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Abstract 

 Inventory accuracy is critical for almost all industrial environments such as distribution, 

warehousing, and retail.  It is quite common for companies with exceptional inventory accuracy 

to use a technique called cycle counting.  For many organizations, the time and resources to 

complete cycle counting are limited or not available.  In this work, we promote statistical process 

control (SPC) to monitor inventory accuracy.  Specifically, we model the complex underlying 

environments with mixture distributions to demonstrate sampling from a mixed but stationary 

process.  For our particular application, we concern ourselves with data that result from 

inventory adjustments at the stock keeping unit (SKU) level when a given SKU is found to be 

inaccurate.  We provide estimates of both the Type I and Type II errors when a classic c chart is 

used.  In these estimations, we use both analytical as well as simulation results, and the findings 

demonstrate the environments that might be conducive for SPC approaches. 
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CHAPTER 1 -   Introduction and Objectives 

1.1 Background 

1.1.1 Inventory Management 

Inventory accuracy is a critical concern for almost all industrial environments.  Most 

large and successful retail and warehousing environments desire to maintain accurate perpetual 

inventory.  To achieve accurate inventory, the recorded inventory for stock keeping units (SKUs) 

must match the actual on-hand inventory.  If inventory accuracy is low, there are many problems 

that can arise.  First, there are several non-value added activities that must take place to rectify 

the discrepancies of the inventory.  These tasks include correcting an inventory data base, hurried 

replacement of product, and any other time taken by employees to correct the inaccurate 

inventory.  Although these costs are reason enough to validate the importance of accurate 

inventory, perhaps the most significant setback of inaccurate inventory is the loss of customer 

good will.  This occurs if there is insufficient inventory to satisfy the customers demand.  

Alternatively, time can also be wasted on unnecessary replenishment of inventory.   

Cycle counting is a proven method to monitor and check inventory accuracy on a 

continual basis.  Today, cycle counting is being used to replace annual physical inventory checks 

which require the entire factory or warehouse to be shut down to count all SKUs at one time.  

Basically, cycle counting is a process in which SKUs that are kept in inventory are counted 

periodically to examine their accuracy.  If discrepancies are found, the reason for the discrepancy 

is examined, and the inventory records are updated, or inventory adjustments are made.  Most 

methods of cycle counting require counting all SKUs over a period of time to ensure that the 
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actual inventory matches the inventory that is recorded in the entire company’s inventory data 

base.  Brooks and Wilson (2004) stated that “through the proper use of cycle counting, inventory 

record accuracy above 95% can be consistently maintained”. 

However, the feasibility of cycle counting becomes controversial when considering a 

very large retail or warehousing environment that contains thousands of SKUs.  With such a 

large environment, the labor requirements to implement cycle counting could become excessive.  

For this reason, large retail and warehouse environments pose a problem for the implementation 

of cycle counting. 

It has been determined that inventory accuracy is important to companies and that having 

accurate inventory creates a significant amount of value.  However, it has also been established 

that obtaining this accurate inventory could cost a large amount money and labor.  A new, cost 

effective method for monitoring inventory accuracy for large retail and warehouse environments 

needs to be developed. 

Statistical Process Control (SPC) is an effective statistical approach used to monitor 

processes and improve quality through variance reduction.  Basically, SPC uses sampling to 

monitor the performance of a process.  An advantage of SPC is that it requires reduced resource 

expenses because it depends on random samples and not 100 percent inspection.  It is obvious 

that the aforementioned problem of finding a cost effective method for monitoring inventory 

accuracy for large operating units would be a suitable application of sampling approaches.  In 

this case, the inventory accuracy of a warehouse would be measured without 100 percent 

inspection.  There are two specific tools that would be suitable for this environment.   

First would be the use of a p chart, which is used to monitor the percent nonconforming 

of a process. For a p chart, a random sample of n is selected, and each item is examined to 
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determine if it meets the quality requirements.  The observed number of defective items is 

divided by the sample size to provide an estimate of the percent nonconforming, or p.  The 

observed p’s are plotted in relationship to time, and their variability is assessed.  If non-random 

behavior is observed, process adjustments are pursued to rectify the problem.  A p chart could be 

used for monitoring inventory accuracy where you would examine the percent of SKUs for 

which the physical inventory exactly matches the recorded inventory for a sample size n within 

an operating unit.     

The second option is the use of a c chart, which monitors the number nonconformities in 

a process.   For a c chart, an inspection unit of size n is sampled, and the observed number of 

nonconformities is plotted in relationship to time. Similar to the p chart, the observed c’s are 

analyzed for non random behavior. A c chart could be used for monitoring inventory accuracy to 

examine the number of inventory adjustments for a given unit, where an inventory adjustment is 

represented by the number of units an observed SKU is above or below the recorded inventory.  

The use of a c chart will be the focus of this research.  

Historically, SPC and cycle counting are domains that have not been considered to be 

complementary of one another.  If these two methodologies can be incorporated, a cost effective 

method to accurately monitor inventory for large operating units can be realized.  The goal of 

this research is to show that SPC can be applied to environments needing to monitor and/or 

improve inventory accuracy.  It is the thesis of this work to present the c chart as an efficient 

alternative to cycle counting for monitoring inventory accuracy.   

1.2 Objective 

This research focuses on examining a population, which is based off a large retail or 

warehousing environment, that consists of thousands of SKUs and each SKU can have a 
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different Bernoulli rate, which violates the assumption that all samples come from the same 

stationary process.  It is the premise of this effort that the populations can be modeled by the 

underlying sub populations that follow a mixture distribution.  The objective of this research is to 

develop and analyze a SPC approach for cycle counting by examining the use of the c chart for 

populations that follow a mixture distribution.  The experimental units measured in this c chart 

are the number of inventory adjustments, or the number of units above or below the recorded 

inventory level for a specific SKU.  The number of adjustments made to the inventory records is 

being measured because inventory adjustment accuracy is often the data that organizations track.  

This model will be used to inspect the type I and type II error rates of the c chart with such 

populations.  

1.2.1 Tasks 

The research tasks are summarized as follows: 

Task 1: Analytical Model 

Sub task 1.1:  Develop an analytical model that is applicable for modeling inventory 

 adjustments when the population is a mixture of multiple sub populations of known 

 Poisson distributions.  

Sub task 1.2:  Use this analytical model to determine type I and type II error rates for the 

c chart based on a useful set of experimental conditions. Furthermore, the analytical 

results are limited to practically feasible problems; therefore we explore sample sizes of 

no greater than 5.   

Sub Task 1.3: Present observations and conclusions of analytical model. 

Task 2:  Simulation Model  
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Sub task 2.1:  Develop a simulation model that enables the examination of a mixture 

 distribution on c charts for practical sized problems that involve sample sizes much larger 

 than 5.   

Sub task 2.2:  Use the simulation model to evaluate type I error rates for different 

 values of the parameters of λ and n for the c chart.   

Sub task 2.3:  Present observations and conclusions of simulation model 

Task 3: Review summary of the findings of the research and any extensions of the 

 research 
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CHAPTER 2 -   Literature Review 

2.1 Introduction 

The purpose of this research is to illustrate how an understanding of statistical process 

control allows for improvements in the area of cycle counting.  The first section introduces cycle 

counting, and the various methods of cycle counting being employed today.   The second section 

gives an overview of statistical process control and more specifically the tools that are necessary 

for this research.   

2.2 Overview of Cycle Counting 

A basic definition of cycle counting is counting inventories on a regular basis throughout 

the year.  The use of cycle counting has become increasingly popular and has begun replacing 

annual physical inventories.  Performing an annual inventory requires shutting down the entire 

factory, store, or warehouse one or more times a year, and conducting wall-to-wall physical 

inventory.  Cycle counting is a method that can replace these annual inventory checks with a 

process that involves counting a small portion of inventory on an incremental basis with the 

objective of inspecting each SKU within inventory during a fixed period.   

The primary idea of examining portions of inventory with cycle counting involves 

sampling. In our example sampling is a technique in which certain SKUs within the inventory 

are selected, and the accuracy of those SKUs is measured.  Once this has been done it can be 

inferred that the accuracy is a characteristic of the entire population.  The ability to make this 

inference, as opposed to surveying the entire population, allows cycle counting to save both time 
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and money when implemented.  Tersine (2004) indicates that the primary goals of cycle counting 

are to: 

• Identify the causes of the errors 

• Correct the conditions causing the errors 

• Maintain a high level of inventory record accuracy 

• Provide a correct statement of assets 

Also, Brooks and Wilson (2005) state that with the proper use of cycle counting, 

inventory record accuracy above 95% can be consistently maintained.  This section provides an 

overview of cycle counting and its application and now shifts to look at different methods of 

cycle counting.   

2.2.1 Geographic Method 

The first method of cycle counting discussed is the Geographic method.  This method is 

described by Schreibfeder (2005) as starting at one end of the warehouse and counting a certain 

number of products each day until you reach the other end of the building.  This method is the 

most basic method of cycle counting and results in counting all of your items an equal number of 

times per year.  It is also recommended by Schreibfeder (2005) that if you implement this 

method that you should try to count each item at least four times per year.   

2.2.2 Random Sample Cycle Counting 

Another method of cycle counting is called random sample cycle counting.  This method 

is described by Brooks and Wilson (2005) as a technique that selects its sample from the 

population of SKUs at random, thereby giving every member of the population an equal 
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opportunity to be a member of the counting sample.  There are two methods of random cycle 

counting, one called constant population counting and another called diminishing population 

counting.   

The constant population technique is also known as counting with replacement.  In this 

method, the part numbers that are chosen to be counted on one day will be put back in the 

population and have a possibility of being counted again on the next day.  

 Alternatively, the diminishing population technique is similar to counting without 

replacement.  Counting without replacement means that the parts that are selected are not 

returned to population until all of the other parts have been sampled.   

