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1. INTRODUCTION

A Weibull distribution can often be used to model

failure times of lifetime data. The form of the Weibull

distribution that will be considered here is given as

( ^t^-^e
^^^

, t >

pdf (t; a,e) = { e°' (1)

I , t <

where a is the shape parameter and 3 is the characteristic

life or the 63.2 percentile. The 6 parameter is commonly

referred to as the scale parameter. The c.d.f. for the above

form of the Weibull distribution is given as

^ ^ , t <

cdf(t; a,e) = { -[|)°' (2)

1 - e '^
, t >

An alternative form of this distribution given by

Weibull (1951) , is

1 - e ^ , t > Y
cdf{t)

, t < Y

where a and Q are as before and Y is a location parameter.

Note that (2) is just a special case of the form given by

Weibull where the location parameter is taken to be zero. We

will consider only the two parameter case which appears to be



the most popular form of the distribution.

One advantage of using the Weibull distribution is that

by varying a and B one can get a wide variety of

distributional shapes. For instance, by letting a = 1 we

obtain an exponential distribution with mean 3 . When B = 1

and a - 3.25, the Weibull distribution looks almost identical

to the unit normal distribution as seen in Figure 1. The

mean and variance for the Weibull distribution in general are

U = BTd + 1/a)

and

o^ = B^crd + 2/a) - [r(l + 1/a)]^}.

FIGURE 1
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One approach to estimating the parameters a and 6 is the

graphical procedure. It is often used in practice to

determine whether observed lifetime data can be adequately

modeled by a Weibull distribution. This involves plotting

the failure times on special Weibull reliability graph paper

to see if a straight line adequately describes the data. If

so, the data are assumed to be from a Weibull distribution,

and the parameter estimates can be obtained from the graph.

Another approach is maximum likelihood estimation. Solutions

to the likelihood equations do not exist in closed form and

need to be solved by numerical methods such as Newton-

Raphson.

For the two approaches discussed in this paper, it is

useful to make the logarithmic transformation. By doing this

the Weibull distribution is transformed into an extreme value

distribution which is derived below.

Let Y = ln(T) . Then

P{Y < y) = P(ln(T) < y)

= P(T < e^)

y

- 1 - e
'^

.

Now let y = In (3) and a = 1/a . Then

1/0
y -u

cdf(y) = 1 - e^^ ^ )

1 - e-e
(y - y)/a



The parameters p and a are location and scale

parameters, respectively. The mean and variance of the

extreme value distribution are

E(y) = u + 0. 577220

and

var(y) = 1.644930^

If U = and = 1 we have the standard extreme value

distribution where

cdf(y) = 1 - e-e

and

pdf (y) = e^ e"®.

The shape of the standard extreme value density function is

shown in Figure 2.

FIGURE 2
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Now estimating y and o for the extreme value distribution

provide estimates for a and 3 of the Weibull distribution.

Section two will discuss a regression approach for estimating

these parameters. In section three the best linear unbiased

approach to estimating these parameters is given. Section four

will compare these approaches. The last section will extend

these ideas to accelerated life testing.



2. Regression Approach

Let F(y) denote the c.d.f. of the extreme value random

variable Y. Recall,

(y-u)/a
F(y) = 1 - e~^

This implies that

ln[-ln(l - F(Y) )] = (Y - u ) /a .

Since the expression on the left is a linear function of Y we

can observe a sample of n failure times Yi » • • • / Yn from

an extreme value distribution and plot ln[-ln(l - F(yj^))]

versus y^ to estimate u and o. Of course F(y^) is unknown,

so we need to estimate this quantity to plot the data. The

particular estimate used is commmonly referred to as the

plotting position.

The first choice that will be looked at in this paper is

the mean plotting position. First note that if Y is a random

variable then F(Y) — U(0,1). Now the observed failure times

y^ , . . . , y are order statistics from an extreme value

distribution so F(y^), i = 1, . . . , n-will be order

statistics from a Uniform (0,1) distribution. The expected

value of the i— order statistic from this distribution is

i/ (n + 1) (Johnson and Kotz, 1970) and this is referred to as

the mean plotting position.

Now we have the relationship

ln[-ln(l - i/(n + 1))] :. (y^ - u ) /o

.

Let Xj^ = ln[-ln(l - i/ (n + 1))] for simplicity. By rewriting



the linear relationship between x^ and y^^ as

Yi ~ M + ox^

the data can be plotted and the estimate of u will be the

intercept and the estimate of a will be the slope.

