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THE APPLICAnON OF RANGE IN THE OVERALL ANALYSIS OF VARIANCE

INTRODUCTION

One of the best known estimators of the variation within a sample is

the sajiple range. Although it has been widely used in industrial quality-

control, its application to the analysis of experimental data has been

limited in favor of the statistically more efficient, but con^nitationally

more tedious sample variance. Part of the reason for this is that the analy-

sis of variance was first developed in connection with experiments in which

the con^nitational labor of analysis often represented only a small fraction

of the labor of experimentation. Hence the maximum amount of information

was used in the analysis of the data. Now the analysis of variance is more

widely used, but situations frequently arise in which data are cheap and

time available for analysis often is limited.

The purposes for which one may wish to use such a short-cut measure

are two-fold:

1

)

In large scale analysis of data one may wish to save con5)utational
labor by basing the analysis completely on the short-cut measure,

2) It serves as a quick and independent computational check on a full
mean squai^ analysis of variance,

HISTORICAL REVIEW AND RATIONALE

Developments in the use of Range

W, S, Cosset who wrote under the pseudonym of 'Student' is given credit

for proposing the use of the ratio of the range divided by an independent

estimate s of the population standard deviation. As early as 1932 he re-

ferred to this ratio as the » Studentized » range in a letter written to E. S.



Pearson. In 19hii, J. W, Rodgers sho^^d how to utilize the range in esti-

mating all of the variances involved in the analysis of variance and he

credited W, J. Jennett for suggesting the procedure. P. B. Patnaik (19^0)

developed the theory and procedure for the utilization of the range in analy-

sing a completely randomized design, H, 0. Hartley (1950) modified the pro-

cedure to show how a randomized complete block design might be handled. In

1951* H, A, David presented range analysis methods for analysing the com-

pletely randomized design with cell replication and factorial arrangement

of treatments, the randomized coirqjlete block design with factorial arrange-

ment of treatments, the split-plot design and gave an approximate method

of dealing with a conqjletely randomized design with unequal cell frequencies.

The analysis of a Latin square design has not been presented in liter-

ature, as it seems to be rather lengthy and hence has few if any advantages

over the usual analysis of variance procedure. The range analysis of a

Latin square design wo\ild also involve a more con^ilex pattern of correlations

than those which will arise in the above-mentioned designs.

The purpose of this report is to review the range analysis methods

used in the above designs, present them in collected form with an exan^^le

illustrating the procedure involved in each case and to get an idea of the

pofwer which may be attributed to these tests. The data used in the exanples

in this report have been taken from Snedecor (I96I).

Approximation to the Distribution of Mean Range

The following discussion presented by Patnaik (1950) shows how an

approximation to the distribution of mean range may be derived. Let x.,Xp,

,,,,x^ be a random sanple of n observations, where x.^^ 2 x
. , taken frcm a

N(»,<r^. Denote the range of this aample by W^ - x^ - Xi , Take m indepen-



dent saniples, with n observations in each sample, and denote the mean of

the in ranges as w^ n» Denote: 6d^ mean of Wj^ and Var(Wjj) - variance

of W , where dj. the population mean of the distribution of range in samples

of size n from a N(0,1) population. Then define

M EC^my*^) - dn and (1)

7 - Var(Wj„^n/^) - (iM^)Var(Wn). (2)

As a result of the similarity of the ^i, ^2 points of the distribution of

^m n ^^ ^^ ^ i ^2 P°^^s °^ ^^ chi-distribution where Ji., , JBo are meastires

of skewness and kurtosis respectively, it seems likely that the chi-distri-

bution will give a reasonably accurate representation of the distribution

of Wj„ jj. By equating M and V with the appropriate moments of cX/|t where

X has V degrees of freedom one obtains?

M - cj2 r^r^/\^y\ , and (3)

,2

H" -m^Ym] '"

By expanding the P-functions by Stirling's formula and solving for and

c one finds the approximations

1 - -2 + 2jl + 2[v/}A^ + (1/16)1 1 , and {$)
V v3-

c - m[i + I/Uv + 1/32v2 -Vl28v3]. (6)

Table I in the appendix has been constructed with the aid of equations {$)

and (6),

The distribution of v^^ ^/(f m&y be represented by that of cJ^f^ ; there-

fore, one may represent the distribution of w /cS by that of X/jv. Sincem,n " '

it is known that the ratio of the estimate to the parameter (s/<r) is dis-

tributed as 7/t^ it follows that w^^ctf" is distributed as s/cT and hence

*m,n ^8 approximately distributed as cs. The values of M and V may be found



in Pearson's Table A (1932) and by solving the above equations v and then

c can be obtained. At present there is no direct method of judging the

accuracy of the above approximation.

Distribution of the Range Ratio

Suppose W is the range in a sanqjle of n observations from a N(^,o ).

Using the s-approxiraation to the distribution of Wj,i ^/c it follows that the

range ratio g •= cW_/wj„ j^ is distributed approximately as the 'Studentized'

range q = W /s, which is the ratio of a range in a sample of n observations

divided by an independent estimate of 6 based on v degrees of freedom, Wie

probability integral and percentage points of the 'Studentized' range ratio

have been tabled by Pearson & Hartley (19U2),

Discussion of Sample Range

The sample range is defined as the difference between the largest and

the smallest observation in the sample. It is knovm that the distribution

of the range in normal samples is independent of the population mean, but

is dependent on the sample size n and on the population standard deviation,

(f. The distribution of range is changed considerably by small departures

from normality in the tails of the parental distribution. Also the relative

efficiency of the range as an estimator of 6 decreases as n increases. Hence

in practice if n is large it is preferable to divide the sample into a number

of groups and take a weighted mean of the several group ranges. An estimator

which is unbiased and possesses minimum variance is defined to be the best

unbiased estimator. On this basis Grubbs and Vfeaver (19U7) found that the

best unbiased estimate of the popxilation standard deviation, fl", may be obtain-

ed by using the mean of group ranges from equal groups of size eight, although



groups of anjT size between six and ten are nearly as good as eight*

COMPLETELY RANDOMIZED DESIGN

Theoi^tlcal Basis

Consider the model

I = ^ + A + € (1 - 1,..,,in{ j - 1,,..,n) (7)

vhere p. ' & constant,

A. = treatment effects, and

€ random error fl-ora N(0,<^),

Patnalk (1950) has shown that the following procedure based on 'Studentlzed*

range may be used In both fixed and random models. It can be shown that W ,

the range of the group means, and v ^ the mean of the m group ranges, are

statistically Independent. Hence the ratio g » W /(w /c) Is approximately
itt in,n

distributed as W^s where s is independent of W , Now W^^j is 'Studentized'

when it is divided by s/Jn, the estimate of <f/{n, which is the standard de-

viation of the observed group means. Hence W /[](w /c)/Jg = cjn W /w is

a 'Studentized' range of a sanple of size m with degrees of freedom v. Thus

q W^c/n/Wju
n

^® *^® 'range test' for the hypothesis of no variability be-

tween groups. The critical point is the ^0(A% point of the 'Studentized'

range which is found by entering tables of the 'Studentized' range with m

groups and v degrees of freedom.

