

# CONSTANT-K COMPLEMENTARY FILTERS 159

by

# EDDIE RANDOLPH FOWLER

B.S.E.E., Kansas State University, 1957

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1965

Approved by:

Charles A, Halijak

Major Professor

LD 2617 T4 1965 F78 02 Document

# TABLE OF CONTENTS

| INTRODUCTION                                                                                   |
|------------------------------------------------------------------------------------------------|
| PREVIOUS WORK                                                                                  |
| DEFINITIONS AND DESCRIPTIONS                                                                   |
| ASSERTIONS                                                                                     |
| CONSTANT-K COMPLEMENTARY FILTERS                                                               |
| Procedure                                                                                      |
| Constant-1 Filter                                                                              |
| Zobel Filter                                                                                   |
| Complementary Filters                                                                          |
| Type 1 Constant-1 Complementary Filter 21                                                      |
| Type 2 Constant-1 Complementary Filter with<br>Parameters C and C'                             |
| Type 3 Constant-1 Complementary Filter with<br>Parameters C and C <sub>2</sub>                 |
| Type 4 Constant-1 Complementary Filter with<br>Parameters C, C <sub>1</sub> and C <sub>2</sub> |
| Type 5 Complementary Zobel Filter                                                              |
| Type 6 Degenerate Complementary Zobel Filter with<br>Parameters C and m                        |
| Type 7 Degenerate Complementary Zobel Filter with<br>Parameters C, C <sub>1</sub> and m        |
| CONCLUSIONS                                                                                    |
| ACKNOWLEDGMENT                                                                                 |
| REFERENCES                                                                                     |
| APPENDIX A - Impedance Elision                                                                 |
| APPENDIX B - Aidentity Algorithm                                                               |
| APPENDIX C - Interactance                                                                      |
| APPENDIX D - FORGO Programs for Interactance Calculations. 64                                  |

| APPENDIX | Ε | - | FORGO Programs for Aidentity Driving Point<br>Impedance (ADPI) Calculations                                     |
|----------|---|---|-----------------------------------------------------------------------------------------------------------------|
| APPENDIX | F | - | Voltage Transfer Function (VTF) Coefficients . 91                                                               |
| APPENDIX | G | - | FORGO Programs for VTF Coefficient<br>Calculations                                                              |
| APPENDIX | Н | - | FORGO Programs for Sinusoidal Response<br>Calculations of the VTF                                               |
| APPENDIX | I | - | Complementary Filter ADPI Coefficient<br>Symmetry                                                               |
| APPENDIX | J | - | FORTRAN Program for Coefficients Evaluation<br>of the Product of Two Polynomials with<br>Algebraic Coefficients |
| APPENDIX | K | - | ADPI Parameter Evaluation for a Type 7 Filter. 125                                                              |
| APPENDIX | L | - | FORTRAN Program for Evaluation of Type 7<br>ADPI Coefficients                                                   |
| APPENDIX | Μ | - | Bairstow's Root Extraction                                                                                      |
| APPENDIX | N |   | Hofman's FORTRAN Program for Polynomial Root<br>Extraction                                                      |

#### INTRODUCTION

A goal in fan-out filter design is construction of a single input, denumerably infinite output spectrum analyzer that exhibits the individual terms of the input Fourier series. This entails a fan-out filter network that has a resistive input driving point impedance or constant interactance, and each fan-out that has a narrow band-pass filter transfer function and predictable linear phase shift.

Though the spectrum analyzer is the final goal, this thesis will consider a simpler problem which is a one inputtwo output filter designated as the complementary filter by Zobel (8). Early research will be discussed briefly with special attention to Fritzemeyer's (1) conceptual simplifications such as interactance and impedance elision. Constant-k complementary filter designs will be presented. Improvement of filter interactance and transfer function filter characteristics will be accomplished by the aidentity algorithm and impedance elision. Fritzemeyer investigated Newton complementary filters and these are not considered in this thesis. A large number of appendices contain proofs and digital computer programs necessary for the development of constant-k complementary filters.

# PREVIOUS WORK

# General

O. J. Zobel (8) was concerned with improving the driving

point impedance (DPI) of a constant-k filter and a constant-k complementary filter. Zobel added series and shunt elements in front of the constant-k filter and then empirically determined the value of these elements. In his constant-k complementary filter the shunt annulling branches were eliminated, similar to impedance elision, to obtain the best DPI results. No investigation of the voltage transfer function (VTF) was made.

Bode (5) was primarily interested in improving the DPI of a constant-k filter by adding a conductance controlling network and a susceptance annulling network. Later Bode (4) used these methods on constant-k complementary filters and a type of impedance elision with pole-zero analysis to improve the DPI.

Guillemin (10) investigated complementary and potentially complementary constant-k filters with added series elements that had properly chosen coefficients. The resulting filter was essentially that which Zobel and Bode had suggested.

Norton (11) working with complementary filters determined what the form of the equivalent DPI needs to be in order to exhibit a constant interactance and then attempted to synthesize the complementary filters which had this DPI. The calculations necessary for this synthesis are rather complex as they involve the solution of several simultaneous nonlinear equations.

Szentirmai (7) suggested DPI improvement by adding resistive pads (networks) in each fan-out of a multiple output filter. This had the disadvantage of high losses due to the pads, although it does make each individual fanout insensitive to each of the other fan-out networks.

Rowlands (6) suggested deletion of components nearest the paralleled terminals of complementary fan-in filters. This is impedance elision alright but no justification is given.

Fritzemeyer (1) used these early efforts and King's (2) approximate identity to investigate design procedures for obtaining the most constant DPI in constant-k and complementary filters. He suggested a different type of impedance elision than did Bode or Zobel and his suggested aidentity algorithm was different and realizable when compared with Norton's method. However none of these men were concerned with the VTF of their resultant filters and it is felt that this cannot be ignored. Therefore this thesis was initiated and completed with favorable results utilizing the suggestions of the referenced authors.

## DEFINITIONS AND DESCRIPTIONS

Lattice Representation of Symmetric Networks. Any symmetric network may be represented by an equivalent lattice such as:

or the couple,  $\{a;b\}$ , where  $a=f_1(s)$  and  $b=f_2(s)$ .  $\{a;b\}$  will be employed in place of the lattice in textual material for compactness.

<u>Characteristic Impedance.</u> Any symmetric network,  $\{a; b\}$ , has a characteristic impedance,  $Z_0$ , equal to  $\sqrt{ab}$ .

<u>Constant-K Low-Pass Filter.</u> A symmetric low-pass filter can have a characteristic impedance which is an approximation of a <u>desired</u> characteristic impedance, k ohms. For instance the prototype low-pass filter,  $\{Z_1/2; (Z_1+4Z_2)/2\}$ , has a characteristic impedance,  $k\sqrt{1+(Z_1/4Z_2)}$  where  $k=\sqrt{Z_1Z_2}$ , and a cut-off frequency,  $w_c=2/\sqrt{L_1C_2}$  if  $Z_1=L_1s$  and  $Z_2=1/C_2s$ . See Fig. 1.

<u>Normalized Low-Pass Filter.</u> A network with circuit components adjusted so that the characteristic impedance is one ohm and the cut-off frequency is one radian per second and is designated by the couple  $(Z_0, w_c)=(1,1)$ . This normalization permits computational ease without lessening generality. It is always possible to retrieve specified  $(Z_0, w_c)$ by an impedance level change and a time scale change (i.e., s is replaced by  $\Upsilon$ s).

<u>Constant-1</u> <u>Low-Pass Filter.</u> A normalized symmetric low-pass filter with k=1 and w<sub>c</sub>=1 rad./sec. These normalizations require  $L_1=2$  henrys and  $C_2=2$  farads for the prototype filter of Fig. 1 which results in the Constant-1 filter,  $\{s;(s^2+1)/s\}$ , of Fig. 2. Note that the actual characteristic impedance is  $\sqrt{1+s^2}$  and this is an approximation to k=1 . <u>Zobel's M-Derivation.</u> Given  $\{a;b\}$  and a constant m such that o<m<l, then the network, {ma; b/m}, is a network m-derived from the given network. The two networks have the same characteristic impedance and the order of cascading can be ignored. Fig. 3 shows m-derivation with both a T-network and its lattice equivalent.

<u>Network Transposition.</u> The transpose of a four-terminal network is accomplished by transposing the network's right and left terminal pairs. The transposed network has a transfer matrix with the a<sub>11</sub> and a<sub>22</sub> elements interchanged. If network transposition leaves the network unchanged, then the given network is symmetric.

Zobel Filter. A symmetric network obtained by the process of m-deriving a T-network prototype,  $\{s;(s^2+1)/s\}$ ; bisecting the resulting  $\{ms;(s^2+1)/ms\}$ ; and inserting the prototype between its bisected and transposed m-derivation. Fig. 4 illustrates a Zobel filter normalized to (1,1).

<u>Degenerate Zobel Filter.</u> A symmetric network obtained by taking a Zobel filter and replacing the constant-1 filter with the identity network. Fig. 5 illustrates a degenerate Zobel filter.

<u>Bisected Zobel Filter.</u> A symmetric network obtained by taking a Zobel filter and replacing the constant-1 filter with a m-derived  $\prod$ -network. Fig. 6 illustrates a bisected Zobel filter.

<u>Aidentity.</u> A ratio of polynomials in s whose numerator and denominator are arranged in increasing powers of s and whose ratio approximates the constant, 1. <u>Aidentity Driving Point Impedance (ADPI).</u> A driving point impedance (DPI) with the aidentity property. Such a DPI is both a positive real function (prf) and an aidentity.

<u>Aidentity Order.</u> In an aidentity if the first p successive pairs of coefficients of  $s^k$ ,  $o \le k \le p-1$ , in the numerator and denominator are equal, the aidentity order is p.

<u>Complementary Filter.</u> A low-pass filter's input terminals connected in parallel with a high-pass filter's input terminals results in a complementary filter. The cut-off frequencies of the two filters are the same.

#### ASSERTIONS

<u>Assertion 1.</u> Two different symmetric networks can have the same characteristic impedance.

Proof: Given  $\{a;b\}$  and  $\{ma;b/m\}$ . Both have the same  $Z_{o}$  and yet they have different circuit components and transfer characteristics.

Specific examples in the prototype low-pass filter context are given in Figs. 7, 8, 9, and 10. It is observed that the bisected process of Fig. 10 yields a different example network having the same  $Z_0$  as the three previous example networks.

<u>Assertion</u> 2. Whereas the m-derived networks of Assertion 1 have a  $Z_0$  independent of m, the ADPI's of the m-derived networks in Assertions 3, 4, and 5 are dependent on m. <u>Assertion 3.</u> The Zobel process or m-derived half end termination process improves the characteristic impedance of the networks of Assertion 1 <u>after</u> m is chosen to be 0.707. This is shown in Fig. 11.

Assertion 4. The ADPI's of the constant-1, m-derived, composites and bisected Zobel filters and loads are different, but each has the same aidentity order. In contrast to Assertion 2, the ADPI's orders are not dependent on m for these cases shown in Figs. 12, 13, 14, 15, and 16.

Assertion 5. The aidentity order of the Zobel filter and the degenerate Zobel filter is greater by two than the aidentity order of the Assertion 4 filters; and in contrast to Assertion 4, the ADPI's orders are dependent on m=0.707for the cases of Fig. 17 and Fig. 18.

# Conclusions

The Zobel process effects can be summarized as follows: a. When the characteristic impedance,  $Z_0$ , is dependent on m, there is a resulting improvement of  $Z_0$  and ADPI order when m is chosen to be 0.707.

b. When the characteristic impedance, Z<sub>0</sub>, is independent of m, there is no improvement of Z<sub>0</sub> or ADPI order from any realizable choice of m.



Fig. 1. The prototype low-pass filter and its lattice equivalent.



Fig. 2. The constant-1 low-pass filter and its lattice equivalent,  $\{s; (s^2+1)/s\}$ .





Fig. 3. M-derivation of a T-network and its equivalent lattice.



Fig. 4. Normalized (1,1) Zobel filter.



Fig. 5. Degenerate Zobel filter.



Fig. 6. Bisected Zobel filter.











Fig. 11. Zobel's method of Zo improvement.



Fig. 12. Constant-1 filter whose input impedance is a third order ADPI.



Fig. 13. M-derived filter whose input impedance is a third order ADPI.



Fig. 14. Composite filter whose input impedance is a third order ADPI.



Fig. 15. Composite filter whose input impedance is a third order ADPI.



Bisected Zobel filter whose input impedance is Fig. 16. a third order ADPI.



$$z_{in_{6}} = \frac{K_{\dot{0}} + K_{1}s + K_{2}s^{2} + K_{3}s^{3} + K_{4}s^{4} + K_{5}s^{5} + K_{6}s^{6} + K_{7}s^{7}}{L_{0} + L_{1}s + L_{2}s^{2} + L_{3}s^{3} + L_{4}s^{4} + L_{5}s^{5} + L_{6}s^{6}}$$

$$K_{0} = 1 \qquad L_{0} = 1$$

$$K_{1} = 2(1+m) \qquad L_{1} = 2(1+m)$$

$$K_{2} = 4(1+m) \qquad L_{2} = 4(1+m)$$

$$K_{3} = 2(1+m)^{2}(3-2m) \qquad L_{3} = 2(1+m)(2+m)$$

$$K_{4} = (1+m)^{2} 2+(3+m)(1-m) \qquad L_{4} = (1+m)^{2}(5-2m-m^{2})$$

$$K_{5} = 2(1+m)^{3}(1-m)(3-m) \qquad L_{5} = 2(1+m)^{2}$$

$$K_{6} = 2(1+m)^{3}(1-m) \qquad L_{6} = 2(1+m)^{3}(1-m)$$

$$K_{7} = 2(1+m)^{4}(1-m)^{2}$$

If m=0.707, then  $K_0 = L_0$ ,  $K_1 = L_1$ ,  $K_2 = L_2$ ,  $K_3 = L_3$ , and  $K_4 = L_4$ .

Fig. 17. Zobel filter whose input impedance is a fifth order ADPI.



$$Z_{in_{7}} = \frac{M_{0} + M_{1}s + M_{2}s^{2} + M_{3}s^{3} + M_{4}s^{4} + M_{5}s^{5}}{N_{0} + N_{1}s + N_{2}s^{2} + N_{3}s^{3} + N_{4}s^{4}}$$

$$M_{0} = 1 \qquad N_{0} = 1 
M_{1} = 2m \qquad N_{1} = 2m 
M_{2} = 2 \qquad N_{2} = 2 
M_{3} = 4m(1+m)(1-m) \qquad N_{3} = 2m 
M_{4} = (1+m)(1-m)(1+m^{2}) \qquad N_{4} = (1+m)(1-m)(1+m^{2}) 
M_{5} = 2m(1+m)^{2}(1-m)^{2}$$

If m=0.707, then  $M_0 = N_0$ ,  $M_1 = N_1$ ,  $M_2 = N_2$ ,  $M_3 = N_3$ , and  $M_4 = N_4$ .

Fig. 18. Degenerate Zobel filter whose input impedance is a fifth order ADPI.

# CONSTANT-K COMPLEMENTARY FILTERS

# Procedure

In the previous section it was shown that the Zobel process improved the characteristic impedance and ADPI of low-pass prototype filters. Now we shall compare the frequency response characteristics of the constant-1 filter. Zobel filter (with m having two different values), constant-1 complementary filters (modified by aidentity algorithm) and complementary Zobel filters (modified by impedance elision and the aidentity algorithm). The filter characteristics of interest are interactance, ADPI, and voltage transfer function (VTF). Interactance versus frequency is a unique filter figure of merit first presented by Fritzemeyer (1). Interactance is an effective filter design substitute for characteristic impedance. The interactance frequency response was calculated and tabulated on the IBM 1620 digital computer. A review of the interactance, the computer program, and the tabulated input and output data are given in Appendix C and Appendix D. The ADPI versus frequency was also computed on the 1620 and this program and results are given in Appendix Impedance elision is presented in Appendix A and the Ε. aidentity algorithm is presented in Appendix B. All of these filters have the ladder configuration and a computer program was written to determine the coefficients of each filter's low-pass VTF. This is given in Appendix F with the computer program and the resultant data given in Appendix G. Appendix

H shows the computer program and results for computing the low-pass VTF frequency response.

Considering the low-pass constant-1 filter of Fig. 19 first will give a basis of comparison for the various improvements of the filter characteristics of the Zobel filters. The ADPI of equation (1) for the constant-1 filter has an aidentity order that can not be increased by the aidentity algorithm as is shown in Appendix B. Fig. 20 shows the interactance curve which increases rapidly between 0.3 rad/sec and 1.0 rad/sec.

$$Z_{in} = \frac{A_0 + A_1 s + A_2 s^2 + A_3 s^3}{B_0 + B_1 s + B_2 s^2}$$
(1)

$$A_{0} = 1$$
  $B_{0} = 1$   
 $A_{1} = 2$   $B_{1} = 2$  (2)  
 $A_{2} = 2$   $B_{2} = 2$   
 $A_{3} = 2$ 

This indicates that the ADPI aidentity order has to be increased to improve the interactance. The interactance is verified by the ADPI curve. The low-pass VTF curve does not have a very sharp knee and the VTF phase shift curve is linear throughout the pass band as shown in Fig. 21.

where

#### Zobel Filter

Using the common value of 0.6 for m in the Zobel filter of Fig. 22, the ADPI of equation (3) for this filter has an aidentity order of one and has the characteristic responses of Fig. 23 and Fig. 24.

$$Z_{in} = \frac{C_{0} + C_{1} + C_{2} + C_{3} + C_{4} + C_{5} + C_{6} + C_{7} + C$$

where

| °°             | = | 1     | D <sub>o</sub> | = | 1     |     |
|----------------|---|-------|----------------|---|-------|-----|
| Cl             | = | 3.84  | Dl             | = | 3.2   |     |
| с <sup>5</sup> | æ | 5.76  | <sup>D</sup> 2 | × | 8.06  |     |
| c <sub>3</sub> | = | 11.63 | D <sub>3</sub> | 8 | 6.64  | (4) |
| с <sub>4</sub> | = | 6.32  | D4             | × | 10.81 |     |
| °5             | = | 9.1   | D <sub>5</sub> | H | 3.07  |     |
| с <sub>6</sub> | = | 1.95  | D <sub>6</sub> |   | 3.26  |     |
| с <sub>7</sub> | = | 2.07  |                |   |       |     |

However when the aidentity algorithm is applied to the ADPI as in Assertion 5 on page 7, equation (5), which has an aidentity order of five, is obtained and m is 0.707.

$$z_{in} = \frac{C_{o} + C_{1} s + C_{2} s^{2} + C_{3} s^{3} + C_{4} s^{4} + C_{5} s^{5} + C_{6} s^{6} + C_{7} s^{7}}{D_{o} + D_{1} s + D_{2} s^{2} + D_{3} s^{3} + D_{4} s^{4} + D_{5} s^{5} + D_{6} s^{6}}$$
(5)

where

| °              | Ħ | 1     | D <sub>o</sub> = | 1        |   |
|----------------|---|-------|------------------|----------|---|
| Cl             | = | 3.414 | D <sub>1</sub> = | 3.414    |   |
| с <sub>2</sub> |   | 6.828 | <sup>D</sup> 2 = | 6.828    |   |
| с <sub>3</sub> | = | 9.243 | D <sub>3</sub> = | 9.243 (6 | ) |
| с <sub>4</sub> | = | 8.992 | D <sub>4</sub> = | 8.992    |   |
| с <sub>5</sub> | = | 6.682 | D <sub>5</sub> = | 5.828    |   |
| с <sub>6</sub> | # | 2.914 | D <sub>6</sub> = | 2.914    |   |
| C.             | = | 1.457 |                  |          |   |

This results in a Zobel filter with constants as shown in Fig. 25 and characteristic responses of Fig. 26 and Fig. 27.

In comparing the characteristic responses for the two choices of m, it is obvious that the interactance for m=0.707 is much better during the pass-band than for m=0.6. This was expected because of the difference in the aidentity order of the two ADPI'S. It is difficult to make a conclusion about the interactance improvement of the Zobel filter over the constant-1 filter because of the extreme variations near w<sub>c</sub> for the Zobel filter.

It is worth noting that Fritzemeyer's (1) interactance curve for the m-derived filter, with m=0.6 and ADPI aidentity order of 3, is essentially the same as the interactance curve of Fig. 26 for a Zobel filter with m=0.707 and ADPI aidentity order of 5. The validity of Fritzemeyer's curve is cuestioned.

It should be noted that the low-pass VTF response for m=0.6 has a slightly sharper knee than the one for m=0.707. However both have much better low-pass VTF responses than the constant-1 filter and both are approximately 0.35 at  $w_c$ . The VTF phase shift curves for both values of m are not as linear as was the constant-1 phase shift curve. The phase shift is rather linear from zero to about 0.75 rad/sec, then the curve becomes slightly nonlinear. Also the Zobel filter phase shift slope is stooper than the slope for the constant-1 filter. The ADPI phase shift is improved considerably over the m=0.6 Zobel filter and the constant-1 filter.

# Complementary Filters

Having looked at the characteristics of the prototype low-pass constant-1 and Zobel filters, we will now observe the characteristics of complementary filters when the aidentity algorithm and impedance elision are applied.

### Type 1 Constant-1 Complementary Filter

When two constant-1 complementary filters are connected as shown in Fig. 28, the ADPI of equation (7) results. No aidentity algorithm is possible with this ADPI as all components have fixed values. The symmetry of numerator and denominator coefficients should be observed. This is expected because of the mathematical operations in determining the equivalent parallel impedance when high-pass and low-pass impedance functions are involved. Appendix I provides a further explanation of this coefficient symmetry. Inspection of the interactance curve of Fig. 29 reveals that the complementary nature of this filter will result in a symmetrical

$$Z_{cf} = \frac{E_{o} + E_{1}s + E_{2}s^{2} + E_{3}s^{3} + E_{4}s^{4} + E_{5}s^{5} + E_{6}s^{6}}{F_{o} + F_{1}s + F_{2}s^{2} + F_{3}s^{3} + F_{4}s^{4} + F_{5}s^{5} + F_{6}s^{6}}$$
(7)

where

$$E_{0} = E_{6} = 2 F_{0} = F_{6} = 2$$

$$E_{1} = E_{5} = 6 F_{1} = F_{5} = 8 (8)$$

$$E_{2} = E_{4} = 10 F_{2} = F_{4} = 16$$

$$E_{3} = 13 F_{3} = 18$$

Note that although the interactance curve is not flat, it does not have the extreme variations about  $w_c$  that the constant-1 filter and Zobel filter each have. Its VTF response of the low-pass fan-out is better than the constant-1 filter, but not quite as good as the Zobel filter. It is approximately 0.3 at  $w_c$  and doesn't reach 0.1 until w=1.5 rad/sec. However its low-pass VTF phase shift curve is as linear, but with less slope, as the VTF phase shift of the Zobel filter. Both have the same type of nonlinearity at  $w_c$ . The ADPI phase shift response has deteriorated by adding the complementary high-pass filter in parallel with the constant-1 filter.

# Type 2 Constant-1 Complementary Filter with Parameters C and C'

To improve the interactance of the complementary configuration, parameters C and C', were added to the reactances nearest the input terminals of each filter (Fig. 31) so that the aidentity algorithm could be used on the ADPI of equation (9). Again as stated in the previous complementary filter,  $G_0=G_6$ ,  $G_1=G_5$ ,  $G_2=G_4$ ,  $H_0=H_6$ ,  $H_1=H_5$ , and  $H_2=H_4$ . The aidentity algorithm is next applied which set  $G_1=H_1$  and  $G_5=H_5$ .

$$Z_{cf} = \frac{G_{o} + G_{1} s + G_{2} s^{2} + G_{3} s^{3} + G_{4} s^{4} + G_{5} s^{5} + G_{6} s^{6}}{H_{o} + H_{1} s + H_{2} s^{2} + H_{3} s^{3} + H_{4} s^{4} + H_{5} s^{5} + H_{6} s^{6}}$$
(9)

where

$$G_{o} = 2C' = G_{6} = 2C$$

$$G_{1} = 2C'(2 + C) = G_{5} = 2C(2 + C')$$

$$G_{2} = 1 + 3C' + 6CC' = G_{4} = 1 + 3C + 6CC'$$

$$G_{3} = 2 + C + C' + 9CC'$$

$$H_{o} = 2C' = H_{6} = 2C$$

$$H_{1} = 2(1 + 3C') = H_{5} = 2(1 + 3C)$$

$$H_{2} = 5 + 2C + 9C' = H_{4} = 5 + 2C' + 9C$$

$$H_{3} = 6(1 + C + C')$$

These two simultaneous equations yield the results, C=C'=1.618 and a second order ADPI. This suggests that the dual components of the complementary filters should have the same coefficients. This observation will be used on later complementary configurations. Using this value for C and C',  $Z_{cf}$  has the coefficients of equation (11) and the frequency response characteristics for the complementary filter of Fig. 31 given in Fig. 32 and Fig. 33. By adding the parameters C and C' and using the aidentity algorithm on  $Z_{cf}$ , the interactance of Fig. 32 results which during the larger part of the high and low pass-bands is much better than for Type 1. However the interactance response about  $w_c$  has deteriorated from Type 1. The VTF response of the low-pass fan-out has been improved from Type 1 low-pass as it is flat for more of the pass-band, then has a sharper knee, a 0.312 value at  $w_c$ , and a 0.1 value at w=1.25 rad/sec. The low-pass VTF response is similar to that of the Zobel filter with m=0.707. The low-pass VTF phase shift curve is nearly identical with that of Type 1, with the same nonlinearity at  $w_c$ . The ADPI phase shift response during most of the pass-bands is much better than for Type 1 except for the larger variations about  $w_c$ . It does have the same general shape as the ADPI phase shift curve of the Zobel filter.

# Type 3 Constant-1 Complementary Filter with Parameters C and C<sub>1</sub>

Using the idea of Type 2 that dual components of the complementary filter should have equal coefficients, the parameters C and  $C_1$  were added to the constant-1 complementary filter (Fig. 34) with the idea of using the aidentity algorithm to improve the interactance and ADPI. The ADPI of equation (12)

$$Z_{cf} = \frac{I_0 + I_1 s + I_2 s^2 + I_3 s^3 + I_4 s^4 + I_5 s^5 + I_6 s^6}{J_0 + J_1 s + J_2 s^2 + J_3 s^3 + J_4 s^4 + J_5 s^5 + J_6 s^6}$$
(12)

| where | $I_0 = I_6 = CC_1$                                        |    | 3.732      |
|-------|-----------------------------------------------------------|----|------------|
|       | $I_1 = I_5 = CC_1(2 + C)$                                 | =  | 13.93      |
|       | $I_2 = I_4 = 1 + C + CC_1(1 + C + CC_1)$                  | =  | 26.86      |
|       | $I_3 = 2(1 + C) + C^2(1 + 2C_1^2)$                        | =  | 36.33 (13) |
|       | $J_0 = J_6 = CC_1$                                        | =  | 3.732      |
|       | $J_1 = J_5 = C_1(1 + C + CC_1)$                           | =  | 13.93      |
|       | $J_2 = J_4 = 1 + C + 2C_1 + CC_1(1 + 2C_1)$               | )= | 26.86      |
|       | $J_{3} = 2 \left[ 1 + C_{1} + CC_{1} (1 + C_{1}) \right]$ | =  | 29.86      |

results from the circuit of Fig. 34. Using the aidentity algorithm on the simultaneous equations,  $I_0=J_0$ ,  $I_1=J_1$ , and  $I_2=J_2$ , yields C=1.732 and C\_1=2.155. Comparing the resultant component coefficients of Type 3 with Type 2, indicates that the changes are rather small. This implies that the interactance may not be improved much by this approach, although the ADPI order is now three. Examination of this filter's frequency response characteristics given in Fig. 35 and Fig. 36 confirms the above suspicions. There is even a more extreme interactance variation about w<sub>c</sub> for Type 3 than for Type 2 which agrees with the large difference between  $I_3$  and  $J_3$ . The low-pass VTF response even has a more rounded knee than did Type 2, however it reaches 0.1 at w=1.15 rad/sec instead of w=1.25 rad/sec as did Type 2. The one bright spot is the improvement of linearity in the low-pass VTF phase shift curve about  $w_c$  which is not present in Type 2. Along with the other deteriorating features, the ADPI phase shift curve has greater variations about  $w_c$  than did Type 2, although it has less phase shift during most of its pass-band than Type 2. It seems that by increasing the aidentity order by one there is only a small improvement in the phase shift response.

# Type 4 Constant-1 Complementary Filter with Parameters C, $C_1$ and $C_2$

The results of Type 3 seem to imply that any further attempt at improving the ADPI and interactance by addition of a third parameter would be futile. However when the three component parameters were used as shown in Fig. 37, the ADPI of eouation (14) resulted. The aidentity algorithm using  $K_0=L_0$ ,  $K_1=L_1$ ,  $K_2=L_2$ , and  $K_3=L_3$  yields C=1.5,  $C_1=1.33$ , and  $C_2=0.5$  which then results in an aidentity order of seven. This bonus in aidentity order, of course, comes from the property of coefficient symmetry of the ADPI. The frequency response characteristics of Fig. 38 and Fig. 39 reflect an ADPI of one for all frequencies and a constant interactance.

$$Z_{cf} = \frac{K_0 + K_1 s + K_2 s^2 + K_3 s^3 + K_4 s^4 + K_5 s^5 + K_6 s^6}{L_0 + L_1 s + L_2 s^2 + L_3 s^3 + L_4 s^4 + L_5 s^5 + L_6 s^6}$$
(14)

where

$$K_{0} = K_{6} = CC_{1}C_{2} = 0.998$$

$$K_{1} = K_{5} = CC_{1}(1 + CC_{2} + C_{2}^{2}) = 3.99$$

$$K_{2} = K_{4} = C + C_{2} + CC_{1}(C + C_{2} + CC_{1}C_{2}) = 7.98$$

$$K_{5} = 1 + C^{2} + C_{2}^{2} + 2CC_{2} + C^{2}C_{1}^{2}(1 + C_{2}^{2}) = 9.95 \quad (15)$$

$$L_{0} = L_{6} = CC_{1}C_{2} = 0.998$$

$$L_{1} = L_{5} = C_{1}C_{2} + CC_{1}(1 + C_{1}C_{2}) = 3.99$$

$$L_{2} = L_{4} = C + C_{1}^{2} + C_{2}^{2} + CC_{1}C_{1} = 7.98$$

$$L_{3} = 2[1 + C_{1}C_{2} + CC_{1}(1 + C_{1}C_{2})] = 9.95$$

This is the ultimate in driving point impedance characteristics for most filters. The low-pass VTF response has been improved by the  $w_c$  value being 0.353 while the rest of the pass-band response remains very nearly the same as Type 3. This finding is in disagreement with what Fritzemeyer (1) stated would be the response. The ADPI phase shift is a straight line at zero degrees as is expected. The low-pass VTF phase shift has less nonlinearity about  $w_c$  than did Type 3 and its slope is also less, which gives it a very good linear phase shift response.

#### Type 5 Complementary Zobel Filter

As has been the procedure of the two previous sections, the Zobel filter configuration is used to improve the ADPI of the complementary filter. Using the network of Fig. 40 results in the ADPI of equation (16). The determination

$$Z_{cf} = \frac{\sum_{n=0}^{14} M_{n} s^{n}}{\sum_{n=0}^{14} N_{n} s^{n}}$$
(16)

where

$$a = 1 + m$$

$$b = 1 - m$$

$$M_{0} = M_{14} = 2a^{4}b^{2}$$

$$M_{1} = M_{13} = 2a^{3}b(1+2a^{2}b)$$

$$M_{2} = M_{12} = 2a^{3}b\left[2(a-b) + 4a^{2}b\right]$$

$$M_{3} = M_{11} = 4a^{4}b\left[a^{2}b(1-2b) + 4 + b\right] + a^{2}\left[2 + b(2+a)\right]$$

$$M_{4} = M_{10} = 2a^{2}\left\{a\left[2 + b(2+a)\right](1+a^{3}b^{3}) + (1+2b)(1+2a^{3}b) + 4a^{2}b(2+b)\right\}$$

$$M_{5} = M_{9} = 2a^{3}\left\{\left[2 + b(2+a)\right](2+a^{2}b) + 2(1+2b)\left[1\right] (17) + a^{2}b(2+b)\right] + 2a^{4}b^{3}(2+b)\right\} + 4a$$

$$M_{6} = M_{8} = 2a^{4}\left[2 + b(2+a)\right]\left[1 + 2b + ab(2+b)\right] + 4a^{3}\left[2 + 4b + a^{3}b^{2}(2+b) + a^{4}b^{3}\right] + 8a^{2} + 2a$$

$$M_{7} = 1 + 20a^{2} + 4a^{6}b^{2}\left[a^{2}b^{2} + 1 + (2+b)^{2}\right] + a^{4}\left\{\left[2 + b(2+a)\right]^{2} + 4(1+2b)^{2}\right\}$$

$$N_{0} = N_{14} = 2a^{4}b^{2}$$

$$N_{1} = N_{13} = 4a^{3}b(1+a^{2}b)$$

$$N_{2} = N_{12} = 2a^{2}\left\{1 + ab\left[2 + b + 4a(1+ab)\right]\right\}$$

$$N_{3} = N_{11} = 2a^{2}\left[2 + b(2+a)\right] + 4a^{3}\left\{1 + ab\left[6 + b + ab(1+a)\right]\right\}$$

$$N_{4} = N_{10} = (1+2a^{3}b)[2a(1+a) + 2a^{2}(1+2b)] + 8a^{3}[1 + ab(2+b)] + [2 + b(2+a)][2a^{3}(2+a^{3}b^{2})]$$

$$N_{5} = N_{9} = 8a + 4a^{2}(1+a)[1 + a^{2}b(2+b)] + 4a^{3}\{(1+2b)(1+a) + [2 + b(2+a)](2+a^{2}b) + a^{3}b^{2}\}$$

$$N_{6} = N_{8} = 4a + 16a^{2} + 2a^{3}[2 + b(2+a)][1 + a + a^{2}b(2+b) (17) + 2a(1+b)] + 8a^{2}[1 + a + a(1+2b)] + 4a^{5}b[1 + a^{2}b^{2} + ab(2+b)]$$

$$N_{7} = 2 + 40a^{2} + 8a^{3}[(1+a)(1+2b) + a^{2}b(ab + 2 + b)] + 2a^{4}[2 + b(2+a)]$$

of the ADPI coefficients in algebraic form was quite difficult. It required the product of two seventh order polynomials with algebraic coefficients. Because of this tedious task a computer program was written to eliminate the cataloging and tabulating errors that developed when the multiplying was done by hand. The program is illustrated in Appendix J. When the aidentity algorithm is applied to this ADPI,  $M_0 = N_0$ gives no information as they are identical and  $M_1 = N_1$  implies that O=1 for all values of m so that equation (16) will be a first order ADPI for all realizable values of m. Fritzemeyer (1) assumed m=0.6 and obtained the interactance response of Fig. 41. From the previous sections it seems that the m=0.707 would produce a better interactance response, but the ADPI being limited to a first order aidentity gives very little promise of much improvement. The aidentity algorithm could be used at this point, but Fritzemeyer (1)

suggested an additional process for complementary filter characteristic response improvement which will be called impedance elision as detailed in Appendix A. Impedance elision will yield the degenerate complementary configuration.