Important characteristics of these two methods are mentioned by Brooks and Wilson 

(2005).  First, constant population cycle counting contains the possibility that some parts may be 

repeatedly sampled while others may never be sampled.  Diminishing population cycle counting 

assures that all parts are counted, but the regularity with which each part is counted is uneven as 

the counter cycles through the entire population of parts.   

2.2.3 ABC Method 

The next method discussed is ABC cycle counting or the Ranking Method.  This method 

is based on the Pareto Principle that there are many contributors to a result, but a minority of the 

contributors account for a majority of the result.  In this method class A items are the most 

important items, followed by class B items and class C items respectively.  This method places 

emphasis on parts that: 

• Account for a majority of the money spent on inventory 

• Account for a majority of the volume of product flow 
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• Have history of a poor accuracy level 

Rossetti et al. (2001) state that the ranking method used by each company can be tailored 

to the specific priorities of the organization.  After determining what the company would like to 

place emphasis on, they determine a sampling plan.  For example, if the company wanted to 

place emphasis on items that account for a majority of money spent on inventory, they would 

sample roughly the top 20% of items based on money spent at a higher rate than the other items 

that cost less.   

Rossetti et al. (2001) warn that ABC cycle counting has a disadvantage in that the 

category classifications are primarily based on financial considerations.  When considering 

delaying production or shipments, items in the C category can be just as important as class A 

items.  Thus, it is important to consider lead-time, usage, and bill of material (BOM) level when 

employing ABC cycle counting.  This idea of multiple decision criteria is put into motion as 

Plaff (1999) illustrates the notion of using multiple criteria to determine the classes for ABC 

cycle counting.  Bergman (1988) presents a multiple criteria weighting system in which each 

SKU is ranked according to common usage across the BOM, lead-time, method of issue, and 

number of issues.  Finally, Flores and Whybark (1987) extend the ABC analysis based on usage 

and dollar value to include non-cost factors such as certainty of supply, impact of a stock out, 

and rate of obsolescence.   

2.2.4 Process Control Cycle Counting 

The final method of cycle counting is a controversial method called Process Control 

Cycle Counting that was introduced by Brooks and Wilson (2005).  This method has two 

requirements for its implementation to be feasible.  First, inventory records must have piece 

count by multiple location capability, and second, an inventory record listing of all quantities in 
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all locations must be available to the cycle counter.  Once these two requirements have been met 

the method can be applied.  The first step is to assign counters to a specific area.  Once this has 

been done, counters verify every part in every location, but they only count parts that are easy to 

count.  For parts that are difficult to count, the part identification, location, and order of 

magnitude are checked.  If the order of magnitude is way off (e.g., there are 1,000 pieces but 

inventory says there should only be 50), then the part has to actually be counted.   

As mentioned earlier this method is seen as very controversial and has several advantages 

and disadvantages.  The disadvantages include determining when parts are considered “easy-to-

count.”  Many people fear that cycle counters say that all parts are difficult to count so that they 

do not have to count any parts.  According to Brooks and Wilson (2005), the main advantage of 

Process Control Cycle Counting is that you can count 10 to 20 times the part numbers in a given 

time without greater cost.  

2.2.5 Summary of Cycle Counting 

The most obvious reason for implementing cycle counting is measuring inventory 

accuracy.  Despite this well known idea, Brooks and Wilson (2005) propose that the highest 

value of cycle counting may be its ability to identify errors and the causes of these errors.  If you 

were to perform annual inventory checks, then you will find errors, but would have no idea 

whether errors occurred a week ago or eleven months ago.  The ability to identify causes of 

discrepancies in inventory is beneficial because these causes can be addressed and fixed so that 

they do not occur again.  Wilson (1995) and Stahl (1998) portray cycle counting as a quality 

assurance process emphasizing the correcting of errors, which is the type of cycle counting this 

research wishes to improve upon.   
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2.3 Statistical Process Control 

The use and understanding of statistical process control (SPC) tools is inherent for this 

work.  Montgomery (2006) states that “the field of statistical quality control can be broadly 

defined as those statistical and engineering methods that are used in measuring, monitoring, 

controlling, and improving quality”.  SPC is basically the use of statistical techniques to measure 

and analyze the variation in processes, and improve the quality of the process through variance 

reduction.  The four basic steps of SPC are measure the process, eliminate undesirable variation 

from the process, monitor the process, and continuously improve the process.  There are seven 

common tools that are used in SPC: Check Sheets, Pareto Charts, Flow Charts, Cause and Effect 

Diagrams, Histograms, Scatter Diagrams, and Control Charts.  The fundamental and most 

commonly used tool of SPC is the control chart, and it is the major tool that is tested in this 

paper.  

The control chart was first proposed by Shewhart (1926, 1927) and plots the 

measurements of a quality characteristic in samples taken from a process versus time or the 

sample number.  Miller (2003) states that all processes are subject to degrees of variation, which 

explains the basic principal of why the control chart is a useful monitoring technique for almost 

all processes.  The chart has a center line (CL) and upper and lower control limits (UCL and 

LCL).  The center line represents the mean of the process characteristic when in control.  The 

LCL and UCL indicate a range in which practically all of the data points need to be within in 

order for the quality characteristics to be considered in control.  The control limits of a given 

statistic, say Y, are determined as follows: 

UCLݕ ൌ ሾܻሿܧ ൅  ሾܻሿ  (1)ݎඥܸܽ ܮ 

ݕܮܥܮ ൌ ሾܻሿܧ െ  ሾܻሿ  (2)ݎඥܸܽ ܮ 
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In these two equations E[Y] is the expected value of the random variable Y, Var[Y] is the 

variance of the random variable Y, and L is the number of standard deviations away from the 

mean of the underlying distribution.   

2.3.1 Variable Control Charts 

There are two types of data that can be monitored by control charts: variable and 

attribute.  Variable control charts are used when the quality characteristic can be measured and 

expressed in numbers (Ex: length, weight, volume, etc).  The most commonly used variable 

control charts are X̄ , R, and S charts. The X̄ chart is used to monitor the mean of a variable, while 

the R chart is used to monitor the variation of a variable.  In cases when a large sample size is 

used (e.g. n>10), an S chart should be used to monitor the variation (Montgomery, 1991).  The X̄ 

and R charts are efficient at detecting relatively large shifts in processes, but are less proficient at 

detecting small shifts in processes.   

2.3.2 Attribute Control Charts 

The second type of data that can be monitored by control charts is attribute data.  

Attribute control charts are used for product characteristics that can be evaluated with a discrete 

response (Ex: pass/fail, yes/no, good/bad, number defective).  Some commonly used attribute 

charts are np, p, u, and c charts.  P charts are used to monitor the fraction or percentage of non-

conforming relative to a random sample.  This chart can be used to measure how many 

inaccurate inventories exist out of the entire sample.  The p chart is based on the binomial 

distribution.  Sometimes it is more appealing to deal with the total number of non-conforming 

rather than the fraction of non-conforming, and this leads to the introduction of the np chart.  The 

np chart is used to monitor the number of times a condition occurs relative to a constant sample 
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size, n.  The c chart is used to monitor the number of non-conformities per inspection unit, where 

an inspection unit could be one or more SKUs that are inspected for inventory adjustments.  The 

c chart is based on the Poisson distribution.  The final chart is the u chart, which is used to 

examine the average number of non-conformities per inspection unit.  For the cycle counting 

domain that we are examining there are at least two useful charts: p charts for percent accuracy 

and c charts for monitoring the number of inventory adjustments.  This research will focus on 

attribute charts and specifically their application to monitoring inventory accuracy. 

There have been many attempts to find substitutes for the traditional control charts for 

attributes that can be found in the literature.  Quesenberry (1991) examines the use of a “Q chart” 

for both a binomial and Poisson parameters. The use of the “g chart” and the “h chart” to monitor 

the total number of defects and average number of defects based on the geometric distribution 

was also examined by Burke (1992). Chang (2008) considers a Shewhart charting scheme for 

simultaneous monitoring of multiple measurement gauges used for measuring a product or 

process attribute.   A summary of all of these efforts to find substitutes for traditional control 

charts can be found in Woodall (1997) and also in Ryan and Schwertman (1997).  However, as 

mentioned earlier for the cycle counting domain that we are examining the two most useful 

charts will be the p chart and c chart.   

2.3.3 Other Applicable SPC and Modeling Approaches 

This section of the paper discusses a few SPC or modeling approaches that are applicable 

to the problem domain being dealt with in this paper.  The first such approach is known as short 

run SPC.  Short run SPC is used for any type of system that is characterized by short production 

runs.  For the X̄ and R charts, the deviation from nominal should be used instead of the measured 

variable on the control chart, and this is sometime referred to as the DNOM control chart.  
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Montgomery (2005) states that two important points should be made relative to the DNOM 

approach: 

1. An assumption is that the process standard deviation is approximately the same for all 

 parts.  

2. Procedure works best when the sample size is the same for all part numbers.  

 

Montgomery (2005) also mentions that a variety of other approaches can be applied to 

the short-run production environment.  For example, the CUSUM and EWMA charts have 

potential applications to short production runs, because they have shorter average run length 

performance than Shewhart-type charts.  Also, Hillier (1969) examines how the number of 

subgroups used in calculating the trial control limits for Shewhart charts impacts the false alarm 

rate.  In particular, he presented a table of factors to use in setting limits for X̄ and R charts based 

on a small number of subgroups for the case of n = 5.   

Another SPC topic that is applicable to this problem is a multiple stream process (MSP).  

This is defined as a process with data at a point in time consisting of measurements from several 

individual sources or streams.  The most common procedure for monitoring a MSP is the group 

control chart (GCC), which was introduced by Boyd (1950).  Also, Nelson (1986) determines the 

one sided in control average run length for a process that has s streams.   

A method of modeling that is similar to this problem is compound Poisson distributions.  

As stated in Feller (1970), when considering the equation ܵ௡ ൌ  ଵܺ ൅  … + ܺே , when N has a 

Poisson distribution, and the Xi have a common distribution, then Sn follows a compound 

distribution.  This shows that the compound Poisson distribution has a property that is similar to 
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when the random variables are summed are in our problem, which are explained in detail in the 

next chapter of the thesis.    

