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INTRODUCTION

In amplitude modulation, phase modulation, and frequency modulation

information is transmitted continuously in time domain, whereas in pulse

modulation systems the information is transmitted intermittently. The

carrier is a set of discrete pulses. These pulses are characterized by

the rise time, decay time, (Proc. I.R.E., 1955) average pulse repetition

rate which is given by the average number of pulses per unit time duration

of one pulse and the amplitude of these pulses. Any of the quantities,

repetition rate, duration of pulse, or amplitude of the pulse can be made

to vary in accordance with the amplitude of the modulating wave. In pulse

duration modulation the value of each instantaneous sample of the signal

wave is made to vary the duration of a particular pulse. In pulse posi-

tion modulation the value of each instantaneous sample of the signal wave

varies the time of occurrence of a pulse relative to its unmodulated

position.

In pulse code modulation the samples of the modulating wave are al-

lowed to take only certain discrete values. These amplitudes are then

assigned a code, where each such code is uniquely related to the magni-

tude of the sample.

The operation that is common to all these four systems of pulse

modulation is the operation of obtaining the signal magnitude at pre-

specified intervals of time. This operation is known as sampling.

THE SAMPLING PRINCIPLE (Shannon, 191*8)

A signal which contains no frequencies greater than B cycles/sec.

cannot assume an infinite number of independent values per second. It



can in fact assume 2B independent values per second and the amplitude

at any set of points spaced T seconds apart where T = i—, specifies the

signal completely. Kence to transmit a bandlimited signal of duration

T it is not necessary to send the entire continuous function of time.

It suffices to send the finite number of 2BT independent values obtained

by sampling of the signal at a regular rate of 2B samples per second.

Amplitude

G(t)

Fig-1. Signal Sampled

Let G(t) be the signal that is periodically sampled. Let -A-(w)

be the Fourier transform of G(t). Then G(t) is given by the relation

G(t) iirj^CwJe-^dw (1)

Since -A-(w) does not exist outside the band B the above can be written as

2*B

G(t) = & _/n(ctt) e Jwtdw (2)

-2*B

Let t = (n/2B). The above then reduces to

2flB

G(n/2B) = J, yA(w) e Jw(n/2B)dw (3)

-2/fB

The set of values of G(n/2B) for all positive and negative integral

values of n determines all the coefficients in the Fourier expansion of

i~L(w). Consequently they determine jTL(w) itself in the range



-2TTB<w<2TlB. Since-fi-(w) is assumed to be zero outside of

this range, the set of values of G(n/2B) completely specify

-fL(v). There is thus one and only one function whose spectrum

i"l(w) is limited to the frequency bandwidth B and which passes

through a set of given values at sample points spaced 1/2B

seconds apart.

The proof of the sampling theorem ( Shannon, 1948) for a

time limited case is given below. Suppose a function f(x) is

defined in the interval -T to T and satisfies the Dirichlet's

conditions which are

1. f(x) should be defined and bounded in (a,b) where
b = a + 2T and there should be a finite positive
number A such that at every point in (a,b)

|f'(xM* A
2. f(x) should be integrable in (a.b)
3. f (x) should have only a finite number of discontinui-

ties for every finite interval interior to (a,b) and
at every point of discontinuity the value of the
function equals

^

1 Jf(x+0) = f(x-0)j

which is the arithmetic mean of the right hand and
left hand limits.

Now f(x) can be expanded in a series of trignometric functions

(Tolstov,1962) such that

f(x) = ao + "S- %i cos nwx + Z)

bn sin nwx ( 4 )

iThere

2

7T

3 = 1 /f(x)dx
IT J
""

rr

an - 1 /f(x) cos nx dx (6)

and h, = l_/f(x)sin nx dx w)



This trignometric relationship can also be expressed in the

complex form since

v Jrix -]nx , jnx -inx
a cos nx + h^ sm nx = ^ e° +e d + t^ e J -e J

2 2j

. (an- jbn) eJnx - (an- jbn) e^nx

On writ ing

Cn= (%} - 3 bn )/2 2nd

c~n - (°n ~0 bn -/2

f(x) can be expresse as

f(x)

where

Cn e^
nx

n= -co
il

Cn = : / f(x) e
-;jnx

dx
2/r

-/r

If the interval of expansion i s to T, then

oo

f(x) -^ C n e^M^
n-— oo

and

Cn =_l_ /f(x) •J nxdx

(8)

(9)

(100

(11)

and for a perfectly general case T i<x < T 2

CO

U) r ^Cb
nr-co

,i 2tfnx

\ - T
l

(12)



and ' -

Cn - * / fM* *k£k
"^

CJ3)

Tl

iL (w), the frequency spectrum of G(t), can be expanded in a Fourier

Series in the interval -271B$wS 2 77B

oo.

^-w-2 ^-J$f

where
2/7B

Hence

2ffB

-2^B

i.e. 2 7TB

(111)

n a -co

"| ^'ig (15)

n _oo

C - 1 / il_(w)a JH2 dw (16)
pU3 7 2B

-2 77-B

_i_ G(n/2B)
2B

JTL (w) - 1 ^G(n/2B)e ~J§ (17)
2B n»-oo

G(t)--L f ±_ 2.G(n/2B) e-Jgg e^ dw (18)
2/7 / 2B nT^oo 2B

«*> cttb t G(n/2B) / e>(t
"& dw

<»>

n -co -2 7TB



Now' 2T1B

-2TTB

e
jw(t - n ) dw - 2 Sin 2TTB(t - n/2B)

2B (t - n/2B)

Hence from equation (18) it is seen that

G(t) 1 -^ G/_n_) * 2 Sin (2TTBt - trn)

IHtB -Z, *2B / (2TTBt - TTn)

n -co

and thus completely defined.

