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I, Introduction

A wide range of disciplines use dose—response statistical techniques in
analyzing the relationship between levels of a stimulus and the resulting
responses. Dose-response methodology has been primarily developed by
researchers whose interest was to set the proper levels of pesticide
required to kill a certain insect species. In biological research, the
interest may be in determining the quantity of a drug needed to cure a
disease, or the amount of a vaccine needed to prevent ome. The dose may
also represent time, as, for example, studies on the relationm of age of
subjects to certain biological functions or the amount of time exposed to a
stimulus before a physical or chemical reaction occurs have used dose—
response methods. Dose-response methods have been unsed with psychological
experiments to investigate the relation of levels of measurable incentives
to a decision making process. Engineering processes may be studied to
determine how much disturbance a system or product can tolerate before it
fails.

The application of dose—response methods presumes that the level of
stimulus affects the nature of the response. If specified levels of the
dose do not always result in exactly the same response, estimatiomn of the
relationship between dose and response by experimentation is necessary. In
this case the varying responses to given dose levels are caused by
variability in the test subjects. Moreover, additional variability in the

estimated relationship will arise from factors which are present in a given



experiment and which are not controlled from experiment to experiment.
Statistical methods are then necessary which both estimate the dose—response
relationship given variability between subjects, and which allow for the
application of experimental design techniques to reduce variability within
and between experiments. The development of dose-response methodology has
been directed to meeting these criteria.

Although many responses may be measured on a quantitative scale, many
important questions concern a relationship where there are omly two possible
responses: either the subject responds or it does nmot. In the examples
given above, either the disease is cured or it is not, or the disease is
prevented or it is caught, or the insect is alive or it is as good as dead.
These cases of 'either—or’ or 'quantal’ responses constitute a major portion
of the dose-response methodology.

In a quantal response test, an experimental subject will be given a
specified dose of the stimulus. Each subject is assumed to have a certain
tolerance to the stimulus. Whether a subject responds or fails to respond
will depend on whether the dosage given was above or below that subject’s
tolerance. The level of tolerance presumably varies from subject to
subject, thus the tolerances of the population of subjects have a specific
distribution., A dose-response model can be fit to this tolerance
distribution and its parameters may be estimated using the experimental
data.

A common quantal response analysis assumes that the underlying

distribution of the tolerances is a normal. The analysis of this model is



called Probit Analysis. In Probit Analysis, the dose—response model is

given by the following equation:

X
P(response |dose=x) = f /Ew—}; exp [l(;—;%)z} dv

In this case, the variation in the responses of the subjects is binomial,
depending upon whether the specified dosage given to a subject is above or
below that subject’s tolerance.

The interest of this paper is to determine the effects of random
variation in the dosages on the results of Probit Anmalysis. The usual
Probit Analysis assumes that the administered dosages are known and fixed.
For example, if an experiment is conducted to determine the median effective
dose of an insecticide, each of 5 groups of subjects may be exposed to ome
of 5 different dosage levels. It is assumed that each subject within a
group is exposed to exactly the same amount of the insecticide. In many
cases ghe quality of a specified concentration of insecticide and the care
taken to ensure a uniform application of the insecticide to the subjects
will be sufficient to justify this assumption. If, however, there is some
doubt about the accuracy of an imsecticide’s concentration or about the
method of application of that insecticide, there may aiso be subsequent
doubts about the validity of the results of Probit Analysis. The intent of
this paper is to give guidelines for the amount and nature of random dosage
variation which can be tolerated before significant effects on the results

of Probit Analysis are noted.



II e Met of Pro Analysis

Dose-response techmiques involve the application of a stimulus to a
subject to achieve a desired response. The stimulus may be a pesticide, a
drug, or time. The subject in these cases might be an insect, a persom, or
a process. The response, respectively, would be the death of the insect,
the recovery of the patient, or the disruption of the process.

The dose-response techniques assume that there is a functional
relationship between the level or dose of the stimulus and the nature or
magnitude of the response. That is, when the dosage level is increased, the
response rate is presumed to also increase (or decrease). Thus, if a drug
is being tested in hopes of decreasing the blood pressure of a patient, it
may be presumed that the percentage decrease in the blood pressure will
depend on how much of the drug is administered.

The response is a measurement made on a specified characteristic of the
subject. In many cases the response may be accurately measured on a
quantitative scale, such as the percentage decrease in blood pressure. In
other cases, a quantal or either-or respomse is involved. Quantal responses
may be recorded either when gquantitative measurements cannnot be accurately
taken (e.g., the headache is either the same or better) or when the nature
of the response is that it occurred or did not occur (the subject either
lived or died).

The widespread discussion of dose-response techmiques for both

quantitative and quantal responses has been compiled in a book by Finney



(1978). The present study is limited to the quantal response problem, to
which Finney (1971) had devoted an earlier book. The following discussion
of the terminology and method of probit analysis is derived primarily from
these two books.

When the response of a subject is an either—or or quantal response, it
is presumed that the dosage level which elicits the desired response varies
for individual subjects. Thus, while a concentration of 10 ppm insecticide
kil}s the first insect, it may take 12 ppm to kill the next one. The dosage
level at which a given subject responds is called the tolerance to the
stimulus. Since the tolerance varies from subject to subject, it is
necessary to determine the distribution of the tolerances for the population
of subjects.

If the distribution of the tolerances is given by f(x), the probability

of a response to a dose x is given by

P(response|dose=x) = fx f(v) dv
The adequacy of the dose response model is determined by the suitability of
the tolerance distribution assumed. Although Finney lists a number of
distributions that have been used, he argues that only the normal and
logistic distributions have been given a practical justification. If the
logistic distribution is assumed, the method is called Logit Analysis.
Probit analysis, the subject of the remainder of this study, is the method
that deals with quantal responses where the underlying tolerance

distribution is assumed to be a normal.



The problem in dose—response studies is to estimate the dosage levels
that will give certain desired response rates. The variable of interest in
an experiment will be the number, or percentage, of subjects that exhibited
the desired response at each dosage level. Thus the dosage levels are
estimated in terms of the dose that causes a given percentage of the
subjects to respond. These doses are known as the effective doses or,
because of the early methodological contributions of insecticide studies,
more commonly as the lethal doses (LD). Thus, LD10 and LD90 are,
respectively, the doses which are estimated to cause a 10% and a 90%
response rate, and LD50 is the median effective dose (which is the mean for
the normal distributionm). .

In the probit dose response model, where the tolerances are normally

distributed, the probability of a response to a dose x is given by:

- - % l = V-U)Z d
P(response|dose=x) = T exp = v

The solution of the LD50 is the dose which causes half of the subjects to
respond. For the normal case, as with any symmetric distributiom, it is
evident that this value is equivalent to the mean of the distribution, that
is, LD50=u. The solution for other LD values will involve both the mean and
standard deviation of the tolerance distribution. It is helpful to make the

following transformation:
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where Y= (x-u)/ o =-u/o + zfo =a + Bx.
Thus the mean and standard deviation of the model may be expressed in the
form of the linear equation Y = o + Bx.

The mean and standard deviation are most commonly estimated by using

maximuom likelihood estimates. If, in an experiment, a dose x, is tested omn
ni subjects, the probability that T, respond is the binomial probability

given by %

n; V. n.-r.
[r}] P (l-Pi) i1

If ¥ different doses of the stimulus are tested, the log likelihood

function, L (say), is proportiomnal to

(ni-ri) ln(l-Pi)
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where Yi = a+Bx,

then the maximum likelihood estimates of 1 and O are obtained by determining
the values of @ and 3 which maximize the likelihood function. These values

are found by solving simultaneously for @ and B in
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and

n ~—1x
-
]
o

i 1 Pi (1-Pi)

where Zi is the height or ordinate of the standard normal curve at the point

Yi. .

Although it may be difficult to solve these equations explicitly, often
an iterative procedure will readily provide approximations until a
satisfactorily close solution is determined. If, for example, 2; and B are
initial estimates of o and B, second approximations oy = a] + Sa) and B2 = B)
+ 6B) may be obtained by a Taylor-Maclaurin series expansion to the first

order, where Saj and &8) are the solutions to

il 2L 32L
—_— — =
o 5o} Bulz * Salaalasl 0
and
2 2
3L § day 3L + 88y il 0
3B L RT3 3812

The second approximations, a; + da; and 8; + 68;, may then be substituted
for the initial estimates a; and 8;, and the process may be repeated until a
specified measure of closeness is attained.

Finney makes the approximation ri/ni= P; in the second partials and
mixed partials above. With this approximation, and letting

2
v, Zi / pi(l pi)



the equations above simplify to the following equations which have the form

of normal equations for weighted least squares
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where T B X, and Zi are as defined previously. Letting

1
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then substituting, the normal equations become
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It is now evident that solutioms to ap; and 3; may be obtained by linear

regression methods. Letting
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the solutions become

and

Ty T ¥ = Bzx
Now set 8; = B> and a; = a,; and iterate for another approximation. The
procedure is continued until a prespecified measure of closemess is
attained. The usual measure is to compute
k
E (@) + 8% = oy = Byx;)2

] 1

.I‘
after each iteration. When the difference between this sum of squares from
successive iterations is small, subsequent iterations will change the

estimates of @ and B very little for the normal distribution, so the

procedure is stopped.

Once the iterative process is completed, a test of the fit of the
estimated model to the data may be made. The test statistic, which is a
weighted sum of squares of the deviation between the predicted and the

observed doses, is given by

where
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Sxy =1 MyWiXs¥y = k
1£1n"w‘
and
k 2 (iz]n1w1x1)
Sxx = TZ]“‘ i © Tk
RA

Under the null hypothesis that the model fits the data, Ii is approximately

distributed as a chi-square with k-2 degrees of freedom.

If the hypothesis that the model fits is rejected, a further
examination of the data will be required. If deviations between the
predicted and observed data are systematic, the indication is that the model
does not fit, and the researcher must begin with a new model. On the other
hand, if the deviations are sporadic about the response curve, the groups of
subjects tested at each dose may be heterogeneous. If the researcher
believes that the model is correct and that the large deviatioms are caused
by a lack of randomness or independence of the test subjects, Finney defines

a 'heterogeneity factor’, which is given by

n o= X
c
k-2

All variances must be multiplied by this factor, which increases as the

deviations from the model increase. Additiomally, all uses of the standard
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errors, such as in computing confidence intervals, must use a percentage
point from the Student’s t distributiom with k-2 d.f., rather than the
normal percentage point. Finney warns against adopting the heterogemeity
factor simply for its convemience.

Fiducial limits, which are similar (and often identical) to confidence
limits, and which reflect the uncertainty over the true parameter values,
may be set about the LD values to provide a range in which the true LD
values should lie. The appropriate variance is

1 (x
var(ty) = 7 * S

I on.w, XX

i=1

The fiducial limits about a given LD value are then

Y, o= (Z) s.e.(Y;)

where Z is the appropriate percentage point from the standard normal
distribution. If a heterogeneity factor is being applied, it must be
multiplied against the variance of the LD value and the normal distributionm
percentage point must be changed to the appropriate percentage point from
the Student’s t distribution.

