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VOID FRACTION AS A FUNCTION OF DEPTH AND 
PRESSURE DROPS OF PACKED BEDS OF POROUS MEDIA

FORMED BY GRANULAR MATERIALS

E. Haque

ABSTRACT. A mathematical equation that describes the void fraction as a function of location, bulk density at the surface,
bulk density at the location of interest in the bed, maximum bulk density, bin geometry, friction properties of the grain, and
the ratio of lateral to vertical pressures of the grain in a deep packed bed of bulk solids was developed. Variation in the void
fraction caused variation in the pressure drop per unit of bed depth. Since bulk density and void fraction are functionally
related to each other, the void fraction was expressed as a mathematical function of bed depth, and the model was verified
using fundamentals of mathematics. In order to develop the model, Ergun's equation was used and integrated over the bed
depth, substituting a void fraction that varied with the bed depth. Model results were compared to Shedd's data. Agreement
between Shedd's data and this model was good to a bed depth of 10 m. For bed depths greater than 10 m, results from this
model gave much greater pressure drop values than were given by Shedd. The model showed that pressure drop per unit of
bed depth increases exponentially with the bed depth.
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efining porous media is extremely difficult, but
we can somehow describe them (Scheidegger,
1960). We can say that they are solid bodies con‐
taining pores. But pores cannot be defined in ex‐

act terms. The description of porous media is rather intuitive.
A body is porous if it contains voids, capillaries, or free space
that is interconnected or non‐interconnected. Accordingly,
bulks of cereal grains, such as corn, wheat, rice, sorghum,
etc., are examples of porous media. Flow of fluids through
porous media encompasses a fluid and an ensemble of the po‐
rous medium and the interaction between the two. As a result,
the flow characteristics of a fluid flowing through porous me‐
dia will be different from the flow through an empty conduit.

Understanding and estimating pressure drops of fluids
through packed beds of granular materials are extremely im‐
portant for many engineering applications. In chemical engi‐
neering, pressure drops are important in reactor design,
diffusion analysis, heat and mass transfer studies, power and
energy calculations, and many other applications. In biologi‐
cal and food systems engineering, knowledge of pressure
drops is important in aeration and drying studies and system
design. In particle technology, pressure drops are used to
characterize  particles and find their aerodynamic and other
properties. These are only a few of the applications of pres‐
sure drops in science and technology.
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The subject of fluid dynamics in cereal grains is concerned
with the void space of the porous medium as filled with the
fluid. Therefore, applying the mechanics of fluids that fill the
void spaces is necessary. The most important and fundamen‐
tal law of flow through homogenous porous media is that of
Darcy (1856). Darcy's law states that, macroscopically, the
velocity of a fluid flowing through a porous medium is direct‐
ly proportional to the pressure gradient acting on the fluid.
Darcy's law holds only for the viscous range of the flow. For
liquids at high velocities and for gases at very low and high
velocities,  Darcy's law becomes invalid (Scheidegger,
1960). It is rather restricted in its usefulness.

The first reported work of any importance in the area of
fluid flow through packed materials is that of Zeisberg
(1919). His conclusions were: (1) the free space naturally var‐
ied with the type of packing and with the manner of disposing
it in the tower; (2) the resistance offered by a tower packing
to gas flow was, of course, dependent on both the free space
and the surface exposed, but just what effect each might have
it was impossible to predict; and (3) the resistance was pro‐
portional to the square of the velocity of flow.

Blake (1922) applied the method of dimensional homo‐
geneity to determine the resistance of packing to fluid flow.
Kozeny (1927) advanced the so‐called hydraulic radius
theory, which treats the porous medium as a bundle of capil‐
lary tube of equal length. These tubes are not necessarily of
circular cross‐section. Carman (1937) studied fluid flow
through granular beds to verify Kozeny's theory experimen‐
tally. The theory was applied for the viscous range of flow
only. Ergun (1952) used a high‐temperature oven coke, Eagle
coke, and glass, lead, and copper spheres to develop a
semi‐empirical  equation that was applicable for both viscous
and turbulent flow.
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MODEL DEVELOPMENT AND VALIDATION
Void fraction is defined as the air space available in a unit

volume of granular material. Let us assume a granular mate‐
rial of bulk density �z and true density �T and a pack void frac‐
tion of �z, where the subscript z signifies the dependence of
the property on the bed depth (z, m). True density remains
constant, while bulk density and the void fraction vary with
the bed depth. The void fraction is expressed by equation 1:

 
T
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where
�z = void fraction (dimensionless)
�z = bulk density (kg m‐3)
�T = true density (kg m‐3).
Beds of granular materials have a tendency to pack, espe‐

cially if the beds are deep and wide. Haque (2010) discovered
that the bulk density of granular materials increases exponen‐
tially at the same rate as the vertical loadings exerted by the
materials.  He developed the following bulk density function:
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where
�0 = reference bulk density (kg m‐3), e.g., bulk density of

the bulk solid at the bed surface (z = 0), i.e., the
laboratory measurement of bulk density

�z = bulk density (kg m‐3) of the bulk solid at bed depth
z (m)

�m = maximum bulk density (kg m‐3); �m = �0[1 + �]
when z is a large value
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compaction factor, that is dependent on the
properties of the bulk solid, the storage container, and
other external factors such as filling method,
vibration, etc.
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γ
μγ0 , a constant (1/m) that is dependent on the

properties of the bulk solid (including minimum and
maximum bulk density), the storage container, and
other external factors such as filling method,
vibration, etc.

k = ratio of lateral to vertical pressure of the bulk solid in
the bed (dimensionless)

� = friction factor of the bulk material (dimensionless)
Rh = hydraulic radius of the storage container (m).
Replacing the bulk density in equation 1 with the value

given in equation 2 yields equation 3:
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It is evident from equation 5 that the void fraction has a
maximum and minimum value. The maximum value occurs
at the surface of the bed, i.e., z = 0, and the minimum value
occurs at a large depth. Let � m be the maximum value of the
void fraction, and then the equation 5 can be rewritten as
equation 6:
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Ergun's (1952) pressure drop, � P in N m‐2 (Pa) for depth
of bed L (m) is given by the following equation:

 
( ) ( )

3

2

322

2
0 17511150

εϕ
ε−ρ+

εϕ
ε−μ=Δ

pp d

V.

d

V

L

P
 (7)

where
�0 = viscosity of fluid flowing through the bed

(N‐s m‐2, Pa‐s, or kg m‐1 s‐1)
ρ = density of fluid flowing through the bed (kg m‐3)
V = superficial or nominal fluid velocity based on the

whole cross‐section of flow (m s‐1)
� = void fraction (dimensionless constant)
	 = shape factor of the granular material (dimensionless)
dp = equivalent particle diameter (m).

Rearranging equation 7 yields:
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Now replacing �, a constant in equations 7 and 8, with �z,
a variable given by equation 1, and writing equation 8 in dif‐
ferential form and integrating between 0 to z yields:
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Solving for the three integrals on the right side of equa‐
tion�9 proceeds as follows. For the first integral:
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Substituting x = 1 ‐ �(1 ‐ e‐�z) when z = 0, x = 1 = a, and
z = z, then x = 1 ‐ �(1 ‐ e‐�z) = b.
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solution of the first integral on the right side of equation 9 is:
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Likewise, the second integral on the right side of
equation�9 is:
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The solution of the third integral on the right side of
equation 9 is:
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Adding the solutions of all three integrals on the right side
of equation 9 (i.e., eqs. 10, 11, and 12) yields:
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This equation could be used to calculate pressure drops
from z = 0 to any depth z for deep beds of compactable
granular materials using relevant properties of the granular
material,  the geometry of the storage container, and fluid
properties. The equation combines both viscous and
turbulent components of the flow.

RESULTS AND DISCUSSION
The Ergun equation (Ergun, 1952) has some limitations in

its applicability for granular materials that are compactable,
such as cereal grains, because the equation assumes that the
void space remains constant in the entire bed. In addition, the
equation does not include many important variables of
granular products, such as the friction factor of the grain and
the size of the storage container. Both the friction factor of the
grain and the size of the storage container are known to
contribute to the compaction of grain in beds, consequently
causing a significant increase in the rate of pressure drop as
the depth increases. Equation 13 has been developed to
include many factors, including not only the fluid properties
of the flow through the granular material, such as viscosity,
density, and velocity, but also the properties of the granular
material and the storage container's size and geometry. The
properties of the granular material include particle size,
shape, non‐compacted and compacted bulk densities, true
density, and frictional characteristics. Overbearing loads
imparted by grain are also included in the equation.

Calculations using equation 13 have been performed to
arrive at figures 1 through 4 for wheat, corn, soybeans, and
sorghum, respectively. All calculations were based on
ambient airflow through grain stored in a bin of 9.144 m
(30�ft) diameter and 30.48 m (100 ft) height with a hydraulic
radius of 2.286 m (7.5 ft). The coefficient of friction of the
grain was 0.4, and the ratio of horizontal to vertical loads was
0.5. The viscosity, density, and superficial velocity of the air
were assumed to be 0.00001821 kg m‐1 s‐1, 1.205 kg m‐3, and
0.0431292 m s‐1 (1/10 cfm per bu), respectively. Additional
assumptions and statistics used to calculate the values for the
four grains in figures 1 through 4 were gathered from various
literature sources, including ASABE Standards (2010),
Karimi et al. (2009), Mwithiga and Sifuna (2005), Tavakoli
et al. (2009), Deshpande et al. (1993), Chang (1988), and
Pearson and Brabec (2006) and are listed in table 1.