This shows that an arbitrary function of time whose spectrum is

limited to the bandwidth B, can be completely reconstituted by its samples

at intervals of X = 1/2B sees, apart.

If the function is present only for an interval of time T then there

are a total of 2TB sampling points within this interval and the value of

the function at these points give rise to G(t), the original time function.

RECONSTRUCTION OF SAMPLED DATA

Interpolation

From the discrete set of sampled data available it is required to re-

generate the continuous signal. This involves filling in the intermediate

values between the present discrete values.

Let the discrete samples of G(t) be denoted by Gx , Go, G

These values are separated in time by l/fg where fs is the sampling fre-

quency. In order to produce a continuously varying time function h(t)

which passes through the sample points of G(t), another function u(t),

has to be introduced such that



h(t) = "^ gnu (t - n/fs ) (Stiltz, 1961) (22)

n -co

and in order for h(t) to be the desired continuous function, u(t) has to

satisfy the conditions that

u (o) - 1

u (nfs ) = o for - oo < n < co (23)
n ^ o

This is known as a step function interpolator or a holding filter and its

Laplace transform representation is

1 - e
"TS

. (2U)
S

where T is the sampling period. The response of this filter to period-

ically applied impulse functions is shown in Figure 2. This is a shallow

skirted low pass filter. Towards proving this the time domain response of

this should be obtained and towards proving this replace S by jW and find

the spectrum.

IT (jW)| -
I 1 - e

I JW

-jwr

(25)

T Sin WT/2
WT/2

" T Sine where 0= WT_ (26)
© 2

This function has a shallow, low pass characteristic with cut off occur-

ring at G =TT i.e., f cut off = l/T. The phase angle Arg T(jw) = WT/2

is linear giving forth a constant delay for all frequencies.
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Figure 2. Response of interpolating filter to periodically
applied impulse functions. (H. Stiltz, 1961)



- There are various methods of realizing this. One method, which is

quite complex is by means of making use of a delay time and integrators

as shown in Figure 3 and this represents the ideal case.

In the Laplace domain integration is denoted by l/S. This can be

expressed in terms of an infinite series as below.

- 1 + Z + 2 2 + + Zn
+ (27)

1 -z

Replacing Z by l/l+S it is seen that the equation (27) can be written as

1 1 + 1 + 1 + (28)

1-_L 1 + S 1 + S2
1+S

00
i + s - "«5 / i

s <£
(J

+

i.e.

S
K - cT

CO
(29)+ '%M

K - 1

The summation is terminated after a finite number of terms to obtain an

approximate finite integrator. In equation (29) 1/(1 + S) can be realized

by an RC network, thus the l/S can be realized to any desired degree of

accuracy by means of cascading these networks and summing their output.

Seme of these circuits are shown in Figure 1|.

OPTIMM PHYSICALLY REALIZABLE TIME INVARIANT LINEAR SMOOTHING FILTER

The train of sample pulses h(t) can be represented by

h(t) - G(t) -Jb 6(t - n/fs) (30)

n -oo
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Fran Fourier Series the trignometric approximation to a series of functions

can be obtained as

6 (t) _1_ + _2_ 4q^ cos 2 TTnt (31)
T T 2H* T

n 1

where T is the sampling period. This approximation to 6 functions can be

reduced as (Stewart, 1956)

CO
Jn2*fstrf(t)-f. ^ e^'V

(32)

where fs l/T

and hence

h(t) - G(t) f
s ^ eJ2 nnfst

(33)

n - -oo

Considering a finite section of both G(t) and h(t) extending from

-T to +T and Fourier transforming both sides it is seen that

"r
(f) = f

s JL Gp (f " ^s) Oh)
n = -co

gj (f ) - YH
r
(f)=f

s
YyG

r
(f) + ^ GjCf-nfs) + Gr(f+rifs jl

L n » i J
(35)

Error in recovered message E-r is given by

Bj - gp - Qj - (f
sY-l)GT (f) + f

sY ^ GT (f-nfs ) + GT (f+nf
s )

n - 1

(36)
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"By an application of Parsevall's theorem it can be seen that the

spectral density of the error is

4..'{f)-^|«rl5-^- ,wO
(37)

using equations (36 and (37) 4k^ can be coniPuted- as

4>
e (

f
) = |fsY -

1|

2
<j>m (f ) + fsy

2

2$(f'nfs)+ ^f+nf9)

n 1

+ cross spectral density terms. (38)

A typical cross spectral density term is

d> (f ) - lim 1 (Gj.(£-nf
s ) + G

r
(f+nf

s ))fGT (f-mf )

K5
r
(f4mfs)J

(39)

The expression above represents the cross spectral density between two

real functions

2 G (t) cos 2 nf
st

and 2 G (t) cos 2 mf-t
^°)

# and must equal the cross correlation Fourier transform of these two

functions

-co

where

^ (T) - 2G(t) cos 2 irnfst 2G(t+t ) cos 2nmfs (t+ C)

0*2)



Ill

= [h G(t)G(t+r )] [cos 2 7Tnfst cos 2 TT mfs (t+ X )]

(U3)

The bar denotes the time average. Taking the average of the product of

the two bracketed terms as equal to the product of the average values

it is seen that

$ CO - h G(t)G(t+r) [cos 2TTnfst cos 2tTmfs (t+t )]

CUO

If in / n the average value of the quantity inside the bracket is zero.

