307

,f/kEVIEW OF COMPUTER GRAPHICS
STANDARDIZATION EFFORTS WITH EMPHASIS ON

GKS, VDI, and VD%;

by
DEBRA MAE HERRING
i

B.S., Ohio State University, 1979

A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1983

Approved by:

L P All202 L1781z

266
R4
1982 CONTENTS
H47
Lok
1. Introduction.:iisviiiiaieissssoenvareriiinns %0 N ¥ E RSINELE ¥ 5 8 B RTER i
i.1 Overview........... §E N AR 6 F E N BN % SR 8 a wwe ¥y 6 waeo 1
1.2 Evaluation of Proposed Standards...........cicieieniniannn. 2
2. Brief History of Computer Graphics Standards...........cccvvuiunn 3
3., Current Standard Proposals.......ooveunn Gt e s eeiseatec e .o 10
3.1 The Graphical Kernel Svstem (GKS).....vovvevinvnnn. %A 1¢
3.2 The Virtual Device Interface (VDI)..iveueuuvrironrnnessansans 20
3.3 The Virtual Device Metafile (VDM)............... iwsiesnnwws 29
4. Implementation..... GUSNE £ ¥ ¥ N MOSHIENE ¢ % B WSS 6 S R 25
RefersfCes . sinmsssipnnmanas s seins ¢ %% e CET YR BTG S Y S R 6§ 8 B & 31
Appendixes
1 - Implementation - VDI Driver Code.....vueurnsrnnnncnsrrnnnnas 34
2 - Application Program Examples........... GO 6 e e e @ e 6 O]
3 - Application Program Qutput..(Pictures)......cccoveuunnnneeaas 70

THIS BOOK
CONTAINS SEVERAL
DOCUMENTS THAT
ARE OF POOR
QUALITY DUE TO
BEING A
PHOTOCOPY OF A
PHOTO.

THIS IS AS RECEIVED
FROM CUSTOMER.

Figure 1|,

[g%

Figure

Figure 2,

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 1.

Figure 10,

GKS

LIST OF FIGURES

Main FeaturesS.veirerreerrovosnonsosssncoocensnnnsons 11

GRS LDE P On S s e i s 33 i Y s e s 25 S RS v 12
GKS LOa Functions continued....civvrrenmnennnenanncanans 13
GKS Coordinatg System Transformations............. T IET 15
GKS / GKSM.Interface UGBk e s 20
VDI Requi#ed Functions. veswevssssvwnas FEARER G r s emE aes 2
VDI Context Model......... Cererreareaaneanans P .
VDM Required Functions........ & 8§ 8 R T B § SRR § sepmwens o0
Implementation Diagram......e.veveuann. Cereseaaaaas erenne 25
VDI Implemented Functions...... %W Y § E § R ssssswness 26
Metafile Format......... R Ces e o oae % ¥ e G e wes 28
Metafile Format continued......... SRR B B ¥ % A TTETY . 30

- ii -

1. Introduction
1.1 Overview

This paper examines the recent proposals for computer graphics
standards, the differences between them, and the reasons behind them.
These proposals are the application-level Graphical Kernel System (GKS),
the device-level Virtual Device Interface (VDI) and Virtual Device
Metafile (VDM). GKS was developed in Germany by a subcommittee of the
German Institute <for Standardisation (DIN) and is the first computer
graphics standard proposed by the International Standards Organization.
The American Nationa! Standards Institute (ANSI) has made GKS available
for public review to determine if it will be adopted as the U.S.
standard also. The VDI and VDM are being develioped by ANSI committees
to standardize the interface to graphics device drivers- and allow

portability of files containing picture descriptions.

There are four sections in this paper. The Introduction continues
with an evaluation of the standards. The second section covers a brief
history of computer graphics standards. The third section goes into
more detail concerning GKS, VDI and VDM. The fourth and final section
is a discussion of an implementation relating to the VDI standard. A
small graphics device driver was developed based on a subset of the VDI
functions. The implementation, written in C language,:® provides
subroutine calls to the device driver which will draw the requested

picture or text on the graphics device screen.

1. C is a high level programming language that was developed by Bell
Telephone Labs.

1.2 Evaluation of Proposed Standards

This section assumes that the reader is already familiar with the
general concepts of GKS, VDI and VDM. It summarizes my opinions of the

stated proposals based upon my study of them.

GKS 1is far too complicated for most simple, single device
applications. There are too many unneeded functions reguired at the
lowest level, (LOa). It seems likely that this impending standard will
just be considered a guideline because the documentation is not explicit

enough and GKS is too complex for most implementations.

The VDI and VDM concepts are hard to differentiate. They have not
been widely publicized since they are not as far along the
standardization process as is GKS. The Virtual Device Interface needs
té be defined more explicitly to be implemented correctly. In the
future, more of the graphics software at the VDI level will be
incorporated® into the hardware, thereby providing more time for
concentration on higher level graphics application packages at the
device independent level. The VDM actually allows portability of the
graphical information whereas the application level GKS package merely

enhances graphics programmer and application program portability.

It is surprising how long it has taken to realize the need for
standards. It seems that standards would have been developed in
conjunction with the growth in the graphics hardware technology. Also,
much time has been spent in developing and gaining acceptance for the

standards.

Many industries do follow the standards efforts to implement them

as soon as possible and the standards usage is then advertised as part

of the product quality [4]. Precision Visuals, one of the leading
graphics software vendors, plans to update their current software to the
GKS and VDI standards as soon as possible. A microcomputer VDI package,
the Graphics System Extension GSX-86, has been developed jointly by

Digital Research and Graphics Software Systems, Inc.

2. Brief History of Computer Graphics Standards

Interest in computer graphics standards started in the mid-70’s due
mainly to the growth of so many varied graphics applications. Some of
these applications were forgotten when the special hardware they were
based on became ocutdated or useless. The graphics hardware technology
advanced rapidly, but software had to be rewritten for the new devices.
The advances in graphics technology date from dedicated host systems
with high powered refresh displays to the more common use today of low
cost raster devices and high powered single user systems [16].
Eventually, more people began to see the importance of the concept of
device independence to enhance portability of both graphics programs and
the programmers between varicus host processors and graphics devices
thereby reducing software costs and graphics programmer training costs
[2,4]. Device independence refers to hiding = the hardware
characteristics from the application wusers by allowing the graphics
package to work on various types of graphics devices with only minimal

changes being made to the device driver interface.

There are different standards levels to be considered. The two
discussed here are the programmer level and the code generator level.
The programmer level interface is the incorporation of graphics
functions into an application program and has taken on the form of

subroutine packages, though other ideas have been studied including (1)

programming language extensions to include new syntactic constructs for
graphics functions and (2) a new language just for graphics. The latter
two haven’t had as much support and aren’t as practical as the
subroutine package [15,23]. The code generator level is sometimes
referred to as the DI/DD interface standing for the "device-independent
to device-dependent interface" [2]. It is essentially a high level

device driver interface.

