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Abstract 

Nanoscale materials invite immense interest from diverse scientific disciplines as these 

provide access to precisely understand the physical world at their most fundamental atomic 

level. In concert with this aim of enhancing our understanding of the fundamental behavior at 

nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles 

(GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which 

drive this research are: incorporating mobility in nanoparticle based single-electron junction 

constructs, developing effective strategies to functionalize graphene with nano-forms of metal, 

and exfoliating ultrathin sheets of Boron Nitride. 

Gold nanoparticle based electronic constructs can achieve a new degree of operational 

freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-

electromechanical construct by incorporating elastic polymer molecules between GNPs to form 

2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying 

macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues 

to maneuver nano components and store energy at nano-scale. 

Graphene is the first isolated nanomaterial that displays single-atom thickness. It 

exhibits quantum confinement that enables it to possess a unique combination of fascinating 

electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely 

significant to enable its incorporation into applications of interest. We demonstrated the ability 

of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and 

utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by 

chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake 

morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively 

studied to understand the effect and nature of GNPs’ interaction with graphene, and applied to 

address the challenge of dispersing bare-surfaced GNPs for efficient liquid-phase catalysis. We 

also revisited the functionalization of graphene and present a non-invasive surface introduction 

of interfaceable moieties.  



 

Isostructural to graphene, ultrathin BN sheet is another atomic-thick nanomaterial 

possessing a highly diverse set of properties inconceivable from graphene. Exfoliating UTBNSs 

has been challenging due to their exceptional intersheet-bonding and chemical-inertness. To 

develop applications of BN monolayers and evolve research, a facile lab-scale approach was 

desired that can produce processable dispersions of BN monolayers. We demonstrated a novel 

chlorosulfonic acid based treatment that resulted in protonation assisted layer-by-layer 

exfoliation of BN monolayers with highest reported yields till date. Further, the BN monolayers 

exhibited extensively protonated N centers, which are utilized for chemically interfacing GNPs, 

demonstrating their ability to act as excellent nano-templates.  

The scientific details obtained from the research shown here will significantly support 

current research activities and greatly impact their future applications. Our research findings 

have been published in ACS Nano, Small, Journal of Physical Chemistry Letters, MRS 

Proceedings and have gathered >45 citations. 
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Abstract 

Nanoscale materials invite immense interest from diverse scientific disciplines as these 

provide access to precisely understand the physical world at their most fundamental atomic 

level. In concert with this aim of enhancing our understanding of the fundamental behavior at 

nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles 

(GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which 

drive this research are: incorporating mobility in nanoparticle based single-electron junction 

constructs, developing effective strategies to functionalize graphene with nano-forms of metal, 

and exfoliating ultrathin sheets of Boron Nitride. 

Gold nanoparticle based electronic constructs can achieve a new degree of operational 

freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-

electromechanical construct by incorporating elastic polymer molecules between GNPs to form 

2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying 

macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues 

to maneuver nano components and store energy at nano-scale. 

Graphene is the first isolated nanomaterial that displays single-atom thickness. It 

exhibits quantum confinement that enables it to possess a unique combination of fascinating 

electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely 

significant to enable its incorporation into applications of interest. We demonstrated the ability 

of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and 

utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by 

chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake 

morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively 

studied to understand the effect and nature of GNPs’ interaction with graphene, and applied to 

address the challenge of dispersing bare-surfaced GNPs for efficient liquid-phase catalysis. We 

also revisited the functionalization of graphene and present a non-invasive surface introduction 

of interfaceable moieties.  



 

Isostructural to graphene, ultrathin BN sheet is another atomic-thick nanomaterial 

possessing a highly diverse set of properties inconceivable from graphene. Exfoliating UTBNSs 

has been challenging due to their exceptional intersheet-bonding and chemical-inertness. To 

develop applications of BN monolayers and evolve research, a facile lab-scale approach was 

desired that can produce processable dispersions of BN monolayers. We demonstrated a novel 

chlorosulfonic acid based treatment that resulted in protonation assisted layer-by-layer 

exfoliation of BN monolayers with highest reported yields till date. Further, the BN monolayers 

exhibited extensively protonated N centers, which are utilized for chemically interfacing GNPs, 

demonstrating their ability to act as excellent nano-templates.  

The scientific details obtained from the research shown here will significantly support 

current research activities and greatly impact their future applications. Our research findings 

have been published in ACS Nano, Small, Journal of Physical Chemistry Letters, MRS 

Proceedings and have gathered >45 citations. 
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1 Introduction 

Atomic, molecular and nano sciences have made great progress in the past thirty years 

and have brought about a radical revolution in several fields of fundamental and applied 

research. These branches of science are motivated by the quest for a deep and precise 

understanding of the physical world as these provide opportunities to probe matter down to its 

most ultimate fundamental form. The underlying concept which grasps the entirety of nano 

sciences is, that at nano dimensional scale, the every day material starts behaving in 

extraordinary ways. This central concept has enabled immense possibilities that will 

revolutionize several key applications, including medical diagnosis1, drug delivery2-4, 

miniaturization of semiconductors4, environmental friendly chemical ingredients5, and clean 

energy generation6; and these emerging technologies promise to deliver even more applications 

in the future. 

Understanding the behavior of nanomaterials, which forms the heart of nano sciences 

research, is often an intricate enterprise. The ability to observe, control, and hence understand 

the molecular and nano processes has taken extraordinarily strides in the past few years7, 8. Now 

we have reached a point in the development of state-of-the-art techniques where we have tools 

to tackle the challenges offered by the emerging frontiers of these sciences. It is now conceivable 

to manipulate and even sculpt materials at their ultimate tiniest scale to a level at which, in 

essence, a full-fledged miniaturized analytical laboratory can be realized on a single hand-held 

chip9.  

 In addition to the emergence of new technologies, the development of nano sciences is 

distinguished by an entirely new class of low dimensional systems, namely: the 0-dimensional 

class of quantum dots & nanoparticles10; 1-dimensional class of nanotubes & nanowires11; and 2-

dimensional class of graphene and atomically thin materials12. Each of these classes offers a set 

of unexplored physico-chemical properties and provides avenues to peek into their small 

world and hence understand their fundamental behavior at nanoscale. This underlying 

viewpoint is what forms the central theme of the thesis work presented here. 
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The research work presented here attempts to understand the science of nano scale 

processes that were realized on three distinct nanosystems: gold nanoparticles (which belong to 

the class of zero-dimensional nanomaterials); and atomic thin sheets of graphene and boron 

nitride (which belong to the class of 2-dimensional nanomaterials).  

The three important questions which we have tackled in this thesis are:  

(1) Can a controlled nanoscale motion be incorporated in a gold nanoparticle based 

single electron tunneling construct?;  

(2) Can the atomic thin sheets of graphene be interfaced with nano forms of metal and if 

this interfacing is achievable, can this be utilized to address some of the challenges offered by 

the developing sciences of graphene and metal nanoparticles (such as modulating graphene 

conductivity and bare-surface stabilization of nanoparticles) ?;   

(3) Can atomic thin sheets of boron nitride be synthesized in processable yields by a 

method which mends the deficiencies available in current methods?   

 As explained ahead in the ensuing sections, these questions play a crucial role in 

developing our understanding of these nanosystems. The research work presented here 

comprehensively addresses these questions by examining some intriguing concepts and 

systematically developing the related theoretical concepts. The following sections provide 

overview perspectives on the three aforementioned nanosystems that will equip the readers to 

visualize the merit of the posed questions. 

1.1 Gold Nanoparticles and their electronic constructs 

A percolating assembly of gold nanoparticles cross linked with elastic polymer 

molecules (Figure 1.1) is the first nanosystem explored in the thesis. The ensuing sub sections 

present a brief account of the fundamental knowledge and the findings we have obtained about 

this nanosystem.  

1.1.1 Single electron tunneling junctions 

Percolating assemblies of metal nanoparticles form a special category of electronic 

construct, in which the electric current flows at the single electron level as opposed to the 
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continuous charge flow that takes place in conventional electronic devices13. When configured 

in a percolating fashion, the assembly of metal nanoparticles effectuates the formation of small 

metallic islands connected to each other via tunnel barriers which have a resistance exceeding 

the quantum resistance (h/e2), which enables the electrons to effectively tunnel through the 

junctions.14 With the existing fabrication techniques, it is possible to fabricate tunnel junctions of 

increasingly smaller dimensions facilitating an access to the nano regime space formed in 

between the nanoparticles.     

 

Figure 1.1 The first class of nanosystem explored in the thesis comprises of a percolating 

assembly of gold nanoparticles cross-linked with elastic polymer molecules. It is shown to 

present a unique construct within which the phenomenon of molecular spring could be 

realized.  

What makes such single electron tunneling devices appealing is their ability to combine 

the characteristics of classical effects with the quantum effects. These open the realm of 

physics to study a wide range of novel phenomena at the nanoscale.  Here, we have focused on 

the study of a system of percolating gold nanoparticles which has been cross-linked with elastic 

polymer molecules. The next sub-section provides a succinct view of the ‘molecular spring’ 

phenomena which we were able to realize in this nano construct reasserting the capability that 

lies with the single electron junction devices. 
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1.1.2 Nanoparticle junction science developed in this thesis 

The electronic construct of elastic polymer molecules sandwiched in between gold 

nanoparticles enabled integration of molecular elasticity with nanoelectronics and investigation 

of the nano dynamics. Confined nano forces were generated in this construct by exercising 

externally derived macro scale forces of electronic and mechanical origins. As explained in 

detail in Chapter 2, the gold nanoparticles were utilized as movable connectors for applying 

nano level forces and as nano electrodes to measure the nano scale deformations via change in 

the electron tunneling conductivity. The knowledge obtained from this work adds to the 

present capabilities of integrating and maneuvering electronic devices at the molecular scale.  

1.2 Graphene 

Graphene is a single layer of carbon atoms arranged in a hexagonal lattice structure. It is 

the first two-dimensional crystalline material to be isolated, and owing to its single atom thick 

nature, is of immense scientific and applied interest. This is the second nanosystem we have 

explored in this thesis. 

‚Carbon has this genius of making a chemically stable two-dimensional, one atom thick 

membrane in a three dimensional world. And that, I believe, is going to be very important in future of 

chemistry and technology in general.‛ 

This statement was quoted by Richard Smalley in his address of receiving Nobel Prize 

for the discovery of fullerenes in 1996.15 Not much later, in 2004, this concept was 

experimentally realized by Konstantin Novoselov and Andre Geim in one of their thought 

experiments that appeared as a seminal paper in Science, which led to the discovery of graphene 

and went on to win the Nobel Prize in 2010.12  

It was well established that graphite consists of stacked hexagonal carbon sheets, but it 

was believed that a single sheet was thermodynamically unstable and hence couldn’t be 

isolated from this stack. Novoselov and Geim succeeded in isolating large individual sheets by 

repeated mechanical exfoliation of graphite with scotch tape (Figure 1.2). They were the first to 

verify the 2-dimensional properties of graphene and to open up a new class of materials by 
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utilizing the same exfoliation scheme to produce single layers of boron nitride and 

molybdenum disulfide.  

1.2.1 The Excitement about graphene 

Single-atom thickness is the minimum possible dimension that will ever be achieved in a 

material; it endows the class of graphenic structures with properties at the extremes of all 

known materials: exceptional electron mobility at room temperature (200,000 cm2V-1s-1)16, 17, high 

thermal conductivity (5000 Wm-1K-1)18, high Young’s modulus (~1.0 T Pa)19 and utmost 

impermeability (doesn’t permeate even the smallest possible He gas atoms). Moreover, the 

quantum confinement in graphene leads to a linear dispersion relation of electrons and holes 

that gives interesting analogies between graphene and particle physics. This provides physicists 

opportunities to study and apply several physico-chemical phenomena that couldn’t have been 

realized earlier.20, 21 This excellent merger of scientifically significant and industrially applicable 

properties in the graphenic systems draws equal interests from scientists and engineers. 

The properties of graphene suggest several exciting electronic applications including  

high-frequency oscillators, field effect transistors, transparent flexible touch screens, and solar 

energy processing panels6, 22,23. Potential advanced material applications include mechanically 

robust and yet light-weight material applications including hydrogen visualization templates 

for TEM, components of satellites and aircraft technology.24 
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Figure 1.2 The second class of nanosystem explored in this thesis is Graphene. a) An artistic 

rendition of the single-layer thick graphene layer. b) Graphene can be obtained by s simple 

mechanical exfoliation of graphite via repeated cleavage using a Scotch tape. c) Optical 

image of a chemically modified form of graphene sheet immobilized on a silica substrate 

with pre-deposited gold electrodes.  

 

The carbon backbone of graphene provides a plethora of possibilities for surface 

chemical modification.  This aspect of graphene was thoroughly investigated and exploited 

by building advanced composites of graphene.  

1.2.2 Graphene science developed in this thesis 

In this thesis, the chemical science of graphene was developed. Chemically modified 

graphene sheets (CMGs) were interfaced with electron rich metal-nanoparticles. This is a subject 

of immense fundamental and applied interest, as integrating the 2-D nanostructures with 

entities that have useful properties, enables the formation of hybrid composites, which can 
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potentially address the pertinent research and industrial challenges.25 Integrating graphene with 

gold nanoparticles (GNPs) can form a hetero-structure that displays, not only the useful 

properties of both its parent materials, but also the novel nanoscale properties that emerge from 

their unique interfacing.25  

We comprehensively studied the interfacing of graphene-oxide sheets with gold 

nanostructures that are produced in-situ by controlled diffusion and catalytic-reduction of gold 

ions. The mechanism which enables this interfacing within this unique nanosystem was 

characterized and the ability of graphene-oxide sheets to act as GNP-stabilizing templates in 

solution was established. Such a provision led to the formation of dendritic ‘snow-flake-shaped’ 

gold-nanostructures (SFGNs) on the surface of GO sheets. We then characterized these 

graphene-sheets templated with gold nanostructures for their structural properties, electrical 

characteristics and Raman scattering; and were able to  demonstrate that the chemiophysical 

forces within this system can be regulated to control the morphology, coverage density and 

stability in solution-dispersion and that the presence of gold nanostructures can sensitively 

tailor the native properties of graphene. These studies form Chapter 3 of this thesis. 

We carried forward this discovery to address a major challenge in liquid phase catalysis 

by synthesizing stable liquid-dispersions of ‚uncapped‛ supported metal nanoparticles with 

enhanced density of accessible catalytic sites. These novel ‚uncapped‛ metal nanoparticles were 

realized by leveraging the high-density of accessible and bondable oxy-functional groups on 

graphene oxide (GO) sheets and the high steric-hindrance offered by their micron-scale area. 

With a large-density of active sites facilitated by their uncapped surface, these unique solvent-

dispersed, supported gold-nanostructures exhibited several-fold enhancements in their catalytic 

activity as compared to similarly shaped surfactant-capped gold nanoparticles. Chapter 4 

describes this work in detail. 

Two prospective studies on graphene science were also initiated and are currently 

underway; one showcased the ability of graphene to detect the sub-nano scale mechanical 

motion of a molecule and the other revisited the functionalization of graphene by 

demonstrating a novel non-invasive functionalization scheme. These works are in their 

incipient stages and are proposed as future works in Chapter 6. 
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1.3 2-dimensional form of hexagonal Boron Nitride (h-BN)  

The experimental isolation of graphene had opened up the possibility of extracting and 

isolating 2-dimensional forms of crystals composed of elements other than carbon. Novoselov 

and Geim reported that micromechanical cleavage technique can also be applied to obtain thin 

sheets of h-BN.26, 27 This is the third class of nanomaterial  explored in the thesis. 

1.3.1 Ultrathin sheets of h-BN: Analog of graphene 

An atomic thick sheet of boron nitride is isostructural to graphene (Figure 1.3), and it 

offers a unique set of properties which can’t be realized in graphene system: such as large band-

gap, high optical-transparency, tunable photoluminescence28, high mechanical strength29, high 

thermal conductivity, UV cathodoluminescence30, and atom-thick electron-tunneling-barrier. Its 

pronounced thermo-chemical stability (stable up to 1000ºC in air and up to 1800ºC in inert 

atmosphere) makes it a superior candidate for high-temperature applications and in chemically-

hazardous environment.31 In spite of these rich properties, the 2-D form of BN doesn’t yet share 

the immense progress relished by graphene. This is because the chemically-passive nature and 

strong intersheet lip-lip bonding in h-BN makes its exfoliation in its single-atom thick form 

challenging. This is the challenge that we have addressed in our work and have developed a 

chemical exfoliation route that results in the highest ever reported yields of atomic thin sheets. 

1.3.2 2-D Boron Nitride science developed in this thesis 

 The current processes of exfoliating thin BN sheets are based on sonicating BN crystals 

in the presence of intercalating solvents. However, the yields obtained in these processes are 

extremely low. Moreover, the Ultra-thin boron nitride sheets (UTBNSs) obtained in these 

processes exhibit small sizes. 32In this thesis we have investigated the first fundamental study on 

protonation of the chemically-impervious BN crystal lattice and utilized it for a layer-by-layer 

exfoliation of ultra thin BN sheets which could be dispersed in solvents. This also led to the 

transformation of the chemically-passive BN lattice to its chemically-active form enabling its 

interfacing with dye-molecules and GNPs.  This work has several potential applications similar 

to the ones that have been realized from graphene suspensions.33 
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Figure 1.3 The third class of nanosystem explored in this thesis is the atomic thin sheet of 

Boron Nitride. a) An artistic rendition of the single-layer thick boron nitride layer. It can be 

obtained by a similar mechanical scotch tape exfoliation process. b) TEM image of a 

chemically modified form of boron nitride sheet on a lacey carbon grid. These are obtained 

by a method developed in this thesis.  

1.4 Overview of Dissertation 

Chapter 1 introduces the current state of knowledge available on low-dimensional 

nanomaterials and presents an overview of the experimental projects that are discussed ahead 

in Chapters 2-5.   

Chapter 2 presents a detailed study on the introduction of nanomechanical motion in an 

electronic construct designed from gold nanoparticles and elastic polymer molecules. This work 

utilizes the nanoscale phenomenon of electron tunneling to detect nano scale motion. The work 

presented in this chapter has appeared as an article in Small.  

In Chapter 3, we study and demonstrate the capability of chemically modified graphene 

sheets to act as swimming macromolecular templates in solution and utilize this to decorate 
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these sheets with gold nanoparticles synthesized in-situ by a seeding method.. This work has 

appeared as an article in ACS Nano. 

The work presented in Chapter 4 builds on the important insights developed in Chapter 

3 and utilize these to overcome a major challenge in  liquid-phase catalysis of dispersing naked 

nanoparticles with active catalytic sites. This work has been published as an article in the Journal 

of Physical Chemistry Letters. 

In Chapter 5, a new chemical synthetic route is presented that exfoliates atomic thin 

sheets of boron nitride from its bulk form. This comprise the first fundamental study on 

protonation of chemically impervious boron nitride crystal lattice The sheets produced are 

studied in detail in terms of their structural features and utilized as templates. This work is 

currently under review by Nature Communications.  

At the end, Chapter 6 summarizes the key contributions this research has provided 

towards the field of nanotechnology and presents two potential works on graphene for future 

research directions.  

The Appendices at the end of the dissertation contain reference materials cited within 

the text, such as important mathematical derivations, fundamental concepts and supplementary 

details. As a whole, this dissertation describes classes of novel experiments on nanosystems and 

provides both a theoretical and experimental framework of carrying out such detailed 

measurements in future.   

1.5 References 

    1. Ajima, K.; Murakami, T.; Mizoguchi, Y.; Tsuchida, K.; Ichihashi, T.; Iijima, S.; 

Yudasaka, M.; Enhancement of In Vivo Anticancer Effects of Cisplatin by Incorporation 

Inside Single-Wall Carbon Nanohorns. ACS Nano 2008, 2, 2057-2064.  

    2. Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A.; Folate Functionalized Boron 

Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: 

Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy. 

Nanoscale Res. Lett. 2009, 4, 113-121.  

3.Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Boron nitride nanotubes: An 

innovative tool for nanomedicine. Nano Today 2009, 4, 8-10.  



11 

4. RadisavljevicB.; RadenovicA.; BrivioJ.; GiacomettiV.; KisA. Single-layer MoS2 

transistors. Nat Nano 2011, 6, 147-150.  

5. Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. 

Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings 

of the National Academy of Sciences of the United States of America 2005, 102, 10439-10444.  

6. Guo, C. X.; Guai, G. H.; Li, C. M. Graphene Based Materials: Enhancing Solar 

Energy Harvesting. Adv. Energy Mater. 2011, n/a-n/a.  

7. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. 

I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. 2007, 6, 

655.  

8. Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, 

U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-Temperature Quantum Hall 

Effect in Graphene. Science 2007, 315, 1379-1379.  

9. Daw, R.; Finkelstein, J. Lab on a chip. Nature 2006, 442, 367-367.  

10. Tyagi, P.; Cooney, R. R.; Sewall, S. L.; Sagar, D. M.; Saari, J. I.; Kambhampati, 

P. Controlling Piezoelectric Response in Semiconductor Quantum Dots via Impulsive 

Charge Localization. Nano Letters 2010, 10, 3062-3067.  

11. Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, 

S. G.; Zettl, A. Boron-Nitride Nanotubes. Science 1995, 269, 966-967.  

12. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, 

S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon 

Films. Science 2004, 306, 666-669.  

13. Müller, K. -.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T. Percolation model 

for electron conduction in films of metal nanoparticles linked by organic molecules. 

Phys. Rev. B 2002, 66, 075417.  

14. Wang, W.; Lee, T.; Reed, M. A. Elastic and Inelastic Electron Tunneling in 

Alkane Self-Assembled Monolayers. The Journal of Physical Chemistry B 2004, 108, 18398-

18407.  

15. Smalley, R. E. Discovering the fullerenes. Rev. Mod. Phys. 1997, 69, 723.  



12 

16. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, 

P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State 

Commun. 2008, 146, 351-355.  

17. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; 

Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. 

Phys. Rev. Lett. 2008, 100, 016602.  

18. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; 

Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 2008, 

8, 902-907.  

19. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties 

and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.  

20. Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, 

U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-Temperature Quantum Hall 

Effect in Graphene. Science 2007, 315, 1379-1379.  

21. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; 

Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac 

fermions in graphene. Nature 2005, 438, 197-200.  

22. Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; 

Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Ultrathin Epitaxial 

Graphite:â€‰ 2D Electron Gas Properties and a Route toward Graphene-based 

Nanoelectronics. The Journal of Physical Chemistry B 2004, 108, 19912-19916.  

23. Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. 

H. B.; Evmenenko, G.; Wu, S.; Chen, S.; Liu, C.; Nguyen, S. T.; Ruoff, R. S. 

Grapheneâˆ’Silica Composite Thin Films as Transparent Conductors. Nano Letters 2007, 

7, 1888-1892.  

24. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. 

J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite 

materials. Nature 2006, 442, 282-286.  



13 

25. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible 

Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 2010, 4, 1963-1970.   

26. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; 

Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, 

H.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. 

F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. 

M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-Dimensional 

Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568-

571.  

27. Withers, N. 2D nanostructures: Inorganic graphene. Nat Chem 2010.  

28. Museur, L.; Kanaev, A. Near band-gap photoluminescence properties of 

hexagonal boron nitride. Journal of Applied Physics 2008, 103, 103520-103520-7.  

29. et, C. L. Thickness-dependent bending modulus of hexagonal boron nitride 

nanosheets. Nanotechnology 2009, 20, 385707.  

30. Watanabe, K.; Taniguchi, T.; Niiyama, T.; Miya, K.; Taniguchi, M. Far-

ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat 

Photon 2009, 3, 591-594.  

31. Chen, Y.; Zou, J.; Campbell, S. J.; Le Caer, G. Boron nitride nanotubes: 

Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430-2432.  

32. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; 

Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, 

H.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. 

F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. 

M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-Dimensional 

Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568-

571.  

33. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous 

dispersions of graphene nanosheets. Nat Nano 2008, 3, 101-105.  

 



14 

 

2 Reversibly Compressible and Stretchable spring like 

Polymeric Nanojunctions between Gold nanoparticles  

2.1 Overview 

The question this chapter sets out to address is whether or not it is possible to 

incorporate controlled dynamics within an electronic construct designed from metallic 

nanoparticles. Integrating molecular dynamics into nanoelectronics has the potential to enable 

the development of nano electromechanical systems like energy storage devices, molecular 

timers and molecular actuators, which could be integrated to build self-sustaining molecular 

machines. The major challenges in building such a system are: (a) providing mechanism for 

application of confined forces acting on or generated by the molecular-junction, (b) fabrication 

of strong chemically-bonded molecular-junctions, which will not fail upon mechanical 

deformation, and (c) having a nano-scale mechanically mobile system to achieve unrestrained 

mechanics. Such molecular mechanics cannot be achieved in a device construct where 

molecular junctions are incorporated between ‘rigid' electrodes.  

We demonstrate here the fabrication and operation of a ‚molecular-spring‛ nanodevice 

which can store compression and stretching energy under the application of controllable and 

confined forces. The system is built by covalently/electrostatically incorporating cross-linked 

polyelectrolyte (cPE) molecules in between gold nanoparticles (GNPs). This leads to a 

sandwiched structure of cPE molecules in between gold nanoparticles. The molecular-junctions 

are reversibly compressed and stretched by applying electrically and centrifugally induced 

forces respectively, while GNPs play a dual role of: (a) movable connectors to apply forces, and 

(b) nano electrodes to measure molecular deformation via change in electron tunneling 

conductivity. These ‘molecular-spring' junctions can thus be compressed and stretched by high 

electrical field and centrifugal field respectively, and can subsequently apply forces on the 

nanoparticles to bring them back to their native state. We show here a study on the dynamics of 

these junctions.  
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2.2 Introduction  

The ability to control the electronic properties and manipulate the surface chemistries of 

zero- (0D), one- (1D), and two-dimensional (2D) nanostructures has led to the development of 

novel nanoscale constructs with a wide range of applications. Over the last decade, molecules 

with actuating mechanics and unique structural properties have been incorporated between 

electrode junctions1,2 to develop memory switches,3 shuttles,4–6 and rectifiers.7,8 In addition, 0D 

nanoparticles have been used for plasmonic devices,9 gas detection,10 and biodevices,11 1D 

nanowires for nanogenerators 12,13 and biosensors,14 and 2D graphene nanostructures in solar 

cells15 and gas sensors.16 Furthermore, the mobility of nanocomponents has recently brought a 

new degree of freedom in nanodevice operations using novel nanoelectromechanical systems, 

such as carbon-nanotube switches,17 biodevices,18 gas detectors,10 touch sensors,19 elastic 

membranes,20 and mechanical gauges.21 Integrating such mobility of nanoparticles with the 

elasticity of polymers can produce next-generation spring like electromechanical nanodevices 

and molecular machines. Herein, we present a study of the electromechanics of an array of gold 

nanoparticles (GNPs) with spring like nanoscale polymeric junctions incorporated between 

them. 