This section shows that there are several SPC and modeling approaches that have been 

developed and are currently practiced that are relevant to the topic of this paper.  Namely, short 

run SPC, group control charts for multiple stream processes, and compound Poisson distributions 

have been discussed.  It is important to note that these approaches have some similarities to the 

SPC approach being examined in this paper. Specifically, all of these approaches involve 

combining data from different processes into one control chart.  However, it is also important to 

consider that the approach for this paper deals with a very different problem than the two 

methods discussed in this section.   

2.4 Type I and Type II Errors for Control Charts  

The control limits on control charts are typically drawn at 3 standard deviations away 

from the mean of the underlying distribution that is descriptive of the sample population.  

Whenever a data point falls outside of these limits it indicates an out of control condition.  There 

are two types of errors associated with control charts: type I and type II.  Type I errors (p’) are 

known as a “false positive” and occur when we reject the null hypothesis (Ho) but it is actually 

true.  Plainly speaking, this is when a difference is observed but in truth there is none.  In the 

application of control charts, a type I error is made when the operator concludes the process is 

out of control when in fact it is in control.  Type II errors are known as a “false negative” and 

occur when we fail to reject Ho but the alternative is actually true.  In other words this is the 

failure to observe a difference when there actually is one.  In the application of control charts, a 

type II error is made when the operator concludes that the process is in control when it is in fact 

out of control.   
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The average run length (ARL) is the average number of points that is needed to detect an 

out of control condition.  For control charts the ARL can be calculated using the following 

equation:  

ܮܴܣ ൌ ଵ
௣ᇱ

 (3) 

In this equation, p’ is the probability that a point is plotted beyond the control limits.  The in-

control ARL for a process is simply the inverse of the probability of a type I error. Similarly, the 

out of control ARL is the inverse of 1-P(Type II error).  This out of control ARL is the average 

number of points needed to detect a process shift when one has occurred.  The general formula 

for computing the probability of a type I and type II error can be seen below:   

ൌ ’݌ 1 െ ሺܲሾ ଵܺ ൑ ܮܥܷ ڭ  Ho is Trueሿ െ  ܲሾ ଵܺ  ൑ ܮܥܮ ڭ  Ho is Trueሿሻ  (4) 

ߚ ൌ ሺܲሾ ଵܺ ൑ ܮܥܷ ڭ  Ho is not Trueሿ െ  ܲሾ ଵܺ  ൑ ܮܥܮ ڭ  Ho is not Trueሿሻ (5) 

To summarize, large in-control ARLs and small out of control ARLs are desired.   ARL 

calculations can become quite complicated as documented in the literature. For example, Champ 

and Woodall (1987) model control charts using a Markov chain approach to evaluate the ARL 

when supplementary run rules are applied.  Davis and Woodall (2002) present a model of the 

synthetic control chart and use it to evaluate the zero-state and steady-state ARLs.   

2.4.1 Variable Control Chart Robustness 

This section examines the aforementioned variable control charts in the literature, and 

particularly how ARL has been used to evaluate the performance of each one of the different 

types of variable control charts mentioned.    
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2.4.1.1 X̄ Chart 

The X̄ chart is used to monitor the means of successive samples. Based off equation (4) 

the type I and type II error rates for the X̄ chart can be computed using the following calculation: 

ൌ ’݌ 1 െ ቀܲ ቂ ଵܺ ൑ ߤ  ൅  3 ቀఙ
௡

ቁቃ െ  ܲ ቂ ଵܺ  ൑ ߤ െ  3 ቀఙ
௡

ቁቃቁ (6) 

Where ߤ can be estimated by ̂ߤ  = ܺ ന and ߪ  can be estimated by ߪො = ோത

ௗమ
 where തܴ is the average 

range of the sample and d2 is a value that depends on the subgroup size and can be looked up in a 

statistical table.  Also, ଵܺ represents a random sample taken from the specified population.   

Crowder (1987) and Lucas and Saccucci (1990) look at using the EWMA control chart 

instead of the X̄ chart, as well as, how to evaluate different methods of computing the ARL 

properties of EWMA control charts.  Burroughs (2003) studies the effect of using run rules on X̄ 

charts and determines that they improve the sensitivity of the charts, but cause the chart 

performance to differ more from the known parameter.  As mentioned earlier Champ and 

Woodall (1987) use Markov chains to compute the ARLs for the X̄ chart, but their methods are 

general and can also be applied to other control charts.  Finally, Costa (1999a) and Costa (1990b) 

extend the study of the X̄ chart with variable parameters to include variable action limits.   

2.4.1.2 R and S Chart 

As mentioned earlier, R and S charts are used to monitor the variation of the variable 

being observed.  Chen (1998) studies the effects of parameter estimation on the R and S charts.  

Specifically, he looks at the run lengths when the standard deviation of each chart is estimated.  

Branching off a previous article, Costa (1999a) shows how joint X̄ and R charts with varying 

sample sizes and variable intervals improves the control chart performance in terms of the speed 
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with which shifts in the process mean and/or variance are detected.   Coates (1998) examines the 

effect that rounding numbers has on the control limit factors and type I risks.   

2.4.2 Attribute Control Chart Robustness  

This section provides a review of the most common attribute control charts and discusses 

recent literature dealing with modifications to these charts.  As mentioned earlier, Woodall 

(1997) provides an excellent review of attribute control charts and provides bibliographies of 

over 250 papers on this application.   

2.4.2.1 P Chart and NP Chart 

The p chart monitors the fraction of nonconforming products, while the np chart monitors 

the number of times nonconformity occurs.  Using equation (4), the resulting error rates (type I 

or type II) of the p chart can be determined as follows: 

ൌ ’݌ 1 െ ቆܲ ቈ ଵܺ ൑ ҧ݌ ൅  3ට௣ҧሺଵି௣ҧሻ
௡

቉ െ  ܲ ቈ ଵܺ  ൑ ҧ݌ െ  3ට௣ҧሺଵି௣ҧሻ
௡

቉ቇ  (7) 

In this equation ݌ҧ can be estimated by ݌ = ̂݌ҧ.  Once again, ଵܺ represents a random sample taken 

from the population being examined.  

The plotting of p and np charts by a computer program was first designed by Larson 

(1969). There have been a large number of papers on using the cumulative sum (CUSUM) 

methods to detect shifts in the fraction of nonconforming.  For a given in-control ARL, the 

CUSUM methods have lower ARLs than the corresponding Shewhart-type charts for small to 

moderate shifts in the parameter.  Specifically, Gan (1993) proposes a CUSUM chart that is 

intended for detecting upward shifts in the fraction nonconforming and also provides a way to 

determine the optimal parameters for the model considering a fixed in-control ARL.   
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More recently Luceno and Puig-Pey (2000) design an algorithm to compute the ARL 

probability distributions for CUSUM charts, and eventually Luceno and Puig-Pey (2002) 

develop this algorithm into a fast and accurate computer algorithm.  Alternatively, Gan (1990) 

studies the exponentially weighted moving average (EWMA) control chart for Binomial data 

when a small shift is of interest. Additionally, Khoo (2004) develops a moving average control 

chart for fraction of nonconforming that is more sensitive than the p chart at detecting out of 

control signals. Chen (1998) uses arcsine and integral transformations to adjust the control limits 

and improve the performance of the p chart.    Ryan and Schwertman (1999) examine the use of 

dual np charts to detect shifts in the control limits.  This method would be particularly useful 

when there is a restriction on the maximum sample size.  Ryan and Schwertman (1999) suggest 

using one chart to provide an early warning of quality deterioration, and the other chart to have 

approximate normal theory properties.  Finally, Nelson (1997) looks at using supplementary runs 

tests for np control charts that improve the detection of a reduction in proportion non-

conforming.   

2.4.2.2 C Chart and U Chart 

The c chart measures the number of non-conformities per inspection unit, while the u 

chart is used to examine the rate of non-conformities, or the number of non-conformities divided 

by the number of units inspected. Once again, using equation (4), the type I and type II error 

rates for the c chart can be computed as follows: 

’݌ ൌ 1 െ ൫ܲൣ ଵܺ ൑ ܿҧ ൅  3√ܿҧ൧ െ  ܲൣ ଵܺ  ൑ ܿҧ െ  3√ܿҧ൧൯  (8) 

Where ܿҧ can be estimated by λ෠  = ܿҧ, and ଵܺ represents a random variable from the population 

being monitored.   
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McCue (1976) looks at using the power and probability of a type I error using only an 

upper control limit chart for the number of defects which uses a-sigma limits, where the 

multiplier “a” may be different from 3.  The application of the CUSUM method to detect shifts 

in the number of nonconforming has also been examined.  White (1997) suggests procedures for 

constructing a Poisson CUSUM chart that is designed to distinguish between an “acceptable” 

mean rate and a “detectable” mean rate.  Additionally, Vardeman and Ray (1985) present tables 

of ARLs for an exponential case and comment on the application of exponential CUSUM charts 

for controlling the intensity of a Poisson process.   

EWMA charts have also been used to detect shifts in the number of nonconforming.  

Specifically, Jones et al. (2001) derive the run length distribution of the EWMA control chart 

with estimated parameters.  Borror (1998) creates plots of the ARL for the Poisson EWMA chart 

that can be used to determine the control chart design parameters needed to realize the desired in-

control ARLs.  Gan (1990) proposes three modified EWMA charts for Poisson data.   Xie and 

Goh (1993) employ a zero-inflated Poisson (ZIP) distribution to monitor the number of defects 

or nonconformities.  This method is used to monitor data when there are a large number of zeros 

in the sample, and performs significantly better than the traditional c chart in this environment.   

