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Abstract

Textile fabrics and textile composite materials demonstrate exceptional mechanical
properties, including high stiffness, high strength to weight ratio, damage tolerance, chemical
resistance, high temperature tolerance and low thermal expansion. Recent advances in weaving
techniques have caused various textile fabrics to gain applications in high performance products,
such as aircrafts frames, aircrafts engine blades, ballistic panels, helmets, aerospace components,
racing car bodies, net-shape joints and blood vessels.

Fabric mechanical properties are determined by fabric internal architectures and fabric
micro-geometries are determined by textile manufacturing process. As the need for high
performance textile materials increases, textile preforms with improved thickness and more
complex structures are designed and manufactured. Therefore, the study of textile fabrics
requires a reliable and efficient CAD/CAM tool that models fabric micro-geometry through
computer simulation and links the manufacturing process with fabric micro-geometry,
mechanical properties and weavability.

Dynamic Weaving Process Simulation is developed to simulate the entire textile process.
It employs the digital element approach to simulate weaving actions, reed motion, boundary
tension and fiber-to-fiber contact and friction. Dynamic Weaving Process Simulation models a
Jacquard loom machine, in which the weaving process primarily consists of four steps: weft
insertion, beating up, weaving and taking up. Dynamic Weaving Process Simulation simulates
these steps according to the underlying loom kinematics and kinetics. First, a weft yarn moves to
the fell position under displacement constraints, followed by a beating-up action performed by
reed elements. Warp yarns then change positions according to the yarn interlacing pattern

defined by a weaving matrix, and taking-up action is simulated to collect woven fabric for
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continuous weaving process simulation. A Jacquard loom machine individually controls each
warp yarn for maximum flexibility of warp motion, managed by the weaving matrix in
simulation. Constant boundary tension is implemented to simulate the spring at each warp end.
In addition, process simulation adopts re-mesh function to store woven fabric and add new weft
yarns for continuous weaving simulation.

Dynamic Weaving Process Simulation fully models loom kinetics and kinematics
involved in the weaving process. However, the step-by-step simulation of the 3D weaving
process requires additional calculation time and computer resource. In order to promote
simulation efficiency, enable finer yarn discretization and improve accuracy of fabric micro
geometry, parallel computing is implemented in this research and efficiency promotion is
presented in this dissertation.

The Dynamic Weaving Process Simulation model links fabric micro-geometry with the
manufacturing process, allowing determination of weavability of specific weaving pattern and
process design. Effects of various weaving process parameters on fabric micro-geometry, fabric

mechanical properties and weavability can be investigated with the simulation method.
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Abstract

Textile fabrics and textile composite materials demonstrate exceptional mechanical
properties, including high stiffness, high strength to weight ratio, damage tolerance, chemical
resistance, high temperature tolerance and low thermal expansion. Recent advances in weaving
techniques have caused 2D and 3D textile fabrics of various yarn structures begin to gain
applications in high performance products, such as military and commercial aircrafts frames,
aircrafts engine blades, ballistic panels, helmets, aerospace components, racing car bodies, net-
shape joints and blood vessels.

Fabric mechanical properties are determined by fabric internal architectures and fabric
micro-geometries are determined by the textile manufacturing process. As the need for high
performance textile materials increases, 3D textile preforms with improved thickness and more
complex structures are designed and manufactured. Expanding applications of 3D fabrics and
increasing complexity of fabric internal structures are challenging textile manufacturing
techniques. However, the study of textile fabrics requires a reliable and efficient CAD/CAM
tool that models fabric micro-geometry through computer simulation and links the
manufacturing process with fabric micro-geometry, mechanical properties and weavability.

Dynamic Weaving Process Simulation is developed to simulate the entire textile process.
It employs the digital element approach to simulate weaving actions, reed motion, boundary
tension and fiber-to-fiber contact and friction. Dynamic Weaving Process Simulation models a
Jacquard loom machine, in which the weaving process primarily consists of four steps: weft
insertion, beating up, weaving and taking up. Dynamic Weaving Process Simulation simulates
these steps according to the underlying loom kinematics and kinetics. First, a weft yarn moves to

the fell position under displacement constraints, followed by a beating-up action performed by
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reed elements. Warp yarns then change positions according to the yarn interlacing pattern
defined by a weaving matrix, and taking-up action is simulated to collect woven fabric for
continuous weaving process simulation. A Jacquard loom machine individually controls each
warp yarn for maximum flexibility of warp motion, managed by the weaving matrix in
simulation. Constant boundary tension is implemented to simulate the spring at each warp end.
In addition, process simulation adopts re-mesh function to store woven fabric and add new weft
yarns for continuous weaving simulation.