## Type 6 Degenerate Complementary Zobel Filter with Parameters C and m

Applying impedance elision to the Type 5 Filter and adding the parameter C with m results in the complementary configuration of Fig. 42. The two parameters allow the aidentity algorithm to be used on the ADPI of equation (18). All values of  $O_0$  equal  $P_0$  because both are identical expressions. When  $O_1$  is equated with  $P_1$ ,  $(1+m)C = (1+\sqrt{5})/2$  results and when  $O_2$  is equated with  $P_2$ ,  $(1+m)C = 1/(1-m^2)$  results. These two simultaneous equations result in m=0.618033988 (Golden Mean) and C=1 and a third order ADPI. The numerical coefficients of equations (20) result when the determined values of m and C are substituted into the algebraic coefficients of equations (19). It should be noted that impedance

$$Z_{cf} = \frac{\sum_{n=0}^{10} O_{n} s^{n}}{\sum_{n=0}^{10} P_{n} s^{n}}$$
(18)

where

$$a = 1 + m$$

$$b = 1 - m$$

$$0_{0} = 0_{10} = 2Ca^{3}b$$

$$0_{1} = 0_{9} = 2Ca^{2}[1 + a^{2}b(1+C)]$$

$$0_{2} = 0_{8} = a^{2}\{b + C(2+b) + 2Ca[1 + C + ab(1+C+Ca)]\}$$

$$0_{3} = 0_{7} = a(1+2Ca^{2})(1+C+Ca) + 2Ca^{5}b(b+Cb+2C) + a^{3}(1 + C)(b+2C+Cb)$$

$$0_{4} = 0_{6} = 4C^{2}a^{5}b + 2Ca^{4}(b+Cb+2C) + a^{2}(1+C+Ca)[ab + aC(2+b) + 1 + C] + a + aC$$

$$0_{5} = 4C^{2}a^{4}(1+a^{2}b^{2}) + a^{4}(b+bC+2C)(b+2C+Cb) + a^{2}(1+C + Ca)^{2} + a^{2}(1+C)^{2} + 1$$

$$P_{0} = P_{10} = 2Ca^{3}b$$

$$P_{1} = P_{9} = 2a^{2}\{b + C[1 + ab(1+a)]\}$$

$$P_{2} = P_{8} = 2a[1 + a^{2}b(1+C)] + 2Ca^{2}[1 + a + a^{2}b(2+b)] + a^{2}(b+2C+Cb)$$

$$P_{3} = P_{7} = (1+C+Ca)(a+2a^{3}b) + 2a^{2}(1+C) + 2a + ab + 2Ca^{3}(2+b+2ab) + a^{2}(1+a)(b+2C+Cb)$$

$$P_{4} = P_{6} = 2a^{4}b(b+Cb+2C) + (1+C+Ca)(a+3a^{2}) + a^{2}(2 + b)[1 + C + a(b+2C+Cb)] + 4Ca^{3}(1+a^{2}b^{2}) + 2a + Ca + 1$$

$$P_{5} = 2[1 + a(1+C)(1+a) + a^{2}(2+b)(1+C+Ca) + 4Ca^{4}b + 2a^{3}(b+Cb+2C)]$$

| 00 | * | 010 | = | 3.236   | Po ·             | - | P <sub>10</sub> | - | 3.236   |      |
|----|---|-----|---|---------|------------------|---|-----------------|---|---------|------|
| 01 | = | 09  | = | 15.708  | P <sub>l</sub> : | = | P <sub>4</sub>  | = | 15.708  |      |
| °2 | = | 08  | Ξ | 43.125  | P <sub>2</sub> = | = | P <sub>8</sub>  | = | 43.125  | (20) |
| 03 | # | 07  | = | 83.339  | P3 :             |   | P <sub>7</sub>  | = | 81.485  |      |
| 04 |   | 06  | = | 119.374 | P4 -             | = | P <sub>6</sub>  | = | 118.374 |      |
| 05 |   |     |   | 135.992 | P5 -             |   |                 |   | 131.846 |      |

elision and added C parameter have increased the aidentity order by two. The frequency response characteristics are given in Fig. 43 and Fig. 44 for this degenerate complementary configuration. The interactance has been greatly improved by impedance elision and the aidentity algorithm as compared with Type 5. This filter has by far the best lowpass VTF response of any type presented. At we it has a value of 0.32 and reaches 0.1 at w=1.08 rad/sec. The low-pass VTF phase shift is nearly linear to approximately 0.8 rad/sec but then displays the usual nonlinearities about w. The ADPI phase shift is nearly constant from zero degrees until 0.8 rad/sec but then becomes nonlinear about we as has been the character in the previous types. These low-pass characteristics substantiate the thinking behind the use of impedance elision as they are very nearly the same as those of Fig. 16 and Fig. 17 for the Zobel filter of Fig. 15. Also the high-pass series arm impedance nearest the input terminals of Type 6 is 1.618/s where the shunt capacitive impedance of Fig. 15 is 1.414/s. And the high-pass shunt arm impedance nearest the input terminals of Type 6 is s/2
where the shunt inductive impedance of Fig. 15 is s/1.414. This implies that the first series impedance and shunt impedance of the high-pass complementary filter of the degenerate Zobel filter takes the place of the deleted branch in the low-pass complementary filter. The characteristic responses of this elision or sluring have been shown to be quite favorable and that it is these first two impedances that appear to have the most effect on the other complementary filter.

# Type 7 Degenerate Complementary Zobel Filter with Parameters C, C<sub>1</sub> and m

An additional attempt was made to improve the ADPI of the Type 6 degenerate complementary configuration by the addition of another circuit parameter,  $C_1$ , as is shown in Fig. 45. From this network the ADPI of equation (21) is obtained with the algebraic coefficients of equations (22). Obtaining these coefficients required a considerable amount of toil similar to that experienced with Type 6. Applying the aidentity algorithm to these coefficients results in  $Q_0 = R_0$  which gives no information as both expressions are identical. Since there are three parameters, at least three other sets of equations (22) coefficients will have to be equated. The result of  $Q_1$  equated with  $R_1$  is equation (23), of  $Q_2$  equated with  $R_2$  is equation (24), and of  $Q_3$  equated with  $R_3$  is equation (25).

$$Z_{cf} = \frac{\sum_{n=0}^{10} Q_n s^n}{\sum_{n=0}^{10} R_n s^n}$$
(21)

where  

$$a = 1 + m$$
  
 $b = 1 - m$   
 $Q_0 = Q_{10} = a^3 bCC_1$   
 $Q_1 = Q_9 = a^4 bC_1(1+C) + a^2Cc_1$   
 $Q_2 = Q_8 = a^4 bC[C + C_1(1+Cm)] + a^3CC_1(1+C) + a^2C_1[C + bC_1(1+C)]$   
 $Q_3 = Q_7 = a^5 bC[C + bC_1(1+C)] + a^3C[C + C_1(1+Cm)]$   
 $+ a^3C_1(1+C)[C + bC_1(1+C)] + aC_1[C + C_1(1 + Cm)]$   
 $Q_4 = Q_6 = a^5 bC_1^2 + a^4C[C + bC_1(1+C)] + a^3[C + bC_1(1 + Cm)] + aC_1^2(1+C)$   
 $Q_5 = a^6b^2C^2 + a^4C^2 + a^4[C + bC_1(1+C)]^2 + a^2[C + C_1(1 + Cm)]^2 + a^2C_1^2(1+C)^2 + C_1^2$   
 $R_0 = R_{10} = a^3bCC_1$   
 $R_1 = R_9 = a^3bC(1+C_1m) + a^2C(1+C_1m) + a^2C_1[C + bC_1(1 + Cm)] + a^3bC_1(1+C) + aC_1$ 

.

$$R_{3} = R_{7} = a^{4}bC + a^{3}C(1+bC_{1}) + a^{2}(1+C_{1}m)[C + bC_{1}(1+C)] + aC_{1}[C + C_{1}(1+Cm)] + a^{3}b[C + C_{1}(1+Cm)] + a^{2}C_{1}(1+C) + aC_{1}(1+bC_{1}) R_{4} = R_{6} = a^{5}b^{2}C + a^{3}C + a^{3}(1+bC_{1})[C + bC_{1}(1+C)]$$
(22)  
+ a(1+C\_{1}m)[C + C\_{1}(1+Cm)] + aC\_{1}^{2}(1+C)   
+ a^{4}b[C + bC\_{1}(1+C)] + a^{2}[C + C\_{1}(1+Cm)]   
+ a^{2}C\_{1}(1+C)(1+bC\_{1}) + C\_{1}(1+C\_{1}m)   
R\_{5} = 2\{a^{4}bC + a^{3}[C + bC\_{1}(1+C)] + a^{2}(1+bC\_{1})[C + C\_{1}(1 + Cm)] + aC\_{1}(1+C)(1+C\_{1}m) + C\_{1}^{2}\}

$$aC(C_1 + aCC_1 - 1) - C_1 = 0$$
 (23)

$$a^{3}bC\left[C-1+C_{1}m(1+C)\right]+a^{2}C_{1}(1+C)(C-b)-aC(1+C_{1}m)-C_{1} = 0 \quad (24)$$

$$a^{4}bC[C + bC_{1}(1+C)] + a^{3}C[CC_{1} - b(1+C_{1})] + a^{2}[CC_{1}[2 + bC_{1}(2+C)] + b(C_{1}^{2}-C_{1}-C) - C + C^{2}] + a[C (25) + C_{1}[b(1+C_{1}m+CC_{1}m) - 1]] - C_{1}(1+bC_{1}) = 0$$

The method of solving these three simultaneous equations is rather laborious so it has been placed in Appendix K. Their solutions give the following values for C, C<sub>1</sub>, and m:

$$C = 0.92041$$

$$C_1 = 0.51437$$

$$m = 0.71433$$

With these quantities and the computer program of Appendix C,

the ADPI coefficients of equations (22) were evaluated and these results are given in equations (26). This shows that

the ADPI aidentity order has been increased by one over Type 6 to a fourth order. Examination of  $Q_4$  and  $R_4$  reveals that it is very nearly a fifth order aidentity. The filter frequency response characteristics are given in Fig. 46 and Fig. 47. The small improvement of the frequency response characteristics of this type over Type 6 is very similar to the small improvement that Type 3 had over Type 2. In both of these instances the added parameter was in the shunt This would seem to indicate that the shunt arms do arms. not have as much influence on the frequency response characteristics as do the series arms. As in Type 4 when the additional parameter was placed in the remaining series arm the characteristics improved quite significantly, it is believed that the same improvements would be observed in this filter. However it should be noted that solving for the four parameters would be a tremendous task beyond the scope of this thesis. The frequency response characteristics of this filter contradict Fritzemeyer's (1)











Fig. 21. Constant-1 filter characteristics.









Fig. 24. Zobel filter characteristics with m=0.6.







Fig. 26. Zobel filter characteristics with m=0.707.



Fig. 27. Zobel filter characteristics with m=0.707.



Fig. 28. Type 1 constant-1 complementary filter.



Fig. 29. Type 1 frequency response characteristics.



Fig. 30. Type 1 frequency response characteristics.



Fig. 31. Type 2 constant-1 complementary filter with parameter C and C'.



Fig. 32. Type 2 frequency response characteristics.



Fig. 33. Type 2 frequency response characteristics.



Fig. 34. Type 3 constant-1 complementary filter with parameters C and C1.



Fig. 35. Type 3 frequency response characteristics.



Fig. 36. Type 3 frequency response characteristics.



Fig. 37. Type 4 constant-1 complementary filter with parameters C,  $C_1$  and  $C_2$ .



Fig. 38. Type 4 frequency response characteristics.



Fig. 39. Type 4 frequency response characteristics.



Fig. 40. Type 5 Complimentary Zobel filter.



Fig. 42. Type 6 degenerate complementary Zobel filter with parameters C and m.



Fig. 43. Type 6 frequency response characteristics.







Fig. 45. Type 7 degenerate complementary Zobel filter with parameters C,  $C_1$  and m.







Fig. 47. Type 7 frequency response characteristics.

assertions as they have not deteriorated from those of Type 6, but have actually been improved.

## CONCLUSIONS

Using the procedures of Zobel, Bode, Guillemin, Norton, Rowlands, and Fritzemeyer the Zobel process, aidentity algorithm, and impedance elision are defined, codified, and verified as methods of improving the frequency response characteristics of constant-k and constant-k complementary filters. It is shown that these methods not only improve the ADPI or interactance, but also improve the VTF and linearize the phase shift.

In the course of this verification several related topics of interest were studied and are included in the appendices. These topics are the FORGO program for evaluating the coefficients of a pseudo-generalized "ladder" VTF, the FORTRAN program for coefficient evaluation of the product of two polynomials with algebraic coefficients, the proof of the complementary filter ADPI coefficient symmetry, and the ADPI parameter evaluation for a Type 7 filter.

## ACKNOWLEDGMENTS

The author expresses his thanks to his major professor, Dr. Charles A. Halijak, for suggesting this research topic, directing the investigation, and guiding the preparation of this paper.

He acknowledges the help of Dr. Benton D. Weathers and Mr. Larry B. Hofman in computer programming.

Also his wife, Pat, is acknowledged for her support during the preparation period and for typing this thesis.

- Fritzemeyer, R. D. Fan-out filters. Master's Thesis, Kansas State University Bulletin, Special Report 36, 1963.
- 2. King, L. H. Reduction of forced error in closed-loop systems. Proc. I.R.E., Vol. 41, No. 8, 1037-1042, August, 1953.
- 3. Rault, A. J. Approximate identity operator in linear continuous and sampled data servomechanisms. Master's Report, Kansas State University Bulletin, Vol. 48, No. 8, August, 1964.
- 4. Bode, H. W. Wave filter. U. S. Patent 2,249,415, July, 1941.
- 5. Bode, H. W. A method of impedance correction. Bell System Technical Journal, Vol. IX, 794, October, 1930.
- Rowlands, R. O. Improvements in electrical selective networks. British Patent 572846, October, 1945.
- Szentirmai, G. The paralleling of filters through resistive pads. Technical Journal, UDC:621.392.52.
- Zobel, O. J. Complementary filter. U. S. Patent 1,557,230, October, 1925.
- 9. Zobel, O. J. Distortion correction in electrical circuits with constant resistance recurrent networks. Bell System Technical Journal, Vol. VII, 438-534, July, 1928.
- Guillemin, E. A. Communication networks. New York: John Wiley and Sons, Vol. 2, 356-371, 1935.
- 11. Norton, E. L. Constant resistance networks and application to filter groups. Bell System Technical Journal, Vol. XVI, 178-193, April, 1937.
- 12. Hamming, R. W. Numerical methods for scientists and engineers. New York: McGraw-Hill, 1962.

## APPENDIX A

Impedance Elision. Webster's definition of elision: A cutting off, especially of a vowel, for the sake of meter or euphony; the dropping or partial pronounciation of a final vowel before an initial vowel in the next word. Fritzemeyer (1) used impedance elision without naming it. Given the complementary filter configuration of Fig. 48, it was noted that if the two shunt arms nearest the input terminals were removed that the effects of each could be substituted by the first series component and the next shunt arm element. Or when the shunt arms,  $Z_{L2\&3}$  and  $Z_{H2\&3}$ , are removed as shown in Fig. 49, Z<sub>H1</sub> substitutes for Z<sub>L3</sub>, Z<sub>H4</sub> substitutes for  $Z_{L2}$ ,  $Z_{L1}$  substitutes for  $Z_{H3}$ , and  $Z_{L4}$  substitutes for This process slurs the effect that would be present Z<sub>H2</sub>. if the two shunt arms were not removed and thus improves the complementary filter characteristics. This process will only be applied to the complementary Zobel filter configuration.



Fig. 48. Complementary filter configuration.



Fig. 49. Complementary degenerate filter configuration.

<u>Aidentity Algorithm.</u> Using the principle of King's (2) approximate identity on the ADPI of a filter is the aidentity algorithm.

Given the constant-1 filter configuration of Fig. 50, the aidentity algorithm is applied to the ADPI of equation (27). This process is to equate as many successive coeffi-

$$Z_{in} = \frac{A_0 + A_1 s + A_2 s^2 + A_3 s^3}{B_0 + B_1 s + B_2 s^2 + B_3 s^3}$$
(27)

where

$$A_{0} = 1 B_{0} = 1 B_{1} = 2 (28) B_{2} = 2(2 - \lambda) B_{3} = 0$$

cients of the corresponding powers of s in the numerator and denominator as is possible. This has  $A_0=B_0$ ,  $A_1=B_1$ , and  $A_2=B_2$ . The result of  $A_2$  equated to  $B_2$  is  $\lambda=1$ . When this value of  $\lambda$  is substituted in  $A_3=B_3$ , the result 1≠0 implies that  $A_3$  and  $B_3$  cannot be equated if  $A_2$  and  $B_2$  are. Since the process has to use successive coefficients,  $\lambda=1$ will be used and the resultant ADPI will be a third order ADPI. However this ADPI will be the same as would be obtained if the constant-1 filter of Fig. 51 was used. Thus this filter aidentity order cannot be improved by the aidentity algorithm.



Fig. 50. Low-pass filter.



Fig. 51. Constant-1 filter.

.

.

## APPENDIX C

Interactance. Interactance (1) is a means of comparing the power available at the input terminals of a filter, or a fan-out filter configuration of two or more filters, with that which would be available if all of the filters were purely resistive. Therefore a constant interactance frequency response would indicate a network that was resistive in nature. The ADPI phase shift frequency response would give the same information, but computational wise it is more difficult. Interactance is more realistic than characteristic impedance in fan-out filter configurations because of the full range of frequencies that are being encountered by this type of network. Characteristic impedance only has meaning at a single frequency.

In the calculation of interactance,  $\Lambda = P_f/P_r$ ,  $P_f$  and  $P_r$  are calculated for e being a peak value of the sinusoidal voltage source of Fig. 52,  $E_{eff} = |e|^2 / \sqrt{2}$ , and the source resistance,  $R_o$ , is <u>not</u> matched to the filter driving point impedance. Referring to Fig. 52,  $P_r$  is the power dissipated in the source resistance when a pure resistance of one ohm replaces each filter in the fan-out network and a voltage source, -e/n, is placed in series with each of these resistances. Then from Fig. 52 using Millman's theorem,  $R_o = R_1 = \dots = R_n = 1 \Omega$ ,  $Y_o = 1/R_o$ ,  $Y_1 = Y_2 = \dots = Y_n = 1 U$ ,

$$e_{or} = \frac{e(1) + [(-e/n)(1)]n}{1 + (1)n}$$
 (29)

$$\mathbf{e}_{\mathrm{or}} = 0 \tag{30}$$

$$e_{rr} = e - e_{or} = e$$
 (31)

$$E_{\rm rreff} = |e_{\rm rr}|/\sqrt{2}$$
 (32)

$$P_{r} = |e_{rr}|^{2}/2R_{o}$$
 (33)

. 
$$P_r = |e|^2/2$$
 (34)

Referring to Fig. 53,  $P_f$  is the power dissipated in the source resistance when a voltage source, -e/n, is placed in series with each fan-out filter. Then from Fig. 53 using Millman's theorem,  $R_o=1\Omega$ ,  $Y_o=1/R_o$ ,

$$e_{of} = \frac{eY_{o} + (-e/n)[Y_{1} + Y_{2} + \dots + Y_{n}]}{Y_{o} + Y_{1} + Y_{2} + \dots + Y_{n}}$$
(35)  
$$e_{rf} = e - e_{of} = e \left[ \frac{(n+1)(Y_{1} + Y_{2} + \dots + Y_{n})}{n(Y_{o} + Y_{1} + \dots + Y_{n})} \right]$$
(36)

$$E_{rfeff} = \frac{|e_{rf}|}{\sqrt{2}}$$
(37)

$$P_{f} = \frac{|e_{rf}|^{2}Y_{o}}{2}$$
(38)

$$P_{f} = \frac{|e|^{2}}{2} \frac{(n+1)(Y_{1}+Y_{2}+\dots+Y_{n})}{n(1+Y_{1}+Y_{2}+\dots+Y_{n})}^{2}$$
(39)

The interactance is now the ratio of  $P_f$  to  $P_r$  as given in equation (40).

$$\Lambda = \frac{P_{f}}{P_{r}} = \left| \frac{(n+1)(Y_{1} + Y_{2} + \dots + Y_{n})}{n(1+Y_{1} + Y_{2} + \dots + Y_{n})} \right|^{2}$$
(40)

The following observations should be made concerning the computational techniques just given:

- e, e<sub>rr</sub>, e<sub>rf</sub>, e<sub>or</sub>, and e<sub>of</sub> are peak values of sinusoidal voltages and used for ease of computation.
- 2. (-e/n) voltages were added for ease of computation.
- 3. One ohm resistors and impedances were assumed for ease of computation since filters were normalized to impedance level of one ohm.
- 4. The interactance for filters at different impedance levels can be determined, but this just confuses the issue.

As an example to show the interactance calculations, the constant-1 filter is used as shown in Fig. 51. The ADPI is given in equation (41). In this example n=1 as there is only one filter and  $Y_1$  is the inverse of the ADPI as shown in equation (42). Because this filter is normalized to one ohm,  $Y_0$  will be equal to one mho. Using these values in equation (40) results in equation (43) and this interactance response curve is given in Fig. 20.

$$Z_{in} = \frac{1+2s+2s^2+2s^3}{1+2s+2s^2}$$
(41)

$$Y_{1} = \frac{1+2s+2s^{2}}{1+2s+2s^{2}+2s^{3}}$$
(42)

Since  $Y_0 = l \boldsymbol{U}$  and n = l, then

$$\mathcal{A} = \left| \frac{1+2s+2s^2}{1+2s+2s^2+s^3} \right|^2 = \frac{1+4w^4}{1+w^6}$$
(43)



Fig. 52. The fan-out resistive network used for the determination of  $\mathbf{P}_{\mathbf{r}}$  for interactance.



Fig. 53. The fan-out filter network used for the determination of  $P_f$  for interactance.

FORGO Programs for Interactance Calculations. To make possible the computation of the interactance versus frequency graph, the FORGO digital computer program shown on pages 65 through 69 was written and used. The input and output data for each of the previously discussed filter configurations are given on the pages following the computer program.





Fig. 54. Block diagram of interactance computer program.

.

```
INTERACTANCE VS. FREQUENCY, SINGLE FILTERS
C
   DIMENSION A(10), B(10), W1(140), R(140)
 3 READ, A0, (A(I), I=1,10)
   RFAD \cdot B( \cdot (B(N) \cdot N = 1, 10))
   K = 0
   DC 2 I=10,120
   H = I
   W=H/100.
   K = K + 1
   W1(K) = W
   D=(B0-B(2)*W**2+B(4)*W**4-B(6)*W**6+B(8)*W**8-B(10)*W**10)**2
   E=(B(1)*W-B(3)*W**3+B(5)*W**5-B(7)*W**7+B(9)*W**9)**2
   F1=A0+B0-(A(2)+B(2))*W**2+(A(4)+B(4))*W**4-(A(6)+B(6))*W**6
   F_{2}=(A(8)+B(8))*W**8-(A(10)+B(10))*W**10
   F = (F_1 + F_2) * * 2
   G1=(A(1)+B(1))*W-(A(3)+B(3))*W**3+(A(5)+B(5))*W**5
   G_{2}=-(A(7)+B(7))*W**7+(A(9)+B(9))*W**9
   G = (G1 + G2) * * 2
   R(K) = 4.
                 *(D+E)/(F+G)
 2 CONTINUE
   DC 5 J=13,25
   P = 1
   W=P/10.
   K = K + 1
   W1(K) = W
   D = (B0-B(2) * W * 2 + B(4) * W * 4 - B(6) * W * 6 + B(8) * W * 8 - B(10) * W * 10) * 2
   E=(B(1)*W-B(3)*W**3+B(5)*W**5-B(7)*W**7+B(9)*W**9)**2
   F1=A0+B0-(A(2)+B(2))*W**2+(A(4)+B(4))*W**4-(A(6)+B(6))*W**6
   F2=(A(8)+B(8))*W**8-(A(10)+B(10))*W**10
   F = (F_1 + F_2) * * 2
   G1=(A(1)+B(1))*W-(A(3)+B(3))*W**3+(A(5)+B(5))*W**5
   G2=-(A(7)+B(7))*W**7+(A(9)+B(9))*W**9
   G = (G1 + G2) * * 2
   R(K) = 4.
                 *(D+E)/(F+G)
 5 CONTINUE
   DC 10 M=30,100,5
   Q = M
   W=Q/10.
   K = K + 1
   W1(K) = W
   D=(B0-B(2)*W**2+B(4)*W**4-B(6)*W**6+B(8)*W**8-B(10)*W**10)**2
   E=(B(1)*W-B(3)*W**3+B(5)*W**5-B(7)*W**7+B(9)*W**9)**2
   F1=AC+BC-(A(2)+B(2))*W**2+(A(4)+B(4))*W**4-(A(6)+B(6))*W**6
   F2=(A(8)+B(8))*W**8-(A(10)+B(10))*W**10
   F = (F_1 + F_2) * * 2
   G1=(A(1)+B(1))*W-(A(3)+B(3))*W**3+(A(5)+B(5))*W**5
   G_{2}=-(A(7)+B(7))*W**7+(A(9)+B(9))*W**9
   G = (G1 + G2) * 2
                 *(D+E)/(F+G)
   R(K) = 4
10 CONTINUE
   PUNCH 4
```

С

DC 11 K=1,45 PUNCH 7,W1(K),R(K),W1(K+47),R(K+47),W1(K+94),R(K+94) 11 CONTINUE DC 12 K=46,47 DC 12 K=46,47

- PUNCH 8,W1(K),R(K),W1(K+47),R(K+47)
- 12 CONTINUE GC TC 3
  - 4 FCRMAT(/8x,1Hw,9x,1HR,2(10x,1Hw,9x,1HR)//)
  - 7 FORMAT(3(5X,F5.2,3X,F8.5))
  - 8 FCRMAT(2(5X,F5.2,3X,F8.5)) END

```
DIMENSION A(10), B(10), W1(140), R(140)
 3 READ, A0, (A(I), I=1,10)
   READ, BO, (B(N), N=1, 10)
   K = 0
   DC 2 I=10,120
   H = I
   W=H/100.
   K = K + 1
   W1(K) = W
   D = (B0 - B(2) * W * * 2 + B(4) * W * * 4 - B(6) * W * * 6 + B(8) * W * * 8 - B(10) * W * 10) * * 2
   E=(B(1)*W-B(3)*W**3+B(5)*W**5-B(7)*W**7+B(9)*W**9)**2
   F1=A0+B0-(A(2)+B(2))*W**2+(A(4)+B(4))*W**4-(A(6)+B(6))*W**6
   F_{2}=(A(8)+B(8))*W**8-(A(10)+B(10))*W**10
   F = (F1 + F2) \times \times 2
   G1=(A(1)+B(1))*W-(A(3)+B(3))*W**3+(A(5)+B(5))*W**5
   G_{2} = -(A(7) + B(7)) * W * * 7 + (A(9) + B(9)) * W * * 9
   G = (G1 + G2) * * 2
   R(K) = (9 \cdot / 4 \cdot ) * (D + E) / (F + G)
 2 CONTINUE
   DC 5 J=13,25
   P=J
   W=P/10.
   K = K + 1
   W1(K) = W
   D=(B0-B(2)*W**2+B(4)*W**4-B(6)*W**6+B(8)*W**8-B(10)*W**10)**2
   E = (B(1) \times W - B(3) \times W \times 3 + B(5) \times W \times 5 - B(7) \times W \times 7 + B(9) \times W \times 9) \times 2
   F1=A0+B0-(A(2)+B(2))*W**2+(4(4)+B(4))*W**4-(A(6)+B(6))*W**6
   F_{2}=(A(8)+B(8))*W**8-(A(10)+B(10))*W**10
   F = (F1 + F2) * * 2
   G1=(A(1)+B(1))*W-(A(3)+B(3))*W**3+(A(5)+B(5))*W**5
   G_{2}=-(A(7)+B(7))*W**7+(A(9)+B(9))*W**9
   G = (G1 + G2) * * 2
   R(K) = (9 \cdot / 4 \cdot ) * (D + E) / (F + G)
 5 CONTINUE
   DC 10 M=30,100,5
   Q = M
   W=0/10.
   K = K + 1
   W1(K) = W
   D=(B0-B(2;*W**2+B(4)*W**4-B(6)*W**6+B(8)*W**8-B(10)*W**10)**2
   E=(B(1)*W-B(3)*W**3+E(5)*W**5-B(7)*W**7+B(9)*W**9)**2
   F1=A0+B0-(A(2)+B(2))*W**2+(A(4)+B(4))*W**4-(A(6)+B(6))*W**6
   F_{2}=(A(8)+B(8))*W**8-(A(10)+B(10))*W**10
   F = (F1 + F2) * * 2
   G1=(A(1)+B(1))*W-(A(3)+B(3))*W**3+(A(5)+B(5))*W**5
   G_{2}=-(A(7)+B(7))*W**7+(A(9)+B(9))*W**9
   G = (G1 + G2) * * 2
   R(K) = (9 \cdot / 4 \cdot ) * (D + E) / (F + G)
10 CONTINUE
   PUNCH 4
```
```
DC 11 K=1,45
PUNCH 7,W1(K),R(K),W1(K+47),R(K+47),W1(K+94),R(K+94)
11 CONTINUE
DC 12 K=46,47
PUNCH 8,W1(K),R(K),W1(K+47),R(K+47)
12 CONTINUE
GC TC 3
4 FORMAT(/8X,1HW,9X,1HR,2(10X,1HW,9X,1HR)//)
7 FORMAT(3(5X,F5.2,3X,F8.5))
8 FORMAT(2(!X,F5.2,3X,F8.5))
END
```

INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., CONSTANT-1 FILTER 1. 2. 2. 2. .0 .0 .0 •0 •0 •0 • 0 2. • 0 •0 •0 • 0 •0 •0 •0 1. 2. • 0 INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., ZOBEL FILTER, M=0.6 1. 3.84 5.76 11.63 6.32 9.1 1.95 2.07 .0 .0 .0 3.2 8.06 6.64 10.81 3.07 3.26 .0 .0 .0 .0 1. INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., ZOBEL FILTER, M=0.707 1. 3.414 6.828 9.246 8.992 6.682 2.914 1.457 .0 .0 .0 3.414 9.242 8.992 5.828 2.914 .0 .0 6.828 1. • 0 • 0 INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., TYPE 1 FILTER 1. 3. 5. 6.5 5. 3. 1. .0 .0 .0 .0 1. 4. 8. 9. 8. 4. 1. •0 •0 •0 INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., TYPE 2 FILTER 3.24 11.7 21.55 28.79 21.55 11.7 3.24 .0 .0 .0 .0 3.24 22.8 25.42 22.8 11.7 3.24 .0 .0 .0 .0 11.7 INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., TYPE 3 FILTER 3.73246 13.92954 26.85862 36.3263 26.85862 13.92954 3.73246 • 0 • 0 • 0 • 0 3.73246 13.92954 26.8614 29.859 26.8614 13.92954 3.73246 .0 .0 • 0 • 0 INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., TYPE 4 FILTER •9975 3•99 7•98 9•95 7•98 3•99 •9975 •0 •0 •0 •0 •9975 3•99 7•98 9•95 7•98 3•99 •9975 •0 •0 •0 •0 INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., TYPE 6 FILTER 3.23607 15.70820 43.12461 {3.33938 119.37381 135.99185 119.37381 83.33938 43.12461 15.70820 3.23607 3.23607 15.70820 43.12461 81.48529 118.37383 131.8459 118.37383 81.48529 43.12461 15.70820 3.23607 INTERACTANCE RESPONSE INPUT DATA, ADPI COEFF., TYPE 7 FILTER •68140 3.63470 10.42514 20.45234 29.90444 33.93411 29.904444 20.45234 10.42514 3.6347 .68140 .68140 3.63470 10.42514 20.45234 29.93704 33.77306 29.93704 20.45234 10.42514 3.6347