Summary Table for a C.R,D.

Source D.F. Saitple size Fanctlon calculated

a) Among groups — m Jn W
m

b) Within groups v — w /c
m,n



niustration of Procedure

ExaiT^le 1 1 The following table from (Snedecor, I96I, p. 2U2) gives the

grams of fat absorbed by six batches of doughnuts in each of four fats.

Table 1_

Grams of Fat Absorbed by 6 Batches of Doughnuts in Each of h Fats

(100 grains subtracted from each batch)

Fats

6k 78 75 S5
72 91 93 66
68 97 78 U9
77 82 71 6U
56 85 63 70
9$ 77 76 68

Means 72 85 76 62
Ranges 39 20 30 21

Here m » U fats and n « 6 observations per fat,

\ 85 - 62 - 23 " range of fat means,

^U,6
" ^39 + 20 + 30 + 21)/lt - IIOA - 27.5 is the average within fat range.

For m " U and n • 6, it can be found from Table I in the appendix that v -

18,1 and c " 2,57 J therefore the following table may be constructed.

Summary Table for Bcample 1

SoTirce D.F. Saiqple size Function calculated

a) Among fats — ^ ^ (23)
b) Within fats 18.1 — 27,5/2.57

To test the null hypothesis that all four fats have the saro capability

for being absorbed by doughnuts against the alternative hypothesis that the

fats have different capabilities for being absorbed by doughnuts con^iute



q - a/b =|6 (23)(2.57)/27.5 - 5.27

which is greater than the upper ^% limit of q given in 'Studentized' range

tables for m U groups and v 18.1 degrees of freedom* The F-test of the

analysis of variance gives

F - $U5.5/100.9 " $.h^

which is also significant at the ^% le^velj therefore, both tests conclude

that the fats ha^ve different capability for being absorbed by doughnuts,

RANDOMIZED COMPLETE BLOCK DESIGN

Distribution Theory for the Randondzed Block Analysis by Range

Considering the model discussed by Hartley (1950) one has

I^j » p + «Vj^ + ^ . + S (i . l,...,n treatments; J - 1,..,,k blocks) (8)

where ji •» a constant,

«f^ tireatment effects,
,

^j block effects, and

e » random error from N(0,o^J.

Form the residuals

Note that for a fixed block, say the jth block, the range W of the n values

o^
^ij "

"^i
^^ equal -bo the range of the n independent random variables

^±^ "
X

* -^ ^^^ °^^® ^jj ~ ^- ^^^ zero mean and a variance equal to

6^ - S^/k, where tf^/k is cov(X. .,X^.,),

The expec-ted value of the range can be de-termined by

E(W^) - E(wj^^^) - i?(1 - 1/k)d^ (10)

where djj is the population mean of the distribution of range from a N(0,1

)

population.
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The block ranges W. of €.. - g . are not independent, so the distri-

bution results derived for the mean v^^ ^ of independent sample ranges by

Patnaik (19^0) are not appropriate in this case. In this case the expected

valvie of the mean is given by (10) and by using the chi-approximation which

Patnaik erqjloyed. Hartley (19^0) found a similar approximation for the vari-

ance.

^^(^k,n^
^"^\ (*^ - <^A)(] + (k - Ijg] (11)

where V is the variance of range in sanples of size n from a normal pop-

ulation with unit standard deviation and p is the correlation between any

two of the block ranges. If an argument similar to that following equations

(1) and (2) is eii?>loyed for (10) and (11), Table II in the appendix may be

constructed.

The 'Studentized' Range Test as a Substitute for the F-test

The test statistic used to test the significance of treatment differ-

ences is

where W. is the range of treatment means, k is the number of blocks, and

Wj^ j^/c is an independent estimate of <f. This ratio is referred to tables

of the 'Studentized' range, which is the ratio of a range in a san^jle of n

observations divided by an independent estimate of ff" based on v degrees of

freedom. It has been shoim by Hartley (1950) that w /c is independent
k,n

of the ranges of treatment means and block means. The theory behind testing

the significance of block differences is similar.

Note that the scale factor c used above was obtained by equating E(w, )

and Var(wj^ ^) to the corresponding moments of c X^ witii X based on v degrees



of freedom. The difference between this and the previous approximation for

c is that M, is a mean of correlated ranges while w is a mean of inde-
K,n ^ m,n

pendent ranges.

Svuimary Table for R.C.B. Design

Source D.F, Sample size Function calcttlated

a) Treatments — n T^ Vr

b) Blocks — k /TTWJ '

c) Error r -
Sr " wk,n/°

To test treatment effect: refer a/c to tables of q with sanple size n and

degrees of freedom v.

To test block effect: refer b/c to tables of q with sample size k and

degrees of freedom v.

The small loss in efficiency in using w/c in place of s can be esti-

mated by comparing the degrees of freedom of v with the error degrees of

freedom of the corresponding full analysis of variance (n-lKk-1). A

similar loss of efficiency results when the treatment mean square is re-

placed by the range of the treatment means.

Illustration of Procedure

Exajtple 2t The analysis of the double classification using ranges m^ be

illustrated on data given by Snedecor (1961, p, 302), on four strains of

wheat planted in five randomized blocks.

Table 2

Yields of Four Strains of ^feeat in Pounds per Plot

Strain

^S£L- A B C D Means

1 yp 3373 30::^ 293 31TI;
2 3U.0 33.0 3li.3 26.0 31 .8
3 3U.3 36.3 35.3 • 29.8 3^,9

J
35.0 36.8 32.3 28.0 33.0

Ci-i ^ 3Ug 3iji8 28.8 33.9
Meini W:g 301 33:7 2O



10

utilizing the range method one can estimate the error standard devi-

ation s^. First form differences of individual yields fl-om their respective

strain means (strain residuals) and then form the ranges of these residuals

for each of the five blocks.