The following information concerning standards history was
basi#ally derived frﬁm the BONC, HATFIELD, LANGHORST, PUK, and SHREHLO
references [2,15,20,26,2%]. The beginning of formal U.S. standards
efforts c¢an be traced to a workshop on Device Independent Computer
Graphics, sponsored by the ACM Special Interest Group on Graphics,
SIGGRAPH, held in 1974 at the National Bureau of Standards in
Gaithersburg, Maryland. The chairman of SIGGRAPH at the time, Robert M.
Dunn, appointed a Graphics Standards Planning Committee. (GSPC) to study
existing standards or proposals to determine if a standard covering
certain areas could be clearly defined [15]. Also, in August, 1974 at
an IFIP* WG5.2° meeting in Sweden, Richard Guedj was asked to set up a
subcommittee to explore standards for computer graphics. The committee
thought it was too early to look at standards and first needed to look
at computer graphics concepts so they organized a "Workshop on Graphics
Standards Methodology" [20]). The workshop was held in Seillac, France
in May, 1976 and marked the first graphics standards workshop which is

now known as Seillac I. About 30 graphics authorities from Europe and

2, IFIP stands for International Federation for Information Processing.

3. Working Group 5.2”s title is Computer Applications in Technology -
Computer Aided Design.

the U.S5. tried to resolve some differences between the various graphics

users. The two main results of this meeting were the following.

1. The decision was made to separate the viewing from the modeling
concepts. These concepts involved the differences hetween the
operations to look at a picture and those operations used to

define a picture [26].

2. Enough issues were clarified to pave the way for the design 'of a
standard graphics system.

One of the topics that spurred the viewing versus modeling concept,

concerned the "current position'" concept® in output drawing. Some

arguments against the current position said that there was confusion as

to the definition of the current position after a coordinate system is

transformed or after a hardware vector generator draws & character

string [29].

Seillac I motivated U.S5., attendees to revitalize the Graphics
Standards Planning Committee. In 1977, the GSPC published its first
Status Report, GSPC77 [31], covering its survey of existing graphics
packages and its device independent graphics standard proposal called
the GSPC Core System, or more commonly, the Core. The final GSPC review
of existing graphics packages was published in 1978 [7]). The Core was
influenced mainly by the GPGS package from the Netherlands [12]. The
December 1978 1issue of ACM Computing Surveys [1,21,22] gives a good

overview of the first Core draft. In the next few years, many objections

4, Current position is the reference point where the graphics cursor
resides after drawing a section of the picture. The next primitive
could specify relative values of how far to draw or where to start
relative to the current position.

and suggestions required modification to the first report. The second
GSPC Status Report, GSPC79 [32], was presented at the Seillac II
workshop in 1979, This report was basically the functional
specification of the revised Core proposal which included raster
graphics extensions, a description of the Metafile, and a model for

distributed graphics systems.

The Core. at least in the U.S., has essentially become the de facto
standard for device-independent graphics applications. There have been
many graphics packages developed based on the GSPC Core. Since 1979,
more than twenty orgénizaticns have implemented some levels of the Core.
Some leading manufacture-provided systems including some firmware
versions, are the PGL from Hewlett-Packard, Template from Megatek and
other systems from Ramtek Cbrp. and Tektronix. There have also been
independent software products such as the DI-3000 system from Precision
Visuals Inc. [{34]. One of the most complete Core systems was the George
Washington University’s GWCORE [92]. A more recent university Core
system implementation was the result of a senior project at the
University of Pennsylvania [33]. A microcomputer Core based

implementation for the Apple II is described in [10].

Later in 1979, GSPC was disbanded and 1its graphics standards
activity was turned over to the formal standards body in the U.S., the
American National Standards Institute (ANSI). ANSTI established the
X3H3, Technical Committee on Computer Graphics Programming Languages.
This ANSI group is currently the major graphics-standardization body in

the U.5.[20].

4 standards effort in Germany similar to the U.S. efforts, had

begun in 1977 because the government was spending too much money on

information processing systems. The Graphical Kernel System (GKS) was
proposed by the German standards organization DIN under a group chaired
by José Encarnacao. This system also underwent many changes due to
discussions at the Seillac workshops and input from the GSPC. GKS
doesn‘t offer as much as does the GSPC Core System. GKS is only a 2-D
system and doesn‘t include the current position concept. Another
difference between GKS and the Core is the workstation concept in GKS
that allows application programs to better use features of a specific

oputput device [2].

The growing interest in graphics standards and mainly the proposal
to the International Standards Organization (ISO) of the GINO-F [11]
system by the British Computer Society in 1976 led to the formation of
an appropriate ISO working group (ISO TC97/SC5/WG2) to study proposals

for international computer graphics standards.

There were several ISO meetings and various standards submitted
including the GSPC Core System, the German DIN GKS and IDIGS, a
successor to GPGS, from Norway. 1IDIGs was late for a proposal deadline
so0 an ISO committee studied differences between the GKS and GSPC drafts
with the objective to brimg the two proposals closer together. At the
October 1979 ISO meeting in Budapest, it was decided that only GKS would
be considered as the graphics standards proposal because DIN was ready
to sponsor it and the 2-D system could be adopted faster than the more
elaborate 3-D Core system. There were a few more IS0 meetings ironing
out details for improvements to GKS and various working drafts were
produced. As a result of an October 9, 1981 ISO TC97/SC5 meeting, GKS
Version 7.0 (ISO DP 7942) was accepted as a draft proposal. GKS was
registered as a Draft International Standard on March 11, 1983, The

document can be wupdated to an International Standard after it is

translated to French and again approved by the ISO member nations. ANSI
is studying whether the GKS standard will also be adopted as an American

National Standard.

Universities and companies in Germany, of course, were the first to
implement GKS packages. A university implementation in Austria based on
GKS is describéd in {13). A command interpreter was built on top of GKS
in Germanv [3]. An early implementation based on the combinatioﬁ of GKS
and Core functions is described in [35]. U.S. companies . that had
pianned to use or were wusing Core have already started implementing
GKS-based systems. With ISO and ANSI approval, most vendors will switch:
to promote this latest standard. Pertaining to microcomputers, Digital
Research provides a GSS-Kernel package that looks like a GKS interface
to the programmer that in turn accesses the Graphics System Extension
(GSX). The GSX was developed jointly by Digital Research and Graphics
Software Systems, Inc. and is an extension of the CP/M operating system

family [20].

ANSI work is progressing on a “superset of GKS” to provide 3-D and
other support. Until that is defined, users with those requirements

will most likely keep using the Core systems.

The device independent to device dependent interface also is being
studied by various groups now. The VDI and VDM concepts were originally
going to be part of the GKS specification, but broke off to be studied
as a separate standard. Germany is developing standards at this level,
but only the U.S. efforts are examined here. The Virtual Device
Interface (VDI) standard is being developed by the ANSI X3H33 Technical
Committee. The chairman of the task group, Ted Reed, of Los Alamos

National Laboratory, foresees a draft VDI standard to be submitted for

American National Standards approval by late 1983. The VDI is defined

as '

'...a standard functional and syntactical specification of the
control and data exchange between device-independent graphics software
and one or more device-dependent graphics device drivers" [38]. A
device driver here refers to the part of the graphics software that
transiates commands and data from the VDI into the form required by a
particular input/output device. A position paper [38], though not being
maintained any longer, provides useful information on VDI and the
Virtual Device Metafile (VDM). A document explicitly describing the VDI
will be produced after the VDM standard is complete. The VDI is expected
to be driven by application packages or other graphics software such as
the GKS. A graphics device driver could directly support the VDI and
the long-range possibilities include implementation of more of the
software in the hardware such as the VDI interface in the graphics
device itself. This would make it unnecessary for graphics utility
software vendors to write software device drivers for new hardware. The
VDI helps make graphics software products compatible with many different
devices by isolating the unique characteristics of the physical graphics
device in the device driver software. This is similar to efforts
currently made by individual vendors to make their products compatible
with various devices. The UNIX® and CP/M operating systems are
examples of systems which are designed to interface to various

configurations easily [20].