If m = n, equation (Uk) reduces to

§c (X) - 2 (^(t) cos 2 TTfsnt (^5)

Hence by a direct transformation, from (kS) the relationship

4n (f )
= L*m ( f " nf

s )
+ $»<* + "V] (i;6)

is obtained. The sideband spectrum ^s^-O is

4> s (f >
e
^4>m(f " nf

s ) + 4> m (f + nfs ) (U7)

n = 1

This spectrum is shown in Figure 5. The expression for Ye (f) is

identical in form with the error spectral density for continuous smooth-

ing of message plus noise if the noise were independent of the message

and had a spectral density equal to the sideband spectrum.

Weiner's Method can be applied to give the optimum linear filter

function fsy for any given sampling rate.

Cpg(f) is the spectral density of the error function and the mean

square error can then be written as (Bendat, 1958)
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CO

^ o

If the sampling rate is high compared to the effective bandwidth of

G(t), then all except the first sideband to the right can be neglected

giving for <$>
s
(f)

4s(f ) ' ^m(f - fs) .
(1*9)

ALIASING

When the sampling frequency is less than twice the highest fre-

quency contained in the signal, recovery of a signal identical to the

original to the originally sampled signal is not possible. In this

case a downward transposition of the spectra of the signal occurs. This

particular phenomenon is known as aliasing.

It is necessary to reduce aliasing errors to arbitrarily small

proportions and use a sampling frequency not very much in excess of twice

the highest significant frequency contained in the signal. For mathe-

matical convenience the power spectral density of the signal is expressed

as (Stilte, 1961)

°(f )
= A (50)

1 + (f/f )^ * }

where f is the 3 db point as denoted in Figure 6. A is the low fre-

quency power spectral density, fs/2 is the Wyquist frequency and m is

the rate of spectrum cut off. One half of the minimum sampling frequency

is referred to as the Nyquist frequency.

This mathematical definition is consistent with the physical systems

when the signal is passed through a Butterworth's low pass filter. If it



17

«
c

•f-1

D9
i-H

o
>>
u A odb

-Jdb .. ..„ TTrfSsj
vS^

to

•

\ m=2

m-1

vyy/l
Frequency-log scale

fs/2

Figure 6. Maximally flat response. (Stiltz, 1961)



18

is assumed that f <<fs then

2m
• G (f ) i A (fo/f)

* (5D

Making use of the relation that

CD

PAV (all frequencies) J G(f) df (52)

o

and
f

P.v (frequency band f
r

to f
s ) -y G(f) df (53)

f
r

the aliasing error power which is equal to the power in frequencies

from fs/2 to QO is obtained as

co co 2m
df (&

)

fs/2 fs/2

i.e.

Va2
CO

= Afo
2m / f^df

f
s/2

= Afo
2n

'

i

. 1

V2

2m-l f2m-l CO

9m- 1 , r. \ 2m-

1

= 2^m X
Afo • 1 fo \

(2m-l) V fx J

The power contained in the signal is given by

Vs
2

- P / A . df
2m

6 x +
(f/f°)

(55)
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Af
Q
Cosec ( "/2m)

2m~

(56)

The relative error due to aliasing is given by

V
£ = Va>s 2l2mTi7

(f /f)
2m-

1

Sin ( tf/2mjj1/2

^57)

This analysis shows that sampling frequencies much

higher than the nominal bandwidth of the signal should be

used if the low-pass filter used does not have a sharp cut-

off characteristic in order to maintain the aliasing error

within tolerable limits. It is also to be noted that the

filters normally used cuts off at the rate of 60 db/octave

and so a ratio of sampling frequency to nominal highest

frequency in signal of three is sufficient for keeping the

error to less than 1 per cent.

'QUANTIZATION;

Speech has a continuous range of amplitudes,

and hence the sampled wave also has a continuous

variation in the amplitude scale. Human ear cannot

detect minute variations in intensity. For example

consider one sample and offer a corresponding

sound pulse to the ear. It will judge different

samples like OP to be equal, even though P lies

within a certain range of amplitudes. By taking

advantage og this phenomenon it is permissible to

transmit all amplitude levels in this range by the

one discrete amplitude level OQ. It is also seen

that deviation from fidelity can be kept within
tolerable limits by using a large number of steps.
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Speech transmission can therefore be effectively achieved by transmission

of a finite number of discrete amplitude levels.

The signal that is recovered at the receiver will not be identical

with the transmitted signal because of quantization. The maximum error

should not in any case exceed one quantum step. In order to keep this

deviation from the original signal within limits, a sufficiently large

number of quantum steps are required. The actual number used depends

upon the fidelity required.

Consider one particular amplitude level OQ = F. A possible measure

of fidelity with respect to this particular amplitude level is the mean

square of the distance, 4> between OP and OQ

d2 - [(OP) 2 - (0Q)2]
2

Making the assumption that the point P takes on values in the range of

o<. with equal density, one obtains (Bennett, 19^1)

°</2

d2 = _1_ / x2 dx = c< 2
(£8)

<* J i 12
-<*/2

OP
2 - OQ2 + d

2

= F2 + c<2/i2

The power of the signal amplitude in the range o<. without quantization

2 *2
is OP and F is the contribution of the same after quantization. Kence

the quantizing error which is known as quantization noise, being the

difference between these two is oC /12.
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Physical Interpretation of Quantization Koise

Let G(t) denote the signal function before quantizing and P the power

associated with it.. Let GQ(t) be the signal function after quantization,

which is received by the receiver, and Pq the power associated with it.