Two other plotting positions that will be investigated

in this paper are the midpoint plotting position and mean

approximation plotting position. When the midpoint plotting

position is used, F(yj^) will be replaced by (i - 0.5) /n, and

when using the mean approximation plotting position, F(Yj^)

will be replaced by (i - 0.375)/ (n + 0.25).

Rather than estimating F(yj^) one might consider

estimating -ln(l - F(y^)) which is the i— order statistic

from an exponential distribution. The expected value of this

iHl order statistic is

i

.za/(n-j + l) = 1/n + l/(n-l) + l/(n-2) + . . . + 1/ (n-i+1)
J = l

(Johnson and Kotz, 1970). In this case Xj^ would be equal to
i

In (.Z,l/ (n-j + 1) ) and the same procedure as before can be used.
J = l

Regardless of how Xj^ is chosen, the simple linear

regression method of estimating u and a seem to be the

appropriate thing to do next. The idea, of course, is to

determine the values of and o that minimize

l(Yj^ - (0 + aXj^))^ . Using the notation of the ordinary

linear model, we let

B = i]



The familiar OLS estimate of 3 is

B = (X'X)"^ X'Y

where

1 Xn

and Y is an n X 1 vector of order statistics from an extreme

value distribution. It should be noted that weighted least

squares should be used but the performance of this simpler

estimator will be considered here.

Let Cov(Y) denote the covariance matrix of the random

vector Y. It can be shown that Cov(Y) = o^ V where V is the

covariance matrix from the standard extreme value

distribution (u = and o = 1). Also analogous to the normal

case note that if Yj^ is a random variable from the extreme

value distribution then Z^ = {Y^ - u)/o is a random variable

from the standard extreme value distribution. Now to see

that Cov(Y) = o^V first note that

Var(Y^) = Var(y + oZ^)

= 0^ Var(Zj^)

and

Cov(yi,yj) = E[(y^ - E(y^))(y- - E(yj))]

= E[{(u + OZ^) - E(u + OZ^))((u + OZj) - E(U + OZj))]

= E[(a(Z^ - E(Zj^))) (0(Zj - E(Zj)))]

= O^E[{Z^ - E(Zi) ) (Zj - E(Zj) )

]

= a2cov(Z^,Zj)

.



So Cov(Y) is o^Cov(Z) = o^V. From this, the covariance

matrix of § is obtained as follows:

Cov(§) = (X'X)"^X' (o^V) [(X'X)~^X']

'

= O^ (X'X)"^ X'V X(X'X)"^.

Tables of covariances for the standard extreme value

distribution are not widely available but were published by

(Mann, 1968). In her paper, tabled values were produced from

a simulation study for sample sizes ranging from 1 to 25. In

this paper the covariance matrices were simulated using Turbo

Pascal on a Zenith microcomputer. The results were obtained

by generating 1000 samples and compared closely to those

obtained by Mann. The expected values and covariance values

rarely differed from Mann's by more than 0.01 and 0.03

respectively.

This regression approach to estimating and applies

to censored data as well as complete data. The types of

censoring include right censoring, left censoring, and

censoring which occurs when items are excluded from the

sample due to breakage or any other reason which occurs

randomly. The type of censoring considered here is right

censoring or Type II censoring. This occurs when a number of

items are placed on test and the process is observed until a

fixed percentage, say, 60 or 80% have failed.

It should be noted here that the Y.'s are not

independent because they are ordered observations. Thus, the
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usual regression theory as developed for independent

observations does not apply. In particular, the estimates

are biased, a fact which is discussed in section 4. The idea

here is not to get the best estimates, necessarily, but to

come up with estimates which are "good enough" to use in

practice. A comparison of these estimates to the best linear

unbiased estimates is given in section 4.
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3. Best Linear Unbiased Approach

Let Z-^, Z2, . . . , Zj^ be the order statistics from the

standard extreme value distribution with c.d.f.

Z

F{Z) = 1 - e"^ .

Note that Z = (Y - \s)/o where Y is a random variable from the

extreme value distribution. This gives us the relationship

Y = M + OZ. If we let Y-^, Y2, . . . , Y^ be the order

statistics from the extreme value distribution, we have the

following set of equalities;

Yj^ = u + OZ-^

Y2 = U + CFZ2

n U + OZj^.