Table 3

Strain Residuals and their Block Ranges

.ock A B C D Range
1 -2.1 -1.5 -2.9 0.9 3.8
2 -o.U -1.8 0.6 -2.1i 3.0
3 -0.1 1.5 1.6 1.U 1.7
h 0.6 2.0 -1.U -O.U 3.U
5 2.1 -0.3 2.1 O.U 2.a,

Total 11^.3

The estimate of the error standard deviation is obtained from the mean

range by the simple equation

^ = \,n/^

where v^ ^ is the mean range of the blocks and c is a scale factor obtained

from Table II in the appendix, with k - number of blocks 5 and n » number

of treaianents U, This gives

% ' (lU.3/5)/l.88 - 1.52.

The table also shows the equivalent degrees of freedom or v « 10,9 on which

the estimate s is based. Comparing this with the error degrees of free-

dom (12) from the analysis of variance indicates a loss of 1.1 degrees of

freedom with this approximate method.

In order to test the significance of treatment differences replace the

con?JUtation of the treatment mean square by the range of the treatment means

and utilize the equation

q-Jkw^/s^

where k is the number of blocks and W^ is the range of the treatment means.
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Thus consider:

q -F (3U.8 - 28.U)/1.52 - 9.U

LookJjig in tables of the 'Studentized* range for n " ntunber of treatments

kf and V - 10,9 one may find q =5.5 which is less than the observed

value of 9»h indicating highly significant treatment differences as was found

with the analysis of variance test where it was shown that

F = Ui.82/2,19 = 20 where

F ^^ ,

- 5.95.
.01; U,3

If a test for block differences is desired one may utilize the equation

q -Jn W^s^ -JIT (33.9 - 31.l4)/l.52 * 3.7

where n is the number of treatments and W, is the range of block means.

Entering the 'Studentized' range table with n 5 and v - 10.9 one finds

that q QK U.6 so there are no significant block differences. Similar re-

sults are obtained from the analysis of variance in Snedecor where

F - 5.36/2.19 = 2.U and

^05, k.^2
3-26.

Summary Table for Example 2

Source D.F. Sample size Function calctilated

a) Treatmsnts — k J$ {6,k)
b) Blocks — 5 jr(2.5)
c) Error 10.9 ~ (lIi.3/5)/l.88

COMPLETELY RA1®0MIZED DESIGN WITH CELL REPLICATION
AND FACTORIAL ARRANGEMENT OF TREATI^ENTS

When utilizing the range method it is necessary to consider both the

fixed and random models in this design just as would be done in the usual

analysis of variance procedure*
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Fixed Model

Ckinsider the model discussed hy David (19^1) where

\jt - »^ * \ * Bj + (AB)^ +
6ij^ (i - 1,...,a; j - 1,...,bi t -

and ji - a constant,

A^ " fixed effects of treatment A,

B » fixed effects of treatment B,

(AB). . - fixed interaction effects, and

, - random error from N(0,<r), and note that "^ A, «» ^ B -
^*

i-1 j-1 J

3E (AB) » ^ (AB) - 0, The fe^^4. are independent normal random variables
£^1 iJ j^i ij ijt ^

distributed as N(0,(r). ThB statistic w^(i,j) can be con^iuted as the range

of the individual observations X. ., and its distribution may be regarded

as that of the range of the random variables fe ^^+ as ma7 be seen from

w^(i,J)2range (X^j^) range (€^j^) for fixed i,J and t = l,...,n. (13)

Recall that from Patnaik's work (19^0) an approximation to the distribution

of the mean w of a set of independent ranges has been obtained by equating

the expectation M and variance V of v/a to those of c x/Hv, It is permissible

to enter an extension of Patnaik's table with sample size n, and number of

sa2i5)les m = ab, to give s^ - w/c, the estimator of (f.

Now from (12) consider

X^j^=;i.A. .Bj MAB)^j- e^j^ (lU)

and corresponding to (13) note that

w^ (;j)=range (1^^- X^^^) - range ( (AB)^^ * ^y, " ^±,,^ ^°^ ^^^'^ J.

Toe b different ranges w^ are not independent and for the null hypothesis

Ho: (AB)^ - (i - 1,...,aj J - 1,...b),
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Hartley (19^0) obtained the mean and variance of w' and used these to fit

a similar chi-approximation to the mean of the correlated ranges. It can

be seen that s ' -(fl'/cOZ/n" = w'Jn/c' is an estimator of (f regaixiless of

whether k^ and / or B are present if the null hypothesis concerning no in-

teraction is true. From the alternative hypothesis of inequality it can

be seen from above that s ' will depend on the interaction terms (AB). . and

the ^.^x only. It has been shovm by David (1951) that s and s^^' are in-

dependent, so under the null hypothesis the ratio s^' /s ^ is distributed

^proximately as F with degrees of freedom v', v. Since X« ** ;i + A. +

^ the usual 'Studentized' range criterion may be used to test the main

effects; thus

q^ - range {X^^y{sjf^n) "Jhn range {1 )/s^

and q^ •= range (X^j J/Cs^Tan) -/mT range (X )/s •

Random Model

Consider the model

hn '^^-^^l^fij^ ^^>ij *eijt ^^ " '''•••»aj J " n—^W t- 1,...,n; (15)

where p • a constant,

v>(^ - random effects of treatment A,

fi " random effects of treatnsnt B,

("*>B) = random interaction effects, and

£ » random error from N(0,<r),
ijt

In the model «>«^, ^., ^fi)j^y ^^^Ut ^"^ ^^ independent normal random vairl-

ables with zero means and respective variances tf?, <JI, (J^ , and <5^. TheA B AB
development of the theory is much the same as above, except that main effects

must now be tested against s », for instance
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q -range (1 )/(s '//bn) =Jbn range (X. )/s„'.

Summary Table for Completely Randomized Design with Cell Replication
and Factorial Arrangement of Treatments

Source D.F. Sample size Function calculated

a) Treatment A mmmm a -fbn range (X. )

b) Treatment B — b ^ range (X ^ )

c) Interaction v« — 8 • " w'^c' ,

d) Residual T «• s^ - w/c

Tests:

For treatment A:

Random model: refer a/c to tables of q with sample size a and
degrees of freedom » v*.

Fixed model: refer a/d to tables of q with sample size a and
degrees of freedom = v.

For treatment B:

Random model: refer b/c to tables of q with sair5)le size b and
degrees of freedom v».

Fixed model: refer b/d to tables of q with sample size b and
degrees of freedom ,

For interaction: refer, on either model, c^/d^ to tables of F with
degrees of freedom v', v.