Integration of the elasticity of polymeric junctions into a device construct requires: (1) 

sustained forces applied to the junction from opposite directions, (2) a structurally well 

integrated polymeric junction, and (3) a nonrigid system with reasonable mobility to achieve 

unrestrained motion. Herein, we consider a device with cross linked poly(allylamine 

hydrochloride) (cPAH) molecules sandwiched between 30-nm GNPs (Figure 2.1). Metal 

nanoparticles, with their low mass and electronic properties that are sensitively dependent on 

organic capping22–24 and interparticle distance,10,18,19,25,26 are great candidates for both applying 

confined forces and measuring molecular deformation, while the cPAH provides the elastic 

polymeric junction. The GNP–cPAH structure is fabricated by a diffusional electrostatic 

assembly process, in which the thickness of the inter nanoparticle polymeric junctions can be 

controlled by the duration of nanoparticle deposition and the degree of cross linking of cPAH 

(as shown ahead)  
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Figure 2.1 Fabrication and functioning of GNP–cPAH device. a) Field-emission scanning 

electron microscopy (FESEM) images of 30-nm GNPs deposited on ~50-nm-thick cPAH film, 

which show an increase in GNP density with deposition time. Conduction–percolation is 

achieved at 120 min. b) FESEM images of typical HP and LP devices with deposition times of 8 

and 24 hours, respectively. c) FESEM image of a typical LP device between gold electrodes 

connected to a power supply. d) Schematic representation of compression and stretching of 

cPAH junctions between GNPs. Upon application of a high electric field, the GNPs undergo 

charge polarization leading to mutual attraction, which compresses the cPAH junction. Upon 

application of centrifugal force, the GNPs move apart causing the cPAH junctions to stretch. 

Scale bars: 100nm for (a, b) and 500nm for (c). 

2.3 Experimental Section 

2.3.1 Diffusional electrostatic assembly process 

The devices were prepared on a 1-µm-thick silica substrate with gold electrodes 300nm 

thick, 5µm apart, and 0.7mm wide (see Appendix A, Figure A.1) by a diffusional electrostatic 
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assembly process.  The silica substrate was treated with an oxygen plasma (600 mTorr, 100 W, 

120 s) to clean the surface and to introduce hydrophilic groups. Positively charged 

polyelectrolyte, PAH solution (5%), was spin-coated (3000 rpm, 30 s) on the clean silica 

substrate. The film was then baked in oxygen at 140 ºC for 18 h to partially crosslink the PAH 

and to attach it to silica,38 whereby increasing the baking time and temperature increased the 

degree of cross-linking. The excess PAH not bound to the substrate was removed by placing the 

substrate in deionized water for 1 min and drying in nitrogen. The prepared substrate was then 

suspended in negatively charged GNP solution to deposit GNPs on the cPAH film, followed by 

washing with water and drying. GNP deposition led to further cross-linking of the cPAH film. 

2.3.2 Estimation of compression–stretching 

All the measurements of average compression and stretching of the junctions were 

conducted by the Simmons model for electron tunneling.18 The low barrier height (≈0.4 eV) 

calculated from the Fowler–Nordheim fit suggests that the Simmons model is a more 

appropriate fit for our case. Fitting the data with the Simmons model gave a barrier height of 

(0.8156± 0.0091) eV for the LP device and (0.8335± 0.0064) eV for the HP device. The 

compression Δd was calculated from the Simmons model by taking the ratio between the final 

and initial conductivities at low bias (0.2 V): 
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where J is the current density, Δd is the compression of tunneling distance, m is the electron 

mass, φ is the barrier height, and h (=2πη) is Planck’s constant. This expression is similar to 

direct tunneling. The change in the barrier height due to rearrangement of molecules is 

expected to be low [39] and was not included in the analysis. 

2.3.3 Estimation of the difference in tunneling distances dHP–dLP  

The difference between the average initial cPAH thicknesses for LP and HP devices was 

calculated by manipulating the Simmons model to factor out the barrier thickness from the pre 

exponential term (details in the Appendix). For both HP and LP devices, conductivities were 
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measured at V1= 0.01 V (V << φ /e) and V2 = 1V (V << φ /e) and the following expression was 

used to calculate the difference in the thickness between LP and HP polymeric junctions: 
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The difference in the junction thickness (dHP–dLP) was found to be 0.81 nm.  Devices with 

high cPAH (HP) or low (LP) cPAH junction thickness were fabricated with a GNP deposition 

time of about 8 hours and 24 hours, respectively (Figure 2.1a,b). The GNP deposition time 

determined the deposition density of the GNPs and in turn the thickness of the polymeric 

junctions (see Appendix A, Figure A.2). Nanoparticles formed a generally 2D percolating 

network between gold electrodes (Figure 2.1c). HP devices were observed to have conductivity 

an order of magnitude lower than that of LP devices (dHP>dLP, Figure 2.2).  

2.3.4 Relationship between compression forces and the electric field  

The electric-field-induced forces generated between the nanoparticles are attributed to electric-

field-induced polarization of the GNPs. The polarization charges induced would be directly 

proportional to the total electric field minus the fraction used to generate currents:  

 

)( IEEq onpolarizati        Equation 2.3 

where E is the applied electric field, I is the current flowing through the systems, and a is the 

proportionality constant, which is dependent on the fraction of time tunneling takes place. Since 

the force of attraction between the nanoparticles is caused by these induced charges, the term 

expressing this force would be: 
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where F is the force, do is the initial average junction thickness, and Δd  is the final compression. 

Further, we know that at equilibrium20  

 



19 

 

Figure 2.2 Conductivities of HP and LP devices. The inter nanoparticle distance was controlled 

by varying the time of deposition of nanoparticles. Two kinds of devices are presented, namely 

HP and LP devices with deposition times of ~8 h and ~24 h to get higher and lower inter-GNP 

cPAH thickness, respectively, which in turn affects the native conductivity as shown. The 

difference in the inter particle distance for these devices can be calculated using the force 

balance and electron tunneling equations: 
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Combining these equations we get: 
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This expression fits the data well with a regression of 99.76%. From this analysis the initial 

thickness of the HP device was found to be 2.34 nm. Thermal studies on similar devices18 have 

shown that the mode of electron transfer between nanoparticles is electron tunneling18,27(direct 

tunneling at low voltages and Fowler– Nordheim tunneling at higher voltages; Appendix A, 

Figure A.3). From the Fowler–Nordheim fit to the current–voltage (I–V) curves, the barrier 

height was calculated to be low (≈0.4 eV) when compared to the band gap of most polymers (6–
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8 eV), thus invalidating the Fowler–Nordheim fit based on a square barrier.28 Therefore, in our 

case, the Fermi level of the metal nanoparticle is close to either the highest occupied molecular 

orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) level, for which the Simmons 

model,29,30 which is based on a triangular barrier, is a more appropriate fit.28 The barrier heights 

estimated from the Simmons fit are (0.8335 ± 0.0064) and (0.8156 ± 0.0091) eV for the HP and LP 

devices, respectively. Further, the difference in the average junction thicknesses of the HP and 

LP devices is estimated from the Simmons model to be dHP–dLP = (0.81±0.007) nm (see 

Experimental Section; error = 0.858%). All the measurements of compression and stretching of 

junctions reported herein are made by the Simmons model fit, where the conductivity is inverse 

exponentially proportional to the barrier width (junction thickness), thus making it sensitively 

dependent on the junction thickness and giving an accurate estimate of junction compression 

and stretching. 

2.4 Results and Discussion 

Presented are the mechanics of compression and stretching of GNP–cPAH junctions 

induced by application of a high electric field and a radial centrifugal field, respectively 

(Figure2.1d). To induce compression, a high electric field is applied which polarizes the metal 

nanoparticles, thus causing a mutual attraction between them.25 For stretching the junctions, a 

centrifugal field is applied to induce the nanoparticles to move apart. Further, a solvent-induced 

GNP rearrangement process is also demonstrated that releases internal stresses in GNP–cPAH 

structures.  
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Figure 2.3 Compression of elastic cPAH junctions. a) Electric-field-induced (4×104 V cm−1) 

cPAH junction compression for LP and HP devices over 10 min, where compression increases 

with time before reaching a steady-state value of 0.2 and 0.05 nm for the HP and LP devices, 

respectively. The data fit well with the spring-in-viscous-media equation (dashed line). Inset: 

native conductivity states for the devices. b) Steady-state junction compression in an HP device 

as a function of electric field applied for 10 min. The solid line is the fit for compression due to 

electric-field-induced polarization. Inset: AFM image of an HP device. 

 

During the electric-field-induced compression process, the electron-tunneling events 

were found to produce a current of approximately 0.1 µA per nanoparticle or a minimum 

electron-transport time of ≈10-12 s per nanoparticle. Since a tunneling event has a timescale of the 

order of 10-15 s,31 during ≈99.9% of the time there is no tunneling and nanoparticles undergo 

charge polarization which produces the inter particle force. These forces are responsible for the 

compression process. 

Upon application of a 4× 104 V cm-1 electric field for 10 min, the LP and HP devices 

undergo junction compression that increases with time and reaches a steady-state value of ≈0.05 

and ≈0.2 nm, respectively (Figure 2.3a; see Experimental Section). The rate of molecular 

compression was found to decrease with time (Appendix A, Figure A.5), thus indicating an 

increase in opposing force, which is characteristic of a spring (junction). An LP device with 



22 

lower junction thickness undergoes a lesser compression than an HP device with higher 

junction thickness (dHP–dLP = 0.81 nm; inset of Figure 2.3a). The average forces per nanoparticle 

generated by an electric field of 4× 104 V cm-1 were calculated indirectly using the spring 

constants determined by the centrifugal experiments (shown later). The estimated forces were 

found to be 1.972× 1013 N per junction for the LP device and 6.143 × 1014 N per junction for the 

HP device. These values are comparable to the reported force generated by an azo polymer 

(2.6× 1014 N per molecule), where the force from the conformational change of the azo groups 

led to a 0.22-nm displacement of an attached atomic force microscopy (AFM) tip.32 

The compression–time curve was found to follow the equation of the spring in viscous 

media (shown as a dashed line in Figure 2.3a): 

 



















dk

t

d
AF

t

d
external

2

2

   Equation 2.8     

 From this fit, the ratio of the spring constants of the LP and HP devices (kLP/kHP) was 

found to be 12.32, which is consistent with that calculated from the centrifugal field study 

(13.18, shown later). This high ratio (kLP/kHP) is expected because the spring constant for axial 

elongation of a freely jointed chain of a polymer is given by equation , where h is the extended 

length of the polymer and α and β (β > 2) are polymer-specific constants.33 
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The steady-state junction compression was found to increase with the magnitude of the 

applied electric-field-induced force (Figure 2.3b). A simple model for the polarization-induced 

force on the nanoparticles relates the compression to the electric field: 
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where E is the electric field, Δd is the compression, d0 is the initial average thickness, and B is a 

constant proportional to the fraction of time tunneling occurs (explained in the Experimental 

Section). This model fits well with the data (solid line in Figure 2.3b) with regression of 99.76%. 
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The value of dHP from this fit is (2.34 ± 0.12) nm, which gives a value of dLP = (1.53 ± 0.12) nm 

(and dHP–dLP = 0.81 nm). 

After removing the electric field, the compressed molecules were observed to relax by 

exerting a force that moves the nanoparticles back to their native positions. To reduce the 

timescale of operation, an LP device was initially compressed to a fixed base level, followed by 

a further compression of ≈2.3 pm, which decompressed to the base level in ≈0.5 min (Figure 

2.4a). A similar compression by ≈4.3 and 6.3 pm led to decompression to the base level in ≈2 and 

6 min, respectively (Figure 2.4a). The average rate of decompression depends on the thickness 

of the native junction (Appendix A, Figure A.7) and the magnitude of the induced compression. 

The rate of decompression followed the spring-in-viscous-media equation (solid line in Figure 

2.4a; see the discussion on device dynamics in Appendix A, section A.8). A complete 

compression–decompression cycle and the associated two orders of magnitude change in 

conductivity for the electric-field-induced force on an HP device is shown in Figure 2.4b, where 

molecules compressed by 0.2 nm relax back to their native state in ≈1200 min. 

Furthermore, since the nanomechanical response of the polymeric junctions depends on 

the mobility of the GNPs, changing the restraint on the GNPs by anchoring them with different 

polyelectrolyte thicknesses changes the device performance (Appendix A, Figure A.8). It was 

determined that for the system to exhibit a reversible compression, the poly electrolyte 

thickness cannot be too small (i.e., monolayer) or too large (>100 nm in thickness). For example, 

devices fabricated through layer-by-layer assembly of (PAH–GNP)10, with a monolayer of PAH 

between the GNPs and the substrate, did not exhibit compression. This finding is attributed to 

the complete restraining of the GNPs because they are closely bound to the surface. On the 

other hand, devices fabricated with a much larger polyelectrolyte thickness (>100 nm) exhibited 

partial relaxation in their initial compression runs (Appendix A, Figure A.9) 
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Figure 2.4 Relaxation of the cPAH junctions. a) Compressed molecules upon release of electric-

field-induced forces relax back to their native state with the rate of relaxation governed by the 

magnitude of compression. An LP device compressed by ≈2.3, 4.3, and 6.3 pm relaxes back to its 

precompressed state in ≈0.5, 2, and 6 min, respectively. The relaxation data fit well with the 

spring-in-viscous-media equation (solid line). b) Compression–relaxation cycle of an HP device 

with two conductivity states. The compressed state (0.2 nm compressed) with conductivity 

higher by two orders of magnitude is achieved by application of an electric field of 40 kV cm−1 

for 20 min and the native state is restored after ≈1200 min. 

 

This result is attributed to an irreversible relocation of GNPs into the larger 

polyelectrolyte network. Finally, the devices with a ≈50-nm-thick polyelectrolyte layer and 30-

nm GNPs show completely reversible compression (Figure 2.4b). Here, the GNPs exhibit a 

relatively unrestrained mobility without undergoing irreversible relocation. This unrestrained 

motion also compensates for the collective compression of the junctions . 

It was established that an electric-field-induced increase in conductivity is a 

consequence of junction compression and not of charge trapping or ionic conductivity, as 

explained by the following points. (1)An LP device subjected to successive applications of 

positive and negative electric fields of 6 × 104 V cm−1 for 5 min exhibited a continued increase 

in conductivity, which indicates a polarization-induced compression (Figure 2.5a), unlike 
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charge trapping where an increase is expected to be followed by a decrease in conductivity for 

charging and discharging of the junction. (2) Typically, a two orders of magnitude higher 

electric field is required for charge trapping than the electric fields used in this study.34 (3) The 

conductivity change due to charge trapping occurs at a timescale of micro- to nanoseconds35 as a 

result of fast charge transfer, whereas in this study the timescales are in minutes. (4) There is no 

diodic behavior or hysteresis for high-voltage I–V runs (Appendix A, Figure A.6). 

Compression of the molecular junction was confirmed by studying the 

electromechanical response of a device on a crosswire electrode arrangement (Figure 2.5b, 

inset). A 4 × 104 V cm−1 electric-field-induced compression of 4.3 pm along the x axis resulted in 

molecular stretching of 1.6 pm in the y direction, which indicates transverse-compression-

induced longitudinal stretching (Figure 2.5b). 

This gives a Poisson's ratio for the GNP–cPAH structure of 0.37, which is comparable to 

the 0.33 to 0.5 for polyelectrolyte multilayers.36,37 Since both an increase and a decrease in 

conductivity are observed instantaneously on the same device, this observation also confirms 

that the change in conductivity is not a result of the change in contact resistance. Additionally, 

the conductivity change is not thermally induced since any heat generated due to current flux 

should dissipate in much smaller timescales; however, in many cases decompression took as 

long as ≈1000 min. Ionic conductivity was also eliminated as a mode of conduction, since 

vacuum application led to an increase in conductivity, which is contrary to ionic conductivity. 

To induce stretching of the polymeric junctions, a centrifugal field was applied to the 

GNP–cPAH devices. As expected, all devices under the centrifugal field showed an increase in 

molecular stretching with time before reaching the steady state (Figure 2.6a). An LP device 

placed in a centrifugal field of 90 g *≈1.065 × 10−14 N per junction, calculated by using Equation 

2.11] shows a steady-state molecular stretching of ≈2.7 pm (≈35.61 pm for the HP device; see 

Appendix A, Figure A.10).  

 

Fcentrifugal field = (2RRtGNP-cPAH)2R)   Equation 2.11 
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Figure 2.5 Proof of compression mechanism. a) The conductivity of an HP device increases 

upon successive applications of electric fields of equal magnitude in the positive (+6 × 104 V 

cm−1) and negative (−6 × 104 V cm−1) directions. Inset: the increase in average junction 

compression. b) In a crosswire configuration of electrodes, upon application of a 4 × 104 V cm−1 

electric field in the x direction, a molecular compression of ≈4.2 pm along the x axis results in 

molecular stretching of ≈1.8 pm along the y axis. Top inset: optical micrograph of the crosswire 

configuration of electrodes. Bottom inset: schematic of expansion in the y direction induced by 

compression in the x direction. (a) and (b) together show that the change in conductivity in LP 

and HP devices is exclusively a result of molecular compression and not charge trapping. Scale 

bar: 10 µm. 

 

Here, R is the position of the device from the center of the centrifuge, ΔR is the distance 

between GNPs,  and t are the density and thickness of the GNP–PAH film, and ω is the 

angular velocity. As in the case of electric-field-induced compression, the spring-in-viscous-

media equation fits well for the centrifugation-induced stretching (solid line in Figure 2.6a). No 

cPAH stretching is observed below a threshold centrifugal field of 45 g, which corresponds to 

the static frictional barrier to move nanoparticles (probably due to bonds with the substrate 

surface). A linear junction stretching is observed above 45 g. 
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A direct measurement of the spring constant (or stiffness) for the HP and LP devices was 

made by steady-state measurement of stretching at different forces. The spring constant for the 

HP device was estimated to be kHP = 2.99 × 10−4 N m−1 and for the LP device was 

kLP = 3.94 × 10−3 N m−1. The higher spring constant for the LP device is expected, as explained 

earlier. These values are comparable to the spring constants estimated for lateral compression of 

polyelectrolyte film (k = 2.76 × 10−3 N m−1).36 The typical transient relaxation behavior of a 

device is shown in Figure 2.6b, where a pre-stretched LP device, when further stretched by 12 

pm, relaxes back to the pre-stretched level in ≈60 min. The data fit well with the spring-in-

viscous-media equation (solid line in Figure 2.6b). The inset in Figure 2.6b shows the 

centrifugation setup. Further, since the deformation of the junctions (electrically measured) is 

purely mechanically induced by centrifugal force, these results confirm the mechanical 

characteristics of the junction-deformation model of Figure 2.1d. However, further microscopic 

studies will be required to completely understand the mechanism of deformation. 

In another experiment, to release the internal stresses in the nanoparticle array, the GNP–cPAH 

devices were subjected to multiple annealing cycles of removal and addition of water adsorbed 

on cPAH junction molecules. An annealing cycle consisted of a 3 min exposure to a vacuum (1 

mTorr) to remove the adsorbed water and a 5 min exposure to ≈40% humidity to allow 

readsorption. A typical response to annealing is shown in Figure 2.6c, where for an LP device 

an irreversible increase in average inter nanoparticle distances of ≈6 pm (corresponding to a 

decrease in conductivity of the device) was observed after four annealing cycles. This 

phenomenon is attributed to the release of the internal stresses in the nanoparticle array created 

during fabrication. While adsorption of water causes cPAH to become charged, mobile, and 

swollen, desorption of water causes the junction to contract. Repeated cycles of adsorption–

desorption allow stabilization and readjustment of the nanoparticles, which causes the release 

of internal stresses. From our calculations of the spring constant for the LP device, we estimate 

the internal stresses per nanoparticle due to fabrication to be 2.36 × 10−14 N per junction by 

using Equation 2.12:  

 

F|expansion/Area = (kLPx)/(dGNP2/4)   Equation 2.12 
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Figure 2.6 Molecular stretching. a) Centrifugation-induced stretching is achieved by spinning 

an LP device under a centrifugal field of 90 g, which results in an increase in the junction 

stretching with time. Steady-state stretching of 2.7 pm is achieved in 30 s. The data fit well with 

the spring-in-viscous-media equation (solid line). The inset shows the increase in stretching 

with an increase in centrifugal field applied for 30 s. After a threshold centrifugal field of 45 g, 

cPAH junction stretching was found to increase linearly (solid line) with centrifugal field. b) 

The transient relaxation of another LP device is shown. The device relaxes from its stretched 

state of 12 pm to its prestretched state in ≈60 min. Inset: schematic of the setup for a device chip 

on a centrifuge. c) Solvent-induced rearrangement. An LP device annealed with alternate 

exposures to a vacuum and 40% humidity leads to a decrease in conductivity. After the fourth 

cycle, an irreversible decrease in conductivity of 13% is achieved, which corresponds to ≈6 pm 

expansion of the molecular junctions. The observed expansion is expected to be a result of 

release of internal stress in the GNP–cPAH structure, which was estimated to be 2.36 × 10−14 N 

per junction. 

 



29 

Finally, it is important to note that the compression–stretching values measured here are 

the average for the cPAH junctions through which conduction occurs, which in turn are the 

smallest cPAH layer thicknesses, since conduction occurs through the least-resistant paths. 

Also, because we used a different set of LP and HP devices on the same chip for electrically 

induced compression, centrifugally induced stretching, and annealing, we add a further ≈10% 

error in calculation of the spring constants and forces. 

2.5 Summary 

In conclusion, we have demonstrated a working system in which the spring like 

mechanics of cross linked molecular junctions have been incorporated as an active element of an 

electromechanical nanodevice, where forces (per junction) in the range of 10-15 to 10-13 N were 

found to produce 2.7 pm to 0.2 nm reversible compression or stretching of the junctions. The 

compression and stretching mechanics were found to be sensitively dependent on the junction 

properties and followed the spring-in-viscous-media model. The spring constants for the 

junctions were found to be 3.944 X 103 and 2.99 X 104 Nm-1 for devices with average junction 

thicknesses of 1.55 and 2.34 nm, respectively. We envision that this system will provide a solid 

step forward towards controlled electromechanics of nanoparticle devices. The integration of 

spring like molecular mechanics within nanodevices, as demonstrated here, can potentially be 

applied to build next-generation molecular systems, such as molecular-manipulation tools, 

electromechanical switches, and molecular-energy storage systems, and will add to the 

evolution of molecular machines and functional nanoelectronics. 
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3 Implantation and Growth of Dendritic Gold nanostructures 

on Graphene derivatives: Electrical Property Tailoring and 

Raman Enhancement 

3.1 Overview 

This chapter presents the science of forming gold nanoparticle composites of graphene 

sheets. Interfacing electron-rich metal nanoparticles with graphene derivatives can sensitively 

regulate the properties of the resultant hybrid with potential applications in metal-doped 

graphene field-effect transistors (FETs), surface-enhanced Raman spectroscopy, and catalysis. 

Here, we show that by controlling the rate of diffusion and catalytic reduction of gold ions on 

graphene oxide (GO), dendritic ‚snowflake-shaped‛ gold nanostructures (SFGNs) can be 

templated on graphene. The structural features of the SFGNs and their interfacing mechanism 

with GO were characterized by microscopic analysis and Raman-scattering. We demonstrate 

that (a) SFGNs grow on GO-surface via diffusion limited aggregation; (b) SFGN’s morphology 

(dendritic to globular), size (diameter of 150-500 nm and a height of 45-55 nm), coverage 

density, and dispersion stability can be controlled by regulating the chemiophysical forces; (c) 

SFGNs enhance the Raman signal by 2.5 folds; and (d) SFGNs act as anti-reduction resist during 

GO-SFGN’s chemical reduction. Further, the SFGNs interfacing with graphene reduces the 

apparent band gap (from 320 to 173 meV) and the Schottky barrier height (from 126 to 56 meV) 

of the corresponding FET. 

3.2 Introduction 

Graphene’s unique electrical,1, 2 mechanical3 and interfacial4 properties, such as (a) high 

carrier mobility with ballistic transport,1, 2 (b) mechanically strong carbon-carbon sp2-bonded 

honeycomb lattice,5 (c) confined carrier transport in truly two-dimensional space,6 (d) adjustable 

surface chemistry via chemical7-9 or plasma10 processes and (e) sensitive response to surface 

doping,11, 12 have led to the development of ultrafast electronic devices,1, 2, 13, 14 molecular 
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resolution sensors,12 biodevices,4 polymer composites,15 liquid-crystal devices,16 

electromechanical systems,17 and magnetoresistive/quantum-Hall devices.18-20 Currently, there is 

a great interest in functionalization7-9 and doping11, 12 of graphene to manipulate its electrical,7-9, 11 

structural,4 and interfacial4 properties to enhance its performance. Although, chemical 

functionalization of graphene results in the formation of scattering sites that reduce its carrier 

mobility, the thus produced graphene chemical derivatives (GCDs) are appropriate for 

interfacing with other systems4 and for room-temperature electronic applications as they exhibit 

a suitable band gap/conductivity. Metal functionalization on graphene however needs to be 

controlled and its effect studied in detail. For this purpose, solution-based gold 

functionalization of graphene is shown here. 

Being structurally distinct from 0D molecules and 1D polymers, solvent-dispersed GCDs 

with quasi-2D structure and tethered chemical groups show novel physiochemical properties. 