Dynamic Weaving Process Simulation fully models loom kinetics and kinematics
involved in the weaving process. However, the step-by-step simulation of the 3D weaving
process requires additional calculation time and computer resource. In order to promote
simulation efficiency, enable finer yarn discretization and improve accuracy of fabric micro
geometry, parallel computing is implemented in this research and efficiency promotion is
presented in this dissertation.

The Dynamic Weaving Process Simulation model links fabric micro-geometry with the
manufacturing process, allowing determination of weavability of specific weaving pattern and
process design. Effects of various weaving process parameters on fabric micro-geometry, fabric

mechanical properties and weavability can be investigated with the simulation method.
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Chapter 1 - Introduction

Textile techniques date back to at least 20,000 years ago, when traditional textile
products utilized natural materials such as cotton, wool and silk for production of consumer
products such as clothing and blankets. In the 1940s, petrochemical synthetic fibers such as
nylon, acrylic and Poly Vinyl Chloride fibers were invented and textile materials applications
expanded from consumer products to military products. The creation of glass, carbon and Kevlar
high-performance fibers in the 1950s through 1970s launched a new era, in which textile
materials began to achieve success in high performance products. Various textile fabrics
including woven, braided, knitted and stitched fabrics reinforced composites gained applications
in military and commercial aircrafts frames, airplane engine blades, ballistic panels, helmets,
aerospace components and net-shape joints. As textile materials continue to gain popularity, the
current need for high performance textile fabrics also significantly increases. Therefore, textile
fabrics with increased thickness and more complex structures are designed and manufactured in
order to satisfy the growing demand.

Mechanical properties of textile products rely on fabric properties and fabric internal
architectures because fabrics are the major load-bearing components. Fabrics are produced
through textile processes, so fabric micro-geometries and mechanical properties are determined
by manufacturing process dynamics. Expanding applications of 3D fabrics and increasing
complexity of fabric internal structures are challenging textile manufacturing techniques.
Weavability becomes a crucial research topic in order to improve manufacturing safety,
productivity and efficiency. Fabric design and textile manufacturing require a reliable, efficient
CAD/CAM tool that simulates fabric manufacturing process, models fabric micro-geometry and

links manufacturing process to fabric micro-geometry, mechanical properties and weavability.
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Several models have been established to simulate fabric geometries at various structural
levels, including continuous level models, yarn level models and fiber level models. The
continuous method models the textile on the fabric level; internal structural details of individual
yarns or fibers are not considered. Yarn level models are established based on yarn axial path
and yarn cross-section shape. Assumptions on yarn geometry are established based on
experimental observations. However, in reality yarns are composed of thousands of fibers, and
fabric geometries, including yarn paths and cross-sectional shapes, are determined by fiber
distributions. Fiber level modeling is therefore required in order to provide accurate simulation

of fabric micro-geometries independent of experimental data.

Djgital chains
Digital Rod Elements / 9

Frictionless Pins Contact element

Figure 1-1. Digital element model

In order to determine fabric micro-geometries at fiber level, Wang and her coworkers
developed a digital element approach to simulate textile processes [1][2][3][4], as illustrated in
Figure 1-1. In this approach, yarn was modeled as an assembly of digital fibers and each digital
fiber was divided into short elements connected by pins. Nodal contacts between fibers were
searched during simulation. If contact occurred, a contact element was inserted and contact
forces were calculated.