Illustration of Procedure

Example 3: To illustrate the procedure consider the following data taken

from (Snedecor, I96I, p. 3I4O) which may be described by the fixed model since

treatment effects are assumed to be fixed.
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Table h

Tireatment A
Treatment B

b„

^
26

38

30
39

U9
U7

*2
Ii3

Uo
29

28
30
35

^3
25

33

29
12

36

37

\
15

17

16

17

17
12

Table 1

Totals of Two Replicates

Treatment B
Treatment A ^ ^2 ^ Total

^ 6U 69 96 229

*2 83 57 65 205

*3 61 k^ 73 175

•u
32 33 29 9k

Total 21|0 200 263

Table 6

Ranges of Two Replicates

Treatmsnt B
Treatment A b, b„ b

1 2 3

^ 12 9 2

«2 3 1 5

«3 5 17 1

\ 2 1 5

To compute the 'treatanent B residuals', it is necessary to subtract

from each observation in Table 5 one-fourth of the colxunn total from which

the observation originated. Thus the following table is derived.
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Table 7

Treatment B Residuals (total)

Treatment B
Treatment A ^1 b2 b3

*1 u 19 30

«2 23 7 - 1

*3 1 - 9 7

% -28 -17 -37

Range

26

2U

16

20

Total 86

To estimate the residual error one must first find

w - (12 + ... + 5)/l2 - 63/12 - $,2$

from which it follows that

s^ - w/c - 5.25/1.16 ' U.53

where c is found by entering Table I in the appendix, with n = 2 replications

and m = ab = 12. This value has the equivalent degrees of freedom v = 9,0

+ 2(,88) « 10.8, In comparison note that Snedecor found s "^25 » $ with

12 degrees of freedom.

To estimate interaction utilize Table (7) and compute

w' - 86/8 = 10,75.

Then one has

8^' = w'^c' - 10,75 J2/1.5U - 9.87

where c' is found by entering Table II in the appendix, with n = 3 treatment

B factors and k - U ranges. The equivalent degrees of freedom are v' 5.U.

In coiT?)arison Snedecor found interaction error -JsT » 9 with 6 degrees of

fi*eedom.

Refer

^ «w'^/«w^ (9.87)V(ii.53)2 * U.75
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to tables of the F-ratio with degrees of freedom v' " $»hf " 10.8 and in-

teraction is found to be significant at the .05 level. To test for treat-

ment A and treatment B effects form 'Studentized' ranges q. and q„. Thus:

q -ian range (x^^^)/s^ -JS (229 - 9U)/8 = 10.5 and
U.53

q_ =rtai range (f , )/s^ " Is (263 - 200 )/6 » 5.7.
B O. w

U.53

It can be seen that q. is significant at the .01 level and q is sig-
A B

nificant at the .05 level. These three tests correspond to those made in

the usual analysis of variance and give similar results. Note that in con-

trast to the usual procedure, the range method is little affected by an in-

crease in the number of replications.

Summary Table for Above Example

Source D.F, Sample size Nmnerical value of function

^(135)/8

J6 (63)/6

(86/8)1271. 5U

5.25/1.16

t

RANDOMIZED COMPLETE BLOCK DESIGN liflTH FACTORIAL ARRANGEMENT OF TREATMENTS

Theoretical Basis

Consider the theoretical model in the fixed form discussed by David

(1951). Thus

^ijt " ^ " "^i " ^j ' ^^Vj * ^t * \it ^^ " '—^5 ^ ^'— ''"S

t •: 1,...,n) --
(16)

where |i » a constant,

' A « fixed effects of treatment A,

B fixed effects of treatment B,

a) Treatment A — k

b) Treatment B 3

c) Interaction 5.U —
d) Residual 10,8 —

•



18

(AB) fixed interaction effects,

Cx fixed block effects, and

£ . .. random error from N(0,o )•

The treatment combinations denoted by the suffices (i,j) may be broken up

into two treatoents and their interaction and t is the block index.

It follows from considering (16) that

^U. - » ^ \ * «j * (AB)^J * 2y^ (17)

whei^ the residual error may be estimated in the same way as the interaction

(blocks X treatment combinations) in an Im x n ordinary randomized conplete

block example and the interaction terra is estimated as in the previous ex-

ample*

Summary Table for Randomized Complete Block Design
With Factorial Arrangement of Treatments

Source D.F. Sample slze Function calculated

a) Treatment A ~ 1 Jnm range {1. )

b) Treatment B — m Jin range (X 4 )

c) Blocks C ~ n jLn range (2 .

)

d) Interaction
AxB

-2' ~ ^•-Sj'Jff/Cj

e) Residual ^' ~
=»; " "/°i

•

Tests

t

For treatment A
With treatment B random: refer a/d to tables of q with sample

size 1 and degrees of freedom Vp',

With treatment B fixed: refer a/e to tables of q with sair^ile

size 1 and degrees of freedom v. '

•

For blocks Ci refer c/e to tables of q with sample
size n and degrees of freedom -c'

for either model.

For interaction: refer d^/e^ to tables of F with de-
grees of freedom v_

•
, v^ '

.
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Illustration of Procedure

Thus with the above changes in mind the procedujre may be illustrated

by loolcing at the following example from (Snedecor, I96I, p. 35l). The

fixed model is appropriate in this case as treatment effects and interaction

effects are fixed.

Example U: Table 8

Yield of Cowpea Hay in Pounds From 3 Varieties

Variety Spacing (in.) 1

Block
2 3

TIF"

50
^7

8
12

56
60
66

60
53

U6
1*8

II
T
6

12T
8

12

61

58
53

60

56
1;8

To-
67

77
Tl95-

63
60

60

3oo

III
60
62

73

61

66
77

330"Block total

Prom Table 8 form the block means 1 ^ - ^SS/9 = 62, X , - 530/? = 59,

X » U96/9 ' ^^, i 1
» 500/9 = 56. Form the block residual table from

^ijt " ^..f

Table 9

Block Residuals and their Treatment Ranges

Variety Spacing (In.) 1

Block
2 3 h

Treatment
ranges

I
k
8

12

- 6
- 2

u

-lU
- 9
- 2

-12
-10
- 5

-10
- 8
- 6

8

10

II
h
8

12

3
- 2

- 9

2

- 1

- 6

5
1

- 7

7

U
- 1

5
6
8

in
h
8

12

- 2

11

2

9
18

-5
12

22

- 3

u
9

7
12

13
Treatment range total 77

Entering Table n in the appendix, with k = 9 ranges and n U blocks
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it may be found that c ' " 1 ,96 and v » "21 ,7, Thus

B„ ' -w^'/ci» - (77/l2)(l/1.96) i 3.U

which corresponds to Snedecor's s J17.67 * li«2 with 2li degrees of freedom.

To calculate Sj, ' it is necessary to compute the following two tables.
2

Table 10

Totals of h Replicates
•

Varieties h
Spacing (in.)