We demonstrate that GCDs function as excellent in-solution substrates for metal nuclei seeding 

and their subsequent growth into nano dendritic structures. This process, occurring on GO 

sheets, is governed by diffusion limited transport21 of the gold ions with anisotropic lattice 

incorporation of gold atoms during the seeding growth and is controlled by the mass-transfer 

rates (shown later) (Figure 3.1a). Here, since the SFGNs are grown on GO, this process is 

fundamentally different from spherical nanoparticle interfacing 7, 22-24 with graphene, via 

adsorption, electrochemical, or chemical routes. The highly anisotropic SFGNs, templated on 

GO sheets 1−4 nm thick (1−5 layers) and 25−200 μm2 in area, have predominantly five primary 

branches with several sharp-edged secondary branches. The SFGNs interfacing on GO leads to 

(a) increase in conductivity by two folds, and (b) 2-fold enhancement of the Raman signals from 

GO. Further, the GO−SFGN sheets reduced to graphene-SFGN hybrid exhibits an apparent 

band gap of 164.24 meV and a Schottky barrier height of 38.98 meV. We envision that the 

graphene-metal interfacing will open avenues for next-generation graphene applications in 

areas including electronics, where the semiconductor properties of graphene could be 

modulated and integrated with other GCD systems to make graphene logic devices; 

bioimaging/diagnostic systems, where the surface-enhanced Raman spectroscopy (SERS) from 

SFGNs could be used for sensing biocomponents and bioprocesses; optoelectronics, where the 
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optical properties of SFGNs could be integrated with the electrical sensitivity of graphene to 

build solar cells, optical sensors, etc.; nanoheaters, where the IR absorption by anisotropic gold 

nanostructures could be used to generate thermal energy; and nanocatalysts.24 

3.3 Experimental Section 

3.3.1 Preparation of Graphene-Oxide 

To prepare the GO sheets, 5 g of Mesh 7-graphite flakes were mixed with 33 mL of 68% 

nitric acid + 200 mL of 96% sulfuric acid and stirred continuously for 40 min in an ice bath; 30 

grams of potassium permanganate was then added into the solution, while the temperature was 

slowly increased to 40 °C, and kept at 40 °C for 30 min. Subsequently, the excess potassium 

permanganate was removed by treatment with 10% hydrogen peroxide. Finally, the GO sheets 

were obtained by centrifuging this solution at 15000 rpm for 30 min followed by repeated 

washing with DI water. The sample was then dialyzed (MWCO 2000D) for 24 h and the 

subsequently stored as a suspension in DI water at room temperature. All the chemicals used in 

this process were obtained from Fisher Scientific. 

3.3.2 Synthesis of GO-SFGN Hybrids  

The GO-SFGN hybrids were synthesized by mixing 1.3 µL of (50% w/v) hydroxyl-amine 

(Sigma Aldrich) to 50 mL of 0.275 mM gold chloride trihydrate (Fisher Scientific) followed by an 

addition of 100 μL of graphene-oxide suspension (80 mM carboxylic acid, quantified by 

titration). The mixture is kept under constant agitation (100 rpm) at room temperature for 1 h 

which results in the formation of SFGNs on GO sheets that can be immobilized on an amine-

functionalized silica substrate. 

3.3.3 Immobilizing the GO-SFGN Hybrids on silica surface 

The GO sheets functionalized with metal nanostructures were immobilized via 

electrostatic interactions on a heavily doped n-type silicon substrate with a 300 nm thick 

thermally grown silica layer. Briefly the substrate is first exposed to oxygen plasma (100 W, 2 

mbar, 2 min) followed by treatment with 3-amino propyl triethoxy silane (Gelest) that makes 
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the surface positively charged. This amine-functionalized substrate is then baked for 4 min at 

120 °C and then momentarily exposed (~2 min) to the aqueous dispersion of GO, hydroxyl 

amine, and gold salt. The substrate is then thoroughly washed with deionized (DI) water that 

facilitates electrostatic and selective deposition of GO-SFGN hybrids on silica. 

3.3.4 TEM and SAED 

 TEM images and SAED patterns were obtained with a Philips CM 100 transmission 

electron microscope operated at 100 kV. The GO�SFGN hybrids were deposited from solution 

on to 300 mesh size copper TEM specimen grids (Electron Microscopy Sciences) having a 

carbon support film. 

3.3.5 FESEM and EDS  

FESEM Images and EDS data were obtained with a Leo field emission scanning electron 

microscope operated at 10-15 kV 

3.3.6 Electrical Studies 

The electrical measurements for determining the effect of hydrazine reduction on GO 

and GO-SFGN hybrids were taken at room temperature, under a steady nitrogen environment, 

using a Keithley 2612 dual-channel system source meter connected to a computer via a 

GPIB/IEEE-488 interface card. The temperature studies for determining the band gap and 

Schottky barrier height were carried out in a Janes cryostat, the temperature of which can be 

externally controlled by a Lake Shore 331 temperature controller. 

 

3.3.7 Raman Spectroscopic Measurements 

The Raman spectra of GO and GO-SFGN sheets were determined by using a LabRAM 

ARAMIS Raman spectrometer located at the University of Kansas, Bioengineering Research 

Center, Lawrence, KS. The instrument was manufactured by HORIBA Jobin Yvon (Edison, New 

Jersey), and a HeNe laser (l = 633 nm, a laser power of 17mW) was used as one of the excitation 

sources for the samples. The instrument conditions were a 200 μm confocal hole, 150 μm wide 
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entrance slit, 600 gr/mm grating, and 100_ objective Olympus lens. Data processing was 

performed using LabSPEC 5 (HORIBA Jobin Yvon). The samples were mounted in a computer-

controlled, high-precision x-y stage. 

3.4 Results and Discussion 

In this work, Hummers method 8, 25 is used to prepare graphene oxide (GO), having oxy-

functional groups such as carboxyl (−COOH), hydroxyl (−OH), and epoxy groups (4) on its 

surface. In GO suspension, these oxy-functional groups are leveraged to stabilize gold nuclei, 

synthesized in situ by hydroxyl-amine assisted reduction of gold salt. The gold nuclei are 

subsequently grown via the seeding growth mechanism (Figure 3.1a) to synthesize the 

GO−SFGN hybrid by mixing 1.3 μL of hydroxylamine (NH2OH, 50% w/v) to 50 mL of 0.275 mM 

gold salt (HAuCl4.3H2O) followed by an addition of 100 μL of graphene oxide (GO) suspension 

(80 mM carboxylic acid, quantified by titration). After constant agitation at room temperature 

for 1 h, the resultant GO−SFGN hybrid sheets are immobilized on an amine-silanized silica 

substrate (see Appendix B, Figure B.1). Field emission scanning electron microscopy (FESEM) 

(Figure 3.1b, right) indicated excellent templating of SFGNs on GO. The SFGNs appearing 

darker under FESEM (labeled as ‚D‛) are probably a result of their attachment on the rear GO 

surface (facing silica), which shields the SFGNs giving lesser average surface-electron-density. 

The brighter SFGNs (labeled as ‚B‛) are templated on the exposed GO-surface. This is expected 

since SFGNs will nucleate on both sides of the GO-sheets exposed to the solution. This is further 

evidenced by the wrinkles emanating on the GO sheets from darker SFGNs (beneath the GO 

sheet) (Figure 3.1b left, see Appendix Figure B.2), which are expected to raise, stretch, and 

therefore wrinkle the GO-sheets around them. 

Figure 3.2a shows FESEM micrographs of SFGNs with five and six primary branches 

(Np) and several secondary or side branches. The presence of these secondary branches makes 

the SFGNs fundamentally different from multipod and star-shaped gold nanostructures.(26-29) 

TEM (Figure 3.1b, center) of an SFGN with five primary branches (Np = 5), shows an average 

primary branch length (LP) of 260 nm and an average width (Wp) (the maximum thickness of the 

primary branch at the nodal point) of 120 nm. Each primary branch backbone structure 
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emanates parallel secondary or side branches with the same angles of emergence (Θe) (the angle 

between a side branch and its primary branch backbone) which vary from 35° to 90° from 

branch to branch. Θe for side branches labeled S-1 and S-2 is 60° while that for the side branches 

 

 

Figure 3.1 Formation mechanism of snowflake shaped gold nanostructures on graphene-

oxide. (a) Interfacing the −COOH and −OH groups on GO sheets with a freshly prepared 

solution of gold nuclei, formed during hydroxyl-amine-assisted reduction of gold salt, results in 

nuclei attachment and seed-mediated formation of snowflake-shaped gold nanostructures 

(SFGNs) on the GO surface. (b) Right: FESEM of SFGNs templated on GO lying on silica 

surface. The SFGNs appearing darker (labeled D) are on the rear surface, while the SFGNs 

appearing brighter (labeled B) are on the front surface of the immobilized GO sheet (scale bar = 

500 nm). Center: Higher magnification transmission electron microscopy (TEM) image showing 

the detailed characteristics and the structural parameters of SFGN exhibiting a dendritic 

morphology. Scale bar = 100 nm. Left: FESEM image showing wrinkles (labeled W) on GO 

associated with a darker SFGN. Scale bar = 200 nm. 
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labeled S-3 and S-4 is 80° (Figure 3.1b, center). This indicates that the secondary-branch’s 

growth-direction is influenced by the crystal-lattice of their common primary branch rather 

than a random nucleation process. The longer secondary branches closer to the center than 

those near the tip, indicate that near-center secondary branches are exposed to the growth 

mixture for a longer time, implying a progressive growth of the primary branches from nuclei. 

Also, as shown later, a more pronounced secondary branching and instances of ternary 

branches in SFGNs can be obtained by increasing the concentration of gold ions in solution. 

Further characterization for more SFGNs is summarized in Appendix B, Table B1. Anisotropy 

as evaluated by circularity parameter (λ = 4π*area/perimeter2), as expected showed λ < 1, 

characteristic for branched structures (Figure 3.2a, bottom insets). 

The effect of interaction of SFGNs with the GO-surface was probed by Raman scattering 

signal analysis for bare GO and GO−SFGN sheets (Figure 3.2b). Raman spectrum for a GO sheet 

exhibits the regular two peaks, corresponding to the D-band line (1340 cm−1) and the G-band 

line (1590 cm−1). SFGN-interfacing on GO enhanced the intensity of these bands by >250% 

(Figure 3.2b). Surface enhancement of Raman signals can be via electromagnetic enhancement 

(excitation of localized surface plasmons involving physical interaction) or chemical 

enhancement (formation of charge-transfer complexes involving chemical interaction) with 

enhancement factors of 1012 and 10 to 100, respectively.30, 31 The low enhancement factor for 

GO−SFGN hybrid indicates the presence of a chemical interaction or bond between SFGNs and 

GO. The Raman signal enhancement is similar to the SERS effects previously reported in metal 

nanoparticle composites of carbon nanotubes.32 As shown later, a Raman enhancement factor of 

800% is achieved by increasing the density of gold nanostructures on GO sheets by changing 

the synthesis temperature to 75 °C (Figure 3.2b). 

Atomic force microscopy (AFM) scans on the GO−SFGN hybrids (Figure 3.2c) shows 

three regions: (i) large peaks corresponding to the SFGNs, (ii) small peaks corresponding to the 
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Figure 3.2 “Snowflake”-shaped dendritic morphology of the gold nanostructures and AFM 

scan of GO−SFGN hybrid. (a) FESEM images of individual SFGNs with 5 and 6 primary 

branches (Np), respectively, showing a distinct secondary branching (scale bar = 100 nm). 

Bottom insets show binary edge-resolved images for these SFGNs used for determining the 

circularity parameter (λ = 4π*area/perimeter2). Values smaller than unity indicate a high degree 

of corrugated edges. (b) Raman Spectra for GO−SFGN and GO showing the presence of SFGNs 

on GO enhances the intensity of D and G bands by ∼250% and ∼800% suggesting chemical 

enhancement, and hence a chemical-bond formation between SFGNs and GO, (c) atomic force 

microscopy scan of GO sheets templated with SFGNs with ∼44 nm height as shown in the 

bottom line scan (scale bar = 500 nm). The height of a characteristic wrinkle (W) is ∼8 nm. Inset 

shows AFM image for an individual SFGN (scale bar = 100 nm). 

 

wrinkles on GO, and (iii) small dips corresponding to the edge of the GO sheets (shown in the 

bottom panel). The height of the SFGN structure was 44 nm and varies between 45 and 55 nm 

(see Appendix B, Figure B.3), while the GO wrinkles were 8 nm high. AFM-tip curvature and 

low contrast of the thick SFGN structures hid the details of the primary and secondary branches 

of individual SFGN (Figure 3.2c, top inset). Further, the SFGNs from which wrinkles are 

emanating are expected to be underneath the GO sheet, as shown in Figure 3.1b. 
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The lower height of the SFGNs than their width and their flat surface being level with 

the GO sheets suggest that the SFGNs growth direction is more favored laterally than vertically 

to the GO surface. This indicates that the GO sheets functions as an in-solution substrate for 

particle growth. However, more studies are required to confirm this. In the absence of GO, the 

seeding solution (NH2OH and gold salt) results in the formation of large irregular aggregates, 

which eventually settle down. This further signifies the role of GO sheets as stabilizing agents 

for controlled growth of SFGNs. SFGN-GO solutions were stable for >20 days. Absorption 

spectrum for a freshly prepared solution of SFGN-GO exhibits a broad peak at 580 nm (Figure 

3.3) suggesting the presence of colloidal aggregates in solution as well. Further, the SFGNs 

grown on GO for 20 days were higher in number but with a size and shape distribution similar 

to that for freshly prepared SFGNs. 

The dendritic shape of SFGNs resemble: (i) the morphology of naturally occurring 

snowflakes, where the dendritic structures are generated from water molecules condensing via 

diffusion-limited mechanism on supercooled water droplets (snow nuclei), and (ii) the 

morphologies proposed for dendritic growth patterns due to molecular anisotropy.33 These 

structures follow an adapted diffusion limited growth pattern model, where particles moving in 

random walk trajectories stick on a lattice containing a seed particle anisotropically (due to 

microscopic irregularities on the surface) with the seed tips growing preferentially. A modified 

two-step model is proposed here for the mechanism of formation of SFGNs. The first step 

involves the formation of gold nuclei on GO via NH2OH-assisted reduction of gold salt and 

their stabilization via attachment with the negatively charged −COO− and −OH− groups on GO. 

We confirmed this step by growing gold nuclei on GO by sodium borohydride reduction of 

gold salt in the presence of sodium citrate as shown in Figure 4a, bottom inset (and Appendix B, 

Figure B.4). Since the SFGN formation is an aqueous phase process and unmodified graphene 

cannot be dispersed in water without surface modification or surfactants, achieving the SFGN 

formation on graphene (without the −COO− and −OH− groups) is challenging. Further, it is also 

difficult to control the density of −COO− /OH− groups on GO, since during the exfoliation 

process, the degree of oxidation of sheets is expected to be higher for sheets exfoliating early 

and thus exposed to the oxidizing media for longer time. Therefore, in a single batch, different 
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GO sheets will have different oxy-group densities, making it challenging to study the effect of 

oxy-groups on SFGN deposition characteristics. 

The second step involves seeding growth of the gold nucleus induced by hydroxyl-

amine assisted Au (III) reduction, catalyzed by the gold surface34 of the nuclei. The dendritic 

morphology of these gold nanostructures (GNs) is attributed to the diffusion limited kinetics 

during the seeding growth. The seeding growth of gold nuclei on GO has further two 

elementary processes (Figure 3.4a): (a) external diffusion of Au (III) ions from bulk solution to 

the nuclei and; (b) particle incorporation of the Au atoms into the crystal structure by 

hydroxylamine-induced catalysis. The heat of SFGNs formation at nanoscale is removed by the  

 

Figure 3.3 Absorption spectra of SFGNs templated on graphene−oxide: (a) spectra of gold salt 

and GO display no significant peak in the visible region; (b) spectra of a freshly prepared 

solution of GO, gold salt, and hydroxyl-amine display an absorption peak at ∼580 nm. Higher 

magnification FESEM micrographs (insets) for a bare GO sheet and of a GO sheet templated 

with SFGNs immobilized on silica substrates are shown. Scale bar equals 1 μm for the right 

inset and 5 μm for the left inset. 

 

surrounding water. The net resistance to SFGNs growth is thus a combination of resistances 

from these elemental steps: 
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111   GDF kkk       Equation 3.1 

where kF is the rate-constant for SFGN formation, kD is the rate-constant for diffusion of Au ions 

from the bulk solution on to the GO surface, and kG is the rate- constant of Au incorporation in 

the growing SFGN structure.  Since particle incorporation step is catalytic, kG is expected to be 

high, making external diffusion the rate determining step. This is further evidenced by the 

SFGN’s structural dependence on the temperature of synthesis (Figure 3.4b) as studied by 

comparing the FESEM images of nanostructures synthesized at 4, 25, and 75 °C. The SFGNs are 

produced only at 25 °C, while the dendritic morphologies are not produced at low (4°C) or at 

high (75°C) temperatures. The size and density of the nanoparticles were found to increase with 

an increase in the temperature. The surface density of Gold Nanostructures was quantified by 

evaluating the surface coverage index η (η = fraction of GO surface covered by gold 

nanostructures). η for low, moderate, and high temperatures were calculated to be 0.06, 0.24, 

and 0.41, respectively, as shown in Figure 3.4b inset. 

Since the diffusive resistance, kD−1 α T−1.5, and particle incorporation resistance, kG−1 α 

exp(EA/(RT)) is higher for low temperature, smaller particles are formed with low density. Here, 

the particle-incorporation resistance is expected to be higher than that due to diffusion. At 

moderate temperature of 25°C, the diffusive resistance is thought to increase more than the 

particle-incorporation resistance leading to SFGNs formation. The anisotropic particle growth 

on the SFGN surface is a result of the difference in the surface chemical potential (μ) induced by 

small deformations. Irregular surfaces with high μ grow more preferentially than blunt surfaces 

with low μ *μ (R = ∞) < μ (R = constant) (Mullins-Sekereka instability).35, 36 The average rate of 

gold influx for the formation of an SFGN (Np = 5) is estimated to be 0.1346 g cm−2 h−1 at 25 °C 

(see Appendix B, Figure B.5). At higher temperature (75 °C), the mass- transfer rates and the 

chemical potentials increase leading to a fast and thus unordered cluster formation with high 

surface coverage densities (Figure 3.5c) (see also Appendix B, Figure B.6). The high selectivity of 

deposition further confirms the role of GO’s functional groups in gold nucleation. The GO-Au 

nanostructure hybrid synthesized at 75 °C was compared with the GO−SFGN hybrid 

synthesized at 25 °C for its SERS signals.  
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Figure 3.4 Growth mechanism of SFGNs on GO sheets and their structural dependence on 

the synthesis temperature. (a) Schematic showing the elementary steps involved in the seeding 

growth of SFGNs on GO template. Au ions diffuse from the bulk to the GO sheet where they 

are catalytically reduced and incorporated in the growing Au nuclei. Bottom inset shows seed 

particles on GO that were prepared by sodium borohydride-assisted reduction of gold salt in 

the presence of sodium citrate and GO. Scale bar = 10 nm. (b) The morphology and density of 

the synthesized GNs sensitively depends on the reaction temperature. GNs synthesized at room 

temperature (25 °C) exhibit dendritic ‚snowflake‛ morphology with a high coverage on GO. At 

low temperature (4 °C), the GNs assume a spherical morphology with less coverage, and at 

higher temperatures (75 °C), GNs exhibit a random cluster formation with very dense coverage. 

Scale bars = 500 nm. Inset shows the variation of surface coverage index for GO−gold hybrids 

synthesized at these three temperatures. 

 

While the enhancement factors for GO−Au nanostructures synthesized at 25 °C was 

250%, the GO-Au nanostructures synthesized at 75 °C exhibited a higher enhancement factor of 

800% (Figure 3.2b and Appendix B, Figure B.7). The observed higher enhancement factor is 

expected since more metal is deposited at a higher temperature. Further, it was found that by 
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increasing the concentration of gold ions in the solution, a more pronounced growth of 

secondary branches can be achieved, which in some cases emanate ternary branches (see 

Appendix B, Figure B.8). The pronounced secondary growth can be explained by the higher 

concentration of gold ions that are available for particle incorporation during seeding growth. 

Interestingly, carboxyl/hydroxyl-functionalized silica substrate placed in the seeding solution 

did not form the SFGNs at 25 °C, indicating the importance of segregation of solution by GO. 

Figure 3.5a,b shows the TEMs for SFGNs (synthesized at 25 °C) with Np = 4, 5, 6, and 7 and the 

distribution of Np for SFGNs synthesized at 25 °C, respectively. While, Np ranges from 4 to 12, 

several SFGNs (49.2%) have Np= 5 or 6, with a relatively small number of SFGNs having Np ≥ 8 

(11.8%). The selected area electron diffraction (SAED) pattern (Figure 3.5d) of an SFGN with 

Np= 5 (Figure 3.5d-inset) exhibited a mixed diffraction pattern, suggesting the presence of 

defects and multiple crystal domains in the SFGNs. Furthermore, the crystal defects were lesser 

for SFGNs with incompletely formed secondary branches (Appendix B, Figure B.9). The similar 

angle of emergence of the secondary branches suggests that similar crystal defects cause the 

secondary branching on a primary branch. 

Electrical measurements on an SFGN−GO sheet and a bare-GO sheet immobilized on 

separate silica substrates with predeposited electrodes were conducted by immobilizing the 

sheet from solution on amine-functionalized silica substrates with 300 nm thick silica and gold 

electrodes 5 μm apart (insets, Figure 3.6a,b). The conductivity of GO−SFGN sheet was an order 

of magnitude higher than that for GO, attributed to the formation of low-resistance, gold-doped 

islands on GO. Next, the GO regions in both GO−SFGN and bare-GO devices were chemically 

reduced to graphene (G) by treatment with hydrazine vapors(8) (RG << RGO). After GO−SFGN to 

G−SFGN reduction (Figure 3.6a), the conductivity increased by 2 orders of magnitude; while for 

GO to G reduction (Figure 3.6b) it increased by 3 orders of magnitude. The lesser conductivity-

change observed in GO−SFGN (100-fold) versus GO (1000-fold) post reduction is attributed to 

the presence of SFGNs, which shield the underlying GO against hydrazine treatment, resulting 

in a net smaller region of GO being reduced to G (RG < RSFGN/GO). 
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Figure 3.5 Structural variation in the morphology of SFGNs and diffraction pattern studies. 

(a) TEM images of SFGNs with 4, 5, 6, and 7 primary branches. Scale bar = 100 nm. (b) Bar graph 

showing the distribution of primary branches in the SFGNs synthesized at 25 °C. The analysis is 

for a total of 120 SFGNs deposited on GO. (c) FESEM images for gold-nanostructure-templated 

GO sheets that were synthesized at 70 °C showing high surface coverage densities and excellent 

selectivity of gold on GO. Scale bar= 5 μm. (d) Selected area electron diffraction (SAED) pattern 

for an SFGN with Np = 5 (inset) shows that SFGNs have several defects and multiple crystal 

domains. Scale bar = 100 nm. 

 

The SFGN shielding of GO against hydrazine treatment is further verified by comparing 

the band gap (Eg) values of GO−SFGN and G-SFGN hybrids obtained by measuring the 

temperature dependence of their conductivities. Figure 3.6c shows an exponential temperature-

dependence *σ α exp(−Eg/(2kBT))+ for the conductivity of a GO−SFGN and GO devices, from the 

slope of which their apparent band gap values are calculated to be Eg/GO−SFGN = 173.85 ± 0.01 

meV and Eg/GO = 320.05 ± 0.01 meV, respectively (Appendix B, Figure B.10).  
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Figure 3.6 Electrical properties of graphene-templated with SFGNs. (a) The conductivity of a 

GO−SFGN sheet (9.49 × 10−2 μS) increases ∼102-fold after reduction with hydrazine. Inset shows 

a GO sheet templated with SFGNs incorporated between electrodes. Scale bar = 2 μm. (b) 

Conductivity of a bare GO sheet increases 103 folds after hydrazine reduction. Top inset: 

Optical micrograph of a bare GO sheet between gold electrodes. Scale bar = 5 μm. (c) GO−SFGN 

hybrid exhibits a semiconducting behavior showing an exponential dependence of conductivity 

on temperature (σα exp(−Eg/(2kBT)). Bottom left inset shows a similar temperature-response for 

a G−SFGN device. Top inset shows the I−V response for a GO−SFGN device over a temperature 

range of 273−345 K showing a gradual increase in conductivity. (d) Schottky fit for a G−SFGN 

device from which the Schottky barrier height is calculated to be ∼39 meV. Top inset shows the 

variable range hopping fit for G−SFGN, which describes the data equally well. 

 

The decreased band gap in GO−SFGN explains its higher conductivity than GO as  

observed earlier. The conductivity of a G−SFGN device exhibits a similar temperature 

dependence (Figure 3.6c, bottom left inset) with a band gap of Eg/G-SFGN = 164.24 ± 0.003 meV 

comparable to Eg/G = 156.64 ± 0.01 meV for graphene (chemically reduced GO) (Appendix B, 
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Figure B.10). The band gap of G-SFGN and G being nonzero is attributed to the partial 

reduction of GO on the unexposed side-facing silica surface37 and defects. 