The Virtual Device Metafile (VDM) is a particular metafile standard

also being developed by the ANSI X3H33 Task Group and is defined as "a

5. UNIX is a trademark of Bell Telephone Labs.

10

mechanism for retaining and/or transporting graphics data and control
information" [37]. There is a working draft proposal document on the
VDM [39] available from ANSI. Annex E of the GKS document [18] is a

guide for metafile usage (GKSM) until standards are accepted.

3. Current Standard Proposals
3.1 The Graphical Kernel System (GKS)

The main sources for the GKS overview were the BONO [2] and PRESTER [25]
articles and the draft document [18] which is available for a fee from

ANSI.

GKS is a device independent graphics system at the programmer level
interface. It basically consists of a set of routines to be accessed by
application programs for computer graphics programming. The GKS package
itself can be implemented in any high level language making it and the
application program using it portable between systems that support the
parficular language. Mainly only the device driver code (not part of
GKS) and the application code definition of workstation attributes

should have to change when using the package with a different device.

GKS uses a “workstation concept” to refer to support of graphical
output on one or more workstations concurrently. A workstation consists
~of a console that includes one display device and/or one or more input
devices. The display surface is wusually a CRT (cathode-ray-tube)
screen, but could be a simple plotter. Some possible input devices
include alphanumeric keyboards, function keys, joysticks, control balls

or light pens [25].

The main features of GKS are listed in Figure 1. There are control

11

functions, output functions, functions to set input and output
attributes, transformation functions, input functions, inquiry functions

and error handling functions in GKS.

GKS Levels

Workstation Concept

GKS attribute bundles

Graphical Output

Viewing - Coordinate sttems/Transformations
Graphics Input

Error Handling

GKS Data Structures
(Description tables, state lists)

Segments

Figure 1. GKS Main Features

GKS doesn’t recognize the current position concept that is used in the
GSPC Core System so all input and output functions must specify all
starting and ending coordinates. 1In other words, relative coordinates

aren’t used.

There are seven different levels of GKS that can be implemented
depending on the input/output capabilities availab;e and required for a
particular application [18]. The lowest level (LOa) is the minimal
required set of functions for a GKS implementation. This level doesn‘t

include input functions. The Level Oa functions are listed in Figure 2,

GKS supports two-dimensional input and output primitives. These

primitives refer to graphical data that can be obtained from any open

Control Functions

OPEN GKS

CLOSE GKS

OPEN WORKSTATION
CLOSE WORKSTATION
ACTIVATE WORKSTATION
DEACTIVATE WORKSTATION
CLEAR WORKSTATION
UPDATE WORKSTATION
ESCAPE

Qutput Functions

POLYLINE
POLYMARKER

TEXT

FILL AREA

CELL ARRAY

GENERALIZED DRAWING
PRIMITIVE (GDP)

Transformation Functions

SET WINDOW
SET VIEWPORT

Attribute Primitives

SET POLYLINE INDEX

SET LINETYPE

SET LINEWIDTH SCALE FACTOR
SET POLYLINE COLOUR INDEX
SET POLYMARKER INDEX

SET MARKER TYPE

SET MARKER SIZE SCALE FACTOR
SET POLYMARKER COLOUR INDEX
SET TEXT INDEX)

SET TEXT FONT AND PRECISION
SET CHARACTER EXPANSION FACTOR
SET CHARACTER SPACING

SET TEXT COLOUR INDEX

SET CHARACTER HEIGHT

SET CHARACTER UP VECTOR

SET TEXT PATH

SET TEXT ALIGNMENT

SET FILL AREA INDEX

SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET FILL AREA COLOUR INDEX
SET PATTERN SIZE

SET PATTERN REFERENCE POINT
SET ASPECT SOURCE FLAGS

SET COLOUR REPRESENTATION

SET NORMALIZATION TRANSFORMATION

SET CLIPPING INDICATOR
SET WORKSTATION WINDOW
SET WORKSTATION VIEWPORT

Error Handling

EMERGENCY CLOSE GKS
ERROR HANDLING
ERROR LOGGING

Optional Metafile Functions

WRITE ITEM TO GKSM

GET ITEM TYPE FROM GKSM
READ ITEM FROM GKSM
INTERPRET ITEM

Figure 2.

GKS LOa Functions

12

Inquiry

Functions

INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE
INQUIRE

OPERATING STATE VALUE

LEVEL OF GKS

LIST OF AVAILABLE WORKSTATION TYPES

MAXIMUM NORMALIZATION TRANSFORMATION NUMBER
SET OF OPEN WORKSTATIONS

CURRENT PRIMITIVE ATTRIBUTE VALUES

CURRENT INDIVIDUAL ATTRIBUTE VALUES

CURRENT NORMALIZATION TRANSFORMATION NUMBER
LIST OF NORMALIZATION TRANSFORMATION NUMBERS
NORMALIZATION TRANSFORMATION

CLIPPING INDICATOR

WORKSTATION CONNECTION AND TYPE

WORKSTATION STATE

WORKSTATION DEFERRAL AND UPDATE STATES

TEXT EXTENT

LIST OF COLOUR INDICES

COLOUR REPRESENTATION

WORKSTATION TRANSFORMATION

WORKSTATION CATEGORY

WORKSTATION CLASSIFICATION

MAXIMUM DISPLAY SURFACE SIZE

POLYLINE FACILITIES

PREDEFINED POLYLINE REPRESENTATION
POLYMARKER FACILITIES

PREDEFINED POLYMARKER REPRESENTATION

TEXT FACILITIES

PREDEFINED TEXT REPRESENTATION

FILL AREA FACILITIES

PREDEFINED FILL AREA REPRESENTATION

PATTERN FACILITIES

PREDEFINED PATTERN REPRESENTATION

COLOUR FACILITIES

PREDEFINED COLOUR REPRESENTATION

LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES
GENERALIZED DRAWING PRIMITIVE

PIXEL ARRAY DIMENSIONS

PIXEL ARRAY

PIXEL

Figure 2. GKS L0a Functions continued

13

workstation (input) and graphical information that is generated by GKS

and routed

ares

to all active workstations (output). The output primitives

polyline

14

polymarker

text

fill area

cell array

generalized drawing primitive (GDP)
The polyline routine is a line drawing routine which draws a set of
connected lines described by the set of points connecting them. The
polymarker routine generates a specific symbol, such as a plus sign,
centered on given points. It is wused mainly to identify points on
plotted curves [20]. The text function generates a given string of
characters on the graphics device. The fill area function is used on
raster graphics devices to f£ill a closed area with a solid color or
pattern of colors given a point within that area. The last two items
are normally only supported at the higher levels of GKS. The cell array
is also & raster graphics function and is a complex fill that fills
areas based on a 2-dimensional array addressing individual pixel®
colors. This is wuseful for imaging applications such as cartography
[20]. The GDP is used for general pictures not available on all devices
like drawing circular arcs, bars or spline curves. The GDP is a
mechanism to escape from GKS to allow access to specific capabilities of

a particular device.