8 12 Variety totals
I

U
in

190

2U9
22U

203

23U
257

223
209
292

61

S

692

773
Spacing totauLs 663 69k '

Y2i+

The spacing (residuals; in the following table were coii?nited by sub-

tracting from each observation in Table (10) one-third of ihe column total

from which the observation originated.

Table 11

Varieties 1

Spacing (Residuals )

Spacing (in.)

2 Range
I

II
III

-31

28

3

^^28^

3
26

-32
13
60
h8

Total : I2T

Now for n " 3 spacings and k 3 ranges one may enter Table II in the

appendix, and find c-' •= 1 .US and v^* 3.7. Thus

8^ • - w^'/n/cg' - 12lJir/(12)(1.U8) = 13.6.

The ratio

F » s 'Vs„ '^ - (13.6)2/(3.1^)2 - 16
^2 ^1

is highly significant for Vg' " 3.7 and v^ » - 21,7. Snedecor also fotind

this ratio to be highly significant.

To finish the analysis conpute
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q '^ range (X. )/s^ • ° /IT (773 - 616)/12 i a5.U/3.Ii « 13.1,

q -Jin range (X . )A '
« jiT (72li - 663)/12 ' 17.6/3.U - 5.2, and

-B .J. w^ TUT'^

q^ -grange (X )/s ' "^ (555 - U96)/9 ^ 19.7/3.U " 5.8.
..t w^

3.1;

The first and the third test statistic are significant at the .01 level

and the second test statistic is significant at the .05 level. Sfaedecor's

analysis gives the same insults,

Surnmary Table for Above Example

SoTirce D.F. Sample size Fimction calculated

a) Varities — 3 JTT (773 - 6l6)/l2

b) Spacings (in.) — 3 JlT(72U - 663)/l2

c) Blocks C — U r? iS$$ - h96)/9
d) Interaction 3.7 — s « - (12lXn7l2)/1.76

e) Residual 21.7 — eJ* ' {^^/^2)/^,96
1

»SPLIT-PLOT DESIGN

Theoretical Basis

Consider the model discussed by David (1951).

hit M + A^ + Bj * ^±i^\^ ^^^kt *
^ijt ^^ " ^*— >^i J 1*--*«iJ

t - 1,...,n) (18)

where )i a constant,

A » fixed effects of treatment A,

B. « fixed block effects,

ii
" random main plot error

C^ fixed subtreatment effects,

(AC)^^ - fixed interaction effects, and
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€ . . . random sub-plot error component,
XJT>

The only change in this analysis is the way in which the residual, the sub-

plot error, is estimated. To estimate this error, d^ note that

^-^ij. -'t^^AC^it^^ijt-^u.*
and thus

Wjjj(i,t)= range (X^^ "
^ij.^

" range (6 ^^ - %j,)* ^or fixed i, t and

j " 1 , •,,,m.

Therefore In correlated ranges w (i,t) are obtained,

Patnaik's 09$0) approximation to the distribution of the mean of in-

dependent ranges by fitting a chi-distribution adjusted to have the correct

mean M and variance V has been discussed previously. By making a similar

approximation for the mean of correlated ranges, c and v may be determined

from his equations

V/M^ = l/2v + l/8v2 - 1/I6v^ +,.. (19)

and c - M(1 + l/liv + l/32v^ -5/1 28v^ + ...) (20)

provided that appropriate ejqjressions for M and V may be derived for the

desired design.

In the split-plot design the correlation is zero between € - e
ijt ij •

and €^ - €^ if i 4 i» and is -l/(n - 1) if i = i«, so the In ranges

are arranged into 1 independent groups of size n. Within each group any two

ranges are correlated with correlation coefficient /> , which is a function

of^ - -l/(n - 1) and the sample size m. Hence David found that

M - E(w) - d^ <r J(m^), (21)

V - Var(w) - VariC ^ Wj^(i,t)/ln, (22)
i t

- D + («-''>'w]\<^(l -l/n)/ln,

^^ VM^ - (V^)(vyd^2) j-i ^ (^ _ 1>»^(n,m)] , (23)
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where d is the expectation and V the variance of the range of m indepen-

dent unit normal random variables. From (19), (20), (21), and (22) David

constructed the Table which he utilized in analysing split-plot experiments.

This table appears as Table III in the appendix.

Summary Table for the Split-plot Design

Source D.F. Sample size Rxnction calculated

a) Main trea-fanent A — 1 /iiin range (X. )

b) Blocks B ~ m Jin range (X !*)
.J.

c) Main plot error v» (Table II) — s ' = w'iiv^c'w
d) Subtreatment C — n Jljn range (X .

)

. .t
e) Interaction AxC v' (Table II) — s • = w "^c •

f ) Sub-plot error v (Table III) ~ s = w/c

Tests:

For treatment A: refer a/c to tables of q with sample size 1 and de-
grees of freedom v'.

For subtreatment C: refer d/f to tables of q with sample size n and
degrees of freedom v.

For main plot error: refer cVd to tables of F with degrees of free-
dom v', V.

Illustration of Procedure

The following example is taken from Snedecor (I96I, p. 367),

Example $t Table 1

2

Subtreatment 1

Yields

2

of Variety 1

Block

3 h 5 6 Ifean
1

2

3
h

2.17
1.58
2.29
2.23

1.26
1.60
2.01

1.62
1.22

1.67
1.82

2.3ii

1*59
1.91

2.10

1.58
1.25

1.39
1.66

1.66

0,9h
1.12

1.10

i.«a

1.31

1.66

1.82

Note that Table (12) has listed only one of the three varieties being

considered.
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Table 1^

Variety-subtreatment Means

Variety
(main trea-taient)

Sabtrealanent 1 2 3 Mean
1 1.88 1.76 1.70 1.78
2 1.31 1.30 1.1;1 1.3U
3 1.66 1.58 I.W 1.57
h 1.82 1.6li 1.61 1.69

ifeaH uEi 1757 r^r

Table 1U

Subtreatment Residuals of Table 1^ and Their Block Ranges

Block
Subtreatment 1 2 3 h g 6

1 0729 0^00 10723 oTHS ^o730 ^o752
2 0.27 -0.05 -0.09 0.28 -0.06 -0.37

3 0.63 -0.06 0.01 0.25 -0.27 -0.5U
h O.Ul 0.19 0.00 0.28 -0.16 -0.72

Range oTJB o725 0727 o721 o72lI oT^O

Table (lli) was computed by subtracting from each observation in Table

(12) its respective subtreatment mean. Table (15) was computed by sub-

tracting the variety mean from each observation in Table (13).