The higher band-gap value for G−SFGN as compared to G (Eg/G < Eg/G-SFGN) results 

from the presence of unreduced GO regions in the G−SFGN hybrid making G−SFGN less 

metallic than G. Therefore it can be inferred that the expected band gap values for GO-Au 

hybrids synthesized at 75 °C should be higher due to the high density of gold nanostructures, 

which shield larger GO regions against reduction. Further, the G−SFGN and GO−SFGN hybrids 

can be modeled as several back-to-back semiconductor-metal interfaces (Schottky contacts), the 

current through which at a forward bias V is described by 

 









 


Tk

Vq
TaAI

B

Bexp2*      Equation 3.2 

where A* is the modified Richardson constant, a is the cross sectional area, φB is the 

Schottky barrier height, kB is the Boltzmann constant and T is the absolute temperature. Figure 

3.6d shows the plot of ln(I/T2) versus 1/T data for a G−SFGN device exhibiting a linear 

dependence which is consistent with the equation 3.2. The Schottky barrier height (SBH) for 

G−SFGN hybrid as calculated from the slope of this curve (see Appendix B, section B.14) is 38.98 

± 0.06 meV. Similarly the SBHs for GO, GO−SFGN, and G (chemically reduced GO) were 

calculated to be 125.98 ± 0.27, 52.63 ± 0.20, and 37.36 ± 0.08 meV, respectively, indicating that the 

SBH in GO decreases as it forms a composite with the SFGNs. This holds similarity to the 

observed decrease of SBH in silicon carbide−Ti Schottky contacts after deposition of gold 

nanoparticles.(38) Further, the experimental data for the I−V scans of GO, G, GO−SFGN, and 

G−SFGN also fits the variable range hopping (VRH) mechanism (lnI α T−1/3), which involves 

consecutive inelastic tunneling. Figure 3.6d inset shows the VRH fit for a G−SFGN device (VRH 

fits for GO, G, and GO−SFGN are shown in Figure B.11, Appendix B). However, Schottky 

limited charge transport should be the preferred mode of charge transport as evidenced by a 

nonlinearity in the I−V curves shown in Figure 3.6a,b. VRH in graphene has been shown to 

produce linear I−V.39 Further, the formation of Schottky contacts at the interface between metal 

electrode and graphene sheet is expected since the graphene sheet is contacted via a bottom 

gold-electrode configuration, which introduces significant Schottky barrier at the electrode 
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edges producing a nonlinear I−V behavior.39 However, more experiments are required to 

analyze the individual roles of VRH and Schottky limited charge transport in graphene-gold 

devices.    

3.5 Summary 

We have demonstrated the electrical, structural, interfacial, and dendritic properties of 

controlled interfacing of graphene with gold nanostructures, its electrical properties, and 

Raman signal can be sensitively controlled. With continued interest in graphene technology, its 

metal-interfacing will be an important process both for its incorporation into other systems and 

for controlling its electrical properties by doping. Here, we leverage the molecular-functionality 

of GO in dispersion to grow and stabilize gold nanostructures with morphology controlled by 

manipulating the chemical and physical forces (diffusion and surface-potential). A 2-fold 

Raman enhancement and a control on the band gap and Schottky barrier was demonstrated. 

Since, metal nanostructures can sensitively tailor graphene’s electrical and Raman properties, 

we envision that the research community will leverage the process shown here to build novel 

graphene applications in the areas of nanoelectronics, sensors, bioimaging, electro-optics, 

catalysis, logic-devices, etc. The study will also motivate further developments in this field by 

incorporating graphene’s fermionic-confinement, spintronics effects, magnetic effects, and 

carrier collimation to develop next-generation conjugated devices with new functionalities. 
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4 Microwave reduced Uncapped Metal Nanoparticles on 

Graphene: Tuning Catalytic. Electrical and Raman Properties  

4.1 Overview 

This chapter builds on the work presented in Chapter 3 and carries it forward to address 

a major challenge in liquid-phase catalysis of dispersing ‚uncapped‛ metal nanoparticles (NPs) 

with enhanced density of accessible catalytic sites in solution. We demonstrate that graphene 

oxide’s (GO's) high density of accessible and bondable oxy-functional groups and the high 

steric hindrance from its micrometer-scale area covalently implant, stabilize, and support bare-

surfaced gold nanoparticles (BSGNs) produced in situ by a unique microwave reduction 

process. Comparing the efficiency of catalytic reduction of p-nitroaniline (p-NA) by BSGNs and 

similar sized surfactant-capped gold NPs showed that the uncapped surface on GO-supported 

NPs, (a) opens up 258% more active sites, and (b) enhances the catalytic reduction of p-NA by 

10−100 fold. Further, BSGN implantation on GO, (a) amplifies the Raman signal of bare GO by 

3 fold, and (b) increases the conductivity of native p-type GO by >10 fold via injection of 1.328 × 

1012 electrons/cm2, consequently transforming it into an n-type semiconductor. 

4.2 Introduction 

Recently, single-atom thick, quasi-planar graphene sheets with sp2 bound carbon atoms 

arranged in a honeycomb lattice have generated tremendous research interest owing to their 

fascinating electronic,1-3 optical,4-6 and mechanical7 properties. Functionalized graphene sheets 

with arguably the largest surface area per volume, high density of interfacable chemical groups, 

and preserved semiconducting properties at room temperature are being leveraged for unique 

applications such as biosensing,8-10 chemical sensing,11 field emission,12 membrane fabrication,13 

and nanocomposite fabrication.14, 15 These systems were realized by converting a fraction of the 

sp2 graphenic carbons to oxygenated sp3 carbons, which covalently bind with polymers,14, 15 

chemicals,16, 17 biomolecules,8-10 and micro/nanostructures.18-21 Of these, graphene nanoparticle 

composites are gaining great attention owing to the resultant multifunctional and unified 
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properties.18-20 For example, GO−TiO2 sheets can transfer electrons from a photo-excited TiO2 

nanoparticle to another site on GO for catalysis; graphene−palladium nanoparticle sheets can 

selectively detect hydrogen; graphene−platinum, graphene−palladium, and 

graphene−platinum−ruthenium nanocomposites exhibit enhanced catalytic activities; and gold 

nanostructures grown on GO can control its electrical properties and enhance its Raman 

scattering signal (our earlier work).19 

Catalytic activity directly scales with the available active sites. Recently, surface-capped 

gold nanoparticle (GNP) deposition on graphene sheets has been an important research topic;18, 

19, 21 however, the active sites on GNPs (solution phase) have so far been blocked by the 

stabilizing molecules.22,23 Here, we demonstrate that the local dielectric heating from microwave 

(MW) exposure of a metal salt solution results in nucleation of reactive naked NPs, which 

instantaneously implant on the GO sheets in a single step. The oxy-functional groups 

(carboxylic, epoxy, carbonyl, phenol, lactone, quinone, and hydroxyl groups) on GO chemically 

bond and stabilize these metal nuclei, thus eliminating the need to cap the catalytically active 

sites on GNPs. Since one face of the GNPs implant on the GO, the other exposed face is naked 

with the bare atomic sites. The present study illustrates and characterizes, for the first time, 

catalytic properties of solvent-dispersed bare-surfaced gold nanoparticles (BSGNs) and 

compares their efficiency with similar shaped surfactant-capped gold nanoparticles. We also 

show the structural, Raman, and electrical characterization of BSGNs implanted on GO. The key 

results demonstrated are that, (a) the structure of BSGNs on GO can be controlled by 

microwave exposure, (b) BSGNs exhibit 10−100-fold enhancement in catalytic reduction of p-

nitroaniline as compared to that of surface-capped or non-naked GNPs with an increase in the 

effective catalytic site density by 258%, (c) BSGNs amplify the Raman signal of GO by 3 fold, 

and (d) BSGNs inject 1.328 × 1012 electrons/cm2 in GO, consequently transforming it to an n-

type semiconductor. We also demonstrate that GO can be applied to produce bare-surfaced 

monodisperse GNPs without microwave exposure. 

The interaction of the electromagnetic waves with the high dielectric solvent molecules 

results in a space-confined uniform heating (E fε′(tan δ)P2, where P is the microwave power, f 

is the frequency of the microwave, ε′ is the dielectric constant of the solvent, and δ is the loss 
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factor). The resultant local temperature rise has been employed to enhance the kinetics of 

organic reactions24-26 by utilizing the additional electronic kinetic energy to cross the reaction 

activation barrier. Similarly, the MW exposure on metal salts significantly reduces the barrier to 

reduction, nucleation, and ion incorporation, leading to formation of NPs which, due to a 

higher crystallization rate, have sharper edges than those formed by conventional heating.27 

However, so far, MW-nucleated NPs have been synthesized in the presence of reducing agents 

and stabilizing molecules such as chitosan, alkyltrimethyl ammonium bromide, and sodium 

citrate.27-33 In this study, we have demonstrated that the MW has a self-sufficient ability to 

induce nucleation of aqueous gold salt even in the absence of chemical reductants, and the 

nucleated GNPs thus formed can covalently bind (implant) on the GO sheets and become 

stabilized in solution. This is facilitated by the MW-induced dielectric heating via rapid dipolar 

rotations of the polarized water molecules that create local high-pressure regions in the salt 

water system. Near the critical range (150−300 °C), water is known to exhibit a 3-fold higher 

dissociation constant, hence functioning both as an acid and a base. We therefore attribute the 

chemical-free reduction of gold salt to the enhanced dissociation of water caused by local and 

confined dielectric heating effects from MW.34 As expected, the GNPs exhibit sharp triangular, 

truncated triangular, hexagonal, globular, and dendritic morphologies, making them 

immensely useful for catalytic applications.35 In the absence of GO, the MW-nucleated GNPs 

become unstable and aggregate. Therefore, the GO sheets act as swimming substrates on which 

GNPs imbed and which keep the NPs dispersed (Figure 4.1a). Further, the stability of the GNPs 

is unaffected if the GO sheets are added during or immediately after the MW exposure, which 

indicates that the covalent binding between the GO and GNPs is not MW-actuated . However, 

when the GO sheets are also present during the MW exposure, they are expected to undergo a 

partial reduction as prolonged MW exposure ( 10 min) has been shown to result in a mild 

thermal reduction of GO sheets.36 We also controlled the size distribution of naked GNPs 

imbedded on GO by a simple, non-MW-based reduction process (shown later). Recently, naked 

nanoparticles have been implanted on a graphene backbone by substrate-based electrochemical 

reactions.11 However, it is challenging to solution-disperse these composites for liquid-phase 

reactions at high throughput.21 
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4.3 Experimental Section 

4.3.1 Preparation of Bare surfaced gold nanostructures on graphene 

The GO-BSGN nanocomposite was synthesized by MW exposure (1.05 kW, 2450 MHz) on an 

aqueous solution of GO (100 μL, 20 mM carboxylic acid quantified by titration) and gold salt, 

HAuCl4 3 3H2O (10 mL, 0.275 mM) for a time interval between 60 and 300 s with intermittent 

cooling after every 10 s. The mixture was allowed to stand for ∼24 h, which resulted in the 

formation of BSGNs with triangular, hexagonal, and dendritic morphologies, which either 

assemble on or get wrapped with the GO sheets, depending on the MW exposure time. 

4.3.2 TEM and SAED 

TEM images and SAED patterns were obtained with a Philips CM 100 transmission electron 

microscope operated at 100 kV by depositing the GO-AGN hybrids from solution onto a 300 

mesh size copper grid. 

4.3.3 FESEM 

FESEM Images were obtained with a Leo field emission scanning electron microscope operated 

at 10-15 kV. 

4.3.4 Electrical Conductivity and Gating Measurements 

All electrical measurements were taken at room temperature under a steady nitrogen 

environment using a Keithley 2612 dual channel system source meter connected to a computer 

via a GPIB/IEEE-488 interface card. 

4.3.5 Raman Spectroscopic Measurements 

The Raman spectra of GO and GO-BSGN sheets were determined by using a LabRAM 

ARAMIS Raman spectrometer located at the University of Kansas, Bioengineering Research 

Center, Lawrence, KS. The instrument was manufactured by HORIBA Jobin Yvon (Edison, New 

Jersey), and a HeNe laser (l = 633 nm, a laser power of 17mW)was used as one of the excitation 

sources for the samples. The instrument conditions were a 200 μm confocal hole, 150 μmwide 
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entrance slit, 600 gr/mm grating, and 100_ objective Olympus lens. Data processing was 

performed using LabSPEC 5 (HORIBA Jobin Yvon). The samples were mounted in a computer-

controlled, high-precision x-y stage. 

4.3.6 Catalytic Measurements 

For the catalytic reaction, 600 μL of a 10-3 M 4-NA solution was mixed with 4 mL of DI water 

followed by an addition of 600 μL of 0.1 M NaBH4; 600 μL of the as prepared solution of GO-

BSGN was added to study the catalytic activity of these nanostructures. Assuming a complete 

conversion of gold salt into NPs, the average concentration of BSGNs was calculated to be 

∼1013/ml. For catalytic activity comparison experiments, citrate-capped NPs with the same 

concentration were used. 

4.4 Results and Discussion 

The GO−BSGN nanocomposites were synthesized by MW exposure (1.05 kW, 2450 

MHz) on an aqueous solution of gold salt, HAuCl4·3H2O (10 mL, 0.275 mM) and GO (prepared 

by Hummer’s method, 100 μL, 20 mM carboxylic acid quantified by titration) for a time interval 

between 60 and 300 s with intermittent cooling after every 10 s. The mixture was then allowed 

to stand for 24 h, resulting in the formation of anisotropic BSGNs, which assembled on GO 

sheets (Figure 4.1). Upon carrying out the MW exposure in a lower ambient temperature (by 

placing the mixture in an ice bath), we observed the formation of a small incidence of dendritic 

GNPs, some of which were wrapped with GO sheets, presumably smaller in sizes (Figure 4.1c). 

The formation of dendritic nanostructures is explained later. 

For structural characterization, the BSGN templated GO sheets were immobilized on an 

amine-silanized silica surface via electrostatic interfacing (see Appendix C, Figure C.1), which 

facilitates a selective deposition of only the GO−BSGN sheets separating them from the BSGNs 

that have not yet interfaced with GO sheets. Figure 4.1b shows an FESEM image of the 

immobilized GO−BSGN composite. The majority of the BSGNs exhibit polyhedral shapes with a 

broad size distribution from 50 to 350 nm, while there is a small fraction of spherical 

nanoparticles. The broad size and shape distribution is attributed to the absence of growth 
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termination from stabilizing molecules. Later, we show a mechanism to deposit monodisperse 

bare-surfaced nanoparticles on GO. Since the smaller GNPs are more in number (n) and have a 

higher surface potential, μGNPs, and thus higher free energy, they are expected to coagulate and 

grow to form larger nanoparticles37 (∑i=1n(μGNPsNGNPs) > ∑i=1m(μGNP,LNGNP,L), n > m, where μGNP,L is 

the surface potential of larger nanoparticles). Since diffusion and nucleation barriers  

 

Figure 4.1 Microwave (MW)-assisted in situ synthesis of multiple shaped bare-surfaced gold 

nanoparticles (BSGNs) on graphene oxide (GO). (a) An aqueous solution of gold salt, when 

microwaved for ∼2 min, results in the formation of gold nuclei which agglomerate to form 

clusters (i). However, when the solution mixture also contains GO, the gold nanostructures get 

templated on the GO sheets (ii). This is attributed to the oxy-functional groups present on GO 

sheets, which stabilize the Au nuclei. (b) FESEM image of a BSGN-templated GO sheet on a 

silica substrate. The BSGNs acquire several shapes, such as triangular, truncated-corner 

triangular, and hexagonal (as shown in the inset). (c) TEM image of a dendritic GNP 

encapsulated by a GO sheet. These GO-coated NPs are formed via MW exposure on the 

solution maintained at a lower ambient temperature. 



60 

are temperature- and concentration-dependent (explained later), this process could be further 

controlled by adjusting the MW power and salt concentrations. 

BSGNs assemble homogeneously on the GO sheets with a high coverage index, η, of 0.31 

(η ≡ fraction of GO surface covered by BSGNs), which is attributed to the high density of oxy-

functional groups on the surface of GO.38 Also, the BSGNs are implanted on both sides of the 

GO sheets. This is evident in the FESEM images of the immobilized BSGN−GO sheets that show 

a contrast between the BSGNs present on different sides of the GO sheets. The BSGNs on the 

substrate-facing side of the GO appear darker since they get screened by the GO sheet, while 

those on the surface of GO sheet directly exposed to the electron beam appear brighter (Figure 

4..3a). The substrate-facing BSGNs also raise and stretch the GO sheets during immobilization, 

which creates wrinkles (Figure 4.2, right bottom inset, and Appendix C, Figure C.2). 

The absorption spectra of a freshly prepared solution of GO−BSGN composite (Figure 

4.2) exhibits a broad peak centered at 575 nm, confirming the wide size distribution of gold 

NPs. Absorption spectra of a non microwaved solution mixture of GO and gold salt kept for >7 

days did not display any significant peak in the visible region nor result in the formation of any 

gold nanostructures, signifying that GO does not reduce the NPs. This along with the 

observation that the formation of BSGNs is independent of the order in which the GO sheets are 

introduced during synthesis (before or after MW exposure) suggests that the local dielectric 

heating from MW induces reduction of gold ions that results in the spontaneous formation of 

BSGNs. Selected-area electron diffraction (SAED) patterns of BSGNs (see Appendix C, Figure 

C.3) indicate mono crystallinity, which also supports the spontaneous formation of these NPs 

during the short MW exposure. The formation of BSGNs during the MW exposure is proposed 

to occur in two steps, (1) an instantaneous gold nucleation event, which might attach some gold 

nuclei on the GO sheets, and (2) the growth of nuclei on GO and in solution. The net rate of 

BSGN formation during the MW exposure (rf) can thus be modeled as: 

gnf rrr 
      Equation 4.1 

 where rn and rg denote the rates for gold nucleation and growth of the nuclei, 

respectively. The process of nucleation takes place in an instantaneous burst during the MW 

exposure and hence is expected to have a very high rate constant. On the other hand, the rate of 
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nuclei growth is dependent on the internal solution diffusion of smaller gold nuclei (kd T1.5) 

and their self-incorporation to form NPs (ki exp(−Ea/RT)). At the high temperature facilitated 

by the MW, kd and ki assume large values, enabling a high nuclei growth rate that is expected to 

form regular sharp-edged gold nanostructures, as we observed.27 

 

 

 

Figure 4.2 Before the MW exposure, a solution of GO and gold salt does not exhibit a significant 

peak in the visible region. After the MW exposure, a wide absorption peak centered at ∼575 nm 

appears in the spectrum. The top left inset shows the change in the color of the reactant mixture 

as it is exposed to MW irradiations. The GNS-decorated GO sheets (top right inset) are 

immobilized on a Si substrate for FESEM imaging, and the presence of BSGNs results in 

localized deformation of GO sheets, leading to the formation of wrinkles, the nodes of which 

are formed by the BSGNs (bottom right inset). 

 

The presence of floating NP-stabilizing templates in solution (facilitated by GO sheets) 

enabled us to determine key factors which govern the formation of NPs during MW exposure. 
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This was achieved by changing the ambient reaction temperature and observing its effect on the 

morphology of thus-formed NPs. When the ambient temperature of the reaction mixture was 

decreased (by placing the solution in an ice bath during microwave exposure), a small incidence 

of BSGNs were found to exhibit dendritic morphologies (Figures 4.1c and 4.3c and Appendix C, 

Figure C.5). At lower temperature, the resistances offered to the internal diffusion (kd−1 T−1.5) 

and particle self-incorporation (ki−1 exp(Ea/RT)) increased, making the growth of nuclei partly 

diffusion-limited. A diffusion-limited growth in the presence of molecular anisotropy results in 

the formation of dendritic structures.39 The observed dendritic morphologies can be attributed 

to diffusion-limited hierarchical fusion of smaller gold nuclei, followed by anisotropic 

preferential growth on the sharp surfaces which exhibit higher chemical potentials 

*μ(R=constant) > μ(R=∞), Mullins−Sekereka instability40]. Only a small incidence of NPs assumes 

dendritic shapes as it is difficult to lower the solution temperature homogeneously during MW 

exposure. 

For a prolonged MW exposure duration ( 3 min), some dendritic gold nanostructures 

suspended in solution also get wrapped/encapsulated within the GO sheets. (Figure 4.3d; also 

see Appendix C, Figure C.6). The encapsulation of NPs by GO sheets is driven by the covalent 

interaction forces between their surfaces; however, the complete mechanism needs more 

studies. Encapsulation of in-situ-formed Ag nanoparticles by GO sheets was reported earlier, 

where an optimal thickness (0.5 nm) and size ( 1.5 × 10−3 μm2) of the GO sheet was considered 

essential for the event of GO wrapping.41 Here, since the NP formation during the short MW 

exposure precedes their implantation on GO and several GO sheets exhibit large surface areas 

(>1000 μm2) with multiple-layer thickness (>1.5 nm), we observe a larger percentage of NP 

implants on GO sheets as compared to NPs wrapped with GO. 

The absence of a chemical reducing agent makes this process fundamentally different 

from other solution-based GO−metal NP fabrication routes.27-30 The solution of BSGN-decorated 

GO sheets was stable for at least 60 days. In addition to the oxy-functional groups, the excellent 

stabilizing ability of GO sheets can also be ascribed to their micrometer-size surface area, which 

keeps the nuclei segregated in solution and reduces their coagulation probability. 
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Figure 4.3 (a) FESEM image of a GO sheet decorated with BSGNs, exhibiting dark and bright 

contrast. The darker BSGNs are templated on the rear surface of the GO sheet, and the brighter 

BSGNs are templated on the exposed surface of the GO sheet. (b) FESEM image of a GO sheet 

that was immobilized ∼72 h after being incubated in the microwave gold salt solution, 

exhibiting a high surface coverage index (η = 0.79). (c) TEM image of a GO sheet exhibiting 

dendritic and polyhedral GNS. (d) TEM image of an individual dendritic-shaped GNS wrapped 

with a GO sheet prepared by MW exposure to the solution of GO and gold salt maintained at a 

lower ambient temperature. 

The dispersion density of BSGNs on GO can be enhanced by increasing the time of 

interaction between the microwaved gold salt solution and the GO sheets. Figure 4.3b shows a 

BSGN−GO sheet that was incubated for 72 h before immobilizing on the silica substrate. This 

GO sheet exhibits a higher surface coverage index (η = 0.79) (see also Appendix C, Figure C.4) 

than the GO sheet incubated for 24 h (η = 0.31). This observation suggests that BSGN 

implantation on GO is a diffusion-limited process. Thus, by increasing the time of interaction 
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between the microwaved gold salt solution and GO sheets, it is possible to significantly 

decrease the number of unassembled/unwrapped BSGNs and obtain a GO−BSGN composite 

dominant solution. 

To probe the nature of interaction between the BSGNs and the GO surface, the 

GO−BSGN composites were analyzed for their Raman spectra. The D band line (1340 cm−1) and 

G band line (1590 cm−1) observed in the Raman spectrum of the GO sheet were found to be 

enhanced by 300% by the presence of BSGNs (Figure 4.4a). This observed Raman signal 

enhancement is similar to the SERS effects that we reported earlier for metal nanoparticle 

composites of GO and suggests a chemical interaction between BSGNs and oxy-functional 

groups on GO.19 

 

            4-Nitro aniline  + NaBH4                           p-Phenylene diamine 

Here, we report the catalytic properties of the solution-dispersed GO−BSGN sheets for 

the GNP-catalyzed reduction of 4-nitroaniline (4-NA) to p-phenylene diamine (p-PDA) in the 

presence of NaBH4. The reaction rate is monitored by successive UV−vis absorbance 

measurements of the reaction solution (4-NA + NaBH4 → p-PDA) as 4-NA and p-PDA exhibit 

distinct peaks at 380 and 238 nm, respectively. With the progress of reaction, the light-

yellowish-colored 4-NA solution gradually turns colorless with the formation of p-PDA. In the 

presence of BSGNs−GO, the average reaction time (tr) was 8 min (Figure 4.4b). This reaction 

with the GO-supported BSGNs as catalysts is 10-fold faster than that reported in the literature 

for reduction using gold NPs as catalysts (tr = 86 min) and 100-fold faster than the reduction 

using copper NP catalysts (tr = 8−12 h) under identical conditions.42, 43 

Motivated by this excellent catalytic ability of BSGNs on GO and the fact that the 

catalytic rate constant of the GNPs increases with a decrease in the NP size, we synthesized GO-

supported smaller GNP seeds (5−20 nm) by an in situ NaBH4 reduction of gold salt (see 

Experimental Section). These smaller-sized spherical GNPs stabilized on GO are utilized to 

correlate the presence of a bare surface in the GO-supported gold seeds with the catalytic 

efficiency by comparing their catalytic activities with 5 nm citrate-capped gold nanoparticles. It 

GNPs 
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is pertinent to mention that establishing this correlation by utilizing the BSGNs synthesized by 

the MW method is challenging as they exhibit multiple shapes and hence cannot be directly 

compared for their catalytic activities with the citrate-stabilized spherical GNPs .The 

concentration of gold seeds/NPs in both solutions is made equivalent to 1013/ML. The complete 

reduction of 4-NA takes 6 min in the presence of GO−gold seeds and 8 min in the presence of 

 

 

Figure 4.4 (a) The presence of BSGNs enhances the native Raman spectra of GO sheets by 300%, 

characteristic for a chemical enhancement, suggesting that the BSGNs chemically attach to the 

oxy-functional groups on GO. The inset shows the Lorentzian fit to the 2D band of the Raman 

spectra of GO and GO−BSGN sheets showing the presence of two components, which suggests 

a characteristic of few-layered graphene. (b) BSGNs stabilized on GO sheets were studied for 

their catalytic activity for NaBH4-induced reduction of 4-nitroaniline (4-NA) . The reaction time 

can be evaluated by monitoring the successive decrease of the band at 380 nm for 4-NA and the 

corresponding increase in the band at 238 nm for p-phenylene diamine. Complete reduction of 

4-NA in the presence of BSGNs stabilized on GO takes ∼8 min. The insets show the first-order 

exponential fits for the reaction catalyzed by GO−gold seeds and 5 nm citrate-capped GNPs. 

The rate constants are found to be 0.243 and 0.094 min−1 respectively. 

 

5 nm citrate-capped GNPs, with their first-order rate constants calculated to be kGO−gold seeds = 

0.243 min−1 and k5 nm GNPs = 0.094 min−1, respectively (Figure 4.4b insets), suggesting that the gold 
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seeds stabilized on GO have a higher catalytic activity than similar-shaped surfactant-coated 

gold nanoparticles. 