G(t) and Gq(t) are different because of quantization. Also, Pq, the power

received due to transmission of the quantized samples differs from P, the

power associated with the unquantized sample, by the quantizing noise power.

i.e. P = Pq + Wq

where Mq is the quantizing noise power.

This can also be viewed as the quantizer splitting up the power P

into the signal power Pq and noise power Nq which hinders the signal de-

tection. Even if the transmission channel is noiseless the quantization

noise is present at the receiver. Let A be the unquantized amplitude of

G(t) and it be divided into n equal units. The size of every step is

<* = A/n

If Aq denotes the range of the quantized sample the relationship

A = Aq + <X

is always satisfied. From this it is seen that the relationship between

the number of steps n, size of every step o< and the quantum range Aq is

given by

n « l + fo__
oC

The signal to noise ratio is given by (Mayer 1957)
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PQ - (n
2

- 1)

The following table gives the number of steps versus the signal to

noise ratio:

n 2 li 8 16 32 6U 128

n
2
-l 3 15 63 255 1023 1*095 16383

Pq
/Nq in db U-77 11.76 17.99 2U.O8 30.1 36.13 U2-13

All experiments conducted so far for the determination of the number

of steps required for generation of good quality speech with good intelli-

gibility are subjective in nature. It is generally agreed that 6I4. steps

regenerates the original signal with a very high degree of accuracy.

(Mayer, 1957)

COMPANDORS IN QUANTIZER

A compandor is used to achieve noise reduction. By compression is

meant that the effective gain which is applied to the signal is varied as

a function of its magnitude such that the gain is greater for small rather

than for large signals.

The weak signals are most susceptible to degradation by noise and

other unwanted interference. These weak signals are highly amplified by

the compressor and are carried at a relatively high amplitude level in the

presence of noise.

The compandor provides a means for making the noise susceptibility

a function of the magnitude of the signal. The noise susceptibility is

made less during one portion and greater than that of a linear system

during some other portion of the input.
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Analys is

The block diagram of a system employing a compressor is as shown in

Figure %. The input signal is filtered by a low pass filter LPF-1 with cut

off frequency B. Its signal output occupies all frequencies in the band B.

This signal is sampled at the rate of 2B samples per second and thus the

conversion of the signal to PAM pulses is achieved. According to the sampling

theorem the signal can be reconstructed from the samples. These PAM pulses

make up the input to the compressor.

At the receiver an expandor is used to compensate for the effects of

the compandor. The input versus the output characteristics of this expandor

are exactly opposite to that of the compressor used.

A compressor is called instantaneous if its bandwidth is wide enough

so that it can accomplish the change in the magnitude of each pulse without

increasing its duration. Theoretically the bandwidth required before and

after compression for transmission of the signal are the same. Also, since

the compression is performed in accordance with some known law, the inverse

operation can be performed in the receiver for an accurate recovery of the

signal information.

Let the pulse impressed on the input of the expandor have a magnitude

of V\ + v-, where V-^ is the signal amplitude and v^ the noise amplitude.

The maximum values of the input and output are kept equal. A typical ex-

pandor characteristic is shown in the Figure 6. Here V]_ is the value of

the input pulse when there is no noise and E]_ is the corresponding magni-

tude of the output pulse. When noise is present the magnitude of the out-

put is E^ +£uE;l. These pulses serve as the input to the low pass filter

F3'
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Let the instantaneous noise voltages at the output of this low pass

filter be denoted by Si and Nj_.

s
l

a ^1 (59a)

N " *1-J^L (5%)

where k is a constant which depends upon the design of the system.

6El/vl is a function of the slope of the expandor characteristics

and is called the noise susceptibility s of the system. From the above

two equations (59a) and (59b) it can be written that

S - _E_ (60)
N vs

S/N is the ratio of the instantaneous signal to instantaneous noise at

the output of the low pass filter F^ and E/v is the corresponding ratio

in the absence of the compandor. If the ratio of signal to noise is high,

it can be written that

s = dE/dv (61)

When 5 is unity, then the noise susceptibility equals that of a linear

system, s varies as a function of the signal input. Companding makes

S vary as a certain predetermined function of the magnitude of the input

signal. The input-output characteristic of the compressor should be a

single valued function as otherwise it could create ambiguities at the

receiver.
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. - CHOOSING OF THE EXPAMDOR CHARACTERISTIC

A compandor is said to be logarithamic when the output voltage of

the compressor is a logarithamic function of its input voltage. The output-

input characteristics of such an expandor are exponential and is expressed

by the equation

E - ae
bV (62a)

where a and b are arbitrary constants, v is the expandor input boltage and

E is the output voltage. The characteristics should not follow an exponen-

tial law at very low values of input voltage, since if the relationship is

expotential, E is not zero when the input v is zero. This difficulty of

the system producing an output without an input signal is avoided by using

a characteristic which is linear for input voltages below a given value and

exponential for input voltages above this value. The transition point is

defined as the point where the input-output characteristics changes from

the linear to the exponential relation. The characteristics and its first

derivative are continuous at this point. Over the exponential portion of

the characteristics the relationship can be written as

E « .C*OAt (62b)

indicating that E 1 when v 1 and de/dv Et/Vt where the voltages at

the transition points are given as E^ and V^, so that

Et
'- efrfDAt (63)

