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Abstract 

Norwalk virus (NV) replicon-harboring cells have provided an excellent tool to the 

development of antivirals.  Previously we demonstrated that the expression of replicon RNA and 

proteins was significantly reduced in the presence of various interferons (IFNs) including IFN-α 

and IFN-γ in a dose-dependent manner in the NV replicon-harboring cells and suggested IFNs 

could be therapeutic options for norovirus infection. It was also demonstrated that innate 

immunity including IFNs is crucial in the replication and pathogenicity of murine norovirus in vitro 

(RAW267.4 cells) and in vivo. IFNs have a short half life in vitro and in vivo due to low stability. 

Thus it is important to have a good delivery system to improve the stability of IFNs. Nanogels 

are nanosized networks of chemically cross-linked polymers that swell in physiologic solutions 

and provide improved stability and bioavailability to drugs. We have synthesized nanogels 

based on cross-linked polyethyleneimine (PEI)-polyethylenglycol (PEG). The PEI/PEG nanogels 

were further acetylated (AcNg) to reduce cellular penetration and cytotoxicity. The IFN-AcNg 

complex was prepared by incubating two components together at 4 oC and lyophilization. The 

activities of IFN alone and IFN-AcNg were evaluated in the replicon-harboring cells and against 

murine norovirus-1 (MNV-1) in RAW267.4 cells. The AcNg improved the stability of IFN stored 

at 4°C, was well tolerated in the cells. Furthermore, the activity of IFN was significantly higher 

when combined with AcNg in the replicon-harboring cells and against MNV-1 in RAW267.4 

cells. We concluded that AcNg may be pursued further as a vehicle for oral delivery of IFNs in 

norovirus infection. 

 

Keywords: antiviral; interferon; nanogel; Norwalk virus; replicon-harboring cells; murine 

norovirus 
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1. Introduction 

 

Noroviruses are a leading cause of food- or water-borne gastroenteritis outbreaks. Studies 

have demonstrated that noroviruses are responsible for more than 60% of all food-water-borne 

gastroenteritis outbreaks (Fankhauser et al., 1998) with an estimated 23 million cases annually 

in the US causing 50,000 hospitalizations and 300 deaths (Mead et al., 1999). Studies of the 

replication of human noroviruses have been severely hampered by the absence of a cell culture 

system (Duizer et al., 2004). To overcome this limitation, we have previously generated Norwalk 

virus (NV), the prototype strain of noroviruses, replicon-harboring cells in BHK21 and Huh-7 

cells (Chang et al., 2006). This replicon system has provided an excellent tool to study the 

replication of noroviruses and served as a platform to screen potential antiviral drugs (Chang, 

2009; Chang and George, 2007b; Chang et al., 2006). Using the NV replicon-harboring cells, 

we have previously demonstrated that the expression of replicon RNA and proteins was 

significantly reduced in the presence of various interferons (IFNs) including IFN-α and IFN-γ in a 

dose-dependent manner and suggested IFNs could be therapeutic options for norovirus 

infection (Chang, 2009; Chang and George, 2007b; Chang et al., 2006). The important roles of 

IFN in replication and pathogenicity of noroviruses were also demonstrated using murine 

norovirus (MNV) in vitro (RAW267.4 cells) and in vivo (Changotra et al., 2009; Karst et al., 2003; 

Mumphrey et al., 2007). Among the noroviruses, only MNVs including MNV-1 strain have been 

successfully propagated in cell culture (Wobus et al., 2004) and provides a cell culture model for 

norovirus research.  

IFN therapy has been a part of standard treatment regime in some infectious viral diseases 

such as hepatitis B and C virus infection (Foster, 2010; Liu and Kao, 2006), and its importance 

in respiratory viral infection including influenza virus has been studied extensively (Herzog et al., 

1983; Isomura et al., 1982; Merigan et al., 1973; Phillpotts et al., 1983). However, the short half-

life of IFN (up to 8.5 hr) in the serum requires repeated administration to maintain effective 
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concentration in targeted organs. To increase the half-life, IFN can be chemically conjugated 

with poly(ethylene glycol) (PEG) which is inert, water-soluble, and nontoxic and does not 

adversely affect the safety profile of the IFN (Foster, 2010; Kozlowski et al., 2001; Luxon et al., 

2002; Sharieff et al., 2002; Shiffman, 2001). The pegylated IFN significantly increases the 

stability of IFN and is used for treatment of hepatitis B and C virus infection commonly in 

combination with ribavirin (Aghemo et al., 2010; Foster, 2010; Husa and Husova, 2001; Liu and 

Kao, 2006). The parental administration of high dose IFNs (international units [IU] in millions)  is 

associated with side effects, one of the major causes of treatment failure (Negro, 2010). 