Jackson (1972) shows that the Poisson distribution is the appropriate model to use in a 

large number of instances, but it will not fit all instances. He goes on to show that the 

inappropriate use of the Poisson distribution may result in incorrect inferences regarding 

proportions of the population within certain limits.  The particular instances examined are when 

defects occur in clusters and when defects are the result of two underlying causes.  There are 

many more examples that can be found throughout the literature.  This research proposes the use 

of the c chart to improve inventory accuracy for a large retail or warehouse environment.   
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This literature review gives an overview of the robustness of both variable and attribute 

control charts.  It is obvious from this review that there has been extensive research on 

modifications to both types of charts in an attempt to either improve their performance or extend 

the possible environments for which these charts can be used.  From this information it can be 

concluded that the focus of this research to examine the use of a c chart on a mixture distribution 

has not been investigated. 
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CHAPTER 3 -  Complete Enumeration 

3.1 Introduction 

This section of the thesis provides the baseline for results by determining the pdf for 

several examples using complete enumeration of all possible events.  Specifically, we determine 

the pdf for a population of five sub-populations (m=5), and sample sizes of two and three (n=2 

and n=3).  We then determine the expected value and variance for the populations. With these 

values the control limits are determined.  Finally, the type I error rates for the example problems 

are obtained using complete enumeration.  Solving these examples using complete enumeration 

creates a foundation of this work that supports extensions of the results by providing a confident 

basis for verification.   

After obtaining the outcomes of examples for sample sizes of n=2 and n=3, the problem 

is looked at using a very limited, but balanced set of scenarios to provide an assessment of type I 

and type II errors.  This set of scenarios serves as sensitivity analysis on the results by examining 

different problem structures and determining if desirable type I error rates are still acquired, 

which provides an assessment of the power of the approach.  These scenarios are discussed in 

greater detail within the next few sections.   

3.2 Method  

The method used to solve the aforementioned examples of our problem is described in 

this section. This includes a numerical example that shows how the results are calculated.  The 

notation used in our model to solve these problems is shown below: 

 ௜= proportion of the population represented by pdf iן 
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 ௜ = Poisson arrival rate of the ith populationߣ

Xi = random variable representing the number of inventory adjustments from sample 

population 

Y= random variable that consists of the sum of the values for Xi  

Z= random variable that results from a mixture of m subpopulations  

n = number of SKU’s sampled to assess inventory adjustments for the population 

m = number of subpopulations 

Aside from the notation, it is also important to note that the number of inventory 

adjustments in a subpopulation is representative of the number of adjustments that have to be 

made to each specific SKU.  For example, if inventory is checked and records show that there 

should be 55 units in stock and there are only 50 units, an inventory adjustment of 5 units would 

be required. It is pertinent to mention that the sum of random variables for our problem follows 

this expression: 

ܻ ൌ ଵܺ ൅ ܺଶ൅. . ൅ܺ௡ (9) 

Where once again n represents the number of SKUs being sampled, and in our particular 

example n=2.  Also, Z is a variable that is observed from a population that results from a mixture 

of m subpopulations.  The resulting pdf for Z can be represented as follows: 

 fz = ןଵ f୸ଵ ൅ ןଶ f୸ଶ ൅ ڮ ൅ ן௠ f୸୫ 

Where Zi is the variable of sub population i.  This mixture population closely resembles mixture 

distributions found in popular probability texts (e.g. Feller (1970)). 

3.2.1 Constructing an Example 

The first step to solving our example problem is to determine the expected value and 

variance of a mixture distribution example.  The expected value and variance are determined by 
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using basic expected value operators and is shown in Miller (2008).  For our application, we will 

be using a mixture of m Poisson distributions, and the resulting expected value, E(Z) and 

variance, Var(Z) are as follows: 

ሺܼሻܧ ൌ  ∑ ሺܼ௜ሻ௠ܧ ௜ן
௜ୀଵ  (10) 

ሺܼሻݎܸܽ ൌ ∑ ௜ן ሾሺλ௜ሻଶ ൅௠
௜ୀଵ λ௜ሿ െ ሺ∑ ௜ן

௠
௜ୀଵ λ௜ሻଶ (11) 

Where ן௜ is the proportion of the population represented by the pdf i, and ߣ௜ is the Poisson 

arrival rate of the ith population.   

The next step is to determine what the control limits of our problem will be.  This is done 

using the following equations: 

UCL ൌ ሾܼሿܧ݊ ൅  3 ඥܸ݊ܽݎሾܼሿ (12) 

LCL ൌ ሾܼሿܧ݊ െ  3 ඥܸ݊ܽݎሾܼሿ (13) 

In these equations n is the number of SKUs sampled, and Xi is a random variable that represents 

the number of inventory adjustments in the sample population.   

Now that these equations have been introduced, an example with m = 5 subpopulations 

and n = 2 SKUs sampled is presented.  The problem has the following parameters: 

 ௜ = 0.25, 0.50, 0.75, 0.20, 0.30ߣ

 ௜ = 0.15, 0.20, 0.05, 0.40, 0.20ן

Once these parameters are presented, E(Z) is computed according to (10), and it is determined to 

be 0.315.  Similarly, the Var(Z) is computed according to (11), and it is 0.337. Next, an UCL = 

4.74 and LCL = -2.22 are computed using (12) and (13), respectively.   

Now that the control limits have been established, complete enumeration is used to 

exhaust all possible numerical combinations of the number of inventory adjustments for the two 

SKUs being sampled.  For example, the only combination for Y=0 is X1=0 and X2=0.  Therefore, 
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the probability of Y=0 is simply the Pr(X1=0)*Pr(X2=0).  This process is carried out all the way 

to Y=11, which consists of 12 different combinations of X1 and X2.  After enumerating Y=11, the 

cumulative probability sums to 1 using nine significant digits, and it can be concluded that 

practically all possible combinations of X1 and X2 have been exhausted.  Table 3.1 presents the 

pdf for this scenario.   

Table 3.1 Cumulative Probability for Example Problem  

 

The final step is to determine the type I error rate for this example.  The type I error rate 

calculation for this example is done using a variation of (4) that can be seen below: 

ൌ ’݌ 1 െ ሺܲሾ ଵܺ ൅ ܺଶ ൑ ሿܮܥܷ  െ  ܲሾ ଵܺ ൅ ܺଶ  ൏  ሿሻ (14)ܮܥܮ

In this equation, it can be seen that the negative value of the LCL in our example pushes the 

second part of the equation to equal 0.  Our problem has an UCL = 4.74, and to find the type I 

error, all the possible combinations of X1 + X2 that are less than or equal to 4 must be summed 

and subtracted from 1.  This is relatively easy considering that all of the possible combinations 

have already been enumerated.  Using this information the type I error rate for our example turns 

out to be 0.001026.  This example shows how to calculate the probability of a type I error for a 

Y = X1 + X2 Prob(Y) Cum Prob
0 0.54375953 0.54375953
1 0.32079783 0.864557361
2 0.104350788 0.968908149
3 0.025076815 0.993984964
4 0.004989009 0.998973973
5 0.000867797 0.99984177
6 0.000135831 0.999977601
7 1.94586E‐05 0.999997059
8 2.58E‐06 0.999999639
9 3.19167E‐07 0.999999958
10 3.70631E‐08 0.999999995
11 4.0588E‐09 1

Cumulative Probability Example
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fundamental example of our problem by complete enumeration.  The next section provides a 

type I error study of a set of scenarios using complete enumeration.  

3.3 Experimental Results 

As mentioned above, this section provides the type I errors for a balanced set of 

experimental conditions across values of λ୧ and ן௜ for a given m and n.  These different 

structures are examined in the next section.   

3.3.1 Problem Structures 

The various problem structures presented are for examples consisting of n=2 and n=3 

SKUs being sampled.  These problem structures are designed to give a broad representation of 

possible designs for real world mixture distributions.  The modifications made to each of these 

models consist of the following alterations to ן  and ߣ: 

 Skewed Left (SL), Skewed Right (SR), and Fixed (F) :ן

 Equal, Minimum–Maximum, Maximum–Minimum, Weighted Left (WL), Weighted :ߣ

 Right (WR) 

Examples of each one of these modifications can be seen below: 

 SL: 0.025, 0.025, 0.025, 0.025, 0.9 -  ן

 SR: 0.9, 0.025, 0.025, 0.025, 0.025 -  ן 

 F: 0.2, 0.2, 0.2, 0.2, 0.2 -  ן 

 Equal: 0.5, 0.5, 0.5, 0.5, 0.5 - ߣ 

 MinMax: 0.1, 0.2, 0.3, 0.4, 0.5 - ߣ 

 MaxMin: 0.5, 0.4, 0.3, 0.2, 0.1 - ߣ 
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 WL: 0.9, 0.1, 0.1, 0.1, 0.1 - ߣ 

 WR: 0.1, 0.1, 0.1, 0.1, 0.9 - ߣ 

Considering all of these alterations, there is a total of 15 different models to be examined 

for each value of n.  The next section discusses the results that are found for these models.  The 

type I error for each of these models are calculated using the same logic presented for the 

example problem in section 3.2.1.   

3.4 Results 

This section provides the results for all of the combinations of problem structures 

discussed in the previous section.  First, the pdf’s for the problem structures are defined and can 

be seen in Appendix A.  Using these pdf’s the type I error rates for n=2 can be summarized in 

table 3.2.  

Table 3.2 Type I error for n=2  

 

This table shows that the combinations have type I errors that are very small, but they 

exceed the traditional view of .0027 under the classic assumption of normality. They compare 

favorably if the probability of a type I error is designed to be less than 5%.  There are some 

differences in the type I errors, but it is more important to note that all of the values are small 

enough to consider the model to be effective in terms of type I error for all of the different 

problem structures.  There are also several patterns evident in this chart.  First, is when the values 

of ߣ are equal, the type I error for all values of ן are the same.  This logically makes sense 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.003659847 0.016830027 0.029747787 0.029875375 0.008513164

Skewed Right 0.003659847 0.029747787 0.016830027 0.008513164 0.029875375

Fixed 0.003659847 0.004914922 0.004914922 0.010460924 0.010460924

Lambda

Alpha

Type I Error for n=2
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because the E(X) and Var(X) will be the same for all three structures.  Next, when the values of 

 are fixed, the type I error for the Min-Max and Max-Min structures are the same because the ן

calculations involved are the same, the numbers are just multiplied in reverse order.  The same 

can be said for fixed ן values for the weighted left and weighted right structures.  The final 

patterns in the chart are the diagonal values of the Min-Max and Max-Min, and Weighted Left 

and Weighted Right.  These diagonal values are equal for both skewed left and skewed right ן  

values.  Once again, this is because the numbers being multiplied are essentially the same as 

those being multiplied in reverse order.  These patterns are useful to note, but the most important 

result of the graph is that all of these type I error values are significantly small, showing that the 

model is effective for a broad spectrum of problem structures.  Similarly, the PDF’s for n=3 are 

defined in Appendix B.  The type I error rates for n=3 are be summarized in table 3.3.  