The expansion ratio is defined as the ratio of Em/Et to Vm/Vt where

Em and Vm are the maximum values of the expandor output and input

voltages respectively.
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Signal to Noise Ratio

On differentiating equation (62q) with respect to V and substituting

equation (61) one obtains

*- ,0T-l)A
t (6U)

Vt

This equation expresses the relationship between noise susceptibility and

the compressor output voltage v. From equation (60) it is seen that

S E
N vs

and from equation (6U) it can be written

Sa e
(v-D/V

t

vt

and from these two equations (60) and (61|) the relationship that

S
Vt (65)

N v

is obtained. The above relationship brings out the fact that when the

input signal is such as to operate the expandor in the exponential portion

of its characteristics the ratio of the instantaneous signal to instan-

taneous noise is independent of the magnitude of the signal

Noise Advantage Achieved

The permissible noise increase at the output of the system when a

compandor is used has to be obtained for the comparison to be justifiable,

the noise at the output of the system during intervals when the signal
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voltage is zero must be the same for the two conditions, when the system

is equipped with an instantaneous compandor and when linear networks having

linear characteristics are used. When the compandor is used S/N must be

x db where x db is the improvement achieved by use of the compandor.

Let v 1 represent the r-m«s value of the noise voltage at the output

of the transmitting medium upon using the compandor and vx be the corre-

sponding value when the compandor is not used. The noise at the output

of the system during intervals of zero signal input will be the same for

the two conditions when the relationship

vv = vx
X
x 1 (66)

x x
-F

where l/k is the compression ratio is satisfied. Also, usually an optimum

value of 22 db compression is used giving sin 22 db and

12.59 Vt/Vx
1

The quality of the two systems will be the same when both the equations

(66) and (67) are simultaneously satisfied.

Use of Logarthamic Compandor

In work connected with speech a logarthamic compandor is of help in

reducing the quantization distortion to an acceptable level for weak sig-

nals with an acceptable level of impairment for strong signals. The stan-

dard symbol for the compression ratio is JUL. Certain considerations en-

courage high values of jU, certain other considerations discourage high

values of U. and the actual value of ]L selected is a compromise between

the two.
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The considerations that encourage high values of flare:

(a). Obtaining a large companding improvement for weak signals.

(b). Reduction of idle circuit noise and interchannel cross talk
due to the irregular excitation of weak steps.

(c). Prevention of clipping of the signal at its maximum level.
For this a high system overload value relative to the weak
signal level has to be maintained.

Considerations against using a high value of JU. are:

(a). The difficulty of achieving sufficient stability in system
net loss for high level signals.

(b). The difficulty of achieving and maintaining satisfactory
"tracking" between compressor and expandor.

(c). Obtaining sufficient bandwidths in the compandor netvrorks.

(d). The difficulty of holding the d.c. value of the multiplexed
signals to a low enough d.c. value for full exploitation
of high ju. .

QUANTIZATION ERROR - NON UNIFORM SAMPLING OF LEVELS

Let the signal be symmetrically disposed on either side of the zero

level in the range -A to +A. The levels are as denoted in the Figure .1Q.

The signal value is transmitted as Xk provided it satisfies the condition

\-i)<*<\ + i) (68)

Let(X-Xk ) denote the error of the transmitted signal and P(x) the

probability density of the signal, assumed to have a normal distribution.

The mean square distortion voltage is given as (Bendat, 19f>8)

°"k - / (X-Xk)
2
P(x) dx (69)

\ -b
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Time

Figure $. Non-uniform quantization. (Panter and Dite, 19£l)
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In case a large number of steps are used then the assumption can be made

that P(x) can be considered to be constant over the region of integration

and equal to P(XAV ) where XAV is given by

x - \ -i) + \ + i) (70)

In this case <^*k reduces to

Xlk +
i)

W -i)

"k - P(XAV ) / (X - Xk)
2
dx

pCXav)^ j j)- xk )

3
-(x^ - jj ,rxk )

3
(71)

The relationship between Xk and XAy is obtained by differentiation of above

with respect to Xk and setting it equal to zero.

d^k^ - P(XAV ) (fy
- i)-Xk )

2-
(fy

+ ±)- Xk )

2
(72)

dXk

i.e. X - X^ + $)+ X^ - j ) (73)

2

which by definition is equal to XAy. Thus it can be seen that the con-

dition for making o~k a minimum is that Xk should be equal to XAy. If it

is made such that

% + ±\- Xk + ^Xk%
'

k k
(7U)

X^-i)-Xk -4Xk
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2 .

where" Xk is arbitrarily small. Then C~k is seen to be equal to

or* = p(xk ) 2AXk3

3

Under the assumption that the distortion voltage is the same for all steps,

the total mean square distortion voltage is obtained by summing it up for

all the steps.

n

°total = ^ P(Xk ) . 2 AXk3
-n 3

The definition of the integral gives

<ruLi-
,2' p (xk) ±A** - J.f/p(x)

l/3
d^

-n 3 3 -v

The above is a constant, K, and is a function of its limits. If JIk

represents P(X
lt )

1'-3AXk then

n

°"total - _2_ "> $ (75)

•> -n

n

and K "2L Pk (76)

-n

©"total will be a minimum if the sum of the cubes is a minimum, at the

same time satisfying the condition that equation (76) is a constant, i.e.,

the sum of the variables is a constant. In order to achieve this let

(Kaplan, 19k9)

n

°"<k) 2 2 1|3 (77)
3 -n
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(ftc) - K - "2 .'
fts

'

'* (78)
-n

From equations (77) and (78)

dcr
z

+ A
:

dg = (79)

n

K -2^ =

-n

It is seen that there are (2n+2) equations and (2n+2) unknowns.