The applications program defines all graphical primitives with its
own world coordinate system which is based on the two dimensional
Cartesian coordinate system. The world coordinates are mapped into

device coordinates through normalization and workstation

6. A pixel represents the smallest addressable point (picture element)
on a raster device display surface.

15

transformations. Figure 3 illustrates the concepts of the GKS

coordinate system transformations.’

Window/ Workstation
viewport transformation
transformation for each
workstation
" ——
Output Transformed Q Work-
primitives primitives o station
_— = «@ = | display
o
g) g o space
al w
.E‘ o i 8 '%d
48 3
G} Z L og
HE 8z
£l 5
5 § ‘0 Locator
-— = - |- input from
Input § work-
primitives station
World Normalised Device
coordinates device coordinates coordinates

Figure 3. GCKS Coordinate System Transformations

The GKS functions define output primitives in normalized device

coordinates (NDC) in the range (0,1) x (0,1). The normalized device

coordinate space is essentially an abstract viewing surface independent

7. This figure was obtained from the Prester article [25].

of the various workstation viewing surfaces. A ‘window” is specified by
defining the limits of a rectangular area parallel to the coordinate
axes in world coordinates and the “viewport’ is represented by the two
corresponding points in NDC. A normalization transformation is applied
to each output primitive to map the window into the NDC wviewport by
using translation and scaling formulas. A clipping rectangle is defined
based on the particular NDC viewport. If the clipping function is
enabled, the parts of the picture that lie outside of this rectangle
will be clipped (or deleted) so that they won“t show up on the display

surface.

Each workstation has its own recognized coordinates so each
workstation must be associated with a part of the NDC space to be
~displayed on the workstation display surface. Output primitives in NDC
are transformed to workstation (device) coordinates by the corresponding
workstation transformation. The limits of the device coordinates are
a;ailable in a workstation dependent table and the workstation
transformation is specified any time after the workstation is opened via
the SET WORKSTATION WINDOW and SET WORKSTATION VIEWPORT functions. GKS
always clips at the workstation boundaries so that the routines do not

try to draw pictures outside the display surface.

Graphical input in GKS, as well as in the GSPC Core System, 1is
based on the concept of virtual (or logical) input devices. This
concept promotes graphics application portability because the
interactive graphics application need only recognize values returned by
virtual input devices and therefore not be concerned with the device
hardware. GKS graphical input is accessed by an application program by
controlling logical input devices which get the input from the operator

of the device and return logical input values to the program. The

17

actual input is from hardware such as a light pen, digitizer or mouse.
The input class refers to the type of logical input values. The six

classes of input primitives and their input values provided are:

Locator - provides a position in world coordinates.

Stroke - provides a seguence of points in world
coordinates.

Valuator - provides a real number,.

Choice - provides an integer selection from a
number of choices.

Pick - is only applicable to segments and
provides a segment name and a pick
identifier and status.

String - provides a character string read from a

keyboard device.
Input from the devices is obtained based on three “operating modes”
which are set by the various SET MODE functions. These modes are
REQUEST, SAMPLE and EVENT. For one of the input classes in the REQUEST
mode, logical input wvalues are read by GKS one at a time, each time,
waiting for operator input or break action. The SAMPLE function for a
given input class doesn’t wait for operator action, but merely returns
the current logical input value for the device. The sampled devices are
represented by the Locator and Valuator classes and the values returned
represent the point selected possibly by a cursor (Locator), or the
current wvalue of a continuous valuator device such as a potentiometer
(Valuator class). The EVENT mode causes GKS to build an input queue
which holds input primitives £from various input devices in this mode
ordered by the time they are generated. The application can obtain the
latest input data from the queue. The Choice and Pick classes are

represented by the EVENT mode.

18

The input and output functions have attributes associated with them
that specify the characteristics of the picture or text to be drawn.
The attribute primitives affect the object’s appearance. For example,
the text function has associated attributes that allow for specification
of the direction the text should read, the width of the characters. the
spacing between the characters, the size of the characters, the text
font to be used and the color of the characters. The attribute
information is specified via an attribute function call which sets
program variables within the GKS routines for specific devices to be
used by GKS. GKS provides attribute bundling which was not provided ‘in
the GSPC Core System. The bundling refers to choosing all attributes
for a primitive by selecting an index into a table containing entries
linking &ll possible combinations of the various attributes for a
particular workstation. This eliminates the requirement of setting the
attributes individually via separate functions although attributes can

also be set individually.

A segment facility allows subdivision of pictures into subparts and
short term storage of these subparts. These subparts are representéd by
a8 collection of output primitives and are identified by a segment name.
Segments can be created and deleted, transformed, made visible or

invisible, highlighted, renamed and inserted into other segments.

The Inquiry functions return values from various ~“state lists”
which represent general information about the current state of the
system, such as the level of GKS being used, the operating state of GKS,
the geometrical transformation parameters, the 1list of available
workstations, or specific workstation information, such as the current
attributes for the polymarker output primitive for a given workstation.

All of this information is obtained from variables in various structures

19

in GKS that keep track of the current state of the system. This
information is accessed as needed by the specific routines. For
example, when the “polyline” routine is called, the current attribute
values of the polyline set from the “set polyline index’” routine affect

the color, line type and line width of the polyline displayed.

There are specified error situations for each GKS function that
invoke the ERROR HANDLING procedure. All GKS implementations should
provide this error handling. The ERROR HANDLING procedure can be
provided by the -application program in which case GKS functions would

instead call the user-supplied routine to handle errors.

GKS also provides an interface to externa! sequential files called
GKS Metafiles (GKSMs). These are used for long-term 5torage and
exchange of graphical information. A GKSM 1is treated as another
workstation. Functions are provided to write to the GKSM and to read
and interpret the information from it. Reading and interpreting the
information from the GKSM causes the other GKS functions to be called to
generate the picture on an opened output workstation. The format and
content of a metafile aren’t part of the GKS standard, but a suitable
format is covered in Annex E of the GKS draft document [18]. Figure 4
shows the simplified GKS to GKSM interface.® Metafiles will be

discussed more thoroughly later.

8. This figure was obtained from the Prester article [25].

20

Writing the GKSM

Reading the GKSM

Application Pgm.

Application Pgm.

!
Graphical User User User
GKS information control information
functions
Y f h §
I
“GKS GKS

.‘""‘_-._

e
.____.-__—_

Figure 4. GKS / GKSM I

3.2 The Virtual Device Interface (VDI)

In general, a virtual device interface is
(commands and parameters) that interfac

software. These commands represent a

nterface

a definition of operations
e to the device dependent

device-driver protocol that

provides most capabilities available on various graphics devices [20].