Table 3.3 Type I error for n=3  

 

This table shows that the type I errors for n=3 follow a very similar trend to the n=2 

values.  All of the patterns for the n=2 values are also evident in this chart.  The most important 

conclusion that can be drawn is once again, that all of these type I errors are small enough to 

demonstrate that the model is effective for all of the different problem structures.   

3.5 Conclusion   

There are several conclusions that are drawn after completely enumerating the mixture 

distribution problem.  The first is that solving example problems with complete enumeration 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.004455981 0.003748813 0.008903452 0.01098578 0.005020188

Skewed Right 0.004455981 0.008903452 0.003748813 0.005020188 0.01098578

Fixed 0.004455981 0.016825077 0.016825077 0.024336803 0.024336803

Type I Error for n=3
Lambda

Alpha
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establishes a foundation for further analysis.  Specifically, the sample sizes of 4 or 5 become 

quite detailed; therefore, in the next chapter we promote and analyze an approach using 

conditional probabilities as shown in Miller (2008).  The results of this chapter provide an 

excellent basis for verification for chapter 4.  Clearly, extending this work to more practical sizes 

(e.g., n= 25, 50, and 100), and this approach is not tractable; therefore, as will be seen in chapter 

5, we will use these results to validate larger scale simulations.  Also, the results in this chapter 

provide a wide variety of mixture distribution structures.  Inspecting these different structures 

shows that there are several patterns or similarities that can be identified between different 

structures.  Finally, perhaps the most important aspect of this section is that the type I errors for 

all of the mixture distribution structures are small enough to prove that the method being used if 

effective for all of these structures.   
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CHAPTER 4 -  Conditional Probabilities 

4.1 Introduction 

This chapter of the thesis examines using conditional probabilities to calculate both the 

type I and type II error rates of mixture distribution problems.  The use of conditional 

probabilities greatly simplifies the calculations required to determine these errors, making its 

application to our problem advantageous.  This approach follows the suggestion we have 

discussed using complete enumeration to calculate the type I errors.  Up to this point it is evident 

that this method is not suitable for practical purposes, and merely serves as a foundation for the 

rest of this thesis.  Applying conditional probabilities to solve type I and type II errors for 

mixture distributions serves as a practical method to computing these errors.   

4.2 Method 

This section describes the methods for which conditional probabilities are calculated.  

The derivation of equations for the type I error values for n=2, 3, 4, and 5 are shown as derived 

in Miller (2008).   First, when 2 random samples of SKUs are collected, the total number of 

inventory adjustments for the sample is simply the sum of X1 and X2 (or n=2, using our notation).  

The resulting control limits are shown in equation (15) 

Control Limits = 2ܧሾZሿ േ 3ඥ2ܸܽݎሾZሿ (15) 

Using the UCL for a sample of 2, 

ܲሾ ଵܺ ൅ ܺଶ ൑    ሿܮܥܷ
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ൌ ∑ ܲሾ ଵܺሿ ൈ ܲሾܺଶ ൑ ሺܷܮܥ െ ଵܺሻሿ௎஼௅
௑భୀ଴   (16)  

Using the LCL for a sample of 2, 

ܲሾ ଵܺ ൅ ܺଶ ൏  ሿܮܥܮ

ൌ ∑ ܲሾ ଵܺሿ ൈ ܲሾܺଶ ൏ ሺܮܥܮ െ ଵܺሻሿ௅஼௅
௑భୀ଴  (17)  

The probability of a type I error when n=2 is shown in equation (18) 

1 െ ൌ ’݌  ܲሾ ଵܺ ൅ ܺଶ ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൏  ሿܮܥܮ

’݌ ൌ 1 െ ሺܲሾ ଵܺ ൅ ܺଶ ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൏   ሿ) (18)ܮܥܮ

For n=3, the control limits are shown in equation (19) 

Control Limits = 3ܧሾZሿ േ 3ඥ3ܸܽݎሾZሿ (19) 

Using the UCL for a sample of 3,  

ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൑  ሿܮܥܷ

ൌ ∑ ܲሾ ଵܺሿܲሾܺଶ ൅ ܺଷ ൑ ሺܷܮܥ െ ଵܺሻሿ௎஼௅
௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿൣ∑ ܲሾܺଶሿܲሾܺଷ ൑ ሺܷܮܥ െ ଵܺ െ ܺଶሻሿ௎஼௅ି௑భ
௑మୀ଴ ൧௎஼௅

௑భୀ଴  (20)  

Using the LCL for a sample of 3,  

ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൏  ሿܮܥܮ

ൌ ∑ ܲሾ ଵܺሿܲሾܺଶ ൅ ܺଷ ൏ ሺܮܥܮ െ ଵܺሻሿ௅஼௅
௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿൣ∑ ܲሾܺଶሿܲሾܺଷ ൏ ሺܮܥܮ െ ଵܺ െ ܺଶሻሿ௅஼௅ି௑భ
௑మୀ଴ ൧௅஼௅

௑భୀ଴  (21)  
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Therefore, using the probability of being within the range of the control limits, the type I error 

rate, ݌’ is defined in equation (22) 

1 െ ൌ ’݌  ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൅ ܺଷ ൏  ሿܮܥܮ

’݌ ൌ 1 െ ሺܲሾܺ1 ൅ ܺ2 ൅ ܺ3 ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൅ ܺଷ ൏  ሿ) (22)ܮܥܮ

For n=4, the control limits are shown in equation (23) 

Control Limits = 4ܧሾZሿ േ 3ඥ4ܸܽݎሾZሿ (23) 

Using the UCL for a sample of 4,  

ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൑  ሿܮܥܷ

ൌ ∑ ܲሾ ଵܺሿ ൈ ܲሾܺଶ ൅ ܺଷ ൅ ܺସ ൑ ሺܷܮܥ െ ଵܺሻሿ௎஼௅
௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ܲሾܺଷ ൅ ܺସ ൑ ሺܷܮܥ െ ଵܺ െ ܺଶሻሿ௎஼௅ି௑భ
௑మୀ଴ ൧௎஼௅

௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ൣ∑ ܲሾܺଷሿ ൈ ܲሾ ܺସ ൑ ሺܷܮܥ െ ଵܺ െ ܺଶ െ ܺଷሻሿ௎஼௅ି௑భି௑మ
௑యୀ଴ ൧௎஼௅ି௑భ

௑మୀ଴ ൧௎஼௅
௑భୀ଴  (24) 

Using the LCL for a sample of 4,  

ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൑  ሿܮܥܮ

ൌ ∑ ܲሾ ଵܺሿ ൈ ܲሾܺଶ ൅ ܺଷ ൅ ܺସ ൑ ሺܮܥܮ െ ଵܺሻሿ௅஼௅
௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ܲሾܺଷ ൅ ܺସ ൑ ሺܮܥܮ െ ଵܺ െ ܺଶሻሿ௅஼௅ି௑భ
௑మୀ଴ ൧௅஼௅

௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ൣ∑ ܲሾܺଷሿ ൈ ܲሾ ܺସ ൑ ሺܮܥܮ െ ଵܺ െ ܺଶ െ ܺଷሻሿ௅஼௅ି௑భି௑మ
௑యୀ଴ ൧௅஼௅ି௑భ

௑మୀ଴ ൧௅஼௅
௑భୀ଴  (25) 

Therefore, using the probability of being within the range of the control limits, the type I 

error rate, ݌’, is defined in equation (26) 

1 െ ൌ ’݌  ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൏  ሿܮܥܮ
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’݌ ൌ 1 െ ሺܲሾܺ1 ൅ ܺ2 ൅ ܺ3 ൅  ܺ4 ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൏  ሿ) (26)ܮܥܮ

For n=5, the control limits are shown in equation (23) 

Control Limits = 5ܧሾZሿ േ 3ඥ5ܸܽݎሾZሿ (27) 

Using the UCL for a sample of 5,  

ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൅ ܺହ ൑  ሿܮܥܷ

ൌ ∑ ܲሾ ଵܺሿ ൈ ܲሾܺଶ ൅ ܺଷ ൅ ܺସ ൅ ܺହ ൑ ሺܷܮܥ െ ଵܺሻሿ௎஼௅
௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ܲሾܺଷ ൅ ܺସ ൅ ܺହ ൑ ሺܷܮܥ െ ଵܺ െ ܺଶሻሿ௎஼௅ି௑భ
௑మୀ଴ ൧௎஼௅

௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ൣ∑ ܲሾܺଷሿ ൈ ܲሾ ܺସ ൅ ܺହ ൑ ሺܷܮܥ െ ଵܺ െ ܺଶ െ ܺଷሻሿ௎஼௅ି௑భି௑మ
௑యୀ଴ ൧௎஼௅ି௑భ

௑మୀ଴ ൧௎஼௅
௑భୀ଴   

∑ ܲሾ ଵܺሿ ൈ ቂ∑ ܲሾܺଶሿ ൈ ቂ∑ ܲ ቂܺଷሿ ൈ ൣ∑ ܲሾ ܺସሿ ൈ ܲሾܺହሿ ൑ ሺܷܮܥ െ ଵܺ െ௎஼௅ି௑భି௑మି௑య
௑రୀ଴