However, for virus infection occurring in mucosal areas, such as respiratory or gastroenteric 

infection, systemic administration of IFN may not be required. Therefore, oral or intranasal 

administration of IFNs has been explored as a way to reduce significant side effects and to 

introduce IFNs directly to the affected mucosal areas [review (Beilharz, 2010)].  

Nanogels are nanosized networks of chemically cross-linked polymers that swell in a 

solvent and provide improved stability and bioavailability to drugs (Vinogradov et al., 1999; 

Vinogradov et al., 2006). We have synthesized nanogels based on cross-linked 

polyethyleneimine (PEI)-PEG, which were further acetylated to reduce cytotoxicity (AcNg). The 

IFN-AcNg complex was prepared by incubating two components together at 4°C in water and 

lyophilization. The prepared IFN-AcNg complexes of approximately 200 nM diameters were 

evaluated for stability of IFN and anti-norovirus effects by various assays in the NV replicon-

harboring cells and MNV-1 in RAW267.4 cells. The AcNg carrier improved the stability of IFN 

stored at 4oC, and the antiviral activity of IFN was significantly higher in IFN-AcNg formulation 

compared to IFN alone in the NV replicon-harboring cells or against MNV-1 in RAW267.4 cells. 

The preliminary study using rats suggested that IFN-AcNg did not cause side effects by oral or 

systemic administration, and AcNg did not cause IFN carryover to systemic circulation after oral 

administration of IFN-AcNg. We concluded that AcNg has a potential to be pursued as a vehicle 

for oral delivery of IFNs in norovirus infection. 
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2. Materials and methods 

 

2.1. Cells, viruses, and reagents. The Vero cells, Huh-7, HG23 (Huh-7 based NV replicon-

harboring cells), 1A7 (Huh-7 based hepatitis C virus replicon-harboring cells) and murine 

macrophage-like RAW267.4 cells were maintained in Dulbecco’s minimal essential medium 

(DMEM) containing 10% fetal bovine serum and antibiotics (chlortetracycline [25 µg/ml], 

penicillin [250 U/ml], and streptomycin [250 µg/ml]) (DMEM-C). Murine norovirus-1 was provided 

by Dr. H. Virgin (Washington University in St Louis, MO), and maintained in RAW267.4 cells. 

Recombinant IFN type I (human IFN-A+D fusion protein), mouse IFN-β, and human IFN-αA 

were purchased from Sigma-Aldrich (St Louis, MO). The polyclonal antibody specific to NV 

proteinase-polymerase (ProPol) was described in a previous report (Chang et al., 2006). 

Antibodies specific for neomycin phosphotransferase II (NPT II) or -actin were obtained from 

Santa Cruz biotechnology (Santa Cruz, CA) or Cell Signaling Technology (Danvers, MA), 

respectively.  PEI (~25 kDa), PEG (8 kDa), dichloromethane, actonitrile, acetic anhydride, 1,1′-

carbonyldiimidazole, N,N′-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide, and 1-

hydroxybenzotriazole (HOBT) were purchased from Sigma-Aldrich.  

 

2.2. Preparation of PEG/PEI nanogel. Nanogel PEG-PEI was prepared by following a method 

described previously (Ganta et al., 2008).  Briefly, 7.0 g of PEI (MW ~25 kDa) in 20 ml of 

deionized water was loaded into Sephacryl S200 chromatographic column. The middle fractions 

(based on weight distribution) were collected and lyophilized to give 3.64 g (0.146 mmol) of PEI 

(molecular weight [MW] ~25 kDa).  To activate PEG, 2.0 g of PEG (MW 8 kDa) in 7 ml of dry 

acetonitrile under argon was added to 0.41 g (2.5 mmol) of 1,1′-carbonyldimidazole, and the 

solution was stirred at 40°C for 2 hrs. The crude product was purified by dialysis using a MW 
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cut-off (MWCO) 2 kDa membrane with 10% ethanol in deionized water at 4°C for 4 hrs. The 

solution was lyophilized to give 1.84 g of activated PEG. Nanogel PEG-PEI was prepared by 

following a similar micellar method (Vinogradov et al., 2006). Synthesis started from activated 