.68140

| W          | R       | W            | R                                       | W      | R                   |
|------------|---------|--------------|-----------------------------------------|--------|---------------------|
| .10        | 1.00040 | .57          | 1.37508                                 | 1.04   | 2.50712             |
| .11        | 1.00058 | • 5 8        | 1.39939                                 | 1.05   | 2.50504             |
| .12        | 1.00083 | . 39         | 1.42460                                 | 1.06   | 2.50149             |
| .13        | 1.00114 | •60          | 1.45072                                 | 1.07   | 2.49654             |
| •14        | 1.00153 | •61          | 1.47770                                 | 1.08   | 2.49025             |
| .15        | 1.00201 | •62          | 1.50554                                 | 1.09   | 2•48266             |
| •16        | 1.00260 | •63          | 1.53420                                 | 1.10   | 2.47384             |
| •17        | 1.00332 | •64          | 1.56364                                 | 1.11   | 2.46385             |
| •18        | 1.00416 | •65          | 1.59382                                 | 1.12   | 2.45276             |
| •19        | 1.00517 | •66          | 1.62470                                 | 1.13   | 2.44063             |
| •20        | 1.00634 | •67          | 1.65623                                 | 1•14   | 2.42751             |
| •21        | 1.00769 | •68          | 1.68833                                 | 1.15   | 2.41349             |
| •22        | 1.00926 | •69          | 1.72096                                 | 1.16   | 2.39861             |
| .23        | 1.01104 | •70          | 1.75404                                 | 1.17   | 2.38293             |
| •24        | 1.01308 | •71          | 1.78749                                 | 1.18   | 2.36653             |
| •25        | 1.01538 | •72          | 1.82123                                 | 1.19   | 2.34946             |
| •26        | 1.01796 | •73          | 1.85518                                 | 1.20   | 2.33177             |
| •27        | 1.02086 | • 74         | 1.88924                                 | 1.30   | 2.13228             |
| •28        | 1.02409 | • 75         | 1.92332                                 | 1•40   | 1.91879             |
| •29        | 1.02768 | • 76         | 1.95/31                                 | 1.50   | 1.71501             |
| • 30       | 1.03165 | • / /        | 1.99113                                 | 1.60   | 1.53086             |
| •31        | 1.03602 | • 78         | 2.02465                                 | 1.70   | 1.36880             |
| • 32       | 1.04083 | • 79         | 2.05/18                                 | 1.80   | 1.22/8/             |
| •33        | 1.04609 | •80          | 2.09041                                 | 1.90   | 1.10578             |
| •34        | 1.05183 | •81          | 2.12243                                 | 2.00   | 1.00000             |
| • 35       | 1.05808 | •82          | 2.12374                                 | 2 • 10 | •90810              |
| • 30       | 1.07222 | •83          | 2.0422                                  | 2.20   | •82190<br>75770     |
| • 2 (      | 1.08015 | •84          | 2.04022                                 | 2.30   | • 15118             |
| • 20       | 1.08010 | • 8 2<br>9 4 | 2 2 4 2 2 2                             | 2.40   | • 0 9 0 0 4         |
| • 2 7      | 1.00700 | • 00         | 2.0710                                  | 2.00   | •04147              |
| •40        | 1.0777  | • 0 /        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.50   | •44521              |
| •41        | 1.11922 | • 80<br>• 0  | 2 3 2 4 4 5 1                           | 2.50   | • 32690             |
| • 4 2      | 1 12041 | • 0 7        | 2 3 3 4 4 5 1                           | 4.50   | • 2 9 0 1 0         |
| • 4 5      | 1 14764 | • 90         | 2 9 7 2 9                               | 4.50   | • 19705             |
| •44        | 1 15444 | • 91         | 2.0642                                  | 5.00   | • 16002             |
| • 4 5      | 1 14902 | • 72         | 2 40042                                 | 5.50   | • 1 3 2 2 0         |
| •40        | 1 19244 | • 95         | 2 42 2 74                               | 6.00   | • 1 1 1 1 3         |
| •41<br>7.8 | 1 10744 | • 74         | 2 4 5 7 0 5                             | 7.00   | • 09469             |
| .49        | 1,21270 | • 95         | 2.46662                                 | 7.50   | • 0 0 1 0 4         |
| .50        | 1,27077 | .97          | 2.47749                                 | 8-00   | • 06250             |
| • 5 °      | 1.24864 | . 38         | 2.48667                                 | 8.50   | •05537              |
| .52        | 1.26741 | . 99         | 2.49417                                 | 9.00   | 04938               |
| .53        | 1.28709 | 1.00         | 2.50000                                 | 9.50   | 04432               |
| .54        | 1.30770 | 1.01         | 2,50418                                 | 10.00  | 04000               |
| .55        | 1.32923 | 1.02         | 2.50674                                 | 20000  | • • • • • • • • • • |
| .56        | 1.35169 | 1.03         | 2.50770                                 |        |                     |

| W     | R         | N            | R                     | W            | R                       |
|-------|-----------|--------------|-----------------------|--------------|-------------------------|
| .10   | .95915    | .57          | 1.53551               | 1.04         | 2.07124                 |
| .11   | .95148    | • 58         | 1.56422               | 1.05         | 2.28933                 |
| .12   | .94343    | .59          | 1.59062               | 1.06         | 2.49755                 |
| .13   | •93509    | .60          | 1.61434               | 1.07         | 2.69356                 |
| •14   | •92657    | .61          | 1.63501               | 1.08         | 2.87578                 |
| .15   | •91796    | •62          | 1.65225               | 1.09         | 3.04322                 |
| •16   | •90936    | •63          | 1.66568               | 1.10         | 3.19545                 |
| •17   | •90089    | •64          | 1.67493               | 1.11         | 3.33245                 |
| •18   | .89267    | •65          | 1.67962               | 1.12         | 3.45456                 |
| .19   | .88481    | •66          | 1.67938               | 1.13         | 3.56234                 |
| •20   | .87742    | .67          | 1.67388               | 1.14         | 3.65651                 |
| •21   | •87063    | •68          | 1.66275               | 1.15         | 3.73792                 |
| •22   | .86455    | •69          | 1.64569               | 1.16         | 3.80745                 |
| •23   | •85931    | •70          | 1.62240               | 1.17         | 3.86601                 |
| •24   | .85503    | •71          | 1.59262               | 1.18         | 3.91448                 |
| •25   | .85182    | •72          | 1.55611               | 1.19         | 3.95374                 |
| •26   | •84978    | •73          | 1.51272               | 1.20         | 3.98459                 |
| •27   | •84905    | •74          | 1.46231               | 1.30         | 3.97393                 |
| •28   | •84970    | •75          | 1.40485               | 1•40         | 3.69301                 |
| •29   | e85185    | •76          | 1.34039               | 1.50         | 3.41650                 |
| •30   | •85559    | •77          | 1.26910               | 1.60         | 3.16696                 |
| •31   | •86099    | • 78         | 1.19126               | 1•70         | 2.91334                 |
| •32   | •86814    | • 79         | 1.10735               | 1.80         | 2.66868                 |
| •33   | •87709    | •80          | 1.01802               | 1.90         | 2.44280                 |
| •34   | •88790    | •81          | •92415                | 2.00         | 2.23846                 |
| •35   | •90(50    | •82          | •82691                | 2.10         | 2.05518                 |
| •36   | •91524    | •83          | • 12115               | 2.20         | 1.89129                 |
| •37   | •93181    | •84          | •62847                | 2.30         | 1 • / 4 4 / 6           |
| • 38  | • 95032   | • 85         | • 53123               | 2.40         | 1.61360                 |
| • 29  | •97075    | • 80         | •42027                | 2.50         | 1 05 0 0                |
| • 40  | •99507    | •87          | • 32 3 20<br>27 9 9 0 | 3.00<br>3.50 | 1.05787                 |
| • 4 1 | 1.04212   | • 88         | • 21009               | 2 • 5U       | • 10142                 |
| • 4 2 | 1.07071   | •89          | • 21000               | 4.50         | • 60709                 |
| • 4 2 | 1.00096   | •90          | • 17090<br>15454      | 4.50         | •40190                  |
| •44   | 1 12044   | • 91         | • 10400<br>15761      | 5.50         | • 39100                 |
| •45   | 1 16 22 1 | • 92         | • 19701<br>1977/      | 5.50         | • 22441                 |
| •40   | 1 10520   | • 7 <i>2</i> | • 10 / / 4            | 6.50         | • 2 1 5 0 0             |
| • 4 1 | 1 22021   | • 74         | • 24002               | 7 00         | • 2 3 5 0 0             |
| • 4 0 | 1 26284   | • 95         | • 25207               | 7.50         | •20112                  |
| .50   | 1,20904   | • 90         | .50008                | 8.00         | - 154.22                |
| .51   | 1.33/22   | • 71         | .77100                | 8-50         | .12670                  |
| .52   | 1.36966   | • 70         | .96315                | 9.00         | .12109                  |
| .53   | 1.40469   | 1.00         | 1,17181               | 9.50         | 10053                   |
| .54   | 1.43911   | 1.01         | 1.39195               | 10.00        | .09889                  |
| .55   | 1.47261   | 1.02         | 1.61843               | 10.00        | • • • • • • • • • • • • |
| .56   | 1.50486   | 1.03         | 1.84634               |              |                         |

| W         | R           | W     | R               | W       | R            |
|-----------|-------------|-------|-----------------|---------|--------------|
| .10       | 1.00000     | .57   | .97338          | 1.04    | 1.09083      |
| •11       | 1.00000     | • 58  | .97270          | 1.05    | 1.29403      |
| .12       | •99999      | •59   | .97222          | 1.06    | 1.49718      |
| .13       | •99999      | •60   | .97197          | 1.07    | 1.69594      |
| •14       | •99998      | •61   | .97197          | 1.08    | 1.88726      |
| .15       | •99998      | •62   | •97226          | 1.09    | 2.06919      |
| •16       | •99996      | •63   | •97284          | 1•10    | 2.24058      |
| •17       | •99995      | •64   | •97376          | 1.11    | 2.40095      |
| •18       | •99992      | •65   | •97501          | 1•12    | 2.55023      |
| •19       | •99989      | •66   | •97660          | 1•13    | 2.68868      |
| •20       | .99985      | •67   | •97852          | 1•14    | 2.81672      |
| •21       | •99980      | •68   | •98076          | 1.15    | 2.93487      |
| •22       | •99974      | •69   | •98328          | 1.16    | 3.04372      |
| •23       | •99966      | • 70  | •98601          | 1 • 1 / | 3.14385      |
| •24       | •99956      | •71   | •98888          | 1.18    | 3.23583      |
| •25       | • 99945     | • 72  | •99178          | 1.19    | 3.32023      |
| •26       | • 995 30    | • 73  | • 99454         | 1.20    | 3.39755      |
| •21       | •99914      | • 74  | • 99699         | 1.30    | 3.87360      |
| •28       | •99894      | • 75  | •99888          | 1.40    | 4.00449      |
| •29       | •99871      | • 76  | •99991          | 1.50    | 3.95467      |
| •30       | •99844      | • / / | •99974          | 1.60    | 3.81106      |
| •31       | •99812      | • 78  | •99793          | 1.70    | 3.62201      |
| • 32      | •99777      | • 79  | •99398          | 1.80    | 3.41476      |
| •33       | •99736      | •80   | • 98 7 30       | 1.90    | 3.20462      |
| • 34      | •99690      | •81   | •97723          | 2.00    | 2.999998     |
| • 32      | • 9 9 6 3 9 | •82   | • 96 30 1       | 2.10    | 2.80528      |
| • 20      | • 9 9 5 8 2 | •83   | • 74 3 0 L      | 2.20    | 2.02200      |
| • 21      | • 7 5 2 1 0 | • 84  | • 91070         | 2 • 30  | 2 4 2 2 6 4  |
| • 20      | • 7 7 4 4 0 | • 3 2 | • 00 I V Z      | 2 • 40  | 2.15026      |
| • 2 7     | 00289       | • 0 0 | •04770<br>80016 | 2.00    | 2.10020      |
| •40       | 00108       | • 0 7 | 7/200           | 3.60    | 1 10050      |
| •41<br>10 | • 77170     | • 0 0 | 67020           | 5.50    | 1.19950      |
| • 4 2     | 0,0000      | •07   | 60690           | 4.50    | • 75 1 J I 2 |
| .45       | • 70 7 70   | • 90  | .52860          | 4.50    | • 10112      |
| . 45      | .98773      | • 7 1 | • 12000         | 5.50    | •01441       |
| • 4 6     | •98652      | • 72  | .36809          | 6.00    | • 51145      |
| .47       | • 98527     | - 94  | .29641          | 6.50    | . 36974      |
| .48       | .98399      | • 24  | .23963          | 7.00    | .31987       |
| .49       | •98268      | • 96  | •20537          | 7.50    | .27939       |
| .50       | .98136      | .97   | 20077           | 8.00    | •24610       |
| .51       | • 98004     | .98   | •23117          | 8.50    | .21839       |
| .52       | .97875      | .99   | .29921          | 9.00    | 19509        |
| .53       | .97750      | 1.00  | . 40424         | 9.50    | 17532        |
| .54       | 97631       | 1.01  | .54250          | 10.00   | 15840        |
| .55       | .97521      | 1.02  | •70792          | 10000   | • 20040      |
| .56       | .97423      | 1.03  | .89319          |         |              |

| W         | R                       | W    | R       | W     | R           |
|-----------|-------------------------|------|---------|-------|-------------|
| .10       | .56714                  | . 37 | •94451  | 1.04  | 1.02592     |
| .11       | •56822                  | • 58 | •95993  | 1.05  | 1.03851     |
| .12       | •56944                  | •59  | .97535  | 1.06  | 1.05237     |
| .13       | .57082                  | .60  | •99071  | 1.07  | 1.06693     |
| .14       | •57236                  | •61  | 1.00596 | 1.08  | 1.08169     |
| .15       | •57408                  | •62  | 1.02105 | 1.09  | 1.09623     |
| •16       | • 57599                 | .63  | 1.03594 | 1.10  | 1.11021     |
| .17       | •57810                  | •64  | 1.05057 | 1•11  | 1.12339     |
| •18       | •58044                  | •65  | 1.06489 | 1•12  | 1.13560     |
| •19       | •58300                  | •66  | 1.07884 | 1.13  | 1.14672     |
| •20       | •58581                  | .67  | 1.09236 | 1•14  | 1.15672     |
| •21       | •58888                  | •68  | 1.10540 | 1.15  | 1.16555     |
| .22       | •59222                  | •69  | 1.11788 | 1.16  | 1.17324     |
| .23       | • 59585                 | •70  | 1.12976 | 1.17  | 1.17982     |
| •24       | •59979                  | •71  | 1.14095 | 1.18  | 1.18532     |
| .25       | •60404                  | •72  | 1.15140 | 1.19  | 1.18982     |
| •26       | •60863                  | •73  | 1.16102 | 1.20  | 1.19336     |
| •27       | •61357                  | •74  | 1.16976 | 1.30  | 1.18944     |
| •28       | •61886                  | •75  | 1.17752 | 1•40  | 1.14552     |
| •29       | •62453                  | •76  | 1.18424 | 1.50  | 1.08791     |
| •30       | •63058                  | •77  | 1.18983 | 1.60  | 1.02853     |
| •31       | .63703                  | •78  | 1.19420 | 1.70  | •97263      |
| •32       | •64389                  | •79  | 1.19727 | 1.80  | •92229      |
| •33       | •65116                  | •80  | 1.19894 | 1.90  | •87800      |
| •34       | •65885                  | .81  | 1.19914 | 2.00  | •83954      |
| •35       | •66697                  | •82  | 1.19777 | 2•10  | •80638      |
| •36       | •67553                  | •83  | 1.19475 | 2.20  | •77787      |
| •37       | •684 52                 | •84  | 1.19001 | 2.30  | •75337      |
| •38       | •69396                  | •85  | 1.18350 | 2•40  | •73230      |
| •39       | • 70384                 | •86  | 1.1/519 | 2.50  | •71415      |
| •40       | •71415                  | •87  | 1.16507 | 3.00  | •65367      |
| •41       | • 72490                 | •88  | 1.15322 | 3.50  | .62205      |
| • 42      | •73608                  | •89  | 1.13973 | 4.00  | •60404      |
| •43       | • 74 768                | •90  | 1.12479 | 4.50  | •59300      |
| •44       | • 75969                 | • 91 | 1.108/1 | 5.00  | •58581      |
| •45       | • 77210                 | • 92 | 1.09185 | 5.50  | •58088      |
| •46       | • 78489                 | •93  | 1.0/4/1 | 6.00  | •57738      |
| •41       | • 79805                 | • 94 | 1.05709 | 0.50  | • 2 1 4 1 9 |
| • 48      | •81156                  | • 95 | 1.04206 | 7.00  | • 27283     |
| •49<br>E0 | • 82540                 | • 30 | 1.01612 | 1.00  | • 57131     |
| • 5 U     | • 0 J 7 J 4<br>95 2 0 4 | • 97 | 1 00729 | 8.50  | • 57011     |
| .52       | - 96962                 | • 70 | 1.00183 | 0.00  | - 56925     |
| .52       | . 99250                 | • 77 | 1.00000 | 9.50  | - 56769     |
| • 5 4     | • 89957                 | 1.01 | 1.00179 | 10-00 | - 56714     |
| - 55      | .91278                  | 1.02 | 1.00700 | 10.00 | • 50714     |
| • 56      | .92911                  | 1.03 | 1.01522 |       |             |

| W                       | R               | W    | R          | W     | R                       |
|-------------------------|-----------------|------|------------|-------|-------------------------|
| .10                     | •56069          | •57  | .69809     | 1.04  | .19258                  |
| •11                     | •56041          | •58  | •70347     | 1.05  | ·20589                  |
| .12                     | •56013          | •59  | •70850     | 1.06  | •22141                  |
| .13                     | •55986          | •6U  | •71309     | 1.07  | .23881                  |
| •14                     | •55963          | •61  | •71719     | 1.08  | •25776                  |
| .15                     | •55943          | •62  | •72071     | 1.09  | •27793                  |
| •16                     | •55928          | •63  | •72357     | 1.10  | •29902                  |
| •17                     | .55919          | •64  | •72568     | 1.11  | •32073                  |
| .18                     | •55917          | .65  | •72696     | 1.12  | •34279                  |
| •19                     | •55923          | •66  | •72732     | 1.13  | •36497                  |
| .20                     | •55939          | •67  | •72667     | 1•14  | •38705                  |
| .21                     | •55966          | •68  | •72492     | 1.15  | •40886                  |
| • 2 2                   | •56005          | •69  | •72196     | 1•16  | •43023                  |
| .23                     | •56057          | •70  | •71772     | 1.17  | •45103                  |
| •24                     | •56124          | •71  | •71211     | 1.18  | •47118                  |
| •25                     | •56207          | •72  | •70503     | 1•19  | •49057                  |
| •26                     | •56307          | •73  | •69642     | 1.20  | •50915                  |
| •27                     | •56425          | •74  | •68619     | 1.30  | •64659                  |
| •28                     | •56563          | •75  | .67430     | 1.40  | •70926                  |
| .29                     | •56721          | •76  | •66070     | 1.50  | •72701                  |
| •30                     | •56901          | •77  | •64535     | 1.60  | •72223                  |
| .31                     | •57103          | •78  | •62824     | 1.70  | •70764                  |
| •32                     | •57329          | •79  | •60939     | 1.80  | •68982                  |
| •33                     | •57579          | •80  | • 58884    | 1.90  | •67196                  |
| •34                     | •57854          | •81  | •56665     | 2.00  | •65546                  |
| • 35                    | •58155          | •82  | •54292     | 2.10  | •64084                  |
| •36                     | •58481          | •83  | •51780     | 2.20  | .62819                  |
| •37                     | •58834          | •84  | •49147     | 2.30  | •61738                  |
| •38                     | •59212          | •85  | •46415     | 2•40  | •60821                  |
| •39                     | •59617          | •86  | •43609     | 2.50  | •60048                  |
| •40                     | •60048          | •87  | •40/61     | 3.00  | •57668                  |
| •41                     | •60504          | •88  | .37905     | 3.50  | •56651                  |
| • 42                    | •60984          | •89  | •35076     | 4.00  | .56207                  |
| •43                     | •61488          | •90  | •32317     | 4.50  | •56015                  |
| •44                     | •62015          | •91  | •29667     | 5.00  | • 55939                 |
| • 45                    | •62563          | • 92 | •27168     | 5.50  | • 5591 /                |
| •46                     | •63130          | •93  | • 24862    | 6.00  | • > > > > 2 1           |
| •41                     | •63715          | •94  | • 22 / 8 / | 6.50  | • 55936                 |
| •48<br>40               | • 6 4 3 1 4     | • 95 | •20978     | 7.00  | • 55 7 5 6<br>5 5 0 7 0 |
| •49<br>E0               | • 6 4 7 Z 5     | • 90 | • 19463    | 7.50  | • > > > / 8             |
| • 5 U<br>5 1            | •02240<br>46172 | • 97 | • 10200    | 8.00  | • 22777<br>54010        |
| ● D I<br>5 2            | 66900           | • 70 | 16901      | 0.00  | • JOU19                 |
| 52                      | 674.26          | • 77 | 16720      | 9.50  | • JOUST                 |
| ● フラ<br>5 /u            | 68044           | 1.01 | 16999      | 9.50  | • 50054<br>56060        |
| • J <del>4</del><br>5 5 | 68652           | 1.02 | 17281      | 10.00 | • 10009                 |
| .56                     | .69242          | 1.02 | 18179      |       |                         |
| • - 0                   | 07242           | TOOL | e TOTIN    |       |                         |