Table 15

Table for the Estimation of the Variety-

Variety
Subtreatment 1 2

•subtreatment

3

Interaction

Range
1

2

3
h

0.21

-0.36
-0.01

0.15

0.19
-0.27
0.01

0.07

0.15
-O.IU
-0.07
0.06

0.06
0.22
0.08
0.09

Total 0.1,5

This example has 1-3 varieties, m - 6 blocks, n - U subtreatments

and w is the mean of eighteen ranges the first six of which are listed in

Table (lU). Entering Table III in the appendix, with n - U and ra - 6, we

find c - 1,90 and V - 3(13.U) - UO.2 where 3 is the number of varieties.

Ttiast
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s «= w/c = .310/1,90 - .163

In the analysis of variance Snedecor found s » .167 with U5 degrees of free-

dom. To estimate the variety-subtreatment interaction utilize Table (15)

and find w, ' - .U5A. Entering Table II in the appendix, with n = 3 ob-

servations and ra " k = U ranges, note that c. ' « 1.5U and v ' " $»h» Hence

s^' -w^'Jin/c^' = (.U5A)Vr/l.5U «= .179, and

^0 )no' ^'^/^ ^ " (•179)V(.163)^ - 1.21
5.4,40.2 1 w

corresponding to Snedecor's F = 1.25.
6,45

To estimate the main plot error we must construct the following two

tables*

Table 16

Vairleties 1

Totals of 6 Replications

Subtreatments
2 3 k Variety totals

1

2

3

11.25
10.59
10.22

7.6U
7.81

8.U8

9.86
9.1;6

8.90

10.92
9.86
9.66

39.99
37.72
37.26

Subtreatjnent

totals
32.06 21i.13 28. 3U 30.iUi 11U.97

To compute the subtreatment residuals it is necessary to subtract from

each observation in Table (16) one-third of the column total from which the

observation originated. Thus the following table may be constructed.

Table 17

Subtreatment Residuals

Varieties 1

Subtreatments
2 3 k Variety range

1

2

3

.56
-.10

-.U7

-.20 .5U
-.23 .02

.76

.28
.98

.51

1.02
Total 2.51

To estimate the main plot error utilize Table (17) and find w « = 2,51 /3.

Entering Table II in the appendix, with n = 6 replications and k » 3 ranges.



26

note that c' = 2.12 and v« = 9.3. Hence

s « = w'jH/C - (2.5l/3)XU - .79.

2.12

Coirpute the test statistics

q^ "^ range (X, )/s„' -/E (1.6? - 1.55)/. 79 - .7 and

q^ «=IlJil range (X .)/s„ =^18 (1.78 - 1.3li)/.l63 = 11.51.

Variety effects are thus found to be nonsignificant while subtreatinent effects

are significant at the ,01 level. The results above are verified by Sned-

ecor's analysis.

Summary Table for the Above Example

Source D.F,

a) Main treatment A

b) Blocks B

c) Main plot error 9.3

d) Subtreatment C ~
e) Interaction AxC ^M

£) Sub-plot error UO.2

Saitple size

3

6

Function calculated

J2U (1.67 - 1.55)

JT2 (.61 - .09)

a„' = (2.51/3)JX/2.12^1
Jl8 (1.78 - 1.3U)/163

s^' - (.U5A)j6/1.51i

s^ = (.558/l8)/1.90

COMPLETELY RAlffiOMIZED DESIGN V/ITH UNEQUAL CELL FREQUENCIES

The accToracy of the approximations used and the labor saved (in com-

parison with the customary mean square procedure) wi.11 in general increase

markedly with the total number of observations, which should be greater than

20, Three methods of dealing with the present case are:

a) the standard technique based on the ratio of two suras of squares,

b) a method in which the between-group estimate of (a) is divided by
a new within-group estimate based on a 'weighted mean range' and

c) the 'unweighted mean range' method in which both the betireen and
within group estimates are based on range.

The last method involves the q-ratio enialoyed by Patnaik for the case of

nearly equal cell frequencies and is valid only in the case of nearly equal
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cell frequencies.

The following example is talcen from (Snedecor, I96I, p. 269).

Example 6

:

Table 1^

Birth Weight (pounds) of Poland China Pigs in Eight Litters

Litter Birth Weij;hts Litter size Mean Range

1 2.0,

3.6,

2.8,

1.9,

3.3,
3.3, 2.8,

u.u
1.1

10 2.8U 3.3

2 3.5, 2.8,

2.U,

3.2,
2.0,

3.5,
1.6

2.3 8 2.66 2.1

3 3.3,
3.3,

3.6,

2.9,

2.6,

3.U,

3.1,

3.2,

3.2
3.2

10 3.18 .8

U 3.2, 3.3,
2.5,

3.2,
2.6,

2.9,
2.8

3.3, 8 2.98 .8

$ 2.6, 2.6, 2.9,
2.1

2.0, 2.0 6 2.37 .9

6 3.1, 2.9, 3.1, 2.5 k 2.90 .6

7 2.6, 2.2, 2.2, 2.5, 1.2 6 1.98 1.U

8 2.5, 2,hf 3.0, 1.5 h 2.35 1.5

Total 56 1 1 ,U

Method a) Snedecor found litter mean square = 1 .07 and residual mean

square, s = .36, Hence s .6 with 1^8 degrees of freedom.

Method b) The residual mean square estimate is given by

1 1 X 11
with V = h^(d. 2/v„ ) where d and V are the expectation\ \ ^ "i

and variance of the range in sanples of n. independent unit

normal random variables. The quantities d^^ /V are given by
i i

David for n. - 2-20. This is also reproduced as Table IV in

the appendix. Thus

s - (3.3 X U.81i + ... + 1.5 X 2.66)/(lU.90 + .,, + 5.U8 + ,5)
w
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* .5^ vriLth Ul ,ii degrees of freedom.

The ntuaerator in the F-ratio is calculated as in (a).

Method c) The estimate of residual error is w/c = (11.U/8)/2.72 = .52

with V = U2,U where c and v are found by inteipolation from

Table I in the appendix with n »£n./8 = 7 and k = 8.

Comparison of Three Methods of Analysing a Simple Classification
VJith Unequal Cell Frequencies

Method Value of Test Ratio Upper \% point

a) Standard F ,g - 1 .07/.36 & 2,97 3. Oil

b) Weighted mean F„
, , ,

- 1 .07/(.55)^ - 3.5U 3.11
range ''^^ '^

c) Unweighted mean qo , ^ o " 1.2oj7/.52 = 6,11 5.37
range ^''^2.2

MULTIPLE COMPARISONS

Two procedures for mean separation to follow the regular analysis of

variance are the multiple t or LSD approach and the multiple range based on

the ' Studentized ' range. Analogous procedures which one might consider to

follow the range analysis of variance are tlie multiple G-test and a step-

wise reduction of the q-test.