A more satisfactory approach to computing the fiducial limits is to use
Fieller’s theorem for the variance of a ratio. The form of the limits is

L

—.2.2
N SR - T t h(1-g) h{m-x) |
m o+ (m - x) = 61(1-9) ” + Sxx J
n.w,

i=]
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where: m is the LD estimate (e.g., for the LD50, m=a,),

t is a normal percemtage point,

]
-
.

and h

If the heterogeneity factor is appropriate, it is substituted for h and t

becomes the appropriate Student’s t percentage point.
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III e Des and Results Simulation

The possibility of random variation around dosages in the probit dose-
response model was considered in a paper by Patwary and Haley (1967). They
indicated several modifications in the probit analysis method that could be
used to account for discrete (and specifically, Poisson) variation about the
doses. The interest in the curremt study lies more in determining the
seriousness of the effects of dosage errors on specific results of probit
analysis. In other words, does the standard probit analysis techmique,
which assumes that the dosages are fixed, perform satisfactorily even when
the dosages are random variables? The present study is limited to the case
when the dosage errors are normally distributed.

For the extreme case, it is evident that if variation about the dosages
was large enough, the dosages could not be distinguished and an adeqnate
dose-response model could not be fit. Although it may be presumed that mo
carefully planned study would allow such an extreme, it is also extremely
difficult to conceive of a study in which the dqsages were exactly fixzed
with no possibility of variation. The question becomes, then, how much
variation is tolerable?

To test the effects of variation about dosages, a simulation study was
designed. Three levels of variation were comsidered. For purposes of
control, some groups of subjects were exposed to the 'nominal’ dosages with

the only variation being the binomial variationm of the subject’s response.
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The other groups of subjects were subjected to 2 different levels of dosage-
errors which were simulated to cause the 'actunal’ dosages to vary about the
nominal dosages. For ome level of variation, successive levels of the
nominal dosages were more than 2 standard deviatioms of the error apart,
while the second variation level caused 2 successive nominal dosage levels
to be within 2 standard deviations. The error variation was assumed to be
normally distributed with equal variances about each of the nominal dosage
levels.

Two other related factors were comsidered alomg with the dosage errors,
Since the effect of both large and small numbers of subjects was desired,
the simulation was constructed for both 10 and 50 subjects per dosage level.
The third factor was motivated by a possible difference in the method of
application of the dose. In many experiments, a dose or batch of doses
given to a group of subjects might vary from the presumed dose, but vary in
the same direction for each subject. For example, if a pill was supposed to
contain 20 mg of a drug, a certain batch might be slightly shortchanged so
that every pill had approximately 19.8 mg of the substance. Or an
insecticide sprayed om 50 flies might only have 19.8 ppm concentration of
its active ingredient, exposing each subject uniformly to a slightly lower
dose. On the other hand, a spray with 20 ppm might be diffused during
flight so that some flies received a different concentration of the
insecticide than others. The experimental situation may affect how
variation in the doses is represented to individual subjects in the
experiment. Thus the third factor involved simulating the applicatiom of

the dosages to 3 different sizes of groups of subjects. In the first case,
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all subjects were treated collectively with a uniform dose of the stimulus.

The second case divided the subjects into two equal groups which received

uniform doses from two separate batches of the stimulus.

The third case

varied the dosage individunally for each subject in the sample.

The resulting 14 treatment combinations of the 3 factors are summarized

in the following chart, listing in the appropriate cell the notation with

which each treatment combination will be identified in the rest of this

chapter (the notation is of the form (N,S,G), where N is the sample size, S

is the standard deviation of the dosage errors, and G,

group size to which the doses were applied):

=0.0

s=1.0

if applicable, is the

s=2.0

Number of Number of Number of
Subjects: Subjects: Subjects:
10 50 10 50 10 50
Group NA:(10,0) (50,0) (10,1,10) (50,1,50) (10,2,10) (50,2,50)
size: (10,1,5) (50,1,25) (10,2,5) (50,2,25)
(10,1,1) (50,1,1) (10,2,1) (50,2,1)

where s is the standard deviatiom of the dosage errors.

In order to simulate the probit dose-response model, an intercept and

slope of the response curve or, equivalently, a mean and standard deviationm

of the tolerance distribution must be selected.

The selection of a value

for the mean is arbitrary since the respomse curve will shift back and forth

but will not change in form if different means are simulated.

On the other

hand, the variance will change the form of the response function since it

singnlarly determines the slope of the function.

particular value for the variance, however,

The selection of a

is important only in relation to
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the range of the doses selected. Since the performance of probit analysis
is primarily affected by the range of the response rate, Finney (1971) has
recommended that an experiment shouwld aim for doses that give response rates
of between 10% and 90% for small sample sizes and between 30% and 70% for
large samples.

For this study, a dose of 20.0 was assumed to be the median effective
dose. A standard deviation of 6.0 was assumed and 5 doses were selected at
the levels 15.0, 17.5, 20.0, 22.5, and 25.0. Although these values are
arbitrary, this combination of dosage levels and variance will keep the
response rate roughly in the range of 10-90% (even with some dosage
variation).

The data were simulated independently for each of the 14 experimental
conditions making the design of the simulatiom study a completely randomized
design. For the nominal case, the expected probability of response for each
dose was computed by integrating the normal distributionm up to the given
dosage level. Similarly, a probability was computed for the dosage—error
cases after a randomly generated normal variation was added to each dosage
level. The normal random numbers were generated using the Statistical
Analysis System (SAS) Institute’s RANNOR function. Once the probabilities
were calculated, they were compared in magnitude to a stream of either 10 or
50 uniform random numbers, corresponding to subjects, using the SAS RANUNI
function. If P is the probability of response for a given dose and U
represents the uniform variable, then if U ( P, the subject was recorded as
responding to the dose, while if U > P a non-response was recorded. The

procedure was then replicated for each of the 14 treatment combinations, 200
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times for the 2 nominal dose combinations and 50 times for the 12 dosage-
error combinations. The random number streams used for each of the 10
treatment combinations were seeded independently.

The effects of the 3 factors in the study on the estimates of the
population parameters were investigated. The population parameters are H,
0, and LDp, where u is the model mean, o is the model standard deviationm,
and LDp are the LD values for percentages from .01 to .99. Means and
variances of the estimates were obtained from the simulation. In adQ}tion.
fiducial limits of the probit dose response model were comnsidered. For each

percentile for which an LDp value was computed, it was observed whether the

expected dose at that percentile fell within or without the estimated 95%

fiducial limits.

Results of the Simulation

The maximum likelihood estimates of the mean and variance of the probit
model, as described by Finney, and the estimated 95% fiducial limits have
been incorporated into the SAS Institute’s Probit Amalysis procedure, which
was used to compute these estimates. The pertinent estimates of the mean
and standard deviation, with their sample variances and covariance, are
summarized in Table 1 for all 14 treatment combinations,

In general it may be seen that each of the 14 treatment combinations
closely estimate the true value of the mean. The population mean, 20, is

within a standard deviation of each treatment’s estimate of the mean. Thus,
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the estimate of the mean of the probit model appears to be unbiased over the

levels of

the factors considered in this study.

Table 1. Estimated means and standard deviations of the model, with their
sample variance and covariance.

Treatment fi Var (i) G Var () Cov (1,3)
(10,0) 20.1342 3.8544 6.99332 48.557 9.182
(10,1,1) 20.0363 2.1538 7.04446 15.394 1.526
(10,2,1) 20.0337 1.3132 6.59288 6.388 0.465
(10,1,5) 20.3736 2.7500 7.09462 20.998 4.713
(10,2,5) 20.1145 2.0510 6.93068 20.866 2.918
(10,1,10) 20.2781 2.8473 8.52665 179.894 8.805
(10,2,10) 19.7968 20.1403 8.72122 174.458 -38.998
(50,0) 20.0077 0.2452 6.05314 0.749 -0.071
(50,1,1) 19.8599 0.2685 6.24935 1.000 0.043
(50,2,1) 20.0882 0.3087 6.39461 1.641 0.144
(50,1,25) 20.2050 0.2288 6.05205 0.743 0.194
(50,2,25) 20.0175 0.6283 6.95123 5.467 -0.639
(50,1,50) 20.0925 0.3100 5.95700 0.890 0.087
(50,2,50) 19.9957 1.8991 6.56063 3.401 -0.636
The sample variances of the estimated means for the 14 treatments,

which are shown in column 2 of Table 1, indicate a different picture of the
effect of the experimental factors on the estimation of the means. The
magnitude of the higher variances of the smaller sample size treatments are

particularly noteworthy. While the variances of . are generally below 1.0

for the large sample size treatments, treatment (10,2,10), with a small

sample size and large dosage errors, has a sample variance of over 20.

The variances of the estimated means for the 14 treatments were tested

for equality using Levene’s test. For each treatment, the absolute value of

the deviation of each observed model’'s estimate of the meam from the
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treatment sample mean was recorded. An analysis of variance conducted on
these absolute deviations gave an approximate test of the equality of
variances from each treatment., The main factor effects are tested by
comparing the means of the deviations over each given level of the factors.
The analysis of variance table, followed by an ordered listing of pairwise
t-tests on the 14 treatment mean deviations, is given in Table 2. The
results indicate that there are significant interactions between the level
of dosage error and the method of application, and between dosage error and
sample size. The unusually high variance of treatment (10,2,10) indicates
that when a small sample size is combined with large dosage errors and a
collective dose application, the estimate of the mean of the probit model
lacks precision. Most of the small sample size treatments may be
significantly differentiated from the large sample size treatments. The
larger dosage error treatments demonstrate less precision of the estimate
when the dose is applied collectively, but an application of the doses to
the subjects individually or to subgroups of the subjects negates to some
extent the dosage error effect.

The difference in the precisionm of the estimates of the mean by
different treatment combinations is further illustrated by the boxplots of
the sample means given for each treatment in Figure 1. The plots
demonstrate that the distributions of the small sample estimates are subject
to more extreme values than the larger sample size treatments. Thus,
although the estimates of the mean by all treatment combinations are very
good on the average, the small sample cases may give very poor estimates for
any given trial. Table 3 shows the results of a test of normality of the
distribution of each treatment: the Shapiro—-Wilk test was used for the

nominal treatments, and the Kolmogorov—-Smirnov test for the other



Table 2.

model means.

Source

Sigma

N

Group size
S*N

S*G

N*G

S*N*G
Error
Total

Pairwise t—tests:

Means with the

=

RN DR P

2s

986
999
*Note: within levels of G, there are only 2 levels of Sigma.

SUM OF SQUARES F

17.03333521 5.40
103.99698409 65.89
31.84284328 10.09
27.44238609 8.69
28.33466490 8.98
4.48708993 1.42
3.91005949 1.24

1556.21378202

. 1780.04569667

Levene's test on the equality of variances of the estimated

PR > F

0.0047
0.0001
0.0001
0.0002
0.0001
0.2418
0.2902

same letter are not significantly different.

Grouping

A

oW wwww
anan
L= =~

MEEmMEm

Mean

2.2718
1.1841
1.1826
1.1604
1.1051
1.1034
1.0574
0.9096
0.6097
0.4371
0.4236
0.4230
0.3881
0.3837

N

50
50
50
200
50
50
50
50
50
50
50
50
50
200

Treatment

(10,2,10)
(10,1,10)
(10,1,5)
(10,0)
(50,2,50)
(10.1,1)
(10,2,5)
(10,2.1)
(50,2,25)
(50,1,1)
(50,1,50)
(50,2,1)
(50,1,25)
(50,0)

21
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Figure 1. Boxplots of the estimated model means for each of the 14 treatments.