C C INTERACTANCE VS. FREQUENCY, OUTPUT DATA, TYPE 3 FILTER, FIG.34

| 10 $.56285$ $.57$ $.72474$ $1.04$ $.10384$ $11$ $.56302$ $.58$ $.72820$ $1.05$ $.11537$ $12$ $.56323$ $.59$ $.73102$ $1.06$ $.12895$ $13$ $.56350$ $.60$ $.73309$ $1.07$ $.14434$ $14$ $.56384$ $.61$ $.73436$ $1.08$ $.16132$ $15$ $.56426$ $.62$ $.73471$ $1.09$ $.17965$ $16$ $.56477$ $.63$ $.73408$ $1.10$ $.19909$ $17$ $.56537$ $.64$ $.73237$ $1.11$ $.21943$ $18$ $.56609$ $.65$ $.72948$ $1.12$ $.24044$ $19$ $.56692$ $.66$ $.71299$ $1.15$ $.30563$ $22$ $.57027$ $.69$ $.70462$ $1.16$ $.32751$ $23$ $.57170$ $.70$ $.69470$ $1.17$ $.34922$ $24$ $.57331$ $.71$ $.68318$ $1.18$ $.37064$ $25$ $.57511$ $.72$ $.67000$ $1.19$ $.39167$ $26$ $.57710$ $.73$ $.65515$ $1.20$ $.41222$ $27$ $.57930$ $.74$ $.63861$ $1.30$ $.58068$ $28$ $.58171$ $.75$ $.62038$ $1.40$ $.67774$ $29$ $.58435$ $.76$ $.60048$ $1.50$ $.72186$ $331$ $.59724$ $.80$ $.50561$ $1.90$ $.73057$ $32$ $.59365$ $.79$ $.53143$ $1.80$ $.78353$ <                                                                                                                              | W     | R               | W     | R                | W     | R                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-------|------------------|-------|--------------------|
| .11.56302.58.72820 $1.05$ .11537.12.56323.59.73102 $1.06$ .12895.13.56350.60.73309 $1.07$ .14434.14.56384.61.73436 $1.08$ .16132.15.56426.62.73471 $1.09$ .17965.16.56477.63.73408 $1.10$ .19909.17.56537.64.73237 $1.11$ .21943.18.56609.65.72948 $1.12$ .24044.19.56692.66.71299 $1.15$ .30563.20.56789.67.71988 $1.14$ .28373.21.56900.68.71299 $1.15$ .30563.22.57027.69.70462 $1.16$ .32751.23.57170.70.69470 $1.17$ .34922.24.57331.71.68318 $1.18$ .3704.25.57511.72.67000 $1.19$ .39167.26.57710.73.65515 $1.20$ .41222.27.57930.74.63061 $1.30$ .58068.28.58171.75.76897 $1.60$ .73453.31.59021.77.57897 $1.60$ .73453.33.59724.80.50561 $1.90$ .63818.34.6180.82.45067.10.67392.35.60514.82.45067.10.67392 <td>.10</td> <td>•56285</td> <td>• 57</td> <td>.72474</td> <td>1.04</td> <td>.10384</td>                                                                                                                                                                                                                                                     | .10   | •56285          | • 57  | .72474           | 1.04  | .10384             |
| .12.56323.59.731021.06.12895.13.56350.60.733091.07.14434.14.56384.61.734361.08.16132.15.56426.62.734711.09.17965.16.56477.63.734081.10.19909.17.56537.64.732371.11.21943.18.56609.65.729481.12.24044.19.56692.66.725351.13.26194.20.56789.67.719881.14.28373.21.56900.68.712991.15.30563.22.57027.69.704621.16.32751.23.57170.70.694701.17.34922.24.57331.71.683181.18.37064.25.57511.72.670001.19.39167.26.57710.73.655151.20.41222.27.57930.74.638611.30.58068.28.58171.75.620381.40.67774.29.58435.76.600481.50.72186.30.58721.77.578971.60.73453.31.59031.78.555921.70.73057.32.59365.79.531431.80.71875.34.60107.81.47863.00.68855.35.60514.                                                                                                                                                                                                                                                                                                                                                                                                                 | .11   | •56302          | • 58  | .72820           | 1.05  | .11537             |
| .13.66350.60.733091.07.14434.14.56384.61.734361.08.16132.15.56426.62.734711.09.17965.16.56477.63.734081.10.19909.17.56537.64.732371.11.21943.18.56609.55.729481.12.24044.19.56692.66.725351.13.26194.20.56789.67.719881.14.28373.21.56900.68.712991.15.30563.22.57027.69.704621.16.32751.23.57170.70.694701.17.34922.24.5731.71.683181.8.37064.25.57511.72.670001.19.39167.26.57710.73.655151.20.41222.27.57930.74.638611.30.58068.30.88721.77.578971.60.73453.31.59031.78.555921.70.73057.32.59365.79.531431.80.71875.33.59724.80.50561.90.603815.34.60107.81.47863.20.66057.37.61401.84.39266.230.64866.38.61880.85.36312.240.63818.39.62381.86                                                                                                                                                                                                                                                                                                                                                                                                                 | •12   | •56323          | • 59  | •73102           | 1.06  | .12895             |
| .14.66384.61.734361.08.16132.15.56426.62.734711.09.17965.16.56477.63.734081.10.19909.17.56537.64.732371.11.21943.18.56609.65.729481.12.24044.19.56692.66.725351.13.26194.20.56789.67.719881.14.28373.21.56900.68.712991.15.30563.22.57027.69.704621.16.32751.23.57170.70.694701.17.34922.24.57331.71.683181.8.37064.25.57511.72.670001.9.39167.26.57710.73.655151.20.41222.27.57930.74.638611.30.58068.28.58171.75.620381.40.67774.29.58435.76.600481.50.72186.30.58721.77.578971.60.73453.31.99031.78.555921.70.73057.32.59365.79.531431.80.71875.33.59724.80.505611.90.70390.34.60107.81.478632.00.68855.35.60514.82.450672.10.67392.36.60946.8                                                                                                                                                                                                                                                                                                                                                                                                                 | .13   | •56350          | •60   | •73309           | 1.07  | .14434             |
| .15.66426.62.73471 $1.09$ .17965.16.56477.63.73408 $1.10$ .19909.17.65537.64.73237 $1.11$ .21943.18.56609.65.72948 $1.12$ .24044.19.56692.66.72535 $1.13$ .26194.20.56789.67.71988 $1.14$ .28373.21.56900.68.71299 $1.15$ .30563.22.57027.69.70462 $1.16$ .32751.23.57170.70.69470 $1.17$ .34922.24.57331.71.68318 $1.8$ .37064.25.57511.72.67000 $1.19$ .39167.26.57710.73.65515 $1.20$ .41222.27.57930.74.63861 $1.30$ .58068.28.58171.75.62038 $1.40$ .67774.29.58435.76.60048 $1.50$ .72186.30.58721.77.57897 $1.60$ .73453.31.59031.78.55592 $1.70$ .73057.32.59365.79.53143 $1.80$ .71875.33.59724.80.50561 $1.90$ .63818.35.60514.82.450672.10.67392.36.60946.83.421932.20.66057.37.61401.84.392662.30.64866 <td>•14</td> <td>•56384</td> <td>•61</td> <td>.73436</td> <td>1.08</td> <td>.16132</td>                                                                                                                                                                                                                                                       | •14   | •56384          | •61   | .73436           | 1.08  | .16132             |
| .16 $.56477$ $.63$ $.73408$ $1.10$ $.19909$ $.17$ $.56537$ $.64$ $.73237$ $1.11$ $.21943$ $.18$ $.56609$ $.65$ $.72948$ $1.12$ $.24044$ $.19$ $.56692$ $.66$ $.72535$ $1.13$ $.26194$ $.20$ $.56789$ $.67$ $.71988$ $1.14$ $.28373$ $.21$ $.56900$ $.68$ $.71299$ $1.15$ $.30563$ $.22$ $.57027$ $.69$ $.70462$ $1.16$ $.32751$ $.23$ $.57170$ $.70$ $.69470$ $1.17$ $.34922$ $.24$ $.57331$ $.71$ $.68318$ $1.18$ $.37064$ $.25$ $.57511$ $.72$ $.67000$ $1.19$ $.39167$ $.26$ $.57710$ $.73$ $.65515$ $.20$ $.41222$ $.27$ $.57930$ $.74$ $.638611$ $1.30$ $.58068$ $.28$ $.88171$ $.75$ $.62038$ $1.40$ $.67774$ $.29$ $.58435$ $.76$ $.60048$ $1.50$ $.72186$ $.30$ $.8721$ $.77$ $.57897$ $1.60$ $.73453$ $.31$ $.59031$ $.78$ $.55592$ $1.70$ $.73057$ $.33$ $.59724$ $.80$ $.50561$ $.90$ $.68855$ $.55$ $.60514$ $.82$ $.45067$ $2.10$ $.67392$ $.36$ $.60946$ $.83$ $.42193$ $2.20$ $.66057$ $.37$ $.61401$ $.84$ $.39266$ $2.30$ <                                                                                                                      | .15   | •56426          | •62   | •73471           | 1.09  | .17965             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •16   | •56477          | •63   | •73408           | 1.10  | •19909             |
| .18.56609.65.729481.12.24044.19.56692.66.725351.13.26194.20.56789.67.719881.14.28373.21.56900.68.712991.15.30563.22.57027.69.704621.16.32751.23.57170.70.694701.17.34922.24.57331.71.683181.18.37064.25.57511.72.670001.19.99167.26.57710.73.655151.20.41222.27.57930.74.638611.30.58068.28.58171.75.620381.40.6774.29.58435.76.600481.50.72186.30.58721.77.578971.60.73453.31.59031.78.555921.70.73057.32.59724.80.505611.90.70390.34.60107.81.478632.00.68855.35.60514.82.45067.10.67392.36.60946.83.42193.20.66057.37.61401.84.39266.30.64866.38.61880.85.36312.40.5711.43.64565.90.22173.450.57057.44.65176.91.19691.500.56381.44.65780.92 <td>•17</td> <td>•56537</td> <td>•64</td> <td>•73237</td> <td>1.11</td> <td>•21943</td>                                                                                                                                                                                                                                                                                                                            | •17   | •56537          | •64   | •73237           | 1.11  | •21943             |
| 19 $56692$ $66$ $72535$ $1.13$ $26194$ $20$ $56789$ $67$ $71988$ $1.14$ $28373$ $21$ $56900$ $68$ $71299$ $1.15$ $30563$ $22$ $57027$ $69$ $70462$ $1.16$ $32751$ $23$ $57170$ $70$ $69470$ $1.17$ $34922$ $24$ $57331$ $71$ $68318$ $1.18$ $37064$ $25$ $57511$ $72$ $67000$ $1.19$ $39167$ $26$ $57710$ $73$ $65515$ $1.20$ $41222$ $27$ $57930$ $74$ $63861$ $1.30$ $58068$ $28$ $58171$ $75$ $62038$ $1.40$ $67774$ $29$ $58435$ $76$ $60048$ $1.50$ $72186$ $30$ $58721$ $77$ $57897$ $1.60$ $73453$ $31$ $59031$ $78$ $55592$ $1.70$ $73057$ $32$ $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1.90$ $70390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $6180$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ <                                                                                                                                                                               | •18   | •56609          | •65   | •72948           | 1•12  | •24044             |
| 20 $56789$ $67$ $71988$ $1.14$ $28373$ $21$ $56900$ $68$ $71299$ $1.15$ $30563$ $22$ $57027$ $69$ $70462$ $1.16$ $32751$ $23$ $57170$ $70$ $69470$ $1.17$ $34922$ $24$ $57331$ $71$ $68318$ $1.18$ $37064$ $25$ $57511$ $72$ $67000$ $1.19$ $39167$ $26$ $57710$ $73$ $65515$ $1.20$ $41222$ $27$ $57930$ $74$ $63861$ $1.30$ $58068$ $28$ $58171$ $75$ $62038$ $1.40$ $67774$ $29$ $58435$ $76$ $60048$ $1.50$ $72186$ $30$ $58721$ $77$ $57897$ $1.60$ $73453$ $31$ $59031$ $78$ $55592$ $1.70$ $73057$ $32$ $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1.90$ $7390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $300$ <t< td=""><td>•19</td><td>•56692</td><td>•66</td><td>•72535</td><td>1.13</td><td>•26194</td></t<>                                                                                | •19   | •56692          | •66   | •72535           | 1.13  | •26194             |
| .21.56900.68.71299 $1.15$ .30563.22.57027.69.70462 $1.16$ .32751.23.57170.70.69470 $1.17$ .34922.24.57331.71.68318 $1.18$ .37064.25.57511.72.67000 $1.19$ .39167.26.57710.73.65515 $1.20$ .41222.27.57930.74.63861 $1.30$ .58068.28.58171.75.62038 $1.40$ .67774.29.58435.76.60048 $1.50$ .72186.30.58721.77.57897 $1.60$ .73453.31.59031.78.55592 $1.70$ .73057.32.59365.79.53143 $1.80$ .71875.33.59724.80.50561.90.70390.34.60107.81.47863.200.68855.35.60514.82.45067.10.67392.36.60946.83.42193.220.66057.37.61401.84.39266.30.64866.38.61880.85.36312.400.57511.43.64585.90.22173.450.57057.44.65176.91.19691.00.56319.42.64007.89.24813.00.57511.43.64585.90.22173.450.57057.44                                                                                                                                                                                                                                                                                                                                                                            | •20   | •56789          | •67   | •71988           | 1.14  | .28373             |
| $22$ $57027$ $69$ $70462$ $1\cdot16$ $32751$ $23$ $57170$ $70$ $69470$ $1\cdot17$ $34922$ $24$ $57331$ $71$ $68318$ $1\cdot18$ $37064$ $25$ $57511$ $72$ $67000$ $1\cdot19$ $39167$ $26$ $57710$ $73$ $65515$ $1\cdot20$ $41222$ $27$ $57930$ $74$ $63861$ $1\cdot30$ $58068$ $28$ $58171$ $75$ $62038$ $1\cdot40$ $67774$ $29$ $58435$ $76$ $60048$ $1\cdot50$ $72186$ $30$ $58721$ $77$ $57897$ $1\cdot60$ $73453$ $31$ $59031$ $78$ $55592$ $1\cdot70$ $73057$ $32$ $59365$ $79$ $53143$ $1\cdot80$ $71875$ $33$ $59724$ $80$ $50561$ $1\cdot90$ $70390$ $34$ $60107$ $81$ $47863$ $2\cdot00$ $68855$ $35$ $60514$ $82$ $45067$ $2\cdot10$ $67392$ $36$ $60946$ $83$ $42193$ $2\cdot20$ $66057$ $37$ $61401$ $84$ $39266$ $2\cdot30$ $64866$ $38$ $61880$ $8_5$ $36312$ $2\cdot40$ $63818$ $39$ $62381$ $86$ $33359$ $2\cdot50$ $62904$ $44$ $65176$ $91$ $19691$ $5\cdot00$ $56783$ $44$ $65176$ $91$ $19691$ $5\cdot00$ $56783$ $45$ $65780$ $92$ $17394$ $5\cdot50$ <td>•21</td> <td>•56900</td> <td>•68</td> <td>•71299</td> <td>1.15</td> <td>•30563</td> | •21   | •56900          | •68   | •71299           | 1.15  | •30563             |
| $23$ $57170$ $70$ $69470$ $1\cdot17$ $34922$ $24$ $57331$ $71$ $68318$ $1\cdot18$ $37064$ $25$ $57511$ $72$ $67000$ $1\cdot19$ $39167$ $26$ $57710$ $73$ $65515$ $1\cdot20$ $41222$ $27$ $57930$ $74$ $63861$ $1\cdot30$ $58068$ $28$ $58171$ $75$ $62038$ $1.40$ $67774$ $29$ $58435$ $76$ $60048$ $1\cdot50$ $72186$ $30$ $58721$ $77$ $57897$ $1.60$ $73453$ $31$ $59031$ $78$ $55592$ $1\cdot70$ $73057$ $32$ $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1\cdot90$ $70390$ $34$ $60107$ $81$ $47863$ $2\cdot00$ $68855$ $35$ $60514$ $82$ $45067$ $2\cdot10$ $67392$ $36$ $60946$ $83$ $42193$ $2\cdot20$ $66057$ $37$ $61401$ $84$ $39266$ $2\cdot30$ $64866$ $38$ $61880$ $8_5$ $36312$ $2\cdot40$ $63818$ $39$ $62381$ $86$ $33359$ $2\cdot50$ $62904$ $40$ $62904$ $87$ $30438$ $3\cdot00$ $59849$ $41$ $63446$ $88$ $27578$ $3\cdot50$ $56623$ $46$ $66392$ $93$ $15310$ $6\cdot00$ $56789$ $45$ $65780$ $92$ $17394$ $5\cdot50$ <td>•22</td> <td>•57027</td> <td>•69</td> <td>.70462</td> <td>1.16</td> <td>•32751</td>             | •22   | •57027          | •69   | .70462           | 1.16  | •32751             |
| $24$ $57331$ $71$ $68318$ $1 \cdot 18$ $37064$ $25$ $57511$ $72$ $67000$ $1 \cdot 19$ $39167$ $26$ $57710$ $73$ $65515$ $1 \cdot 20$ $41222$ $27$ $57930$ $74$ $63861$ $1 \cdot 30$ $58068$ $28$ $58171$ $75$ $62038$ $1 \cdot 40$ $67774$ $29$ $58435$ $76$ $60048$ $1 \cdot 50$ $72186$ $30$ $58721$ $77$ $57897$ $1 \cdot 60$ $73453$ $31$ $59031$ $78$ $55592$ $1 \cdot 70$ $73057$ $32$ $59365$ $79$ $53143$ $1 \cdot 80$ $71875$ $33$ $59724$ $80$ $50561$ $1 \cdot 90$ $70390$ $34$ $60107$ $81$ $47863$ $2 \cdot 00$ $68855$ $35$ $60514$ $82$ $45067$ $2 \cdot 10$ $67392$ $36$ $60946$ $83$ $42193$ $2 \cdot 20$ $66057$ $37$ $61401$ $84$ $39266$ $2 \cdot 30$ $64866$ $38$ $61880$ $85$ $36312$ $2 \cdot 40$ $63818$ $39$ $62381$ $86$ $33359$ $2 \cdot 50$ $62904$ $40$ $62904$ $87$ $30438$ $300$ $59849$ $41$ $63446$ $88$ $27578$ $3 \cdot 50$ $568319$ $42$ $64007$ $89$ $24813$ $4 \cdot 00$ $57511$ $43$ $64585$ $90$ $22173$ $4 \cdot 50$ $56623$ $46$ $6392$ $93$                                                                            | •23   | •57170          | •70   | •69470           | 1.17  | •34922             |
| $25$ $57511$ $72$ $67000$ $1 \cdot 19$ $39167$ $26$ $57710$ $73$ $65515$ $1 \cdot 20$ $41222$ $27$ $57930$ $74$ $63861$ $1 \cdot 30$ $58068$ $28$ $58171$ $75$ $62038$ $1 \cdot 40$ $67774$ $29$ $58435$ $76$ $60048$ $1 \cdot 50$ $72186$ $30$ $58721$ $77$ $57897$ $1 \cdot 60$ $73453$ $31$ $59031$ $78$ $55592$ $1 \cdot 70$ $73057$ $32$ $59365$ $79$ $53143$ $1 \cdot 80$ $71875$ $33$ $59724$ $80$ $50561$ $1 \cdot 90$ $70390$ $34$ $60107$ $81$ $47863$ $2 \cdot 00$ $68855$ $35$ $60514$ $82$ $45067$ $2 \cdot 10$ $67392$ $36$ $60946$ $83$ $42193$ $2 \cdot 20$ $66057$ $37$ $61401$ $84$ $39266$ $2 \cdot 30$ $64866$ $38$ $61880$ $8_5$ $36312$ $2 \cdot 40$ $63818$ $399$ $62381$ $86$ $33359$ $2 \cdot 50$ $62904$ $40$ $62904$ $87$ $30438$ $3 \cdot 00$ $59849$ $41$ $63446$ $88$ $27578$ $3 \cdot 50$ $58319$ $42$ $64007$ $89$ $24813$ $4 \cdot 00$ $57511$ $43$ $64585$ $90$ $22173$ $4 \cdot 50$ $57057$ $44$ $65176$ $91$ $19691$ $5 \cdot 0$ $56623$ $46$ $6392$                                                                          | •24   | •57331          | •71   | .68318           | 1.18  | •37064             |
| 26 $57710$ $73$ $65515$ $1.20$ $41222$ $27$ $57930$ $74$ $63861$ $1.30$ $58068$ $28$ $58171$ $75$ $62038$ $1.40$ $67774$ $29$ $58435$ $76$ $60048$ $1.50$ $72186$ $30$ $58721$ $77$ $57897$ $1.60$ $73453$ $31$ $59031$ $78$ $55592$ $1.70$ $73057$ $32$ $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1.90$ $70390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3.00$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56623$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $66392$ $97$ $09533$ $8.00$                                                                                                                                                                                | •25   | •57511          | •72   | •67000           | 1.19  | •39167             |
| 27 $57930$ $74$ $63861$ $1.30$ $58068$ $28$ $58171$ $75$ $62038$ $1.40$ $67774$ $29$ $58435$ $76$ $60048$ $1.50$ $72186$ $30$ $58721$ $77$ $57897$ $1.60$ $73453$ $31$ $59031$ $78$ $55592$ $1.70$ $73057$ $32$ $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1.90$ $70390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3000$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56789$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $6728$ $97$ $09533$ $8.00$ $56317$ $49$ $68245$ $96$ $10561$ $7.50$ <                                                                                                                                                                               | •26   | •57710          | •73   | •65515           | 1.20  | •41222             |
| .28 $.58171$ $.75$ $.62038$ $1.40$ $.67774$ $.29$ $.58435$ $.76$ $.60048$ $1.50$ $.72186$ $.30$ $.58721$ $.77$ $.57897$ $1.60$ $.73453$ $.31$ $.59031$ $.78$ $.55592$ $1.70$ $.73057$ $.32$ $.59365$ $.79$ $.53143$ $1.80$ $.71875$ $.33$ $.59724$ $.80$ $.50561$ $1.90$ $.70390$ $.34$ $.60107$ $.81$ $.47863$ $2.00$ $.68855$ $.35$ $.60514$ $.82$ $.45067$ $2.10$ $.67392$ $.36$ $.60946$ $.83$ $.42193$ $2.20$ $.66057$ $.37$ $.61401$ $.84$ $.39266$ $2.30$ $.64866$ $.38$ $.61880$ $.85$ $.36312$ $2.40$ $.63818$ $.39$ $.62381$ $.86$ $.33359$ $2.50$ $.62904$ $.40$ $.62904$ $.87$ $.30438$ $.300$ $.59849$ $.41$ $.63446$ $.88$ $.27578$ $.50$ $.58319$ $.42$ $.64007$ $.89$ $.24813$ $4.00$ $.57511$ $.43$ $.64585$ $.90$ $.22173$ $.450$ $.57057$ $.44$ $.65176$ $.91$ $.19691$ $.500$ $.56780$ $.45$ $.65780$ $.92$ $.17394$ $.550$ $.56623$ $.46$ $.66392$ $.93$ $.15310$ $.600$ $.56316$ $.47$ $.67029$ $.94$ $.13464$ $.650$                                                                                                                       | •27   | •57930          | •74   | •63861           | 1.30  | •58068             |
| .29 $.58435$ $.76$ $.60048$ $1.50$ $.72186$ $.30$ $.58721$ $.77$ $.57897$ $1.60$ $.73453$ $.31$ $.59031$ $.78$ $.55592$ $1.70$ $.73057$ $.32$ $.59365$ $.79$ $.53143$ $1.80$ $.71875$ $.33$ $.59724$ $.80$ $.50561$ $1.90$ $.70390$ $.34$ $.60107$ $.81$ $.47863$ $2.00$ $.68855$ $.35$ $.60514$ $.82$ $.45067$ $2.10$ $.67392$ $.36$ $.60946$ $.83$ $.42193$ $2.20$ $.66057$ $.37$ $.61401$ $.84$ $.39266$ $2.30$ $.64866$ $.38$ $.61880$ $.85$ $.36312$ $2.40$ $.63818$ $.39$ $.62381$ $.86$ $.33359$ $2.50$ $.62904$ $.40$ $.62904$ $.87$ $.30438$ $.900$ $.59849$ $.41$ $.63446$ $.88$ $.27578$ $3.50$ $.58319$ $.42$ $.64007$ $.89$ $.24813$ $4.00$ $.57511$ $.43$ $.64585$ $.90$ $.22173$ $4.50$ $.57057$ $.44$ $.65176$ $.91$ $.19691$ $5.00$ $.56780$ $.45$ $.65780$ $.92$ $.17394$ $.550$ $.56233$ $.46$ $.66392$ $.93$ $.15310$ $.600$ $.56516$ $.47$ $.67009$ $.94$ $.13464$ $.50$ $.56444$ $.48$ $.67628$ $.95$ $.11876$ $7.00$                                                                                                                       | •28   | •58171          | •75   | .62038           | 1.40  | .67774             |
| 30 $58721$ $77$ $57897$ $1.60$ $73453$ $31$ $59031$ $78$ $55592$ $1.70$ $73057$ $32$ $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1.90$ $70390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3.00$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56789$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $66392$ $93$ $15310$ $6.00$ $56316$ $47$ $67009$ $94$ $13464$ $6.50$ $56444$ $48$ $67628$ $95$ $11876$ $7.00$ $56336$ $50$ $68855$ $97$ $09533$ $8.00$ $56304$ $52$ $70034$ $99$ $08359$ $9.00$                                                                                                                                                                                | •29   | •58435          | •76   | •60048           | 1.50  | •72186             |
| 31 $59031$ $78$ $55592$ $1.70$ $73057$ $32$ $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1.90$ $70390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3.00$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56783$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $66392$ $93$ $15310$ $6.00$ $56316$ $47$ $67009$ $94$ $13464$ $6.50$ $56444$ $48$ $67628$ $95$ $11876$ $7.00$ $56336$ $50$ $68855$ $97$ $09533$ $8.00$ $56336$ $51$ $69453$ $98$ $08798$ $8.50$ $56317$ $52$ $70034$ $99$ $08359$ $9.00$                                                                                                                                                                                | •30   | •58721          | •77   | •57897           | 1.60  | •73453             |
| 32 $59365$ $79$ $53143$ $1.80$ $71875$ $33$ $59724$ $80$ $50561$ $1.90$ $70390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3.00$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56789$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $66392$ $93$ $15310$ $6.00$ $56316$ $47$ $67009$ $94$ $13464$ $650$ $56444$ $48$ $67628$ $95$ $11876$ $7.00$ $56395$ $49$ $68245$ $96$ $10561$ $7.50$ $56361$ $50$ $68855$ $97$ $09533$ $8.00$ $56336$ $51$ $69453$ $98$ $08798$ $8.50$ $56317$ $52$ $70034$ $99$ $08359$ $9.00$ <                                                                                                                                                                               | •31   | •59031          | •78   | •55592           | 1.70  | •73057             |
| 33 $59724$ $80$ $50561$ $1.90$ $70390$ $34$ $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3.00$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56789$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $66392$ $93$ $15310$ $6.00$ $56516$ $47$ $6709$ $94$ $13464$ $6.50$ $56444$ $48$ $67628$ $95$ $11876$ $7.00$ $56395$ $49$ $68245$ $96$ $10561$ $7.50$ $56361$ $50$ $68855$ $97$ $09533$ $8.50$ $56317$ $52$ $7034$ $99$ $08359$ $9.00$ $56304$ $53$ $70593$ $1.00$ $08214$ $9.50$ $56293$ $54$ $71123$ $1.01$ $08356$ $10.00$ </td <td>•32</td> <td>•59365</td> <td>•79</td> <td>•53143</td> <td>1.80</td> <td>•71875</td>                                                                                | •32   | •59365          | •79   | •53143           | 1.80  | •71875             |
| 34 $60107$ $81$ $47863$ $2.00$ $68855$ $35$ $60514$ $82$ $45067$ $2.10$ $67392$ $36$ $60946$ $83$ $42193$ $2.20$ $66057$ $37$ $61401$ $84$ $39266$ $2.30$ $64866$ $38$ $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3.00$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56789$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $66392$ $93$ $15310$ $6.00$ $56516$ $47$ $67009$ $94$ $13464$ $6.50$ $56444$ $48$ $67628$ $95$ $11876$ $7.00$ $56395$ $50$ $68855$ $97$ $09533$ $8.00$ $56336$ $51$ $69453$ $98$ $08798$ $8.50$ $56317$ $52$ $70034$ $99$ $08359$ $9.00$ $56304$ $53$ $70593$ $1.00$ $08214$ $9.50$ $56293$ $54$ $71123$ $1.01$ $08356$ $10.00$ $56285$ $55$ $71618$ $1.02$ $08775$ $757$                                                                                                                                                                          | •33   | •59724          | •80   | •50561           | 1.90  | •70390             |
| $35$ $60514$ $82$ $45067$ $2 \cdot 10$ $67392$ $36$ $60946$ $83$ $42193$ $2 \cdot 20$ $66057$ $37$ $61401$ $84$ $39266$ $2 \cdot 30$ $64866$ $38$ $61880$ $85$ $36312$ $2 \cdot 40$ $63818$ $39$ $62381$ $86$ $33359$ $2 \cdot 50$ $62904$ $40$ $62904$ $87$ $30438$ $3 \cdot 00$ $59849$ $41$ $63446$ $88$ $27578$ $3 \cdot 50$ $58319$ $42$ $64007$ $89$ $24813$ $4 \cdot 00$ $57511$ $43$ $64585$ $90$ $22173$ $4 \cdot 50$ $57057$ $44$ $65176$ $91$ $19691$ $5 \cdot 00$ $56789$ $45$ $65780$ $92$ $17394$ $5 \cdot 50$ $56623$ $46$ $66392$ $93$ $15310$ $6 \cdot 00$ $56516$ $47$ $67009$ $94$ $13464$ $6 \cdot 50$ $56444$ $48$ $67628$ $95$ $11876$ $7 \cdot 00$ $56395$ $50$ $68855$ $97$ $09533$ $8 \cdot 00$ $56317$ $52$ $7034$ $99$ $08359$ $9 \cdot 00$ $56304$ $53$ $70593$ $1 \cdot 00$ $08214$ $9 \cdot 50$ $56293$ $54$ $71123$ $1 \cdot 01$ $08356$ $10 \cdot 00$ $56285$ $55$ $71618$ $1 \cdot 02$ $08775$ $56775$                                                                                                                           | •34   | •60107          | •81   | •47863           | 2.00  | •68855             |
| $36$ $60946$ $83$ $42193$ $2 \cdot 20$ $66057$ $37$ $61401$ $84$ $39266$ $2 \cdot 30$ $64866$ $38$ $61880$ $85$ $36312$ $2 \cdot 40$ $63818$ $39$ $62381$ $86$ $33359$ $2 \cdot 50$ $62904$ $40$ $62904$ $87$ $30438$ $3 \cdot 00$ $59849$ $41$ $63446$ $88$ $27578$ $3 \cdot 50$ $58319$ $42$ $64007$ $89$ $24813$ $4 \cdot 00$ $57511$ $43$ $64585$ $90$ $22173$ $4 \cdot 50$ $57057$ $44$ $65176$ $91$ $19691$ $5 \cdot 00$ $56789$ $45$ $65780$ $92$ $17394$ $5 \cdot 50$ $56623$ $46$ $66392$ $93$ $15310$ $6 \cdot 00$ $56516$ $47$ $67009$ $94$ $13464$ $6 \cdot 50$ $56444$ $48$ $67628$ $95$ $11876$ $7 \cdot 00$ $56395$ $49$ $68245$ $96$ $10561$ $7 \cdot 50$ $56361$ $50$ $68855$ $97$ $09533$ $8 \cdot 00$ $56336$ $51$ $69453$ $98$ $08798$ $8 \cdot 50$ $56317$ $52$ $70034$ $99$ $08359$ $9 \cdot 00$ $56304$ $53$ $70593$ $1 \cdot 01$ $08356$ $10 \cdot 00$ $56285$ $55$ $71618$ $1 \cdot 02$ $08775$ $10 \cdot 00$ $56285$                                                                                                                    | •35   | •60514          | •82   | •45067           | 2.10  | •67392             |
| .37       .61401       .84       .39266       2.30       .64866         .38       .61880       .85       .36312       2.40       .63818         .39       .62381       .86       .33359       2.50       .62904         .40       .62904       .87       .30438       3.00       .59849         .41       .63446       .88       .27578       3.50       .58319         .42       .64007       .89       .24813       4.00       .57511         .43       .64585       .90       .22173       4.50       .57057         .44       .65176       .91       .19691       .500       .56789         .45       .65780       .92       .17394       .550       .56623         .46       .66392       .93       .15310       6.00       .56516         .47       .67009       .94       .13464       6.50       .56444         .48       .67628       .95       .11876       .00       .56361         .50       .68855       .97       .09533       .8.00       .56336         .51       .69453       .98       .08798       .50       .56317         .52                | •36   | •60946          | •83   | •42193           | 2.20  | •66057             |
| 38 $61880$ $85$ $36312$ $2.40$ $63818$ $39$ $62381$ $86$ $33359$ $2.50$ $62904$ $40$ $62904$ $87$ $30438$ $3.00$ $59849$ $41$ $63446$ $88$ $27578$ $3.50$ $58319$ $42$ $64007$ $89$ $24813$ $4.00$ $57511$ $43$ $64585$ $90$ $22173$ $4.50$ $57057$ $44$ $65176$ $91$ $19691$ $5.00$ $56789$ $45$ $65780$ $92$ $17394$ $5.50$ $56623$ $46$ $66392$ $93$ $15310$ $6.00$ $56516$ $47$ $67009$ $94$ $13464$ $6.50$ $56444$ $48$ $67628$ $95$ $11876$ $7.00$ $56395$ $49$ $68245$ $96$ $10561$ $7.50$ $56361$ $50$ $68855$ $97$ $09533$ $8.00$ $56336$ $51$ $69453$ $98$ $08798$ $8.50$ $56317$ $52$ $70034$ $99$ $08359$ $9.00$ $56304$ $53$ $70593$ $1.00$ $08214$ $9.50$ $56293$ $54$ $71123$ $1.01$ $08356$ $10.00$ $56285$ $55$ $71618$ $1.02$ $08775$ $57576$                                                                                                                                                                                                                                                                                                   | •37   | •61401          | •84   | •39266           | 2.30  | •64866             |
| • 39• 62381• 86• 333592 • 50• 62904• 40• 62904• 87• 304383 • 00• 59849• 41• 63446• 88• 275783 • 50• 58319• 42• 64007• 89• 248134 • 00• 57511• 43• 64585• 90• 221734 • 50• 57057• 44• 65176• 91• 196915 • 00• 56789• 45• 65780• 92• 173945 • 50• 56623• 46• 66392• 93• 153106 • 00• 56516• 47• 67009• 94• 134646 • 50• 56444• 48• 67628• 95• 118767 • 00• 56395• 49• 68245• 96• 105617 • 50• 56361• 50• 68855• 97• 095338 • 00• 56336• 51• 69453• 98• 087988 • 50• 56317• 52• 70034• 99• 083599 • 00• 56304• 53• 705931 • 01• 0835610 • 00• 56285• 55• 716181 • 02• 08775••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • 38  | .61880          | •82   | • 36 3 1 2       | 2.40  | .63818             |
| 40.62904.87.304383.00.59849.41.63446.88.275783.50.58319.42.64007.89.24813.400.57511.43.64585.90.22173.450.57057.44.65176.91.19691.500.56789.45.65780.92.17394.550.56623.46.66392.93.15310.600.56516.47.67009.94.13464.650.56444.48.67628.95.11876.700.56395.49.68245.96.10561.750.56361.50.68855.97.09533.800.56336.51.69453.98.08798.50.56304.52.70034.99.08359.00.56304.53.705931.00.08214.50.56293.54.711231.01.0835610.00.56285.55.716181.02.08775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • 39  | •62381          | • 86  | • 33359          | 2.50  | •62904             |
| •41       •63446       •88       •27578       3•50       •58319         •42       •64007       •89       •24813       4•00       •57511         •43       •64585       •90       •22173       4•50       •57057         •44       •65176       •91       •19691       5•00       •56789         •45       •65780       •92       •17394       5•50       •56623         •46       •66392       •93       •15310       6•00       •56516         •47       •67009       •94       •13464       6•50       •56444         •48       •67628       •95       •11876       7•00       •56395         •49       •68245       •96       •10561       7•50       •56361         •50       •68855       •97       •09533       8•00       •56336         •51       •69453       •98       •08798       8•50       •56317         •52       •70034       •99       •08359       •00       •56304         •53       •70593       •00       •08356       10•00       •56283         •54       •71123       •01       •08356       10•00       •56285         •55              | •40   | •62904          | •87   | • 304 38         | 3.00  | •59849             |
| •42•64007•89•248134•00•57511•43•64585•90•221734•50•57057•44•65176•91•196915•00•56789•45•65780•92•173945•50•56623•46•66392•93•153106•00•56516•47•67009•94•134646•50•56444•48•67628•95•118767•00•56395•49•68245•96•105617•50•56361•50•68855•97•095338•00•56336•51•69453•98•087988•50•56317•52•70034•99•083599•00•56304•53•705931•01•0835610•00•56285•54•711231•01•0835610•00•56285•55•716181•02•08775••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • 4 1 | • 6 3 4 4 6     | •88   | •21518           | 3.50  | •58319             |
| •43       •64585       •90       •22173       4•50       •57057         •44       •65176       •91       •19691       5•00       •56789         •45       •65780       •92       •17394       5•50       •56623         •46       •66392       •93       •15310       6•00       •56516         •47       •67009       •94       •13464       6•50       •56444         •48       •67628       •95       •11876       7•00       •56395         •49       •68245       •96       •10561       7•50       •56361         •50       •68855       •97       •09533       8•00       •56336         •51       •69453       •98       •08798       8•50       •56317         •52       •70034       •99       •08359       9•00       •56304         •53       •70593       •00       •56293       •56293         •54       •71123       •01       •08356       10•00       •56285         •55       •71618       •02       •08775       •000       •56285                                                                                                             | • 4 2 | • 64007         | •89   | • 24013          | 4.00  | •5/511             |
| •44•65176•91•198915.00•56789•45•65780•92•173945.50•56623•46•66392•93•153106.00•56516•47•67009•94•134646.50•56444•48•67628•95•118767.00•56395•49•68245•96•105617.50•56361•50•68855•97•095338.00•56336•51•69453•98•087988.50•56317•52·70034•99•083599.00•56304•53·705931.00•082149.50•56293•54·711231.01•0835610.00•56285•55·716181.02•08775•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •43   | ●04000<br>(F17) | •90   | • 2 2 1 7 3      | 4.50  | •5/05/             |
| •45•65780•92•173945.50•56823•46•66392•93•153106.00•56516•47•67009•94•134646.50•56444•48•67628•95•118767.00•56395•49•68245•96•105617.50•56361•50•68855•97•095338.00•56336•51•69453•98•087988.50•56317•52•70034•99•083599.00•56304•53•705931.00•082149.50•56293•54•711231.01•0835610.00•56285•55•716181.02•08775•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •44   | • 671/6         | •91   | • 17071<br>1720/ | 5.00  | • 20 / 87          |
| •40       •60392       •93       •13310       0.00       •9516         •47       •67009       •94       •13464       6.50       •56444         •48       •67628       •95       •11876       7.00       •56395         •49       •68245       •96       •10561       7.50       •56361         •50       •68855       •97       •09533       8.00       •56336         •51       •69453       •98       •08798       8.50       •56317         •52       •70034       •99       •08359       9.00       •56304         •53       •70593       1.00       •08214       9.50       •56293         •54       •71123       1.01       •08356       10.00       •56285         •55       •71618       1.02       •08775       •                                                                                                                                                                                                                                                                                                                                        | •45   | •02/00          | • 92  | • 1 / 274        | 5.50  | • 2002 2<br>545 14 |
| •47       •676007       •94       •13464       60100       •56444         •48       •67628       •95       •11876       7.00       •56395         •49       •68245       •96       •10561       7.50       •56361         •50       •68855       •97       •09533       8.00       •56336         •51       •69453       •98       •08798       8.50       •56317         •52       •70034       •99       •08359       9.00       •56304         •53       •70593       1.00       •08214       9.50       •56293         •54       •71123       1.01       •08356       10.00       •56285         •55       •71618       1.02       •08775       •                                                                                                                                                                                                                                                                                                                                                                                                             | .40   | 67009           | • 7 J | 13464            | 6.50  | • 56510<br>56444   |
| •40       •67626       •95       •11676       7•00       •56361         •49       •68245       •96       •10561       7•50       •56361         •50       •68855       •97       •09533       8•00       •56336         •51       •69453       •98       •08798       8•50       •56317         •52       •70034       •99       •08359       9•00       •56304         •53       •70593       1•00       •08214       9•50       •56293         •54       •71123       1•01       •08356       10•00       •56285         •55       •71618       1•02       •08775       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.8   | 67628           | • 74  | 11876            | 7 00  | 56205              |
| •49       •60249       •90       •10901       1900       •900         •50       •68855       •97       •09533       8•00       •56336         •51       •69453       •98       •08798       8•50       •56317         •52       •70034       •99       •08359       9•00       •56304         •53       •70593       1•00       •08214       9•50       •56293         •54       •71123       1•01       •08356       10•00       •56285         •55       •71618       1•02       •08775       •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 49  | -68245          | . 96  | .10561           | 7.50  | .56361             |
| •51       •69453       •98       •08798       8•50       •56317         •52       •70034       •99       •08359       9•00       •56304         •53       •70593       1•00       •08214       9•50       •56293         •54       •71123       1•01       •08356       10•00       •56285         •55       •71618       1•02       •08775       •08775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .50   | • 68855         | . 90  | .09533           | 8,00  | - 56236            |
| •52       •70034       •99       •08359       9•00       •56304         •53       •70593       1•00       •08214       9•50       •56293         •54       •71123       1•01       •08356       10•00       •56285         •55       •71618       1•02       •08775       •000       •000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .51   | 69453           | . 98  | .08798           | 8,50  | .56317             |
| • 70593       1.00       • 08214       9.50       • 56293         • 54       • 71123       1.01       • 08356       10.00       • 56285         • 55       • 71618       1.02       • 08775       • 08775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .52   | .70034          | . 90  | .08359           | 9,00  | .56304             |
| •54       •71123       1•01       •08356       10•00       •56285         •55       •71618       1•02       •08775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .53   | .70593          | 1.00  | .08214           | 9.50  | .56293             |
| •55 •71618 1•02 •08775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .54   | .71122          | 1.01  | 08356            | 10,00 | - 56285            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .55   | .71618          | 1.02  | 08775            | 10.00 | • 20202            |
| •56 •72071 1•03 •09457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .56   | •72071          | 1.03  | 09457            |       |                    |

C C INTERACTANCE VS. FREQUENCY, SUTPUT DATA, TYPE 6 FILTER, FIG.42

| W     | R                        | W     | R                | W       | R                |
|-------|--------------------------|-------|------------------|---------|------------------|
| .10   | •56263                   | •57   | •58998           | 1.04    | .30840           |
| •11   | •56270                   | •58   | •58941           | 1.05    | •35585           |
| •12   | •56277                   | •59   | •58870           | 1.06    | •40035           |
| .13   | •56287                   | .60   | •58784           | 1.07    | •43968           |
| •14   | •56300                   | .61   | •58684           | 1.08    | •47297           |
| .15   | •56315                   | .62   | •58572           | 1.09    | •50020           |
| •16   | •56333                   | •63   | •58448           | 1.10    | •52186           |
| •17   | •56355                   | •64   | .58315           | 1.11    | •53865           |
| •18   | •56380                   | •65   | •58174           | 1•12    | •55134           |
| •19   | •56409                   | •66   | •58028           | 1.13    | •56068           |
| •20   | •56442                   | •67   | • 57881          | 1•14    | •56734           |
| •21   | •56480                   | •68   | •57734           | 1.15    | •57190           |
| •22   | •56523                   | •69   | • 57592          | 1.16    | •57483           |
| •23   | •56570                   | •70   | •57459           | 1.17    | •57655           |
| •24   | •56623                   | •71   | •57338           | 1.18    | •57736           |
| •25   | • 56680                  | • 72  | • 57233          | 1•19    | •57752           |
| •26   | • 56 7 4 3               | • 13  | •57149           | 1.20    | • 57724          |
| • 21  | • 56812                  | • / 4 | • 57089          | 1.30    | •57080           |
| • 28  | • 56885<br>56064         | • 15  | • 5 / U 5 /      | 1.40    | • 57291          |
| • 2 9 | • 20 90 4<br>5 7 0 / 9   | • 10  | • 57095<br>57084 | 1.50    | • 27930          |
| • 20  | • 57040<br>57127         | • / / | • 57004<br>57144 | 1.70    | • 20211<br>5090/ |
| • 5 I | • 5 T 1 5 T<br>5 7 2 3 0 | • 10  | .57233           | 1.80    | • 50004          |
| .33   | .57327                   | • 1 7 | .57345           | 1.90    | - 59052          |
| .34   | • 57429                  | .81   | • 57471          | 2.00    | - 58979          |
| .35   | .57534                   | .82   | .57596           | 2.10    | -58831           |
| -36   | .57641                   | .83   | .57699           | 2.20    | -58652           |
| .37   | •57751                   | .84   | •57752           | 2.30    | 58460            |
| .38   | •57862                   | .85   | •57716           | 2.40    | •58269           |
| .39   | .57974                   | .86   | • 57542          | 2.50    | .58086           |
| •40   | •58086                   | .87   | •57168           | 3.00    | •57361           |
| •41   | •58196                   | .88   | .56519           | 3.50    | •56930           |
| •42   | •58305                   | .89   | .55504           | 4.00    | •56680           |
| .43   | •58411                   | •90   | .54024           | 4.50    | •56533           |
| •44   | •58513                   | • 91  | •51973           | 5.00    | •56442           |
| •45   | •58610                   | •92   | •49253           | 5.50    | •56385           |
| •46   | •58700                   | •93   | .45799           | 6•00    | •56347           |
| •47   | •58784                   | •94   | •41609           | 6.50    | •56322           |
| •48   | •58859                   | •95   | •36797           | 7.00    | •56304           |
| •49   | •58924                   | •96   | •31638           | 7.50    | .56291           |
| •50   | •58979                   | •97   | •26597           | 8 • 0 0 | • 56282          |
| •51   | •59023                   | •98   | •22296           | 8 • 50  | • 56275          |
| •52   | •59054                   | •99   | •19391           | 9•00    | •56270           |
| •53   | •59072                   | 1.00  | •18366           | 9•50    | •56266           |
| •54   | •59075                   | 1.01  | •19369           | 10.00   | •56263           |
| • 55  | •59065                   | 1.02  | •22152           |         |                  |
| •56   | • 59039                  | 1.03  | •26180           |         |                  |

| W          | R               | W    | R             | W      | R       |
|------------|-----------------|------|---------------|--------|---------|
| .10        | •56250          | • 57 | .56118        | 1.04   | •34493  |
| .11        | •56250          | • 58 | .56204        | 1.05   | .39497  |
| .12        | •56250          | •59  | .56311        | 1.06   | •44441  |
| .13        | •56250          | .60  | .56442        | 1.07   | •49061  |
| 14         | .56250          | .61  | •56598        | 1.08   | .53197  |
| 15         | •56250          | •62  | • 56784       | 1.09   | •56775  |
| .16        | •56250          | .63  | .57001        | 1.10   | .59785  |
| .17        | •56250          | •64  | • 57253       | 1.11   | •62249  |
| 18         | •56249          | •65  | • 57542       | 1•12   | •64216  |
| .19        | •56249          | •66  | •57871        | 1.13   | •65742  |
| .20        | •56248          | •67  | •58243        | 1.14   | •66885  |
| .21        | •56247          | •68  | •58660        | 1.15   | •67701  |
| .22        | •56246          | •69  | .59123        | 1.16   | .68241  |
| .23        | •56244          | •70  | •59634        | 1.17   | 68555   |
| . 2.4      | •56242          | •71  | .60193        | 1.18   | .68681  |
| .25        | •56239          | •72  | .60800        | 1.19   | •68655  |
| .26        | •56235          | •73  | •61453        | 1.20   | •68508  |
| .27        | •56231          | •74  | •62148        | 1.30   | •64361  |
| .28        | •56226          | •75  | •62880        | 1•40   | .60448  |
| .29        | •56220          | •76  | •63641        | 1.50   | •58114  |
| •30        | •56213          | •77  | •64422        | 1.60   | •56888  |
| •31        | •56205          | •78  | •65207        | 1.70   | •56291  |
| .32        | •56196          | •79  | .65979        | 1.80   | •56025  |
| .33        | •56186          | •80  | •66716        | 1.90   | •55927  |
| •34        | •56174          | •81  | •67389        | 2.00   | •55911  |
| • 35       | •56161          | .82  | •67965        | 2•10   | •55933  |
| • 36       | •56147          | •83  | •68402        | 2•20   | •55968  |
| •37        | •56131          | •84  | •68652        | 2.30   | •56007  |
| • 38       | •56115          | •85  | •68656        | 2.40   | •56045  |
| •39        | •56097          | •86  | •68351        | 2.50   | •56078  |
| •40        | •56078          | •87  | •67662        | 3.00   | •56182  |
| • 4 1      | • 56058         | •88  | •66511        | 3.50   | •56223  |
| • 4 2      | •56038          | •89  | •64814        | 4.00   | • 56239 |
| • 4 3      | • 56017         | •90  | •62493        | 4.50   | • 56245 |
| • 4 4      | •55997          | •91  | • 59483       | 5.00   | •56248  |
| • 45       | • 55977         | • 92 | • 55 / 49     | 5.50   | • 56249 |
| • 46       | • 55 9 58       | •93  | •51309        | 6.00   | • 56250 |
| •41        | • 55942         | •94  | •46262        | 6.50   | •56250  |
| • 48       | •55928          | • 95 | •40818        | 7.00   | • 56250 |
| •49        | •55917          | • 96 | • 35 3 1 8    | 7.50   | • 56250 |
| • 5 0      | • 55911         | •97  | • 20224       | 8.50   | • 26220 |
| • 5 I      | • 55911         | • 98 | • 20061       | 8 • 50 | • 26250 |
| • 2Z       | • > > > > 1 > > | • 99 | • 2 3 3 4 8   | 9.00   | • 20220 |
| • 23<br>5/ | • 22 934        | 1.01 | • 22400       | 9.50   | • 56250 |
| • 24<br>55 | • 55 960        | 1.02 | • 25527       | 10.00  | • 26250 |
| • 55<br>57 | • 5 5 5 7 7 8   | 1.02 | • 2 9 9 9 1 5 |        |         |
| • 20       | • 20020         | 1.03 | •23013        |        |         |

### APPENDIX E

FORGO Programs for Aidentity Driving Point Impedance (ADPI) Calculations. To make possible the computation of the ADPI versus frequency graph, the FORGO digital computer program shown on pages 80 and 81 was written and used. The input and output data for each of the previously discussed filter configurations are given on the pages following the computer program. The program would not handle Type 5, a fourteenth order polynomial, since it had a maximum capacity for a tenth order polynomial.