PEG (~63 μmol) and PEI (~40 μmol). The PEI in 300 ml of deionized water was added dropwise 

to a solution of activated PEG (MW ~8 kDa) in 2 ml of dichloromethane. The reaction solution 

was sonicated in a water bath for 10 min, and the organic solvent was removed on a rotary 

evaporator resulting in a transparent solution. The solution was dialyzed with a MWCO 12K – 

14K membrane in 800 ml of 10% ethanol in deionized water for 1 day at 25°C and lyophilized to 

give nanogel PEG-PEI (Ng). For the acetylation of Ng, 0.2 ml of acetic anhydride was added to 

a solution of 100 mg of Ng in 1 ml of actonenitrile under argon. The solution was stirred at 50oC 

for 12 hrs and dialyzed with a MWCO 12 K – 14 K membrane in 100 ml of 10% ethanol in 

deionized water at 25oC for 12 hrs.  The solution was lyophilized to give 95 mg of AcNg as white 

solids. 

 

2.3. Preparation of IFN-AcNg. IFN-αA+D or mouse IFN-β (for in vitro studies), or human IFN-

αA (for in vivo study) was encapsulated with AcNg. For encapsulation, 3 mg of AcNg in 0.5 ml of 

deionized water was mixed with the same volume of IFN (3×103, 3×104, or 107 IU in PBS) at 4°C 

for 5 min, and then the mixture was lyophilized. The lyophilized white solids were stored at -

80°C. The encapsulated IFN was resuspended with 1 ml of PBS, so final concentration is 104 

IU/μl (for in vivo study), or 3 or 30 IU/μl (for in vitro study), respectively. As a control, IFN at the 

same concentrations were prepared with the same method without AcNg (so final concentration 

is 104, 3 or 30 IU/μl without AcNg). For AcNg control, AcNg was prepared using the same 

method without IFN. The nonspecific cytotoxic effects of AcNg or IFN-AcNg in Vero, HG23 and 

RAW267.4 cells were monitored by the observation under a microscopy and CytoTox 96 Non-

radioactive cytotoxicity assay (Promega, Madison, WI). 
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2.4. Atomic force microscope (AFM) experiments. The particles of AcNg and IFN-AcNg were 

observed under an AFM (Veeco, Santa Barbara CA). The images were collected using a 

tapping mode with a high aspect ratio tip (Veeco Nanoprobe TM tips, Model TESP-HAR). A 

small aliquot (20 μl) of AcNg or IFN-AcNg was placed onto freshly cleaved mica, washed twice 

with deionized water, and dried with N2. AFM images on different locations of the mica were 

then obtained from a Nanoscope IIIa SPM instrument (Veeco).  

 

2.5. Stability of IFN with or without AcNg. The lyophilized AcNg, IFN30 (30 IU/ μl), IFN3 (3 

IU/ μl), IFN30-AcNg or IFN3-AcNg was solubilized with PBS and stored at 4°C for up to 14 

days. Each day, each preparation was added to one-day old, 80-90% confluent NV harboring 

HG23 cells at the final concentration of 3 or 30 IU/ml, and then viral RNA levels were analyzed 

at 24 or 48 hrs after treatment using qRT-PCR. The reduction of genome by each preparation 

was calculated by the comparison to that of the preparation at day 0.  

 

2.6. Promoter-luciferase assay for IFN response element in Vero and HG23 cells.  The IFN 

activity in IFN and IFN-AcNg preparations was assessed using the reporter assay with IFN 

response element in Vero and HG23 cells using plasmids, pISRE-TA-Luc, pNF-kB-TA-Luc (both 

from Clontech), and pRL-CMV (form Promega). One-day old (~90% confluent) Vero or HG23 

cells in 12 well plates were transfected with pISRE-TA-Luc or pNF-kB-TA-Luc and pRL-CMV. 

The pRL-CMV (for renillar luciferase under CMV promoter) served as a control for the efficiency 

of the transfection and for standardization of luciferase expression levels. Cells were incubated 

for 4 hrs before mock-medium, AcNg, IFN (3 or 30 IU/ml, final concentration) or IFN-AcNg (3 or 

30 IU/ml) was added. After an additional 18 hrs, cells were harvested for analysis of luciferase 

expression. The luciferase assay was carried out with Dual Glo luciferase assay system 

(Promega) in a luminometer (Promega). The luciferase expression (firefly luciferase) from each 
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reporter plasmid was normalized against the expression level of the renilla luciferase encoded in 

pRL-CMV.  