Treatment (10,0 Treatment (50,0)
MEAN # BOXPLOT MEAN # BOXPLOT
39.5 1 * 21.4 1 0
38.5 21.3
37.5 21.2 1 [
36.5 21.1 (
35.5 21.0 [
34.5 20.9 2 [
33.5 20.8 7 [
32.5 20.7 3 [
31.5 20.6 9 [
30.5 20.5 10 [
29.5 20.4 11 [
28.5 20,3 13 +————s+
27.5 20.2 10 [ [
26.5 20,1 15 [ [
25.5 20,0 28 t—i——=
24.5 19.9 11 [ [
23.5 3 0 19.8 19 [ [
22.5 14 [ 19.7 13 +=———s+
21.5 28 [ 19.6 13 [
20.5 66 T——i—==s 19.5 2 [
19.5 50 +————s 19.4 6 [
18.5 26 [ 19.3 7 [
17.5 8 [ 19.2 6 [
16.5 4 0 19.1 4 [

19.0 1 [
18.9 4 {
18.8 4 [
Treatment 0,1,1 Trea ot (50,1,1
MEAN # BOXPLOT MEAN # BOXPLOT
25.25 1 20.9 1 [
24,75 0 20.8 [
24,25 20.7 2 [
23.75 20.6 1 [
23,25 20.5 1 [
22,75 2 [ *20.4 3 [
22.25 { 20.3 3 [
21,75 1 [ 20.2 § ——
21.25 7 [ 20.1 30 [
20.75 9 et 20.0 2 [
20.25 8 e 19.9 31 {
19,75 6 [ [ 19.8 1tz
19.25 5 +——— 19.7 3 [
18.75 4 [ 19.6 4 [ [
18.25 4 [ 19.5 3 [ !
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Figure 1. continued
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treatments. These tests demonstrate a lack of normality of 5 separate
treatment combinations, of which all but ome have the small sample size and
one or more extreme estimates. These attributes of the small sample size

treatment estimates hurt the precision of the estimates.

Table 3. Test of normality of the estimated model means,

Treatment Test statistic p—value Treatment Test statistic p-value

(10,0) D: .117737 .01 (50,0) D: .055290 .138
(10,1,1) ¥: .977309 .620 (50,1,1) W: .973365 .4 86
(10,2,1) W: .985683 .911 * (50,2.1) W: .988021 .950
(10,1,5) W: .907292 .01 (50,1,25) W: .970651 429
(10,2,5) W: .976718 598 (50,2,25) W: .919436 .01

(10,1,10) W: ,951692 .079 (50,1,50) W: .976475 .589
(10,2,10) W: ,703889 .01 (50,2,50) W: .985725 912

To this point, it is evident that the levels of factors comsidered in
this study do not on the average affect the estimate of the mean of the
probit model, but the precision of this estimate is affected. In individual
trials, a small sample size will occasionally lead to very poor estimates,
but these are balanced out if a number of trials are conducted. A smajler
sample size also gemerally hurts the precision of the estimate. The larger
level of dosage errors is typically detrimental, especially when the doses
are applied collectively, but an individual application will sometimes
balance out the dosage error effects.

The estimate of the standard deviation of the probit model for each of
the 14 treatments has been given in Table 1. Each treatment provides a
reasonable estimate of the standard deviatiom, as the true population
standard deviation of 6.0 is within one sample standard deviatiom of each
treatment’s estimate. At the same time, however, the small sample size

treatments consistently overestimate the variance. For each pair of
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corresponding small-large sample size treatments except ome, the small
sample size treatment estimate is farther away from the population value
than is the large sample size estimate. This differemce is particularly
noticeable in the collective application treatments,

The variances of the estimated model standard deviations magnify the
effect that a small sample size has on the estimates. The extremely high
variances of some of the small sample size treatments was unexpected.
Treatments (10,1,10) and (10,2,10), with small sample sizes and a collective
application of the doses, have variances which are over 50 times as great as
the variances of the corresponding large sample treatments.

Levene's test was used to test the equality of the variances of the
estimated standard deviations for the 14 treatments. The analysis of
variance table of the absolute differences of the standard deviations from
each treatment's average standard deviation is given in Table 4, followed by
an ordered listing of pairwise t—tests between the 14 treatments. The
interaction between sample size and application method is significant
because of the detrimental effect of a small sample size when a collective
application is used but not when the dosages are applied to smaller groups
of subjects. Similarly, the interaction between sample size and level of
dosage errors is caused by a detrimental effect of the dosage errors on the
small sample size treatments but the lack of a dosage error effect for large
sample size treatments. Thus the smaller sample size will generally hurt
the precision of the estimate of the standard deviation of the probit model,
and especially when the dosages have been applied collectively. The
presence of dosage errors also causes a slightly detrimental effect on the
precision of the estimates, although the volatibility of the small sample

sizes may mask this effect.
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Levene's test of the equality of variance of the estimated

model standard deviations.

Source DF SUM O UARES
Sigma 2 102.75464673
N 1 971.14042179
Group size 2 262.29932698
S*N 2 401.95960170
S*G 2 28.05792181
N*G 2 219.40457932
SeN*G 2 7.05957100
Error 986 25523.05416722
Total 999 27258.22365852

F

1.98
37.52
5.07
7.76
0.54
4.24
0.14

PR > F

0.1380
0.0001
0.0065
0.0005
0.5818
0.0147
0.8725

®Note: within levels of G, there are only 2 levels of

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping

A
A

=-B---- - -
eReNrNerNeNeNeNe NNy

Cooouovouoo

Mean

5.3979
4.7886
2.7425
2.6472
2.5919
2.4029
1.7905
1.5358
1.4098
0.9069
0.8298
0.7478
0.6783
0.6717

N
50
50
50
50
50

200
50
50
50
50
50
50
50

200

Treatment

(10,2,10)
(10,1,10)
(10,1.,5)
(10,1,1)
(10,2.5)
(10,2,1)
(50,2,25)
(50,2,50)
(50,2,1)
(50,1,1)
(50.1.50)
(50,1,25)
(50,0)

Sigma.
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The boxplots of the sample standard deviations for each treatment,
which are given in Figure 2, further evidence the problems caused by small
sample sizes. Each small sample size treatment provided at least one
greatly exaggerated estimate of the variance. Even without these extreme
values, the dispersal of the estimates was greater for the small sample size
cases, indicating a-genoral problem with the precision of the estimates.

One might expect that the estimates of the mean and variance of the
probit model are independent, but the sample data give conflicting evidence
on this point. Table 5 shows the sample correlation between these estimates
and a p-value for the test that the sample correlation equals zero. In
general it may be seen that the estimates of the model’'s mean and variance
are uncorrelated for the large sample size treatments and correlated for the
small sample size treatments. Treatments (50,0), (50,1,25), and (50,2,25)
break this pattern, although the estimates that the first two of these

treatments give for both the mean and variance are very precise.

Table 5. Correlation coefficients of the estimated mean and variance
of the probit model.

Treatment Corr(i,0) p—value Treatment Corr(i,) p—value
(10,0) 67115 .0001 (50,0) -.16594 .0189
(10,1,1) .26503 .0629 (50,1,1) .08319 .5657
(10,2,1) .16051 .2655 (50,2,1) .20253 .1584
(10,1,5) .62016 .0001 (50,1,25) 47134 0006
(10,2,5) .44616 .0012 (50,2,25) -.34495 .0142
(10,1,10) .38904 .0052 (50,1,50) .16647 .2479
(10,2,10) =-.65791 .0001 (50,2,50) -.25027 .0796

p-value: for the test of Ho: ¢=0

The estimate of an LDp value is given by LDp = ¢ + Zp&. Estimates of

the expected values of the LD estimators for several response probabilities

from .01 to .99 are given in Table 6 for all 14 treatment combinations. The



30

Boxplots of the estimated model standard deviations for each of

Figure 2.

the 14 treatments.
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continued
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6. Mean of the LD values for each response probability.

10,1,10 10,2,10

Pop'n

6.0419

7.6775

8.7152

9.4959
10.1309
10.6714
11.1453
11.5696
11.9555
12.3107
13.7814
14.9503
15.9531
16.8536
17.6881
18.4799
19.2460
20.0000
20.7540
21.5201
22.3119
23.1464
24.0469
25.0497
26,2186
27.6893
28.0445
28.4304
28.8547
29.3286
29,8691
30.5041
31.2848
32.3225
33.9581

10,0

3.8653
5.7717
6.9812
7.8911
8.6313
9.2612
9.8136
10.3081
10.7579
11.1719
12.8861
14.24385
15.4173
16.4669
17.4396
18.3625
19.2554

20.1342

21.0130
21.9060
22.8289
23.8015
24.8512
26.0200
27 .3823
29.0965
29.5106
29.9604
30.4549
31.0073
31.6372
32.3773
33.2872
34.4968
36.4031

(10,1,1) (10,2,1) (10,1,5) (10,2,5)

3.6484

5.5688

6.7871

7.7037

8.4492

9.0838

9.6402
10.1383
10.5914
11.0085
12.7352
14.1075
15.2849
16.3422
17.3219
18.2516
19.1511
20,0363
20,9215
21.8210
22.7507
23.7304
24.7877
25.9651
27.3374
29,0642
29,4812
29.9343
30.4325
30.9889
31.6234
32.3690
33.2855
34,5039
36.4242

4.6964
6.4936
7.6339
8.4917
9.189%4
9.7833
10.3040
10.7702
11,1943
11.5846
13,2006
14.4850
15.5869
16.5764
17 .4933
18.3634
19,2052
20.0337
20.8622
21.7040
22.5741
23.4910
24.4805
25.5824
26.8668
28.4828
28.8732
29.2972
29.7634
30.2841
30.8780
31.5758
32.4336
33.5738
35.3710

3.8691

5.8031

7.0301

7.9532

8.7040

9.3431

9.9034
10.4052
10.8615
11.2815
13.0205
14.4026
15.5884
16.6532
17.6399
18.5762
19.4821
20.3736
21.2651
22.1710
23.1073
24.0940
25.1589
26.3446
27.7267
29.4657
29.8858
30.3421
30.8438
31.4041
32.0432
32.7941
33.7171
34.9442
36.8782

3.9914

5.8807

7.079%

7.9811

8.7146

9.3389

9.8863
10.3764
10.8222
11.2325
12.9314
14.2815
15.439%9
16.4801
17.4440
18.3587
19.2436
20.1145
20.9855
21.8704
22.7851
23.7490
24,7892
25.9476
27.29717
28,9966
29.4069
29,8526
30.3428
30.8902
31.5145
32.2480
33.1497
34.3484
36.2377

0.4421

2.7665

4,2412

5.3506

6.2530

7.0211

7.6945

8.2975

8.8459

9.3508
11.4408
13.1019
14.5270
15.8067
16.9926
18.1179
19.2066
20,2781
21.3496
22.4383
23.5636
24.7495
26.0292
27.4543
29.1154
31.2054
31.7102
32.2586
32.8617
33.5351
34.3032
35.2056
36.3150
37.7897
40.1141

34

-0.4918
1.8856
3.3940
4.5287
5.4517
6.2373
6.9261
7.5429
8.1038
8.6201

10.7579

12.4569

13.9145

15.2234

16.4364

17.5873

18,7009

19.7968

20.8928

22.0063

23.1573

24.3702

25.6792

27.1368

28.8358

30.9735

31.4899

32.0508

32.6675

33.3564

34.1420

35.0650

36.1997

37.7080

40.0854
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Table 6. (continued)
Prob, Pop’'n (50,0) (50,1,1) (50,2,1) (50,1,25 (50,2,25) (50,1,50) (50,2,50)