Multiple G-test

The Q-test sinply involves the use of the mean range in place of the

standard error in a t-test. When testing the n\ill hypothesis that yi* -

>i the t-test between two means may be represented by

Thus

t = (X^ - X2)42s2/n).
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may be used as a criterion for determining if two means differ significantly.

If the same null hypothesis is to be tested following a range analysis it

may be seen from

G = (X^ - XgVw

that

'range' LSE^^ " (\^w

where w is the mean of the treatment ranges.

Consider the example illustrated for the completely randomized design.

For the doughnuts w « 27.5» With 6 observations per group and of «= ,0$,

is taken from tables of G » (X - X )/w to be .h99. Thus

G . w =U99)(27.5) - 13.72
•Op

from which differences between individual means may be con5)ared. The follow-

ing table of mean differences may be confuted from the data.

Table 19

X - 176Fat 1 X - 162 X - 172

2 185 . 23 13
3 176 111 h
1 172 10
h 162

Prom the above table and the 'range' LSD confuted, it may be concluded

that fat 2 is absorbed in greater amounts than fat k and fat 3 is absorbed

in greater amounts than fat h, but that there are no detected differences

among the remaining four conparisons. It might be noted that in addition

^^ to the conclusion that fi^ >i^ and ^^ 4« ^, the regular LSD also finds ^ )ip

since the regular LSD * 1 1 .06, The Student-Newman-Keuls formula detects

only ji^^ )ji^.
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Stepwise Reduction of the q-test

In this procedure one may rank the differences between two treaiaiient

means fl*om highest to lowest and apply the q-test to successive differences

until a difference too small to indicate significance is found.

Considering again the exauiple illustrated for the completely randomized

design one nay set up the following six differences:

W^ - Xg - X^ = 13, W^ - X^ - X^ - h,

and let W denote the i th largest difference. Since

q - W.J^Aw^ /c) - W.^/(27.5/2.57) * 5.27X m^n I

is highly significant it is desirable to proceed further and test the next

largest difference. Hence

q » V^^/{27.$/2,$7) S 3.20

is the appropriate test to make. Since this value is nonsignificant the

conclusion is reached that while ^ R there are no detected differences

among the other means.

One might also consider orthogonal polynomials if alternative approaches

are desired.

PaVER OF THE RANGE TEST IN ELEMENTARY DESIOIS

In this section the power of the range test in elementary designs will

be coii5)ared with the power involved in the corresponding analysis of variance.

From the previous exanples it woTild seem that only a small loss in power

is experienced.
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Random Model

Consider the random model

X -)i+o^. +6 (i - 1,,..,mj j - 1,...,n) (2li)

where >i is a constant and the «*'. , 6 are all mutually independent normal

random variables with variances <5^ (for«><) and 6» for 6. Thus <f^ is the

variance between the groups and 6i is the variance within the groups, then

the observed group means, X, , will have a variance of ^ + d»/n instead of

dr/n. Hence the ususil ratio of the between-groups mean square to the within-

2
groups mean square is distributed not as Fj but, as (1 + n0 )F, where 9

6j/6 the degrees of freedom of F being v = n - 1 and v^ = m(n - 1 ).

When range methods are used the null hypothesis is tested by referring

the ratio

q " Jn range (X^^)/(w/c)

to tables of the 'Studentized* range. By following a similar argument it

will be seen that the presence of the "(-terms multiplies the standard de-

viation of JnX> by Jl + nB j thus ^ will be distributed ^proximately as

4l + n© q, where q has sample size n and degrees of freedom v.

Define ^ to be the probability of a type II error occurring and define

1 - ^ to be the power involved for a partictilar test. To compare the power

of the F-test with the power of the q-test assign a significance level «( and

find the value of 9 for which the power of the F-test has a selected value

1 - ^j then find the power of the q-test for the same valtie of 6. If

F(«;v. ,v ) is the upper lOCWjC point of F for degrees of freedom v., v then

1 + ne^ - F^jv^,V2)/F(l -^;v^,V2) .

The power of the q-test for the same value of is
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P \f* ne2q2q(.K}m,vi) - p[q > q(<V;m,v) Jf(1 - ^JV^,Y2)/F(«(jv^,V2)J

The results are given below from (David, 1953, p. 3ii8),

Table 20

Power of the q-test for a C.R.D. (Random Model)
when Povrer of corresponding F-test = 1 - B

20a. «( »= 0.05, 1 - 3 " 0.90

m \ •{ M c>o

20b. o< = 0.01

,

1 -^ - 0.90A n
3 6 oO

h
6

8

10

0.89
0.87
0.85
0.83

0.89
0.88
0.86
0.85

0.89
0,88

0.87
0.85

20d. o^ - 0.01, 1 -B« 0.75A n
3 6 oo

k
6
8

10

0.73
0.70
0.68

0.6U

0.7U
0.71

0.69
0.67

0.7U
0.72
0.69
0.67

A
li o790 0790 o790
6 0.86 0.88 0.89

8 0.85 0.87 0.87
10 0.83 0.86 0.86

20c. °( " 0.05, 1 - 3 ° 0.75

m\ 3^6 ^
"E 0.7U oTfU oTtIT

6 0.68 0.72 0.73
8 0,67 0.69 ' 0.69

10 0.65 0.69 0.69

From the table it is obvious that the loss of power is small, especially in

common situations where the number of groups m is not very large and the

number of observations per group n is not very small. It can be seen that

the number of groups has more effect on the power than does the number of

observations per group.

Very similar resiQts to those obtained in Table (20) are obtained for the

randomized coirplete block designj

^iO "^
"'^i

"'^-
**ij

(i - 1,...,inj J - 1,...,n) (25)

In the following table n has been taken as h, 7, and oO so that the F-ratios

will have degrees of freedom corresponding to those of Table (20).
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Table 21_

Power of the q-test for a Double Classification
into m Treatments and n Blocks (Random Model)

21a. o^ = 0.05, 1 - 3 - 0.90

m
n

h 7 60

k
6
8

0.90
0.88

0.87

0.90 0.90
0.«9 0.89
0.87 0.87

210. o< = 0.05. 1 - B « 0.75

m
n

k 7 »»
li

6
8

0.75
0.71

0.71

0.7U 0.7U
0.72 0.73
0.71 0.71

21b. o( = 0.01, 1 - 3 •= 0.90

m
n

h 7 OO

k
6

8

0.90
0.89
0.87

0.«9 0.89
0.88 0.88

0.87 0.87

21d. o<'- 0.01. 1 - B = 0.75

ra

n
h 7 OO

h
6
8

0.75
0.73
0.71

0.7U 0.7U
0.71 0.72
0.70 0.69

Kjced Model

Consider the model

\j - M + A^ + e^j (i - 1,,..,m; j - 1,...,n). (26)

If the fixed model is assumed then the alternative hypothesis would

state that the groups have means with different expectations but the same

variance. Thus their range may be termed a non-central range and so q would

be distributed as the ratio of a non-central range to the average of a

certain number of central ranges. The distribution function of a non-central

range is the sum of a number of multiple integrals and is extremely com-

plicated and thus the distribution of the ratio of non-central range to mean-

central range is very difficult and has not been worked out to my knowledge.