From the first of the above two equations in (79) it is seen that

\ 2 (U^
2

, (80)

All |Uk are equal

(2n f 1) & - K (81)

f^k = K_ (82)
2n+l

Hence

P
1/3(Xk)Axk - K (83)

(2n+l)

Minimum mean square distortion voltage is

9"m = _2_ KJ

3
- (2n+l)3

v

But I P
/3

(x)dx = 2K giving K as

-v

(8U)
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K - 1 f P
l/3

(x)dx (85)

2

i

Hence

Y pl/3,

12 (2r

r / p1/3 (x)dxT
O-J . , I A

r wax
I

(86)

-V

Since P(x) is an even function it is seen that

V 3

cr„ / p
1/3

(-)^7 (87)

3(2n+l)3

r / p
i/J

(x)cbcl

The ratio of mean square distortion voltage to the mean square signal

V
voltage is given by

3

[/ P
1/3 (x)dx]

o~m = 2 o (88)

^ Z
3(2n+l)

3
/ 2
/ x P(x)dx

o

The above equation gives the minimum distortion resulting from optimum

level spacing.

WEIGHTED PCM

As has been shown previously the mean square quantization noise for

quantization step size o( is ©</l2. The quantized samples are trans-

mitted as binary code pulses. Usually a pulse of amplitude +1 unit is

used to denote the digit 1 while a pulse of -1 in amplitude is used to

represent the digit 0. In -the receiver, when the received' pulse amplitude
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is greater than a+l/2, then the transmitted digit is a+1, whereas if the

received pulse amplitude is less than -£, then the transmitted pulse is

taken to be zero. Perfect reception is achieved if the instantaneous peak

to peak amplitude of the noise is less than 1. Under these conditions the

only noise present at the output is the quantization noise.

If the assumption is made that the noise is essentially Gaussian

then, it has a finite probability of its instantaneous amplitude exceeding

the value required to produce an error in the received pulse. Also in

pulse code modulation it is the position of the received pulse and not its

amplitude that determines the amplitude of the signal transmitted. Under

these circumstances an error involved in the identification of a certain

pulse in the pulse sequence is greater than the error involved in the

identification of certain other pulses. On the other hand since all the

pulse amplitudes in the transmitted pulse sequence are equal the proba-

bility of correct identification of each of these pulses is' the same.

In order to overcome this difficulty, Bedrosian (1958; has suggested a

weighting of the pulse amplitudes so that the higher the power of 2 repre-

sented by the pulse the higher the transmitted pulse amplitude, which,

gives it a higher probability of being identified correctly.

The assumptions made for optimum weighting are as discussed below.

For representation of any £ °;W8 sampled amplitude there are n pulses

within the code group of transmitted pulses and they are labelled 1 through

n. The i^ pulse with an amplitude of (Hi represents the (i-1) power of

2. This amplitude is negative if the i* digit is a zero and is +ve if

the i
th digit is a 1. Also by employment of compression or expansion

(discussed previously; the probabilities for all the 2
n pulse groups are

made equal. Because of this the probability of occurrence of either a
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zero or one in any particular pulse position are equal. Hence even though

the pulse amplitudes are weighted the mean value of the ensemble of pulse

sequences is zero.

The noise added to the pulse sequence is assumed to be Gaussian. The

power spectral density of white noise is a constant and is expressed by

the relation

G^Cf) -A (89)

where A is the constant. The relation between the auto correlation

function and power spectral density is given by

r«w -

-f
/"Let )

°i2
n* <* <*»

From equations (89) and (90) it is seen that the auto correlation func-

tion of the white noise is (Bendat, 1958; Hayre, 1963)

where <f(f ) equals the unit impulse function. The probability density

function of the white noise is given by the formulae

2 2

p(x) - 1 e"
x/2<r

(92)

2
where its mean value is zero and o- is the variance. If the variance

is taken to be unity then

.2

p(x) - 1 e"
x /2

(93)
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The probability of making an error in identifying the i pulse equals

the probability of the pulse being positive times the probability of

noise being more negative than the pulse amplitude plus the probability

of the pulse being negative times the probability of noise being more

positive. If P* equals the probability of error in identifying the i

pulse

a
i

Pj = _1_ / p(x)dx + _L / p(x)dx (9k)

2/ 2 J
a; -co

where l/2 is the probability of the pulse being positive in one case and

negative in the other case. Making the substitution for p(x) from

equation (93), it is seen that

Pi = _1_ / e"
X /2

dx (95)

a
i

The average signal power is merely the mean square pulse amplitude and

hence is given by

s = j! 5 a^ (96)

i=l

where K is the duty cycle.

For an operating system to be useful the errors have to be kept a

minimum and hence the assumption P;«l can be made. And because of this

the occurrence of more than one error in a given pulse code group may be

disregarded. The probability of a single error occurring in the i^ posi-

tion of the pulse group equals the product of the probabilities of each

pulse other than the i
th pulse being identified correctly and the i^1
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being" in error (Bedrosian, 1958).