Fig. 55. Block diagram of ADPI computer program.

```
C ADPI(Z(S) - PHASE SHIFT ) VS. FREQUENCY, ALL FILTERS
   DIMENSION A(10), B(10), W1(112), Z(112), THE(112)
 4 FCRMAT(/7X,2Hw1,5X,5HZ(Jw),6X,2HC1,9X,2HW1,5X,5HZ(Jw),6X,2HC1//)
 5 FORMAT( 2(5X, F5.2, 3X, F7.5, 2X, F7.2))
30 FORMAT(7HW(K) = F5 \cdot 2, 5\chi, 4HC = E15 \cdot 8, 5\chi, 4HD = E15 \cdot 8)
31 FORMAT(7HW(K) = F5 \cdot 2, 5X, 4HE = E15 \cdot 8, 5X, 4HF = E15 \cdot 8)
45 READ, A(I), I=1,10, B0, (B(I), I=1,10)
   K = 0
   DC 2 I=10.120
   K = K + 1
   H = I
   W=H/100.
   W1(K) = W
   C=A0-A(2)*W**2+A(4)*W**4-A(6)*W**6+A(8)*W**8-A(10)*W**10
   D=A(1)*W-A(3)*W**3+A(5)*W**5-A(7)*W**7+A(9)*W**9
   E=BU-B(2)*W**2+B(4)*W**4-B(6)*W**6+B(8)*W**8-B(10)*W**10
   F=B(1)*W-B(3)*W**3+B(5)*W**5-B(7)*W**7+B(9)*W**9
   Z(K)=SQRT((C**2+D**2)/(E**2+F**2))
   IF(ABS(C)-.1E-40)3,3,8
 3 PUNCH 30, W1(K), C, D
   THE1=0.
   GO TO 14
 8 IF(C)10,10,11
11 IF(D)12,12,13
13 THE1=ATAN(D/C)*57.245779
   GC TC 14
12 THE1=ATAN(D/C)*57.24779
   GC TC 14
10 IF(D)15,15,16
16 THE1=180.-ATAN(D/ABS(C))*57.245779
   GC TC 14
15 THE1=180.+ATAN(D/C)*57.245779
14 IF(ABS(E)-.1E-40)9.9.28
 9 PUNCH 31, W1(K), E, F
   THE2=0.
   GO TO 20
28 IF(E)19,19,21
21 IF(F)22,22,23
23 THE2=ATAN(F/E)*57.245779
   GO TO 20
22 THE2=ATAN(F/E)*57.245779
   GO TO 20
19 IF(F)24,24,25
```

```
25 THE2=180.-ATAN(F/ABS(E))*57.245779
GC TC 20
```

```
24 THE2=180.+ATAN(F/E)*57.245779
```

```
20 THE(K)=THE1-THE2
```

```
2 CONTINUE
PUNCH 4
```

С

```
DC 7 J=1,55
```

```
PUNCH 5,W1(J),Z(J),THE(J),W1(J+55),Z(J+55),THE(J+55)
7 CONTINUE
```

```
GO TO 45
END
```

ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, CONSTANT-1 FILTER 1. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0 1. 2. 2. .0 .0 .0 .0 .0 .0 .0 .0 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, ZOBEL FILTER, M=0.6 1. 3.84 5.76 11.63 6.32 9.1 1.95 2.07 .0 .0 .0 1. 3.2 8.06 6.64 10.81 3.07 3.26 .0 .0 .0 .0 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, ZOBEL FILTER, M=0.707 1. 3.414 6.828 9.246 8.992 6.682 2.914 1.457 .0 .0 • 0 1. 3.414 6.828 9.242 8.992 5.828 2.914 .0 .0 .0 .0 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, TYPE 1 FILTER 1. 3. 5. 6.5 5. 3. 1. .0 .0 .0 .0 1. 4. 8. 9. 8. 4. 1. .0 .0 .0 .0 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, TYPE 2 FILTER 3.24 11.7 21.55 28.79 21.55 11.7 3.24 .0 .0 .0 .0 3.24 11.7 22.8 25.42 22.8 11.7 3.24 .0 .0 .0 .0 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, TYPE 3 FILTER 3.73246 13.92954 26.85862 36.3263 26.85862 13.92954 3.73246 • 0 •0 •0 •0 3.73246 13.92954 26.8614 29.859 26.8614 13.92954 3.73246 .0 .0 • 0 • 0 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, TYPE 4 FILTER •9975 3•99 7•98 9•95 7•98 3•99 •9975 •0 •0 •0 •0 •9975 3•99 7•98 9•95 7•98 3•99 •9975 •0 •0 •0 •0 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, TYPE 6 FILTER 3.23607 15.70820 43.12461 83.33938 119.37381 135.99185 119.37381 83.33938 43.12461 15.70820 3.23607 3.23607 15.70820 43.12461 81.48529 118.37383 131.8459 118.37383 81.48529 43.12461 15.70820 3.23607 ADPI RESPONSE, ADPI COEFFICIENTS - INPUT DATA, TYPE 7 FILTER 3.63470 .68140 10.42514 20.45234 29.90444 33.93411 29.904444 20.45234 10.42514 3.6347 •68140 .68140 3.63470 10.42514 20.45234 29.93704 20.45234 10.42514 3.6347 33.77306 29.93704

.6814(

# C C ADPI(Z(S)-PHASE) VS. FREQUENCY, CUTPUT DATA, CONSTANT-1 FILTER, FIG.19

| Wl  | Z(JW)  | 01    | Wl   | Z(JW)  | 01    |
|-----|--------|-------|------|--------|-------|
| •10 | •99960 | 11    | .65  | •58553 | -4.86 |
| •11 | •99942 | 15    | •66  | •57007 | -4.23 |
| .13 | •99887 | 24    | •68  | •53961 | -2.71 |
| •14 | •99848 | 30    | •69  | .52473 | -1.80 |
| •15 | •99800 | 37    | •70  | •51015 | 79    |
| .16 | .99742 | 44    | •71  | •49593 | • 34  |
| •17 | •99671 | 53    | •72  | .48212 | 1.57  |
| •18 | •99588 | 62    | •73  | •46879 | 2.93  |
| •19 | •99489 | 73    | •74  | •45601 | 4•41  |
| .21 | •99242 | 97    | • 76 | •43232 | 7.75  |
| •22 | •99090 | -1.10 | •77  | •42154 | 9.62  |
| .23 | •98916 | -1.25 | •78  | •41157 | 11.62 |
| •24 | •98720 | -1.40 | •79  | •40247 | 13.74 |
| .25 | •98498 | -1.56 | •80  | •39429 | 15.98 |
| •26 | •98250 | -1.74 | •81  | •38709 | 18.34 |
| .27 | •97974 | -1.92 | •82  | •38093 | 20.80 |
| •28 | •97667 | -2.12 | •83  | •37585 | 23.35 |
| •29 | •97329 | -2.32 | •84  | •37188 | 25.96 |
| •30 | •96957 | -2.53 | •85  | •36905 | 28.63 |
| •31 | •96549 | -2.75 | •86  | •36736 | 31.34 |
| •32 | •96105 | -2.98 | •87  | •36682 | 34.06 |
| .33 | •95622 | -3.21 | •88  | •36742 | 36.76 |
| •35 | •94535 | -3.70 | •90  | •37193 | 42.08 |
| •36 | •93928 | -3.95 | •91  | •37575 | 44.64 |
| •37 | •93278 | -4.20 | • 92 | •38056 | 47.13 |
| •38 | •92582 | -4.46 | • 93 | •38630 | 49.53 |
| •39 | •91841 | -4.71 | •94  | •39290 | 51.84 |
| •40 | •91054 | -4.97 | • 95 | •40031 | 54.03 |
| •41 | •90220 | -5.22 | •96  | •40846 | 56.12 |
| •42 | •89339 | -5.47 | •97  | •41728 | 58.10 |
| •44 | •87435 | -5.95 | • 99 | •43671 | 61.73 |
| •45 | .86412 | -6.18 | 1.00 | •44721 | 63.38 |
| •46 | •85344 | -6.40 | 1.01 | •45816 | 64.93 |
| •47 | •84229 | -6.61 | 1.02 | •46952 | 66.39 |
| •48 | •83070 | -6.80 | 1.03 | •48123 | 67.75 |
| •49 | •81867 | -6.97 | 1•04 | •49326 | 69.03 |
| •50 | •80623 | -7.12 | 1.05 | •50557 | 70.22 |
| •51 | •79338 | -7.25 | 1.06 | .51813 | 71.33 |
| •52 | •78014 | -7.35 | 1.07 | •53091 | 72.38 |
| •53 | •76654 | -7.43 | 1.08 | •54388 | 73.35 |
| •54 | •75260 | -7.47 | 1.09 | •55701 | 74•26 |
| •55 | •73835 | -7.48 | 1.10 | •57028 | 75.12 |
| •56 | •72381 | -7.45 | 1.11 | •58368 | 75.91 |
| •58 | .69398 | -7.27 | 1.13 | .61076 | 77.36 |
| •59 | .67876 | -7.11 | 1.14 | •62442 | 78.02 |
| •60 | •66339 | -6.89 | 1.15 | .63815 | 78.63 |
| •61 | •64789 | -6.62 | 1.16 | •65191 | 79.23 |
| •62 | •63232 | -6.28 | 1.17 | •66572 | 79.79 |
| •63 | •61671 | -5.88 | 1.18 | •67956 | 80.25 |
| •64 | .60109 | -5.41 | 1.19 | .69341 | 80.73 |

C C ADPI(Z(S)-PHASE) VS. FREQUENCY, OUTPUT DATA, ZOBEL FILTER, FIG.22

| W1           | Z(JW)                  | 01             | Wl        | Z(JW)   | 01       |
|--------------|------------------------|----------------|-----------|---------|----------|
| .10          | 1.04274                | 2.75           | .65       | • 54949 | 10.78    |
| .12          | 1.05972                | 2.84           | .67       | .56233  | 17.34    |
| .13          | 1.06887                | 2.80           | .68       | .57453  | 20.59    |
| 15           | 1.08798                | 2.54           | .70       | 61145   | 26.77    |
| 16           | 1 09774                | 2 32           | 71        | 63658   | 20 62    |
| 10           | 1 11705                | 20.72          | • / 1     | •05050  | 27.05    |
| • 10         | 1.11/05                | 1.00           | • 1 2     | •70144  | 34.12    |
| •19          | 1.120.34               | 1.25           | • 74      | •74188  | 36.97    |
| •20          | 1.13519                | • / /          | • 15      | • /8831 | 38.93    |
| •21          | 1.14346                | •21            | • 76      | •84138  | 40.64    |
| •22          | 1.15098                | -•40           | •77       | •90198  | 42.07    |
| •23          | 1.15761                | -1.08          | •78       | .97125  | 43.23    |
| •25          | 1.16755                | -2.60          | •80       | 1.14217 | 44.63    |
| •26          | 1.17055                | -3.44          | •81       | 1.24835 | 44.82    |
| •27          | 1.17206                | -4.32          | .82       | 1.37262 | 44.61    |
| .29          | 1.17011                | -6.20          | .84       | 1.69520 | 42.68    |
| .30          | 1.16644                | -7.18          | .85       | 1,90766 | 40.71    |
| .31          | 1.16089                | -8-18          | .86       | 2.16725 | 37.80    |
| .32          | 1,15341                | -9.18          | .87       | 2.48585 | 33.60    |
| • 22         | 1 1/208                | -10 18         | •01<br>88 | 2 97292 | 27 62    |
| • 2 2        | 1 1 2 2 4 2            | -10.10         | • 00      | 2.01202 | 27.00    |
| • 54         | 1.13262                | -11.18         | • 8 9     | 3.32127 | 19.23    |
| • 35         | 1.11938                | -12.16         | •90       | 3.11532 |          |
| •36          | 1.10430                | -13.11         | •91       | 4.09281 | -6.76    |
| •37          | 1.08749                | -14.02         | • 92      | 4.10160 | -22.88   |
| •38          | 1.06905                | -14.88         | •93       | 3.78655 | 321.88   |
| •39          | 1.04911                | -15.69         | •94       | 3.31218 | 309.64   |
| •40          | 1.02783                | -16.59         | • 95      | 2.83484 | 300•43   |
| •41          | 1.00535                | -17.27         | •96       | 2.42098 | 293.66   |
| .42          | •98185                 | -17.85         | • 97      | 2.08054 | 288.67   |
| .43          | •95748                 | -18.35         | • 98      | 1.80385 | 284.92   |
| .44          | .93244                 | -18.75         | . 99      | 1.57788 | 282.05   |
| 45           | 90688                  | -19.04         | 1.00      | 1,39124 | 279.80   |
| .46          | .88098                 | -19.21         | 1.01      | 1.23501 | 278.02   |
| - 40<br>- 17 | .85491                 | -19.25         | 1.02      | 1 10248 | 276.58   |
| • + 1        | • 0 J <del>-</del> 7 1 |                | 1.02      | 08041   | 276 40   |
| •40          | • 0 2 0 0 4            | -19.00         | 1.04      | • 70001 | 272 40   |
| •47          | • 0,U Z 7 Z            | -10 • / /      | 1.04      | •0090Z  | 274 42   |
| • 50         | • / / / 31             | -18.38         | 1.05      | •80264  | 273.60   |
| •51          | • 75218                | -17.83         | 1.06      | • 12546 | 272.89   |
| • 52         | •72769                 | $-17 \cdot 10$ | 1.07      | •65638  | 272•28   |
| •53          | •70398                 | -16.19         | 1.08      | •59406  | 271.75   |
| •54          | •68123                 | -15.09         | 1.09      | •53743  | 271.28   |
| • 5 5        | •65961                 | -13.78         | 1.10      | •48562  | 270.86   |
| • 56         | .63929                 | -12.26         | 1.11      | .43796  | 270.48   |
| .57          | .62046                 | -10.53         | 1.12      | •39386  | 270.12   |
| .58          | .60333                 | -8.56          | 1.13      | .35286  | 269.79   |
| .59          | .58809                 | -6.38          | 1.14      | •31457  | 269.47   |
| .60          | 57498                  | -3.97          | 1,15      | 27866   | 269.15   |
| -61          | 56422                  | -1.36          | 1.16      | 24486   | 268 82   |
| .62          | .55605                 | 1.46           | 1,17      | .21202  | 268.49   |
| . 62         | .55072                 | 1 • 40         | 1 18      | 18265   | 268.12   |
| •05          | • 55072                | 4 • 4 4        | 1 10      | 15200   | 200 • 12 |
| • 04         | • 54845                | 1.00           | 1.19      | 012308  | 201.09   |

| W1                      | Z(JW)   | 01         | W1    | Z(JW)                        | 01        |
|-------------------------|---------|------------|-------|------------------------------|-----------|
| •10                     | 1.00000 | •00        | .65   | 1.02577                      | -1.96     |
| •12                     | 1.00001 | • 0 0      | •67   | 1.02217                      | -2.11     |
| .13                     | 1.00001 | • 0 0      | • 68  | 1.01987                      | -2.14     |
| .15                     | 1.00002 | •00        | •70   | 1.01446                      | -2.07     |
| .17                     | 1.00005 | •00        | •72   | 1.00851                      | -1.77     |
| .19                     | 1.00011 | •00        | •74   | 1.00312                      | -1.16     |
| .20                     | 1.00015 | •01        | • 75  | 1.00116                      | 72        |
| •22                     | 1.00026 | •02        | •77   | 1.00028                      | • 5 2     |
| .23                     | 1.00034 | •02        | •78   | 1.00221                      | 1.33      |
| .24                     | 1.00044 | •02        | • 79  | 1.00644                      | 2.27      |
| .25                     | 1.00055 | •03        | .80   | 1.01368                      | 3.34      |
| .26                     | 1.00070 | .03        | .81   | 1.02477                      | 4.56      |
| .27                     | 1.00086 | • 0 4      | .82   | 1.04076                      | 5.89      |
| .28                     | 1.00106 | • 0 4      | .83   | 1.06290                      | 7.34      |
| .29                     | 1.00130 | .05        | .84   | 1.09277                      | 8.86      |
| .30                     | 1.00157 | • 05       | .85   | 1.13232                      | 10.40     |
| .31                     | 1.00188 | • 06       | .86   | 1.18399                      | 11.92     |
| .32                     | 1.00224 | • 06       | .87   | 1.25089                      | 13.32     |
| .33                     | 1.00264 | •07        | .88   | 1,33705                      | 14.50     |
| .34                     | 1.00310 | .07        | .89   | 1,44774                      | 15.32     |
| . 35                    | 1.00362 | .07        | . 90  | 1.58996                      | 15.58     |
| . 36                    | 1.00420 | .07        | . 91  | 1.77286                      | 15.03     |
| • 20                    | 1.00420 | •07        | • 21  | 2 00789                      | 12 3/     |
| • 21                    | 1.00554 | •07        | • 7 2 | 2 30713                      | 10.00     |
| • 20                    | 1.00621 | •07        | • 7 5 | 2 67550                      | 2077      |
| • 39                    | 1.00716 | •07        | • 74  | 2.0705                       | 4 • 2 3   |
| • 4 0                   | 1.00907 | •00        | • 7 5 | 3. 44421                     | -4.45     |
| • <del>4</del> 1<br>7 2 | 1.00007 | • 0 5      | • 70  | 2 58122                      | -10.70    |
| • 4 2                   | 1.01010 | •04        | • 7 / | 3.00152                      | - 51.02   |
| • 4 2                   | 1.01010 | • 0 2      | • 70  | 2 02442                      | -40 • 21  |
| •44                     | 1.01229 | 00         | • 9 9 | 2 6 U 2 4 4 2<br>2 6 2 5 9 7 | -20.20    |
| • 4 5                   | 1.01250 | 05         | 1.00  | 2.02001                      | -01.50    |
| • 40                    | 1.01/00 | 07         | 1.01  | 2.20314                      | -13.89    |
| • 4 1                   | 1.01489 | -•11<br>1( | 1.02  | 1.90429                      | - 18 • 30 |
| • 48                    | 1.01621 | 16         | 1.03  | 1.72282                      | -81.42    |
| •49                     | 1.01755 | -•21       | 1.04  | 1.52/14                      | -83.64    |
| • 50                    | 1.01891 | -•28       | 1.05  | 1.36673                      | -85.24    |
| • 5 1                   | 1.02027 | 35         | 1.06  | 1.23332                      | -86•43    |
| • 52                    | 1.02161 | 43         | 1.07  | 1.12073                      | -87.30    |
| •53                     | 1.02291 | 52         | 1.08  | 1.02435                      | -87.96    |
| •54                     | 1.02415 | -•61       | 1.09  | •94078                       | -88.46    |
| • 55                    | 1.02530 | 72         | 1.10  | •86745                       | -88.84    |
| • 56                    | 1.02634 | 83         | 1•11  | .80243                       | -89.13    |
| •57                     | 1.02723 | 95         | 1.12  | •74422                       | -89.36    |
| • 58                    | 1.02796 | -1.08      | 1.13  | .69165                       | -89.54    |
| •59                     | 1.02848 | -1.21      | 1•14  | •64381                       | -89.67    |
| •60                     | 1.02877 | -1.34      | 1.15  | • 59996                      | -89.78    |
| •61                     | 1.02880 | -1.48      | 1.16  | • 55954                      | -89.87    |
| •62                     | 1.02854 | -1.61      | 1.17  | •52205                       | -89.93    |
| •63                     | 1.02796 | -1.74      | 1.18  | •48711                       | -89.99    |
| •64                     | 1.02704 | -1.86      | 1.19  | •45439                       | -90.03    |

C C ADPI(Z(S)-PHASE) VS. FREQUENCY, CUTPUT DATA, TYPE 1 FILTER, FIG.28

| W1           | Z(JW)            | 01             | Wl   | Z(JW)                     | 01      |
|--------------|------------------|----------------|------|---------------------------|---------|
| •10          | •99440           | -5.84          | •65  | •49916                    | -30.07  |
| •12          | •99157           | -7.07          | •67  | •47600                    | -28.91  |
| .15          | •98581           | -8.96          | •70  | •44404                    | -26.53  |
| .18          | •97785           | -10.92         | •73  | •41636                    | -23.32  |
| •19          | •97463           | -11.59         | •74  | •40831                    | -22.05  |
| .20          | •97111           | -12.27         | •75  | •40093                    | -20.69  |
| .21          | .96726           | -12.95         | • 76 | .39430                    | -19.24  |
| .22          | .96307           | -13.64         | • 77 | .38847                    | -17.69  |
| .23          | •95853           | -14.33         | • 78 | .38351                    | -16.06  |
| .24          | •95362           | -15.03         | •79  | •37950                    | -14.36  |
| .25          | •94834           | -15.73         | • 80 | •37651                    | -12.59  |
| •26          | •94266           | -16.43         | •81  | •37462                    | -10.77  |
| .27          | .93659           | -17.14         | .82  | .37389                    | -8.93   |
| .28          | •93012           | -17.85         | .83  | •37440                    | -7.09   |
| .29          | •92323           | -18.55         | .84  | • 37620                   | -5.26   |
| • 30         | •91594           | -19.26         | .85  | .37933                    | -3.49   |
| .31          | .90822           | -19.96         | .86  | .38383                    | -1.81   |
| .32          | 90010            | -20.66         | .87  | 38968                     | - 24    |
| 33           | .89156           | -21.35         | .88  | .39687                    | 1.18    |
| .34          | .88262           | -22.04         | .89  | .40530                    | 2.41    |
| .35          | .87328           | -22.72         | .90  | .41487                    | 3.43    |
| -36          | .86355           | -23.38         | .91  | 42537                     | 4.21    |
| .37          | .85344           | -24.04         | .92  | 43655                     | 4.71    |
| -38          | .84297           | -24.68         | .93  | .44808                    | 4.95    |
| .39          | .83215           | -25.46         | .94  | 45953                     | 4,90    |
| .40          | .82099           | -26.07         | .95  | .47044                    | 4.57    |
| .41          | .80952           | -26.66         | . 96 | 48029                     | 3.00    |
| . 42         | .79776           | -27.23         | . 97 | .48857                    | 3,20    |
| .43          | . 78571          | -27.78         | . 98 | .49482                    | 2.23    |
| .44          | .77342           | -28.31         | . 99 | - 49869                   | 1.14    |
| . 45         | - 76089          | -28-80         | 1.00 | .50000                    | 1.14    |
| •            | 74816            | -20.00         | 1 01 | 49872                     | -1 13   |
| • 4 0        | • 14010          | -20 72         | 1 02 | 40502                     | -2 10   |
| • 4 1        | • 1 2 2 2 4      | $-29 \cdot 12$ | 1.02 | •49002                    | -2 12   |
| •40          | • 7 2 2 1 0      | -20 50         | 1.04 | •40920                    | -2 00   |
| •47          | +10090           | -20 94         | 1.05 | • 40100                   | - 2009  |
| • 5 U        | •07202<br>40222  | -21 14         | 1.04 | • 4 1 2 7 0               | -4 40   |
| • 5 1<br>5 2 | • 0 0 2 2 2      | $-21 \cdot 14$ | 1 07 | •40332                    | -4.02   |
| • J Z<br>5 2 | •00012           | -21 47         | 1 09 | • 4 2 3 2 0               | -4.90   |
| • ) )<br>E / | • 0 2 2 2 4      | -21 (5         | 1.00 | • 4 4 2 2 1<br>1, 2 2 4 2 | -4.69   |
| • 24         | • 6 4 1 7 2      | - 31 - 65      | 1.10 | •42202                    | -4.01   |
| • 2 2<br>E ( | • 6 2 8 2 1      | -31 • 79       | 1.10 | •42439                    | -4 • 10 |
| • 20         | • 6 1 4 7 4      | -31.07         |      | • 41 270                  | -2.21   |
| • 27         | •60133           | -31.91         | 1.12 | •40795                    | -2.13   |
| • 58         | • 58800<br>57470 | -31.89         | 1.13 | • 40090                   | -1.82   |
| • 29         | • 5 / 4 / 8      | -31.82         | 1•14 | • 39472                   |         |
| .60          | • 56170          | -31.69         | 1.15 | • 38940                   | • 30    |
| • 01         | • 54877          | -31.50         | 1.10 | • 38493                   | 1.47    |
| •02          | • 23603          | -31.25         |      | • 270 ( 1                 | 2.69    |
| •03          | • 5 2 3 4 9      | -30.92         | 1.18 | • 37841                   | 3.94    |
| • 64         | •51119           | -30.53         | 1.19 | • 31628                   | 5.20    |

| W 1   | Z(JW)       | 01    | Wl      | Z(JW)         | 01     |
|-------|-------------|-------|---------|---------------|--------|
| .10   | 1.00322     | 13    | .65     | •76985        | 12.63  |
| .13   | 1.00471     | 28    | • 68    | .78165        | 17.25  |
| .15   | 1.00550     | 43    | • 70    | •79891        | 20.48  |
| •17   | 1.00595     | 60    | •72     | .82508        | 23.71  |
| .19   | 1.00589     | 81    | •74     | .86144        | 26.85  |
| .20   | 1.00562     | 93    | •75     | .88389        | 28.34  |
| .21   | 1.00516     | -1.06 | •76     | •90944        | 29.77  |
| •22   | 1.00448     | -1.19 | •77     | •93830        | 31.12  |
| •23   | 1.00357     | -1.33 | •78     | •97070        | 32.37  |
| •24   | 1.00241     | -1.48 | •79     | 1.00690       | 33.52  |
| •25   | 1.00097     | -1.63 | •80     | 1.04717       | 34.54  |
| .26   | •99923      | -1.78 | •81     | 1.09181       | 35.43  |
| .27   | •99718      | -1.94 | .82     | 1.14118       | 36.16  |
| .28   | •99480      | -2.09 | •83     | 1.19562       | 36.73  |
| •29   | •99206      | -2.25 | •84     | 1.25554       | 37.11  |
| •30   | •98897      | -2.41 | •85     | 1.32136       | 37.29  |
| •31   | •98550      | -2.56 | • 86    | 1.39350       | 37.25  |
| • 32  | •98164      | -2.71 | •87     | 1.47237       | 36.96  |
| .33   | •97739      | -2.85 | • 88    | 1.55832       | 36.40  |
| •34   | •97274      | -2.98 | •89     | 1.65157       | 35.54  |
| .35   | •96769      | -3.10 | •90     | 1.75214       | 34.34  |
| .36   | .96225      | -3.21 | •91     | 1.85966       | 32.78  |
| •37   | •95640      | -3.30 | • 92    | 1.97323       | 30.82  |
| .38   | •95017      | -3.37 | •93     | 2.09113       | 28.43  |
| • 39  | •94357      | -3.42 | •94     | 2.21061       | 25.58  |
| •40   | •93660      | -3.44 | • 95    | 2.32763       | 22.25  |
| • 41  | .92929      | -3.44 | • 96    | 2.43681       | 18.47  |
| .42   | .92165      | -3.56 | .97     | 2.53171       | 14.26  |
| .43   | .91372      | -3.34 | . 98    | 2.60555       | 9.70   |
| •44   | .90552      | -3.23 | .99     | 2.65236       | 4.90   |
| • 45  | .89710      | -3.09 | 1.00    | 2.66832       | 0.00   |
| •46   | •88847      | -2.90 | 1.01    | 2.65267       | -4.85  |
| .47   | .87970      | -2.66 | 1.02    | 2.60793       | -9.52  |
| .48   | .87082      | -2.38 | 1.03    | 2.53910       | -13.88 |
| .49   | .86189      | -2.04 | 1.04    | 2.45251       | -17.85 |
| .50   | .85295      | -1.64 | 1.05    | 2.35456       | -21.40 |
| .51   | .84407      | -1.19 | 1.06    | 2.25087       | -24.50 |
| .52   | .83532      | - 67  | 1.07    | 2.14586       | -27.18 |
| .53   | •82675      | - 08  | 1.08    | 2.04272       | -29.46 |
| .54   | .81844      | •00   | 1.09    | 1.94355       | -31.37 |
| .55   | .81048      | 1.30  | 1.10    | 1.84962       | -32.94 |
| • 56  | .80293      | 2.09  | 1,11    | 1.76155       | -34.22 |
| .57   | .79589      | 2.97  | 1.12    | 1.67957       | -35.22 |
| .58   | .78945      | 3.92  | 1.13    | 1.60361       | -36.01 |
| .59   | 78370       | 4.94  | 1.14    | 1.53346       | -36.50 |
| .60   | .77875      | 6.05  | 1,15    | 1.46879       | -36.98 |
| •61   | 77470       | 7.22  | 1.16    | 1.40925       | -37.21 |
| .62   | 77167       | 8.47  | 1.17    | 1.35446       | -37.20 |
| .63   | 76977       | 9.80  | 1.18    | 1.304.04      | -37.27 |
| .64   | 76912       | 11,18 | 1.19    | 1.25766       | -37.12 |
| • U T | - I U / I C | TTOTO | T . T . | T. C. J. O.O. | 21016  |

C C ADPI(Z(S)-PHASE) VS. FREQUENCY, OUTPUT DATA, TYPE 3 FILTER, FIG.34

| W1   | Z(JW)  | 01            | Wl   | Z(JW)   | 01     |
|------|--------|---------------|------|---------|--------|
| •10  | •99937 | 09            | •65  | .80153  | 25.89  |
| •13  | •99823 | 19            | •68  | 84372   | 31.14  |
| •15  | •99689 | 29            | •70  | 88441   | 34.53  |
| •17  | •99493 | 39            | •72  | •93662  | 37.73  |
| •19  | .99220 | 52            | •74  | 1.00188 | 40.65  |
| •20  | •99051 | 59            | •75  | 1.03995 | 41.98  |
| •21  | •98857 | 65            | •76  | 1.08202 | 43.21  |
| •22  | •98637 | 72            | •77  | 1.12839 | 44.34  |
| .23  | •98389 | 79            | •78  | 1.17943 | 45.36  |
| .24  | •98111 | 86            | •79  | 1.23555 | 46.26  |
| •25  | •97802 | 92            | •80  | 1.29724 | 47.03  |
| •26  | •97461 | 99            | .81  | 1.36506 | 47.65  |
| •27  | •97087 | $-1 \cdot 04$ | •82  | 1.43964 | 48.13  |
| •28  | •96679 | -1.09         | •83  | 1.52174 | 48.45  |
| .29  | .96235 | -1.12         | .84  | 1.61222 | 48.59  |
| •30  | •95756 | -1.15         | •85  | 1.71205 | 48.54  |
| .31  | •95241 | -1.16         | •86  | 1.82236 | 48.28  |
| •32  | •94691 | -1.16         | •87  | 1.94438 | 47.77  |
| •33  | •94106 | -1.13         | •88  | 2.07945 | 46.99  |
| •34  | •93486 | -1.09         | •89  | 2.22898 | 45.91  |
| •35  | •92832 | -1.02         | •90  | 2.39429 | 44•47  |
| .36  | .92147 | 92            | •91  | 2.57645 | 42.63  |
| .37  | •91432 | 79            | •92  | 2.77585 | 40.33  |
| •38  | •90688 | 63            | •93  | 2.99170 | 37.49  |
| • 39 | .89919 | 44            | •94  | 3.22103 | 34.05  |
| •40  | •89127 | 20            | •95  | 3.45764 | 29.94  |
| •41  | •88316 | •08           | •96  | 3.69080 | 25.12  |
| •42  | .87490 | •40           | • 97 | 3.90464 | 19.60  |
| .43  | .86653 | •78           | .98  | 4.07917 | 13.45  |
| 44   | .85810 | 1.21          | .99  | 4.19390 | 6.83   |
| 45   | .84966 | 1.69          | 1.00 | 4.23378 | 0.00   |
| •46  | •84127 | 2.24          | 1.01 | 4.19468 | -6.77  |
| .47  | .83298 | 2.85          | 1.02 | 4.08492 | -13.20 |
| •48  | •82487 | 3.52          | 1.03 | 3.92177 | -19.09 |
| • 49 | •81700 | 4.27          | 1.04 | 3.72542 | -24.32 |
| .50  | .80946 | 5.09          | 1.05 | 3.51397 | -28.86 |
| .51  | .80232 | 5.98          | 1.06 | 3.30100 | -32.73 |
| •52  | •79566 | 6.95          | 1.07 | 3.09533 | -35.99 |
| •53  | •78959 | 7.99          | 1.08 | 2.90190 | -38.72 |
| •54  | •78420 | 9.12          | 1.09 | 2.72300 | -40.97 |
| •55  | •77959 | 10.32         | 1.10 | 2.55917 | -42.82 |
| •56  | •77586 | 11.60         | 1.11 | 2.41000 | -44.33 |
| •57  | •77313 | 12.95         | 1.12 | 2.27455 | -45.54 |
| •58  | •77150 | 14.38         | 1.13 | 2.15166 | -46.50 |
| •59  | •77111 | 15.87         | 1.14 | 2.04013 | -47.24 |
| •60  | •77206 | 17.43         | 1.15 | 1.93881 | -47.80 |
| •61  | •77449 | 19.04         | 1.16 | 1.84660 | -48.19 |
| •62  | •77852 | 20.70         | 1.17 | 1.76253 | -48.45 |
| •63  | •78428 | 22.40         | 1.18 | 1.68572 | -48.58 |
| •64  | •79191 | 24.14         | 1.19 | 1.61542 | -48.60 |

| Wl   | Z(JW)   | 01    | Wl   | Z(JW)    | 01      |
|------|---------|-------|------|----------|---------|
| •10  | .99976  | 03    | .65  | .96903   | 5.64    |
| •12  | •99951  | 05    | •67  | .97437   | 6.04    |
| •14  | •99912  | 07    | •69  | .97964   | 6.40    |
| .15  | •99885  | 09    | •70  | .98210   | 6.57    |
| .17  | •99814  | 12    | •72  | .98634   | 6.90    |
| .19  | •99718  | 15    | •74  | .98922   | 7.25    |
| .20  | •99659  | 17    | •75  | •99001   | 7.45    |
| •22  | •99517  | 20    | •77  | •99013   | 7.96    |
| .23  | •99434  | 21    | • 78 | •98949   | 8.29    |
| •24  | •99341  | 22    | .79  | •98846   | -351.15 |
| •25  | •99240  | 23    | •80  | •98719   | -350.66 |
| .26  | .99129  | 24    | .81  | .98588   | 9.79    |
| •27  | •99009  | -•24  | •82  | •98486   | 10.53   |
| .28  | .98881  | 24    | .83  | .98456   | 11.42   |
| .29  | •98743  | 23    | •84  | .98559   | 12.48   |
| .30  | •98597  | 22    | .85  | .98871   | 13.74   |
| .31  | •98443  | 20    | .86  | .99494   | 15.20   |
| •32  | •98281  | 18    | .87  | 1.00555  | 16.86   |
| .33  | •98112  | 14    | .88  | 1.02216  | 18.72   |
| .34  | .97937  | 10    | .89  | 1.04679  | 20.73   |
| .35  | .97757  | 05    | .90  | 1.08194  | 22.83   |
| •36  | .97572  | •00   | .91  | 1.13074  | 24.93   |
| .37  | .97384  | •07   | .92  | 1,19704  | 26.87   |
| .38  | .97195  | .15   | .93  | 1,28561  | 28.47   |
| .39  | 97004   | .24   | .94  | 1.40212  | 29.44   |
| .40  | .96815  | .34   | .95  | 1,55284  | 29.46   |
| . 41 | •96629  | .45   | . 96 | 1.74272  | 28.06   |
| .42  | 96446   | • - 2 | .97  | 1.97021  | 24.70   |
| 43   | .96269  | • 72  | .98  | 2.21421  | 18,83   |
| 44   | .96100  | •86   | .99  | 2.41842  | 10.32   |
| 45   | .95940  | 1.02  | 1.00 | 2.50065  | 0.00    |
| 46   | .95792  | 1.20  | 1.01 | 2.41999  | -10.22  |
| .47  | .95656  | 1.38  | 1.02 | 2.22346  | -18,55  |
| 48   | .95536  | 1.58  | 1.03 | 1,99142  | -24.29  |
| 49   | .95432  | 1.78  | 1.04 | 1.77552  | -27.69  |
| .50  | .95347  | 2.00  | 1.05 | 1.59440  | -29.27  |
| .51  | •95282  | 2.23  | 1.06 | 1.44918  | -29.58  |
| .52  | •95239  | 2.46  | 1.07 | 1,33512  | -29.01  |
| .53  | .95219  | 2.70  | 1.08 | 1.24649  | -27.87  |
| .54  | • 95223 | 2.95  | 1.09 | 1,17809  | -26.40  |
| .55  | .95253  | 3.20  | 1.10 | 1.12564  | -24.74  |
| • 56 | .95308  | 3.45  | 1.11 | 1.08572  | -23.03  |
| •57  | .95390  | 3.71  | 1,12 | 1.05563  | -21.33  |
| .58  | 95498   | 3.97  | 1,13 | 1.03321  | -19.70  |
| .59  | 95632   | 4.22  | 1.14 | 1.01679  | -18-18  |
| •60  | 95791   | 4.48  | 1,15 | 1.00497  | -16.70  |
| .61  | 95975   | 4.72  | 1,16 | .00672   | -15.52  |
| .62  | .96180  | 4.96  | 1,17 | .00110   | -14 40  |
| .63  | .96406  | 5,20  | 1.18 | . 98767  | -13.40  |
| -64  | - 966/8 | 5.42  | 1.10 | .08566   | m12.52  |
| •04  | • 20040 | 2042  | 1017 | • 70 200 |         |

| W1    | Z(JW)   | 01    | W 1  | Z(JW)   | 01     |
|-------|---------|-------|------|---------|--------|
| .10   | 1.00000 | •00   | .65  | .97784  | -2.36  |
| .12   | 1.00000 | •00   | .67  | .96597  | -2.56  |
| .14   | 1.00000 | •00   | •69  | .95132  | -2.65  |
| .15   | 1.00000 | •00   | .70  | .94294  | -2.63  |
| .17   | 1.00000 | •00   | .72  | .92414  | -2.43  |
| .19   | 1.00002 | •00   | •74  | .90300  | -1.92  |
| .20   | 1.00003 | •00   | •75  | .89179  | -1.51  |
| .22   | 1.00008 | • 00  | •77  | •86886  | 33     |
| .23   | 1.00011 | • 01  | • 78 | .85759  | •48    |
| •24   | 1.00015 | •01   | •79  | .84682  | 1.47   |
| •25   | 1.00020 | •01   | •80  | .83693  | 2.64   |
| •26   | 1.00026 | •02   | •81  | .82836  | 4.01   |
| .27   | 1.00034 | •02   | •82  | .82165  | 5.60   |
| .28   | 1.00043 | •02   | .83  | .81744  | 7.41   |
| .29   | 1.00053 | •02   | .84  | 81648   | 9.44   |
| .30   | 1.00066 | •02   | .85  | .81967  | 11.68  |
| .31   | 1.00080 | •02   | .86  | .82806  | 14.09  |
| .32   | 1.00096 | •02   | .87  | .84285  | 16.64  |
| .33   | 1.00115 | •02   | .88  | .86548  | 19.27  |
| •34   | 1.00135 | • 02  | .89  | .89762  | 21.88  |
| .35   | 1.00158 | •01   | •90  | .94120  | 24.36  |
| .36   | 1.00184 | •00   | •91  | •99854  | 26.59  |
| •37   | 1.00211 | 00    | • 92 | 1.07233 | 28.40  |
| •38   | 1.00241 | 01    | •93  | 1.16570 | 29.61  |
| •39   | 1.00273 | 03    | •94  | 1.28203 | 30.00  |
| •40   | 1.00307 | -•04  | •95  | 1.42418 | 29.27  |
| •41   | 1.00342 | 06    | • 96 | 1.59257 | 27.12  |
| •42   | 1.00379 | -•08  | •97  | 1.78068 | 23.17  |
| •43   | 1.00415 | -•11  | • 98 | 1.96766 | 17.16  |
| •44   | 1.00452 | 15    | •99  | 2.11307 | 9.19   |
| •45   | 1.00487 | 18    | 1.00 | 2.16889 | 90.08  |
| •46   | 1.00521 | 23    | 1.01 | 2.11415 | -9.11  |
| •47   | 1.00551 | -•28  | 1.02 | 1.97447 | -16.88 |
| •48   | 1.00576 | 34    | 1.03 | 1.79753 | -22.72 |
| •49   | 1.00595 | 40    | 1.04 | 1.62057 | -26.63 |
| • 50  | 1.00606 | 48    | 1.05 | 1.46201 | -28.90 |
| •51   | 1.00607 | -•56  | 1.06 | 1.32734 | -29.89 |
| •53   | 1.00568 | 75    | 1.08 | 1.12512 | -29.20 |
| •54   | 1.00523 | 85    | 1.09 | 1.05166 | -27.98 |
| •55   | 1.00457 | 97    | 1.10 | •99271  | -26.40 |
| •56   | 1.00366 | -1.09 | 1•11 | •94579  | -24.57 |
| •57   | 1.00247 | -1.22 | 1.12 | •90883  | -22.60 |
| • 58  | 1.00096 | -1.36 | 1.13 | •88012  | -20.57 |
| • 5 9 | •99908  | -1.50 | 1.14 | .85826  | -18.53 |
| .60   | •99681  | -1.65 | 1.15 | .84207  | -16.53 |
| •61   | •99408  | -1.80 | 1.16 | .83056  | -14.61 |
| •62   | •99086  | -1.95 | 1.17 | •82291  | -12.79 |
| •63   | •98711  | -2.09 | 1.18 | .81842  | -11.09 |
| •64   | •98278  | -2.23 | 1.19 | .81652  | -9.52  |

### APPENDIX F

<u>Voltage Transfer Function (VTF) Coefficients.</u> To determine the VTF frequency response of the previously discussed filters, it is necessary to know the VTF coefficients. Since all of the filters, with the exception of the constant-1 filter, have the same general ladder configuration of Fig. 56, a pseudo-generalized computer program was written to determine these coefficients. First the transfer matrix of this



Fig. 56. Generalized ladder configuration of filters being analyzed.

generalized ladder network was determined and the inverse of the (1,1) element was used as the VTF,  $\checkmark$ . The generalized expression for  $\checkmark$  is given in equation (44). Equations

$$Y_{n} = \frac{Y_{nN}}{Y_{nD}} \text{ and } Z_{n} = \frac{Z_{nN}}{Z_{nD}} \text{ and } \mathcal{L} = \frac{\mathcal{L}_{N}}{\mathcal{L}_{D}}$$
$$\mathcal{L}_{N} = Y_{1D}Z_{2D}Y_{3D}Z_{4D}Y_{5D} \tag{45}$$

$$\mathcal{L}_{D} = \sum_{n=1}^{13} B_{n}$$
 (46)

where

$$B_{1} = Y_{1D}Z_{2D}Y_{3D}Z_{4D}Y_{5D} \qquad B_{7} = Z_{4N}Y_{5N}Y_{1D}Z_{2D}Y_{3D}$$

$$B_{2} = Y_{1N}Z_{2D}Y_{3D}Z_{4D}Y_{5D} \qquad B_{8} = Y_{1N}Z_{2N}Y_{3N}Z_{4D}Y_{5D}$$

$$B_{3} = Y_{3N}Y_{1D}Z_{2D}Z_{4D}Y_{5D} \qquad B_{9} = Y_{1N}Z_{4N}Y_{5N}Z_{2D}Y_{3D}$$

$$B_{4} = Y_{5N}Y_{1D}Z_{2D}Y_{3D}Z_{4D} \qquad B_{10} = Y_{1N}Z_{2N}Y_{5N}Y_{3D}Z_{4D} \qquad (47)$$

$$B_{5} = Z_{2N}Y_{3N}Y_{1D}Z_{4D}Y_{5D} \qquad B_{11} = Y_{3N}Z_{4N}Y_{5N}Y_{1D}Z_{2D}$$

$$B_{6} = Z_{2N}Y_{5N}Y_{1D}Y_{3D}Z_{4D} \qquad B_{12} = Z_{2N}Y_{3N}Z_{4N}Y_{5N}Y_{1D}$$

$$B_{13} = Y_{1N}Z_{2N}Y_{3N}Z_{4N}Y_{5N}$$

(45), (46), and (47) put  $\checkmark$  in the form which the computer program can handle it. The following restrictions were placed on ladder component expressions to simplify the computer program:

Using these restrictions,  $\mathcal{L}_{\rm D}$  reduces to equation (48) and  $\mathcal{L}_{\rm N}$  reduces to equation (49). With these restrictions, Type 5 exceeds the restrictions on Y<sub>1N</sub> and Y<sub>1D</sub> so it was ignored.

$$\mathcal{L}_{D} = Y_{1D}Y_{5D}(1+Y_{3N}+Z_{2}Y_{3N}) + Y_{1N}Y_{5D}(1+Z_{2N}Y_{3N}) + Y_{1D}Y_{5N}(1+Z_{2N}+Z_{4N}+Y_{3N}Z_{4N}+Z_{2N}Y_{3N}Z_{4N}) + Y_{1N}Y_{5N}(Z_{2N}+Z_{4N}+Z_{2N}Y_{3N}Z_{4N})$$
(48)

$$\boldsymbol{\measuredangle}_{\mathrm{N}} = \boldsymbol{\Upsilon}_{\mathrm{1D}} \boldsymbol{\Upsilon}_{\mathrm{5D}} \tag{49}$$

#### APPENDIX G

FORGO Programs for VTF Coefficient Calculations. The computer program on pages 94 through 97 was written to evaluate the coefficients of equations (45), (48) and (49). The input and output data for all filters except the constant-1 filter and Type 5 are given on the pages following the computer program.