௎஼௅ି௑భି௑మ
௑యୀ଴

௎஼௅ି௑భ
௑మୀ଴

௎஼௅
௑భୀ଴

ܺଶ െ ܺଷ െ ܺସሻ൧ቃቃቃ (28) 

Using the LCL for a sample of 5,  

ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൅ ܺହ ൑  ሿܮܥܮ

ൌ ∑ ܲሾ ଵܺሿ ൈ ܲሾܺଶ ൅ ܺଷ ൅ ܺସ ൅ ܺହ ൑ ሺܮܥܮ െ ଵܺሻሿ௅஼௅
௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ܲሾܺଷ ൅ ܺସ ൅ ܺହ ൑ ሺܮܥܮ െ ଵܺ െ ܺଶሻሿ௅஼௅ି௑భ
௑మୀ଴ ൧௅஼௅

௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ൣ∑ ܲሾܺଷሿ ൈ ܲሾ ܺସ ൅ ܺହ ൑ ሺܮܥܮ െ ଵܺ െ ܺଶ െ ܺଷሻሿ௅஼௅ି௑భି௑మ
௑యୀ଴ ൧௅஼௅ି௑భ

௑మୀ଴ ൧௅஼௅
௑భୀ଴   

ൌ ∑ ܲሾ ଵܺሿ ൈ ൣ∑ ܲሾܺଶሿ ൈ ൣ∑ ܲሾܺଷሿ ൈ ൣ∑ ܲሾ ܺସሿ ൈ ܲሾܺହሿ ൑ ሺܮܥܮ െ ଵܺ െ௅஼௅ି௑భି௑మି௑య
௑రୀ଴

௅஼௅ି௑భି௑మ
௑యୀ଴

௅஼௅ି௑భ
௑మୀ଴

௅஼௅
௑భୀ଴

ܺଶ െ ܺଷ െ ܺସሻ൧൧൧ (29) 

Therefore, using the probability of being within the range of the control limits, the type I 

error rate, ݌’, is defined in equation (30) 
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1 െ ൌ ’݌  ܲሾ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൅ ܺହ ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൅ ܺହ ൏  ሿܮܥܮ

’݌ ൌ 1 െ ሺܲሾܺ1 ൅ ܺ2 ൅ ܺ3 ൅  ܺ4 ൅ ܺ5 ൑ ሿ - ܲሾܮܥܷ ଵܺ ൅ ܺଶ ൅ ܺଷ ൅ ܺସ ൅ ܺହ ൏  ሿ) (30)ܮܥܮ

We have shown a probabilistic approach to determine the type I errors for sample sizes of 

2, 3, 4, and 5. The next step is to develop a method that calculates these errors.  To achieve this, 

a model is created in C++.  This model has the ability to calculate the type one error for different 

values of ߣ ,ן, m, and n  using conditional probabilities.  To make changes to the values of ן  

and ߣ in the model, the user modifies input values.  To alter the number of subpopulations, m, 

additional constants for ן and ߣ with input values for each must be created.  Finally, to change 

the value of the number of SKUs sampled, n, the constant called dim in the code must be altered 

to represent the desired number of SKUs to be sampled.  The code for this C++ program can be 

found in Appendix A.  Using this code the results for the type I error for problems containing 

n=2, 3, 4, and 5 are obtained.   

4.3 Results 

4.3.1 Type I Errors 

The first step in analyzing the results from this program is to compare the results for n=2 

and n=3 to the results that were obtained in the complete enumeration section of the thesis.  As 

mentioned earlier, the complete enumeration results serve as a foundation to which we compare 

the results obtained from our program to confirm their accuracy.  To do this, the program is run 

for all of the models created in the complete enumeration section.  Specifically, we compare the 

table of the type I errors obtained from the program to the table of type I errors obtained from the 

complete enumeration.  The type I errors for all of the structures examined are nearly identical 
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for both n=2 and n=3.  The errors for n=2 and n=3 calculated using conditional probabilities are 

shown in tables 4.1 and 4.2 respectively.   

Table 4.1 Conditional Probability Type I Errors for n=2 

 

Table 4.2 Conditional Probability Type I Errors for n=3 

 

These tables show that the only differences between these errors and the completely 

enumerated results are slight rounding errors of decimals that are less than a thousandth off.  

These similarities allow us to reach the conclusion that our model accurately calculates the type I 

errors of mixture distributions.   

Now that the validity of the model created has been confirmed, the next step is to 

increase the value of n to try and reach a more practical level.  For this thesis, the value of n is 

increased to 4 and 5.  This demonstrates that the model works for increasing the value of n, and 

that the desired value for each case in the real world could be obtained.  The type I error rates for 

n=4 are summarized in table 4.3.  

 

 

 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.003659847 0.016830027 0.029747787 0.029875375 0.008513164

Skewed Right 0.003659847 0.029747787 0.016830027 0.008513164 0.029875375

Fixed 0.003659847 0.004914922 0.004914922 0.010460924 0.010460924

Type I Error for n=2
Lambda

Alpha

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.004455981 0.003748813 0.008903452 0.01098578 0.005020188

Skewed Right 0.004455981 0.008903452 0.003748813 0.005020188 0.01098578

Fixed 0.004455981 0.016825077 0.016825077 0.024336803 0.024336803

Type I Error for n=3
Lambda

Alpha
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Table 4.3 Conditional Probability Type I Errors for n=4 

 

This chart shows the type I errors for all the problem structures examined in this paper.  It 

is also evident that the patterns that were illustrated in the charts for n=2 and n=3 are still 

present.  The type I error rates for n=5 are summarized in table 4.4.   

Table 4.4 Conditional Probability Type I Errors for n=5  

 

Once again, this shows the type I errors for the entire range of problem structures, and the 

patterns within the chart are still noticeable.  The results for n=4 and n=5 show that our method 

provides small values for the type I error rates.  Furthermore, these values illustrate a tendency to 

decrease as the value of n increases.  This is significant, because in practice, the method of using 

a mixture distribution to monitor inventory accuracy would likely involve using higher values of 

n.  So, this section shows that by using conditional probabilities it can be concluded that our 

method will not only obtain significantly low type I error rates for smaller values of n, but will 

also achieve improved results as the value of n increases.   

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.004328 0.003503 0.017428 0.019515 0.008041

Skewed Right 0.004328 0.017428 0.003503 0.008041 0.019515

Fixed 0.004328 0.010013 0.010013 0.01555 0.01555

Type I Error for n=4
Lambda

Alpha

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.003989 0.003126 0.005423 0.007335 0.00611

Skewed Right 0.003989 0.005423 0.003126 0.00611 0.007335

Fixed 0.003989 0.005951 0.005951 0.009955 0.009955

Lambda

Alpha

Type I Error for n=5
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4.3.2 Type II Errors 

Up to this point in the paper, the type II error rates have not been examined yet.  For this 

section we will look at the type II error rates of small shifts for n = 2, 3, 4, and 5.  This section 

also examines the type II error rates of large shifts for n=2, 3, 4, and 5.  This is done by assuming 

that the underlying distribution is going to be the model of fixed ן values and equal ߣ values 

(assumed “in-control” condition), and the type II errors are determined by overlaying each 

scenario on the assumed “in-control” condition.  Making this assumption provides a basis to 

compute the type II error rates.  This does not provide a complete examination of all of the type 

II error rates, but it presents an idea of how these models perform in terms of type II errors.   

Since the distribution consists of fixed ן values and equal ߣ values, the type II error rates 

can be computed by the probability that the distribution actually follows the specific problem 

structure considered.  First, we examine the type II errors for small shifts that consist of all the 

problem structures and n =2.  These type II errors for n=2 are summarized in Table 4.5.   

Table 4.5 Type II Errors for n=2  

 

As seen in this table, the type II errors are all relatively large.  This is actually not a 

complete surprise, as the type I errors for this model are very small, and small type I errors can 

often correspond with larger type II errors when the shift is not very significant.  This shows that 

additional numerical work could be done to create more realistic type I errors so that the type II 

errors do not become too excessive.  In essence this relaxes or widens the control limits in an 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.996340153 0.996810259 0.999958387 0.999796682 0.96985181

Skewed Right 0.996340153 0.999958387 0.996810259 0.96985181 0.999796682

Fixed 0.996340153 0.999255895 0.999255895 0.997371137 0.997371137

Lambda

Alpha

Type II Error for n=2
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attempt to balance the type I and type II errors.  Another way to look at these type II errors is that 

they show how important it is to accurately estimate the values of ן and ߣ.  These type II errors 

demonstrate that if there is small shift in the ߣ values, it is going to very difficult to detect that 

the wrong parameters are being used. 

Now that the type II errors for n=2 have been examined, the results for n=3, 4, and 5 will 

be presented for smaller shifts.  The type II errors for n=3, 4, and 5 respectively are summarized 

in the following tables: 

Table 4.6 Type II Errors for n=3  

 

Table 4.7 Type II Errors for n=4 

 

Table 4.8 Type II Errors for n=5  

 

These tables show that the performance is similar to the results for n=2.  This gives us an 

idea of how our model performs in terms of type II errors.  Our method does not thoroughly 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.995544019 0.996251187 0.999982229 0.999905216 0.955404222

Skewed Right 0.995544019 0.999982229 0.996251187 0.955404222 0.999905216

Fixed 0.995544019 0.999365281 0.999365281 0.997905047 0.997905047

Type II Error for n=3
Lambda

Alpha

Lambda
Equal Min‐Max Max‐Min Weighted Left Weighted Right

Alpha Skewed Left 0.995672 0.996497 0.999999 0.999999 0.944491

Skewed Right 0.995672 0.999999 0.996497 0.944491 0.999999

Fixed 0.995672 0.999657 0.999657 0.999999 0.999999

Type II Error for n=4

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Alpha Skewed Left 0.996011 0.996874 0.999999 0.999999 0.936976

Skewed Right 0.996011 0.999999 0.996874 0.936976 0.999999

Fixed 0.996011 0.999831 0.999831 0.999999 0.999999

Lambda
Type II Error for n=5
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evaluate all possible type II errors, but the next step is to take a look at the type II errors when a 

large shift is present.   