Since the activity can be assumed to be directly proportional to the reaction rate 

constant, the active gold sites due to the naked surface on GO−gold seeds increase by a factor of 

Iobs = kGO−gold seeds/k5 nm GNPs = 258%. The theoretical increase in the active gold sites (Itheo) on 

GO−gold seeds due to their naked surface (without including the effect of steric hindrance) can 

be given by: 

cp

gn

theo
Af

Af
I






     Equation 4.2 

where, f is the fraction of catalytically active sites that are available per unit area on the 

bare surface of a spherical gold nanoparticle, Agn is the bare area on the exposed semisurface of 

the GO-stabilized gold seed, and Acp denotes the bare area on the citrate-capped GNP. We 

assume the rear-implanted semisurface of the GO−gold seed to be unavailable for catalytic 

participation. For a GNP/GO−gold seed with radius r, Agn = 2πr2 and Acp = 4πr2 × (1 − ∂), where ∂ 

is the fraction of the GNP surface area covered by the surfactant molecules. For N surfactant 

molecules adsorbed on a GNP with the projected area of the surfactant molecule = as, 
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      Equation 4.3 

 

For an equimolar concentration of gold salt and sodium tricitrate, N and as can be 

calculated as follows: 
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    Equation 4.4 
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      Equation 4.5 

 

Here, as is approximated as the projected surface area of the carboxylic oxygen (radius = 

ro) through which the citrate molecule binds to the GNP surface. For NA(Avogadro’s constant) = 

6.023 × 1023, r = 5 nm, ro = 66 pm, ρgold =19.3 g/cm3, and MWgold = 393.8, N is calculated to be 1.54 × 



67 

104, and ∂ is calculated to be 0.671. Substituting N and ∂ in equation 4.3, Itheo is calculated to be 

152%, comparable to the value of Iobs = 258%. Since the Itheo estimation does not consider the 

effect of steric hindrance from the surfactant molecules in the citrate-capped GNPs, the number 

of active sites on citrate-capped GNPs is overestimated. Hence, Itheo represents a lower bound of 

the increase in catalytically active sites due to the naked surface on the GO−gold seed. Clearly, 

the naked gold surface also benefits from the loss of steric hindrance as well. 

We envision that the catalytic applications of the GO−BSGN composite will further 

benefit from the following facts: (1) GNPs catalyze a wide range of reactions with high 

selectivity, the kinetics of which can be significantly improved by substituting the stabilizing-

agent-capped GNPs with GO-supported BSGNs; (2) the ability of the graphene platform to store 

and transfer electrons enhances the access paths available for electron transfer during the course 

of reaction, making it an ideal support material for the catalytic NPs; (3) (studied here) the 

GO−BSGN sheets can be suspended in several organic solvents, such as tetrahydrofuran, N-

methyl-2-pyrrolidone, N,N-dimethylformamide, and ethylene glycol; (4) the GO−BSGN 

composite films on metal electrodes (such as Pt) can be used for electrocatalytic applications; 

and (5) the strong covalent interfacing of GNPs with GO would reduce catalyst poisoning. 

 

For electrical characterization, GO and GO−BSGN composite sheets were immobilized 

on an amine-silanized silica on an n++ silicon substrate with prepatterned interdigitated gold 

electrodes. The Figure 4.5a insets show the FESEM and optical images of GO−BSGN and GO 

sheets deposited in between gold electrodes. Both devices had multilayered GO and GO−BSGN 

sheets (>5), as inferred by the Lorentzian analysis of the 2D band in their Raman spectra that 

comprises two components, which is characteristic of few-layer graphene (Figure 4.5 a inset). 

Figure 4.5 a compares the conductance of GO and GO−BSGN averaged over multiple samples. 

The average conductance of the GO−BSGN device (27.02 μS) was found to be 700% higher 

than that of the GO devices (0.387 μS). This is attributed to the high density of gold islands on 

the GO surface, which offer a lower resistance to the carrier flow. The GO−BSGN ensemble can 

be modeled as an assembly of percolating BSGNs configured in parallel to the underlying GO 

surface, such that 
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    Equation 4.6 

We studied the effect of BSGN interfacing on the nature of majority charge carriers of 

the GO sheets by conducting gating studies on GO and GO−BSGN samples. Gating was 

performed at a source-drain voltage, VDS = 5 V, and by measuring the change in conductivity 

with the gate voltage applied to the heavily doped silicon backgate (Figure 4.5 b bottom inset) 

under a 300 nm silica gate oxide. The surface charge density (no) induced upon application of a 

gate voltage (Vg) can be calculated as: 

ed

V
n

gO

O







      Equation 4.7 

where εo and ε are the relative permittivity of free space and silica respectively, e is the 

electron charge, and d is the thickness of the SiO2 layer. GO exhibits a p-type semiconducting 

behavior, with a positive Dirac neutrality point located at Vg = 18 V (Figure 4.5b top inset). For 

the GO−BSGN sheet, the Dirac neutrality point is shifted toward large negative gate voltages, 

suggesting that the BSGNs inject electrons into the GO surface. The positive Dirac point of Vo = 

18 V in the p-type GO suggests that at least 1.328 × 1012 holes cm−2 in GO were paired with 

electrons during BSGN implantation (Vg = Vo = 18 V, ε = 4, εo = 8.85 × 10−12 F/m, d = 300 nm, and e 

= 1.6 × 10−19 C) to produce n-type GO−BSGN. The electron injection density is expected to be 

proportional to the GNP size and implantation density. Therefore, by controlling the 

implantation process, the carrier properties of the GO−BSGN can be tuned, thus opening 

avenues for fabricating graphene-based p−n junction devices with controllable electronic 

properties. 

Similar to gold, silver nanostructures were also stabilized on GO via the microwave 

process. Microwaving silver salt (AgNO3) in the presence of GO sheets results in the formation 

of GO-stabilized spherical and tadpole-shaped Ag NPs (Appendix C, Figures C.9 and C.10), 

suggesting the excellent adaptability of the MW method, making it a highly prospective tool for 

interfacing GO with diverse metal NPs 
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Figure 4.5 (a) BSGNs enhance the average conductance of GO sheets by an order of magnitude. 

The top inset shows the FESEM image of the surface-immobilized GO−BSGN composite, and 

the bottom inset shows the optical image of a GO sheet in between gold electrodes. (b) The 

effect of BSGNs on the nature of charge carriers in GO is determined by comparing the gating 

behaviour of GO and GO−BSGN at a constant source−drain voltage (VDS) of 5 V. The top inset 

shows the gating behaviour of GO, which exhibits a p-type semiconducting behaviour; the 

Dirac neutrality point is situated at 18 V. In the presence of BSGNs, the Dirac neutrality point 

shift towards negative voltages, making GO−BSGN an n-type semiconductor. The bottom inset 

shows the schematic for the gating setup. 

4.5 Summary 

In summary, this work presents a potential solution to a major challenge in liquid-phase 

catalysis by enabling the synthesis of stable liquid dispersions of uncappedmetal nanoparticles 

with enhanced density of accessible catalytic sites. This is achieved by the implantation of MW-

nucleated NPs on the GO acting as a stabilization agent for GNPs. Remarkably, these naked 

BSGNs possess 258% higher density of catalytically active atomic sites, which enhance the 

catalytic reduction of p-nitro aniline 10-100 fold. Further, the BSGNs enhance the Raman signal 

of GO 3 fold and inject 1.328 X 1012 electrons into the p-type GO to make it n-type, thus enabling 

the manipulation of its carrier density. We envision that the results presented here will evolve 

the fields of liquid phase catalysis, graphene nanotechnology, and electronics, and this highly 
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versatile process will potentially produce next generation supported catalysts, graphene 

hybrids, optoelectronic devices, sensors, Raman multipliers, and molecular electronics. 
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5 Exfoliation of Boron Nitride 

5.1 Overview 

This chapter investigates a new chemical method to exfoliate ultrathin boron nitride 

sheets (UTBNSs) from their bulk 3-dimensional form and discusses the advantages over other 

currently available exfoliation methods. UTBNSs possess exclusive set of properties, including 

large band-gap, high optical-transparency, high mechanical strength, high thermal-

conductivity, UV cathodoluminescence, and pronounced thermo chemical stability1-8. However, 

exfoliating large BN layers in dispersions has remained a challenge due to high interlayer lip-

lip cohesive-interaction and their chemically-resistant nature. Currently, exfoliation processes 

produce small sheets (0.1 – 5 m2) at low yields. Here we report on the protonation of BN 

lattice via treatment with chlorosulfonic acid that not only exfoliates ‘large’ UTBNSs (upto 

10,000 m2) at high yields (~23%), but also results in their covalent functionalization by 

introducing four forms of aminated N sites within the UTBNS-lattice: sp2-delocalized & sp3-

quaternary protonation on internal N sites (>N+= and >NH+-), and pyridinic-like protonation on 

the edge N sites (=NH+- and –NH-). The presence of these groups transform the chemically-

passive BN sheets to their chemically-active form, which as demonstrated here, can be used as 

scaffolds for forming composites with gold nanoparticles and dye molecules. The UTBNS 

dispersion exhibits an optical band-gap of 5.74 eV, implying production of primarily monolayer 

UTBNSs; and a zeta potential of ζ= +36.25mV at pH=6.1 (ζmax= +150 mV), confirming high 

dispersion-stability. We envision that these 2D nanomaterials with atomically-packed 

honeycomb lattice and high energy-gap will evolve next-generation applications in controlled-

UV-emission, atomic-tunneling-barrier devices, ultrathin impermeable-membranes, and 

thermo-chemically-resistive transparent-coatings. 

5.2 Introduction 

Recent advances in the synthesis of ultrathin 2-D nanomaterials have provided access to  

quantum-relativistic electrical, physical and chemical phenomena, including massless Dirac 

fermions9, room-temperature quantum Hall effect10 and ambipolar field effects11 in graphene; 
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and quantum confinement driven intense fluorescence12 in MoS2. While the synthesis of its 

structural isomorph, graphene13,14, has been explored thoroughly, the synthesis strategies for 

UTBNSs are currently at incipient stages, and routes to produce solvent-dispersible large-area 

sheets are being avidly sought15. The primary challenge in exfoliating UTBNSs is the strong 

interlayer lip-lip16,17 interactions in BN that result from the partly ionic character of the B-N 

bond. The current techniques to achieve exfoliation involves ultrasonication of BN flakes in 

organic solvents/polymeric surfactants15 [like (a) dimethylformamide(DMF)18 (yield = 0.05 – 0.1 

%, size ~ nanoscale), (b) 1,2 dichloroethane (DCE)19/DCE solution of poly(phenylenevinylene) 

polymer20 (yield and concentration not reported, size ≈ 1 m2), or (c) octadecylamine and amine-

terminated Poly ethylene glycol21 (concentration = 0.5 – 1 mg/ml, yield = 10 – 20%, sheet size ≈ 

200 nm)] that intercalate within the BN layers due to either a similarity in surface energy 

(polymer-BN ≈ BN-BN) or Lewis-base complex formation with electron-deficient B atoms. This 

weakens the interlayer forces and thus exfoliates the sheets. Recently, exfoliation of UTBNS in 

isopropyl alcohol was also reported15 (yield ≈ 0.8%, concentration =  0.06 mg/ml,  sheet size ~ 1 

m2).  The above mentioned routes produce small sheets (≤ 1-2 µm2) and/or have a low yield. 

The main culprit for the small size is sonication, which induces tearing. Other CVD and 

micromechanical cleavage processes for fabricating BN monolayers generaly do not produce  

solution dispersions. In this study, we protonate the α-BN lattice via chlorosulfonic acid (CA) 

treatment, which  induces interlayer repulsion, resulting in spontaneous exfoliation of the 

stacked UTBNSs to produce large-area UTBNSs in significantly high yield (~23%) and 

concentrations (> 0.7 mg/ml) (Figure 5.1). Subsequently, the UTBNSs are transferred to aqueous 

solution to produce stable dispersions as explained in the Experimental Section.  
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Figure 5.1 Chlorosulfonic Acid (CA) exfoliation of Ultrathin Boron Nitride Sheets (UTBNSs) 

The AA’ stacked α-BN sheets when suspended in CA undergo protonation at the N centre of 

the slightly polar B-N bonds which results in surface chemical modification of the intermittent 

layers. The presence of a high density of positive surface charges lead to intersheet repulsions 

that overcome the interlayer binding forces, resulting in layer-by-layer exfoliation of UTBNSs 

which remain suspended in CA due to electrostatic stabilization. Bottom left inset shows the 

optical image of UTBNSs on a silica substrate. The immobilized sheets exhibit surface wrinkles 

(labeled W) and raised regions (labeled R), which arise from the multiple-point electrostatic 

attachment. 

 

5.3 Experimental section 

5.3.1 Synthesis of UTBNSs 

Bulk α-BN is procured in the form of (a) single crystals that obtained by scrapping high-

purity hot-pressed boron nitride, grade HBC procured from Momentive Performance Materials, 
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and (b) a highly oriented pyrolytic boron nitride (HOPBN) . 10 ml of 97% pure CA was added 

to a glass vial with 50 mg of α-BN under the dry N2 atmosphere of a glove-box. The α-BN and 

CA mixture was blended using a teflon coated magnetic stir bar for ~72 hrs at 1500 rpm, 

wherein a large fraction of the bulk α-BN undergoes exfoliation and the remainder settles 

down. This produces a stable dispersion of exfoliated UTBNSs which exhibits a pale white color 

due to distinct light scattering. 

5.3.2 Transfer to aqueous phase 

For further investigation outside the glove-box, the moisture-sensitive CA solution, 

containing the exfoliated UTBNSs, was diluted several folds (1:200) in an aqueous solution via a 

process of quenching. 500 ml of de-ionized (DI) water in a glass beaker was placed inside the 

glove-box and 2.5 ml of the UTBNSs-CA solution added drop-wise to the beaker to obtain the 

quenched solution.  The quenched solution was then removed from the glove-box and allowed 

to stand for ~24 hours as the un-exfoliated α-BN flakes sediment to the bottom. 

5.3.3 XPS analysis 

Uniform Boron Nitride films with stacked UTBNS layers were formed on a polymeric 

membrane (Poly Tetra Fluoro Ethylene or polycarbonate) paper by vacuum filtration of the 

quenched suspensions (see Appendix D, Figure D.2). The XPS data was obtained from a Perkin–

Elmer PHI 5400 electron spectrometer using achromatic AlKα radiation (1486.6 eV) under 

vacuum of 8.0 × 10−9 Torr. The XPS binding energies were measured with a precision of 0.1 eV 

and the analyzer pass energy was set to 17.9 eV, with a contact time of 50 ms. Before sample 

testing, the spectrometer was calibrated by setting the binding energies of Au 4f7/2 and Cu 

2p3/2 to 84.0 an 932.7 eV, respectively and using C1s spectra at 285.0 eV as the reference. The 

samples were heated in-vacuo to a temperature of 400 °C for ~2hrs to remove any residues of CA 

and any atmospheric adsorbates.  
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5.3.4 FESEM Imaging and EDS 

FESEM Images and EDS were obtained with a LEO field emission scanning electron 

microscope and FEI Nova Nano SEM 430. The UTBNSs were immobilized on silica substrates 

by surface pick-up technique (as explained in the Appendix D) and drop casting.  

5.3.5 TEM Imaging and SAED studies 

The TEM images and SAED pattern were obtained with a FEI Tecnai F20 XT Field 

Emission Transmission Electron Microscope and Philips CM 100 transmission electron 

microscope. For TEM sample preparation, 300 mesh size copper TEM specimen grids (Electron 

Microscopy Sciences) having a lacey carbon support film were used for picking up sheets from 

the surface of quenched solution. 

5.3.6 Zeta Potential Measurement 

Zeta potential is calculated from the Electrophoretic mobility obtained from light 

scattering measurements on aqueous UTBNS dispersions in a Zeta Plus Zeta Potential Analyzer 

(Brookhaven’s Instrument Corporation). The pH of aqueous dispersion was adjusted using 0.1 

M solution of sodium hydroxide. This instrument was also used for determining the size 

distribution by laser light scattering. 

5.3.7 Synthesis of citrate capped gold nanoparticles (GNPs) and templating on 

UTBNSs 

Citrate capped GNPs were synthesized by adding tri-sodium citrate to a solution of 1M 

HAuCl4 and heating the mixture on a hot-plate for ~20 min until the solution color turns red. 

These GNPs are interfaced with UTBNSs in aqueous phase where they undergo an electrostatic 

self-assembly process. 

5.4 Results and Discussion 

While the CA’s treatment of BN is a novel study, CA’s strong protonating chemistry has 

been applied to solvate carbon nanotubes (CNTs)22,22-24 and exfoliate graphene25. The route for 

dispersing UTBNSs in CA exhibits three significant strengths: (a) Produces large sheets by 
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precluding sonication: The high density of protonation enables spontaneous exfoliation without 

the assistance of sonication, which is known to fragment the sheets into smaller size. The 

method presented here produces sheets with lateral dimensions as large as ~100 µm; (b) 

Enables chemical surface functionalization of UTBNSs: The UTBNS’s lattice consists of 

protonated sp2 and sp3 N atoms (>N+= and >NH+- respectively within lattice) and protonated 

pyridinic-like N atoms (=NH+- and  >NH+ along the edges) [as shown ahead in the X-ray 

photoelectron spectroscopy (XPS) studies)], which are challenging to achieve on the inert BN 

surface. These active lattice functionalities can be leveraged for electrostatic interfacing and for 

tethering new chemical groups; and (c) Enables aqueous phase dispersion of UTBNSs: The 

highly charged lattice of UTBNSs results in their aqueous phase electrostatic stabilization 

without the need of surfactants.  

The dispersion of  UTBNSs  in  CA    exhibits   Tyndall   Effect (distinct light scattering via 

suspended colloids), when exposed to a red laser beam (Figure 5.2a). The path of laser beam in 

UTBNS-CA dispersion is clearly discernible, in contrast to that in the bare CA solution. The 

dispersions remain stable for prolonged periods (> 4 months). Aqueous dispersions of UTBNSs 

were obtained by transferring the CA dispersed sheets to water (~1:200 dilution, see SI section 

S02). Figure 2b shows the UV-visible absorption spectrum of the water- dispersed UTBNSs. The 

spectrum exhibits one sharp absorption peak at ~198 nm, consistent with earlier studies. The 

otherwise featureless spectrum is explained by the extremely low optical coefficient of the 

UTBNSs reported earlier21. Figure 5.2b inset shows the Tauc’s plot obtained from the 

absorbance spectrum; its linear regime is  fitted (straight line, slope=84.2°)and extrapolated to 

obtain the gap wavelength (λo) of ~216 nm and corresponding optical band-gap (Eg) of 5.74eV. 

The sharp slope exhibited within the linear regime suggests the presence of an exclusive single 

crystalline phase in the aqueous solution26. 

Theoretical calculations predict Eg = 6 eV for a single atom thick α-BN sheet27. The 

presence of layer-layer interactions can reduce Eg by widening the electronic band dispersion. 2-

5 layer thick α-BN sheets exhibit a band-gap of ~5.56 eV28. We thus speculate that the UTBNSs, 

with Eg = 5.74eV, will be between 1 to 5 atoms thick. The observed decrease in band gap could 
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also be due to the presence of chemical functional groups (in which case the sheets will be 

thinner), but this needs to be confirmed. 

 

 

Figure 5.2 Optical Properties of UTBNSs and Band-gap determination a) Tyndall effect as 

observed in UTBNSs dispersed in a CA solution. The path of laser beam is clearly 

distinguishable in the CA solution containing UTBNSs as compared to the bare CA solution. b, 

Ultraviolet-visible absorption spectra of UTBNSs suspended in water at room temperature. The 

aqueous solution is obtained by transferring the CA containing exfoliated UTBNSs in water (as 

explained in Experimental section and Appendix section D.2). Inset shows the Tauc plot 

generated from the absorption spectra for UTBNSs. The linear regime is extrapolated to obtain 

gap wavelength λo=216 nm and corresponding optical band gap Eg=5.74 eV. 

 

The chemical composition of UTBNSs was investigated by XPS scanning of BN flakes 

and UTBNS films. The UTBNS film was formed by vacuum filtration of the aqueous UTBNS 

suspensions (see Methods and Appendix section D.3 for detailed process). The central inset in 

Figure 5.3 shows the cross-sectional FESEM image of an UTBNS film. The obtained spectra 

were analyzed for B1s and N1s core level peak-features. Figure 5.3a shows the XPS spectra for 

bulk α-BN flakes fitted with Gaussian distributions; the B1s and N1s peaks are located at 

190.8eV and 398.4eV respectively, which is in accordance with the previously reported values of 

B1s and N1s peak position in conjugated BN systems [for example, the monolayer α-BN 

samples prepared by CVD on Cu substrates28]. For the UTBNS films, the B1s and N1s spectra 
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exhibit primary peaks at 190.8 eV and 398.4 eV respectively. Additionally, secondary peaks 

appeared as shoulders at higher binding energies (Figure 5.3b). 

  

Figure 5.3 XPS studies to determine the chemical functionalization of UTBNSs a, B1s and N1s 

core level spectra from the XPS analysis of the α-BN flakes. The spectra fitted with Gaussian 

distributions exhibit peaks at 190.8eV and 398.4eV respectively, which correspond to the 

conjugated BN structures shown in the top right inset (=B- and =N-). b, B1s and N1s spectra of 

UTBNSs (obtained from an UTBNS film, cross-sectional FESEM image shown in middle inset) 

exhibit extended shoulders at higher binding energies in addition to the primary peaks at 

190.8eV and 398.4eV respectively. The N1s spectra in the UTBNSs exhibits secondary shoulders 

at (1)400.1 eV, (2)401.1 eV, (3)401.6 eV and (4)402.2 eV attributed to N atoms protonated in four 

distinct manners as represented in the bottom right inset. This indicates functionalization of 

UTBNSs post CA treatment. 

 

Deconvolution of the N1s spectrum using a Gaussian fit reveals the positions of these 

secondary peaks at: 400.1 eV, 401.1 eV, 401.6 eV and 402.2 eV. The shift of the peaks to higher 

binding energies indicates that, post CA treatment, the formal-charge on N becomes positive 

(attributed to its protonation). These peaks correspond to four distinct forms of N-protonations 
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on the lattice, as represented in Figure 5.3b insets: (a) The peak at 400.1 eV is attributed to 

protonation of sp2 N atom, where the positive charge is delocalized over the conjugated 

hexagonal ring with preserved structural integrity (shown as N1). This is similar to the 

protonation by sulfonic acid on the conjugated hexagonal carbon rings in CNTs22. (b) The peaks 

at 401.1 eV and 401.4 eV are attributed to the protonation of pyridinic-like N  atoms (lying along 

the edges) present in milieu of un-conjugated and conjugated rings respectively (shown as N2 

and N3), and (c) the peak at 402.2 eV is attributed to the direct protonation of quaternary N atom 

29 in its sp3 hybridized state (shown as N4). This is similar to the binding energies reported for N 

atoms within cyclic rings 29,30. 

The relative fractional contributions from the functional groups are: 12.7% (N1), 7% (N2), 

1.3% (N3) and 9.3% (N4) (from the areas under respective peaks). Therefore, 22% of internal 

lattice N (N1 + N4) and 8.3 % edge N (N2 + N3) are protonated. The TEM images of several 

UTBNSs (Appendix D, Figure D.4) exhibit nanoscale perforations and crevices. The edges of 

these internal perforations, crevices along with the outermost sheet-edges and internal vacancy 

defects will also contribute the pyridinic-like dangling N atoms. The distribution of protonated 

N atoms was studied by labeling them with amine-reactive fluorescein isothiocyanate (FITC) 

dye (see Appendix D, section D.15). Under confocal microscope, fluorescence at 518 nm 

(emission maximum of FITC) from the functionalized UTBNS sheets on silica surface, 

confirmed the uniform distribution of protonated N centers on UTBNS lattice (Figure 5.4a).  

The B1s spectrum also exhibits additional secondary peaks apart from the primary peak 

at 190.8 eV. The peaks located at ~ 193 eV correspond to the native boron-oxides, while the peak 

at ~188 eV corresponds to boron-hydride derivative31. However, the fraction of these B-

derivatives on the lattice is less than the protonated Ns; attributed to the scant oxidation of edge 

B atoms by CA. Also, by multiple cycles of centrifuging and resuspending in water the 

concentration of more hydrophilic UTBNS with higher fraction of functionalized B and N atoms 

was increased (see Appendix D: Figure D.2). This lattice-protonation process is proposed to 

initiate in a fashion similar to the intercalation of nitric acid (NA) molecules within BN layers. 

Here, the CA molecules will enter the BN layers, increase the interlayer spacing, form charge 

transfer complexes by extracting electrons from the layers, and impart a high hole-density32. In 
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the presence of CA, a much higher degree of protonation is expected that would induce 

electrostatic repulsion between the protonated BN layers, sufficient to overcome the lip-lip 

attraction, resulting in layer-by-layer exfoliation of the UTBNSs.  

 

 

Figure 5.4 Presence of functionalized N centers on UTBNSs and stability of UTBNSs in 

aqueous phase. a, Confocal Image of a UTBNS covalently tagged with FITC molecules 

suggesting a uniform presence of functionalized N atoms on its surface. The bottom right inset 

shows the optical image of the corresponding UTBNS.  b, UTBNSs, when dispersed in water 

exhibit positively charged surface due to the presence of protonated N atoms. This leads to their 

electrostatic stabilization enabling a colloidal formation. c, The net energy of water dispersed 

UTBNSs can be modeled using DLVO theory. The graph shows the net energy evaluated per 

unit surface area for an UTBNS exhibiting a zeta potential value ζ=+25 mV. Top inset shows the 

size distribution of UTBNSs dispersed in water determined using laser light scattering. The 

average diameter of sheets is ~24.5 μm. Bottom inset shows the zeta-potential for UTBNSs 

dispersed in water as a function of the solution pH. The blue region (ζ > 2.4 mV) denote pH 

regimes in which UTBNS dispersion is stable. The red region (ζ < 2.4 mV) denote an instability 

in the colloidal dispersion [This analysis is for sheets with surface areas >1µm2]. 