Fig. 57. Block diagram of VTF coefficient computer program.

```
VOLTAGE TRANSFER FUNCTION(VTF) COEFFICIENT EVALUATION
C
   DIMENSION E1N5D(10), E1N5N(10), E1D5N(10), E1D5D(10), A1(10), B1(10)
   DIMENSION B2(10), B3(10), B4(10), B5(10), B6(10), B7(10), B8(10), B9(10)
   DIMENSION B10(10),B11(10),B12(10),B13(10),B(10),Y1N(5),Y1D(5)
   DIMENSION Y5N(3),Y5D(3)
18 READ, Y1NO, (Y1N(I), I=1,5), Y1DO, (Y1D(I), I=1,5)
   READ, Z2N, Y3N, Z4N
   READ, Y5N0, Y5N(1), Y5N(2), Y5D0, Y5D(1), Y5D(2)
   E1NDO = Y1NO \times Y5DO
   E1N5D(1) = Y1N(1) * Y5D0 + Y1N0 * Y5D(1)
   E1N5D(2) = Y1N(2) * Y5D0 + Y1N(1) * Y5D(1) + Y1N0 * Y5D(2)
   E 1N5D(3) = Y1N(3) * Y5D0 + Y1N(2) * Y5D(1) + Y1N(1) * Y5D(2)
   E_1N5D(4) = Y_1N(4) * Y_5D0 + Y_1N(3) * Y_5D(1) + Y_1N(2) * Y_5D(2)
   E1N5D(5)=Y1N(5)*Y5D0+Y1N(4)*Y5D(1)+Y1N(3)*Y5D(2)
   E1N5D(6) =
                             Y1N(5)*Y5D(1)+Y1N(4)*Y5D(2)
   E_{1N5D(7)} =
                                              Y1N(5)*Y5D(2)
   E1NNO = Y1NO*Y5NO
   E_{1N5N(1)} = Y_{1N(1)} * Y_{5N0} + Y_{1N0} * Y_{5N(1)}
   E1N5N(2)=Y1N(2)*Y5NO+Y1N(1)*Y5N(1)+Y1NO*Y5N(2)
   E_{1N5N(3)=Y1N(3)*Y5N0+Y1N(2)*Y5N(1)+Y1N(1)*Y5N(2)}
   E1N5N(4) = Y1N(4) * Y5N0 + Y1N(3) * Y5N(1) + Y1N(2) * Y5N(2)
   E1N5N(5) = Y1N(5) * Y5NO + Y1N(4) * Y5N(1) + Y1N(3) * Y5N(2)
   E1N5N(6) =
                             Y_{1N(5)}*Y_{5N(1)}+Y_{1N(4)}*Y_{5N(2)}
   E1N5N(7) =
                                              Y1N(5)*Y5N(2)
   E1DNO = Y1DO*Y5NO
   E1D5N(1) = Y1D(1) * Y5N0 + Y1D0 * Y5N(1)
   E1D5N(2) = Y1D(2) * Y5NO + Y1D(1) * Y5N(1) + Y1DO * Y5N(2)
   E1D5N(3) = Y1D(3) * Y5N0 + Y1D(2) * Y5N(1) + Y1D(1) * Y5N(2)
   E1D5N(4) = Y1D(4) * Y5NO + Y1D(3) * Y5N(1) + Y1D(2) * Y5N(2)
   E1D5N(5) = Y1D(5) * Y5N0 + Y1D(4) * Y5N(1) + Y1D(3) * Y5N(2)
   E1D5N(6) =
                             Y1D(5) * Y5N(1) + Y1D(4) * Y5N(2)
   E1D5N(7) =
                                              Y1D(5)*Y5N(2)
   E1DD0 = 11D0*Y5D0
   E1D5D(1) = Y1D(1) * Y5D0 + Y1D0 * Y5D(1)
   E_{1D5D(2)=Y_{1D(2)}*Y_{5D0+Y_{1D(1)}*Y_{5D(1)}+Y_{1D0}*Y_{5D(2)}
   E1D5D(3) = Y1D(3) * Y5D0 + Y1D(2) * Y5D(1) + Y1D(1) * Y5D(2)
   E1D5D(4) = Y1D(4) * Y5D0 + Y1D(3) * Y5D(1) + Y1D(2) * Y5D(2)
   E1D5D(5) = Y1D(5) * Y5D0 + Y1D(4) * Y5D(1) + Y1D(3) * Y5D(2)
   E1D5D(6) =
                             Y1D(5)*Y5D(1)+Y1D(4)*Y5D(2)
   E1D5D(7) =
                                              Y1D(5)*Y5D(2)
   F = Y3N
   F1=Z2N*Y3N
   G = Z 2 N
   P = Z 4 N
   F2=Y3N*Z4N
    F3=F2*G
   A10=E1DD0
   DC 1 I=1,7
 1 A1(I) = E1D5D(I)
    A1(8) = 0 \cdot 0
   A1(9) = 0 \cdot 0
   A1(10)=0.0
   B10Z=A10
    DC 2 I=1,10
```

```
2 B1(I)=A1(I)
```

C

```
B20=E1ND0
   DC 3 I=1,7
 3 B2(I) = E1N5D(I)
   B2(8)=0.0
   B2(9)=0.0
   B2(10)=0.0
   B30=0.0
   B3(1) = F \times E1DDO
   DC 4 I=2,8
 4 B3(I) = F \times E1D5D(I-1)
   B3(9)=0.0
   B3(10)=0.0
   B40=E1DN0
   DO 5 I=1,7
 5 B4(I) = E1D5N(I)
   B4(8) = 0.0
   B4(9)=0.0
   B4(10)=0.0
   B50=0.U
   B5(1)=0.0
   B5(2)=F1*E1DD0
   DC 6 I=3,9
 6 B5(I)=F1*E1D5D(I-2)
   B5(10)=0.0
   B60=0.0
   B6(1)=G*E1DNO
   DC 7 I=2,8
 7 B6(I) = G \times \Xi 1 D5 N (I - 1)
   B6(9)=0.
   B6(10) = 0.0
   B70=0.0
   B7(1)=P*E1DN0
   DC 8 I=2,8
 8 B7(I)=P*E1D5N(I-1)
   B7(9)=0.0
   B7(10)=0.0
   B80=0.0
   B8(1)=0.0
   B8(2)=F1*E1ND0
   DC 9 I=3,9
 9 B8(I)=F1*E1N5D(I-2)
   B8(10)=0.0
   890=0.U
   B9(1)=P*E1NNO
   DC 10 I=2,8
10 B9(I) = P \times E1N5N(I-1)
   B9(9) = \cup 0
   B9(10)=0.0
   B100=0.0
   B10(1)=G*E1NNO
   DC 11 I=2,8
11 B10(I) = G \times E1N5N(I-1)
   B10(9) = 0.0
   B10(10) = 0.0
   B110=0.0
```

```
B11(1)=0.0
   B11(2)=F2*E1DNO
   DC 12 I=3,9
12 B11(I)=F2*E1D5N(I-2)
   B11(10) = 0
   B120=0.0
   B12(1)=0.0
   B12(2)=0.0
   B12(3) = F3 \times E1DNO
   DC 13 I=4,10
13 B12(I)=F3*E1D5N(I-3)
   B130=0.0
   B13(1)=0.0
   B13(2)=0.0
   B13(3)=F3*E1NNO
   DC 14 I=4,10
14 B13(I)=F3*E1N5N(I-3)
   B0=B10Z+B20+B40
   DC 19 I=1,10
   BT = B1(I)+B2(I)+B3(I)+B4(I)+B5(I)+B6(I)+B7(I)+B8(I)+B9(I)+B10(I)
19 B(I) = BT + B11(I) + B12(I) + B13(I)
   PUNCH 15,A10,B0
15 \text{ FORMAT}(5X, 10 \text{ H A}(0) = \text{F10.5}, 5X, 10 \text{ H B}(0) = \text{F10.5})
   DC 16 I=1,10
16 PUNCH 17, I, A1(I), I, B(I)
17 \text{ FCRMAT}(5X,3H A(I2,5H) = F10.5,5X,3H B(I2,5H) = F10.5)
   GC TC 18
   END
```

VTF COEFFICIENT EVALUATION, INPUT DATA, ZOBEL FILTER, M=0.6 • 0 • 6 • 0 • 0 • 0 • 0 • 1 • • 0 • 64 • 0 • 0 • 0 1.6 2. 1.6 1. .6 .64 1. .0 .64 VTF COEFFICIENT EVALUATION, INPUT DATA, ZOBEL FILTER, M=0.707 • 0 • 70710678 • 0 • 0 • 0 • 0 1 • • 0 • 5 • 0 • 0 • 0 1.70710678 2. 1.70710678 1. .70710678 .5 1. .0 .5 VTF COEFFICIENT EVALUATION, INPUT DATA, TYPE 1 FILTER • 0 2• 2• 1• • 0 • 0 2• 2• 2• 1• • 0 • 0 1. 2. 1. 1. .0 .0 1. .0 .0 VTF COEFFICIENT EVALUATION, INPUT DATA, TYPE 2 FILTER • n 2• 2• 1• • 0 • 0 3• 236 3• 236 2• 618 1• • 0 • 0 1.618 2. 1. 1. .0 .0 1. .0 .0 VTF COEFFICIENT EVALUATION, INPUT DATA, TYPE 3 FILTER • 0 2•155 2•155 1• • 0 • 0 3•7325 3•7325 2•732 1• • 0 • 0 1.732 2.155 1. 1. .0 .0 1. .0 .C VTF COEFFICIENT EVALUATION, INPUT DATA, TYPE 4 FILTER • 0 • 665 1•33 1• • 0 • 0 • 9975 1•995 2• 1• • 0 • 0 1.5 1.333 .5 1.000 1.000 VTF CCEFFICIENT EVALUATION, INPUT DATA, TYPE 6 FILTER • 0 2• 0 3• 2360679 3• 8541019 2• 61803399 1• 3.2360679 5.2360679 7.23606789 5.8541019 3.2360679 1. 1.61803399 2. 1.61803399 1. .61803399 .61803399 1. .0 .61803399 VTF COEFFICIENT EVALUATION, INPUT DATA, TYPE 7 FILTER • 0 • 8395616 1•7143309 1•9662335 1•3674296 • 51436894 1.3247343 2.7050226 3.5343409 3.0394495 1.6934152 .51436894 1.5778883 1.9441298 1.7143309 1. •7143309 •4897314 1. •0 •4897314

| С | С | VTF COLFF<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(3) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) =  | FICIENT EVALUA<br>1.000CJ<br>0.00000<br>1.28000<br>0.00000<br>.40960<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000  | ATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) = | DATA, ZCBEL<br>2.00000<br>6.40000<br>12.80000<br>17.53600<br>17.61280<br>12.98432<br>6.55360<br>2.09715<br>0.00000<br>0.00000<br>0.00000            | FILTER, FIG.22   |
|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| С | С | VTF CCEFF<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(3) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) =  | FICIENT EVALUA<br>1.00000<br>0.00000<br>1.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | ATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) =           | DATA, ZCBEL<br>2.00000<br>6.82843<br>13.65685<br>18.48528<br>17.98528<br>12.51041<br>5.82843<br>1.45711<br>0.00000<br>0.00000<br>0.00000            | FILTER, FIG.25   |
| С | С | VTF CCEF =<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(4) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) = | FICIENT EVALUA<br>2.00000<br>2.00000<br>1.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | ATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) = | DATA, TYPE<br>4.00000<br>14.00000<br>26.00000<br>31.00000<br>26.00000<br>14.00000<br>4.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | 1 FILTER, FIG.28 |
| С | С | VTF COEFF<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(4) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) =            | FICIENT EVALU/<br>3 • 23600<br>3 • 23600<br>2 • 61800<br>1 • 00000<br>0 • 00000 | ATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) = | DATA, TYPE<br>6.47200<br>23.41585<br>44.35954<br>54.21332<br>44.35954<br>23.41585<br>6.47200<br>0.00000<br>0.00000<br>0.00000<br>0.00000            | 2 FILTER, FIG.31 |

| С | с | VTF CCEFF<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(3) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) =           | FICIENT EVAL<br>3.73250<br>3.73250<br>2.73200<br>1.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000          | UATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) =           | DATA, TYPE<br>7.46500<br>27.86073<br>53.72213<br>66.18855<br>53.72185<br>27.86045<br>7.46492<br>0.00000<br>0.00000<br>0.00000<br>0.00000          | 3 FILTER, | FIG.34 |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| С | С | VTF COEFF<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(3) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) =           | FICIENT EVAL<br>99750<br>1.99500<br>2.00000<br>1.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | UATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) =           | DATA, TYPE<br>1.99500<br>7.97967<br>15.96867<br>19.97159<br>15.98367<br>7.99467<br>1.99950<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | 4 FILTER, | FIG.37 |
| С | С | VTF CCEFI<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(3) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) = | FICIENT EVAL<br>3.23607<br>5.23607<br>9.23607<br>9.09017<br>7.70820<br>4.61803<br>2.00000<br>.618C3<br>0.00000<br>0.00000<br>0.00000                                 | UATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) =           | DATA, TYPE<br>6.47214<br>31.41641<br>86.24922<br>164.82465<br>237.74764<br>267.83781<br>237.74766<br>164.82468<br>86.24923<br>31.41641<br>6.47214 | 6 FILTER, | FIG.42 |
| С | С | VTF CCEF<br>A(0) =<br>A(1) =<br>A(2) =<br>A(3) =<br>A(3) =<br>A(4) =<br>A(5) =<br>A(6) =<br>A(7) =<br>A(8) =<br>A(9) =<br>A(10) =            | FICIENT EVAL<br>1•32473<br>2•70502<br>4•18310<br>4•36418<br>3•42429<br>2•00288<br>•82932<br>•25190<br>0•00000<br>0•00000<br>0•00000                                  | UATION, CUTPUT<br>B(0) =<br>B(1) =<br>B(2) =<br>B(3) =<br>B(4) =<br>B(4) =<br>B(5) =<br>B(6) =<br>B(7) =<br>B(8) =<br>B(9) =<br>B(10) = | DATA, TYPE<br>2.64947<br>14.13268<br>40.53567<br>79.52404<br>116.33964<br>131.63155<br>116.33964<br>79.52404<br>40.53567<br>14.13268<br>2.64947   | 7 FILTER, | FIG.45 |

## APPENDIX H

FORGO Programs for Sinusoidal Response Calculations of the VTF. To make possible the computation of the sinusoidal VTF response, the FORGO digital computer program shown on pages 102 and 103 was written and used. The input and output data for each of the previously discussed filter configurations, except Type 5, are given on the pages following the computer program.





Fig. 58. Block diagram of VTF computer program.

```
С
  C VTF( T(S) - PHASE SHIFT ) VS. FREQUENCY, ALL FILTERS
      DIMENSION A(7), B(10), W1(112), T(112), THE(112)
    4 FCRMAT(/7x,2HW1,5x,5HT(JW),6x,2HC1,9x,2HW1,5x,5HT(JW),6x,2HC1//)
    5 FCRMAT( 2(5X, F5, 2, 3X, F7, 5, 2X, F7, 2))
   45 READ, AO, (A(I), I=1,7), BO, (B(I), I=1, 10)
      K = 0
      DC 2 I=J0,120
      K = K + 1
      H = I
      W=H/100.
      W1(K) = W
      C = AO - A(2) * W * * 2 + A(4) * W * * 4 - A(6) * W * * 6
      D=A(1)*W-A(3)*W**3+A(5)*W**5-A(7)*W**7
      E=B0-B(2)*W**2+B(4)*W**4-B(6)*W**6+B(8)*W**8-B(10)*W**10
      F=B(1)*W-B(3)*W**3+B(5)*W**5-B(7)*W**7+B(9)*W**9
      T(K) = SQRT((C**2+D**2)/(F**2+F**2))
      IF(ABS(C)-.1E-40)3,3,8
    3 THE1=0.
      GC TC 14
    8 IF(C)10,10,11
   11 IF(D)12,12,13
   13 THE1=ATAN(D/C)*57.245779
      GC TC 14
   12 THE1=ATAN(D/C)*57.24779
      GC TC 14
   10 IF(D)15,15,16
   16 THE1=180.-ATAN(D/ABS(C))*57.245779
      GC TC 14
   15 THE1=180.+ATAN(D/C)*57.245779
   14 IF(ABS(E)-.1E-40)9,9,28
    9 THE2=0.
      GC TC 20
   28 IF(E)19,19,21
   21 IF(F)22,22,23
   23 THE2=ATAN(F/E)*57.245779
      GC TC 20
   22 THE2=ATAN(F/E)*57.245779
      GO TO 20
   19 IF(F)24,24,25
   25 THE2=180.-ATAN(F/ABS(E))*57.245779
      GO TO 20
   24 THE2=180 + ATAN(F/E) * 57 • 245779
   20 THE(K)=THE1-THE2
    2 CONTINUE
      PUNCH 4
      DC 7 J=1,55
      PUNCH 5, V1(J), T(J), THE(J), W1(J+55), T(J+55), THE(J+55)
    7 CONTINUE
      GC TC 45
      END
```

VTF COEFFICIENTS, INPUT DATA, CONSTANT-1 FILTER 1. .0 .0 .0 .0 .0 .0 .0 4. 4. 2. 0. 0. 0. 0 2. .0 • 0 • 0 VTF COEFFICIENTS, INPUT DATA, ZOBEL FILTER, M=0.6 1. .0 1.28 .0 .4096 .0 .0 .0 6.4 12.8 17.536 17.6128 12.98432 6.5536 2.09715 .0 .0 2. • 0 VTF COEFFICIENTS, INPUT DATA, ZOBEL FILTER, M=0.707 1. .0 1. .0 .25 .0 .0 .0 2. 6.82843 13.65685 18.48528 17.98528 12.51041 5.82843 1.45711 • 0 • 0 • 0 VTF COEFFICIENTS, INPUT DATA, TYPE 1 FILTER 2. 2. 2. 1. .0 .0 .0 .0 4. 14. 26. 31. 26. 14. 4. • 0 •0 •0 •0 VTF COEFFICIENTS, INPUT DATA, TYPE 2 FILTER 3.236 3.236 2.618 1. .0 .0 .0 .0 6.472 23.41585 44.35954 54.21332 44.35954 23.41585 6.472 .0 • 0 • 0 • 0 VTF COEFFICIENTS, INPUT DATA, TYPE 3 FILTER 3.7325 3.7325 2.732 1. .0 .0 .0 .0 7.465 27.86073 53.72213 66.18855 53.72185 27.86045 7.46492 • 0 •0 •0 •0 VTF COEFFICIENTS, INPUT DATA, TYPE 4 FILTER •9975 1•995 2• 1• •0 •0 •0 •0 1.995 7.97967 15.96867 19.97159 15.98367 7.99467 1.9995 .0 .0 • 0 • 0 VTF COEFFICIENTS, INPUT DATA, TYPE 6 FILTER 3.2360679 5.2360679 9.2360679 9.0901699 7.7082039 4.6180339 2. .61803398 6.4721359 31.416407 86.249223 164.82468 237.74767 267.83784 237.74767 164.82468 86.249223 31.416407 6.4721359 VTF COEFFICIENTS, INPUT DATA, TYPE 7 FILTER 5.85597666 6.10947126 1.85451084 3.78679208 4.79370693 2.80385847 1.16097257 0.35264130 3.7090216 19.7844959 56.7463506 111.3266175 162.8651935 162.8651935 111.3266175 56.7463506 184.2725252 19.7844959 3.7090216
C C VTF(T(S)-PHASE) VS. FREQUENCY, CUTPUT DATA, CONSTANT-1 FILTER, FIG.19

| W1   | T(JW)   | 01     | Wl          | T(JW)  | 01      |
|------|---------|--------|-------------|--------|---------|
| •10  | • 50000 | -11.47 | •65         | •48215 | -81.33  |
| •11  | • 50000 | -12.62 | •66         | •48054 | -82.82  |
| •12  | • 50000 | -13.77 | •67         | .47881 | -84.31  |
| •14  | •50000  | -16.08 | .69         | .47502 | -87.32  |
| .15  | •50000  | -17.24 | •70         | •47295 | -88.84  |
| •17  | •49999  | -19.56 | •72         | •46843 | -92.05  |
| .19  | •49999  | -21.89 | •74         | •46340 | -95.14  |
| .20  | •49998  | -23.06 | •75         | •46068 | -96.69  |
| •22  | •49997  | -25.40 | •77         | •45484 | -99.80  |
| •23  | •49996  | -26.58 | •78         | •45172 | -101.36 |
| •24  | •49995  | -27.76 | •79         | •44846 | -102.93 |
| •25  | •49994  | -28.94 | • 80        | •44506 | -104.50 |
| •26  | •49992  | -30.13 | •81         | •44152 | -106.07 |
| •27  | •49990  | -31.32 | •82         | •43785 | -107.64 |
| .28  | •49988  | -32.51 | •83         | .43405 | -109.21 |
| •29  | •49985  | -33.71 | <b>•</b> 84 | •43012 | -110.78 |
| •30  | •49982  | -34.91 | •85         | •42607 | -112.34 |
| •31  | •49978  | -36.12 | •86         | •42189 | -113.91 |
| •32  | •49973  | -37.33 | .87         | •41759 | -115.47 |
| .33  | •49968  | -38.55 | •88         | •41318 | -117.02 |
| •34  | •49961  | -39.77 | • 89        | •40866 | -118.57 |
| •35  | •49954  | -41.00 | •90         | •40404 | -120.12 |
| •36  | • 49946 | -42.23 | • 91        | •39931 | -121.66 |
| •37  | •49936  | -43.47 | •92         | •39450 | -123.19 |
| •38  | •49925  | -44.72 | •93         | .38960 | -124.71 |
| •39  | •49912  | -45.97 | •94         | •38463 | -126.22 |
| •40  | •49898  | -47.22 | • 95        | .37958 | -127.72 |
| •41  | •49882  | -48.49 | •96         | •37448 | -129.21 |
| •42  | •49863  | -+9.76 | •97         | •36931 | -130.68 |
| •43  | •49843  | -51.04 | • 98        | .36410 | -132.15 |
| •44  | •49820  | -52.32 | •99         | •35884 | -133.60 |
| •45  | •49794  | -53.62 | 1.00        | •35355 | -135.04 |
| •46  | •49765  | -54.92 | 1.01        | •34824 | -136.46 |
| •47  | •49733  | -56.23 | 1.02        | •34290 | -137.87 |
| •48  | •49697  | -57.54 | 1.03        | •33756 | -139.27 |
| •49  | •49658  | -58.87 | 1.04        | •33220 | -140.64 |
| •50  | •49614  | -60.20 | 1.05        | •32685 | -142.01 |
| •51  | •49566  | -61.55 | 1.06        | •32151 | -143.35 |
| •52  | •49513  | -62.90 | 1.07        | .31618 | -144.68 |
| •53  | •49455  | -64.26 | 1.08        | .31087 | -145.99 |
| •54  | •49391  | -65.63 | 1.09        | •30559 | -147.29 |
| •55  | • 49322 | -67.01 | 1.10        | •30034 | -148.56 |
| • 56 | • 49246 | -68.40 | 1.11        | .29512 | -149.82 |
| •57  | •49164  | -69.80 | 1.12        | •28994 | -151.06 |
| • 58 | • 49075 | -71.21 | 1.13        | •28481 | -152.29 |
| •59  | •48978  | -72.62 | 1.14        | .27973 | -153.49 |
| •60  | •48873  | -74.05 | 1.15        | .27470 | -154.68 |
| •61  | •48760  | -75.49 | 1.16        | •26972 | -155.85 |
| •62  | •48638  | -76.94 | 1.17        | .26481 | -157.00 |
| •63  | •48507  | -78.39 | 1.18        | •25995 | -158.13 |
| •64  | •48366  | -79.86 | 1.19        | •25516 | -159.25 |

-

| Wl    | T(JW)       | 01        | Wl   | T(JW)   | 01      |
|-------|-------------|-----------|------|---------|---------|
| •10   | • 50000     | -18.36    | .65  | •49980  | -135.43 |
| •11   | • 50000     | -20.21    | •66  | .49981  | -138.20 |
| •12   | • 50000     | -22.06    | •67  | •49984  | -141.02 |
| •14   | • 50000     | -25.77    | •69  | .49988  | -146.80 |
| .15   | • 50000     | -27.63    | •70  | •49990  | -149.78 |
| •17   | • 50000     | -31.37    | •72  | •49994  | -155.92 |
| .19   | .50000      | -35.12    | •74  | •49997  | -162.33 |
| .20   | • 50000     | -37.01    | •75  | •49998  | -165.64 |
| .22   | • 50000     | -40.80    | •77  | •50000  | -172.53 |
| •23   | • 49999     | -42.70    | •78  | •50000  | -176.11 |
| •24   | • 49999     | -44.61    | •79  | • 50000 | -179.79 |
| .25   | •49999      | -46.53    | •80  | • 50000 | -183.58 |
| .26   | • 49999     | -48.45    | •81  | .50000  | -187.49 |
| .27   | • 49999     | -50.39    | • 82 | .50000  | -191.52 |
| .28   | •49998      | -52.33    | •83  | •50000  | -195.70 |
| .29   | .49998      | -54.28    | • 84 | • 50000 | -200.04 |
| .30   | • 49997     | -56.24    | •85  | •49998  | -204.55 |
| .31   | • 49997     | -58.21    | .86  | 49994   | -209.26 |
| .32   | 49996       | -60.19    | .87  | 49984   | -214.18 |
| .33   | .49996      | -62.18    | .88  | 49964   | -219.35 |
| .34   | 49995       | -54.18    | .89  | 49924   | -224.81 |
| .35   | .49994      | - 56 . 19 | . 90 | 49852   | -230.59 |
| .36   | 49994       | -68.21    | .91  | 49727   | -236.74 |
| .37   | 49993       | -70.25    | .92  | 49516   | -243.33 |
| -38   | .49992      | -72.30    | .93  | .49174  | -250.40 |
| .39   | 49991       | -74.36    | .94  | 48635   | -258.03 |
| .40   | .49990      | -76.44    | .95  | 47811   | -266.27 |
| 41    | 49989       | -78.53    | . 96 | 46595   | 84.68   |
| .42   | 49987       | -80.64    | .97  | .44873  | 75.15   |
| .43   | 49986       | -82.76    | . 98 | .42551  | 65.05   |
| .44   | 49985       | -84.90    | . 99 | 39596   | 54.52   |
| 45    | 49984       | -87.06    | 1.00 | .36070  | 43.79   |
| .46   | .49982      | -89.23    | 1.01 | .32136  | 33.14   |
| .47   | .49981      | -91.58    | 1.02 | -28030  | 22.81   |
| . 4.8 | . 49980     | -93.70    | 1.03 | .23090  | 13.02   |
| .49   | .49978      | -96.03    | 1.04 | 20210   | 3.90    |
| .50   | . 49977     | -98.28    | 1.05 | .16809  | -4-52   |
| .51   | • 4 9 9 7 6 | -100.56   | 1.06 | .13837  | -12.24  |
| .52   | .49975      | -102-86   | 1.07 | .11293  | -19.30  |
| .53   | .49974      | -102.00   | 1.08 | . 09149 | -25.78  |
| .54   | . 49973     | -107.53   | 1.09 | .07361  | -31.74  |
| .55   | . 49973     | -109.91   | 1.10 | .05880  | -37.24  |
| .56   | . 49972     | -112.31   | 1.11 | .04661  | =42.34  |
| .57   | . 49972     | -114.74   | 1.12 | 03663   | -47.09  |
| .58   | .49972      | -117.20   | 1,13 | 02850   | -51.52  |
| .59   | .49972      | -119.70   | 1.14 | .02191  | -55.70  |
| .60   | • 49972     | -122.22   | 1,15 | .01659  | -50.63  |
| 61    | • + 7 7 7 5 | -124 70   | 1 14 | 01224   | -62 24  |
| • 6 2 | • 49914     | -127.20   | 1 17 | .00896  | -66 04  |
| 63    | . 49979     | -120 02   | 1 18 | 00632   |         |
| .64   | . 49910     | -122.71   | 1,10 | .00/20  | -73 40  |
| •04   | • 47910     | 192011    | 1.17 | .00429  | 12040   |

C C VTF(T(S)-PHASE) VS. FREQUENCY, CUTPUT DATA, ZOBEL FILTER, FIG.25

| W 1   | T(JW)   | C 1       | W 1   | T(JW)   | 01        |
|-------|---------|-----------|-------|---------|-----------|
| .10   | • 50000 | -19.59    | •65   | .49988  | -143.43   |
| •11   | •50000  | -21.56    | •66   | .49987  | -146.31   |
| •12   | •50000  | -23.53    | •67   | •49987  | -149.23   |
| •14   | • 50000 | -27.49    | •69   | .49988  | -155.22   |
| 15    | • 50000 | -29.47    | • 70  | .49989  | -158.29   |
| .17   | .50000  | -33.46    | •72   | .49993  | -164.62   |
| 19    | .50000  | -37.46    | .74   | .49997  | -171.21   |
| 20    | .50000  | -39.47    | .75   | 49999   | -174.61   |
| • 22  | • 50000 | -43.50    | • 77  | •50000  | -181.67   |
| .23   | .50000  | -45.53    | .78   | 49998   | -185.33   |
| .24   | •50000  | -47.56    | • 79  | .49992  | -189.10   |
| .25   | • 50000 | -49.61    | .80   | .49981  | -192.97   |
| .26   | • 50000 | -51.65    | .81   | 49961   | -196.97   |
| .27   | • 50000 | -53.71    | • 8 2 | .49930  | -201.10   |
| • 2 7 | • 50000 | - 35 - 78 | •02   | .49882  | -205-38   |
| • 2 0 | • 50000 | -57.85    | • 8/  | . 40811 | -209-81   |
| • 2 7 | • 50000 | -59.94    | - 85  | . 49709 | -21/1.//2 |
| .21   | • 50000 | -62.03    | - 86  | .49565  | -219.21   |
| • 3 2 | • 50000 | -64-13    | .87   | .49366  | -224.22   |
| .33   | • 50000 | -66.25    | - 88  | .49093  | -229.44   |
| .34   | • 50000 | -68.37    | .89   | 48727   | -234.91   |
| .35   | • 50000 | -70.51    | .90   | .48242  | -240.63   |
| -36   | • 50000 | -72.66    | .91   | .47609  | -246.61   |
| • 37  | • 50000 | -74-82    | .92   | 46799   | -252.86   |
| •38   | • 50000 | -77.00    | .93   | .45780  | -259.38   |
| .39   | • 50000 | -79.18    | .94   | .44523  | -266.15   |
| .40   | • 50000 | -81,39    | .95   | .43009  | 86.70     |
| .41   | .50000  | -83.60    | - 96  | -41228  | 79,53     |
| . 4.2 | .49999  | -85.84    | .97   | .39191  | 72.23     |
| .43   | 49999   | -88.08    | . 98  | .36924  | 64.88     |
| .44   | 49999   | -90.50    | .99   | .34473  | 57.55     |
| 45    | 49999   | -92.79    | 1.00  | .31898  | 50.32     |
| .46   | 49999   | -95.09    | 1.01  | 29264   | 43.24     |
| .47   | 49998   | -97.41    | 1.02  | -26638  | 36.38     |
| 48    | 49998   | -99.74    | 1.03  | 24077   | 29.78     |
| .49   | 49998   | -102.10   | 1.04  | 21629   | 23.46     |
| .50   | 49997   | -104.48   | 1.05  | 19328   | 17.45     |
| .51   | 49997   | -106.88   | 1.06  | .17194  | 11.73     |
| .52   | 49997   | -109.31   | 1.07  | .15237  | 6.32      |
| .53   | 49996   | -111.75   | 1.08  | 13459   | 1,19      |
| .54   | 49995   | -114.23   | 1.09  | 11856   | -3.68     |
| .55   | 49995   | -116.73   | 1.10  | .10418  | -8,29     |
| • 56  | .49994  | -119.25   | 1.11  | .09133  | -12.66    |
| .57   | 49993   | -121.81   | 1.12  | .07991  | -16.82    |
| .58   | 49993   | -124.39   | 1.13  | 06976   | -20.78    |
| .59   | .49992  | -127.00   | 1.14  | .06079  | -24.56    |
| .60   | •49991  | -129.65   | 1.15  | 05285   | -28.17    |
| .61   | •49990  | -132.33   | 1.16  | 04585   | -31.62    |
| .62   | .49989  | -135.05   | 1.17  | 03968   | -34.94    |
| .63   | .49989  | -137.80   | 1.18  | .03424  | -38.12    |
| .64   | . 49988 | -140.59   | 1,19  | .02947  | -41,17    |