In matrix notation,

n

1 Z.

1 Z n

Noting that

E[Y]

'1 E(Zi)

10

U E(Z^)J

we can see that it is in the form of a general linear model

where E [ Y] = XB • Also, from the previous section we note

again that Cov(Y) = a^V where V is known.

Now the Generalized Gauss Markov Theorem (Lloyd, 1952)

can be applied here to get the best linear unbiased estimates
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of u and 0. This estimate is 6 where

= (X'V~^X)"^ X'V^Y.

The covariance matrix of and o is given by

CovlS) = oMx'V~^X)"^.

This procedure can again be used when there is complete or

censored data.
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4. Comparison of Regression Estimates to BLUE's

The major advantage of using the regression approach for

estimating y and o over the best linear unbiased approach is

that we do not need to know V. The regression estimates are

not expected to do as well as the BLUE's, but the aim of this

section is to determine how favorably (or unfavorably) they

compare in terms of bias and efficiency.

In order to obtain the bias of the regression estimates,

it should be noted that the expected values of and 6 need

only to be found in the case of sampling from the standard

extreme value distribution. To see how this is accomplished,

write the regression estimates of u and a as follows:

Z(xj^ - X) iy^ - y)

5 =

Zix^ - x)2

Z(xj_ - x) ( y + oZ^ -
( u + o7) )

Z (x^ - x)2

oZ (x^ - X) (Z^ - Z)

I (X^ - X)2

Thus,

Kx^ - X) (Z^ - Z)

E(d) = oE
Z(x^ - x)2

= oE(oo)

where Oois the estimate of a when sampling from the standard

extreme value distribution. The bias is

E(d - o ) = E(d) -

= oE(6o) - o
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= o[E(So) - 1]

where E(So) - 1 is the bias when sampling from the standard

extreme value distribution.

The estimate for u is written as

= y-ox = u+aZ'-ax

and

E(U) = y + OE(Z) - E(&)x

= U + OE{Z) - aE(Oo)x

= u + aE(Z - &ox)

where Z -dox = Oo is the estimate of u when sampling from the

standard extreme value distribution. The bias for estimating

using the regression approach then is

E(u - y) = E(0) - y

= OE(Z - SoX)

= oE(yo)

.

The efficiencies of the regression estimators will be

obtained by finding MSE(BLUE) /MSE(Regression) where

MSE(Regression) is Var (Regression) + (Bias)^. In Tables 1-4

the bias of the regression estimates and efficiencies are

given for each of the four regression variations discussed.

In each cell the top number is for and the bottom is for o.

All of the biases and efficiencies were determined for sample

sizes of 10 and 20 and three amounts of censoring— 0%, 20%,

and 40%. The type of censoring that was looked at is right

censoring or Type II censoring. Tables 1-3 are the results

when using the mean, mean approximation, and midpoint
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plotting positions resp. and Table 4 was obtained when

-ln{l - F(yj^)) was replaced by the expected value of the i—

order statistic from an exponential distribution.

When using the mean plotting position the bias for

estimating u is very small when there is no censoring. As

censoring increases the estimate for u becomes negatively

biased. When there is no censoring, a is overestimated, but

the bias gets close to zero as the censoring increases to

40%. The efficiency is high for estimating y with no

censoring and decreases as censoring increases. Just the

opposite occurs when estimating o. The behavior exhibited in

Table 4 (exponential mean plotting position) is almost

identical except that the bias for estimating u is even more

negative for all levels of censoring. This larger (in

absolute magnitude) bias thus causes the efficiencies for

to be lower than when using the mean plotting position for

all combinations of sample size and censoring.

In Tables 2 and 3, the approximate mean and midpoint

plotting positions appear to behave very much alike. The

behavior of u in each case is almost identical to that shown

in Table 1 (mean plotting position). The major difference is

that in Tables 2 and 3 the bias for 6 is very close to zero

when there is no censoring as opposed to 40% censoring in

Table 1. The bias increases as censoring increases so that S

is negatively biased at 40% censoring as much or more than a

is positively biased when there is no censoring in Table 1.
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Even so, the efficiency is higher in all cases for a in

Tables 2 and 3 than in Table 1. About the only difference

between Tables 2 and 3 is that the bias for a is not as

severe in Table 2. That is why the approximate mean plotting

position appears to have the most to offer. Another

possibility is to combine two of the procedures i.e. use one

procedure for estimating u and another for estimating a. The

best choice in that situation appears to be the mean plotting

position for y and either the approximate mean or midpoint

plotting position for a.