These commands provide essentially the same
GKS functions discussed. The difference

step closer to the hardware in the software

The VDI standard, being developed by
include: an inquiry and response mec

capabilities, characteristics and states; a

graphics capabilities as the
is that the VDI represents a

architecture.

an ANSI task group, will
hanism for graphics device

graphics escape mechanism to

access

concurrent graphics device drivers; and a rich as well as a lower

mode of operation.

device drivers® conforming to VDI.

are
input support. The VDI will

position capability.

commands passed through VDI wil! be sequential and will affect the state

non-standard graphics

device capabilities; support of multiple

The lean set will be reguired to be supported by all

It will support most

commonly used by most graphics devices today, but will not require

support devices that have the

Figure 5 shows the lean set of VDI functions.

of the graphics displayv as theyv are issued.

Function

Control Functions

INQUIRE

ESCAPE

INITIALIZE VDI
TERMINATE VDI

RETURN VDI STATUS

CLEAR VIRTUAL DEVICE
SET MAPPING MODE

SET LDC RANGE

SET MAPPING REF. POINTS

Output Functions

MOVE

POLYLINE

POLYMARKER

RETURN CURRENT POSITION

Text:

TEXT

SET TEXT HEIGHT
SET TEXT ALIGNMENT

Parameters

input:nonrequired function name
output: (NO, EMULATED or YES)
n, data stream, device id

(status vector returned)

mapping mode indicator
Xxmin,ymin,xmax, ymax
Xmin,ymin,xmax,ymax

X,y
n, x,y values
n, X,y values
(x,y coordinates returned)

n, n character codes
height of graphic symbol
horizontal, vertical

Figure 5.

VDI Required Functions

functions

22

The standard can support a metafile (data format for a picture
description) to facilitate picture transfer and will be functionally
compatible with the Virtual Device Metafile standard. A metafile
following the VDM standard can be read by a VDI driver and the resulting

picture will be drawn on the open workstation(s).

One of the reference models presented in the position paper on VDI
and VDM is shown in Figure 6., This is called the context model [38] and
it represents a conceptual view of the VDI and the VDM and their

relationship to a larger graphics system.

! Application Packages

Hcorell
PMIG ‘
Virtual Device Interface Metafile
Reader
Device i ue Metafile
Driver Device
Driver
Graphics VDI
Devices Meta-
File

Figure 6. VDI Context Model

23

As of November 1982, fifteen companies have announced technical and
personnel support for the VDI standardization process and will provide
products based on the standard [29]. The leaders in this effort are
Digital Equipment Corp., Intel Corp. and Tektronix. A microcomputer
system based on the emerging VDI standard is the Graphics Input/Output
System (GIOS) portion of the GSX CP/M upgrade discussed under the GKS

section [20].
3.3 The Virtual Device Metafile (VDM)

A graphics metafiie is generally a file containing a device-independent
representation of a picture that can be accessed and displayved on

various graphics output devices [27].

The VDM, being developed by an ANSI task group, is intended for use
as a long term storage and retrieval mechanism. Looking at the Context
Mode! (Figure 6) again, it shows that input from the VDM occurs at the

VDI level.

The VDM also will support two levels of functionality where the
minimal set includes the VDI required set of functions (output and
control) and a header containing 1) identification information 2) the
VDM level and version number 3) the format and precision of the VDM
(formats for real and integer included) and 4) bounds on the function
set used by the particular metafile. An Extended Metafile (EVDM) could
also include support of nonrequired VDI functions such as f£ill area and
segmentation. The header provides information on the contents and
capability of the VDM so the application programs or VDIs will know
whether they can interpret the VDM. The VDM functions will be two-
dimensional. Functions that could have variable amounts of data such as

points on a connected set of lines, have parameters indicating the

amount of data preceding the data itself. The device driver then
how much data to read in and associate with the given function.

7 shows required functions for the VDM.

Function Parameters
VDM Header n, values

Control Functions:
BEGIN VDM

END VDM

CLEAR VIRTUAL DEVICE
SET MAPPING MODE

SET LDC RANGE xmin,ymin,Xmax, ymax

SET MAPPING REF. PQINTS =xmin,ymin,xmax,ymax
ESCAPE n, data stream device id
Qutput Primitives:

MOVE X,y

POLYLINE n, X,y values

POLYMARKER n, x,y¥ values

Text:

TEXT n, n character codes

SET TEXT HEIGHT height of graphic symbol
SET TEXT -‘ALIGNMENT horizontal, vertical

Figure 7. VDM Required Functions

The EVDM includes more primitives, attributes and segmentation

discussed further in [39].

24

knows

Figure

and 1is

The VDM coding format hasn’t yet been approved, but the structure

should be compatible with the proposed higher level GKS standard.
some functions ofA the proposed North American Presentation
Protocol Syntax (NAPLPS) encoding scheme (which provides a super
ASCII) have also been included. Details on how the different
standards are encoded into thé VDM coding format are discussed

VDM draft proposal [39]}. The actual implementation and support

Also,
Level
set of
coding
in the

of a

25

metafile could likely be done using linked lists or simple ASCII files.
Los Alamos National Laboratories has been using a graphics metafile
since 1977 and had developed theirs after studying a few other metafiles
that were in use at that time. The VDM is based on a study of four

existing metafiles, one being the Los Alamos BGP metafile [27].

4, Implementation

The implementation for this report was designed to make a particular
graphics device éccessible by implementing ah application program level
interface to it. By basing this interface on one of the proposed
standards, two goals were achieved. These goals were to further my
understanding of the principles of the latest standards and to see how

the standards are related to the portability issue.

Figure 8 represents a diagram of the implementation.

Application

program

Virtual-
Device Interface

device
driver

Figure 8. Implementation Diagram

26

The VDI standard was used as a guideline for the application level
graphics system interface. The Virtual Device Interface was implemented
as standard calls to the VDI device driver. This implementation does
not include all of the required minimal set of functions, but it does
also include some non-required functions. The set of functions in
Figure 9 was implemented. The operation codes used to reference the

functions follow those used in the GSX implementation [20].

Control Functions Implementation OPCODE Names
INITIALIZE VDI VDIOPEN
TERMINATE VDI VDICLOSE
CLEAR VDI VDICLEAR
ESCAPE (Circle) VDIGDP
Output Functions

POLYLINE VDILINE
POLYMARKER VDIMARKER
TEXT VDITEXT
FILL AREA VDIFILL
Primitive Attributes

SET POLYLINE COLOR VDILNCOLOR
SET POLYMARKER COLOCR VDIMKCOLOR
SET MARKER TYPE VDIMKTYPE
SET TEXT COLOR VDITXCOLOR
SET TEXT FONT VDITXFONT

Figure 9.

UNIX operating system. The

VDI Implemented Functions

The graphics device driver code was written in the C language using
host processor was a Digital Equipment
Corporation 11/70 minicomputer and the graphics device was an Industrial

Data Terminal (IDT) Model 2200, which is manufactured in Westerville,

It is a basic color graphics raster scan terminal.