 

UTBNSs dispersed in aqueous phase are electrostatically stable due to their protonated 

lattice (Figure 5.4b), as confirmed by Zeta-potential (ζ, electrostatic potential at the sheet-water 
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interface) studies (Figure 5.4c bottom inset): ζ exhibits large positive values (ζ max=+150 mV) in 

the pH regime 2-9. The positive value of ζ confirms a positively charged surface. Further the pH 

dependence of ζ is consistent with the pH-dependent ionization of amine functional group. The 

UTBNS dispersion exhibits small negative ζ values for pH 9-10, which represents the isoelectric 

point regime for the UTBNSs. Beyond pH=10, ζ again assumes positive values, which is likely 

due to the adsorption of H+ or Na+ ions added to adjust the pH. The aqueous UTBNS-

dispersion is modeled using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.  Here, 

the charged colloidal stabilization is analyzed by the interplay between electrostatic repulsive 

potential (VR) and attractive van der Waal potential (VA). We determined these potentials by 

considering a system of two adjacent UTBNSs interspaced with a separation D (Figure 5.4b, see 

Appendix D: section D.5): 

The above values are used for estimating the net interaction energy of dispersed UTBNS 

(Vnet=VR + VA) over a wide range of intersheet separations by using the sample ζ=25mV (Figure 

5.4c). The obtained Vnet curve represents a stable system with distinct maximum (depicted as 

Vt,max), that represents the energy barrier obstructing coagulation of UTBNSs. A colloidal 

solution is considered to be reasonably stable if the height of Vt,max is of the order of ~25kT 

(kT=0.025eV, average kinetic energy of sheets at room temperature)33,34. For a sheet with average 

area 1µm2, Vt,max = 102 eV ≈ 4080kT, and since most UTBNSs exhibit surface areas >> 1 µm2 (as 

shown in the size distribution, Figure 4c top inset), there exists a large potential barrier that will 

prevent lasting contact between two sheets in the aqueous UTBNS dispersion. Further, only 

sheets with a surface area < 0.006 µm2 will tend to coagulate at room temperature. The net 

energy curve shows similar stable behavior for values of ζ different from 25 mV (see Appendix 

D: Figure D.7). Using the criteria for stability stated above, we calculated that a sheet with 

average area 1 µm2 is stable for all ζ > 2.4 mV, below which Vt,max < 25kT. Thus the aqueous  

dispersions exhibit high-stability for most of the pH regime (shaded blue in Figure 5.4c bottom 

inset), except from pH 7.5-9.7 (shaded red, where |ζ |< 2.4 mV). 
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Figure 5.5 Figure 5| Electron Microscopy Imaging of UTBNSs. a, FESEM image of UTBNSs 

obtained from α-BN flakes and immobilized on 300 nm thick silica substrate. The absence of any 

wrinkled relief-features on the deposited sheet is attributed to electrostatically stretched UTBNS 

configuration within the aqueous dispersion. b, TEM image of large-sized and small-sized 

UTBNSs on lacey carbon grid. The larger sheets exhibit crevices on their surface which 

contribute to a high density of dangling bonds. 

 

UTBNSs from aqueous suspension were immobilized on silica substrates or lacey carbon 

grids for visualization under optical microscope, field emission scanning electron microscope 

(FESEM) and transmission electron microscope (TEM) (see Experimental Section and and 

Appendix D: sections D.7 through D.11). Figure 5.5a shows FESEM image of an UTBNS with 

lateral dimensions of ~15 µm.  

Several surface immobilized sheets do not exhibit visible wrinkles on their surface 

suggesting electrostatic stretching of the sheets in solutions. Some sheets do exhibit a scrolling 

of the edges. The maximum lateral dimension of UTBNSs was ~100 µm. Some sheets also 

exhibit a perforated appearance (see Appendix D: Figure D.4), which is probably due to the 

chemical cleavage by strong CA during exfoliation. These localized edged structures bear 

pyridinic-like N atoms available for functionalization. The presence of these perforations is 

expected to increase the defect density and hence the reactivity of otherwise inert B-N pair35. 
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Figure 5.5b shows the TEM images of UTBNSs immobilized on lacey carbon grids. The 

underlying lacey carbon grids are visible due to the electron-transparent nature of UTBNSs. 

Figure 5.6a compares the Raman spectra of bulk α-BN crystal and UTBNS, obtained at 

room temperature using a 633 nm laser. The bulk α-BN crystal exhibits Raman peak at ~1366 

cm-1, which is the characteristic E2g vibrational phonon mode of α-BN 36-38 (top left inset). The 

UTBNSs exhibit an extremely low intensity peak blue shifted to ~1384 cm-1 (the scale has been 

adjusted to clearly depict the peak). Since the E2g peak intensity is directly proportional to the 

number of layers, a faint intensity suggests successful exfoliation from multi-layered crystal to 

 

 

Figure 5.6 Raman spectroscopic study of UTBNSs and self-assembly of gold nanoparticles. a 

Raman spectrum of the UTBNS shown in panel a (red), compared with the Raman spectrum of 

α-BN flake (blue) from which it was exfoliated; exhibiting peaks at 1384cm-1 and 1366cm-1 

respectively. The samples were excited by a 633 nm laser. These peaks correspond to the 

characteristic E2g vibrational phonon mode of α-BN shown in top left inset. Top right inset 

shows the transverse phonon mode spectra (~1050cm-1) obtained from UTBNS representing the 

presence of sp3 defect sites. The curves are fitted using Lorentzian distributions b, FESEM Image 

of an UTBNS templated with gold nanoparticles. Citrate capped gold nanoparticles (GNPs) can 

be templated on UTBNSs via a solution-phase electrostatic self-assembly process. The GNPs 

deposit uniformly on the sheet featuring a high surface coverage. 
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few layered sheet structure. The blue shift of ~18 cm-1 is attributed to four different factors: (a) 

Reduced thickness: mono- and bi-layered UTBNSs exhibit 2-4 cm-1 up shifted E2g peak,39 (b) 

Intra-sheet compressive stress: the position of Raman modes depend on the stress-strain built 

up in the crystal structure40, which can arise from the underlying substrate with nanoscale 

roughness, (c) Defects: isolated double bonds, such as those expected in the protonated lattice of 

UTBNSs, resonate at higher frequencies41-43 (similar to the blue shift in graphene-oxide (GO) 

with respect to Graphene),and (d) Hole charges: This is analogous to the blue-shifts of the G 

peak in CNTs by 320 cm-1 for a unit hole charge on each C atom44 . The FWHM of the E2g peak 

exhibits a low value of ~2.05 cm-1. To the best of our knowledge, such a low peak-width has not 

been observed for BN and further studies are required to investigate the plausible causes. A 

decrease in the FWHM of analogous G peak in graphene has been shown to arise due to the 

presence of charged impurities/dopants45,46. 

We also leveraged the protonated sites on the UTBNSs for controlled nano-templating. 

Negatively charged citrate-capped gold-nanoparticles were electrostatically self-assembled on 

the positively-charged surface of ATBSNS. Here, the attachment takes place in aqueous media 

with UTBNSs mixed with the GNPs. The GNP-decorated-UTBNSs were immobilized on an 

amine-silanized silica substrate to obtain FESEM images (Figure 5.6b) (see also Appendix D: 

Figure D.13). The resultant GNP-attachment density is high (ηg=surface coverage index= 81%) 

(see Appendix D: Figure D.14). The presence of underlying BN is confirmed by EDS studies 

(Appendix D: Figure D.15). 

5.5 Summary 

In this study, we report on the CA based spontaneous exfoliation of layered α-BN at 

high yield to produce large, ultrathin BN sheets with optical band-gap of 5.74 eV. The exfoliated 

sheets are protonated with a high zeta-potential of +150 mV at pH = 4, enabling stable aqueous 

dispersions without surfactants. The protonation sites are distributed on the internal and edge 

lattice points of the UTBNS. The UTBNSs were also shown to be excellent templates for 

designing hybrid nanoarchitectures. The ability to manipulate its lattice chemistry, plus their 

facile processability, will broaden the scope of UTBNS’s applications18,47,47-52. Some examples of 
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prospective UTBNS applications include lattice-matched-substrates for enhanced-graphene 

electronics, piezoelectric devices, drug-delivering agents, transistor-gate-barriers, polymeric 

composites with reinforced strength, luminescent nanomaterials, optoelectronic devices, 

protein-immobilized medical diagnostic devices, electrically insulating substrates, impermeable 

membranes, and graphene-interfaced devices. 
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6 Conclusion and Future Work 

6.1 Summary of contributions 

The research results presented in this thesis have contributed significantly towards 

advancing the current state of knowledge by providing unprecedented details on: the dynamics 

of nanoscale motion in polymer cross linked nanoparticle constructs; solution phase interfacing 

properties of chemically modified graphene sheets; and synthesis of ultrathin Boron Nitride 

sheets. These important advancements are briefly summarized in this section.  

 

 Ability to Incorporate nanoscale motion by applying macroscopic forces 

The polymer cross-linked assembly of GNPs examined in Chapter 2 displayed a 

nanoparticle matrix system which can undergo a controlled nanoscale motion under the effect 

of macroscopic forces. This is an important addition to the current capabilities of maneuvering 

the basic components at the nano dimension. Also the phenomenon of electron tunneling was 

applied to monitor this motion, which reasserts the immense capabilities that rest with 

nanoscale phenomena. Further, the spring-like nature of the GNP-polymer assembly opens up 

newer avenues to store energy at nano-scale. The ability to store compression energy in a 

molecular-device-architecture and to manipulate them by actuating junctions has the potential 

to power future molecular devices by stored molecular-energy and controlling the properties of 

nanocomponent based devices. 

 Solution phase interfacing capability of graphene 

When we initiated the study reported in Chapter 3 on building graphene-metal nanoparticle 

hybrids, graphene had exhibited a multitude of exceptional solid-state properties. There were, 

however, no reports on the ability of solution-dispersed graphene-chemical-derivatives (GCDs) 

to function as ‘swimming’ macromolecular ‘templates’ where their large surface’s active groups 

could be accessed for chemical/physical processes. Similarly, there were no reports on methods 

that can enable a facile interfacing of graphene with metal NPs. We established this science by 
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demonstrating that the oxy-functional moieties present on dispersed GO sheets can interface 

and nucleate in-situ synthesized GNPs.  

 

 Important insights into the structural, chemical and electronic properties of 

graphene-metal hybrids 

The attachment of metal nanostructures to graphene was theoretically being predicted to 

sensitively tailor graphene’s electronic properties (band gap, carrier density, nature of charge 

carriers) and physico-chemical properties (chemical response). An accessibility to the graphene-

metal nanoparticle hybrids enabled us to investigate and realize these effects and build 

correlations and theories which could relate the degree of functionalization with the nature of 

modifications introduced.  

 

 Applying the gold nanoparticle decorated graphene sheets for addressing 

pertinent challenges in liquid-phase catalysis 

The ability of chemically modified graphene sheets to nucleate metal nanoparticles was 

carried forward for achieving ‚uncapped‛, highly-active, supported nanocatalysts dispersed in 

liquid phase. This was made possible by microwave-reduction and the stabilizing chemistry 

offered by graphene-oxide sheets as explained in Chapter 4. While the bare surface of these 

BSGNs enabled increased electro-catalytically active site-density, their implantation on GO can 

also be employed to control the electron-injection and tune its electrical properties. We also 

applied this modifiable approach to stabilize bare-surfaced silver-nanoparticles on GO sheets.  

 

 Synthesis of Ultrathin sheets of Boron Nitride 

Chapter 5 reported a novel chlorosulfonic acid (CA) based treatment route that resulted in 

protonation assisted layer-by-layer exfoliation of BN monolayers with highest reported yields 

till date. The as exfoliated sheets of BN monolayers exhibited extensively protonated nitrogen 

centers, which we utilized for chemically interfacing GNPs, demonstrating their ability to act as 

excellent nano-templates. These were the first time ever reported studies on chemical 
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functionalization of BN sheets and formation of their nano-constructs. This work has the 

potential to spur a worldwide research effort towards studying atomic thin sheets of BN. 

In addition to these works, we have initiated two potential projects on graphene. The 

following sections present an overview of these projects.  

6.2 Future work on detecting mechanical motion in a molecule using 

graphene-platform 

In this section we present the preliminary studies on a potential graphene work that 

revisits the quasi quantum sensitivity of graphene and applies it to detect the mechanical motion 

taking place in azo-benzene molecules. 

6.2.1 Introduction 

Controlling and detecting the mechanics at molecular scale is of fundamental 

importance in realizing the next-generation molecular electromechanical systems. Nanoscale 

constructs with mechanically actuating molecules have been employed in the past for 

fabricating photomechanical switches, electromechanical switches and nano-mechanical 

assemblies. Several ‘molecular-electronic’ devices have utilized the phenomenon of reversible 

molecular-conformational change for fabricating electro-mechanical switches where the 

conformational change enables avenues for manipulating and controlling the electronic 

properties by introducing an additional degree of freedom at nano scale.  

The single atom thick quasi planar sheets of graphene functions as an ultra sensitive 

electrical platform due to the high carrier density and the low-scattering, sp2 bound-carbon 

lattice-structure. The single atom thickness with a high density of p-electrons on the surface 

makes graphene ultrasensitive to surface events which can either change the carrier density or 

produce scattering sites. A synergistic integration of the molecular mechanics with the sensitive 

electronics of graphene is a promising route for the development of molecular 

electromechanical systems.  

We designed an azo-functionalized graphene device and investigated the effect of azo’s 

molecular-scale mechanics on the fundamental electrical properties of the base graphene by 
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characterizing of fermionic redistribution on graphene surface in response to sub-nano scale 

mechanical graphene-azo optoelectronic device. Figure 6.1 shows the schematic of the Azo-

derivatized GO device with the azo-group in their trans and cis states, and the corresponding 

electrical states in graphene. A trans to cis switching of the azo-group reduces the separation 

between two aromatic rings from 2.1 Å to 0.7 Å, which increases the proximity of the electron-

rich benzene ring to the CMG surface. The isomerization-actuated mechanical-motion of the 

electron-rich benzene group of the azo molecule tethered to the graphene surface is expected to 

induce a change in the base conductivity due to the generation and reduction of charge carriers. 

 

 

Figure 6.1 Schematic illustration of an amino azo-benzene molecule functionalized graphene 

sheet. The azo-benzene molecule can be reversibly switched between its cis and trans 

conformational states on irradiations with UV (365 nm) and blue (420 nm) lights. The 

conformational change is associated with a molecular motion of the electron rich benzene 

moiety bringing it closer to the Graphene base by a distance of 2.1 Å - 0.7 Å = 1.4 Å .The 

sensitive graphene base is utilized for electrically detecting this sub-nano scale molecular 

motion. 

6.2.2 Experimental Section 

The azo-functionalized graphene sheets were obtained by covalently binding the amine-

derivatized azo-benzene molecules with the carboxylic functionalities present on Graphene-

Oxide (GO) sheets that results in the formation of strong amide bonds. The GO sheets, obtained 
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by modified Hummer’s method, are immobilized via electrostatic interactions on a heavily 

doped n-type silicon substrate with a 300 nm thick thermally grown silica layer with pre-

fabricated gold electrodes. This GO coated chip is treated overnight with a 20 ml mixture of 5 % 

Amino azo-benzene hydrochloride containing 5 mg HATU (a coupling agent) and then 

thoroughly washed with methanol for 10 min. This results in a covalent grafting of azo-benzene 

molecules on GO sheets. 

 The azo-benzene molecules are reversibly switched between their trans to cis 

conformations by successive illuminations with UV-Blue light and the response of underlying 

graphene sheet is electrically measured as a change in its conductance across the gold 

electrodes. The electrical measurements are carried out under a steady nitrogen flow in a  

cryostat the temperature of which can be externally controlled. 

6.2.3 Preliminary Results 

Preliminary results demonstrate that an increased proximity of the electron cloud of the 

azo group’s benzene ring in its cis-state increases the hole-concentration of the graphene-azo 

sheet that enhances the conductivity of GO sheet. A lower  conductivity stare in subsequently 

reached on switching off UV as the cis-azo molecules transiently revert back to their trans states. 

The fraction of cis molecules which revert to their trans state can also be regulated by 

temperature. More molecules retain the cis  conformation enabling avenues to thermally 

regulate the memory of this opto electromechanical device.(Figure 6.2) 
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Figure 6.2 Controlled conductance switching in an azo-functionalized graphene device can 

be achieved by irradiations with UV and blue lights. A trans to cis isomerization of the azo 

molecule on UV application switches the azo-functionalized graphene to a higher conductive 

state that reverts close to its original state upon cis to trans isomerization. This electrical 

response of graphene is measured at temperatures of 273 K and 300 K. Temperature acts as an 

external factor to regulate the memory of this optoelectronic switch. 

 

6.2.4 Intellectual Merit  

This work combines the photo-induced molecular switching ability of azobenzene with 

the ultra sensitive electronic properties of graphene to fabricate a novel opto-electronic 

graphene device. The graphene interface is shown to efficiently detect the nanoscale motion on 

its surface associated with the conformational change of tethered molecules. This unique 

interface potentially enables an improved understanding  of the  photo switching kinetics and 

can lead to the realization of next generation optoelectronic and logic devices. Detailed ongoing 
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investigations are expected to yield more insights on the isomerization regulated conductance 

switching. 

6.3 Future work on a novel scheme to non-invasively functionalize 

graphene 

In this section we present our preliminary work on a novel functionalization scheme of 

graphene that promises to introduce interfaceable groups on pristine graphene without 

compromising the superior properties of graphene. 

6.3.1 Introduction 

The functionalization of graphene has been studied extensively by several research 

groups. However all of the proposed methods suffer from a severe limitation, post 

functionalization, the planar sp2 carbons get converted to tetrahedral sp3 carbons, which results 

in: (a) distortion in the planar structure of graphene that introduces scattering sites and reduced 

carrier mobility, and (b) loss of π electrons (associated with the sp2 carbons) that drastically 

reduce the carrier density. There is an urgent need for a method that can enable 

functionalization of graphene and still retain its superior properties.  

This project is aimed to methodically develop routes for synthesizing superior-quality 

graphene-metal conjugates by studying η6 functionalization of epitaxial graphene with 

transition metal carbonyls. The term η6 functionalization refers to a scheme of chemical 

modification which enables a co-ordinate binding of transition metal-carbonyls (Cr, Mn, Fe, Co, 

Ni) with polycyclic aromatic compounds such as graphene (Figure 6.3). This bond formation, 

which occurs via a transfer of electrons from arenes to the hybridized metal d-orbitals, is 

exceptionally unique, as the metal atoms effectively bind to the aromatic ring centers on 

graphene, rather than binding to the terminal carbon atoms. 
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Figure 6.3 Chromium carbonyl functionalization of graphene via formation of metal-

aromatic η6 coordination bond.  

The bonding orbitals (shaded red) contribute towards the σ interaction while the non 

bonding/ antibonding orbitals (shaded blue) can overlap with ligand orbitals of the correct 

symmetry to contribute towards π-interaction (Figure 6.4). Since arenes act as π-acceptor 

ligands, a transfer of electrons from metal to C non-bonding orbitals that increases the electron 

density at the C centers. This synergy between metal and arenes leads to a stronger binding 

than σ or π binding alone. 

 

Figure 6.4 : Chromium carbonyl functionalization of an arene molecule via metal-aromatic η6 

coordination bond. Transfer of electrons in an bond formation and π- π Interactions among 

the non-bonding orbitals which increase the electron density at the arene center has an 

electron accepting tendency. 
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6.3.2 Experimental Section 

We realized η6 chemical modification of graphene on epitaxial graphene (EG) layers 

grown by a chemical vapor deposition process on Silica Carbide (SiC) wafers and Copper 

substrates (sized 5 mm X 5 mm).  Briefly, the EG deposited substrate is exposed to a 20 ml 

solution of 45 mM Cr (CO)6  in THF under  moderate-temperature moderate pressure (50 °C) 

batch conditions for ~ 12 hrs in a that results in a grafting of chromium-tri carbonyl [Cr(CO)3] 

groups on the 6-membered arene rings of EG yielding η6 graphene tri-carbonyl chromium complex. 

This chemical functionalization is verified by X-ray Photoelectron and Raman spectroscopies. 

6.3.3 Preliminary Results 

The η6 functionalization was confirmed by XPS spectra (Fi10), where (a) the Cr 2p 

spectra starts showing 2 new peaks at 587.7 eV and 578.4 eV; (b) the Cr 3p spectra starts 

showing a new peak at 45.4 eV; and (c) the C1s peak shifts from 285.9 eV to 286.4 eV). This 

confirms functionalization on graphene. Preliminary electrical studies suggest that post 

functionalization; the average conductance of graphene reduces by an order of magnitude while 

the carrier mobility increases by ~42.8%. Detailed investigation for these effects and 

determination of band-gap, nature of charge carriers are under way. 

6.3.4 Intellectual merit  

This novel scheme addresses a most pertinent challenge faced in functionalizing 

graphene.  These functionalization techniques compromise the planar sp2 hybridized state of C 

atoms converting these to tetrahedral sp3 C atoms. This disrupts the planar lattice structure of 

graphene introducing scattering sites which renders graphene devoid of its high carrier density 

and exceptional carrier mobility, the very properties which makes it special. The 

functionalization at the center of aromatic ring via η6 bonding introduces chemical groups on 

graphene without converting the sp2 hybridized state of C atoms and thus retaining planar 

structure. This ability of functionalizing graphene in a non-invasive manner will be immensely 

useful in developing and producing new nanotechnologies.  
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Figure 6.5 Preliminary Results (confirmation of bonding on graphene): (a) XPS analysis of 

pristine graphene sample before and after treatment with the chromium hexacarbonyl solution 

at a temperature of 80 °C and 2 atm. Functionalization of Cr(CO)3 on graphene is evidenced by 

the appearance of 3 new peaks post treatment: 578.4 eV & 587.7 eV  (Cr 2p spectra) and 45.4 eV 

(Cr 3p spectra). The formation of coordination bond between the metal atom and aromatic ring 

alters the electron density of the conjugated C atoms on graphene and is reflected in the C1s 

spectra in the form of a shift of 0.5 eV. (b) The average conductance of graphene decreases by an 

order of magnitude post functionalization, and (c) Average carrier mobility enhances by 42.8% 

post functionalization 

 

Since η6 functionalization of graphene constitute a new research area, the fundamental 

findings obtained from this systematic study will significantly support current research 

activities on graphene and greatly impact its future applications. The η6 functionalization is self 

limiting in nature, as it only modifies a monolayer on graphene.  The η6 functionalization is self 

limiting in nature, as it only modifies a monolayer on graphene. Hence this functionalization 
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scheme will exhibit an improved control on surface modification, making it an excellent 

candidate for realizing atomic-layer deposition of gate-oxide on graphene. Further, since the η6 

bonds maintain and increase the aromaticity in benzene, these are expected to maintain or 

increase graphene’s carrier density too.  

6.4 Closing Remarks 

In principle, the family of 2-D nanomaterials presents a gamut of perspectives that 

enable reexamination of older research problems and avenues of studying newer ones. The 

knowledge we have obtained in this work has significantly contributed to the evolving story on 

the science of 2-D nanosystems. The results presented here have inspired other researchers and 

they have improved and expanded upon the work we have developed, The scientific fields 

discussed here have been an extremely fruitful area of research and have expanded at a rapid 

pace. The 2-dimensional nanomaterial family discovered 6 years ago is no longer an unfamiliar 

territory today. While the science of graphene has developed the most; research on other 

members is still in embryonic stages and concerted research efforts are needed to uncover the 

large possibilities and continue to generate useful knowledge for realizing mainstream 

applications. 
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Appendix A Appendix for the work on reversibly compressible 

and stretchable spring-like polymeric junctions in between 

metal nanoparticles 

A.1 Electrodes used in the study 

 Gold electrodes of 300 nm thickness were deposited on silica substrates (1 micron hick 

silica on 990 micron n-type silicon). The various electrode configurations used for measurement 

of conductivity change from electric field and centrifugation are shown in figure A.1. The most 

common parallel electrodes were 5 μm apart and ~ 7 mm long. 

 

Figure A.1 Typical electrode configurations used in the conductivity measurements of 

nanoparticle-polyelectrolyte assembly (Scale bar = 50 μm) 
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Figure A.2 Controlling the thickness of polymeric junctions. a, FESEM micrographs of 30 nm 

GNP deposited on ~ 50 nm thick cPAH film, shown for deposition times of 15 , 30 , 60, and 120 

minutes. Conduction-percolation is achieved at 120 min. Scale bar = 25 nm. b, Plot showing the 

increase in the GNP density with increase in the GNP deposition-time. 

 

A.2 Electron Transport Analysis 

There are four modes of electron transportation through a nanoscale junction. These are 

(a) direct-tunneling, (b) Fowler-Nordheim tunneling, (c) thermionic emission and (d) hopping 

conduction. While electron tunneling modes ((a) and (b)) are independent of temperature, 

thermionic emission and electron hopping are temperature dependent. Since it has been shown 

earlier that the conductivity of nanoparticles in a similar device through polyteichoic acid 

changes with extremely low electron-transport activation energy of 1.71 meV, thermionic 

emission and electron hopping can be eliminated as transport mechanism. Further to 

differentiate between direct tunneling and Fowler-Nordheim tunneling, current voltage 

behavior of the sample can be analyzed. While the direct tunneling occurs for voltages smaller 

than the potential barrier (φ) or eV < φ, Fowler-Nordheim tunneling occurs for voltages higher 

than the potential barrier (eV > φ). 

The probability of Fowler-Nordheim tunneling is proportional to: 
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Plotting the IV for the device (Figure A.3) and fitting the electron-tunneling equations 

shows that the Fowler-Nordheim equation does not fit the curve below 2.5 V, while the direct 

tunneling fits the curve on a larger scale. This suggests that the barrier height (φ) of the 

junctions is < 2.5 V (this process is similar to one used by Wang et al2). Further from Fowler-

Nordheim equation fit for higher voltage range we find that the barrier height is 0.43 eV 

assuming an interparticle thickness of 2.7 nm3. Since the HOMO-LUMO gap of  most of the 

polymers is between 6 to 9, the Fermi level of the metal junction therefore lies closer to either 

the HOMO or the LUMO level. Therefore, a more appropriate equation was found to be the 

Simmon’s model4,5 which showed that for lower voltage range (0 to 1 V) the barrier height was 

0.8335 eV for HP and 0.8156 eV for LP device. Since Simon model is best for voltages lower than 

the barrier height a voltage of 0.2 V was chosen for compression and stretch analysis by 
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Figure A.3 The voltage current relationship of the sample with a series of polymeric 

junctions. Direct-tunneling and Fowler-Nordheim tunneling equation fits are shown. It can be 

seen that the Fowler-Nordheim tunneling equation fits the data only for V > 4 V. This implies 

that the electron-barrier (φ < 4 eV).  