Pi (1) - PI f IT (1-Pj)
) (97)

According to the assumptions previously made, Pi «1 and hence the quantity

within brackets is close to unity, which reduces the above expression to

Pi (1) = Pi (98)

Similarly the probability of making two errors in the i and j position

of the pulse group is given by

n

P
ii

(2) = P
i
P

i V. (l~P* } (99)

which gives

Pjj (2) = Pj Pj (100)

Thus the probability of two errors in one group is much less than the

probability of one error in the group. Hence the assumption that there

is at the most one error in a given code group is valid.

Let the error in the output pulse due to the incorrect identification

of the i pulse be Ei. The errors are equally likely due to the addition

or subtraction of noise, to (from) the pulses and since the pulses denote

binary digits

Ei - - * • 2< i
-1 >

(101)

depending upon whether the pulse was positive or negative. Here <* is

the size of the quantum step.
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Let Ne denote the mean square noise in the output due to the errors

in the identification. If there is a single error in the identification

of the code group Ne is given by the relation

n

Ne = K
2 2> Pi (1) E|

2
(103)

i-1

and since Pj (1)== Pp the above reduces to

n

Ne - K
2
"SL Pi Ei

2 (1QU)
i=l

Making the substitution for Ei from equation (102), equation (lOli) can

be written as ,

n

Ne = K
2
o<

2 "2. p
i ^

i_1
( 10^)

i-1

For simplification K and <X, can be taken to be unity and the simplified

expressions written as

n

s JL ""> Oi
2

(106)
n ^—

<

i-1

n

i-1Ne = ^ Pi h
1 '-1

(10?)
i-1

Both S and Ne are functions of the Qi's. The find the weighting function

of GLi the above expression is minimized subject to the condition that

S = constant. The system of equations are

n

f (ai, a2 , , an ) = IE, P
£ h 1 '1

(108)
i=l
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g (ai, a2 , , an ) S - J_^ ai2= ° (10?)
n

i=l

To solve for the a^'s to make (S/N) a maximum, the method of Lagrange

multipliers is used and the Lagrangian Function is F = f + ^g where

is the Lagrange multiplier.

There are (n+1) equations and the equations to be solved for a^'s

are (Kaplan, 19li°)

d? + A
1 ^ =

Q&l d&i

d? + Al d q. =

aan ^ a
n (no)

g o

According to Bedrosian an approximate solution to this set of equations

is given by

a i
2 = S + S (i - n+1) In 16 (ill)

1+S 2

This expression brings out the fact that a^ depends only upon S, the mean

square value of the signal and n the number of digits per code group.

aj increases as i increases and the variation in aj becomes less as S

increases.

To get the average output power So, there are 2
n steps and each

quantum step has already been assumed to be of unit amplitude.

2n-l

So = _1_ . 2 .
**>* (2i-l) 2 (H2)

2n £T H
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pn-1

1 . 1 ^> iii
2 - Ui + 1 (n3)

i-1

Since

"> i
2 = n(n+l)(2n+l) and >• i n(n-H)^

6 . .
2

i-1 i-l

it can be seen that

sb - _1_ . _11 U . 2
n- 1

(2
n" 1+l)(2.2

n- 1+l)-2.2
n" 1

(2
n- 1+l)+2n

-1'|

IT 2n

= 1 C2 (2.
n"1

+l)(2.2
n"1

+ l) -2(2
n_1+ l) +lj

= 1 Si (2.2
2n-2+ 3.2

11-1
*!) -2.2

n-1
-l"l

- 1 fU . 2
2n"2

- 1 1

= 1 jj^l (HI;)T 3

Hence average power at the output is

12

As has been already shown the quantization noise power is given by

Mq = c<
2
/12

and if o<=l, then

W
Q

" 1/12 (115)
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The total noise power at the output is (We + M^) and as such

(S/Wj out = So/(We + W
Q ) (116)

In a conventional PCM system all pulses are of equal amplitude and the

Pj.'s are all equal. For this case, We 1
, the noise power in the output

due to an error is

n

fel - p
Hi
^

en?)

In this case the signal to noise ratio at the output is

Figure 10 shows the improvement in signal to noise ratio obtained by the

method of optimum lighting. If the "knee" of output versus input signal

to noise ratio is defined as the point where output (s/W) is 3 db down

from the quantizing noise level, then the knee occurs at lower Sin/W in

for the unweighted PCM case by approximately !»$• db for n=5, 7, 9 and 11.

Information Rate

According to Shannon, the ideal rate of information transmission is

given by

C = B log (1 + S) bits/sec (n9)

where C is channel capacity, B is channel bandwidth, S is average signal

power and W is noise power, both these being referred to input.

In this case the information capacity of a system is thought of as
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Top curves are for weighted PCM.

Figure 10. Comparison of weighted and unweighted PCM.
(Bedrosian, 1958)
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the number of independent symbols or characters which can be transmitted

without an error in unit time.

In theorem 23 in the article "Mathematical Theory of Communication,"

Shannon states an inequality that the actual rate of information trans-

mission, R, should satisfy. It is given by the expression

B log? Q l < R ^ B log2 Q (120)
TO M

where B is source bandwidth, Q is average source power, Q± its entropy

power and N the allowed mean square error. For the present case N Ne+NQ.

Shannon defines the entropy power of a source as the average power of

a normally distributed source having the same entropy as the original

source. Since in the source all values were assumed to be equally probable

P(x) ("ia
\x\$ a (121)

where x denotes a typical signal limited in amplitude between -a and a.