C C VTF(T(S)-PHASE) VS. FREQUENCY, SUTPUT DATA, TYPE 1 FILTER, FIG.28

| W1    | T(JW)   | 01        | W 1  | T(JW)   | 01       |
|-------|---------|-----------|------|---------|----------|
| •10   | •49935  | -14.34    | •65  | •44796  | -98.59   |
| •11   | •49920  | -15.78    | •66  | •44641  | -100.23  |
| •12   | •49904  | -17.23    | •67  | •44488  | -101.89  |
| • 1 4 | •49866  | -20.12    | •69  | •44192  | -105.23  |
| .15   | •49845  | -21.57    | •70  | •44051  | -106.93  |
| •17   | •49795  | -24.48    | •72  | .43781  | -110.36  |
| •19   | •49737  | -27.40    | •74  | •43532  | -113.87  |
| .20   | •49704  | -28.86    | •75  | •43417  | -115.66  |
| • 22  | •49631  | -31.80    | •77  | •43202  | -119.34  |
| •23   | •49590  | -33.27    | •78  | •43102  | -121.23  |
| •24   | •49547  | -34.75    | •79  | •43007  | -123.16  |
| •25   | •49501  | -36.23    | •80  | •42914  | -125.14  |
| .26   | •49451  | -37.71    | .81  | .42824  | -127.16  |
| •27   | •49398  | -39.20    | •82  | .42732  | -129.25  |
| •28   | •49342  | -40.69    | •83  | •42638  | -131.39  |
| .29   | •49283  | -42.19    | .84  | .42536  | -133.61  |
| •30   | •49220  | -43.68    | •85  | •42422  | -135.90  |
| .31   | •49154  | -45.19    | •86  | .42290  | -138.28  |
| •32   | •49084  | -46.69    | .87  | •42134  | -140.74  |
| •33   | •49010  | -48.20    | • 88 | •41945  | -143.30  |
| •34   | • 48932 | -49.72    | • 89 | •41713  | -145.96  |
| •35   | •48850  | -51.23    | •90  | •41427  | -148.72  |
| .36   | •48764  | -52.75    | •91  | .41075  | -151.58  |
| .37   | •48675  | -54.28    | •92  | •40644  | -154.54  |
| •38   | •48581  | -55.81    | •93  | •40121  | -157.60  |
| .39   | • 48483 | -57.34    | •94  | .39496  | -160.74  |
| •40   | •48381  | -58.88    | .95  | .38758  | -163.94  |
| •41   | •48275  | -60.42    | • 96 | .37900  | -167.19  |
| .42   | •48164  | -61.96    | .97  | • 36923 | -170.45  |
| .43   | .48050  | -63.50    | .98  | .35828  | -173.70  |
| •44   | •47932  | -65.21    | •99  | •34627  | -176.89  |
| .45   | .47809  | -66.76    | 1.00 | .33333  | 0.00     |
| •46   | •47683  | -68.32    | 1.01 | .31967  | 177.01   |
| •47   | • 47553 | -69.88    | 1.02 | •30552  | 174.18   |
| .48   | • 47419 | -71.44    | 1.03 | •29111  | 171.53   |
| .49   | .47281  | -73.01    | 1.04 | .27669  | 169.08   |
| .50   | • 47140 | -74.58    | 1.05 | .26247  | 166 • 85 |
| .51   | • 46996 | -76.15    | 1.06 | .24863  | 164.85   |
| .52   | • 46849 | -77.73    | 1.07 | .23534  | 163.08   |
| .53   | 46699   | -79.31    | 1.08 | .22270  | 161.54   |
| .54   | 46547   | -80.89    | 1.09 | .21078  | 160.21   |
| 55    | 46392   | -82.48    | 1.10 | 19963   | 159.08   |
| .56   | 46236   | -84.07    | 1,11 | 18927   | 158.15   |
| .57   | • 46077 | -85.66    | 1.12 | .17969  | 157.39   |
| -58   | 45918   | -87-26    | 1.13 | 17086   | 156.78   |
| 59    | 45757   | -98-86    | 1.14 | 16275   | 156.32   |
| .60   | 45596   | - 70 - 47 | 1,15 | 15531   | 155.97   |
| .61   | 45434   | -92.08    | 1.16 | 14851   | 155.72   |
| •62   | 45273   | -93.69    | 1.17 | 14229   | 155.55   |
| .63   | .45112  | -95.32    | 1,18 | 13659   | 155.46   |
| .64   | .44954  | -96.95    | 1,19 | 13138   | 155.41   |
| - UT  |         |           |      |         |          |

C C VTF(T(S)-PHASE) VS. FREQUENCY, CUTPUT DATA, TYPE 2 FILTER, FIG.31

| W1   | T(JW)           | 01      | W 1  | T(JW)          | 01      |
|------|-----------------|---------|------|----------------|---------|
| •10  | •50000          | -15.01  | .65  | .49079         | -107.20 |
| • 11 | • 50000         | -16.52  | •66  | <b>.</b> 48988 | -109.24 |
| •12  | • 50000         | -18.03  | •67  | •48888         | -111.31 |
| •14  | •5000U          | -21.06  | .69  | •48660         | -115.51 |
| •15  | •49999          | -22.57  | •70  | •48529         | -117.66 |
| •17  | •49999          | -25.61  | •72  | •48230         | -122.04 |
| .19  | •49998          | -28.66  | •74  | •47871         | -126.54 |
| •20  | .49998          | -30.19  | .75  | •47666         | -128.84 |
| •22  | •49997          | -33.27  | •77  | •47194         | -133.55 |
| •23  | •49996          | -34.81  | •78  | •46923         | -135.96 |
| •24  | •49995          | -36.35  | .79  | •46627         | -138.41 |
| •25  | •49994          | -37.90  | •80  | •46303         | -140.90 |
| •26  | •49993          | -39.46  | .81  | •45948         | -143.42 |
| •27  | •49992          | -41.02  | •82  | •45561         | -145.98 |
| •28  | • <b>4999</b> 0 | -42.58  | •83  | •45139         | -148.58 |
| •29  | •49989          | -44.15  | .84  | •44678         | -151.21 |
| •30  | •49986          | -45.73  | .85  | •44178         | -153.88 |
| .31  | •49984          | -47.31  | •86  | •43636         | -156.59 |
| • 32 | •49981          | -48.90  | •87  | •43049         | -159.32 |
| • 33 | •49978          | -50.49  | •88  | •42416         | -162.08 |
| •34  | •49975          | -52.09  | • 89 | •41736         | -164.87 |
| •35  | •49970          | -53.70  | •90  | •41009         | -167.68 |
| • 36 | •49966          | -55.31  | •91  | •40233         | -170.50 |
| .37  | •49961          | -56.93  | • 92 | .39410         | -173.33 |
| .38  | •49955          | -58.56  | •93  | .38540         | -176.16 |
| •39  | •49948          | -60.20  | •94  | .37627         | -178.99 |
| •40  | •49941          | -61.85  | •95  | .36672         | -181.81 |
| •41  | •49932          | -63.50  | • 96 | •35679         | -184.61 |
| •42  | •49923          | -65.32  | •97  | •34653         | -187.38 |
| •43  | •49913          | -67.00  | • 98 | .33599         | -190.11 |
| •44  | .49901          | -68.68  | .99  | .32522         | -192.80 |
| • 45 | •49888          | -70.37  | 1.00 | .31427         | 74.48   |
| •46  | .49874          | -72.08  | 1.01 | .30322         | 161.83  |
| •47  | •49858          | -73.80  | 1.02 | .29211         | 159.32  |
| •48  | •49841          | -75.52  | 1.03 | .28102         | 156.88  |
| •49  | •49822          | -77.26  | 1.04 | •26999         | 154.53  |
| • 50 | •49800          | -79.01  | 1.05 | .25909         | 152.25  |
| •51  | •49777          | -80.78  | 1.06 | .24837         | 150.07  |
| •52  | •49751          | -82.56  | 1.07 | .23786         | 147•98  |
| •53  | •49723          | -84.35  | 1.08 | .22760         | 145.98  |
| •54  | •49692          | -86.16  | 1.09 | .21764         | 144.08  |
| •55  | •49658          | -87.98  | 1.10 | .20799         | 142.27  |
| .56  | •49620          | -39.82  | 1.11 | .19868         | 140.57  |
| .57  | • 49579         | -91.68  | 1.12 | .18973         | 139.12  |
| .58  | .49535          | -93.55  | 1.13 | .18114         | 137.60  |
| •59  | •49486          | -95.44  | 1.14 | .17291         | 136.19  |
| •60  | •49432          | -97.35  | 1.15 | .16507         | 134.87  |
| •61  | •49373          | -99.28  | 1.16 | •15759         | 133.64  |
| •62  | •49309          | -101.23 | 1.17 | •15047         | 132.50  |
| .63  | , 10220         | -103.20 | 1.18 | . 14372        | 121.44  |

C C VTF(T(S)-PHASE) VS. FREQUENCY, OUTPUT DATA, TYPE 3 FILTER, FIG.34

| Wl                      | T(JW)       | 01        | Wl    | T(JW)            | 01       |
|-------------------------|-------------|-----------|-------|------------------|----------|
| •10                     | • 50000     | -15.67    | •65   | .48203           | -113.19  |
| •11                     | •50000      | -17.25    | •66   | •48023           | -115.37  |
| •12                     | • 50000     | -18.82    | •67   | •47828           | -117.58  |
| •14                     | • 50000     | -21.98    | •69   | •47390           | -122.06  |
| .15                     | • 50000     | -23.57    | •70   | •47144           | -124.34  |
| •17                     | • 49999     | -26.74    | •72   | •46594           | -128.98  |
| •19                     | • 49999     | -29.93    | •74   | •45957           | -133.72  |
| .20                     | • 49999     | -31.53    | •75   | •45604           | -136.13  |
| •22                     | •49998      | -34.75    | •77   | .44821           | -141.02  |
| .23                     | •49997      | -36.36    | •78   | •44389           | -143.50  |
| •24                     | • 49996     | -37.98    | •79   | •43929           | -146.01  |
| .25                     | • 49995     | -39.61    | •80   | •43440           | -148.54  |
| .26                     | • 49993     | -41.23    | .81   | .42921           | -151.09  |
| .27                     | • 49992     | -42.87    | .82   | .42371           | -153.66  |
| •28                     | • 49990     | -44.51    | .83   | .41789           | -156.25  |
| .29                     | 49987       | -46.16    | .84   | 41176            | -158.85  |
| .30                     | 49984       | -47.81    | .85   | 40531            | -161.47  |
| .31                     | 49981       | -49.47    | .86   | 39854            | -164.10  |
| .32                     | . 49977     | -51.14    | .87   | . 39145          | -166.74  |
| . 33                    | . 49972     | -52.82    | . 88  | -38406           | -169.38  |
| - 34                    | . 49967     | -54.50    | . 89  | .37638           | -172.03  |
| • J <del>4</del><br>2 5 | • 4 9 9 0 7 | -56 10    | •07   | 368/1            | -174 67  |
| • 55                    | •49900      | -57 00    | • 70  | • J0041<br>36017 | -177 21  |
| 27                      | • 47755     | -50 61    | • 7 1 | 25149            | -170 04  |
| • 21                    | • 47744     | - 29.01   | • 72  | • 3 2 1 0 0      | -119.94  |
| • 20                    | • 49934     | -01.05    | • 7 5 | • 24290          | -102.00  |
| • 3 7                   | •49923      | -03.05    | • 94  | • 33404          | -102 12  |
| •40                     | •49910      | -64 • 79  | • 95  | • 22492          | -10/0/27 |
| • 41                    | • 49895     | -66 • 70  | • 90  | • 31572          | -190.27  |
| • 4 2                   | •49879      | -68.46    | • 97  | • 306 38         | -192.79  |
| • 4 3                   | •49860      | -70.24    | • 98  | • 29695          | -195.26  |
| •44                     | • 49839     | -72.02    | • 99  | • 28748          | -197.70  |
| • 45                    | •49815      | -13.82    | 1.00  | •27800           | -200.09  |
| •46                     | •49788      | - 75 • 63 | 1.01  | •26854           | 157.41   |
| • 4 /                   | •49758      | -11.46    | 1.02  | .25913           | 155.12   |
| •48                     | •49725      | -79.29    | 1.03  | •24980           | 152.89   |
| •49                     | •49688      | -81.15    | 1.04  | •24059           | 150•71   |
| • 50                    | •49646      | -93.01    | 1.05  | •23152           | 148.60   |
| •51                     | •49601      | -34.90    | 1.06  | .22262           | 146.55   |
| • 52                    | •49550      | -86.80    | 1.07  | .21390           | 144.57   |
| •53                     | • 49494     | -88.71    | 1.08  | •20539           | 142.65   |
| • 54                    | •49432      | -90.64    | 1.09  | •19710           | 140.81   |
| • 5 5                   | •49363      | -92.60    | 1.10  | •18904           | 139.04   |
| •56                     | •49288      | -94.56    | 1.11  | .18124           | 137.34   |
| .57                     | •49206      | -96.55    | 1.12  | •17369           | 135•71   |
| .58                     | •49115      | -98.56    | 1.13  | •16640           | 134.15   |
| •59                     | •49016      | -100.58   | 1.14  | •15938           | 132.66   |
| .60                     | •48908      | -102.63   | 1.15  | .15263           | 131.25   |
| .61                     | •48790      | -104.70   | 1•16  | •14615           | 129.91   |
| •62                     | •48661      | -106.79   | 1.17  | .13994           | 128.80   |
| .63                     | •48521      | -108.90   | 1.18  | .13399           | 127.59   |
| •64                     | • 48368     | -111.03   | 1.19  | •12830           | 126.46   |

| Wl                   | T(JW)                      | 01               | Wl           | T(JW)      | 01       |
|----------------------|----------------------------|------------------|--------------|------------|----------|
| .10                  | •50000                     | -11.47           | •65          | •48203     | -81.49   |
| •11                  | • 50000                    | -12.62           | •66          | •48040     | -82.98   |
| •12                  | •50000                     | -13.77           | •67          | •47867     | -84.47   |
| •14                  | • 50000                    | -16.08           | •69          | •47486     | -87.48   |
| .15                  | • 50000                    | -17.24           | •70          | •47278     | -89.00   |
| •17                  | •49999                     | -19.56           | •72          | •46824     | -91.89   |
| .19                  | • 49999                    | -21.89           | •74          | •46318     | -94.98   |
| .20                  | •49998                     | -23.06           | •75          | •46046     | -96.52   |
| •22                  | • 49997                    | -25.40           | •77          | •45460     | -99.64   |
| •23                  | •49996                     | -26.58           | •78          | •45146     | -101.20  |
| .24                  | • 49995                    | -27.76           | •79          | .44819     | -102.76  |
| .25                  | • 49994                    | -28.94           | .80          | .44479     | -104.33  |
| •26                  | • 49992                    | -30.13           | •81          | •44124     | -105.90  |
| .27                  | • 4999()                   | -31.32           | .82          | 43757      | -107.46  |
| 28                   | 49988                      | -32.51           | .83          | 43376      | -109.03  |
| .29                  | 49985                      | -33.71           | .84          | 42983      | -110.60  |
| .30                  | 49982                      | -34.91           | .85          | .42577     | -112.16  |
| .31                  | . 49978                    | -36.12           | - 86         | . 42159    | -113.72  |
| .32                  | . 49973                    | -37.33           | .87          | .41729     | -115-28  |
| .33                  | . 49968                    | -38.55           | .88          | .41288     | -116.84  |
| .34                  | . 49961                    | -39.77           | .89          | .40836     | -118.38  |
| .35                  | . 49954                    | -41.00           | .90          | - 40374    | -110.02  |
| . 36                 | - 49945                    | -42.23           | . 91         | .300/3     | -121.46  |
| 27                   | • 4 9 9 4 9                | -42 - 23         | • 7 1        | 20/22      | -122 00  |
| 28                   | • 4 7 7 5 5 0<br>/ 0 0 2 / | -45.47           | • 72         | 28022      | -122.59  |
| - <u>20</u>          | 647724                     | -44 12           | • 7 5        | • J0 7 J J | -124.00  |
| • 2 7                | • 4 7 7 1 Z                | -40 • 12         | • 74         | • 504 50   | -120.01  |
| • <del>•</del> •     | •49091<br>70881            | -41.90           | • 7 5        | 27/22      | -127.00  |
| • <del>•</del> · · · | 49001                      | -40.04<br>/-0.01 | • 90         | • 51425    | -129.00  |
| • 4 2                | • 4 7002                   | -51 10           | • 7 I<br>0 8 | • 20 70 7  | -121 02  |
| •45<br>              | • 4 7 0 4 2                | -)I • I 7<br>    | • 70         | • 50507    | -132 39  |
| • <del>-</del>       | 40702                      | -52 77           | 1 00         | 35236      | 225 02   |
| .46                  | . 49763                    | -55.07           | 1.01         | .34805     | 223.60   |
| • - 0                | . 49731                    | -56.38           | 1 02         | 34273      | 222.20   |
| . / 8                | • 4 9 4 9 5                | -57.70           | 1 02         | • 37740    | 222 • 20 |
| . 40                 | • 4 90 9 5                 | -59.02           | 1.04         | 22207      | 210 / 2  |
| • <del>•</del> •     | • 4 70 5 5                 | -59.05           | 1 05         | 03201      | 217 43   |
| • 5 U                | • 4 70 1 1                 | -60.50           | 1.06         | • 22012    | 210.07   |
| • D I                | • 49563                    | -61.70           | 1.07         | • 32140    | 216 • 73 |
| • 0 Z                | •49510                     | -03.00           | 1.09         | • 31009    | 215•40   |
| • 7 3<br>5 4         | •49451                     | -64.42           | 1.00         | • 31080    | 214.09   |
| • 24<br>55           | • 4 9 3 0 7                | -05 • 19         | 1 10         | • 30 5 5 3 | 212.80   |
| • 22<br>5 4          | • 4 9 5 1 1<br>4 0 2 4 1   | $-0/ \cdot 1/$   |              | • 30029    | 211.52   |
| • 20<br>5 7          | • 4 9 2 4 1                | -00.00           |              | •29509     | 210.26   |
| • 27<br>59           | • 49130                    | -09.90           |              | • 20995    | 209.02   |
| • 90<br>50           | • 4 90 00                  | -72 70           | 1.14         | • 20401    | 207.80   |
| 60                   | • 409/1                    | -12.18           | 1 • 1 4      | • 21914    | 206+60   |
| • 0 0                | • 40000                    | - 74 • 21        | 1.15         | • 21412    | 205•41   |
| 601                  | • 40 / 91                  | -73.00           | 1.10         | • 20976    | 204 • 24 |
| •02                  | • 40020                    | -77.09           | 1.1/         | • 26486    | 203.09   |
| •03                  | • 43496                    | - 18.55          | 1.18         | •26001     | 201.95   |
| •04                  | • 48355                    | -80.02           | 1.19         | • 25524    | 200.84   |

C C VTF(T(S)-PHASE) VS. FREQUENCY, SUTPUT DATA, TYPE 6 FILTER, FIG.42

| W1    | T(JW)   | 01       | W 1  | T(JW)  | 01      |
|-------|---------|----------|------|--------|---------|
| .10   | •50000  | -18.57   | • 65 | .49916 | -134.78 |
| .11   | .50000  | -20.43   | •66  | .49913 | -137.45 |
| •12   | •50000  | -22.30   | •67  | .49910 | -140.16 |
| •14   | • 50000 | -26.05   | •69  | •49904 | -145.71 |
| .15   | •50000  | -27.92   | •70  | •49902 | -148.56 |
| •17   | •50000  | -31.69   | •72  | •49897 | -154.41 |
| .19   | • 50000 | -35.48   | •74  | •49892 | -160.51 |
| .20   | •50000  | -37.38   | •75  | •49888 | -163.66 |
| •22   | • 50000 | -41.19   | •77  | •49877 | -170.19 |
| .23   | • 50000 | -43.11   | •78  | •49867 | -173.58 |
| •24   | •49999  | -45.03   | •79  | •49854 | -176.91 |
| .25   | • 49999 | -46.96   | • 80 | .49836 | 179.35  |
| .26   | •49999  | -48.89   | .81  | .49810 | 175.65  |
| •27   | • 49999 | -50.84   | •82  | •49775 | 171.83  |
| .28   | •49999  | -52.79   | .83  | .49727 | 167.88  |
| .29   | • 49998 | -54.74   | .84  | •49662 | 163.79  |
| • 30  | •49998  | -56.71   | •85  | •49575 | 159.53  |
| .31   | •49998  | -58.68   | .86  | •49461 | 155.09  |
| .32   | • 49997 | -60.82   | •87  | •49309 | 150.46  |
| .33   | •49997  | -62.82   | •88  | •49110 | 145.61  |
| • 34  | • 49996 | -64.82   | •89  | •48846 | 140.52  |
| .35   | • 49995 | -66.83   | •90  | •48502 | 135.16  |
| .36   | • 49995 | -68.85   | •91  | •48049 | 129.49  |
| • 37  | •49994  | -70.88   | •92  | •47456 | 123.50  |
| .38   | • 49993 | -72.93   | •93  | •46680 | 117.14  |
| • 39  | • 49992 | -74.99   | •94  | •45667 | 110.39  |
| •40   | •49991  | -77.05   | • 95 | •44358 | 103.24  |
| •41   | • 49989 | -79.14   | •96  | .42689 | 95.70   |
| • 42  | •49988  | -81.23   | .97  | •40609 | 87.83   |
| .43   | •49986  | -83.34   | • 98 | •38095 | 79.73   |
| • 4 4 | •49984  | -85.46   | • 99 | •35176 | 71.57   |
| •45   | •49982  | -87.60   | 1.00 | .31944 | 63.54   |
| •46   | •49980  | -89.76   | 1.01 | •28541 | 55•71   |
| •47   | •49978  | -91.93   | 1.02 | •25135 | 48.60   |
| •48   | • 49976 | -94.11   | 1.03 | •21882 | 42•20   |
| •49   | •49973  | -96 • 32 | 1•04 | •18894 | 36•58   |
| .50   | •49970  | -98.54   | 1.05 | •16232 | 31.74   |
| •51   | • 49967 | -100.79  | 1.06 | •13916 | 27.65   |
| .52   | •49964  | -103.05  | 1.07 | .11929 | 24.22   |
| •53   | •49961  | -105.33  | 1.08 | .10239 | 21.35   |
| •54   | •49958  | -107.64  | 1.09 | .08806 | 18.93   |
| • 55  | •49954  | -109.97  | 1.10 | .07590 | 16.86   |
| •56   | •49950  | -112.32  | 1•11 | •06554 | 15.07   |
| •57   | • 49947 | -114.70  | 1.12 | •05666 | 13.48   |
| •58   | • 49943 | -117.10  | 1.13 | •04899 | 12.02   |
| • 59  | •49939  | -119.54  | 1.14 | •04232 | 10.67   |
| •60   | • 49935 | -122.00  | 1.15 | •03648 | 9.39    |
| •61   | •49931  | -124.49  | 1.16 | .03133 | 8.16    |
| •62   | •49927  | -127.01  | 1.17 | •02677 | 6.96    |
| .63   | • 49924 | -129.56  | 1.18 | .02270 | 5.78    |

•49920 -132•16 1•19 •01906

•64

4.62

C C VTF(T(S)-PHASE) VS. FREQUENCY, SUTPUT DATA, TYPE 7 FILTER, FIG.45

| W 1           | T(JW)                  | 01      | W 1      | T(JW)       | 01        |
|---------------|------------------------|---------|----------|-------------|-----------|
| •10           | •50000                 | -18.89  | •65      | •49984      | -136.54   |
| •11           | •50000                 | -20.78  | •66      | •49982      | -139.22   |
| •12           | •50000                 | -22.68  | •67      | •49979      | -141.94   |
| •14           | • 50000                | -26.49  | .69      | .49971      | -147.51   |
| .15           | • 50000                | -28.40  | • 70     | •49965      | -150.20   |
| .17           | .50000                 | -32.24  | .72      | 49949       | -156.06   |
| 19            | .50000                 | -36.08  | .74      | 49924       | -162.14   |
| .20           | • 50000                | -38.01  | .75      | 49907       | -165.27   |
| •22           | • 50000                | -41.89  | .77      | 49859       | 188.09    |
| .23           | • 50000                | -43.84  | •78      | 49827       | 184.73    |
| .24           | •50000                 | -45.79  | .79      | 49788       | 181.29    |
| • 25          | • 50000                | -47.75  | .80      | .49740      | 177.76    |
| • 2 6         | - 50000                | -49.72  | .81      | .49682      | 174.13    |
| .27           | • 50000                | -51.69  | .82      | .49610      | 170.40    |
| .28           | • 50000                | -13.67  | .83      | . 49524     | 166.55    |
| .29           | • 50000                | -55-81  | .84      | . 49418     | 162.57    |
| • 2 9         | .50000                 | -57.81  | .85      | 49410       | 158.45    |
| • 50          | • 00000                | -50.91  | • 0 5    | 49200       | 156 17    |
| • 2 1         | • 4 7 7 7 7            | -59.01  | • 0 0    | • 47120     | 1/0 72    |
| • 2 2         | • 4 7 7 7 7            | -01.00  | • 0 /    | • 4 0 7 2 1 | 149013    |
| • 22          | • 4 7 7 7 7            | -05.05  | 00<br>80 | •40000      | 140 27    |
| • 2 4         | • 4 7 7 7 7            | -67 02  | • 0 9    | •40570      | 125 21    |
| • 36          | • 4 9 9 9 9            | -69.92  | • 70     | • 47 5 51   | 120.90    |
| • 37          | • <del>4</del> 9 9 9 9 | -72.03  | • 71     | •47500      | 124.30    |
| -38           | .49998                 | -74.10  | • 72     | •46086      | 118.43    |
| . 30          | - 4 9 9 9 0            | -76.10  | • 7 5    | 45084       | 112.25    |
| .40           | . 49998                | -78.28  | .95      | - 43826     | 105.77    |
| . 4 1         | . 49998                | -80.39  | . 96     | . 42270     | 102.03    |
| . 42          | . 40007                | -82.51  | . 97     | .40386      | 93.06     |
| .43           | . 49997                | -84.65  | . 98     | - 38165     | 84.96     |
| . 44          | . 49997                | -86-80  | .99      | .35636      | 77.86     |
| •             | 40006                  | -88 96  | 1 00     | 32862       | 70 72     |
| • 4 5         | • <del>4</del> 9 9 9 0 | -01.14  | 1 01     | . 20020     | 64.02     |
| •40           | • 4 7 7 7 0            | -93-34  | 1.02     | • 2 7 7 3 7 | 57.74     |
| . 48          | • 4 9 9 9 0            | -05-55  | 1.03     | •20910      | 51.00     |
| . 49          | .40005                 | -97.78  | 1.04     | -21358      | 46.84     |
| .50           | .49995                 | -100.03 | 1.05     | 18850       | 42.33     |
| -51           | . 4 9 9 9 4            | -102-29 | 1.06     | .16596      | 38.45     |
| .52           | . 40004                | -104 58 | 1.07     | 14603       | 35.16     |
| .53           | . 49993                | -104.98 | 1.08     | .12864      | 32.43     |
| • J J<br>5 /i | . 40002                | -100.00 | 1 00     | 11259       | 20.17     |
| • 54          | . 40003                | -109•21 | 1.10     | 10050       | 29.22     |
| • JJ<br>56    | • 47775                | -112 02 | 1 • 10   | •10059      | 20000     |
| • 57          | • 4 7 7 7 2            | -116.33 | 1.12     | 07942       | 20.02     |
| .58           | . 49991                | -118.76 | 1.12     | .07148      | 2/ 55     |
| .59           | . 49991                | -121.21 | 1.14     | .06427      | 27.50     |
| .60           | 49990                  | -123.68 | 1.15     | 05797       | 22.90     |
| •61           | 49989                  | -126-19 | 1.16     | 05243       | 22.20     |
| .62           | 49988                  | -128-73 | 1.17     | 04754       | 21.53     |
| .63           | 49987                  | -131-30 | 1.18     | 04318       | 20.88     |
| .64           | 49986                  | -133.90 | 1,19     | 03926       | 20.23     |
|               |                        |         |          |             | ~ ~ ~ L _ |

## APPENDIX I

<u>Complementary Filter ADPI Coefficient Symmetry.</u> It can be noted that complementary filter ADPI's exhibit coefficient symmetry in their numerator and denominator polynomials. This observation can be verified mathematically.

A polynomial P(s) of degree n has coefficient symmetry if

$$s^{n}P(1/s) = P(s)$$
(50)

Let Z(s)=P(s)/Q(s) be the driving point impedance of the low-pass filter of the complementary filter and let deg P=m, deg Q=m-1. Then the high-pass filter has a driving point impedance Z(1/s) because the low-pass to high-pass transformation is s replaced by 1/s.

The driving point impedance of the complementary filter is

$$Z_{CF}(s) = \frac{Z(s) Z(1/s)}{Z(s) + Z(1/s)}$$
(51)

$$Z_{CF}(s) = \frac{P(s) P(1/s)}{P(s) Q(1/s) + P(1/s) Q(s)}$$
(52)

$$Z_{CF}(s) = \frac{P(s) \ s^{m} P(1/s)}{s^{m} \ P(s) \ Q(1/s) \ + \ s^{m} \ P(1/s) \ Q(s)}$$
(53)

The test for coefficient symmetry can now be applied to the numerator first and then to the denominator of  $Z_{CF}(s)$ . The numerator degree is 2m and since

$$s^{2m} \left[ P(s)s^{m}P(1/s) \right] = s^{m}P(1/s)P(s)$$
(54)  
$$s \rightarrow 1/s$$

the numerator polynomial is symmetric. The degree of the denominator is equal to 2m. Hence

$$s^{2m} \left[ s^{m} P(s)Q(1/s) + s^{m} P(1/s)Q(s) \right] = s^{2m} \left[ s^{-m} P(1/s)Q(s) + s^{-m} P(s)Q(1/s) \right] = (55)$$
$$s^{m} P(s)Q(1/s) + s^{m} P(1/s)Q(s)$$

implies that the denominator polynomial is symmetric.

Note that the numerator and denominator polynomials degrees are both equal to 2m.