6.0419 5.9260 5.3218 5.2121 6.1258 3.8465 6.2344 4.7334

0.01

0.02 7.6775 7.5761 7.0253 6.9553 7.7756 5.7414 7.8583 6.5218
0.03 8.7152 8.6230 8.1062 8.0613 8.8223 6.9437 8.8886 7.6565
0.04 9.4959 9.4106 8.9193 8.8933 9.6097 7.8481 9.6636 8.5101
0.05 10.1309 10.0512 9.5807 9.5700 10.2502 8,5837 10.2941 9.2045
0.06 10.6714 10.5965 10.1436 10.1461 10.7954 9,2099 10.8307 9.7954
0.07 11.1453 11.0746 10.6372 10.6511 11.2734 9,.7589 11,3012 10,3136
0.08 11.5696 11.5027 11.0792 11.1033 11,7014 10.2505 11.7225 10.7776
0.09 11.9555 11.8920 11.4811 11.5146 12,0907 10.6976 12.1056 11.1995
0.10 12.3107 12.2503 11.8511 11.8932 12.4490 11.1091 12.4583 11.5879
0.15 13.7814 13.7341 13.3829 13.4606 13.9324 12.8130 13.9185 13.1961
0.20 14.9503 14.9133 14,6004 14.7064 15.1114 14,1672 15.0789 14.4742
0.25 15.9531 15.9250 15.6448 15.7751 16.1229 15.3290 16.0746 15.5707
0.30 16.8536 16.8335 16.5828 16.7349 17.0313 16.3723 16.9686  16.5553
0.35 17.6881 17.6754 17.4519 17.6243 17.8730 17.3390 17.7971 17.4678
0.40 18.4799 18.4742 18.2767 18.4682 18.6717 18.2564 18,5833 18,3336
0.45 19.2460 19.2471 19.0746 19.2847 19.4445 19.1440 19.3439 19.1713
0.50 20.0000 20.0077 19.8599 20.0882 20.2050 20.0175 20.0925 19.9957
0.55 20.7540 20.7684 20.6452 20.8918 20,9655 20.8910 20.8411 20,8202
0.60 21.5201 21.5413 21.4432 21.7083 21.7382 21.778  21.6017 21.6579
0.65 22.3119 22.3401 22.2679 22.5522 22,5370 22.6959 22.3878 22,5237
0.70 23.1464 23.1820 23.1371 23.4416 23.3787 23.6627  23.2163 23.4361
0.75 24.0469 24.0905 24.0751 24.4013 24.2870 24.7060 24.1104 24.4208
0.80 25.0497 25.1022 25.1195 25.4701 25,2985 25.8678 25.1060 25.5173
0.85 26.218 26.2814 26.3370 26.7158 26.4775 27.2220 26.2665 26.7954
0.90 27.6893 27.7652 27.8688 28.2833 27.9610 28.9258 27.7267 28.4035
0.91 28.0445 28.1235 28.2388 128.6618 28,3193 29,3374 28.0794 28,7919
0.92 28.4304 28.5128 28.6407 29.0731 28.7085 29,7845 28.4625 29.2139
0.93 28.8547 128.9409 29.0827 29.5253 29.1365 30.2760 28,8838 29.6779
0.94 29.3286 29.4190 29.5763 30.0304 29.6145 30.8251 29.3543 30.1960
0.95 29.8691 29.9643 30.1392 30.6064 30.1597 31.4512 29.8909 30.7870
0.96 30.5041 30.6049 30.8006 31.2832 30.8002 32,1869 30.5213 31.4813
0.97 31,2848 31.3925 31.6137 32.1152 31.5876 33.0913 31.2964  32.3349
0.98 32,3225 32.4394 32.6945 33,2212 32.6344 34.2936 32.3267 33.4696
0.99 33.9581 34.0895 34.3981 34.9643 34.2841 36.1885 33.9505 35.2580
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estimates were obtained by averaging over all replications in the
simulation. Column 1 of Table 6 gives the true LD values for the
population. The estimates are plotted in Figure 3 for the small sample size
treatments and in Figure 4 for the large sample size treatments.

The LD50 parameter is identical to the mean of the probit model. It
has already been indicated that the levels of the factors comsidered in this
study do not bias the estimate of the model’s mean. In general it may be
seen that the other estimated LD values in the middle percentiles are very
close to the population values for this model. In the low and high
percentiles, however, as the model’s variance has an increased influemnce on
the LD values, the estimated LD values are much farther away from the
population values than in the middle percentiles. This difference in the
extreme percentiles reflects the exaggerated estimate of the model’s
variance by some of the treatments,

Although the estimates of the LD parameters are not as accurate in the
low and high percentiles, all of the estimates are within a standard
deviation of the population values. Thus the levels of experimental factors
considered do not significantly affect the bias of the LD estimates, The
treatments with small sample sizes, high dosage errors, and a collective
dosage application show increased, but still nonsignificant, differences
between the LD estimates and the population values,

Estimates of the variances of the LD estimators are given in Table 7,
and plotted for the small sample size treatments in Figure 5 and for the
large sample treatments in Figure 6. The estimates were obtzined

empirically from the replications, which is equivalent to estimating

Var(i + Z5) = Var(y) + ZZVar(B) + 2ZCov({1,5). The sample variances are
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Figure 3. Sample mean of the estimated LD values
for the small sample size treatments.
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Figure 4. Sample mean of the estimated LD values
for the large sample size treatments.
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Table 7. Sample variance of the LD values for each response probability.

(10,0) (10,1,1) ¢10,2,1) (10,1,5) (10,2,5) (10,1.10) (10,2,10)

Prob
0.01 223.92 78.36 33.72 94 .46 101.40 935.45 1145.74
0.02 170.95 60.82 26.35 71.96 78.07 725.45 916.17
0.03 141.08 50.87 22.16 59.30 64.88 606.08 783.96
0.04 120.53 43 .99 19.27 50.61 55.79 523.38 691.38
0.05 105.02 38.78 17.07 44 .06 48.90 460.59 620 .44
0.06 92 .68 34.62 15.31 38.86 43 .42 410.33 563.13
0.07 82.51 31.18 13.85 34.57 38.88 368.66 515.21
0.08 73.92 28.26 12.62 30.96 35.04 333.26 474.15
0.09 66.52 25.73 11.55 27.86 31.73 302.62 438.32
0.10 60.07 23.52 10.61 25.16 28.84 275.73 406.62
.15 36.98 15.53 7.21 15.54 18.42 177.84 288.38
.20 22.79 10.49 5.06 9.69 11.92 115.45 209.36
.25 13.56 7.10 3.59 5.95 7.61 72.81 152.12
.30 7.58 4.79 2.58 3.58 4.73 43 .08 109.02
.35 3.99 3.26 1.90 2.24 2.90 22.77 76.10
.40 2.32 2.37 1.49 1.71 1.91 9.93 51.10
.45 2.31 2.01 1.30 1.90 1.65 3.48 32.70
.50 3.85 2.15 1.31 2.75 2.05 2.85 20.14
.55 6.93 2.78 1.53 4.27 3.11 7.90 13.09
.60 11.62 3.92 1.96 6.49 4 .87 18.85 11.58

0

0

0

0

0

0

0

0

0

0

0.65 18.14 5.62 2.62 9.50 7.40 36.34 15.99
0.70 26,84 7.99 3.56 13.47 10.85 61.55 27.21
0.75 38.33 11.22 4.85 18.66 15.48 96 .56 46.90
0.80 53.70 15.63 6.62 25.56 21.74 145.09 78.07
0.85 75.05 21.85 9.14 35.08 30.51 214.34 126.70
0.90 107.14 31.35 13.00 49,32 43.80 320.87 206,71
0.91 115.76 33.92 14,04 53.13 47.39 349.84 229.18
0.92 125.52 36.83 15.23 57.45 51.45 382.74 254,97
0.93 136.71 40.19 16.60 62.39 56.11 420.64 285,00
0.94 149.78 44 .11 18.20 68.16 61.57 465.09 320.60
0.95 165.43 48.82 20.13 75.06 68.11 518.52 363.85
0.96 184,83 54.68 22.52 83.61 76.22 585.03 418.29
0.97 210.16 62.35 25.66 94.76 86.84 672.32 490.57
0.98 246.38 73.35 30.17 110.67 102.05 797.78 595.80
0.99 309.36 92.56 38.05 138.32 128.55 1017.38 782,85



Table 7. (continued)

Prob. (50,0) (S0,1,1) (S50,2,1) (50,1,25) (S50,2,25) (50,1,50) (50,2,50)

0.01 4.63 5.48 8.52 3.35 33.19 4.72 23.26
0.02 3.70 4.31 6.64 2.56 26.31 3.71 18.86
0.03 3.16 3.65 5.57 2.13 22.37 3.13 16.32
0.04 2.79 3.18 4.83 1.83 19.62 2.73 14.55
0.05 2.51 2.83 4.28 1.60 17.52 2.43 13.19
0.06 2.28 2.55 3.83 1.42 15.83 2.19 12.10
0.07 2.09 2.32 3.46 1.27 14.42 1.99 11.18
0.08 1.92 2.12 3.14 1.15 13.22 1.82 10.40
0.09 1.78 1.95 2.87 1.04 12.17 1.68 9.72
0.10 1.66 1.80 2.63 0.95 11.25 1.55 9.11
0.15 1.20 1.25 1.77 0.62 7.83 1.09 6.87
0.20 0.9 0.90 1.23 0.43 5.58 0.79 5.38
0.25 0.68 0.67 0.86 0.30 3.98 0.60 4.30
0.30 0.53 0.50 0.61 0.23 2,80 0.46 3.50
0.35 0.41 0.38 0.44 0.19 1.93 0.37 2.89
0.40 0.33 0.31 0.34 0.18 1.30 0.32 2.44
0.45 0.27 0.27 0.30 0.19 0.88 0.30 2.11
0.50 0.25 0.27 0.31 0.23 0.63 0.31 1.90
0.55 0.24 0.30 0.37 0.29 0.55 0.35 1.79
0.60 0.26 0.35 0.49 0.38 0.65 0.41 1.80
0.65 0.30 0.45 0.66 0.49 0.95 0.51 1.91
0.70 0.38 0.59 0.91 0.64 1.46 0.65 2.17
0.75 0.49 0.78 1.25 0.83 2.25 0.83 2.59
0.80 0.66 1.05 1.71 1.08 3.42 1.09 3.24
0.85 0.90 1.43 2.37 1.43 5.18 1.45 4.23
0.90 1.29 2.02 3.37 1.95 7.97 2.00 5.85
0.91 1.40 2.18 3.65 2.09 8.74 2.14 6.31
0.92 1.52 2.36 3.95 2.24 9.62 2.31 6.83
0.93 1.67 2.57 4.31 2.42 10.65 2.51 7.43
0.94 1.84 2.82 4.72 2.63 11.86 2.73 8.14
0.95 2.04 3.12 5.22 2,88 13.32 3.01 9.01
0.96 2.29 3.49 5.84 3.19 15,15 3.34 10.10
0.97 2.63 3.97 6.66 3.59 17.56 3.79 11.54
0.98 3.11 4.67 7.82 4.16 21.06 4.42 13.63
0.99 3.97 5.88 9.86 5.16 27.24 5.53 17.34
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Figure 5. Sample variance of the estimated LD values
for the small sample size treatments.
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Figure 6. Sample variance of the estimated LD values
for the large sample size treatments.
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generally low around the LD50 valne, which indicates that most of the
predicted models are estimating the middle LD values with high precision.
The precision varies dramatically, however, for the low and high percentile
LD values.