 

2.7. Treatment of NV- or HCV-harboring cells with IFN or IFN-AcNg. The effects of IFN 

with or without AcNg on the replication of NV or HCV in the replicon-harboring cells were 

examined. Mock-medium, AcNg, IFN (3 or 30 IU/ml, final concentration) or IFN-AcNg (30 or 3 

IU/ml) were added to one-day old, 80-90% confluent HG23 or 1A7 cells which were analyzed for 

viral protein and genome expression at 24 or 48 hr after treatment. The NV protein expression 

levels were examined by Western blot analysis and genome expression levels by qRT-PCR, as 

described below. The inhibitory effects of AgNg, IFN and IFN-AcNg on the NV or HCV replicon 

were compared to those of Mock-medium.  

 

2.8. The effects of IFN or IFN-AcNg on the replication of MNV-1 in RAW267.4 cells. The 

effects of mouse IFN-β in IFN-AcNg preparation on the replication of MNV-1 in RAW267.4 cells 

were examined in comparison to IFN alone. Confluent RAW267.4 cells were inoculated with 

MNV-1 at a MOI of 5 or 0.05 for 1 hr, and medium was replaced with medium containing mock-

medium, AcNg, IFN (30 or 3 IU/ml, final concentration) and IFN-AcNg (30 or 3 IU/ml). The virus 

infected cells were further incubated for up to 48 hrs, and the replication of MNV-1 was 

measured by TCID50 assay with the 10-fold dilution of each sample used for virus titration (Reed 

and Muench, 1938), and MNV-1 ProPol was detected by Western blot. 

 

2.9. Detection of viral RNA and proteins.  

2.9.1. Real-Time qRT-PCR. The quantity of NV or HCV genome in the replicon-harboring cells 

was measured by real-time qRT-PCR with One-step Platinum qRT-PCR kit (Invitrogen, 

Carlsbad, CA), following an established protocol with specific primers and probes . For qRT-
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PCR, the total RNA in cells (in 6-well plate) was extracted with RNeasy kit (Qiagen, Valencia, 

CA). The primer sequences for NV were: Forward 5’- CGY TGG ATG CGI TTY CAT GA-3’ and 

reverse 5’- CTT AGA CGC CAT CAT CAT TYA C -3’. The probe sequence used was: FAM-5’-

AGA TYG CGI TCI CCT GTC CA - 3’-Iowa Black. The primer sequences for HCV were: 

Forward 5’- CGGGAGAGCCATAGTGGTCTGCG-3’ and reverse 5’- 

CTCGAAGCACCCTATCAGGCAGTA 

 -3’. The probe sequence used was: FAM-5’-GCGAGCCACCGGAATTGCCT- 3’-Iowa Black. 

The qRT-PCR amplification was performed in a SmartCycler (Cepheid, Sunnyvale, CA) with the 

following parameters: 45°C for 30 min, and 95 °C 10 min, followed by 40 cycles of denaturation 

at 95°C for 30 s, annealing at 50 °C for 1 min and elongation at 72°C for 30 s. For quantity 

control, qRT-PCR for -actin was performed as described previously (Spann et al., 2004). The 

relative genome levels in cells with various treatments were calculated after the RNA levels 

were normalized with those of -actin.  

2.9.2. Western blot analysis.  Protein samples of HG23 cells or MNV-1 infected RAW 267.4 

cells with various treatments were prepared in SDS-PAGE sample buffer containing 1% -

mercaptoethanol, and sonicated for 20 sec. The proteins were resolved in a 10% Novex Tris-Bis 

gel (Invitrogen) and transferred to a nitrocellulose membrane. The membranes were probed 

with guinea pig antibodies specific for NV ProPol protein and the binding of the antibodies was 

detected with peroxidase-conjugated, goat anti-guinea pig IgG (Sigma-aldrich). In addition, 

membranes were probed with rabbit antiserum specific for -actin and peroxidase-conjugated, 

goat anti-rabbit IgG as a loading control. Following incubation with a chemiluminescent 

substrate (SuperSignal West Pico Chemiluminescent Substrate, Pierce Biotechnology, 

Rockford, IL), signals were detected with X-ray film.  
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2.10. Oral and intravenous administration of AcNg-IFN in Sprague-Dawley rats. Four-week 

old female Sprague-Dawley rats were housed and studied under Institutional Animal Care and 