A.3 Difference between the thickness of LP and HP devices 

The conductivity data for the HP and LP device is shown in the figure A.4. It has already 

been established that the conduction for LP and HP devices follows Simmons model.  

Simmons Model: 
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Figure A.4 Conductivities of HP and LP devices. The inter nanoparticle distance was 

controlled by varying the time of deposition of nanoparticles. Two kinds of devices are 

presented, namely HP and LP devices with deposition times of ~8 h and ~24 h to get higher and 

lower inter-GNP cPAH thickness, respectively, which in turn affects the native conductivity as 

shown. The difference in the inter particle distance for these devices can be calculated using the 

electron tunneling equation. 
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For low voltages: 
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This implies:  
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where J1 is the conductivity at low voltage and J2 is the conductivity at high voltage. Using this 

formula and Figure A.4, we have: 
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This gives the value of )( LPHP dd   of 0.81 nm. 

 

A.4 Error in Calculating dHP – dLP from different models:  

Calculating the difference in thickness using either the Simmons model or the direct 

tunneling model at low biases when the mode of transport is not known gives the following 

difference in measurements: 

 

Simmons Model: 
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Direct Tunneling: 
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Therefore:  
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Equation 6.11 

However, since our calculations show that most of the junctions follow Simmons model 

(with triangular barrier) rather than direct tunneling, in our case this error is much lower than 

8.58 % (~ 0.858 %). 

A.5 Rate of compression 

Upon application of an electric field, the polymeric junctions in LP and HP devices 

undergo compression resulting in an increase in the device conductivity. Moreover, the rate of 

compression was found to decrease with time indicating the presence of an opposing force from 
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the polymeric junction (Figure A.5). Characteristic to the spring motion, this opposing force 

gradually increases with time and at steady state, exactly counter balances the electric field 

induced force 

 

Figure A.5 Rate of polymeric-junction-compression. The rate of electric-field induced 

molecular compression in an HP device is found to decrease with the time of application. This 

indicates presence of an opposing force that increases with time, a characteristic of spring 

action. 

A.6 Device characteristics:  

The current versus voltage characteristics (Figure A.6) shows that there is no hysteresis 

or diodic behavior, hence eliminating any possibility of charge trapping. 
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Figure A.6 IV Behavior at higher electric fields. The current-voltage response of an LP device 

is shown where the voltage is varied from -20 to + 20 V. There is no hysteresis or diodic 

behavior in IV indicating an absence of charge trapping or capacitive effects. The figure on the 

right shows the differential conductivity. 

A.7 Relaxation of the polymeric junctions 

On removal of the electric field, the compressed polymeric junctions relax back to their 

native uncompressed states by applying a recoil force, the magnitude of which depends on the 

initial thickness of the polymeric junction (which determines the equivalent spring constant) 

and the magnitude of induced compression. Figure A.7 shows the time dependent relaxation 

for an LP and an HP device. 
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Figure A.7 Relaxation depends on the initial thickness of polymeric junctions in the device. 

The rate of relaxation was found to depend on the initial thickness of the polymeric junction 

and the compression induced by electric field.. An LP device compressed by ~5.2 pm relaxes 

back to its original state in ~35 min while an HP device compressed by ~15 pm quickly relaxes 

back to its original state within ~3 min. The relaxation dynamics (shown as data points) can be 

fitted with the relaxation equation explained in the following section 

A.8 Compression/Stretching and Relaxation Dynamics 

This many-nanoparticle system is complex due to (a) the integration of nanoparticles 

with one another leading to pushing/pulling of the whole film during stretching and 

compression, and (b) a number of electrostatic bonding present with viscous and elastic forces. 

A simple spring-in-a-viscous-media force-balance equation for the dynamics of compression, 

stretching and relaxation including inertial forces, external force fields from either electric-field 

or centrifugation, viscous forces and spring forces is:  

a. External Forces:  

Electric Field induced force 
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Equation 6.12 

Centrifugal field induced force 
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Equation 6.13 
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b. Decompression or Relaxation 
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2

    
Equation 6.14 

where d is the instantaneous compression or stretching of the polymeric junction, FE 

and FC are the electric-field induced and centrifugal forces, A0 is a constant, A is the coefficient 

of viscous force from the cPAH and k is the average spring constant. The value of the average 

spring constant for lateral application of force on a polyelectrolyte film6 is 2.76 X 10-3 Nm-1.  

A.9 Importance of the c-PAH thickness in device response 

The thickness of the cPAH layer which anchors the GNPs to the substrate, affects the 

restraining forces on the GNPs and thus determines the GNPs’ mobility. As expected, the 

nanomechanical response of the system was found to be critically dependent on the thickness of 

the cPAH layer as shown in Figure A.8. In the devices presented in this report, a thin 

polyelectrolyte film under the nanoparticles acts as a cushion for the nanoparticles to move 

relatively freely with lesser restrain. This unrestrained motion also compensates for the 

collective compression of the junctions. For example, a compression of 0.10 nm of each junction 

will lead to a total compression of less than 7.5 nm per side across the electrodes. Since the 

polyelectrolyte cushion is at least 30 nm (50 nm (film) – 15 nm (or 20 nm) (nanoparticle)), this 

compensation can be easily achieved. 
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Figure A.8 Response of devices with different thickness of c-PAH: The nanomechanical 

response of the cPAH-junctions between GNPs is determined by the thickness of the cPAH 

layer. a. In a layer-by-layer assembled device, the GNPs are bound too close to the surface 

leading to a restrain on their mobility. b. A polyelectrolyte layer thickness of ~ 50 nm was found 

to be appropriate to reduce the restraining forces on GNPs, allowing them to exhibit relatively 

higher mobility and reversible compression. 

A.10 Irreversible relocation of GNPs in a thick polyelectrolyte device 

Devices fabricated with a thicker polyelectrolyte layer (>100 nm) exhibit an irreversible 

compression of the GNPs, which is attributed to permanent relocation of GNPs into the extra 

polyelectrolyte-network. In this case, the GNPs are expected to have mobility but after 

compression they do not relax back to their original state as shown in Figure A.9. 
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Figure A.9 A device fabricated with a thicker polyelectrolyte layer (>100 nm) exhibits an 

average irreversible-polymeric-junction-compression of ~0.05 nm. Electric field applied = 6 X 104 

Vcm-1 for 10 min. 

 

A.11 Centrifugal Stretching of HP device 

An HP device was studied under a centrifugal field of 90 g and the stretching was 

measured three times after 30 seconds centrifugation each. 
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Figure A.10 The change in conductivity upon application of 90 g centrifugal field on an HP 

device gives a change in average junction thickness of 35.61 pm. 

A.12 Gold nanoparticles used for device fabrication 

The polymeric junctions were fabricated by incorporating c-PAH molecules within 

arrays of gold nanoparticles. The gold nanoparticles used in this fabrication were purchased 

from British Biocell International( EM GC 30, ~2 X 1011 particles/ml ). The average nanoparticles 

size is ~30 nm as characterized by the UV-VIS Spectroscopy measurement (Figure A.11) which 

shows a peak at ~520 nm. 



118 

 

Figure A.11 UV-VIS Spectra for 30 nm Gold nanoparticles. 

 

 

 

 



119 

 

Appendix B. Appendix for the work on implantation and  

growth of dendritic gold nanostructures on graphene 

derivatives   

B.1 Materials 

Amino propyltriethoxy silane was purchased from Gelest. Gold chloride trihydrate 

(HAuCl4.3H2O), graphite flakes, nitric acid, sulfuric acid, potassium permanganate and 

hydrogen peroxide were purchased from Fisher Scientific. Hydroxyl amine (50 % solution in 

water) was purchased from Sigma Aldrich. The aqueous solutions were prepared in Deionized 

(DI) water obtained by a Millipore Milli-Q membrane filtration system. 

B.2 Preparation of Graphene oxide 

5 grams of Mesh 7 - graphite flakes were mixed with 33 ml of 68% nitric acid + 200 ml of 

96% sulfuric acid and stirred continuously for 40 minutes in an ice bath. 30 grams of potassium 

permanganate was then added into the solution, while the temperature was slowly increased to 

40°C, and kept at 40°C  for 30 minutes. Subsequently, the excess potassium permanganate was 

removed by treatment with 10% hydrogen peroxide. Finally, the GO sheets were obtained by 

centrifuging this solution at 15,000 rpm for 30 minutes followed by repeated washing with DI 

water. The sample was then dialyzed (MWCO 2000D) for 24 hours and the subsequently stored 

as a suspension in DI water at room temperature. 

B.3 Immobilizing the GO-SFGN hybrids 

The GO sheets functionalized with SFGNs were immobilized via electrostatic 

interactions on a heavily doped n-type silicon substrate with a 300 nm thick thermally grown 

silica layer. Briefly the silicon substrate, cleaned with organic solvents (acetone, isopropanol and 

ethanol) is first exposed to oxygen plasma (100 W, 2 mbar, 2 min) followed by treatment with 3-

Amino Propyl triethoxy silane (1% in ethanol, 10 min), The substrate is then baked at 120°C for 
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4 min that makes the silica surface positively charged due to the presence of amine groups on 

its surface. This amine-functionalized substrate is then momentarily exposed to the synthetic 

mixture of GO-SFGNs (an aqueous dispersion of GO, hydroxyl amine and gold salt). The 

substrate is then subsequently washed 3 times with Deionized (DI) water that facilitates 

selective electrostatic deposition of GO-SFGN hybrids on silica surface. Figure B.1 shows 

FESEM image of such an immobilized GO-SFGN hybrid. The FESEM data was obtained with a 

Leo Field Emission Scanning Electron microscope operated at 10-15 KV. 

B.4 Presence of characteristic wrinkles associated with GO-SFGN 

hybrids 

SFGN formation takes place on both sides of a GO sheet in solution which is evidenced 

by a difference in the observed intensity of SFGNs in FESEM images as shown in Figure B.2. 

The SFGNs which are darker are present on the rear face of the immobilized GO sheet, which 

shields the SFGNs during imaging, while the SFGNs which are brighter are present on the front 

face of GO sheet. The presence of SFGNs on rear surface of GO results in the formation of 

wrinkles as it immobilizes on a silica substrate. The wrinkles are formed as the rear SFGNs raise 

and stretch the GO sheets above the silica surface creating a deformation. This is consistent with 

the fact that wrinkles are only associated with darker SFGNs as shown in Figure B.2 
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Figure B.1 Snow-flake shaped nanostructures of gold (SFGNs) templated on the sheets of 

Graphene-oxide (GO) immobilized on an amine functionalized substrate. Scale bar = 500 nm 

B.5 Structural Parameters of the SFGNs 

As shown in Fig 3.1b (central panel), the SFGNs were analyzed for their characteristic 

structural parameters namely number of primary branches (Np), their average length (Lp), their 

average width (Wp) and the range displayed for the angle of emergence (Θe). The TEM Images 

were obtained with a Philips CM 100 transmission electron microscope operated at 100 kV. The 

GO-SFGN hybrids were deposited from solution on to 300 mesh size copper TEM specimen 

grids (Electron Microscopy Sciences) having a carbon support film. Table B1 list these 

parameters for SFGNs with 4, 5, 6 and 7 primary branches. The average 

 

 

Figure B.2 The formation of SFGNs takes place on both sides of a GO sheet in solution as is 

evident from a difference in the observed intensity of SFGNs. The SFGNs which are darker 

(labeled as D) are present on the rear surface of GO sheet facing the silica substrate while the 

brighter SFGNs (labeled as B) are present on the upward facing surface of the immobilized GO 

sheet. The darker SFGNs are found to be associated with characteristic wrinkles (labeled as W) 

on the surface of GO sheet. Scale bar = 500 nm length of primary branches lies in the range of 

419 nm-550 nm while the average width lies in the range of 211 nm-267 nm.  

B.6 Topographic analysis SFGNs 
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Figure B.3 shows the AFM cross sectional analysis for neighboring SFGNs on the GO 

sheet. The height of the SFGNs was found to lie in the range of ~45 nm-55 nm while their width 

is ~ 500 nm. The AFM image also shows the presence of wrinkles on the GO surface which are 

associated with the SFGNs. 

 

 

 

Figure B.3 Atomic Force Microscopy Scan for SFGNs templated on GO and their cross 

sectional analysis. The height of the SFGNs on this GO sheet was found to lie in the range of 

~45 nm- 55 nm as shown in the adjacent line scan. The wrinkles associated with the SFGNs are 

clearly seen on the GO surface. Scale bar = 500 nm Bottom inset shows a lesser magnified 

version of the main image with a modified contrast to improve the appearance of original 

image. Scale bars = 500 nm 
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Table 1 Structural Parameters (number of primary branches, their average length, average 

width and the angle of emergence range) shown for different SFGNs 
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TEM Image of 

the SFGNs 

Number of 

Primary 

branches (Np) 

Average 

length of 

Primary 

branch (Lp) 

Average 

width of the 

Primary 

Branch (Wp) 

Range 

displayed for 

Emergence 

angle (Θe) 

 

1.  

 

 

 

4 

 

475.3 nm 

 

266.9 nm 

 

~ 63° - 87° 

 

2. 

 

 

5 

 

419.8 nm 

 

211.9 nm 

 

~ 54° - 90° 

 

 

3. 

100 nm100 nm

 

 

6 

 

511.2 nm 

 

239.2 nm 

 

~ 72° - 84° 

 

 

4.  

 

100 nm100 nm

 

 

7 

 

550.9 nm 

 

235.1 nm 

 

~ 40° - 89° 

 

100 nm 

100 nm 

 

B.7 Seed mediated formation via sodium borohydride reduction of gold 

salt 
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In the synthesis of gold nanostructures on GO sheets, hydroxyl amine first reduces the 

gold salt to form seeds and then enable a seeding growth which results in the formation of 

SFGNs. In order to enable formation of seeds which do not undergo seeding growth, hydroxyl-

amine was replaced by sodium borohydride in presence of sodium citrate. 0.6 ml of a freshly 

prepared ice-cold solution of 0.1 M NaBH4 was added to a 20 ml solution of 0.275 mM HAuCl4 

and 0.250 mM sodium citrate, followed by addition of 100μl of graphene oxide (GO) suspension 

(80 mM carboxylic acid, quantified by titration). This results in the formation of small seeds on 

GO sheets as shown in Figure B.4. These seeds exhibit spherical morphologies with a size range 

of 5-10 nm. 

B.8 Calculation example of determining mass flux rate of gold 

The average mass flux rate (φavg) of gold for the formation of SFGNs on a GO sheet can 

be estimated as 

 

TA

tA

P

os

avg






        Equation B.1 

where As is the horizontal surface area of SFGN, to is its thickness, ρ is the density of 

gold (19.3 g/cm3), Ap is the lateral/perimetric surface area and T is the average time required for 

the formation of SFGN. For Np = 5, these parameters are calculated for a symmetric structure in 

terms of average length of primary branch (Lp) and average width of primary branch (Wp) :  
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Figure B.4 TEM Image for gold seeds on GO synthesized by sodium borohydride reduction 

of gold salt in presence of sodium citrate and GO. Scale bar = 10 nm 

 

  PPPPPs WWWLWA  5.036tan5.0536tan5.05.05    

         Equation B.2 

     tWWLA PPPP 
5.022

5.036tan5.025   Equation B.3 

 

The time T required for the formation of SFGN is ~1 h. From Table B.1, the mean values 

of Lp and Wp was calculated to be ~485 nm and ~239 nm respectively. The average thickness of 

SFGNs (t) is assumed to be 45 nm from Figure B.3 (although this term cancels out in 

calculation). Using these estimates, the average rate of gold influx on the surface of GO sheet is 

calculated to be 0.1346 g cm-2h-1. 
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Figure B.5 Schematic that is used for estimating the average mass flux rate for the horizontal 

growth of SFGN. The lateral and horizontal surface area of a regular SFGN (Np) is found in 

terms of Lp and Wp as shown. 

B.9 Surface coverage of GO sheets by SFGNs 

The surface density of SFGNs on GO was moderate at room temperatures and high at 

higher temperatures as explained in the main text. Figure B.7 shows the FESEM images of a GO 

sheet which was templated with GNS at ~70 °C resulting in a very high density of deposition of 

gold nanostructures. 
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Figure B.6 FESEM image of a GO sheet exhibiting high surface coverage densities of gold 

nanostructures (GNS) on GO with high selectivity for a synthesis temperature of ~70°C. 

Scale bar = 5 μm 

B.10 Surface enhanced Raman spectra for  GO sheets densely coated with 

gold nanostructures 

The GO sheets that were densely coated with Gold nanostructures (synthesized at 75°C) 

were compared with SFGNs (coated at moderate density, synthesized at 25°C) for the Raman 

spectra enhancement factors. While the enhancement factor for GO-SFGN (25°C ) was ~250 %, 

the enhancement factors for GO-GNS (75°C) was found to be ~800 %. The increased 

enhancement factors can be attributed to the high density of gold nano structures templated at 

high temperature. 
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Figure B.7 Raman spectra for GO, GO-SFGN (25°C) and GO-Gold nanostructures (75°C) 

Gold hybrid. The enhancement factors for GO-GNS (synthesized at 75°C) was greater ( ~800 %) 

than the enhancement factor for GO-SFGNs synthesized at 25°C (~250 %) which can be 

attributed to the higher density of nanostructures that get templated at higher temperature. 

B.11 Shape dependence of SFGNs on the gold ion concentration 

The dendritic morphology of SFGNs was found to sensitively depend on the 

concentration of Au ions that are available for seeding growth. A higher concentration of gold 

salt (2X and 4X, X=0.275 mM) resulted in a more pronounced secondary branching and in some 

cases instances of ternary branching as shown in Figure B.8. 
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Figure B.8 FESEM images of SFGNs that were synthesized at higher gold concentration 

exhibited a more pronounced growth of secondary branches. In some cases, the secondary 

branches further differentiate to emanate ternary branches (labeled by red arrows). Scale bar = 

100 nm 

B.12 Selected Area Electron Diffraction (SAED) patterns for SFGNs with 

incompletely formed secondary branches 

The SAED patterns were obtained with a Philips CM 100 transmission electron 

microscope operated at 100 kV. The GO-SFGN hybrids were deposited from solution on to 300 

mesh size copper TEM specimen grids (Electron Microscopy Sciences) having a carbon support 

film. Most of the SFGNs exhibited a pronounced secondary branching and displayed mixed 

diffraction patterns. There was a small fraction of SFGNs with either reduced or no secondary 

branches. SAED patterns for such SFGNs (Np=5 and Np=6) are as shown in Fig B.9. The SAED 

still exhibits mixed patterns but at a lower scale as compared to a completely formed SFGN 

(Figure 3.5d). The incidence of defects in these SFGNs is found to be lesser which suggests that 

the crystalline defects primarily arise during the particle incorporation as more particles get 

added to the seed nuclei. 
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Figure B.9 SFGNs with Selected Area Electron Diffraction pattern for SFGNs with 

incompletely formed secondary branches (as shown in the insets) suggest that the incidence 

of defects in such particles is smaller as compared to a SFGN with completely formed 

secondary branches. Such an observation indicates that the defects are introduced as the SFGN 

gets formed progressively. Scale bar = 100 nm 

B.13 Electrical Studies 

The electrical measurements for determining the effect of hydrazine reduction on GO 

and GO-SFGN hybrids, were taken at room temperature, under a steady nitrogen environment, 

using a Keithley 2612 Dual-Channel System Source Meter connected to a computer via a 

GPIB/IEEE-488 interface card. The temperature studies for determining the band-gap and 

Schottky barrier height were carried out in a Janes cryostat the temperature of which can be 

externally controlled by a Lake Shore 331 Temperature Controller. 

B.14 Sample calculations for determining the band-gap (Eg) and  

Schottky barrier height (SBH) using the temperature-dependent 

electrical studies 

For an intrinsic semiconductor, the conductivity varies with temperature as σi= B(T) 

exp(-Eg/2kBT) where Eg is the semiconductor band gap, B(T) is weakly dependent on the 

temperature and kB is the Boltzmann constant. Hence, the band gap can be obtained by 

measuring the slope of the curve obtained by plotting conductivity as a function of inverse 
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temperature in a semi-logarithmic plot. Figure B.8 shows the temperature dependent current-

voltage behavior of a GO-SFGN device. Inset shows the semi-logarithmic plot of 

average conductivity against inverse temperature for this device. The slope m of this curve is 

given by –Eg/2kB. Hence Eg = -2 X m X kB. For GO-SFGN, m= -1090 and Eg=174 meV. For G-

SFGN, m=-953.8, hence Eg=156 meV. 

The electrical properties of GO-SFGN and G-SFGN were modeled by assuming several 

back-to-back Schottky contacts within these hybrids. At forward bias V, the current density 

through these Schottky Contacts is described by the following equation: 

 









 


Tk

Vq
TaAI

B

Bexp2*      Equation B.4 

where A* is the modified Richardson constant, where A* is the modified Richardson 

constant, a is the cross sectional area , φB is the Schottky barrier height (SBH), kb is the 

Boltzmann constant and T is the absolute temperature. We can calculate mean value for SBH by 

assuming that it is independent of temperature. A plot of ln (I/T2) versus 1/T at a forward bias 

V1 can be used for determining the slope m1 which is given by: 

 

Figure B.10 Determining the energy band gap for GO and G using the temperature studies. 
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 







 


B

B

k

Vq
m 1
1


     Equation B.5 

 

Similarly, for a forward bias V2 the slope m2 can be determined as 

 

 









 


B

B

k

Vq
m 2
2


       Equation B.6 

The SBH can then be obtained from two preceding equations as : 

 

 







 


q

mVmVkB
B

2112        Equation B.7 

For G-SFGN hybrid, V1=0.05 V, V2=0.1 V, m1=-413.17 and m2=-373.46 are used to get SBH as 

38.98 meV. 

B.15 Variable Range Hopping as a possible mechanism of carrier 

transport in the Graphene devices 

The experimental data for the conductivities of GO, G and GO-SFGN was found to be 

excellently represented by the hopping fit conduction mechanism as is shown by the linear fits 

of currents against T-1/3 as shown in Figure B.11. 
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Figure B.11 Variable Range Hopping fits for the conductivities of GO, G and GO-SFGN. 

 

B.16 Energy dispersive X-ray spectroscopy for GO-SFGN hybrid 

EDS data was obtained with a Leo Field Emission Scanning Electron microscope 

operated at 10-15 KV. 
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Figure B.12 Energy Dispersive X-ray spectroscopy (EDS) analysis of the GO-SFGN 

nanocomposite shows the spectrum obtained from a SFGN templated on a GO sheet 

consisting of different peaks for gold (from the SFGNs), silicon & oxygen ( from the silica 

substrate) and carbon (from the graphene)
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Appendix C Appendix for the work on microwave assisted 

growth of nanoparticles on graphene 

C.1 Materials 

 Amino propyl triethoxy silane was purchased from Gelest. Gold chloride trihydrate 

(HAuCl4.3H2O), graphite flakes, p-Nitro aniline, sodium borohydride, nitric acid, sulfuric acid, 

potassium permanganate and hydrogen peroxide were purchased from Fisher Scientific. The 

aqueous solutions were prepared in Deionized (DI) water obtained by a Millipore Milli-Q 

membrane filtration system. 

C.2 Preparation of bare surfaced gold nanostructures templated on GO 

sheets  

The GO-BSGN nanocomposite was synthesized by MW exposure (1.05 kW, 2450 MHz) 

on an aqueous solution of GO (100μl, 20 mM carboxylic acid quantified by titration) and gold 

salt ,HAuCl4.3H2O (10 ml, 0.275 mM) for a time interval between 60s and 300s with 

intermittent cooling after every 10 s. The mixture is allowed to stand for ~24 h that result in the 

formation of BSGNs with triangular, hexagonal and dendritic morphologies, which either 

assemble on or get wrapped with the GO sheets depending on the MW exposure time. 

C.3 Surface immobilization of the GO-BSGN hybrids 

The GO sheets functionalized with BSGNs were immobilized via electrostatic 

interactions on a heavily doped n-type silicon substrate with a 300 nm thick thermally grown 

silica layer. Briefly the silicon substrate, cleaned with organic solvents (acetone, isopropanol and 

ethanol) is first exposed to oxygen plasma (100 W, 2 mbar, 2 min) followed by treatment with 3-

Amino Propyl triethoxy silane (1% in ethanol, 10 min), The substrate is then baked at 120°C for 

4 min that makes the silica surface positively charged due to the presence of amine groups on 

its surface. This amine-functionalized substrate is then momentarily exposed to the synthetic 
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mixture of GO-BSGNs. The substrate is then subsequently washed 3 times with Deionized (DI) 

water that facilitates selective electrostatic deposition of GO-BSGN hybrids on silica surface. 

Figure C.1 shows FESEM image of the GO-BSGN hybrid that was immobilized using this 

method. The FESEM data was obtained with a Leo Field Emission Scanning Electron 

microscope operated at 10-15 KV.  

 

Figure C.1 A MW induced BSGN decorated GO sheet immobilized on an amine silanized 

substrate exhibiting a highly specific dispersion BSGNs with polyhedral and globular 

morphologies. 

C.4 Formation of characteristic wrinkles on GO-BSGN surface 

Wrinkles are formed on the GO sheets as they are immobilized on surface due to the 

raising and stretching of the sheets at spots where the BSGNs are attached as shown in Figure 

C.2. 
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Figure C.2 Formation of characteristic wrinkles on the GO sheet surface induced by the 

presence of BSGNs present on the rear surface of GO sheet 

C.5 Selected Area Electron Diffraction patterns for BSGNs and Ag 

nanostructures 

The SAED patterns were obtained with a Philips CM 100 transmission electron 

microscope operated at 100 kV. The GO-AGN and the GO-Ag hybrids were deposited from 

solution on to 300 mesh size copper TEM specimen grids (Electron Microscopy Sciences) having 

a carbon support film. The diffraction patterns suggest a mono crystalline nature of the BSGNs 

and the Ag nanoparticles. 
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Figure C.3 Selected Area Electron Diffraction Patterns of BSGNs and Ag nanoparticles 

suggest the mono crystalline nature of these nanostructures 

C.6 Surface coverage of GO sheets by BSGNs 

It was observed that the dispersion density of BSGNs on GO sheets can be enhanced by 

increasing the incubation period of GO sheets in the microwaved gold salt solution which 

provides a greater time for the gold nuclei to interact with the charged moieties on GO surface 

resulting in a very high density of deposition of AGNs. Figure C.4 shows GO sheets that were 

incubated for ~72h in the microwaved Au salt solution before surface immobilization, exhibiting 

a high surface density of BSGNs. 
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Figure C.4 GO sheets immobilized on an amine silanized silica substrate exhibiting a high 

surface coverage index for the BSGNs deposited on it by MW. This GO sheet was allowed to 

interact with MW exposed gold salt solution for ~72 h. 