With this approach, Wang and her coworkers developed quasi-static simulation, static

relaxation and dynamics relaxation methods in order to model fabric micro-geometry. The quasi-



static method simulated step-by-step 3D braiding processes and 2D weaving processes based on
a quasi-static assumption. This quasi-static model can be used to derive basic geometry of 2D
woven and 3D rectangular braided fabrics. However, computer resources required for the
simulation presented a major obstacle preventing wide application of this approach. In addition,
the method was not applicable for complex weaving or braiding processes simulation.
Therefore, a static relaxation approach and a dynamic relaxation approach were developed to
replace the quasi-static step-by-step simulation. The static relaxation method was more efficient
than the quasi-static simulation because it implemented implicit algorithm and solved the fabric
global matrix. The dynamic relaxation approach established cell topology based on weaving
pattern, applied yarn tension and adopted periodic boundary condition. Yarns inside the unit cell
deformed to minimum potential energy state. Because only one unit cell was involved in the
numerical model, computation time was no longer a concern. Unit cells of various woven fabrics
with complex yarn patterns were generated with the dynamic relaxation method. A software
package, Digital element approach Fabric Mechanics Analyzer (DFMA), was developed based
on this digital element approach.

In the static relaxation and dynamic relaxation approaches, fabric relaxed to minimum
potential energy state and only fabric topology was considered in determining unit cell micro-
geometry; effects of weaving and braiding process dynamics were neglected. In reality, however,
fabric micro-geometries do not reach minimum potential energy states due to fiber-to-fiber
friction. Fabrics are produced by textile weaving machines and fabric internal structures and
mechanical properties are determined by weaving process dynamics. Weaving process
kinematics determines fabric topology and weaving process kinetics, such as yarn tension,

weaving velocity, beating-up velocity, and fiber-to-fiber friction, determines detailed fabric



internal structure. Therefore, a dynamic weaving process simulator that can incorporate weaving
process dynamics is essential to study manufacturing induced fabric deformation, fiber damage,
fabric stress distribution and weavability. Furthermore, fabric internal structures demonstrate
growing complexity, thereby requiring increasingly complicated manufacturing processes and
intensifying the need for optimized manufacturing processes and machines in order to reduce
friction and impact force. Therefore, A CAD/CAM numerical model capable of textile process
simulation, fabric geometrical modeling and analysis is required.

This research aimed to develop a dynamic weaving process simulator according to the
textile process physics. The model simulated weaving process dynamics, and linked the fabric
pattern, micro-geometry, process weavability and fabric mechanical properties to the weaving
process. Kinetics and kinematics of all weaving actions were fully modeled. The dynamic
weaving process simulator was successfully employed to generate various fabrics.

Thus dissertation presents the following research:

1) Dynamic weaving process simulator

The dynamic weaving process simulator, developed according to textile process
dynamics, is capable of fabric geometric modelling and weaving process analysis. Key
components of a weaving machine and weaving actions were studied and modelled and a
weaving matrix was implemented to control the weaving process. The simulation model was
established based on fabric pattern and weaving process dynamics. Digital element approach was
employed to simulate weaving actions and boundary conditions. Four primary weaving actions
were simulated according to underlying loom kinematics and kinetics: weft insertion, beating up,
weaving and taking up. Tension-induced, contact-induced and friction-induced nodal forces were

calculated during process simulation. Parallel computing was employed to promote efficiency.



2) Dynamic weaving process analysis

Parametric analysis was implemented using the dynamic weaving process simulator.
Relationships between weaving process dynamics and yarn stress, fabric micro-geometry and
weavability were studied. Effects of weaving process kinetics and kinematics parameters,
including vyarn tension, weaving velocity, reed spacing, beating-up velocity, and
fiber-to-fiber friction on fabric yarn stress and fabric mechanical properties were also studied.

Reed load estimation was implemented in dynamic weaving process simulator in order to
provide instructions regarding machine and manufacturing process design. Textile fabrics
complexity has been rising significantly, generating challenges for textile manufacturing. Reed
damage during weaving impact presents a major manufacturing problem. Therefore, reed load
estimation was implemented and the relationship between weaving process parameters and reed
load were investigated using dynamic weaving process simulator. Weaving process parameters
such as taking-up frequency and velocity and reed impact velocity significantly affect reed load
but yarn tension and fiber-to-fiber friction only moderately affect reed load. Optimal fabric
design and machine design can be implemented with manufacturing process simulation.