Use Committee-approved protocols. The study was designed to determine if the oral 

administration (oral gavage) of 100 μl of human IFN-αA alone (106 IU total) or AcNg-IFN (3 μg/μl 

of AcNg (total 100 μg) combined with 106 IU of IFN-αA) leads to carry over of IFN to blood. The 

intravenous injection of IFN or AcNg-IFN served as a control. The animals are weighed and 

randomly assigned to 4 groups of 3 animals each. Each group was assigned for intravenous or 

oral gavage administration of AcNg or AcNg-IFN. Rats are cannulated via carotid artery to 

collect blood. Blood samples were collected at 30 min, 1, 4, and 24 hr and serum was separated 

and stored at -80°C. The concentrations of IFN in each serum were measured using IFN-α 

detection kit (Human IFN-α ELISA kit, Interferonsournce, Piscataway, NJ).  Animals were 

monitored by daily behavioral observation and euthanized at 1 week after the administration, 

and a gross necropsy was performed.  

 

2.11. Statistical analysis. The effects of IFN or IFN-AcNg on NV or MNV-1 replication were 

analyzed by Student's t test. Results were considered statistically significant when the P value 

was <0.05. 

 

3. Results 

 

3.1. Nanogel preparation. The acetylated PEG-PEI cross-linked nanogel has a molecular 

weight of ~23 kDa (for each mole of PEI, there is ~0.4 mole of PEG attached) determined by a 

size exclusion chromatography. The encapsulation of IFN by AcNg was performed in water at 

4oC for 15 min, followed by lyophilization. The lyophilized AcNg and AcNg-IFN were white 

powder, and easily solubilized in PBS or water. The putative scheme of acetylated Ng with IFN 

is shown in figure 1. The AFM images of solubilized AcNg and AcNg-IFN showed that both 
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contained circular aggregates up to 200 nm in diameter (Figure 2, left panels). Various 

concentrations of IFN were used in the encapsulation with AcNg, and their AFM images were 

similar in appearances. The prepared AcNg was not cytotoxic to HG23 and RAW267.4 cells at 

up to 10 mg/ml, compared to non-acetylated Ng toxic at 0.6 mg/ml.  

 

3.2. The stability of IFN stored at 4°C in IFN-AcNg preparation. The anti-norovirus activity of 

IFN stored at 4°C without AcNg showed a steep drop (by 80%) in 3-day of incubation, while the 

IFN activity of the IFN-AcNg preparation decreased only by up to 17% during the same period 

(Figure 3). These stability results show that AcNg delayed the decrease in IFN activity. The 

AcNg alone did not show any antiviral effects (not shown).  

 

3.3. The effects of IFN or AcNg-IFN treatment on ISRE-luc response in Vero and Huh-7 

cells. IFN alone at 30 IU/ml without AcNg significantly increased the luciferase expression in 

pISRE-luc system in Vero and Huh-7 cells compared to mock-treatment, while IFN at 3 IU/ml 

did not (Figure 4). However, IFN at both concentrations (3 and 30 IU/ml) combined with AcNg 

induced significant increase in luciferase expression level in both cell lines compared to mock-

treatment. Similarly, AcNg significantly increased IFN-induced luciferase expression at both IFN 

concentrations compared to IFN alone (Figure 4). The treatment of IFN or IFN-AcNg in the cells 

transfected with pNFkB-TA-luc did not induce luciferase expression (not shown).  

 

3.4. Antiviral activity of IFN or AcNg-IFN on NV or HCV replicon-harboring cells. The 

treatment of IFN or IFN-AcNg (3 and 30 IU/ml IFN) for 24 or 48 hrs significantly reduced the 

RNA levels of NV in HG23 or HCV in GS4.1 cells (Figure 5). The longer incubation of cells with 

IFN or IFN-AcNg resulted in greater reduction of viral RNA in both cells. Similar to the results of 

the luciferase expression with pISRE-luc, IFN-AcNg was significantly more effective than IFN 

alone at both concentrations of 3 and 30 IU/ml (Figure 5). The NV RNA levels in HG23 cells by 
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3 or 30 IU/ml of IFN-AcNg were reduced on average to 71% or 35% at 24 hr and 59% or 21% of 

mock-treatment at 48 hr, respectively. However, with IFN alone, they were reduced to 81% or 

46% at 24 hr and 69% or 35% at 48 hr, respectively (Figure 5.A). In GS4.1 cells, HCV RNA 

levels by 3 or 30 IU/ml of IFN-AgNg were reduced to 78% or 40% at 24 hr and 60% or 15% of 

mock-treatment at 48 hr. With IFN only, they were 83% or 65% at 24 hr and 65% or 40% at 48 

hr, respectively (Figure 5.B). However, AcNg alone did not significantly change viral RNA level 

in HG23 and GS4.1 cells compared to mock-treatment (Figure 5.A and B). The western blot 

shows that higher dose of IFN or IFN-AcNg reduced NV protein expression compared to lower 

dose of IFN or IFN alone, respectively (Figure 7.A).  