To represent a large shift, the values for ߣ in each of our problem structures will be 

multiplied by 2 and 3.  This means that if the problem structure is being multiplied by 2, and has 

original ߣ values of .1, .2, .3, .4, and .5, then the values would change to .2, .4, .6, .8, 1.  These 

scenarios are important to look at because large retails stores would want to be able to detect if 

they were making 2 and 3 times the number of inventory adjustments they assumed.  For these 

large shifts, we will once again assume that the underlying distribution is going to be the model 

of fixed ן values and equal ߣ values, but this time the actual distributions are assumed to be the 

inflated values of 2 and 3 times the original ߣ values for each structure.  The following tables 

present the type II errors for n=2, 3, 4, and 5 and inflated values of 2 times the original ߣ values.   

Table 4.9 ࣅ Inflated 2 Times Type II Error for n=2 

 

Table 4.10 ࣅ Inflated 2 Times Type II Error for n=3 

 

 

 

 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.947346983 0.953597626 0.999177444 0.99719147 0.752736989

Skewed Right 0.947346983 0.999177444 0.953597626 0.752736989 0.99719147

Fixed 0.947346983 0.987520847 0.987520847 0.971369377 0.971369377

λ Inflated 2 Times Type II Error for n=2
Lambda

Alpha

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.916082058 0.927682676 0.999400578 0.997843721 0.623637872

Skewed Right 0.916082058 0.999400578 0.927682676 0.623637872 0.997843721

Fixed 0.916082058 0.98419942 0.98419942 0.969077219 0.969077219

Lambda

Alpha

λ Inflated 2 Times Type II Error for n=3
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Table 4.11 ࣅ Inflated 2 Times Type II Error for n=4 

 

Table 4.12 ࣅ Inflated 2 Times Type II Error for n=5 

 

 The results from these charts show that the type II errors for larger shifts are much more 

reasonable than the type II errors for smaller shifts.  It is also important to note that the type II 

errors decrease siginificantly when the value of n increases.  This is significant because once our 

problem reaches more practical values of n (25, 50, and 100), the type II errors should only 

continue to decrease.  The next set of tables shows the type II errors when the values of ߣ are 

multiplied by 3, to represent an even larger shift.  The results for n= 2, 3, 4, and 5 and inflated to 

3 times the ߣ values can be seen below.   

Table 4.13 ࣅ Inflated 3 Times Type II Error for n=2 

 

 

 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.889556 0.906492 0.999708 0.998591 0.518460

Skewed Right 0.889556 0.999708 0.906492 0.518460 0.998591

Fixed 0.889556 0.982983 0.982983 0.968077 0.968077

Alpha

λ Inflated 2 Times Type II Error for n=4
Lambda

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.867077 0.888769 0.999879 0.999107 0.432785

Skewed Right 0.867077 0.999879 0.888769 0.432785 0.999107

Fixed 0.867077 0.982721 0.982721 0.967134 0.967134

λ Inflated 2 Times Type II Error for n=5
Lambda

Alpha

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.815263245 0.835176042 0.996033985 0.990227394 0.459125164

Skewed Right 0.815263245 0.996033985 0.835176042 0.459125164 0.990227394

Fixed 0.815263245 0.948812464 0.948812464 0.915564198 0.915564198

λ Inflated 3 Times Type II Error for n=2
Lambda

Alpha
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Table 4.14 ࣅ Inflated 3 Times Type II Error for n=3 

 

Table 4.15 ࣅ Inflated 3 Times Type II Error for n=4 

 

Table 4.16 ࣅ Inflated 3 Times Type II Error for n=5 

 

 Once again, these tables confirm that our model is even more effective at detecting type 

II errors when the shift is even larger, in this case when the actual ߣ values are 3 times more than 

they were originally assumed, opposed to 2 times in the previous graphs.  These graphs also still 

show the trend of the type II errors decreasing as the sample size n increases.   

4.4 Conclusion 

There are several conclusions that can be reached after looking at the type II analysis 

done in this section.  In terms of detecting small shifts, additional work could be conducted to 

create more realistic type I errors so that the type II errors do not stay too extreme.  Furthermore, 

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.702930435 0.737237134 0.996249783 0.990395103 0.277976337

Skewed Right 0.702930435 0.996249783 0.737237134 0.277976337 0.990395103

Fixed 0.702930435 0.926219341 0.926219341 0.899825346 0.899825346

Lambda

Alpha

λ Inflated 3 Times Type II Error for n=3

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.606680 0.652683 0.996957 0.991967 0.168131

Skewed Right 0.606680 0.996957 0.652683 0.168131 0.991967

Fixed 0.606680 0.908847 0.908847 0.889443 0.889443

λ Inflated 3 Times Type II Error for n=4
Lambda

Alpha

Equal Min‐Max Max‐Min Weighted Left Weighted Right
Skewed Left 0.525048 0.582937 0.997601 0.993082 0.101876

Skewed Right 0.525048 0.997601 0.582937 0.101876 0.993082

Fixed 0.525048 0.894962 0.894962 0.881996 0.881996

λ Inflated 3 Times Type II Error for n=5
Lambda

Alpha
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smaller shifts could be considered.  The large type II error values also show how precise that 

estimates for ן and ߣ must be.  If these estimates are off, it should be very difficult to determine 

if the model estimates chosen are correct or not.  Additionally, this section shows that our model 

is much more effective at detecting large shifts in the actual number of inventory adjustments.  

This is significant because retail stores will initially be most concerned with knowing if their 

number of inventory adjustments is actually at a higher level than they assumed.   
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CHAPTER 5 -  Simulation 

5.1 Introduction 

As mentioned earlier, this chapter of the thesis extends our work to more practical sizes 

of n= 25, 50, and 100.  Through computer simulation using C++ programming, we construct a 

simple program that determines the approximate type I error rate for a set of problems by 

estimating the ARLs.  Up to this chapter, we have examined using complete enumeration and 

conditional probabilities to calculate type I and type II errors.  Simulation allows us to estimate 

type I error rates for more practical size problems. Clearly, an infinite number of scenarios could 

be evaluated, but in this chapter we simply want to present the methodology.   

5.2 Method 

This section describes the methods used in our simulation to determine the ARL of our 

problem.  Figure 1 presents a flow chart to help understand the methods used in the simulation.  
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Figure 1: Flow chart for Simulation 
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From this flow chart it can be seen that the first step enters given values for n (dim), 

UCL, LCL, and the probabilities (pr[i]) for the entire CDF until the value sums to 1.  Since the 

simulation is run for three cases, the value of n (25, 50, and 100) has to be changed for each run, 

and the UCL and LCL must be changed as well.  Next, a decision on whether the variable h is 

less than 1,000 is made to represent the completion of the 10 sets of 100 that are run for the 

simulation.  Obviously, if h is greater than 1,000 then the simulation is complete, and if not a 

random seed is assigned, sum is set to 0, j is set to 0, and q is set to 1.  The variable sum will be 

used to sum all of the inventory adjustments so that it can be determined if they are within the 

control limits.  The variable j is used to count the iterations, and shows how many iterations it 

takes for a number to be above the UCL or below the LCL (ARL), while the variable q is used to 

show whether the point that plots out of control is above the UCL or below the LCL (q=1 is 

above UCL and q=0 is below the LCL).  Next, the variable j is incremented by 1 and the 

variables i and sum are set to 0.    

The next decision is to determine if i is less than the value entered for dim.  If it is, a 

variable k is set to 0 and then a random number between 0 and 1 is created.  This ensures that if 

dim=25, then there will be 25 random numbers created. It is then determined if the random 

number is greater than or equal to pr[k], which are entered in the first step.  If the random 

number is greater than the pr[k], then k is incremented by 1 to determine what number of 

inventory adjustments corresponds to the random number.  If the random number is not greater 

than pr[k], then the value of k is recorded and this is the number of inventory adjustments 

associated with that random number.  The value of k is recorded and sum is set to equal all 

values of k that are eventually determined by this decision block.  Also the value number[i] is set 

to equal k so that these numbers can be printed out later.  After these values are printed, the value 
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of i is incremented, and this loop continues until i is greater than dim. Next, i is reset to a value of 

0 because it is used again as a counter.   

The next decision is whether i is less than or equal to dimension.  If it is, then number[i] 

is printed, and i is incremented until i is less than dim.  These numbers are printed solely for the 

purpose of examining all of the output of the program to ensure that it is working properly.   

Now that all values of k are stored in the variable sum, the next decision is to determine if 

the value for sum is less than or equal to LCL.  If the value is not less than or equal to the LCL 

the decision block of whether the value for sum is less than or equal to the UCL is approached.  

If sum is less than or equal to the LCL, then sum is set to UCL+1 and sent to the next decision 

block.  Also, the value of q is set to zero to indicate that the control limits were violated on the 

lower bound.  When sum is not less than or equal to the UCL, the values for j (iteration) and q 

(UCL or LCL) are printed and the value of h is incremented.  The final option is if sum is not less 

than LCL and is less than UCL, the value of j is incremented and the entire process is repeated 

until a value for sum is outside of the control limits.   

As mentioned before this process is repeated until 1,000 replications of the variable h are 

completed so that a good estimate of the ARL can be made.  This ARL estimate can then be used 

to determine and estimate of the type I error as described in equation (3).  An example of the 

C++ code used in this simulation can be seen in Appendix B.  

5.3 Results 

The first step in analyzing the results for this simulation is to compare the results 

obtained from the complete enumeration section to the results of the simulation.  This was done 

by examining the problem with fixed ן values of .2 and equal ߣ values of .5.  These parameters 

were entered into the simulation to compare the results.  After 10 sets of 100 replications, the 
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simulation gave an ARL of 273.98.  A 95% confidence interval for this estimate has an upper 

interval of 289.13 and a lower interval of 258.83.  The type I error from the complete 

enumeration of this example corresponds to an ARL of 273.24, which clearly falls between the 

95% confidence interval of the ARL for our simulation.  The similarities between these results 

allow us to conclude that our simulation is able to accurately estimate the ARL for the mixture 

distributions being examined.  