SUMMARY

Overall little loss in statistical efficiency results from the use of

mean range ±n place of error mean square s^. Under certain conditions the
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range of treatment means is more powerful in detecting certain patterns of

treatment differences than is the treatment mean square while for other

patterns the situation is reversed.

The reduction in computational labor is often considerabls but the ad-

vantage of this is sometimes offset by the fact that the analysis of variance

technique is often handled by coni)utors while the analysis of range often

requires an initial period of learning*
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APPENDK

Table I.

Scale Factor c and Equivalent Degrees of Freedom v Appropriate
to the Mean of m Uncorrelated Ranges of n Observations

n
2 3 ii 5mvc vc vc vc V

r 1.9 '1.28 3.8 1.81 5.7 2.15 7.5 2.U0 9.2 2.60

3 2.8 1.23 5.7 1.77 8.U 2.12 11.1 2.38 13.6 2.58
h 3.7 1.21 7.5 1.75 11.2 2.11 1U.7 2.37 18.1 2.57

5 ii.6 1.19 9.3 1.7U 13.9 2.10 18.1i 2.36 22.6 2.56
10 9.0 1.16 18.1i 1.72 27.6 2.08 36.5 2.3ii liii.9 2.55

.68 1.13 1.82 1.69 2.7ii 2.06 3.62 2.33 U.U7 2.53

Table II•_.

Scale Factor c and Equivalent Degrees of Freedom v
for Analysis of Double Classification

2 3

n

5 61

k V c V c V c V c V c
r* 1.0 1.00 2.0 1.35 2.9 1.58 3.B 1.75 ii.7 1.89
3 1.9 1.0^ 3.7 1.U8 5.6 1.76 7.U 1.96 9.3 2.12
h 2.7 1.07 5.U 1.5U 8.2 1.8U 11.0 2.06 13.9 2.23
$ 3.6 1.08 7.2 1.57 10.9 1.88 IU.6 2.12 18.5 2.30
6 h.$ 1.09 8.9 1.59 13.6 1.91 18.2 2.15 23.0 2.3li

7 5.U 1.09 10.7 1.61 16.3 1.93 21.8 2.18 27.6 2.37
8 6.3 1.10 12.5 1.62 19.0 1.95 25.1; 2.20 32.1 2.39
9 7.1 1.10 1U.3 1.63 21.7 1.96 29.0 2.21 36.6 2.1i1

10 8.0 1.10 16.1 1.63 2\xM 1.97 32.6 2.22 U1.9 2.U2
20 8.9 1.11 33.9 1.66 51.5 2.02 68.8 2.28 86.0 2.ii8

.87 1.13 1.80 1.69 2.71 1.06 3.62 2.33 14.50 2.53

Note: The last line in each of the above tables is the constant differ-

ence at infinity.
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Table III .

Scale Factor c and Equivalent Degrees of Freedom v = Iv' for the Split-plot
Design with 1 Main Treatments, m Blocks and n Subtreatnents

3 U ° 5 6
m v' c v' c v' c v' c
5- 1.9 1.23 2.B l.liB 3.7 1.67 l;.6 1.81

3 y.6 i.Uo 5.U 1.70 7.2 1.92 9.2 2.08

U 5.3 1.1i8 8.1 1.80 10,9 2.0U 13.8 2.22

$ 7.0 1.53 10.7 1.86 lli.5 2.10 18.3 2.28

6 8.8 1.56 13.

U

1.90 18.1 2. lit 22.9 2.33

7 10.6 1.59 16.2 1.92 21.7 2.17 27.5 2.36
8 12.3 1.60 18.8 U9h 25.2 2.19 32.1 2.38

Table IV.

Weighting Factors d^, d /V and d for Analysis of Single
n' n n n

Classification with Unequal Cell Frequencies

n31*56 789 10

d
n

1.69 2.06 2.33 2.53 2.70 2.85 2.97 3.08

d
n 2.15 2.66 3.12 3.52 3.90 U.2U li.55 U.8Ii

V
3.63 5.U8 7.25 8.93 io.5it 12.06 13.51 IU.90

n
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One of the best known estimators of the variation within a san5)le is

the saE5)le range. Although it has been widely used in industrial quality

control, its application to the anaHysis of experimental data has been

limited in favor of the statistically more efficient, but computationally

more tedious sample variance. Part of the reason for this is that the analy-

sis of variance was first developed in connection with experiments in which

the computational labor of analysis often represented only a small fraction

of the labor of experimentation. Hence the maximttim amount of information

was used in the analysis of the data. Now the anailysis of variance is more

widely used, but situations frequently arise in which data are cheap and

time available for analysis often is limited.

The purposes for which one may wish to use such a short-cut measure are

two-fold:

1

)

In large scale analysis of data one may vrlsh to save conputational
labor by basing the analysis completely on the short-cut measure.

2) It serves as a quick and independent computational check on a full
mean square analysis of variance.

W. S. Gosset who wrote under the pseudonym of 'Student' is given credit

for proposing the use of the ratio of the range divided by an independent

estimate s of the population standard deviation. As early as 1932 he re-

ferred to this ratio as the 'Studentized' ratio in a letter written to E. S.

Pearson. In ^9hh, J. W. Rodgers shovred how to utilize the range in estimat-

ing all of the variances involved in the analysis of variance and he credited

¥. J. Jennett for suggesting the procedure. P. B. Patnaik (19^0) developed

the theory and procedure for the utilization of the range in analysing a

coinpletely randomized design. H. 0. Hartley (1950) modified the procedure

to show how a randomized ccnplete block design might be handled. In 19^1,



H. A, David concluded the range analysis proced\ires by presenting procediires

for the conpletely randomized design with cell replication and factorial

arrangement of treatments, the randomized con^jlete block design with fac-

torial arrangement of treatments, the split-plot design and gave an apprcod.-

mate method of dealing with a completely randomized design with unequal cell

frequencies.

The purpose of this report is to review the range analysis methods

used in the above designs, present them in collected form with an example

illustrating the procedure involved in each case and to get an idea of the

power which may be attributed to these tests.