 

3.5. The effects of IFN or IFN-AcNg on the replication of MNV-1.  We used mouse IFN-β to 

examine the effects of IFN or IFN-AcNg on the replication of MNV-1. Both concentrations of IFN 

(3 or 30 IU/ml) with or without AcNg significantly reduced the replication of MNV-1 up to 1000-

fold at 12 or 24 hr-post infection compared to mock treatment (Figure 6). Similar to the results 

with NV and HCV replicon-harboring cells, the IFN activity against MNV-1 in IFN-AcNg at both 

IFN concentrations was significantly higher than IFN alone (Figure 6). The western blot shows 

that higher dose of IFN or IFN-AcNg reduced NV protein expression compared to lower dose of 

IFN or IFN alone, respectively (Figure 7.B).  

 

 

3.6. Oral administration of AcNg-IFN in vivo.  IFN was detected up to 250 pg/ml 

(approximately 25 IU/ml) in the blood 30 min post-administration in rats administered with IFN or 

IFN-AcNg intravenously. However, IFN was not detected in the blood following oral 

administration of IFN or IFN-AcNg up to 24 hrs, indicating that AcNg did not cause carryover of 

IFN to systemic circulation. There was neither significant behavioral change by daily observation 

or gross pathology on necropsy at 7 days post administration in all animals.  
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4. Discussion 

 

Norovirus infection continues to be an important cause of gastroenteritis in humans,  the 

leading cause of foodborne disease followed by Salmonella contamination among laboratory-

confirmed single etiologic agent cases (CDC, 2010). In most cases, norovirus infection leads to 

acute illness, even though recent findings demonstrated that the infection could last longer than 

several days or even several months, especially in immunocompromised patients (Nilsson et al., 

2003). Since noroviruses are very contagious and requires only a very low dose to cause an 

infection, it is classified as category B bioterrorism agents. However, there is no vaccine or 

treatments specific for norovirus infection except for supportive therapy including fluid 

administration to correct dehydration. Previously, we have used the recently developed NV-

replicon harboring cells and demonstrated that IFN- and  were effective inhibitors of NV 

replication (Chang et al., 2006). We also suggested that NV may not have strong means to 

counteract IFN systems, which further suggests the potential use of IFN in the control of 

noroviruses (Chang et al., 2006). Other researchers have found that the replication of MNV-1 

was sensitive to IFN system in vivo as well as in vitro (Changotra et al., 2009; Karst et al., 

2003). These results suggest that IFN could be potential therapeutic agent for norovirus 

infection.  

IFN treatment in various virus infections including respiratory viruses or human hepatitis 

viruses has been studied. Currently, the standard therapy for chronic HCV infection is the 

combination therapy of IFN- and ribavirin (Aghemo et al., 2010). For treatment of HCV 

infection, IFNs chemically conjugated with branched or linear PEG (pegylated IFN) were 

recently licensed for longer half-life of IFN in parenteral administration (Jen et al., 2001). PEG is 

inert, water-soluble, and nontoxic and does not adversely affect the safety profile of the IFN. 
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PEG exists in a multitude of molecular weights, and can be attached to IFN with size up to 40kD 

(Sharieff et al., 2002). It was reported that higher molecular weight of PEG yields longer half-life 

of the conjugated IFN. However, due to physical conjugation to IFN, PEG reduces the bioactivity 

of IFN (Bailon et al., 2001; Monkarsh et al., 1997). The parenteral administration of high dose of 

IFN (in HCV infection, the standard dose for IFN is above 1 million IU) could induce significant 

side effects such as influenza-like syndrome with fever, chills, myalgia, and malaise (Negro, 

2010).   

Due to these side effects associated with the high doses of parenteral administration of IFN, 

oral administration of IFN has been explored by many researchers for virus infection in mucosal 

surfaces [review (Beilharz, 2010)]. In natural settings, humans and animals encounter various 

viruses and bacteria on daily basis and secret IFN in oral and nasal cavity (Beilharz, 2010). 

