALVE B

1. Critical flow. The flow equation in this case is

\o - Vb<*> X*wtt
k + l

2 N k-1

P Vk
Substituting P= p (— )' into the above equation gives

ir n k+l k+l

(C.l)

The analytical expressions of a _ and a are obtained by3 p2 - y

differentiating the above equation with, respect to P and y

and substituting in the respective values at the initial-

steady-state-operating point.

a „ = a
p2 p2c £.

1-k

W*o> (thX
2"

2 k
a a a
y yc

k + l

°a, 2 N k-1

p
7k ( k7T'
s

(C.2)
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d o

k+l
2k

:es , 2 k k=i
d \ {y)

I7k^k+1^
P' dy

(C,3)

2. Subcritical flow. With the substitution of

s . j,

the flow equation in this case is

yl = K,A.(yA /iTT € p (#")bs d b w/ \/k-l ^s s x P s
'

yk
k+l-,

"P 2/k P k
(— ) " (—

)

P P

After simplifying, the above equation becomes

M
2k

bs KJL (y) \ r^r p P (-^)
d b w/ \/k-l rs a v P '

P Yk
k-1 -|

(f)'
k -!

Differentiating with respect to P gives

(C.4)

2K pT^^(^)-
1/k

db V 11 "1 saP
8 /—EI

—

*¥£>
k

-

»

After simplifying and substituting in P = P , y yo' a
p2

18

obtained.

3m
a „ = a

bs
P2 p2s 3



bk

KdW \ I
' ^-i* .

P 2/k
I
PQ k

(C.5)

In a similar manner, the analytical expression for a is
y

easily shown to be
/

2m
a = a

bs
y ys 2

-O^ft
p~Tk

) PAIS8)s a v P

- P k-1

^P
2

)
k

- 1

d A
b (y)

dy

(C.6)
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APPENDIX D

ANALYTICAL EXPRESSIONS FOR a , a AND T AT

DIFFERENT OPERATING REGIONS DEFINED IN FIG.

7

•

Region 1. Flow through valve B is subcritical while that

through valve D is critical

.

a
xt

a /•xc J
a '

p28

a
yt

"
a
ys

a
p2s

'

T B
Vc
a _
p2s

where a , a „ anc
xc p2s

[ a are defined by equations (B.3)» (C5)
ys

and (C.6) respectively.
•

Region 2. Flow through both valves is critical.

a
xt

=
a
xc

a
p2c

ayt
"

a
yc

a _ »
p2c

T = <? c

a _ '

p2c

where a _ and a
p2c yc

are defined by equation (C.2) and (C3)

respectively

.

Region 3. Flow through valve B is critical while that

through valve D is subcritical

.



a
xs

xt a - a
p2c pis

a
Y c

yt a - a
,p2c pis

T ==
c

a _ - a '
p2c pis

where a is defined by equation (B.6).

66
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APPENDIX E

EVALUATION OF b, AND b
k v

Since the difference between P and P. (pressure drop
v k

across the line) is small, only subcritical flow needs to be

considered. The mass-rate of flow into the chamber, after

P
k

1/n '

replacing fk by fmax (p ) *. is
.

max

M = k.A \U-^r)e Pv(^
Jl-)

k d o\/ x n-l /v max k v P '

max

n+l-i
v x n

k k
.

(E.l)

Differentiating with respect to P gives

2n k >
<?M d oV n-l'^max k v P ' P__ nmax
9*

/ p 2 n+1

2V^>
n

" <r7>

n

' k k

2,
Pv N

n n+1.
PVxVn

k
n V P, P.

max 1 ,Wn
•(^)

2(/)
VA/l -

P sji
v>

nP
k
NP

k
2(:

— 1

? - H •

After cancelling and simplifying, the above equation becomes

3 m.
i

9 p.
K,A
d o

r P
2(p^)

k

1-n max.

- (n+l)

v
}

yn

max

2n(n-l) 1 - (p
2

)

k

n-1-,
n

(B.2)
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1+n

P
n

P m±l

k d o y
v ij-l' v max p7n P i.

max
(/)

n
- i

k

Simplifying gives

2n
Pv J"

k d o\Pn-l' v max v x P '

max

• P a=i -

(>)
n

- i

Differentiating with respect to P yields

yn_. KA /\/(_2n_)p
p (

v
\
7 "

c?M, d o V n-l y "max v v P ' , P. _l/nk v max n-1, k\ ~»
9P, (5s)

f p 2=1

<p*) " - 1

nP, X Pk v

C,A P ^ /^ 2n^maxPv^P

p a=i
,1c. n

v

(E.3)

From equations (E.2) and (E.3)» the analytical expressions

for b and b, are seen to bev k

-b = K^A
v do

r P iza
2(p^)

n
- (a*l)

ko

"max / ko \

'

n
P. *P '

ko max

2n(n-l)
P S=i-i '

ko
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APPENDIX F

EVALUATION OF b. AND b.
P x

Differentiating equation (5.8a) with respect to P

yields

2>H
1 1= i(V -Ax) enmax , v \

pp " h^'vo" ~
v~' P ^P '

v max - max

1-n
n

Therefore

b. —

v

1-n

P 2P,
- ^(Vvo - Ax) &ax^

max max

vo

vo

Treating similarly for equation (5„8b) gives

dn. P YnVO ^^ '
iJ

b. =^ u = A P (r^-)
x <7x P vV-max V P '

vo max
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This report presents an analysis of a pressure-control-

system, which consists of a tank, a controller and a final

control element. The object of this pressure-control-system is

to keep the pressure of a compressible fluid in the tank app-

roximately constant as disturbance flow varies.

The characteristics of compressible fluid flow through

valves is discussed and flow equations for both critical and

subcritical flow are derived. Nonlinear equations encountered

are linearized using Taylor series expansion. Laplace trans-

forms are used to obtain transfer functions for various com-

ponents of the system.

From a steady state flow analysis, curves relating pres-

sure in the tank and mass-flow rates to and from the tank are

plotted. These curves are useful in understanding the unsteady

operation of the system in critical and subcritical flow oper-

ating regions.

Block diagrams are constructed after transfer function

for each component is derived. By means of these block dia-

grams, open-loop and closed-loop transfer functions are

obtained. Also obtained is the disturbance ratio (the ratio

of controlled variable to disturbance variable) . This ratio

indicates that in order to minimize the disturbance effect in

the steady-state output pressure, high gain of the controller

must be provided.

Use of root-locus plots shows that the gain of the con-

troller must be restricted to some maximum value otherwise



instability of the system can result. The use of compensation

is discussed, and it is shown that if, instead of using a

proportional controller, a derivative-plus-proportional con-

troller is used, the performance characteristics of the system

will be improved. From the economic point of view, use of

second or higher order controller to make further improvement

of the system performance is not justified.
/