Table 1. Mean Plotting Position

Bias

Censoring

17

n = 10

n = 20

0% 20% 40%

.00"'a -.400 -.800

.170 .07o .030

-.020 -.400 -.800

.110 .010 -.030

Efficiency

n = 10

n = 20

Censoring

0% 20% 40%

u .97 .45 .28

.49 .57 .71

u .92 .26 .12

.45 .67 .73



Table 2. Approximate Mean Plotting Position

Bias

Censoring

18

n = 10

n = 20

0% 20% 40%

-.04a -.44a -.83a

.02a -.08a -.14a

-.00'*'a -.42a -.82a

.Ola -.09a -.15a

Efficiency

Censoring

n = 10

n = 20

0% 20% 40%

.94 .41 .26

.69 .76 .89

.91 .24 .12

.63 .71 .73



Table 3. Midpoint Plotting Position

Bias

19

Censoring

n = 10

n = 20

0% 20% 40%

-.05a -.450 -.850

-.040 -.140 -.210

-.010 -.430 -.830

-.030 -.130 -.190

Efficiency

n = 10

n = 20

Censoring

0% 20% 40%

.93

.76

.39

.76

.25

.88

.91

.66

.23

.67

.12

.68



Table 4. Exponential Mean Plotting Position

Bias

20

Censoring

n = 10

n = 20

0% 20% 40%

-.120 -.530 -.940

.120 .020 -.030

-.050 -.470 -.880

.090 -.020 -.07o

Efficiency

n = 10

n = 20

o

Censoring

0% 20% 40%

.85

.52

.32

.76

.21

.80

.87

.50

.20

.71

.10

.77
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5. An Improved Regression Procedure

The maximum likelihood estimate for estimating the mean

of an exponential distribution when there is Type II

censoring is (t;^ "^ ^2 "^ * * * "^ ^r * (n-r)tj,)/r where t^ is

the i— ordered observation. That is, if an investigator has

decided to terminate a study after r of the n subjects have

failed, the last (n-r) are set equal to the r^ one observed.

If the same idea is applied to the regression approach

considered here, the only additional thing that must change

is that the last (n-r) rows of the X matrix are now equal to

the r— row.

The evaluation of the regression method using the mean

plotting position was redone using the idea above. The

results are given in Table 5. The bias for was improved

tremendously and the efficiencies increased generally to

higher than .90. The bias that remained for a was still not

very satisfying, but at least it was consistent for varying

amounts of censoring.

The approximate mean plotting position with this method

results in a small and consistent bias for both y and a over

the different amounts of censoring studied. As shown in

Table 6, the efficiencies for u are high, and the

efficiencies for a are comparable to those of the best

regression methods in Section 4.



Table 5. Improved Regression Procedure

Mean Plotting Position

Bias

22

n = 10

n = 20

n = 10

n = 20

0%

Censoring

20% 40%

.OC'o .OO'^o .04a

.170 .170 .20a

-.020 .02o .05o

.110 .110 .13a

ISfficiency

Censoring

0% 20% 40%

.97 .97 .90

.49 .49 .53

.92 .95 .87

.45 .54 .56



Table 6. Improved Regression Procedure

Appoximate Mean Plotting Position

Bias

23

n = 10

n = 20

Censoring

0% 20% 40%

-.040 -.030 -.030

.02a .020 .020

-.00"^a -.00*0 .00"^o

.010 .010 .020

Efficiency

n = 10

n = 20
u

o

Censoring

0% 20% 40%

.94

.69

.96

.74

.95

.81

.91

.63

.95

.74

.91

.78
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6. Accelerated Life Testing

In many situations we would like to estimate the

parameters of a Weibull or some other distribution but the

failure times are so long as it is not practical. For

instance, suppose that a manufacturer of watch batteries

develops a new battery that will last much longer than

batteries currently being made. The manufacturer would like

to say that the new batteries last an average of six years,

which is two years longer than the batteries currently being

made. The manufacturer would certainly not be able to wait

for six years before marketing its new product, so it is this

type of situation that calls for an accelerated life test.

In an accelerated life test the operating environment is

changed in a way to speed up the failure times of the items

under study. The variable or variables that are changed are

commonly referred to as stress variables. The idea is to put

the items on test at different levels of the stress variables.