The mean square value of x gives the mean square power, Q of the

source. It is given by

dx

= /
-co
a

x2p(>:) dx

s

/
-a

2
x . 1

2a

2
a

3

(122)

The entropy of the continuous distribution with density distribution

function p(x) is (Shannon, 19h9)
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00

- J p(x) log p(x) dx
-00

= -log 1_ = log 2a (123)
2a

From equation (122) it is seen that 3Q a.
2

, and hence from equation (123)

H = log 2 J3Q (1210

The source is assumed to be normally distributed and since Q]_ is

its average power

P(y) - i e-*
2
/2Q l

v/2 T1 Qi
CO

^1 = - J P(y) log p(y)dy
— CO

= - / 1 e-y
2
/2Ql log e-y

2
/2Ql dy

CO

= J_ /e-y^lllogj^-loge-^^lldy

- loglSiQ, / 1 e"
y2/2Q

l ^ +loc^e A_ y
2e
^/2Ql

. ^V slTQl 2Q
i / 277 Qi-» -co

The integrand in the first case is the probability density function which

upon integration between - ooto + «> gives unity. The integrand in the

second case upon integration gives the variance which in this case is Q 2 .

Hence after integration H. reduces to

H
1

- log J2TSQ
1

+ £ log e

= log JTneQ-L
( 125)
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The relation between Q and Qj_ is obtained by equating the entropies and

from equations (121;) and (125) it be seen to be

Ql = JL. Q ( 126 )

TTe

In the source the highest frequency is B and it has to be sampled

at least at the rate of 2B samples per second. Since -n digits are re-

quired in order to transmit one sample, at least 2nB samples have to be

transmitted per second.

From equation (120) it is seen that

1_ log __6_ /S). <.JL<:L lo9 ($)'

2n -ge Wout ~ 2Bn ~ 2n ^N J out

since

2. -/§)
N VH/out

This is compared with the channel capacity given by

C - B log (1 + S/N)

and since for the present case bandwidth is nB

C = 1 log (1 + S/W) (127)

2nB 2

These calculations are plotted in Figure 11. It shows optimum

weighting of PCM. It allows lowering (S/K) in by about 1*5 db while re-

taining the same R provided (S/N) in is below the knee of the unweighted

PCM curve. The maximum possible lowering of (S/N) in for constant R is
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Information rate
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Qdb, thus showing that weighted PCM has made a significant improvement.

The probability of error in the detection of a single pulse is a

minimum when all pulses are of equal height. The rate of errors on a

per symbol basis is higher for the case of weighted PCM compared to that

for standard PCM. Equivocation which is defined as the uncertainty of the

message sent given the message received is greater for weighted PCM since

here also all pulses are of equal importance.

In conclusion, Bedrosian, mentions the fact that the improvement of

about I'S db obtained by weighting is not very encouraging since a lot of

complicated circuitry has to be employed to achieve this.

•

CONCLUSION

Pulse modulation systems enables the multiplexing of channels by

time division as distinguished from frequency division. This is due to

the discrete nature of the signal obtained after sampling. Multiplexing

by time division simplifies the equipment necessary for the same since

relatively simple gating circuits can replace the modulators, demodulators,

bandpass filters, etc., necessary in the case of frequency division multi-

plexing.

Aliasing errors cannot be eliminated altogether. It can be minimized

and brought to a negligible level by the use of sharp cut off filters to

limit the highest frequency contained in the signal and then choosing the

sampling frequency properly. Too high a sampling, frequency should not be

chosen since it might tend to limit the number of channels that can be

used by time division multiplex. The actual sampling frequency chosen is

a compromise between these two factors.
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There are two types of noise introduced by a PCM system. One is the

quantization noise. This is introduced at the transmitting end of the

system and nowhere else. The other is the false pulse noise caused by the

incorrect interpretation of the intended amplitude of a pulse by the re-

ceiver or by any repeater. This could arise anywhere along the system and

is cumulative. This could be reduced by a proper weighting of the pulse

amplitudes within a pulse code group as suggested by Bedrosian (1958).

This noise decreases rapidly when the signal power is increased above a

certain amplitude, so that in any practical system it can be made small by

proper design without resorting to the complicated circuitry required for

the case of the weighted. PCM. As a result signal to noise ratio is set in

a PCM system by the quantizing noise only.

The mean square quantization noise which is proportional to the

square of the quantization step, can be reduced by a reduction of the

size of a quantum step. This increases the number of steps required for

a coverage of the peak signal amplitude and correspondingly the number of

pulses within a given pulse code group. This tends to place severe con-

strictions on the pulse generating circuits or upon the number of channels

that can be multiplexed. Hence in the choice of the size of a quantization

step also a compromise solution between these various factors. . ssavy

For PCM in the UHF range there are many more problems involved in

both sampling and quantization. A survey of the literature on PCM so far

published shows that it has not been considered so far and this present

study could be used as the basic theory behind understanding the problem

of PCM in the UHF range.
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This report is a study of pulse code modulation. In the first sec-

tion the theory of sampling, recovery of sampled information known as

interpolation, and aliasing errors in sampling are discussed.

Quantization, which involves analog to digital conversion,

quantization noise, error in quantization with unequal steps, the improve-

ment in signal to noise ratio obtained by use of a compandor are included

in the second section.

The last part of this report considers a modified form of pulse

code modulation called "weighted PCM". In weighted pulse code modulation

the amplitudes of the pulses within a pulse code group are suitably ad-

justed as to minimize the noise power in the reconstructed signal due to

errors in transmission.