Shedd's data (Shedd, 1953) are almost universally used as
a basis for determining pressure drops in various grains. The
values calculated using equation 13 were compared with data
presented by Shedd, which were based on a loose‐fill packed
bed. This comparison was done by estimating a pressure drop
value from the plots presented in ASABE Standard D272.3
(ASABE Standards, 1996). Since Shedd's pressure drop was
given per unit of bed depth, that value was multiplied by the
depths in figures 1 through 4. The figures show that the
pressure drop calculated using equation 13 conforms
relatively well with Shedd's data if the bed depth is about
10�m or less, but the two methods differ drastically for deeper
bins. Shedd's data were based on a loose‐fill packed bed and
as such considerably underestimate the actual pressure drops
in storage bins. Design engineers use somewhat arbitrary
correction factors (e.g., 1.5) to Shedd's data to conform to
practical needs caused by compaction (Hall, 1957). The

Table 1. Bulk densities, particle diameters,
and shape factors of four common grains.

Wheat Corn Soybeans Sorghum

γ0 (kg m‐3) 772 721 772 721
γm (kg m‐3) 856 801 840 830
γT (kg m‐3) 1285 1186 1200 1318

dp (m) 0.0060 0.00823 0.0066 0.00394
ϕ (unitless) 0.5793 0.6200 0.8102 0.7370
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Shedd's data

Equation 13

Figure 1. Pressure drops of wheat in a 9.144 m diameter × 30.48 m high
(30 ft × 100 ft) grain bin using equation 13 vs. Shedd's data.

Shedd's data

Equation 13

Figure 2. Pressure drops of corn in a 9.144 m diameter × 30.48 m high
(30�ft × 100 ft) grain bin using equation 13 vs. Shedd's data.

Ergun equation is not applicable for deep beds of
compactable  granular material. The equation developed in
this study provides a theoretical method of calculating
pressure drops that represent practical situations more accu-
rately.

It is evident from the figures that the pressure drop per unit
of bed depth is lowest near the surface and generally agrees
with the values given by Shedd. However, as the bed depth
increases, the pressure drop per unit of depth also progres-
sively increases, but the rate of increase decreases and
eventually becomes constant. Apparently, the total pressure
drop across the bed depends on the length of the bed: the
deeper the bed, the greater the pressure drop per unit of bed
depth. This is in drastic contrast with Shedd's data.

Since corn is of larger diameter than wheat and sorghum
and compacts less than those grains, the difference in
pressure drops between Shedd's data and the values calcu-

Shedd's data

Equation 13

Figure 3. Pressure drops of soybeans in a 9.144 m diameter × 30.48 m high
(30 ft × 100 ft) grain bin using equation 13 vs. Shedd's data.

Shedd's data

Equation 13

Figure 4. Pressure drops of sorghum in a 9.144 m diameter × 30.48 m high
(30 ft × 100 ft) grain bin using equation 13 vs. Shedd's data.

lated using equation 13 is also relatively less. As expected,
wheat and sorghum display the greatest pressure drops per
unit of bed depth along with the highest variation between
Shedd's values and this study. Soybeans compact less
because of their high shape factor value (almost spherical)
and consequently have the lowest pressure drop and the
lowest variation with respect to Shedd's data. Among the four
grains, as with Shedd's data, wheat displayed the greatest
pressure drops, followed by sorghum, corn, and soybeans.

This study resulted in a tool to more accurately estimate
the pressure drops across any applicable bed depth rather than
assuming that the pressure drop per unit of bed depth remains
constant throughout the bed. The latter is not true because
increases in grain compaction deep inside the bed increase
the pressure drop as well.
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CONCLUSION
A mathematical model has been developed for

determining void fractions at different depths of granular
materials in deep beds. The model follows an exponential
function exactly with the same rate of change as bulk density.
The void fraction has a maximum value at the surface of the
bed and a minimum value at the bottom of the bed.

The equation shows that the pressure drop per unit of bed
depth is not equal at all depths but rather increases as the
depth increases. Comparison with Shedd's data reveals that
for shallow beds (less than 10 m depth) the pressure drop
calculations for both methods generally agree; however, for
deep beds, Shedd's data grossly underestimate the values
calculated with the model developed in this study. These two
models will allow scientists and engineers to design systems
and processes for flow, diffusion, and chemical reactor
problems through packed beds.
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