In the large sample case, the nominal dose treatment has the smallest
overall variance of the estimates. The estimates of the treatments with
lower dosage errors have a precision that is fairly close to the nominal
case. The higher dosage error treatments, however, are notably imprecise in
the low and high percentiles, This indicates that extreme caution must be
used when estimating a dose to which a high percentage of subjects would
respond when the possibility of large dosage errors exist,

The estimates of LD parameters for the small sample treatments are also
much less precise in the tails of the dose response curve. The sample
variances indicate that while an individual application of the doses may not
give precise estimates, at least the extreme responses which are possible by
some subjects will be somewhat compensated for by other subjects in the
group. When dosage errors affect the whole batch, however, so that all
subjects given that treatment are uniformly affected, the responses may be
so different from what is expected that individual experiments may not have
reliable results. The precision of the estimates in the low and high
percentiles for these treatments is very poor.

Table 7 and Figure 5 surprisingly show that the variance of the LD
estimators for treatment (10,0), which has no dosage errors, is
substantially higher than for each of the other small sample treatments
which applied dosages either individually or to subgroups of the subjects.
Figures 1 and 2 show that the distributions of the estimates of the model's

mean and variance for treatment (10,0) are reasonable except for one extreme
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outlier. This outlier causes the ncminal dose treatment to look much worse
than it is, When it is deleted and the sample variances of the LD
estimators recalculated, the variances of treatment (10,0), as expected,
become the lowest of all of the small sample treatments. This single
outlier was judged to be a quirk of the random number sequence used in the
simulation,

A second surprising feature of Table 7 and Figure 5 is how well
treatment (10,2,1) does in comparison to treatment (10,1,1). With the
higher dosage errors, treatment (10,2,1) would be expected to be less
precise in estimating the LD values than (10,1,1), but it appears to be more
precise, Table 6 indicates that treatment (10,2,1) provided estimates of
the LD values which were closer, on the average, to the population values
than any other treatment. That this is too good to be true is indicated by
Table 8, which gives the sample variance of the LD estimators for a second
run of 50 replications of treatment (10,2,1). Althongh the variances of the
second run of (10,2,1) are still lower thanm (10,1,1) in the lower and upper
percentiles, the variances are higher in the middle percentiles, around the
LD50. Overall, the variances are within sampling errors at each percentile.
This indicates a problem that may arise with the trustworthiness of the
estimators for lower sample sizes. It appears that some of the estimates in
treatment (10,1,1) may be poor enough to throw off the variance over all
replications. At the same time, the first 50 replications of {10,2,1)
resulted in a string of exceptional estimates of the model’s parameters, a
string that was not duplicated in a second run of this treatment.

To indicate the effect that the small sample cases may have on the
maximum likelihood estimates, Figunre 7 plots the variances of the LD

estimators for the small sample treatments after the two worst replications



Table 8. Comparison of two rums of the (10,2,1) treatment:
Sample variance of the LD values for each response probability.

Run Run
#1 #2
Prob. 10,1.,1 (10,2,1) (10,2.1)
0.01 78.36 33.72 60.75
0.02 60.82 26.35 47.29
0.03 50.87 22.16 39,66
0.04 43.99 19.27 34.39
0.05 38.78 17.07 30.40
0.06 34.62 15.31 27.22
0.07 31.18 13.85 24.58
0.08 28.26 12.62 22.35
0.09 25.73 11.55 20.42
0.10 23.52 10.61 18.73
0.15 15.53 7.21 12.63
0.20 10.49 5.06 8.80
0.25 7.10 3.59 6.23
0.30 4.79 2.58 4.48
0.35 3.26 1.90 3.34
0.40 2.37 1.49 2.69
0.45 2,01 1.30 2.45
0.50 2.15 1.31 2.59
0.55 2.78 1.53 3.10
0.60 3.92 1.96 4.01
0.65 5.62 2.62 5.36
0.70 7.99 3.56 7.22
0.75 11.22 4,85 9.75
0.80 15.63 6.62 13.19
0.85 21.85 9.14 18.04
0.90 31.35 13.00 25.43
0.91 33.92 14.04 27.42
0.92 36.83 15.23 29,69
0.93 40.19 16.60 32.29
0.94 44 .11 18.20 35.34
0.95 48.82 20.13 38.99
0.96 54.638 22.52 43 .54
0.97 62.35 25.66 49.48
0.98 73.35 30.17 58.01

0.99 92.56 38.05 72.90



Figure 7. Sample variance of the estimated LD values
for the small sample size treatments, with the
2 extreme values from each treatment deleted.
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from each treatment were ignored. Although none of the other treatments
have estimates quite as extreme as the one outlier of treatment (10,0), the
small sample size treatments occasionallly produce very poor estimates. The
result shown by Figure 7, compared to Figure 5, is a dramatic decrease in
the variance of the estimators for all treatments over all percentiles. In
fact, Figure 7 represents the range of variances expected for the small
sample treatments based on the results of the large sample treatments in
Figure 6, The differences in variances between most of the treatments are
within sampling error, although the treatments which apply the doses
collectively to the subjects still show considerably higher variances. In
general, Figures 5 and 7 point out the problems that may occur in estimating
the parameters of the probit model for experiments with small sample sizes.

The effects examined to this point indicate that the levels of factors
considered in this study do not on the average have a significant effect on
the bias of the estimates of the parameters of the probit model. A small
sample size may cause the estimates of individual experiments to be wildly
off, but on the balance the estimates will be reasomable. The precision of
the estimates of the parameters, however, is significantly affected by the
factors under consideration. Small sample sizes obviously hurt the
precision of the estimates, The individual application of the doses to
subjects evidently allows exceptional responses to even out within an
experiment, while a collective application will sometimes throw off the
results of an experiment making the overall estimates less precise. The
presence of dosage errors does not singularly affect the estimates or their
precision, but in combination with the other factors can hurt the precision
of the estimates, Althongh the larger dosage error treatments slightly

decrease the precision of the estimates, to this point no clear guidelines
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are apparent as to how much dosage variatiom is tolerable. The worst case
for an experimental situation demomnstrated thus far is to apply dosages
collectively to a small group of subjects when the dosage error is great
enough so that successive dosages are within 2 standard deviations of error.

In order to further measure the effect of these related factors, the
ability of the estimated 95% fiducial limits to contain the expected dosage
level was monitored. For each percentile of the dose response curve within
each replication, it was observed whether the expected dose fell within or
without the estimated fiducial limits. The counts are presented in Table 9
in terms of the percentage of the replications for which the limits
contained the expected dosage level.

A few general patterns are indicated by Table 9. The fiducial limits
for the nominal dosage cases, treatments (10,0) and (50,0), are fairly good,
especially for the larger sample size. The fiducial limits are not as
accurate for the 12 dosage error treatments. The percentage included within
the limits is particularly low for the dosage error cases when the subjects
have been treated collectively as just one group. The limits for
collectively applied dosages with a standard deviation of the errors of 2.0
(treatments (10,2,10) and (50,2,50)) were well below 95% limits at every
percentile of the dose response curve. In general, when the 95% limits were
deficient, they tended to fail in the middle percentiles, arcund the LDS50
value., If the LD50 value is of primary interest in the study (and since,
for a fixed number of subjects, dosages around the LD50 can usually be
estimated more precisely than extreme LD values, the LD30 is often of
primary importance), this is where it would typically be best for the

fidacial limits not to fail.
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Table 9. Percentage of the population LD percentiles within the
95% fiducial limits.

Prob. (10,0) (10,1,1) (10,2.1) (10,1,5) (10,2,5) (10,1,10) (10,2,10)
0.01 98.0 98 100 94 94 94 84
0.02 98.0 98 100 94 94 94 84
0.03 98.0 98 100 94 94 94 82
0.04 98.0 98 100 94 94 94 82
0.05 98.0 96 100 94 94 94 82
0.06 98.0 96 100 94 94 94 82
0.07 98.0 96 100 94 94 94 82
0.08 98.0 96 100 94 94 94 82
0.09 98.0 96 100 94 94 94 82
0.10 97.5 96 100 94 94 94 82
0.15 96.0 98 98 96 94 94 86
0.20 96.0 98 98 96 94 92 86
0.25 96.0 98 98 98 94 94 84
0.30 94.5 98 98 98 96 96 84
0.35 95.0 96 100 98 96 94 80
0.40 94.0 94 100 98 96 94 78
0.45 93.5 94 100 98 96 92 76
0.50 93.0 90 96 96 96 94 72
0.55 94.5 92 94 96 98 94 76
0.60 93.5 90 90 92 100 94 82
0.65 92.5 92 92 92 96 94 84
0.70 94.5 94 94 92 96 92 86
0.75 95.5 94 94 92 96 92 92
0.80 96.0 94 94 92 96 92 92
0.85 95.5 92 94 92 96 92 90
0.90 95.0 94 92 92 96 92 90
0.91 95.0 94 92 92 96 92 90
0.92 95.5 94 92 92 96 92 90
0.93 95.5 94 92 92 96 92 90
0.94 95.5 94 92 92 96 92 90
0.95 95.5 94 92 92 96 92 90
0.96 95.0 94 94 92 96 94 88
0.97 95.0 94 94 92 96 94 88
0.98 95.0 94 94 92 96 94 88

0.99 96.0 94 94 92 96 94 88
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Table 9. continmed.

Prob. (50,0) (S0,1,1) (S0,2,1) (50,1,25) (50,2,25) (50,1,50) (50,2,50)

0.01 95.5 98 88 100 36 100 90
0.02 96.0 98 88 100 36 98 90
0.03 96.0 98 88 100 86 98 90
0.04 96.0 98 88 100 86 98 90
0.05 96.0 96 88 100 86 98 90
0.06 96.0 96 88 100 86 98 88
0.07 96.0 96 88 100 86 98 88
0.08 96.0 96 88 100 86 98 90
0.09 96.0 96 90 100 86 98 90
0.10 96.0 96 90 100 88 96 90
0.15 95.5 96 92 100 88 96 90
0.20 95.5 98 94 100 88 96 90
0.25 95.5 98 94 100 . 88 96 88
0.30 96.0 98 94 98 88 96 86
0.35 96.0 98 94 98 88 94 88
0.40 94,5 92 94 98 94 92 84
0.45 95.0 92 96 98 96 92 80
0.50 97.5 92 96 100 98 92 84
0.55 97.5 96 94 100 98 92 84
0.60 97.5 96 92 98 98 92 86
0.65 97.5 92 94 96 94 94 88
0.70 98.5 94 94 96 92 96 90
0.75 98.0 94 94 96 92 98 88
0.80 98.5 96 92 96 90 98 88
0.85 98.0 96 90 96 90 98 90
0.90 98.0 96 92 96 90 98 90
0.91 98.0 96 92 96 90 98 90
0.92 98.0 96 92 96 90 98 90
0.93 98.0 96 92 96 90 98 90
0.94 98.0 96 92 96 90 98 90
0.95 98.0 96 90 96 90 98 88
0.96 97.5 96 90 96 90 100 88
0.97 97.0 96 90 96 90 100 90
0.98 97.0 96 90 96 90 100 90
0.99 97.0 96 90 98 38 100 92
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A test of the effects of the experiment’s factors on the ability of the
95% fiducial limits to contain the expected dosage level is somewhat
problematic. The response of each replication at each percentile is
dichotomous: the fiducial limits either contain the expected dose or they
do not. Although analysis of variance procedures have often been used for
dichotomous data when the probabilities of each response were close to .5,
the data in the present case were presumptively constrained by probabilities
of .05 and .95.