Interestingly, the oral administration of IFN was reported to be associated with no significant 

side effects (Dec and Puchalski, 2008). In studies of oral administration of IFN in various 

animals, IFN was rarely detected in the blood, which may be related to the lack of side effects. 

The oral IFN studies showed conflicting results on systemic effects of IFN. In humans, Witt et al 

(Witt et al., 1992) reported that oral administration of high dose of IFN (2.5 and 7.5 mg) to 

healthy volunteers did not significantly induce IFN-responding proteins in serum. However, 

interestingly, low oral dose of IFN (125 IU) were more effective than intramuscular dose of 

millions (IU) in inducing 2’,5’-OAS activity in the blood (Uno et al., 2006), and oromucosal 

delivery of IFN at 100 IU was immunostimulating and high dose (107 IU) were 

immunosuppressive. These suggests that feedback mechanism for interferon might be 

important in oral administration of IFN (Beilharz, 2010).   

In influenza virus infection, low dose of intranasal administration of IFN (up to 5000 

IU/dose) were found effective in preventing or alleviating symptoms without serious side effects 

(Arnaoudova, 1976; Imanishi et al., 1980; Isomura et al., 1982). Interestingly, subsequent 

studies of higher doses of IFN (1000~10,000 times more per day) showed no efficacy against 
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influenza viruses (Hayden et al., 1983; Merigan et al., 1973; Phillpotts et al., 1984; Saito et al., 

1985; Treanor et al., 1987), suggesting that the dose of IFN is an important consideration in 

assessing antiviral effectiveness. In animals, recent studies showed that IFN orally or 

intranasally delivered to mice (Beilharz et al., 2007; Grimm et al., 2007; Tumpey et al., 2007), 

guinea pig (Van Hoeven et al., 2009) or ferrets (Kugel et al., 2009) reduced influenza virus 

replication. Interestingly, oral low-dose IFN (100 IU) were effectively protected mice from a 

lethal challenge of influenza virus (Beilharz et al., 2007).  

Nanogels are hydrogel particles of less than 1 μm in diameter formed by physically or 

chemically cross-linked polymer networks. These nanogels can load large amounts of small 

molecules and/or proteins through spontaneous electrostatic, van der Waals and/or hydrophobic 

interactions, and show high stability in vitro and in vivo, thus they have huge potential as drug-

delivery carriers. It has been shown that nanoencapsulation of peptides and protein colloidal 

particles protects them against the harsh environment of the gastrointestinal tract due to their 

covalent nature (Lowe and Temple, 1994). One of the potential nanogel applications is to deliver 

functional proteins such as IFN which would be easily degraded in biological solution. Nanogels 

based on chemically cross-linked networks with PEG and PEI were previously synthesized and 

demonstrated that they are a good tool to deliver small molecules such as antisense 

oligonucleotides (Vinogradov et al., 1999). Despite the beneficial properties of PEG/PEI Ng, it 

has been associated with cell cytotoxicity in vitro depending on the ratio of PEG/PEI (Ganta et 

al., 2008). To overcome this, we acetylated PEG/PEI Ng (AcNg) to block the reactive groups 

(NH and NH2) on the surface of the Ng, reducing cytotoxicity. Enteric viruses such as norovirus 

replicates in intestinal epithelial cells where the receptor for IFN are located on the luminal cell 

surface, and acetylated Ng-IFN was postulated to activate innate immunity against noroviruses 

in the intestinal wall without the risk of systemic toxicity. Furthermore, IFN combined with AcNg 

is released as an intact form, thus bioavailability of IFN is not reduced, compared with pegylated 

IFN (Figure 4-6). The encapsulation of IFN with AcNg requires only simple procedure: 
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incubation of AcNg and IFN for 5 min at 4°C before lyophilization for storage. This simple drug-

loading property of AcNg offers advantages by getting rid of use of organic solvents, 

surfactants, or evaporation that might affect the properties of the drugs.  

In our study, the incubation of the AcNg in various cells did not show cytotoxicity up to 10 

mg/ml (compared to non-acetylated Ng which is toxic at 0.6 mg/ml). The round AgNg particles in 

the presence or absence of IFN (up to ~ 200 nM diameter) were stable (observed by AFM) for 

14 days in PBS solution stored at room temperature (data not shown). Importantly, AcNg 

significantly increased the stability of IFN, and anti-norovirus (MNV-1 and NV-replicon harboring 

cells) and HCV activity of IFN in cell culture system were significantly enhanced, compared to 

IFN alone. In summary, these results suggest that IFN could be used as a therapeutic agent 

against human norovirus, and AcNg could be a potential drug carrier of IFN by oral route.   
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Figure Legend 

 

Figure 1. Schematic drawing of acetylated nanogel and entrapped interferon.  The cross-link of 

PEI and PEG molecules in aqueous solutions form nanogel (A). The nanogels are acetylated at 

the active sites (NH and NH2) to prevent cellular penetration (B). Incubation of AcNg with 

interferon at 4ºC for 1 min produces interferon entrapment in AcNg. 