27

An application program has access to the device driver at the VDI
level by calling the driver with command codes and parameters for a
particular VDI function. The code for the driver is in Appendix 1.
Note, that only output functions are supported. Each of the functions
sends the output to the open workstation. The IDT driver translates the
data into the ASCII escape sequences supported by the IDT and sends the
translated comménds to the device for generation of the picture. An

application program must be compiled with the device driver. Three

example application programs illustrate, in Appendix 2, how the VDI
driver 1is accessed. The appendix also includes the compilation UNIX
shell files that set up the source code to be compiled. Note the
sequence of calls in the programs. VDI must first be initialized and
then the output commands are used to draw the picture and finally the
VDI terminate function is accessed. The control functions set certain
information that the VDI and workstation routines access later to
control the characteristics of the output. The “vdi.h” included header
file is used to pass the required graphical information from the
application program to the IDT driver. The “idt.h” header file contains
device-dependent information reqguired to access the IDT device. The
resulting screen pictures of the £first two application examples are

shown in Appendix 3.

For general use and simpler application program interface,r-anotherr
graphics level package such as the GKS would normally be built on top of
the VDIs so that the application program would make <calls to the GKS
routines and GKS would then call the VDI routines. This implementation
allows the programs to call the device driver directly wvia the VDI
function calls providing a standard interface to the graphics

capabilities at a lower level than the GKS. The VDI coordinates should

28

be in the range 0-32767 and are then scaled down to the device
coordinates within the device driver. The coordinate system interface
isn’t as convenient to the application program as it could be if the
application could use its own coordinate system, such as that of the
specific device. In this case, another set of calculations would need
to be done to transform the application coordinate system toc the VDI
coordinate system. This would be done, for instance, if GKS was built

on top of the VDI.

in addition to the VDI implementation, metafiles were studied and a
sample metafile following the formats in Figure 10 was created and sent
to the graphics group at KSU for further study. The format was selected
by Professor Hankley and his Spring CS898 class and was based on the
ASCII/integer format specified in Annex E of the GKS draft document
[18]. The GKSM is currentl} easier to understand and implement than the

proposed VDM standard.

File:

file header

item 1 §i item N end item

File Header:

GKSM N D H T L I R F RI ZERO ONE
where:
‘GKSM’- 4 bytes
N - 40 bytes name, author of picture
D - 8 bvtes - YY/MM/DD
V - 2 bytes - picture number
H - 2 bytes 02 - data items start with "GK"
T - 2 bytes - 02 - item id. number
L - 2 bytes - 03 - max data item = 999 bytes
I - 2 bytes - 03 - I3 format for integers
R - 2 byvtes 06 -~ 16 format for NDC’s
F - 2 bytes 01 -~ all numbers stored in ASCII
RI - 2 bytes 02 -~ all numbers stored as integers
ZERD - 11 bytes 00000000000 - zero representation
ONE - 11 bytes - 00000032000 - [0,32000] - NDC range

Ex. File Header:

GKSMBike Meeting, Debbie Herring, Cols.,0H 83/06/05
01020203030601020000000000000000032000

Figure 10. Metafile Format

29

Item:

Item
Header:

item header

item data record

“GK~ identif. no. length of item record

items possible are:

#0

#11
#12
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
134
#35
#36
#51
#52
#53
#£56

Item Ex.:

end
poly

item
line

polymarker

set
line
line
poly
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

polyline index

type

width

line colour

polymarker index
marker type
marker size scale factor
polymarker colour index

text index

text font and precision

character expansion factor
character spacing

text colour index

character height and up vector
text path

text alignment

polyline representation (GKSM-OUT)
polymarker representation (GKSM-OUT)
text representation (GKSM-OUT)
colour representation (GKSM-OUT)

GK113806120300100100200100120300270300200100

Figure 10.

Metafile Format continued

30

10.

11.

12.

13.

14.

31

References

Bergeron, R.D., P.R. Bono and J.D. Foley. '"Graphics Programming
Using the <Core System." ACM Computing Surveys 10(4), December
1978. pp.389-444,

Bono, Peter R., Jose L. Encarnacao, F. Robert A. Hopgood and
Paul J.W. tenHagen. '"GKS - The First Graphics Standard." IEEE
Computer Graphics and Applications July 1982. pp.9-23. o

Borufka, H.G., and G. Pfaff. "Design of a General-Purpose
Interpreter for Graphical Man-Machine Communication." Man-
Machine Communication in CAD/CAM. T. Sata, E. Warman (eds.)
(North~Holland, 1981.) pp.161-175,

Bruns, Bob and James R. Warner. “"A .Discussion of Software
Standards.'" Computer Graphics World August 1982. pp.60-63.

Buttuls, Peter. "Some Criticisms of the Graphical Kernel System
(GKS)." Computer Graphics 15(4), December 1981. pp.301-305.

Caruthers, L.C., J. van den Bos, and A. wvan Dam. "A Device-
Independent General Purpose Graphics System for Stand-alone and
Satellite Graphics." Computer Graphics 11(2), Summer 1977,
pp.112-119,

Ewald, R.H. and R. Fryer (eds.) '"Final Report of the GSPC
State-of-the-Art Subcommittee." Computer Graphies 12(1-2), June
1978. pp.14-169.

Foley, James D. "The SIGGRAPH Core System Today." <Computer
Graphics World August 1982. pp.27-30.

Foley, James D. and Patricia A. Wenner. "The George Washington
University Core System Implementation." Computer Graphics 15(3),
August 1981, pp.123-132.

Freiden, Alan. "A Two-Dimensional, Level 2 Core System for the
Apple II." Computer Graphics 14(4), March 1981, pp.127-152.

GINO-F, The General Purpose Graphics Package Reference Manual,
CAD Centre, Cambridge, England, July 1975.

GPGS-F User’s Guide, RUNIT Computer Centre, University of
Trondheim, Norway, September 1975.

Guttmann, Herbert and Johann Weiss. "Device Independent and
Decentralized Graphic Systems." Computer Graphics 13(4)},
February 1980. pp.288-302.

Hatfield, Lansing. "GKS and the Alphabet Soup of Graphics
Standards (An Informal Commentary)." Computer Graphics 16(2),
June 1982. pp.161-162.

32

15. Hatfield, Lansing., '"Graphics Software - from Technigues to
Principles." IEEE CG&A 2(1), January 1982. pp.59-80.

16. Hopgood, F.R.A. "The Road to Graphics Standards." Computer-
Aided Design 14(4), July 1982. pp.221-225.

V7. IDI-2000 Users Manual Version 12.

18. ISO DIS 7942 (GKS) - Version 7.2 "Information Processing -
Graphical Kernel System (GKS) - Functional Description."
12/27/82.

19, Kernighan, Brian W. and Dennis M. Ritchie. The (¢ Programming
Language. (Prentice-Hall, Inc. 1978.)

20. Langhorst, Fred E. and Thomas B. Clarkson. '"Realizing Graphics
Standards for Microcomputers." Byte February 1983. pp.256-268.