In a simulation study, Lunney (1970) has reported that a fixed effect
analysis of variance procedure with 1-3 factors will give approximately
correct results for dichotomous data. Considering probability levels of a
success that ranged between .1 and .5, Lunney determined that the F-test is
conservative for a small pumber of observations and that the Type I error
and the power of the test are almost exactly controlled when the error
degrees of freedom are large. For probabilities between .2 and .5, he
suggested at least 20 error degrees of freedom, and recommended at least 40
for probabilities of .2 or less. The present data met these recommendationms
for sample size, although he did not comsider probabilities as low as .05.
Because of this, the cautions of Cochran and Cox (1957) about the
approximateness of the significance levels of the F-tests must be heeded.

It was determined to comduct an analysis of variance to test the effects
of the 3 experimental factors om the validity of the fiducial limits. An
indicator variable was defined to represent the inclusion of the expected LD
valoe within the fiducial limits at any given percentile of the probit
model. This indicator variable is necessarily dichotomous since the
expected LD is either included or not included in the fiducial limits.

Thus, for each replication of the experiment and at each percentile of the
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model, the indicator variable was given the value of 1 if those fiducial
limits contained the expected LD value, and the value of 0 if the fiducial
limits did not contain the expected LD. The analysis of variance was then
conducted on this indicator variable over all 14 treatments.

Since the fiduocial limits are not symmetric about a givenm LD value, and
since the fiducial limits are also not symmetric for corresponding LD pairs
(e.g., LDO1 and LD99), it is difficult to combine information from several
different LD perfcentiles. For the same reasoms, it is also necessary to
examine a fairly broad range of LD percentiles. Consequently, an analysis
of variance was conducted for the fiducial limits at each .05 interval of
the percentiles, as well as for LDOl1 and LD99. The analysis of variance
tables, followed by a listing of pairwise t—tests on the treatment means,
are given im Table 10.

The analysis on the fiducial limits of LDOl shows a significant
interaction between sample size and the group size of the subjects. This
interaction is due to the differences between the liberal fiducial limits of
treatment (10,2,10), the moderate limits of treatment (10,2,5), and the
conservative limits of treatment (10,2,1), which share a low sample size but
used different application methods, combined with the lack of difference
between the other treatment pairs that share either the same 1eve} of sample
size or application but not both. Thus, for example, treatments (10,2,10),
(50,2,25) and (50,2,50) each applied the dosages collgctively while having
different sample sizes, but the three treatments could not be significantly
distingunished. The analysis of variance also shows an interaction between
sample size and the level of dosage errors. The fiducial limits of the
larger dosage error treatments are generally worse than the treatments with

smaller dosage errors, but the exceptionally comservative limits of



Table 10. Analysis of variance tables on the inclusion within the fiducial
limits of the population LD values for each percentile.

Analysis of variance for LDO1

Source DF SS_ F PR > F
Sigma 2 0.93916667 10.19 0.0001
N 1 0.00810000 0.18 0.6752
Group size 2 0.16333333 1.77 0.1706
S*N 2 0.28488095 3.09 0.0460
S*G 2 0.05000000 0.98 0.3771
N*G 2 0.36333333 3.94 0.0197
S*N*G 2* 0.14333333 1.55 0.2118
Error 986 45.45500000

Total 999 47 .50000000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping Mean _N_ Treatment
A 1.000 50 (10,2,1)
A 1.000 50 (50,1,50)
A 1.000 50 (50,1,25)
A 0.980 200 (10,0)
AB 0.980 50 (10,1,1)
AB 0.980 50 (50,1,1)
AB 0.955 200 (50,0)
ABC 0.940 50 (10,1,10)
ABC 0.940 50 (10,1,5)
ABC 0.940 50 (10,2,5)
BCD 0.900 50 (50,2,50)
cCD 0.880 50 (50,2,1)
cD 0.860 50 (50,2,25)
D 0.840 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LDOS

Source DF SS F PR > F
Sigma 2 0.95433333 9.79 0.0001
N 1 0.00640000 0.13 0.7172
Group size 2 0.16333333 1.68 0.1878
S*N 2 0.20309524 2.08 0.1251
S*G 2% 0.16333333 .1.68 0.1878
N*G 2 0.36333333 3.73 0.0244
S*N*G 2* 0.24333333 2.50 0.0829
Error 986 48.06000000

Total 999 50.19100000

*Note: within levels of G, there are only two
levels of Sigma,

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Ireatment
A 1.000 50 (10,2,1)
A 1.000 50 (50,1,25)
A 0.980 200 (10,0)
AB 0.980 50 (50,1,50)
AB 0.960 200 (50,0)
ABC 0.960 50 (10,1,1)
ABC 0.960 50 (50,1,1)
ABCD 0.940 50 (10,1,10)
ABCD 0.940 50 (10,1,5)
ABCD 0.940 50 (10,2,5)
BCDE 0.900 50 (50,2,50)
CDE 0.880 50 (50,2,1)
DE 0.860 50 (50,2,25)
E 0.820 50 (10,2,10)



Table 10. (continmed)

Analysis of variance for LD10

Source DE SS F PR > F
Sigma 2 0.70683333 7.19 0.0008
N 1 0.000%0000 0.02 0.8924
Group size 2 0.26333333 2.68 0.069
S*N 2 0.10988095 1.12 0.3272
S*G 2+ 0.16333333 1.66 0.1902
N=G 2 0.25000000 2.54 0.0790
S*N*G 2% 0.24333333 2.48 0.0845
Error 986 48.43500000

Total 999 50.19100000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping Mean N Ireatment
A 1.000 50 (10,2,1}
A 1,000 50 (50,1,25)
A 0.975 200 (10,0)
AB 0.960 200 (50,0)
ABC 0.960 50 (10,1,1)
ABC 0.960 50 (50,1,50)
ABC 0.960 50 (50,1,1)
ABC 0.940 50 (10,1,10)
ABC 0.940 50 (10,1,5)
ABC 0.940 50 (10,2,5)
BC 0.900 50 (50,2,50)
BC 0.900 50 (50,2,1)
C 0.880 50 (50,2,25)

D 0.820 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD15

Source DE 8S F PR > F
Sigma 2 0.50016667 5.02 0.0068
N 1 0.00810000 0.16 0.6869
Group size 2 0.21000000 2.11 0.1220
S*N 2 0.06321429 0.63 0.5304
S*G 2 0.08333333 0.84 0.4335
N*G 2 0.12333333 1.24 0.2904
S*N*G 2= 0.09000000 0.90 0.4055
Error 986 49.11500000

Total 999 50.19100000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different,

Grouping Mean _N_ Treatment
A 1.000 50 (50,1,25)
AB 0.980 50 {10,1,1)
AB 0.980 50 (10,2,1)
AB 0.960 200 (10,0)
ABC 0.960 50 (10,1,5)
ABC 0.960 50 (50,1,50)
ABC 0.960 50 (50,1,1)
ABC 0.955 200 (50,0)
ABCD 0.940 50 (10,1,10)
ABCD 0.940 50 (10,2.5)
ABCD 0.920 50 {50,2,1)
BCD 0.900 50 (50,2,50)
CD 0.880 50 (50,2,25)
D 0.860 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD20

Source DE SS F PR > F
Sigma 2 0.43516667 4.45 0.0119
N 1 0.00090000 0.02 0,8921
Group size 2 0.36333333 3.72 0.0246
S*N 2 0.08488095 0.87 0.4198
S*G 2= 0.07000000 0.72 0.4888
N*G 2 0.10333333 1.06 0.3477
SENsG 2+ 0.06333333 0,65 0.5232
Error 986 48.17500000

Total 999 49.29600000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping Mean _N_ Treatment
A 1.000 50 (50,1,25)
AB 0.980 50 (10,1,1)
AB 0.980 50 (10,2,1)
AB 0.980 50 (50,1,1)
AB 0.960 200 (10,0)
ABC 0.960 50 (10,1.5)
ABC 0.960 50 (50,1,50)
ABC 0.955 200 (50,0)
ABCD 0.940 50 (10,2,5)
ABCD 0.940 50 (50,2,1)
ABCD 0.920 50 (10,1,10)
BCD 0.900 50 (50,2,50)
CD 0.880 50 (50,2,25)
D 0.860 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD235

Source DF S8 F PR > F
Sigma 2 0.66183333 6.82 0.0011
N 1 0.00250000 0.05 0.8205
Group size 2 0.44333333 4.57 0.0106
S*N 2 0.04202381 0.43 0.6487
S*G 2= 0.14333333 1.48 0.2289
N*G p 0.08333333 0.86 0.,4241
S*N*G 2% 0.06333333 0.65 00,5210
Error 986 47 .85500000

Total 999 49.29600000

*Note: within levels of G, there are only two
levels of Sigma,

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping Mean _N_ Treatment
A 1.000 50 (50,1,25)
A 0.980 50 (10,1,5)
A 0.980 50 (10,1,1)
A 0.980 50 (10,2,1)
A 0,980 50 (50,1,1)
A 0.960 200 (10,0) T
AB 0.960 50 (50,1,50)
A 0.955 200 (50,0)
AB 0.940 50 (10,1,10)
AB 0.940 50 (10,2.5)
AB 0.940 50 (50,2,1)
BC 0.880 50 (50,2,50)
BC 0.880 50 (50,2,25)
C 0.840 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD30

Source DF SS F PR > F
Sigma 2 0.62983333 6.26 0.0020
N 1 0.02890000 0.57 0.4485
Group size 2 0.44333333 4,41 0.0124
S*N 2 0.10202381 1.01 0.3629
S*G A 0.20333333 2,02 0.1329
N*G 2 0.06333333 0.63 0.5329
S*N*G 2% 0.06333333 0.63 0.5329
Error 986 49 .57500000

Total 999 51.08400000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different,.