Using this information and standard regression techniques,

extrapolation can be used to obtain estimates of the

parameter of interest under normal operating conditions.

Model selection is probably the most important aspect of

the accelerated life testing process. A model here is simply

a function that describes the relationship between time and

the stress variable. In the case of a single stress

variable, call it S, the stress functions (or models) take on

three common forms for Weibull time-to-failure T (Mann,
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Schafer and Singpurwal la, 1974). Let y and a denote the

location and scale parameters of the extreme value

distribution of Y = log(T). The first form is where is

just a linear function of the stress variable. This model

then takes the form

y = A + B * S.

Another is known as the Arrhenius Model where y is a linear

function of the reciprocal of S. That is,

y = A + B/S.

The last model is known as the Power Rule Model in which y is

a linear function of log(S). This is,

y = A + B * log(S)

.

In all these models, a is assumed to be constant for all S.

Now, for example, suppose we observe the data in Table

7 (Nelson, 1982), and we wish to estimate y when the stress

variable (kV) is at 25kV which is its normal state. It is

known here that the distribution of failure times is Weibull.

The estimates of y and a are given in Table 8 using the

regression approach with approximate mean plotting position

and taking into account the censored observations. The

Arrhenius Model appears to be the most appropriate model for

this data and the plot of y versus 1/kV as shown in Figure 3

shows that the relationship is linear.
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Table 7. Insulating Fluid Times (in seconds)

to Breakdown with Censoring

45kV 40kV 35kV 30kV

1 1 30 50

1 1 33 134

1 2 41 187

2 3 87 882

2 12 93 1,448

3 25 98 1,468

9 46 116 2,290

13 56 258 2,932

47 68 461 4,138

50 109 1 ,182 15,750

55 323 1 ,350 29,180"^

71 417 1 ,495 86,100"^

Table 8

kV u

30 8.44 1.74

35 5.80 1.14

40 3.95 1.76

45 2.66 1.34
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FIGURE 3
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Using the method of least squares gives us A = -9.03 and

B = 522.09 for this model and R^ was .9987. Now we have the

estimated stress function.

0(kV) = -9.03 + 522.09/kV

and extrapolation to 25kV gives us 11.85 for an estimate of

U. We can assume the a is constant over the different levels

of kV since the data support the assumption here. An

estimate of that value can be obtained by taking a simple or

weighted average of o for each level of kV. A simple average

would seem more appropriate since the sample sizes are the
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same. In this case, a simple average gives us 1.495 for an

estimate of y. In terms of the original parameters of the

Weibull distribution, 3 = 140,084 seconds and a = 0.67

seconds at 25kV.

Now assuming the appropriate model has been chosen,

confidence intervals for y can be obtained. We can model the

estimate of y as

= A + B/kV + e.

If we make the standard assumptions about e for the simple

linear regression model we can form a confidence interval for

y at kV = 25 as follows:

2

1 i\ - ^)

± -a/2 ^ / n "^ SSxx

where y = -9.03 + 522.09/25 = 11.85, Xp = 1/25, x = .027 and

SS^^ = .00006909 and s = .112384. So a 95% Confidence

Interval for y at 25kV is

/l (1/25 - .027)^
11.85 ± 3.182 (.112384) /- + .00006909

= 11.85 ± .59 = (11.26, 12.44) .

Note that this an approximate 95% Confidence Interval since

the errors are only approximately normally distributed.

Now that the estimates for the parameters of the extreme

value distribution (and hence the Weibull distribution) have

been obtained, one can make inferences about the lifetimes
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of the items studied. This process could be done for

competing product possibilities and then comparisons of

estimated survival functions could be made. Also, it might

be desirable to just choose the one with the highest median

lifetime.

One must keep in mind when estimating y beyond the

range of the data that there is not only the usual sampling

error, but there is error due to model selection. Different

models should be compared to come up with the best one and

the estimates should be examined using common sense. Also,

using as many values of the stress variable as possible could

only help.
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ABSTRACT

The Weibull distribution can often be used to model

situations in which failure rates of objects is of interest.

Two methods of estimating the location and scale parameters

of a Weibull distribution are examined. A regression

approach to estimation is discussed and then compared the

best linear unbiased method of estimation. An improved

regression method is developed which results in a small bias.

Accelerated life testing is used when it is not practical to

observe the data because of long failure times. An example

is given to illustrate the use of the regression approach in

accelerated life testing.