21. Michener, J.C. and J.D. Foley. "Some Major Issues in the Design
of the Core Graphics System." ACM Computing Surveys 10(4),
December 1978. pp.445-464,

22. Michener, J. C. and A. van Dam. "A Functional Overview of the
Core System with Glossary." ACM Computing Surveys 10(4),
December 1978. pp.381-388.

23. Mudur, S.P., S.C. Gupta, c.u. Sharma and S. Ramesh.
"Environmental Independence in a Graphics Programming System."
Proc., International Conf. Interactive Technigques in Computer
Aided Design - Sept.2i-23. 1978. pp.241-248.

24, Newman, W.M. and A. Van Dam. "Recent Efforts Toward Graphics
Standardization." ACM Computing Surveys 10(4), December 1978.
pp. 365-380.

25. Prester, F. "The Graphical Kernel System (GKS). The Standard
for Computer Graphics Proposed by the German Institute for
Standardisation (DIN)." Computer Grahpics, State of the Art
Report INFOTECH Publ. 1980. pp.219-248.

26. Puk, Richard. "The Background of Computer Graphics
Standardization." (ANSI Study Group Working Paper) Computer
Graphics 12(1-2), June 1978. pp.2-6.

27. Reed, Theodore N. "A Metafile for Efficient Sequential and
Random Display of Graphics." Computer Graphics 16(3), July 1982.
Pp.39-43.

28. Rosenthal, Davis S.H. '"Managing Graphical Resources." Computer
Graphics 17(1), January 1983. pp. 38-45.

29. Shrehlo, Kevin B. (Assoc. Ed.). "ANSI graphics standards
coalesce around international kernel." Mini-Micro Systems.
15(11), November 1982. pp.175-186.

30. Sonderegger, Elaine L. "Report on ANSI Activities." Computer

Graphics 16(4), December 1982, pp.246-249.

31.

32

33.

34.

35,

36.

37.

38.

39.

40.

"Status Report of the Graphics Standards Planning Committee of
ACM/SIGRAPH, Part II: General Methodology and Proposed
Standard." Computer Graphics 11(3), Fall 1977. 117 pages.

"Status Report of the Graphics Standards Planning Committee of
ACM/SIGRAPH." Computer Graphics 13(3), August 1979.

Stluka, Frederick P., Brian F. Saudners, Paul M. Slayton and
Norman I. Badler. "Overview of the University Of Pennsylvania
Core System Standard Graphics Package Implementation.'" Computer
Graphics 16(2), June 1982. pp.177-186.

Warner, James R. and Nikolaus J. Kiefhaber. "Implementing
Standard Device-Independent Graphics." Mini-Micro Syvstems 15(7),
July 1982, pp.201-208.

Wisskirchen, Peter, Karl-Heinz Klein, Peter Seuffert, and Gerd
Woetzel, "Implementation of the Core Graphics System GKS in a
Distributed Graphiecs Envircnment." Proc. Int. Conf. Interactive
Technigues In Computer Aided Design Sept.21-23 1978. pp.249-
254,

X3H33 80-34 SD-3 "Proposal for an ANSI X3 Standard Project for
the Computer Graphics Virtual Device Interface.", November 11,
1980.

X3H33 80-52 SD-3 "Proposal for an ANSI X3 Standard Project for
the Computer Graphics Virtual Device Metafile.", November 17,
1980.

33

X3H33 81-27R5 "Virtual Device Interface and Virtual Device

Metafile X3H33 Task Group Position Paper.', December 28, 198t1.

X3H33 82-15 "Draft Proposed American National Standard for the
Virtual Device Metafile." August 13, 1982,

Yen, Elizabeth, "A Graphics Glossary." Computer Graphics 15(2),
July 1981. pp.208-229.

Appendix

VDI Driver Code

1

35
Aug 6 23:53 1983 ddidt.c Page 1

/********#******ﬁ*********ﬁ******ﬁ***ﬁ*ﬁ******/
A ddidt.c wik/
/**ﬁﬁﬁﬁ***%ﬁ*#**ﬁ**ﬁ**ﬁ***********ﬁ*****#*****[
/* Virtual Device Interface (VDI) driver for */
/* IDT 2200 color raster scan device g

/**k*ﬁ*****#*%#*ﬁ****k************#****ﬁﬁ*k*ﬁ*l

#include <stdio.h>
#include <sys/ioctl.h>
#include "idt.h"

idt_dvr(opcode,vdiptr)
int opcode;)
struct VDI_REC *vdiptr;
{

switch (opcode)
{
case VDIOPEN:
op_idt();
break;
case VDICLOSE:
cls_idt();
break;
case VDICLEAR:
clr_idt(vdiptr->gen);
break;
case VDILINE:
polyl_idt(vdiptr};
break;
case VDIMARKER:
polym_idt(vdiptr);
break;
case VDITEXT:
text_idt(vdiptr);
break;
case VDIFILL:
fill_idt(vdiptr);
break;
case VDIGDP:
switch (vdiptr->gen)
{
case CIRCLE:
cir_idt(vdiptr); .
/* later could add support for bar graphs, polygons, */
/* grids, RAMPICs - segments stored in RAM, 3

/* and ROMPICs - segments stored in ROM, =/
break;

default:
fprintf(stderr,"** ERROR - unsupported GDP **");
return(BAD);

} /* end gdp type switch */

case VDICHRHGT:
/% could later add scaled size if use MACROFONT ¥/
/¥ or can use MICROFONT for tiny characters e

Aug 6 23:53 1983 ddidt.c Page 2

tidt.txstyle.size = vdiptr->gen;
break;
case VDICHRUP:

/% could later use MICROFONT and adjust direction ¥

break;
case VDILNTYPE:

/* can’t do with firmware - not emulated now */

break;

case VDILNCOLOR:
Instyle.color = vdiptr->gen;
break;

case VDIMKTYPE:
mkstyle.type = vdiptr->gen;
break;

case VDIMKCOLOR:
mkstyle.color = vdiptr->gen;
break:

case VDITXFONT:

/* could use MACRO or MICROFONT, with ist - can use shadows also

tidt.txstyle.font = 1;
break;
case VDITXCOLOR:
tidt.txstyle.color = vdiptr->gen;
break;
default:

fprintf(stderr,"** ERROR - unsupported opcode

return(BAD);
} /* end of opcode switch */

return(GOOD); .
} /* end of idt_dvr */
op_idt()
{

int fd;

/* next 3 structures for I/0 control ¥/
struct ttiochb ttioch;
struct ttiotheb ttiothcb;
struct termcb termch;

/¥ initialize attribute values */
Ilnstyle.type = 0;

lnstyle.width = 0;

Instyle.color BLUE;

mkstyle.type = DOT;
mkstyle.size = 0;-
mkstyle.color = BLUE;

tidt.back = BLACK;
tidt.foreblink = OFF;
tidt.backblink = OFF;
tidt.txstyle.font = 0O;
tidt.txstyle.size =

T_RE
tidt.txstyle.color = BLU

:’:s‘r”) :