## APPENDIX J

FORTRAN Program for Coefficient Evaluation of the Product of Two Polynomials with Algebraic Coefficients. This computer program is a modification of one written by Dr. Benton Weathers. Since this program is quite long and rather complicated, a self-explanatory program was added instead of a block diagram. The idea behind the program is to set up two three-dimensional matrices with each matrix representing one of the polynomials. Since each term of the polynomial has the form,  $8a^3b^3s^2$ , each dimension of the matrix represents an exponent of a, b, or s. And the numerical coefficient was assigned to the location given by the exponents. Having established this, the multiplying and term collecting operations are next.

| PRC. FOR<br>TYPICAL P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FINDING BIN. COFFF. CH PRODUCT POLYMODIFIED WEATHFRSFFO/LFR<br>Poly. To be multiplied are -                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Z(1)=1•+2<br>+(2•*/**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2。*A*S+4。*A*S**Z+(4。*A**Z+Z。*A**Z*B)*S**3<br>2+2。*A**Z*B+A**3)*S**4+(4。*A**3*B+Z。*A**3*B+Z。*A**3*B**Z)*S**5 |
| +2 • × Δ × × 3 × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *5× C××6+2・×A××4×5××2××7×<br>A××4×2×2+2・×4×4×5×5×5+74・*4××5×5×5+2・×2×*5×5+2・×3×*2                           |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2+2•*A**2*B+A**3)*S**3+(2•*A**2+4•*A**2*B)*S**3                                                             |
| + t • * A * S * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *5+2 *A*S**6+S**7                                                                                           |
| ARE NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER OF ALL TERMS IN ALPHANUMERIC COEFF. OF S OF ONE POLY. WHICH<br>Zero. I = 12 in Example.                  |
| $J = NU^{MBE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ER OF ALL TERMS IN ALPHANUMERIC COFFF. OF S OF OTHER POLY. WHICH                                            |
| ARE NOT Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZFPO. J = 12<br>defet evdoment , ove of , trome , , ,                                                       |
| N2 IS LAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RGEST EXPONENT + CONT OF A THERMS, NI = 5<br>RGEST EXPONENT + OME OF P THERMS, N2 = 5                       |
| N3 IS LAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RGEST EXPONENT + ONE OF S IN BOTH POLY. N3 = 8                                                              |
| $N_{1} = N_{1} + N_{2} + N_{2$ | + N2 - 1 AND N5 = N4**2 N4 = 9 N5 = 81                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ONENT OF ATTERNØTEZ FEARONENT OF DITERNØTEZ FAFGUT OFFRA<br>12 m 0 m 13 m 1                                 |
| N(L1,L2,L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L3) = NUMERICAL TERM OF ALPHANUMERIC COEFF. P(L1,L2,L3) = 2                                                 |
| L4.L6.L7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , AND L9 AKE JUST DUMMY VARIABLES                                                                           |
| TYPICAL F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 REPRESENT THE EXP. OF S UNDER CONSTDERATION IN THE PRODUCT PULY.<br>Data —                                |
| SEAD 1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                          |
| LIN. [ CARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 . NZ . N <sup>2</sup> . N <sup>4</sup>                                                                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ک<br>۲۰                                                                                                     |
| READ 1.N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |
| READ 1.L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, 2, 2, 1, 3                                                                                               |
| READ 1.W(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (L1+1,L2+1,L3+1)                                                                                            |
| ) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                                           |
| t (V -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۲                                                                                                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FTC.                                                                                                        |

| PFAD ].[].L2,L3<br>RFAD ].N(L]+],L2+],L3+]) | 2 2 | 3 1 ]<br>2 1 | 3 1 2 |    | 2 | ETC.<br>DI ENSION V(N1+N2+N3)+N(N1+N2+N3)+K(N4+N4)+K2(M5)+K3/M5)+K4/M5) | 22 PFAD ].[.] | 26 READ 1.01, N2, N3, N4 | DD 2 1 1 = 1 • M 1 | DO 2 L2= ] • M2 | DC 2 L3=1,N3 | <pre>// (L1,L2,L3)=C</pre> | 2 N(L1-L2,L3)=C | THESE DO LOOPS ZERO THE MATRICES WHICH REPRESENT FACH POLY. | DC 3 L4=1,I | DEAD 1.L1,L2,L3 | 3 PFAD 1, ((L]+1, 2+1, L3+1) | THF + I TAKES CARE OF ZERO SUBSCRIPTS | DC 5 [4=]9J<br>DEAD 1.11 12 12 | K READ 1 .N(1 1+1 .L 2+1 .L 2+1) | THESE UC LOOPS READ IN THE TWO POLY. INTO THEIR RESPECTIVE WATRICES | DO 1( L5=1,2*N3-1 | THIS DO LOOP TO STATE.10 EVALUATES THE ALGERAIC COEFF. FOR EACH POWEN UF S | () C 7 L 4 = 1, 2 * N I - I | DC 7 L6=1,2*N2-1 | 7 K(L4, 16) = . | THESE DO LOOPS ZERO THE MATRIX WHICH WILL STORF THE ALG. COEFF. FOR FACH | POLER OF S. | $\lfloor P = \lfloor 5 - 1 \rfloor$ | L8 IS THE EXP. OF S UNDER CONSIDERATION IN THE PRODUCT POLY. | PUMCH 21.L8 |
|---------------------------------------------|-----|--------------|-------|----|---|-------------------------------------------------------------------------|---------------|--------------------------|--------------------|-----------------|--------------|----------------------------|-----------------|-------------------------------------------------------------|-------------|-----------------|------------------------------|---------------------------------------|--------------------------------|----------------------------------|---------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------|-----------------------------|------------------|-----------------|--------------------------------------------------------------------------|-------------|-------------------------------------|--------------------------------------------------------------|-------------|
| cui                                         | 10  | 00           | U     | cc |   | U                                                                       |               |                          |                    |                 |              |                            |                 | $\cup$                                                      |             |                 | (                            |                                       |                                |                                  | U                                                                   |                   | 0                                                                          |                             |                  |                 | U                                                                        | C           |                                     | 0                                                            |             |

```
α.
___
                                                                PPLY. EXP.TO GIVE
                                                                                                                                                                                                                                                                                                           THESE DO LOOPS CALCULATE AND STORE NUMERICAL COFFE. FOR APPROPRIATE
EXPONENTS OF A AND B.
                                                                                                                                                    THIS IF STATE. ALLOWS DISREWARD OF MULTIPLYING WITH ZERO COEFF.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ZFRO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ALL COEFF. ART
                                                              THIS DECISION STATE. DETERMINES CORRECT COMMINATION OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      THIS IF STATEMENT FLIWINATES PUNCHING OUT ZERG COFFF.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FSPKAT(I] +I3+1H+I2+5X+IIC+I3+1H+I2+5X+1IC+I3+1H+I2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FORMAT(/27HbINCMIAL COEFFICIENT OF S**13)
                                                                                                                                                                                                                                                                  K(J],J2)=K(J],J2)+M(L].L2.L4)*N(L7,L6)
                                                                                                                                                                                                                                                                                                                                                                                                                                              •
                                                                                                                                                                                                                                                                                                                                                                                                  •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              THIS IF STATE. ELIWINATES CHECK STOP IF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PUNCH 20, (K4(I2), K2(I2), K3(I2), I2=1, K1)
                                                                                                                                                                                                                                                                                                                                                                                                  OUT EXPONENTS OF
                                                                                                                                                                                                                                                                                                                                                                                                                                             CUT EXPONENTS CF
                                                                                                                               IF(M(L1,L2,L4))115,12,115
                                             IF(L4+L6-L5-1)]2,1],]2
                                                                                                                                                                                                                                                                                                                                                                                                  THIS DO LOOP PUNCHES
                                                                                                                                                                                                                                                                                                                                                                                                                                           THIS DO LOOP PUNCHES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF(K(I1, J3))14,13.14
                                                                                                                                                                                                                                                                                                                                                                                                                      DC 13 JE=1,2*N2-1
                                                                                                                                                                                                                                                                                                                                                                            PC 13 I1=1,2*N1-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(K1)1 ,1 .125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               K4(K1)=K(11, J3)
                                                                                                      P.C. 12 L2=1.N2
                                                                                      0. 12 11=1,N1
                     PC 12 L6=1, N3
                                                                                                                                                                          DC 12 L7=1.N1
DC 12 L4=1,N3
                                                                                                                                                                                              DC 12 L9=1,N2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F CRMAT(411()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Y^{2}(K_{1}) = J^{3} - J^{2}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (K_1) = [1 - 1]
                                                                                                                                                                                                                      J = L + L - 7 - 1
                                                                                                                                                                                                                                             J2 = L2 + L9 - 1
                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              < ] = K ] + ]
                                                                                                                                                                                                                                                                                                                                                         )
II
V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   135
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (r
                                                                                       ____
                                                                                                                                                                          5115
                                                                                                                                                                                                                                                                                       12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ____
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    21
                                                                                                                                                                                                                                                                                                              UL
```

| BINCMIAL | CCEFFICIENT<br>2 4, 2                                            | CF S** | 0                       |                                 |                          |                                      |
|----------|------------------------------------------------------------------|--------|-------------------------|---------------------------------|--------------------------|--------------------------------------|
| BINCMIAL | COEFFICIENT<br>2 3, 1                                            | CF S** | 1<br>4                  | 5,2                             |                          |                                      |
| BINCMIAL | CCEFFICIENT<br>4 3, 1<br>8 5, 2                                  | CF S** | 2<br>2                  | 3,2                             | 4                        | 4, 1                                 |
| BINCMIAL | COEFFICIENT<br>2 2, 0<br>16 4, 1<br>4 6, 3                       | CF S** | 3<br>2<br>4             | 2, 1<br>4, 2                    | 1<br>8                   | 3,0<br>6,2                           |
| BINCMIAL | COEFFICIENT<br>2 2, 0<br>4 3, 1<br>8 4, 2<br>4 6, 2              | ≎F s** | 4<br>2<br>8<br>4        | 2, 1<br>4, 0<br>5, 1<br>6, 3    | 4<br>16<br>4<br>2        | 3, 0<br>4, 1<br>5, 2<br>7, 2         |
| BINCMIAL | COEFFICIENT<br>4 1, 0<br>4 4, 0<br>4 5, 3<br>4 7, 4              | OF S** | 5<br>12<br>20<br>2      | 3, 0<br>5, 1<br>6, 1            | 16<br>20<br>8            | 3, 1<br>5, 2<br>7, 3                 |
| BINCMIAL | COEFFICIENT<br>2 1, 0<br>16 3, 1<br>4 4, 2<br>12 5, 2<br>10 6, 2 | CF S** | 6<br>8<br>4<br>4<br>4   | 2,0<br>4,0<br>5,0<br>5,3<br>6,3 | 8<br>12<br>10<br>4<br>4  | 3, 0<br>4, 1<br>5, 1<br>6, 1<br>7, 3 |
| BINCMIAL | CCEFFICIENT<br>1 0, 0<br>28 4, 1<br>4 5, 1<br>16 6, 3            | CF S** | 7<br>20<br>12<br>1<br>4 | 2,0<br>4,2<br>6,0<br>6,4        | 12<br>4<br>20<br>4       | 4, 0<br>5, 0<br>6, 2<br>8, 4         |
| BINCMIAL | COEFFICIENT<br>2 1, 0<br>8 3, 1<br>8 4, 2<br>12 5, 2<br>10 6, 2  | CF S** | 8<br>4<br>2<br>4<br>4   | 2,0<br>4,0<br>5,0<br>5,3<br>6,3 | 16<br>12<br>12<br>4<br>4 | 3, 0<br>4, 1<br>5, 1<br>6, 1<br>7, 3 |
| BINCMIA  | CCEFFICIENT<br>4 1, 0<br>4 4, 0<br>8 5, 3<br>4 7, 4              | CF S** | 9<br>16<br>12<br>2      | 3, 0<br>5, 1<br>6, 1            | 12<br>24<br>8            | 3, 1<br>5, 2<br>7, 3                 |

| BINCMIAL | CCEFFICIENT | CF | S** | 10  |    |   |  |    |    |   |
|----------|-------------|----|-----|-----|----|---|--|----|----|---|
|          | 4 2,0       |    |     | 2   | 2, | 1 |  | 4  | 3, | 0 |
|          | 4 3, 1      |    |     | 2   | 4, | 0 |  | 16 | 4, | 1 |
|          | 8 4, 2      |    |     | L'r | 5, | 1 |  | 8  | 5, | 2 |
|          | 4 6, 2      |    |     | 4   | 6, | 3 |  | 2  | 7, | 2 |
| BINCMIAL | COEFFICIENT | OF | S** | 11  |    |   |  |    |    |   |
|          | 2 2,0       |    |     | 2   | 2, | 1 |  | 1  | 3, | 0 |
| ]        | 6 4, 1      |    |     | 4   | 4, | 2 |  | 4  | 6, | 2 |
|          | 8 6,3       |    |     |     |    |   |  |    |    |   |
| BINCMIAL | COEFFICIENT | OF | S** | 12  |    |   |  |    |    |   |
|          | 4 3, 1      |    |     | 2   | 3, | 2 |  | 4  | 4, | 1 |
|          | 8 5, 2      |    |     |     |    |   |  |    |    |   |
| BINCMIAL | COEFFICIENT | OF | S** | 13  |    |   |  |    |    |   |
|          | 2 3, 1      |    |     | 4   | 5, | 2 |  |    |    |   |
|          |             |    |     |     |    |   |  |    |    |   |
| BINCMIAL | COEFFICIENT | CF | 5** | 14  |    |   |  |    |    |   |
|          | 2 4, 2      |    |     |     |    |   |  |    |    |   |

#### APPENDIX K

<u>ADPI Parameter Evaluation for a Type 7 Filter.</u> In applying the aidentity algorithm to the ADPI of Type 7, three equations, (23), (24), and (25), and three unknowns,  $C, C_1$ , and m, result. Equation (23) can be solved for  $C_1$ in terms of C and m. This results in equation (56) where a=1+m. Equation (24) can be manipulated to give equation

$$C_{1} = \frac{aC}{a^{2}C^{2} + aC - 1}$$
(56)

(57) and if the expression for  $C_1$  in equation (56) is substituted for the  $C_1$  in equation (57), the expression for C given in equation (58) will be obtained.

$$C_{1}(a^{3}bCm+a^{3}bC^{2}m+a^{2}C^{2}+a^{2}C-a^{2}bC-a^{2}b-aCm-1) + a^{3}bC^{2} - a^{3}bC - aC = 0$$
(57)

$$C = \sqrt{3 - m^2/(1+m)^2}$$
(58)

Equation (25) can be rearranged to give equation (59). Substituting the expression for  $C_1$  from equation (56) into equation (59) results in equation (61) after much expanding, manipulating, consolidating, and factoring. Now since equation (56) has been used with both (57) and (59) to give (58) and (61), these two will now be combined to give a polynomial with only one parameter, m. Using equation (58)  $C^4$ ,  $C^3$ , and  $C^2$  can be generated. Substituting these into

$$C_1^2 X + C_1 Y + aCZ = 0$$
 (59)

where  

$$X = C^{2}a^{2}b + 2Ca^{2}b - Cabm + a^{2}b - abm - b$$

$$Y = C^{2}a^{4}b^{2} + C^{2}a^{3} + Ca^{4}b^{2} + Ca^{2}m^{2} - ab - a^{2}b - ab$$

$$(60)$$

$$-a - 1$$

$$Z = Ca^{3}b + Ca - a^{2}b - ab - a - 1$$

$$AC^{4} + BC^{3} + DC^{2} + EC + F = 0$$
 (61)

ere A = 
$$(2+m-m^2-m^2)(1+m)^4$$
  
B =  $(2+m-2m^2-m^3+m^4)(1+m)^3$   
D =  $(-7-3m+2m^2+2m^3+2m^4+m^5)(1+m)^2$  (62)  
E =  $(-4-2m+2m^2+m^3+m^5)(1+m)$   
F =  $6+2m-3m^2-m^3-m^4-m^5$ 

wh

equation (61) and clearing denominators results in equation (63) after factoring and consolidating. Equation (63) can not be factored for roots of m. Therefore notice that equation

$$(3+2m-1)m^{2}-7m^{3}+1)m^{4}+7m^{5}-3m^{6}-2m^{7}) + (2+m-6m^{2})m^{3}+5m^{4}+2m^{5}-m^{6})\sqrt{3-m^{2}} = 0$$
(63)

(63) has the form  $P+Q\sqrt{R}=0$ . If this is multiplied by the factor,  $(P-Q\sqrt{R})$ , the result will be  $P^2-Q^2R=0$  which can be factored; however, this polynomial now has in it spurious roots of the factor,  $(P-Q\sqrt{R})$ . So any roots obtained will have to be checked in equation (63) to make sure that they

are not just roots of the factor,  $(P-Q\sqrt{R})$ . Hofman's computer program of Appendix M and N using BAIRSTOW'S method on the IBM 1401-1410 gave the roots to the fourteenth order polynomial. These roots are given in equation (64) and only one was realizable and not trivial. Root  $q_{14}$  is the only realizable non-trivial root and when substituted into equation (63) is found to be a root. With this value of m substituted into equation (58), C is found to be a realizable number when

$$P^{2} - Q^{2}R = \prod_{n=1}^{14} (m + q_{n})$$
 (64)

where 
$$a_1 = 1$$
  
 $a_2 = 1$   
 $a_3 = -1$   
 $a_4 = -1$   
 $a_5 = 0.7264$   
 $a_7 = 1.25$   
 $a_{10} = -1.59$   
 $a_{11} = -0.245 - j0.515$  (65)  
 $a_{12} = -0.245 + j0.515$   
 $a_{13} = -1.594$   
 $a_{13} = -1.594$   
 $a_{14} = -0.7143309$ 

evaluated and then C<sub>l</sub> is evaluated from equation (56). This gives

$$m = 0.7143309$$
  
C = 0.92041 (66)  
C<sub>1</sub> = 0.51437

FORTRAN Program for Evaluation of Type 7 Filter ADPI Coefficients. With the parameter values of equation (66), the coefficients expressed algebraically in equations (22) were evaluated with the computer program given on pages 126 and 127 with the results given on page 127.

.

```
126
```

```
MON$$
           JOB FILTER COEFFICIENTS CASE 7
                                                         23 DEC 64
                                                                       J
           COMT 15 MIN, 10 PAGES, FOWLER, EE
MON55
           ASGN MJB,12
MONSS
MONSS
           ASGN MGC, 16
MONSS
           MODE GO, TEST
           EXEQ FORTRAN,,,,,,,FANOUT
MCN$$
 DIMENSION C(10), D(10)
9 FCRMAT(5X,10H A( 0) = ,F10.5,5X,10H B( C) = ,F10.5)
2 \text{ FCRMAT}(5X,3H A(,12,5H) = ,F10,5,5X,3H B(,12,5H) = ,F10,5)
 FM=0.7143309
 FK1=0.92041056
 FK2=0.51436894
 A=1.+FM
 B=1.-FM
 AB = A * B
 A2B=AB*A
 A3B=A2B*A
 A4B=A3B*A
 A5B=A4B*A
 A6B2=A5B*A*B
 A = A + A
 A3 = A2 \times A
  A4 = A3 * A
 BK2=B*FK2
 FK1K2=FK1*FK2
 FK22=FK2*FK2
 FK11=FK1*FK1
  F]=1.+FK1
 F2=1.+FK1*FM
  F3=1.+BK2
  F4=1.+FK2*FM
  CO=A3B*FK1K2
  C(1) = A4B \times FK1K2 \times F1 + A \times A \times FK1K2
 C(2)=A4B*FK1*(FK1+FK2*F2)+ A3*FK1K2*F1+ A2*FK2*(FK1+BK2*F1)
  C1=A5B*FK1*(FK1+BK2*F1)+A3*FK1*(FK1+FK2*F2)+A3*FK2*F1*(FK1+BK2*F1)
  C(3) = C1 + A + FK2 + (FK1 + FK2 + F2)
  C2=A5B*FK11+A4*FK1*(FK1+BK2*F1)+A3*(FK1+BK2*F1)*(FK1+FK2*F2)
  C(4)=C2+A2*FK2*F1*(FK1+FK2*F2)+A*FK22*F1
  C3=A6B2*FK11+A4*FK11+A4*(FK1+BK2*F1)**2+A2*(FK1+FK2*F2)**2+FK22
  C(5)=C3+A2*FK22*F1**2
  C(6) = C(4)
  C(7) = C(3)
  C(8) = C(2)
  C(9) = C(1)
  C(10) = C0
  D0=C0
  D(1) = A3B * FK1 * F4 + A2 * FK1K2 + A2 * BK2
  D(2)=A4B*FK1*F3+A2*FK1*F4+A2*FK2*(FK1+BK2*F1)+A3B*FK2*F1+A*FK2
  D1=A4B*F
  D(3)=D1+A3B*(FK1+FK2*F2)+A2*FK2*F1+A*FK2*F3
  D2=A5B*B*FK1+A3*FK1+A3*F3*(FK1+BK2*F1)+A*F4*(FK1+FK2*F2)
  D3=A*FK22*F1+A4B*(FK1+BK2*F1)+A2*(FK1+FK2*F2)+A2*FK2*F1*F3
  D(4) = D2 + D3 + FK2 + F4
  D4=A4B*FK1+A3*(FK1+BK2*F1)+A2*F3*(FK1+FK2*F2)+A*FK2*F1*F4+FK22
```

|   | $D(5) = 2 \cdot * D4$   |
|---|-------------------------|
|   | D(6) = D(4)             |
|   | D(7) = D(3)             |
|   | D(8) = D(2)             |
|   | D(9) = D(1)             |
|   | D(10) = D0              |
|   | WRITE (2,9)CO,DO        |
|   | DC 3 I=1,10             |
|   | WRITE(2,2)I,C(I),I,D(I) |
| 3 | CONTINUE                |
|   | STOP                    |
|   | END                     |
| Μ | CN\$\$ EXEQ LINKLCAD    |
|   | CALL FANOUT             |
| M | CN\$\$ EXEQ FANCUT MJB  |

| MONS  | 55  | SCO | JCB | FILTER | COEFF | ICH | ENTS | CASE | 1     |
|-------|-----|-----|-----|--------|-------|-----|------|------|-------|
| A ( ( | ( C | =   | •   | 68140  | В(    | 0)  | =    | • 6  | 8140  |
| A ( ) | 1)  | =   | 3.  | 63470  | В (   | 1)  | =    | 3.6  | 3470  |
| A ( 2 | 2)  | =   | 10. | 42514  | В (   | 2)  | =    | 10.4 | +2514 |
| A ( 3 | 3)  | =   | 20. | 45234  | В (   | 3)  | =    | 20•4 | +5234 |
| A ( 4 | 4)  | =   | 29. | 90444  | В (   | 4)  | =    | 29.9 | 3704  |
| A ( ! | 5)  | =   | 33. | 93411  | В (   | 5)  | =    | 33.7 | 17306 |
| A( 6  | 5)  | =   | 29. | 90444  | В (   | 6)  | =    | 29.9 | 3704  |
| Α( ΄  | 7)  | =   | 20. | 45234  | В (   | 7)  | =    | 20.4 | +5234 |
| A ( 8 | 8)  | =   | 10. | 42514  | В (   | 8)  | =    | 10.4 | +2514 |
| A ( 9 | 9)  | =   | 3.  | 63470  | В (   | 9)  | =    | 3.6  | 3470  |
| A(10  | ))  | =   | •   | 68140  | B ( ) | 10) | =    | • 6  | 8140  |
|       |     |     |     |        |       |     |      |      |       |

23 DEC 64 J

### APPENDIX M

Bairstow's Root Extraction. Mr. Larry Hofman prepared the following analysis of root extraction using Bairstow's method and Hamming's (12) suggested numerical methods. However Hofman added procedures to insure convergence for most polynomials.

Bairstow's Method. Let the polynomial to be factored be

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
(67)  
There is a quadratic factor of the form  $Ax^2 + Bx + C$ . Assume  $a_n = 1$  and guess at the factor

$$x^{2} + px + q$$
 (68)

Divide the polynomial by the quadratic factor and obtain a quotient and a remainder, e.g.,

$$a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = (x^{2} + px) + a_{0}(b_{n}x^{n-2} + b_{n-1}x^{n-3} + \dots + b_{2}) + b_{1}x + b_{0}$$
(69)

The peculiar subscripts on the b's make notation easier. In a skeleton synthetic form

where the remainder is

$$b_1 x + b_0$$

The algebraic relations between the coefficients are

$$b_{n} = a_{n}$$

$$b_{n-1} = a_{n-1} - pb_{n}$$

$$b_{n-2} = a_{n-2} - pb_{n-1} - qb_{n}$$
(70)
$$b_{n-k} = a_{n-k} - pb_{n-k+1} - qp_{n-k+2}(k=2, 3, ..., n-1)$$

$$b_{0} = a_{0} - qb_{2}$$

The desired quadratic factor is obtained if, and only if, the remainder is identically zero. That is,

$$b_1 = b_0 = 0$$

Now find some exact method of correcting the guess of B and C in order that the above conditions are met. Consider the coefficients  $b_1$  and  $b_0$  to be functions of p and q:

$$b_{1} = b_{1}(p, q)$$
$$b_{0} = b_{0}(p, q)$$

Using Newton's method in two dimensions, expand  $b_1$  and  $b_0$  about the present guess (p and q). Writing B and C as the desired solution,

$$b_1(B,C) = 0 = b_1(p,q) + \frac{\partial b_1}{\partial p} \Delta p + \frac{\partial b_1}{\partial q} \Delta q + \dots$$
 (71)

$$b_0(B,C) = 0 = b_0(p,q) + \frac{\partial b_0}{\partial p} \Delta p + \frac{\partial b_0}{\partial q} \Delta q + \cdots$$

where

$$\Delta p = B - p \qquad (72)$$
$$\Delta q = C - q$$

are the errors to be corrected (approximately) for the next guess. Neglecting all but the linear terms in (71), results in a pair of linear eduations for the changes to be made in p and q. The problem is to find the partial derivatives which are the coefficients of the unknowns  $\Delta p$  and  $\Delta q$ . Differentiating eduations (70) with respect to p, gives

$$\frac{\partial b_{n}}{\partial p} = 0$$

$$\frac{\partial b_{n-1}}{\partial p} = -b_{n} - p \frac{\partial b_{n}}{\partial p}$$

$$\frac{\partial b_{n-2}}{\partial p} = -b_{n-1} - p \frac{\partial b_{n-1}}{\partial p} - q \frac{\partial b_{n}}{\partial p}$$

$$\frac{\partial b_{n-k}}{\partial p} = -b_{n-k+1} - p \frac{\partial b_{n-k+1}}{\partial p} - q \frac{\partial b_{n-k+2}}{\partial p}$$

$$\frac{\partial b_{n-k}}{\partial p} = -b_{n-k+1} - p \frac{\partial b_{n-k+1}}{\partial p} - q \frac{\partial b_{n-k+2}}{\partial p}$$

Now write

$$\frac{\partial \mathbf{b}_{k}}{\partial \mathbf{p}} = -\mathbf{c}_{k}^{*} \tag{73}$$

then

$$c_{n}^{*} = 0$$

$$c_{n-1}^{*} = b_{n} - pc_{n}^{*}$$

$$c_{n-2}^{*} = b_{n-1} - pc_{n-1}^{*} - qc_{n}^{*}$$

$$\cdots \cdots \cdots \cdots$$

$$c_{n-k}^{*} = b_{n-k+1} - pc_{n-k+1}^{*} - qc_{n-k+2}^{*}$$

$$\cdots \cdots \cdots$$

$$c_{0}^{*} = - qc_{2}^{*}$$
(74)

These equations are practically in the same form as (70). This suggests repeating the process of synthetic division using the quadratic factor of  $x^2 + px + q$  on the b's to obtain coefficients  $c_k$ . Then

| 1 | p | ġ | <sup>b</sup> n | b <sub>n-l</sub> | <sup>b</sup> n-2  | <sup>b</sup> n-3  | • • • | <sup>b</sup> 2  | bl              | b <sub>0</sub>   |
|---|---|---|----------------|------------------|-------------------|-------------------|-------|-----------------|-----------------|------------------|
|   |   |   |                |                  | qc <sub>n</sub>   | gc <sub>n-l</sub> | • • • | gc <sub>4</sub> | gc <sub>3</sub> | و <sup>م</sup> ة |
|   |   |   |                | pcn              | pc <sub>n-1</sub> | pc <sub>n-2</sub> | • • • | pc3             | pc5             |                  |
|   |   |   | c <sub>n</sub> | c <sub>n-l</sub> | c <sub>n-2</sub>  | c <sub>n-3</sub>  | • • • | °2              | °ı              | °0.              |

where

$$c_{n} = b_{n}$$
  
 $c_{n-1} = b_{n-1} - pc_{n}$  (75)  
 $c_{n-2} = b_{b-2} - pc_{n-1} - gc_{n}$ 

The partial derivatives desired in (71), using (73), are

$$\frac{\partial b_1}{\partial p} = -c_1^* \frac{\partial b_0}{\partial p} = -c_0^*$$

Comparing (74) and (75) gives

$$c_{k-1}^* = c_k$$
 (k = n, n-1, ..., 3, 2)  
 $c_0^* = c_1 - b_1 + pc_2$ 

Hence

$$\frac{\partial b_1}{\partial p} = -c_2 \frac{\partial b_0}{\partial p} = -(c_1 - b_1 + pc_2) \quad (76)$$

Now examine the process for the partial derivatives with respect to q. Again differentiating (70) gives

$$\frac{\partial b_{n-k}}{\partial q} = -b_{n-k+2} - p \frac{\partial b_{n-k+1}}{\partial q} - q \frac{\partial b_{n-k+2}}{\partial q}$$

$$\frac{\partial b_{0}}{\partial q} = -b_{2} - q \frac{\partial b_{2}}{\partial q}$$

Now set

$$\frac{\partial b_k}{\partial q} = -c_k^{**} \tag{77}$$

to get

$$c_{n}^{**} = 0$$

$$c_{n-1}^{**} = 0$$

$$c_{n-2}^{**} = b_{n} - pc_{n-1}^{**} - qc_{n}^{**}$$

$$\cdots \cdots \cdots \cdots$$

$$c_{n-k}^{**} = b_{n-k+2} - pc_{n-k+1}^{**} - qc_{n-k+2}^{**}$$

$$\cdots \cdots \cdots$$

$$c_{0}^{**} = b_{2} - qc_{2}^{**}$$
(78)

Since  $c_n^{**} = c_{n-1}^{**} = 0$ , it is necessary to identify

 $c_{k-2}^{**} = c_k$  (k = n, n-1, ..., 4,3)  $c_0^{**} = c_2 + pc_3$ 

if (75) and (78) are to be compared.

The partial derivatives desired for (71) are

$$\frac{\partial b_1}{\partial q} = -c_1^{**} = -c_3 \qquad \frac{\partial b_0}{\partial q} = -c_0^{**} = -(c_2 + pc_3).$$

Thus

$$b_{1}(p,q) = c_{2}\Delta p + c_{3}\Delta q$$

$$b_{0}(p,q) = (c_{1} - b_{1} + pc_{2})\Delta p + (c_{2}+pc_{3})\Delta q$$
(79)

Solving equation (79) simultaneously, results in

$$\Delta p = \frac{b_1(c_2 + pc_3) - c_3 b_0}{c_2^2 + c_3(b_1 - c_1)}$$
(80)  
$$\Delta q = \frac{b_0 c_2 - b_1(c_1 - b_1 + pc_2)}{c_2^2 + c_3(b_1 - c_1)}$$

Now replace the value of p and o with

$$d \rightarrow d + \nabla d$$

and repeat the above process until the values of  $b_1$  and  $b_0$  are sufficiently small. The convergence, when it works, is quadratic; that is, the errors, when small, are approximately souared each step. Thus an iterative process is obtained which will converge upon a ouadratic factor of the original polynomial. When found, it can be factored out (the first division step) and then use the quotient as a new polynomial to be examined by the same process.

The errors introduced by this method are accumulated as each factor is removed (division by an inexact root and then discarding the remainder). Thus a polynomial of large order will require a high degree of accuracy in order that the last factors will have an acceptable accuracy also. The convergence of Bairstow's method is somewhat sensitive to the initial guess of p and q. Since no value has been found for p and q which will cause convergence for all cases, Hofman devised a program that tries a succession of initial guesses, as outlined in Table I, in an attempt to extract a stubborn factor. This program has yet to fail after many trials.

| trial | р   | a     | roc  | ots |
|-------|-----|-------|------|-----|
| 1     | 4   | 3     | -1   | -3  |
| 2     | 2   | 1     | -1   | -1  |
| 3     | 0   | -1    | -1   | +1  |
| 4     | 2   | 2     | -1 + | jl  |
| 5     | -2  | 2     | +1 - | jl  |
|       | Tal | ble 1 | I    |     |

# APPENDIX N

.

.

<u>Hofman's FORTRAN Program for Polynomial Root Extraction.</u> With the analysis for root extraction as presented in Appendix M, Hofman wrote the following FORTRAN computer program for use on the IBM 1401-1410 digital computer.



Fig. 59. Block diagram of Bairstow's polynomial factoring computer program.

```
JCB
                      BAIRSTOW METHOD OF POLYNOMIAL FACTOR
     MCN$$
                                                                1/1/64
                                                                           LBHJ
     MON$$
                COMT 5 MIN, 5 PAGES, HOFMAN, ELECT ENGG
                ASGN MJB,12
     MCN$$
     MCN$$
                ASGN MGC, 16
                MODE GO
     MON$$
                EXEQ FORTRAN,,,18,3,,,BAIRSTOW
     MCN$$
      DIMENSION A(20), B(20), C(20), PI(5), QI(5)
      EQUIVALENCE (A1, A(1)), (B1, B(1)), (B2, B(2)), (B3, B(3)), (C1, C(1)),
     1(C2,C(2)),(C3,C(3)),(C4,C(4))
1
      FCRMAT(12)
2
      FCRMAT(E14.8)
3
      FORMAT(18HKMETHOD HAS FAILED)
4
      FCRMAT(1X,F16.8)
5
      FCRMAT(4HSX =, F11.7, 25H)
                                                         X = F_{11}
      FCRMAT(4HSX =,F11.7,4H +, F11.7,3X,7H , X =,F11.7,4H - J,F11.7)
6
7
      FCRMAT(4HSX = F11 \cdot 7)
      FORMAT(39H1COEFFICIENTS IN DECREASING POWERS OF X/)
8
9
      FCRMAT(1HK,60X,61HITERATION
                                                                             Ρ
                                        B(1)
                                                          B(0)
                    Q/)
     1
      FCRMAT(61X, 15, 3X, 1PE14.7, 3(1PE15.7))
10
      SET 5 INITIAL GUESSES.
C
      PI(1) = 4.
      QI(1) = 3.
      PI(2) = 2.
      QI(2) = 1.
      PI(3)=0.
      QI(3) = -1.
      PI(4) = 2.
      QI(4) = 2.
      PI(5) = -2.
      QI(5) = 2.
C
      READ ORDER N. N=0 TO TERMINATE PROGRAM.
12
      READ(1,1)N
      IF(N.EQ.0) STOP
      N=N+1
      WRITE(3,8)
      DC 14 I=1,N
      J = N + 1 - I
С
      READ COEFFICIENTS IN DECREASING POWERS.
      READ(1,2)A(J)
      WRITE(3,4)A(J)
14
      IF(A(N) • EQ • 1 • ) GC TC 16
      DO 15 I=1,N
C
      NORMALIZE COEFFICIENTS.
15
      A(I) = A(I) / A(N)
16
      I = 1
      WRITE(3,9)
      IF(N-3) 130,120,18
17
18
      L = N - 2
       ITRY=1
С
      SET INITIAL GUESS FOR P AND Q.
20
      P = PI(ITRY)
      Q=QI(ITRY)
      ITCNT=1
С
      CALCULATE BS.
```

| 25       | B(N)=1<br>B(N-1)=A(N-1)-P<br>DC = 30 K=2,L                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30       | M=N-K<br>B(M)=A(M)-P*B(M+1)-Q*B(M+2)<br>B1=A1-Q*B3                                                                                                             |
| С        | WRITE(3,10)ITCNT,B2,B1,P,Q         CHECK ACCURACY OF GUESS.         IF(ABS(B2).GE00000001) GO TO 45         IF(ABS(B2).L. 00000001) GO TO 45                   |
| 45       | ITCNT=ITCNT+1<br>IE(ITCNT-GT-25) G0 T0 150                                                                                                                     |
| С        | CALCULATE CS FOR CORRECTION OF P AND Q.<br>C(N)=1.<br>C(N-1)=B(N-1)-P<br>DC 56 K=2,L<br>M=N-K                                                                  |
| 50       | C(M)=B(M)-P*C(M+1)-Q*C(M+2)<br>C1=B1-Q*C3<br>DENOM=C3*C3+C4*(B2-C2)                                                                                            |
| С        | IF(DENCM.EQ.0.) GC TC 55<br>CALCULAT.: DELTA P AND DELTA Q.<br>DELTP=(B2*(C3+P*C4)-C4*B1)/DENCM<br>DELTQ=(C3*B1-(B2*(C2-B2+P*C3)))/DENCM<br>GC TC 57           |
| 55       | DELTP=•1<br>DELTQ=•1                                                                                                                                           |
| C<br>57  | CORRECT P AND Q.<br>P=P+DELTP<br>Q=Q+DELTQ<br>GO TO 25                                                                                                         |
| C<br>6 n | ROUTINE TO FACTOR QUADRATIC.<br>DSCRM=P*P-4.*Q<br>IF(DSCRM.LT.0.) GC TO 110<br>ROOT1=(-P+SQRT(DSCRM))*.5<br>ROOT2=(-P-SQRT(DSCRM))*.5<br>WRITE(3.5)ROOT1.ROOT2 |
| 80       | N=N-2<br>DC 90 J=1,N                                                                                                                                           |
| 90       | A(J)=B(J+2)<br>GC TC (17,12),I                                                                                                                                 |
| 110      | REAL=-P*.5<br>CXPT=SQRT(-DSCRM)*.5<br>WRITE(3,6)REAL,CXPT,REAL,CXPT<br>GC TO 80                                                                                |
| C<br>120 | FACTOR LAST QUADRATIC REMAINING.<br>I=2<br>P=A(2)<br>Q=A(1)                                                                                                    |
| C<br>130 | REMOVE LAST LINEAR FACTOR.<br>RCCT=-A(1)<br>WRITE(3,7)RCCT<br>GC TO 12                                                                                         |

C PREPARE FOR ANOTHER INITIAL GUESS. 150 ITRY=ITRY+1 IF(ITRY.LE.5) GO TO 20 WRITE(3,3) GO TO 12 END MON\$\$ EXEQ LINKLOAD CALL BAIRSTOW MON\$\$ EXEQ BAIRSTOW,MJB
## CONSTANT-K COMPLEMENTARY FILTERS

by

EDDIE RANDOLPH FOWLER B.S.E.E., Kansas State University, 1957

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1965

Zobel, Bode, Guillemin, Norton, Rowlands, and Szentirmai used several methods with limited success to improve the driving point impedance of fan-out filter configurations. Fritzemeyer used these ideas and King's approximate identity in presenting the aidentity algorithm and impedance elision design procedures for complementary filters.

This thesis presents in detail these two design procedures and expands on the analysis of Fritzemeyer's interactance (a fan-out filter figure of merit). The Zobel process for improvement of characteristic impedance and the driving point impedance is the focus of interest.

This investigation defines, codifies, and verifies the Zobel process, aidentity algorithm, and impedance elision as methods of improving the frequency response characteristics of constant-k complementary filters. It is shown that these methods not only improve the aidentity driving point impedance or interactance, but also the voltage transfer function with linear phase shift.

Verification is shown with graphs of aidentity driving point impedance, interactance, and voltage transfer function versus frequency. These characteristics were computed on the IBM 1620 and IBM 1401-1410 digital computers using FORGO and FORTRAN languages.

In the course of this verification several related topics of interest such as the FORGO program for evaluating the coefficients of a specialized "ladder" network's VTF, the FORTRAN program for coefficient evaluation of the product of two polynomials with algebraic coefficients, the proof of the complementary filter ADPI coefficient symmetry, and the ADPI parameter evaluation for a Type 7 filter were studied and are included in the appendices.