C.7 Formation of dendritic BSGNs templated on GO sheets 

By decreasing the ambient temperature of the solution of GO and Gold salt during the 

MW exposure, some dendritic shaped Gold nanostructures are formed which template with 

high density on the GO sheets (Figure C.5) 
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Figure C.5 GO sheet covered with a high density of dendritic gold nanoparticles that were 

synthesized by increasing the MW exposure time to the solution of GO and gold salt. 

C.8 Formation of dendritic BSGNs encapsulated with GO sheets 

Besides templating on GO sheets, some of the dendritic and polyhedral nanoparticles 

also get encapsulated with the GO sheets as shown in Figure C.6 

 

Figure C.6 Isolated dendritic shaped gold nanoparticles encapsulated/wrapped within GO 

sheets 
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C.9 Determining the catalytic activity of BSGNs stabilized on GO 

The catalytic activity is determined by monitoring the course of NaBH4 induced 

reduction of 4-Nitro aniline that is catalyzed in the presence of gold nanoparticles stabilized on 

GO. A complete reduction in indicated by the disappearance in the absorption band at 380 nm 

that takes ~6 min and ~ 9 min by gold seeds stabilized on GO and citrate capped GNPs 

respectively. 

C.10 Electrical Measurements 

The BSGN decorated GO sheets were immobilized on a n++ silica substrate with pre-

fabricated gold electrodes. All electrical measurements were taken at room temperature, under 

a steady nitrogen environment, using a Keithley 2612 Dual-Channel System Source Meter 

connected to a computer via a GPIB/IEEE-488 interface card. The gating experiments were 

carried out in a Janis cryostat maintained under vacuum. 
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Figure C.7 Gold seeds stabilized on graphene oxide are compared for their catalytic activity 

with the 5 nm citrate capped gold nanoparticles by comparing the gold nanoparticle 

catalyzed NaBH4 induced reduction of 4-Nitro aniline. The reaction times are evaluated by 

monitoring the successive decrease of the band at 380 nm for 4-NA and the corresponding 

increase in the band at 238 nm for p-phenylene diamine. (a) Complete reduction of 4-NA in the 

presence of 5-20 nm gold seeds stabilized on GO (left inset) takes 6 min as compared to (b) 5 nm 

citrate capped gold nanoparticles where it takes 9 min for the complete reduction. The first 

order reaction rate for the reaction catalyzed by GO-BSGNs obtained by an exponential fit 

comes out to be 9.76 X 10-4 min-1. 

C.11 Formation of Microwave assisted silver nanoparticles on GO sheets 

It was found that microwaving silver salt in the presence of GO sheets results in the 

formation of Ag nanoparticles stabilized by the GO sheets. Briefly, 10 ml aqueous solution of 

0.275 mM AgNO3 and 100μl of 20mM GO was microwaved for 2 min and the solution was 

allowed to sit for ~24 hrs. Silver nanoparticles with spherical and characteristic tadpole shapes 
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were found to be templated on the GO sheets with a moderate coverage density (Figures 

C.8,C.9). This makes MW a useful tool for facile fabrication with diverse metal NPs on GO 

sheets. More research is required to study the factors that govern the formation of spherical and 

tadpole shapes 

 

 

Figure C.8 GO-Ag nanocomposite immobilized on an amine silanized silica substrate. The 

GO-Ag nanocomposite was synthesized in a similar manner using MW as the inducing agent 

for NP synthesis. 

 

Figure C.9 GO-Ag nanocomposite in which the Ag nanoparticles exhibit a characteristic 

tadpole-shaped morphology with a central core structure emanating a tail/shoot like 

elongation. 
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C.12 Structural parameters and shape distribution of the BSGNs 

 

Figure C.10 Structural parameters (side length, vertex angle) for the triangular and the 

truncated triangular BSGNs. Bar graph shows the shape distribution of the BSGNs  

C.13 EDS analysis for the GO-BSGNs immobilized on silica substrate 

 

Figure C.11 Energy Dispersive X-ray spectroscopy (EDS) analysis of the GO-BSGN 

nanocomposite shows the spectrum obtained from BSGNs templated on a GO sheet 

consisting of different peaks for gold (from the AGNs), silicon & oxygen ( from the silica 

substrate) and carbon (from the graphene) 
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Appendix D Appendix for the work on synthesizing ultra thin 

sheets of Boron Nitride using chlorosulfonic acid 

D.1 Exfoliation of hexagonal-Boron Nitride (α-BN) 

Chlorosulfonic acid (CA, 97% purity) was used for exfoliating atomic thick Boron 

Nitride Sheets (UTBNSs) from bulk α-BN. The bulk α-BN was obtained from two sources: (a) 

single crystals produced by scrapping high-purity hot-pressed Boron Nitride, grade HBC 

purchased from Momentive performance materials, and (b) a Highly Oriented Pyrolytic Block 

(HOPB). 50 mg of bulk α-BN was weighed in a glass vial and placed inside a glove-box 

maintained under standard, dry N2 atmosphere conditions for carrying out the process of 

exfoliation. 10 ml of Chlorosulfonic Acid (CA) was added to the glass vial and the α-BN-CA 

assembly was blended using a Teflon coated magnetic stir bar on a magnetic stirrer for ~72 hrs 

at ~1500rpm. CA leads to an intercalation assisted protonation of bulk α-BN layers that result in 

the exfoliation of atomic thin (2-5 layers) BN Sheets. In a CA environment, the intermediate α-

BN layers undergo protonation and functionalization (as discussed in the XPS studies, Figure 

5.3) which results in their exfoliation to form UTBNSs. This is also indicated by a pale white 

color of the CA solution containing dispersed UTBNSs (Figure D.1). 

D.2 Transfer to aqueous phase 

For further investigation outside the glove-box, the moisture-sensitive CA solution, 

containing the exfoliated UTBNSs, was diluted several folds (1:200) in an aqueous solution via a 

process of quenching. 500 ml of de-ionized (DI) water in a glass beaker was placed inside the 

glove-box and 2.5 ml of the UTBNSs-CA solution was added drop-wise to the beaker to obtain 

the quenched solution. The quenched solution was then removed from the glove-box and 

allowed to stand for ~24 hours to let the un-exfoliated α-BN flakes sediment to the bottom. 

Some white floating legions were found to rise to the water surface. These likely are clusters of 

exfoliated sheets hydrophobic in nature. 
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Figure D.1 Optical Light scattering as exhibited by the CA solution with dispersed sheets of 

Boron Nitride giving the CA-UTBNSs solution a pale white color. 

D.3 Preparation of the UTBNS film for XPS 

Uniform UTBNS films (stacked layers of UTBNSs) were formed on a polymeric (Poly 

Tetra Fluoro Ethylene or Polycarbonate) membrane by vacuum filtration of the quenched 

suspensions through it. (Figure D.2a). A Buchner funnel was placed on a Buchner flask, which 

was connected to a vacuum source with rubber tubing. The polymeric membrane filter was then 

placed inside the Buchner funnel and the quenched solution containing UTBNSs was gently 

poured onto the filter to allow for filtration. An average vacuum filtration process takes ~72 hrs. 

Following the filtration of UTBNSs, the polymeric membrane was gently lifted off the Buchner 

funnel and heated in an oven at ~200 ºC for ~30 minutes to remove any residues and used for 

XPS studies. The film sample on filter paper was also heated in-vacuo within the XPS 

instrument to a temperature of 400 °C for ~2hrs to minimize any residues of CA and 

atmospheric adsorbates. The XPS results shown in Chapter 5, Figure 5.3 are obtained on a film 

prepared by aforementioned method. 

To minimize the influence of CA residues, another UTBNS film was fabricated that uses 

the washed UTBNS solution in place of quenched UTBNS solution. The washed UTBNSs were 
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prepared by centrifuging the quenched suspensions at 13000 rpm for 60 minutes, followed by 

decanting the top phase and re-suspending the centrifuged sheets in water. This process was 

repeated 3 times to obtain UTBNS solution with lesser CA residues. Figure D.2b shows the B1s 

and N1s spectra from the film prepared by filtering the washed UTBNSs. These exhibit a higher 

relative fraction of functionalized B and N atoms. The XPS data was obtained from a Perkin–

Elmer PHI 5400 electron spectrometer using achromatic AlKα radiation (1486.6 eV) under 

vacuum of 8.0 × 10−9 Torr. The XPS binding energies were measured with a precision of 0.1 eV 

and the analyzer pass energy was set to 17.9 eV, with a contact time of 50 ms. Before sample 

testing, the spectrometer was calibrated by setting the binding energies of Au 4f7/2 and Cu 

2p3/2 to 84.0eV and 932.7 eV, respectively. 

 

 

Figure D.2 (a) Experimental set-up for the formation of thin UTBNS film via vacuum 

filtration on a polymeric membrane substrate. (b) B1s and N1s spectra of an UTBNS film 

formed by filtering a washed solution of UTBNSs. The washed solution was prepared by 

repeatedly (3X) centrifuging and re suspending the centrifuged sheets in aqueous suspension to 

minimize the presence of CA residues. These sheets exhibit a much higher percentage of 

functional groups as compared to the sheets obtained by direct filtration of quenched 

suspensions. 
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D.4 Calculating the fraction of dangling N atoms on a UTBNS exhibiting 

surface perforations 

Let the surface area of sheet under consideration be S nm2 and the perimeter of 

perforations be P nm. The perimeter is calculated by summing the peripheries of each 

perforation present within the sheet (shown as dashed lines in panel b). The line density of N 

atoms (σN) along the edge of an UTBNS (assuming zigzag edge) can be given as (see panel a): 

251.0

1
N  N atom/nm      Equation D.1 

Hence the total number of N atoms on edges (NE) can be given by: 
 

251.0

P
PN NE         Equation D.2 

 

 

 

Figure D.3 (a) Zigzag edge of a BN sheet that is assumed for calculating the line density of N 

atoms. (b) Schematic of an UTBNS with internal perforations. The dashed line on 

perforations indicates their periphery which contributes the dangling N atoms. (c) Hexagonal 

BN ring for calculating the surface density of N atoms on a BN sheet. 
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Since a BN ring has 3 N atoms, each of which is shared by two neighboring BN rings, the 

total contribution of N atoms from a ring is 3 X 1/3=1 (see panel c). Thus the surface density of N 

atoms (ρN) present on a UTBNS can be given as 

A
N

1
  N atom/ nm2       Equation D.3 

 

where A is the surface area of a BN ring given by 

2

145.033 2
A  nm2      Equation D.4 

054.0

1
N  N atom/nm2      Equation D.5 

 

Thus the total number of N atoms (Ns) on a sheet with surface area S are 

054.0

S
NS   N atoms        Equation D.6 

Thus the fraction f of N atoms in an UTBNS that are present along the edges of 

perforations is: 
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For an average sheet with diameter D, the fraction of overall dangling N atoms 

(including the ones at sheet boundaries) can be given by: 
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   Equation D.8 

The parameters P and S are calculated for the sub-sections of an UTBNS, the TEM 

images of which are shown in Figure D.4. For sub-section shown in panel a, P=56323.2 nm and 

S=25 X 106 nm2 are obtained using Image J software. Thus f comes out to be 
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%048.0

054.0

251.0 
S

P

f        Equation D.9 

 

Figure D.4 (a) TEM image of an UTBNS with perforations (b) Sub-sections of the TEM image 

that were analyzed for estimating the density of edges contributed from perforations present 

on surface. (c) Processed images that are used for calculating the perimeter of perforations 

(highlighted white) and the surface area (shaded black). 

 

Considering the average diameter of sheet to be 10 µm, foverall  can be calculated to be: 
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     Equation D.10 

D.5 Obtaining the expressions for attractive and repulsive potentials for 

evaluating the DLVO model 

Repulsive Potential: The repulsive potential is determined in accordance with the Gouy-

Chapman theory2, where the UTBNSs suspended in solution can be represented by two parallel 

plates distanced such that their electrical double layers interact and influence each other as 

shown in Figure D.5. If the pressure acting on the volume element perpendicular to the surface 
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of sheet is Po and that acting perpendicular to the surface centered in between sheets is PD/2, then 

the repulsive Force (FR) acting per unit area of sheets can be written as 

oDR PPF  2/        Equation D.11 

 

 

Figure D.5 Determining the Electrostatic Repulsive potential between two UTBNSs using 

Gouy-Chapman theory 

Next consider the net force acting per unit area along x-axis on a volume element lying 

in between the sheets. It is given by the sum of Pressure force (Fp) and electrical force (Fel).  

x

P
FP




         Equation D.12 

x
Fel




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
 *        Equation D.13 

where ρ* is the charge density of system and ψ denotes the electric potential at a point in 

between the sheets. Under equilibrium, 

0 elP FF         Equation D.14 

0* 
dx

d

dx

dP 
        Equation D.15 

This gives  

 ddP *         Equation D.16 
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The charge density ρ* is related to the ion concentration as (using the Boltzmann 

equation) 


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where N0 is the number of charges present per unit volume of solution. An estimate of 

N0 within the electrical bilayer formed around UTBNSs suspended in aqueous solution is 

obtained is section D.6.                                                                                                                                                                                                                                      

Substituting ρ* gives 
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This can be integrated to obtain a difference in the pressures: 
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Where ψD/2 denotes the electric potential at the central point in between the sheets. Using 

the Gouy-Chapman expression for the variation of potential within the double layer,  

)2/exp(
8 0

2/ D
e

kT
D 


        Equation D.20 
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This gives 
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where Vr is the repulsive potential per unit area experienced by sheets 
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Attractive Potential: The expression for attractive van der Waals potential (Vatt) is 

obtained in a similar way as has been derived in Reference 11 which obtained Vatt for two 

parallel graphene sheets (surfactant-stabilized) by considering the London inter atomic 

potential. We are restating their calculation here for a clearer understanding in context of Boron 

Nitride Sheets. The van der waal energy of interaction between an atom placed at a distance D 

from the sheet and the sheet atoms in the differential ring element (as shown in Figure D.6a) is 

given by  

322 )(

2

Dx

xdxC
dVa







      Equation D.26 

Thus the interaction energy between the atom and the entire sheet can be given by 

integrating this expression over the sheet area. 

 

Figure D.6 Calculating the van der waal attractive potential between UTBNSs   
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    Equation D.27 

Extending this result for a pair of sheets placed parallel to each other, the potential 

energy between a sheet and the sheet atoms in the differential ring element ( as shown in Figure 

D.6b) is thus given by 

xdx
D

C
dVs 


2

2 4



       Equation D.28 

And hence the interaction energy between two sheets separated by a distance D is 

obtained by integrating the above expression  
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  Equation D.29 

where S=πR2 is the surface area of a sheet. 

The value for ρ2C is estimated by knowing the value of surface energy (γ) of BN. This is 

the energy required to separate the two intermittent sheets from their minimum separation do. 

Thus by definition (using the above expression) 
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         Equation D.32 

For BN, do=0.33 nm and γ=55.38 mJ/m2 is used to obtain the expression of VA per unit 

area for different values of D. Figure D.7 shows the net interaction energy of UTBNSs modeled 

for values of ζ ranging from 1mV to 25 mV.  

 

Figure D.7 The net energy curves for dispersed UTBNSs for values of ζ ranging from 1mV to 

50 mV. 

D.6 Calculating the charge density per unit volume of the aqueous 

UTBNS dispersion for evaluating the DLVO model 
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No denotes the concentration of unit charges of counter ions present per unit volume of 

the solution within the electrical bilayer formed between two adjacent UTBNSs. Assuming 

charge neutrality in the space confined within UTBNSs, the number of counter ions should be 

equal to the number of charges present on UTBNS surface (Ns). We thus obtain an estimate for 

the charges present of UTBNS surface UTBNS solution. If N = Total number of UTBNSs present 

per unit volume of solution, and no=Total number of unit charges present on the solvent 

exposed surface of a dispersed UTBNS, then: 

oso nNNN         Equation D.33 

We first obtain an estimate for N .Let the average lateral cross sectional area of the 

dispersed UTBNSs be S, the average number of layers be t and the weight per unit area of 

UTBNS be mo, then for a concentration C (weight per unit volume) of UTBNSs, the total number 

of UTBNSs per unit volume (N) can be given as  

tmS

C
N

o 
        Equation D.34 

Since the contribution of an N atom and a B atom in the hexagonal BN ring is 1/3, each 

BN ring contributes 1N atom and 1B atom. If the surface area of a BN ring is A, the weight per 

unit area (mo) can be given by:  

AN

MWMW
m

A

NitrogenBoron

o

1)(



      Equation D.35 

where MWBoron= 11 and MWNitrogen=14 and NA=Avogadro’s constant. 

Next we obtain an estimate of no. The electrostatic interaction is contributed by the 

protonated N atoms  present on the surface of UTBNSs that undergo ionization on dispersion in 

water. The total number of N atoms (NN) on a single atom thick UTBNS with surface area S, can 

be given by: 

A

S
NN          Equation D.36 

If  f denotes the fraction of N atoms that have undergone protonation (-NH2, -NH+ and –

NH3+), then the number of protonated N atoms (N’P) on a surface of UTBNS are: 

A

Sf
N P


'         Equation D.37 
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Since the lateral dimensions of a UTBNS is much higher than its thickness, we assume 

that the primary electrostatic interaction takes place only at the flat layers exposed to solution 

(top and bottom) via the formation of electrical bilayer. Hence the total number of protonated N 

atoms available for solvent interaction (NP) in a UTBNS with any number of layer can be given 

by 

A

Sf
NN PP



2

'2       Equation D.38 

And this should be equal to the number of unit charges present on the external surface 

of a UTBNS 
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2

       Equation D.39 

Substituting the values of N and no gives 

=> oo nNN         Equation D.40  
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      Equation D.42 

For C=0.01mg/ml , f=0.303, (as obtained from the XPS studies) and t=5, N0 comes to be 

2.92 X 1022 unit charges/m3. 

D.7 Immobilization of UTBNSs 

For optical, electron microscopic and Raman Spectroscopic investigations, the UTBNSs 

were immobilized from the quenched solution on silica wafers (300 nm SiO2 grown on a Si 

substrate) by either surface-pick up technique or by utilizing hydrophobic interactions. Each 

silica wafer was thoroughly cleaned with organic solvents (acetone, isopropanol, and ethanol 

purchased from Sigma-Aldrich) and then treated with O2 plasma using a version 5 FEMTO 

Plasma System [Diener Electronics]. In the surface-pick up technique, the cleansed wafer was 

dipped under the surface of the quenched UTBNS-CA solution and slowly drawn out (at an 

angle of 45° or less with the surface of the solution), in close proximity to visible sheets floating 
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on the solution surface. The sheets were then allowed to settle on the wafer for ~3-6 minutes, 

followed by a gentle wash with DI water and successive air-dry. This results in a low-density 

deposition of UTBNSs on the wafer. The wafer is kept in the oven at ~200° C for ~2hrs to enable 

a firm anchoring of sheets on surface. Higher density of immobilized sheets was achieved by 

using an octadecyal-amine silanized hydrophobic silica surface. The un-functionalized BN 

regions within UTBNSs should be hydrophobic in nature and hence enable a denser deposition 

of UTBNSs from solution. 

 

D.8 Optical Imaging 

Optical microscopy imaging was carried out with an Olympus BX41 microscope and 

Olympus DP71 microscope digital camera. Figure D.8 show optical images of UTBNSs 

deposited on silicon substrate with a top grown 300nm thick silica layer. It has been recently 

shown that UTBNSs possess optimum visibility on a 90nm thick silica background and their 

visibility increases with an increase in the number of layers. Thus these images which we were 

able to visualize on 300 nm thick silica are most likely few-atoms thick. 

 

Figure D.8 Optical images of UTBNSs immobilized on silica substrate by drop-casting and 

electrostatic interactions with a silanized surface. The sheets exhibit micron scale large 

surface areas.  
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D.9 Obtaining UTBNSs from pyrolytic BN sample 

CA exfoliation was also carried on Highly oriented Pyrolytic α-BN block to obtain 

exfoliated sheets. Figure D.9 shows the optical and FESEM image of UTBNSs obtained from the 

pyrolytic sample 

 

Figure D.9 FESEM and optical images of UTBNSs immobilized on silica substrate by surface-

pick up technique. These sheets were obtained from the pyrolytic α-BN sample. 

  

D.10 FESEM Imaging 

FESEM Images were obtained with a Leo field emission scanning electron microscope 

operated at ~15-25 kV. Some of the sheets exhibit perforations uniformally distributed over their 

surface. These appear as spots with a brighter average intensity than their milieu (Figure D.10, 

left panel). These are the background silica signals and hence are brighter than their milieu of 

UTBNSs which absorb a fraction of the imaging electrons from their background before they 

reach the detector and hence result in a faintly darker appearance. The perforations could be 

formed due to the harsh chemical nature of CA and are expected to have a high density of 

edges possessing several primary and quaternary amine functional groups. By analyzing these 

perforations in a TEM image (as shown before in section D.3), we calculated the fraction of edge 

atoms contributed by these perforations to the total atoms present in a sheet. 
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Figure D.10 FESEM images of UTBNSs immobilized on silica substrate by surface-pick up 

technique. The UTBNSS shown in left panel exhibits brighter spots on their surface which 

could be because of the presence of CA molecules on its surface. 

D.11 TEM Imaging and SAED 

The TEM samples were prepared by surface-pick up technique. 300 mesh size copper 

TEM specimen grids (Electron Microscopy Sciences) having a lacey carbon support film were 

used for picking up sheets from the surface of  

 

Figure D.11 TEM images of UTBNSs immobilized on lacey-carbon Copper TEM grids. 

 

 

Figure D.12 SAED patterns of UTBNSs immobilized on lacey-carbon Copper TEM grids. The 

regular patterns suggest the presence of a crystalline behavior. 
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quenched solution. The TEM grids were then placed in a drop of water to remove any CA 

residues and the excess water dried using a Whatman filter paper. The washing step with water 

is repeated again to eliminate the residues as much as possible. The TEM images and SAED 

pattern were obtained with a FEI Tecnai F20 XT Field Emission Transmission Electron 

Microscope and Philips CM 100 transmission electron microscope. Figure D.11 and D.12 show 

an ensemble of TEM images and SAED patterns obtained for UTBNSs. 

D.12 Raman Spectroscopic measurement 

UTBNSs and α-BN powder were analyzed for Raman spectroscopy to obtain detailed 

structural insights. The UTBNSs were immobilized on silica surface by surface-pick up 

technique and α-BN powder was firmly adhered to silica substrate manually by hard-pressing. 

The Raman spectra were recorded from 300-1800 cm-1 on a Horiba Jobin Yvon LabRAM 

ARAMIS Raman Spectrometer with a red He-Ne laser (λ=632.8 nm, laser power <5 mW, spot 

size≈1 μm2), which was parked at various locations on and around a α-BN sheet away from the 

chip edge, to avoid edge effects. The Spectrometer specifications include a 200-mm confocal 

pinhole, 150-mm-wide entrance slit, 600 gr mm-1 grating, and 100x objective Olympus lens. 

D.13 Forming gold nanoparticle conjugates of UTBNSs 

Citrate capped GNPs were self-assembled on the surface of UTBNSs via electrostatic 

attractions in solution. 
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Figure D.13 FESEM images of UTBNSs templated with citrate capped GNPs. The sheets 

exhibit a high surface density of GNPs. 

D.14 Calculating the surface coverage index of GNPs templated on 

UTBNSs 

Image J is used to analyze the density of GNPs templated on UTBNSs. Figure D.14 

shows the image from the section of an UTBNS sheet decorated with GNPs. Image J is used to 

process this image for quantitative estimation of the darker background (corresponding to 

UTBNS, shaded as red in the processed image) to obtain the surface coverage index η, fraction 

of UTBNS surface occupied with GNPs.  η is calculated to be equal to 0.81. 
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Figure D.14 Determining the surface coverage index of GNPs self-assembled on UTBNS    

 

Figure D.15 EDS of a UTBNS decorated with citrate capped gold nanoparticles showing signatures of 

B, N and Au. The spectrum also shows Si and O signatures from the underlying silica surface 

D.15 Preparing samples for Confocal microscopy 

Confocal studies were conducted using a Zeiss LSM 5 PASCAL Laser Scanning Confocal 

Microscope on UTBNS samples immobilized via electrostatic interactions on O2 plasma treated 

silica wafers. Fluorescein Isothiocyanate (FITC) obtained from Sigma-Aldrich was used for 

labeling the N functionalities present on the immobilized sheets via covalent attachment. 

Briefly, 5 mg of FITC was dissolved in 20 ml of 0.1 M Phosphate Buffered Saline together with 5 

ml of HATU (O-(7-azabenzotriazole-1-yl)-N,N,N,N′-tetramethyluronium hexafluorophosphate, 
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an amide-coupling reagent). The silica chip with immobilized UTBNSs was incubated in this 

solution under dark conditions at room temperature for ~8hrs. Since the protonated N atoms 

are present only on the sheets and not on the surrounding silica surface, the dye molecules 

selectively tether to the sheets. The physically adsorbed FITC molecules were removed by 

repeated washing (5x) and air-drying with 0.1 M Phosphate Buffered Saline solution. The 

positive control sample was prepared by incubating an amine-silanized silica chip with the 

FITC solution. Amine silanization was achieved by incubating the plasma cleaned silica surface 

to a 1% solution of amine-propyl tri-ethoxy silane in ethanol for 20 min, followed by repeated 

(3X) with ethanol and air-drying. A negative control sample was prepared by incubating a bare 

silica surface (O2 plasma treated) to the FITC solution. 
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