In the dynamic relaxation approach, unit cell micro-geometry was determined by
minimizing potential energy. Only fabric topology was used to determine micro-geometry in the
relaxation approach. However, fabrics are produced by textile weaving machines and fabric micro-
structures are determined not only by topology, but also by weaving process Kinetics, such as yarn
tension, weaving velocity, beating-up velocity, and fiber-to-fiber friction. Process dynamics
determines fabric micro-geometry, and affects fabric mechanical properties. Effects of weaving
process on fabric micro-geometry were studied and presented in this dissertation. Comparison of

process simulation and dynamic relaxation was implemented and discussed.



Chapter 2 - Literature Review

2.1 Development of Textile Fabrics and Textile Composites

Archaeological evidence suggests that the skill of hand-weaving and hand-spinning to
make coarse textile clothing from natural fibers was developed at least 20,000 years ago [5].
Hand woven fabrics made from natural materials such as cotton, wool and silk were utilized to
produce consumer products such as clothing and blankets that provided warmth and basic
protection for human bodies.

In the 1800s, the Industrial Revolution initiated a transition from hand-spinning methods
to weaving machines powered by steam or water. Textile output significantly increased because
of mechanized cotton spinning. However, little innovations were made on textile materials and
textile products.

In the 1940s, emergence of the petroleum industry prompted the invention of
petrochemical synthetic fibers such as nylon, acrylic and Poly Vinyl Chloride fibers.
Applications of synthetic fiber textiles expanded from consumer products to military products
including soldier protection and parachutes. During World War I, ballistic vest “flak jacket”
made from ballistic nylon and steel plates sewn into the cloth was introduced. The “flak jacket”
offered protection from munitions fragments, but was heavy, bulky and ineffective against most
pistol and rifle threats [6].

In the 1950s and 1960s, the creation of high-performance glass fibers and carbon fibers
launched a new era of textile materials. Weaving technique advances allowed manufacturing of
fabrics with complicated internal structures, making textile fabrics gain applications in composite
materials. Fiber reinforced composites consist of reinforcing fabrics and matrix material.

Reinforcing fabrics are the principal load-bearing components of textile composites, and matrix



functions primarily consist of load transmission, damage tolerance, corrosion resistance and
thermal and environmental stability [10]. Several processes can be utilized to manufacture the
reinforcing fabric, including weaving, knitting, and braiding. Molding methods of fiber-
reinforced composites include hand lay-up of prepreg materials, automated tape lay-up of
prepreg materials, resin-transfer molding, vacuum-assisted resin transfer molding, resin film
infusion, wet lay-up, filament winding, pultrusion, and compression molding of sheet molding or
bulk molding compound [10][11]. Properties such as high stiffness, high strength to weight ratio,
damage tolerance, chemical resistance, high temperature tolerance and low thermal expansion
have made high-performance fabric reinforced composites very ideal for aircrafts components.
Carbon fiber textile materials gained application for military aircraft in the 1970s, when aircrafts
engine blades and frames implemented carbon fabric reinforced composites to produce lighter
stronger structures. Reduced airframe weight promotes fuel economy, so carbon fiber reinforced
materials have also recently been used for commercial transport aircrafts. The Boeing 787
Dreamliner contains approximately 35 short tons (32,000 kg) of carbon fiber reinforced polymer
(CFRP), making it 20% more fuel efficient than the Boeing 767 [7].

In the 1970s, DuPont invented Kevlar fiber, which made the first generation of real
bullet-proof soft armor possible [6]. A series of researches on Kevlar concluded that the light-
weight Kevlar fabrics present excellent ballistic resistant properties, that are 5 times stronger
than steel [8]. The Kevlar ballistic vest also offered flexibility and comfort, allowing full-time
wear, and it could be customized with various types of fibers and manufacturing methods. As
textile technique advanced, Kevlar fabrics also gained application in impact resistance armors
such as helmets and ballistic panels. Stress wave travels in multiple directions in textile fabrics,

improving damage tolerance and withstanding multi-directional mechanical stresses. However,
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special applications of textile fabrics require particular design and complicated manufacturing
processes. Micro-level modeling is therefore required to simulate the manufacturing process and

analyze fabric properties.

2D Fabrics

Textile — 3D Fabrics
— Bra