Grouping Mean N Treatment
A 0.980 50 (10,1.,5)
A 0.980 50 (10,1,1)
A 0.980 50 (10,2,1)
A 0.980 50 (50,1,25)
A 0.980 50 (50,1,1)
A 0.960 200 (50,0)
AB 0.960 50 (10,1,10)
AB 0.960 50 (1025}
AB 0.960 50 (50,1,50)
AB 0.945 200 (10,0)
ABC 0.940 50 (50,2,1)
BCD 0.880 50 (50,2,25)
cCD 0.860 50 (50,2,50)
D 0,840 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD35

Source DF SS F PR > F
Sigma 2 0.50733333 4.91 0.0076
N 1 0.00360000 0.07 0.7919
Group size 2 0.69333333 6.70 0.0013
S*N - 2 0.03952381 0.38 0.6825
S*=G 2= 0.25333333 2.45 0.0868
N=G 2 0.17333333 1.68 0.1876
S*N=G 2" 0.21333333 2.06 0.1276
Error 986 50.98000000

Total 999 52.86400000

*Note: within levels of G, there are omly two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 1.000 50 (10,2,1)
A 0.980 50 (10,1,5)
A 0.980 50 (50,1,25)
A 0.980 50 (50,1,1)
A 0.960 200 (50,0)
AB 0.960 50 (10,1,1)
AB 0.960 50 {10,2,5)
AB 0.950 200 (10,0)
AB 0.940 50 (10,1,10)
AB 0.940 50 (50,1,50)
AB 0.940 50 (50,2,1)
BC 0.880 50 (50,2,50)
BC 0.880 50 (50,2,25)
c 0.800 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD40

Source DF Ss F PR > F
Sigma 2 0.24983333 2.07 0.1267
N 1 0.01210000 0.20 0.6544
Gronp size 2 1.04333333 8.65 0.0002
S*N 2 0.01916667 0.16 0.8532
S5*G 2% 0.64333333 5.33 0.0050
N*G 2 0.09000000 0.75 0.4746
S*N*G 2% 0.10333333 0.86 0.4251
Error 986 59.49500000

Total 999 61.64400000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 1.000 50 {(10,2,1)
A 0.980 50 (10,1,5)
A 0.980 50 (50,1,25)
A 0.960 50 (10,2,5)
A 0.945 200 (50,0)
A 0.940 200 (10,0)
A 0.940 50 (10,1,10)
A 0.940 50 (10,1,1)
A 0.940 50 (50,2,25)
A 0.940 50 (50,2,1)
AB 0.920 50 (50,1,50)
AB 0,920 50 (50,1,1)
BC 0.840 50 (50,2,50)
C 0.780 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD45

Source DEF SS E PR > F
Sigma 2 0.27516667 2.25 0.1062
N 1 0.00010000 0.00 0.9678
Group size 2 1.71000000 13.97 0.0001
S*N 2 0.01059524 0.09 0.9171
5*G 2% 0.92333333 7.54 0,0006
N*G 2 0.06333333 0.52 0.5963
S*N*G 2* 0.02333333 0.19 0.8265
Error 986 60.35500000

Total 999 63.37600000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 1.000 50 (10,2,1)
A 0.980 50 (10,1,5)
A 0.980 50 (50,1,25)
A 0.960 50 (10,2,5)
A 0.960 50 (50,2,25)
A 0.960 50 (50,2,1)
A 0.950 200 (50,0)

A 0.940 50 (10,1,1)

A 0.935 200 (10,0)

A 0.920 50 (10,1,10)

A 0.920 50 (50,1,50)

A 0.920 50 (50,1,1)
B 0.800 50 (50,2,50)
B 0.760 50 (10,2,10)



Table 10. {continuned)

Analysis of variance for LD50

Source DE SS F PR > F
Sigma 2 0.42983333 3.65 0.0263
N 1 0.20250000 3.44 0.0639
Group size 2 1.49333333 12.69 0.0001
S*N 2 0.07059524 0.60 0.5492
S5*G 2= 1.05333333 8§.95 0.0001
N*G 2 0.04000000 0.34 0.7120
S*N=*G 2= 0.,21333333 1.81 0.1638
Error 986 58.03500000 .
Total 999 61.64400000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different,

Grouping _Mean N Treatment
A 1.000 50 (50,1,25)
AB 0.980 50 (50,2,25)
AB 0.975 200 (50,0)
AB 0.960 50 (10,1,5)
AB 0.960 50 (10,2,5)
AB 0.960 50 (10,2,1)
A B 0.960 50 (50,2,1)
AB 0.940 50 (10,1,10)
AB 0.930 200 (10,0)
ABC 0.920 50 (50,1,50)
ABC 0.920 50 (50,1,1)
B C 0.900 50 (10,1,1)
C 0.840 50 (50,2,50)

D 0.720 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LDS55

Souzce DE SS F PROF
Sigma 2 0.52233333 4,88 0.0078
N 1 0.11560000 2.16 10,1418
Group size 2 1.36333333 12.75 0.0001
S*N 2 0.02452381 0.23 0.7951
S*G 2= 0.56333333 5.27 0.0053
N=G 2 0.00333333 0.03 0.9693
S*N*G 2= 0.16333333 1.53 0.2177
Error 986 52.73000000

Total 999 55.51900000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 1.000 50 (50,1,25)
A 0.980 50 (10,2,5)
A 0.980 50 (50,2,25)
A 0.975 200 (50,0)

A 0.960 50 (10,1,5)
A 0.960 50 (50,1,1) °
A 0.945 200 (10,0)
A 0.940 50 (10,1,10)
A 0.940 50 (10,2,1)
A 0.940 50 (50,2,1)
AB 0.920 50 (10,1,1)
AB 0.920 50 (50,1,50)

BC 0.840 50 (50,2,50)

C 0.760 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD60

Source DF SS F PR > F
Sigma 2 0.29766667 2,57 0.0773
N 1 0.12960000 2.24 0.1352
Group size 2 0.73000000 6.30 0.0019
S*N 2 0.02785714 0.24 0.7865
S*G 2= 0.42333333 3.65 0.0263
NsG 2 0.02333333 0.20 0.8178
SEN*G s 0.13000000 1.12 0.3264
Error 986 57 .17000000

Total 999 59.03100000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean _N_ Treatment
A 1.000 50 (10,2,5)
AB 0.980 50 (50,1,25)
A B 0.980 50 (50,2,25)
A 0.975 200 (50,0)
AB 0.960 50 (50,1,1)
AB 0.940 50 (10,1,10)
AB 0.935 200 (10,0)
ABC 0.920 50 (10,1,5)
ABC 0.920 50 (50,1,50)
ABC 0.920 50 (50,2,1)
BCD 0.900 50 (10,1,1)
BCD 0.900 50 (10,2,1)
cCD 0.860 50 (50,2,50)
D 0.820 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LDé65

Source DF ss F_ PROF
Sigma 2 0.23066667 1.88 0.1536
N 1 0.06760000 1.10 0.2945
Group size 2 0.20333333 1.65 0.1917
S*N, 2 0.00142857 0.01 0.9884
§*G 24+ 0.27000000 2.20 0.1117
N*G 2 0.00333333 0.03 0.9732
S*N*G 2% 0.07000000 0.57 0.5660
Error 986 60.59000000

Total 999 61.64400000

*Note: within levels of G, there are only two
levels of Sigma,

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean _N_ Treatment
A 0.975 200 (50,0)
AB 0.960 50 (10,2,5)
AB 0.960 50 (50,1,25)
AB 0.940 50 (10,1,10)
AB 0.940 50 (50,1,50)
AB 0.940 50 (50,2,25)
AB 0.940 50 (50,2,1)

B 0.925 200 (10,0)
BC 0.920 50 (10,1,5)
BC 0.920 50 (10,1,1)
BcC 0.920 50 (10,2,1)
BC 0.920 50 (50,1,1)
BC 0.880 50 (50,2,50)
C 0.840 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD70

Source DE SS F PR > F
Sigma 2 0.35400000 3.36 0.0352
N 1 0.05760000 1.09 0.2960
Group size 2 0.12000000 1.14 0.3206
S*N 2 0.02666667 0.25 0.7765
S*G 2 0.12000000 1.14 0.3206
N=*G 2 0.05333333 0.51 0.6030
S*N*G 2% 0.05333333 0.51 0.6030
Error 986 51.95000000

Total 999 52.86400000

*Note: within levels of G, there are omnly two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 0.985 200 (50,0)
AB 0.960 50 (10,2,5)
AB 0.960 50 (50,1,50)
AB 0.960 50 (50,1,25)
AB 0.945 200 (10,0)
ABC 0.940 50 (10,1,1)
ABC 0.940 50 (10,2,1)
ABC 0.940 50 (50,1,1)
ABC 0.940 50 (50,2,1)
ABC 0.920 50 (10,1,10)
ABC 0.920 50 (10,1,5)
ABC 0.920 50 (50,2,25)

BC 0.900 50 (50,2,50)
C 0.860 50 (10,2,10)



Table 10. (continued)

Analysis of variance for LD75

Sounrce DEF SS F PR F
Sigma 2 0.29516667 2.99 0.0506
N 1 0.00810000 0.16 0.6853
Group size 2 0.03000000 0.30 0.7378
S*N 2 0.13821429 1.40 0.2467
S*G 2% 0.08333333 . 0.85 0.4298
N*G 2 0.00333333 0.03 0.9668
S*N*G 2% 0.07000000 0.71 0.4920
Error 986 48.61500000

Total 999 49.29600000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean _N_ Treatment
A 0.980 200 (50,0)
A 0.980 50 (50,1,50)
AB 0.960 50 (10,2,5)
AB 0.960 50 (50,1.25)
A 0.955 200 (10,0)
AB 0.940 50 (10,1,1)
AB 0.940 50 (10,2.1)
AB 0.940 50 (50,1,1)
AB 0.940 50 (50,2,1)
AB 0.920 50 (10,1,10)
AB 0.920 50 (10,1,5)
AB 0.920 50 (10,2,10)
AB 0.920 50 (50,2,25)
B 0.880 50 (50,2,50)



Table 10. (continued)

Analysis of variance for LD80

Source DE SS F PR > F
Sigma 2 0.47483333 4,93 0.,0074
N 1 0.00250000 0.05 0.8199
Group size 2 0.02333333 0.24 0.7850
S*N 2 0.24892857 2.58 0.0761
S*G 2= 0.,04333333 0.45 0.6380
N*G 2 0.01000000 0.10 0.9015
S*N*G 2 0.03000000 0.31 0.7326
Error 986 47.51500000

Total 999 48.39900000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 0.985 200 (50,0)
AB 0.980 50 (50,1,50)
AB 0.960 200 (10,0)
ABC 0.960 50 (10,2,5)
ABC 0.960 50 (50,1,25)
ABC 0.960 50 (50,1,1)
ABC 0.940 50 (10,1,1)
ABC 0.940 50 (10,2,1)
ABC 0.920 50 (10,1,10)
ABC 0.920 50 (10,1,5)
ABC 0.920 50 (10,2,10)
ABC 0.920 50 (50,2,1)

BC 0.900 50 (50,2,25)
C 0.880 50 (50,2,50)



Table 10. (continmed)

Analysis of variance for LD85

Source DF 5SS E_PRDF
Sigma 2 0.44416667 4.28 0.0140
N 1 0.01690000 0.33 0.5682
Group size 2 0.01000000 0.10 0.9081
S*N 2 0.24035714 2.32 0.0990
$*G 2+ 0.04333333 0.42 0.6585
N*G 2 0.04333333 0.42 0.6585
S*N*G 2 0.01000000 0.10 0.9081
Error 986 51.11500000

Total 999 51.97500000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t—tests:
Means with the same letter are not significantly different.