 

Figure 2. Atomic force microscope (AFM) images of PEG-PEI acetylated-nanogel (AcNg) only 

(A) and AcNg-IFNα complexes (B). The AFM image (left) of each panel shows AcNg particles 

with or without IFN, and its height and width are shown in the right images (up to 200 nm in 

diameters).  The scale of y-axis (height) is in nanometer.  

 

Figure 3. Stability of IFN or IFN-AcNg. The lyophilized AcNg, IFN30 (30 IU/ml), IFN3 (3 IU/ml), 

IFN30-AcNg or IFN3-AcNg were solubilized with PBS and stored at 4°C for up to 14 days. Every 

day, each preparation was added to one-day old, 80-90% confluent NV harboring HG23 cells 

which were analyzed for viral RNA level at 24 or 48 hr after treatment using qRT-PCR.  The 

reduction of genome by each preparation was calculated by the comparison to that with each 

preparation at day 0.  

 

Figure 4. Induction of luciferase activity under the control of IFN response element using Vero 

and Huh-7 cells. One-day old (~90% confluent) Vero or HG23 cells in 12 well plates were 

transfected with reporter plasmid (pISRE-TA-Luc) and pRL-CMV. At 4 hr-post transfection, the 

cells were incubated with mock, AcNg, or IFN (3 or 30 IU) with or without AcNg for 18 hrs at 

which time luciferase expression was measured. Data presented as fold increase of luciferase 

expression. The luciferase expression (firefly luciferase) from reporter plasmid was normalized 

against the expression level of the renilla luciferase encoded in pRL-CMV. Luciferase 
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expression by IFN-AcNg that were significantly increased (P<0.05) compared to that of IFN of 

same concentration without AcNg are indicated by asterisks. Bars represent standard deviations 

of at least 3 independent experiments. 

 

Figure 5. Effects of IFN with or without AcNg on NV or HCV replication in NV and HCV replicon 

harboring cells. One-day old, semiconfluent NV replicon-harboring HG23 or HCV replicon-

harboring 1A7 cells were incubated with mock, AcNg, or IFN (3 or 30 IU/ml) with or without 

AcNg for 24 or 48 hrs, and then total RNA was prepared for real-time qRT-PCR to detect the NV 

genome (A) or HCV genome (B). The reduction of genomes by various treatments was 

calculated by the comparison to that with mock (medium) treatment. Error bars represent 

standard deviations from at least three independent experiments. RNA levels for cells subjected 

to a treatment with IFN-AcNg that were significantly reduced (P<0.05) compared to the RNA 

level of treated cells with IFN without AcNg are indicated by asterisks.  

 

Figure 6. The effects of mouse IFN-β in IFN-AcNg preparations on the replication of MNV-1 in 

RAW267.4 cells were examined in comparison to IFN alone. Confluent RAW267.4 cells were 

inoculated with MNV-1 at a MOI of 5 or 0.05 for 1 hr, and medium was replaced with medium 

containing mock-medium, AcNg, IFN (3 or 30 IU/ml) and IFN-AcNg (3 or 30 IU/ml). The virus 

infected cells were further incubated for up to 48 hr, and the replication of MNV-1 was measured 

by TCID50 assay. MLV-1 titers in cells treated with IFN that were significantly reduced (P<0.05) 

compared to the MNV-1 titer in mock-treated cells are indicated by asterisks. Error bars 

represent standard deviations from at least three independent experiments.  

 

Figure 7. Effects of various IFN treatments on the expression of NV and MNV-1 proteins in 

HG23 (A) and RAW267.4 (B) cells, respectively. Cell lysates were prepared after incubation 

mock medium, AcNg alone, IFN 3 or 30 IU/ml with or without AcNg for 48 hrs in NV-harboring 
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HG23 cells or following MNV-1 infection in RAW267.4 cells. Western blot analysis of cell lysates 

was performed with antibodies against NV or MNV-1 ProPol proteins and β-actin.  
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