Now that the accuracy of our simulation is confirmed, this section shows the results for 

more practical sized problems of n = 25, 50, and 100.  The type I errors are calculated using the 

following random problem structure for each sample size: 

λ୧ = 2, 3, 4, 5, 6 

 ௜ = 0.30, 0.30, 0.20, 0.10, 0.10ן

The results from the simulation can be seen in the following table. 

Table 5.1 ARL for n=25, n=50, and n=100 

 

 

n = 25 n = 50 n = 100 

ARL1 246.59 262.78 345.1

ARL2 285.24 298.16 384.2

ARL3 298.3 280.7 306.73

ARL4 277.09 313.43 313.91

ARL5 241.34 273.39 328.43

ARL6 266.41 326.04 396.74

ARL7 305.74 290.97 324.51

ARL8 309.67 324.9 344.39

ARL9 270.07 349.73 350.44

ARL10 356.81 298.33 326.14

Average 285.73 301.84 342.06
Std. Dev. 33.96 26.81 29.13

Upper 95% CI 306.77 318.46 360.12
Lower 95% CI 264.68 285.22 324.00

ARL for n=25, n=50, and n=100
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First, the simulation is run for n = 25 and as can be seen from the table, an ARL of 

313.67 is obtained, which corresponds to a type I error of 0.003188.  For n =50 the ARL is 

267.53 or a type I error of 0.003742, while n = 100 corresponds to an ARL of 342.06, or type I 

error of 0.002923.  The standard deviation and 95% confidence intervals for each scenario is 

shown as well.  The type I error estimates of this simulation are even smaller than the type I 

errors of the initial problems examined in the previous section.  It is evident that these type I 

errors are very desirable, and confirm that our method is also applicable to more practical size 

problems.   

5.4 Conclusion 

 This section has shown that our method of computing the type I error for a mixture 

distribution is applicable to problems that are much more realistic than our initial examples.  It is 

unlikely that large retail stores would sample n=2, 3, 4, and 5 SKUs when they have a store full 

of thousands of SKUs.  This section shows that when n=25, 50, and 100 our method is still able 

to obtain very low type I errors.  It is much more realistic to assume that a retail store would 

sample 25 SKUs, which is why this section is so important to the research.  The results from this 

section solidify this work as an application that should be applied to an environment such as a 

large retail or warehousing store. 
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CHAPTER 6 - Future Work and Applications 

6.1 Future Work 

This thesis has progressed through reviewing literature on cycle counting and SPC, 

completely enumerating examples of our problem, using conditional probabilities to extend the 

computing capabilities, and finally creating a simulation to apply our method to more practical 

problems.  We have shown that this method is effective in monitoring inventory accuracy and 

detecting changes.  However, after completing this work, there are several areas of additional 

research identified that could further advance the research to become more applicable and 

effective for large retailers.   

The first area involves the balancing of type I and type II errors for our model.  

Throughout this paper, the type I errors have proved to be very small as they were based on 3σ 

limits for the control charts, however in Chapter 4 a concise examination of type II errors for our 

model shows that their values are extremely large for small shifts.  To make this method 

effective in practice, fixed type I errors (e.g. 5%) could be required so the type II errors are based 

upon fixed type I errors.  As a result, balance in the performance of both type I and type II errors 

could be realized, and the ability to detect smaller shifts would be increased.   

Aside from the actual performance of our model, it would also be valuable to extend the 

simulation to collect data in a more balanced and exhaustive manner.  One possibility to achieve 

this is to find an industrial business to partner with on the research and validate experimental 

boundaries of the factors.  Locating a business that would be able to provide data and real world 

examples would be very advantageous to tailoring this research to practical examples.  Having 

this partner would not only allow for the simulation to be extended to match reality, but would 
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open several opportunities including what values of ן and ߣ  should be used and how difficult it 

is for a business to obtain these values. 

Another area that could be examined is how estimation errors for the parameters of ן and 

 should be handled.  Undoubtedly, there will be errors and how these areas are handled is very ߣ

important to the success of this research.  Currently, this model assumes a stationary process.  

Altering this assumption to assume that the process is non stationary could be a method to 

control these estimation errors.   

The final research area that could be developed is using this method in conjunction with a 

minimum cost model.  A model could be developed that examines the costs a retail environment 

realizes due to inaccurate inventory, the advantages of obtaining completely accurate inventory, 

and the cost of sampling.  If this cost model is able to show a cost savings by implementing this 

research, it would create interest from industrial businesses and greatly advance the possibility of 

having this method implemented by a company.   

6.2 Applications 

This section will briefly touch on the applications of how this method is implemented, 

and specifically how the parameters for the models should be developed.  This research does not 

delve into determining optimal parameters, but will touch briefly on how the values of ן and ࣅ 

should be chosen.  It is our recommendation that the values of ߣ be determined by historical data.  

For example, a company could look at the past 50 inventory adjustments for a certain SKU, and 

the average of these adjustments should be used as the initial value for ߣ.  The values for ן have 

also not been examined for optimal parameters, but these values should be experimented with 

and will vary for each application.  So, to determine values for ן and ߣ, it is recommended that 

historical data is used, and to allow these values to be altered for each specific situation. 
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Appendix A – PDF’s for n=2 Problem Structures 
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Appendix B – PDF’s for n=3 Problem Structures 
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Appendix C - C++ Program for Conditional Probabilities 
#include "stdafx.h" 
#include <time.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdio.h> 
#include "math.h" 
#include "defines.h" 
 
#define MAXLAMBDA 11 
#define MAXALPHA  11  
#define MAXDIM  11  
#define MAXUCL  200  
 
 
double factorial (int); 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
    int i,j,k; 
    double sum, alpha[MAXDIM], lambda[MAXDIM]; 
 int ucl, dim; 
 double prob[MAXUCL], old[MAXUCL], probb[MAXUCL]; 
 
 dim=4; 
 ucl=10; 
 alpha[0]=.9; 
 alpha[1]=.025; 
 alpha[2]=.025; 
 alpha[3]=.025; 
 alpha[4]=.025; 
 lambda[0]=.2; 
 lambda[1]=.2; 
 lambda[2]=.2; 
 lambda[3]=.2; 
 lambda[4]=.2; 
 
 for (i=0; i<=ucl; i++) { 
  prob[i]=0; 
 } 
 for (i=0; i<=ucl; i++) { 
  for (j=0; j<=ucl; j++) { 
   prob[i]+=alpha[j]*(pow(lambda[j],i)*pow(2.718,((- 

    1)*lambda[j])) /factorial(i)); 
  } 
 } 
 for (i=0; i<=ucl; i++) { 
  old[i]=prob[i]; 
  printf(" value = %d prob %f old %f\n", i, prob[i], old[i]); 
   
 } 
 for (i=1; i<=dim; i++) { 
  printf("dim = %d\n", i+1); 
  for (j=0; j<=ucl; j++) { 
   sum =0; 
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   for (k=0; j-k>=0; k++) { 
    sum+=prob[j-k]*old[k]; 
   } 
   probb[j] = sum; 
  } 
  for (j=0; j<=ucl; j++) { 
   prob[j]=probb[j]; 
   printf (" the sum of xs equals %d  has prob %f\n", j, 

    prob[j]);  
  } 
 } 
} 
double factorial (int i) { 
 double fact; 
 
 printf("%d ",i); 
 if (i<=1) return (1); 
 
 fact=1; 
 while (i!=1) { 
  fact=fact*(double) i; 
  i--; 
 } 
 printf(" factorial %f \n", fact); 
 return((double)fact); 
} 
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Appendix D – C++ Program for Simulating Practical Sized 

Problems 
#include "stdafx.h" 
#include <time.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdio.h> 
#include "math.h" 
#include "defines.h" 
 
#define MAXLAMBDA 11 
#define MAXALPHA  11  
#define MAXDIM  100 
#define MAXUCL  200  
 
 
double factorial (int); 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
    int sum, q,i,j,k,x,h, number[MAXDIM]; 
    double  pr[MAXDIM]; 
 int ucl, dim, lcl; 
 double random; 
 FILE *fp; 
 
 fp = fopen("output.csv", "w"); 
 
 dim=15; 
 ucl=77; 
 lcl=24; 
 
 pr[0]=0.060122; 
 pr[1]=0.20564; 
 pr[2]=0.396243; 
 pr[3]=0.579624; 
 pr[4]=0.727105; 
 pr[5]=0.833046; 
 pr[6]=0.903301; 
 pr[7]=0.946934; 
 pr[8]=0.97243; 
 pr[9]=0.986454; 
 pr[10]=0.99371; 
 pr[11]=0.997241; 
 pr[12]=0.998856; 
 pr[13]=0.999551; 
 pr[14]=0.999833; 
 pr[15]=0.999941; 
 pr[16]=0.99998; 
 pr[17]=0.999994; 
 pr[18]=0.999998; 
 pr[19]=0.999999; 
 pr[20]=1; 
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 for(h=0; h<100; h++) { 
 
 srand(1350+1000*h); 
 
 sum=0; 
 j=0; 
 q=1; 
 while (sum<=ucl){ 
  j++; 
  sum=0; 
  for(i=0; i<dim; i++) { 
   x=rand(); 
   random=(double) x/RAND_MAX; 
   k=0; 
   while (random>=pr[k]) { 
    k++; 
   } 
   sum+=k; 
   printf("k=%d sum %d\n", k, sum); 
   number[i]=k; 
  } 
  for(i=0; i<dim; i++) { 
   printf (" %d ", number[i]); 
  } 
  printf("\n"); 
 
  if(sum<=lcl){ 
   sum=ucl+1; 
   q=0; 
  } 
 } 
 printf("iteration %d\n", j); 
 fprintf(fp,"%d,%d\n", j, q); 
 } 
 
 fclose(fp); 
 
 
} 