Grouping  _Mean N Treatment
A 0.980 200 (50,0)
A B 0.980 50 (50,1,50)
A B 0.960 50 (10,2,5)
A B 0.960 50 (50,1,25)
A B 0.960 50 {50,1,1)
A B 0.955 200 (10,0)
A B 0.940 50 (10,2,1)
A B 0.920 50 (10,1,10)
A B 0.920 50 (10,1,5)
A B 0.920 50 (10,1,1)
B 0.900 . 50 (10,2,10)
B 0.900 50 (50,2,50)
B 0.900 50 (50,2,25)
B 0.900 50 (50,2,1)



Table 10. (continmed)

Analysis of variance for LD90

Source DE SS_ F PR >F
Sigma 2 0.40166667 3.87 0.0212
N 1 0.03240000 0.62 0.4298
Group size 2 0.01333333 0.13 0.8795
S*N 2 0.13500000 1.30 0.2730
S*G 2% 0.04000000 0.39 0.6804
N*G 2 0.04000000 0.39 0.6804
S*N*G pA 0.04000000 0.39 0.6804
Error 986 51.20000000

Total 999 51.97500000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 0.980 200 (50,0)
A B 0.980 50 (50,1,50)
A B 0.960 50 (10,2,5)
A B 0.960 50 (50,1,25)
A B 0.960 50 (50,1,1)
A B 0.950 200 (10,0)
A B 0.940 50 (10,1,1)
A B 0.%20 50 (10,1,10)
A B 0.920 50 (10,1,5)
A B 0.920 50 {10,2,1)
A B 0.920 50 (50,2,1)
B 0.900 50 (10,2,10)
B 0.900 50 (50,2,50)
B 0.900 50 (50,2,25)



Table 10. (continued)

Analysis of variance for LD95

Source DFE S8 F PR > F
Sigma 2 0.56983333 5.41 0.0046
N 1 0.00810000 0.15 0.6949
Group size 2 0.02333333 0.22 0.8012
S*N 2 0.20488095 1.95 0.1433
S*G 2= 0.06333333 0.60 0.5481
N*G 2 0.02333333 0.22 0.8012
S*N*G 2* 0.02333333 0.22 0.8012
Error 986 51.89500000

Total 999 52.86400000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 0.980 200 (50,0)
AB 0.980 50 (50,1,50)
ABC 0.960 50 (10,2,5)
ABC 0.960 50 (50,1,25)
ABC 0.960 50 (50,1,1)
ABC 0.955 200 (10,0)
ABC 0.940 50 (10,1,1)
ABC 0.920 50 (10,1,10)
ABC 0.920 50 (10,1,5)
ABC 0.920 50 (10,2,1)

BC 0.900 50 (10,2,10)

BC 0.900 50 (50,2,25)

BC 0.900 50 (50,2,1)
C 0.880 50 (50,2,50)



Table 10. (continued)

Analysis of variance for LD99

Source DF S8 F PR > F
Sigma 2 0.49766667 4.99 0.0070
N 1 0.01960000 0.39 0.5310
Group size 2 0.00000000 0.00 1.0000
S*N 2 0.20738095 2.08 0,1257
5*G 2 0.05333333 0.53 0.5862
N*G 2 0.12000000 1.20 0.3009
S*N*G 2* 0.09333333 0.94 0.3928
Error 986 49.20000000

Total 999 50.19100000

*Note: within levels of G, there are only two
levels of Sigma.

Pairwise t-tests:
Means with the same letter are not significantly different.

Grouping Mean N Treatment
A 1.000 50 (50,1,50)
AB 0.980 50 (50,1,25)
A 0.970 200 (50,0)
AB 0.960 200 (10,0)
ABC 0.960 50 (10,2,5)
ABC 0.960 50 (50,1,1)
ABC 0.940 50 (10,1,10)
ABC 0.940 50 (10,1,1)
ABC 0.940 50 (10,2,1)
ABC 0.920 50 (10,1,5)
ABC 0.920 50 (50,2,50)

BC 0.900 50 (50,2,1)
c 0.880 50 (10,2,10)
C 0.880 50 (50,2,25)



74
treatment (10,2,1) cause the dosage error effect to be masked in the small
sample size case.

LDO5 displays the same interaction between sample size and the method
of application that LDO1 had and for the same reason. The detrimental
effect of greater dosage errors om the fiducial limits, which is shown
strongly between the pair of treatments (10,1,10) (low dosage error) and
(10,2,10) (high dosage error) and between (50,1,25) (low) and (50,2,25)
(high)}, and.shown moderately between treatments (50,1,50) (low) and
(50,2,50) (high), is not matched at all by a similar dosage error effect
between treatments (10,1,5) (low) and (10,2,5) (high). Thus the greater
dosage errors harm the fiducial limits particelarly when there is a small
sample size and a collective application method.

The LD values for the percentiles from .10 to .35 do not demonstrate
any significant interactions, but do show a highly significant dosage error
effect, and a moderately significant group size effect. Treatments
(10,2,10), (50,2,25) and (50,2,50), which each combine large dosage errors
with a collective application, have the worst fidoncial limits, typically by
wide margins. In general the collective application of dosages caunses a
substantial detrimental effect. Large dosage errors then accentuate the
problem for collective applications and may initiate the detrimental effects
for individual application methods. Thus the 95% fiducial limits for the
large dosage errors with a collective application generally contain only
from 84-90% of the expected LD values.

The middle LD values LD40-LD60 each show a significant dosage error by
group size interaction. For treatments with a collective application of the
dosages, the fiducial limits of the treatments with the highest dosage

errors are significantly worse than those from the treatments with lower
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dosage errors. This dosage error effect, however, does not hold for the
treatments with individually applied dosages. Treatment (10,2,1) almost
singularly disturbs the pattern, since its fiducial limits contain an
exceptionally high percentage of the expected LD values. Thus the
combination of higher dosage errors with a collective application causes a
detrimental effect on the accuracy of the fiducial limits.

The results for each of the probability levels from LD70 to LD99 are
very similar. The fiducial limits around each of the dosage levels for
these percentiles show only a significant dosage error effect. The
treatments which have the greater variation around the dosages regularly
have the lowest percentage of the expected dosages within their fidmcial
limits. In fact, from LD70 and up, none of the treatments with the greater
dosage errors contain the expected LD value within their limits 95% of the
time except for treatmeat (10,2,5). The treatments with the greater dosage
errors and a collective application generally do not have even 90% limits.

In summary, the presence of dosage errors consistently affected the
ability of the fiducial limits to comtain the expected dosage level with the
theoretical frequency. If the dosage errors were small enough that
successive dosages were more than 2 standard deviations of the error apart,
the fiducial limits often met the 95% inclusion rate. When less than 2
standard deviations of the error separated successive dosages, however, the
fiducial limits are suspect, frequently not even containing the expected LD
value for 90% of the replications. Often the method of application affected
the seriousness of the problem. Thus, when the dosages were applied
individually to each subject, the problem was sometimes not quite as
serious. Usually, however, the presence of dosage errors was enough in

itself to lower the confidence that can be placed in the fiducial limits.
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A final point of interest is the effect of the experimental factors on
the goodness of fit test performed on the estimated model. The goodness of
fit test is designed to test the adequacy of the fit of the data to the
probit model. If the test is made at the al00% significance level, it would
be expected that (1-a)100% of the models would exhibit a good fit to the
data. However, the presence of dosage errors or the method of application
of the doses may affect the deviations of the data from the model and thus
might affect this test of adequacy.

The SAS Probit procedure computes a 10% significance test. The
percentage of the replications which met this test is summa:ized'in Table 11
for each of the treatments. It is apparent that the nominal dosage
treatments result in estimated models which fit the data with the prescribed
frequency. The dosage error treatments do not do so well. The presence of
the greater dosage errors usually causes the fit to be relatively poor.
While the individually applied dose cases fit much better, when the doses
are applied collectively to large groups of the subjects, and especially

with large dosage errors, the estimated models fit the data quite poorly.

Table 11. Percentage of models which met the 10% goodness of fit test.

Treatment { met/ total Percent Treatment # met/total Percent
(10,0) 181/200 90.5 (50,0) 184 /200 92
(10,1,1) 43/50 86 (50,1,1) 47/50 94
(10,2,1) 42/50 84 (50,2,1) 44 /50 88
(10,1,5) 44/ 50 88 (50,1,25) - 39/50 78
(10,2,5) 40/50 80 (50,2,25) 28 /50 56
(10,1,10) 43/50 86 (50,1,50) 31 /50 62

(10,2,10) 39/50 78 (50,2,50) 14 /50 28
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1V. CONCLUSION

The simulation of various levels of dosage variation, sample size, and

the nature of the application of the doses indicates that these factors can

affect the results of probit analysis. For the levels of factors considered

in this study, the following general results are indicated:

1.

The estimate of the mean of the probit model is unbiased over the
levels of the factors considered in this study. However, the
precision of this estimate is greatly hurt by a small sample size,
and may also be hurt by large dosage errors when the dosages are
applied collectively to the group of subjects.

The estimate of the variance of the probit model can be inflated by
a small sample size and by large dosage errors. Again the precision
of this estimate is fairly poor for small sample sizes and large
dosage errors. As a result, the estimated LD values were too low
for low response rates and too high for high response rates.

The estimated LD values appear to be unbiased. The variance of
these estimates is small for the middle percentiles but is generally
much larger for the extreme percentiles. For the small sample size
case, the collective application of dosages wildly inflates the
variance about the LD estimates, while an individual application of
the dosages tends to baslance out sporadic responses within an
experiment, thus keeping the variance low. The levels of dosage

errors considered in this study did not sobstantially affect the
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precision of the estimates of the LD parameters in the small sample
case unless the dosages were applied collectively. On the other
hand, it is the level of dosage errors which affects the precision
of the estimates in the large sample case, while the method of
application has little effect. The variances for the smaller dosage
errors were comparable to those for the no dosage error treatment
but the variances were generally inflated for the large dosage error
levels.

4. The estimated 95% fiducial limits are significantly affected by the
presence of dosage variation, by the application of the same batch
of dosages uniformly to each subject, or by some combination of
these two factors. The fiducial limits in these cases are often too
narrow and thus do not contain 95% of the population LD values.

Note that although the bias of the estimated mean is not affected on
the average by these factors, the fiducial limits estimated about the LD50O
value do not always merit 95% cqnfidence. The limits for the cases with
greater dosage variation and a collective application of the dosages may be
too liberal.

The fiducial limits are quite good when there are no dosage errors.
However, the fidncial limits are often suspect when the dosage variatiom is
great enough so that successive dosage levels are within 2 standard
deviations of each other. As the dose levels approach a separation of only
1 standard deviation of the dosage variation, the fiducial limits are
generally poor. A smaller sample size study is more volatile, however, and

especially so when the doses have been applied to the subjects as a group.
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When the dosage variation is great and the doses are applied uriformly, it
can play havoc with the fiducial limits. An application of the doses
individually to each subject tends to somewhat balance out this problem.

The estimated variance of the probit model was inflated by the small
sample size case. However, the larger estimated variance of the small
sample size treatments made their respective fidacial limits broad emough to
actually be 95% limits (averaged over the other factors). Meanwhile, the
effect of the method of dose application and the effect of the dosage
variation were masked in the estimation of the variance of the model,
resulting in narrower fiducial limits for these factors. The fiducial
limits then became too narrow and did not perform adequately for larger
doasge variation and a collective application of the preparation.

Finney (1971) has indicated that the dosages should be selected so that
a fairly broad response rate (e.g., 20-80%) is achieved. The results of
this study indicate that if the dosage variation is nmot negligible, it wounld
be best to ensure that each subject in the study receives an independent
dose of the preparation rather than to treat a group of subjects with a
uniform application of the preparation from the same batch. If the dosage
variation is sufficiently controlled so that dosages are separated by more
than 2 standard deviations of the dosage error, probit analysis appears to

give satisfactory estimates.
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ABSTRACT

The dose response technique of probit analysis presumes that the
dosages are known and fixed. This study examines the effects on the probit
model of random variability in the dosages. Factors considered are the
amount of variability in the dosages, the method of application of dosages
(individual or collective), and the sample size. The estimates of the model
parameters appear to be unbiased even for fairly large dosage errors. The
precision of the estimates, however, is often suspect. Larger dosage errors
and the administration of a faulty dose collectively to the subjects may
seriously inflate the variance of the estimates. Fiducial limits generally
do not contain the population parameters with the expected frequency when

dosage errors are large and when the dosages are applied collectively.