36

‘.‘:/

37
Aug 6 23:53 1983 ddidt.c Page 3

#ifdef OUTPUT

/* open (IDT) line for output */
idt = fopen(IDT FILE,'w");
fd = fileno(idt);

if {idt == NULL)
{
fprintf(stderr,”"\n*** ERROR on OPEN of IDT line ¥¥*®\p"};
return(BAD);
} .
ioctl{(fd, TIOCGETP,&ttiocb);
ttiocb.ioc_ispeed = ttiocb.ioc_dspeed = B2400;
ttiocb.ioc_flags |= RAW;
iocti(fd,TIOCSETP,&ttioch);

ioctl(fd,TIOCGETO,&ttiothcb);
ttiothcb.ioth_flags |= TANDEMO|TANDEMI:
ioctl(fd,TIOCSETO,&ttiothcb);

ioctl(fd,DIOCGETT, &termchb):
termcb.st_termt = TERM_NONE;
ioctl(fd,DIOCSETT,&termcb);

/**ﬁﬁ*******ﬁ******ﬁ*ﬁ********ﬂ*****k*******ﬁ*ﬁ***********ﬁ**********/
/* on keyboard, hit RESET &/or CNTL/RESET keys if run into trouble */

/***ﬁ***************ﬁ*#ﬁ**ﬁ***ﬁ*ﬁ***ﬁﬁ*ﬁ**************************ﬁ**/

/* change escape char to ESC (~ now) & term char to TERM (| now) */

fpute(033,idt); fprintf(idt,"E%c",ESC);
fflush(idt);
fprintf(idt,"%cJ%c" ,ESC, TERM);
fflush(idt);

res_idt(); /* set idt communication */
clr_idt(BLACK);

#endif

return(GOOD) ;

¥ /% op_idt */

res_idt()

/* set baud rate, raw input mode, f/
/* send cntl reset to delete RAM buffers, etc. */
{

#ifdef DEBUG
printf("\nIn res_idt\n");

Aug 6 23:53 1983 ddidt.c Page 4
f#fendif

/* clear RAM area used for storage of MACROGRAPHICs or RAMPICs
fprintf(idt,"%c0",ESC);
fflush(idt);

/* turn cursor off */
fprintf(idt,"%eCCY (ESC)3
fflush(idt);

/* set normal character size */
fprintf(idt,"%c)",ESC);)
fflush(idt);

/* turn blinks off for foreground, background and character */
fprintf(idt,"%cCBF%cCBB%cCBC" ,ESC,ESC,ESC);

£flush(idt);

/* correct circle aspect ratio ¥/

fprintf{idt,"%cCM".ESC);

fflush(idt);

} /% res_idt */

cls_idt()
{

#ifdef QUTPUT
/* ¢lose (IDT) line for output */
res_idt();
fclose(idt);

f#endif ;

¥

clr_idt(color)

‘int color;
{
#ifdef DEBUG
printf("\nIn clr_idt\n");
#endif

tidt.back = color; /* set character background to back.
#ifdef OQUTPUT

fprintf(idt,"%cP%id",ESC,color)};

fflush(idt);
#endif
}

S /

¥ /

38

39
Aug 6 23:53 1983 ddidt.c Page 5

polyl idt{vdiptr)

struct VDI_REC *vdiptr;
{
int px,py,pxt,pyt,i;

if (vdiptr->gen < 2)
{

fprintf(stderr,
"\n** ERROR — less than 2 points specified for line **\n");
return(BAD);
}

/"‘""1" 't ¥ Fo ¥ ¥e ¥ fe Yedt Yo ve e T oYt e gt dedr S s d At ab s de sk e s Sy e aey ‘/

i/ Convert ndc to dev1ce coordlnates %/
[e e odede e dedoiodedode dade dab R st et e et

*
ndc_dc(vdiptr->gen,vdiptr->parm.line);

px = vdiptr->parm.line[0].x;
py = vdiptr->parm.line[0].y;
pxt = vdiptr->parm.line[1].x;
pyt = vdiptr->parm.line[1].y;
vec_idt(px,py,pxt,pyt);

for (i=2; ((i < vdiptr->gen) && (i < MAXPTS)); i++)
{

/* starting point of new vector from where left off */
PX=pXt; py=pyt; L
pxt = vdiptr->parm.line[i].x;
pyt = vdiptr->parm.line(i].y;
vec_idt{px,py,.pxt,pyt);
}
return(GOOD);

} /% poly_idt */

vec_idt(x,y,xt,yt)
int x,y,xt,yf;
{
#ifdef DEBUG
printf("\nIn poly! idt:\n");

printf("x=%d,y=%d,xt=%d,yt=%d,color=%d\n",x,y,xt,yt, Ilnstyle.color);
f#endif

#ifdef OUTPUT
fprintf(idt,"%cV%1d%cVAa%3d%3du3d%3d",ESC, Instyle.color,ESC,x,v,xt,yt);

Aug 6 23:53 1983 ddidt.c Page 6

fflush(idt);
#endif

}

polym idt{vdiptr)

struct VDI_REC *vdiptr;

/:‘: ¥e 3t sk ok o sk ook st s s v Y gk vie B v 3l e Yo Y v Yo v v v s Sl e e v de v B d e S o e e de o e s Y de s e e de vl ey e :'r/

/* Use IDT MACROPLOT AND MACROGRAPHIC utilities for all but */
/* DOT and OH by
/ sed s e o s v v YT St e e v ot Y Ve e S e e vt ks e s e e s e S e el e e s e e e de /
{

int i;

] i s S el
/::-.': Yevkevrdr T S v v e s e e e e Y Y v v drde e e e v v e e Yo et /

/¥* Convert ndc to device coordinates. */
/ St S dt s Y vede el e s e el e eSS sl e e e e S e e e e gt /

ndc_dc(Vdiptr->gen,vdiptr—>parm.mark.c);

#ifdef DEBUG
printf("\nIn polym_idt: ");
printf("\n marker=%d, color=%d, #points=%d\n",
vdiptr->parm.mark. type,
mkstyle.color,
vdiptr->gen);
fendif

fprintf(idt,"%cvV%1d",ESC,mkstyle.color); /* set color */
fflush(idt);

switch (vdiptr->parm.mark.type)

case DOT:
case OH:
for (i=0; ((i < vdiptr->gen) && (i < MAXPTS)); i++)
{
#ifdef DEBUG
_ printf(" i=%d, Location: x=%d, y=%d\n", i,
vdiptr->parm.mark.c{i].x,
vdiptr->parm.mark.c[i].y¥);
#endif
fprintf(idt,"%cV@%3d4%3d" ,ESC,
vdiptr->parm.mark.c{i].x,
vdiptr->parm.mark.c[i].v¥);
fflush(idt);
if (vdiptr->parm.mark.type == OH)
{
fprintf(idt,I_OH);
fflush(idt);
¥

41
Aug 6 23:53 1983 ddidt.c Page 7

el?e /* DOT */
fprintf(idt,I_DOT,
vdiptr->parm.mark.c[i].x,
vdiptr->parm.mark.c[i].y);
fflush(idt);
}
}

break;

case PLUS:
case ASTERISK:
case XXX:
if (vdiptr->parm.mark.type == PLUS)
fprintf(idt,I_PLUS);
else if (vdiptr->parm.mark.type == ASTERISK)
fprintf(idt,I_AST);
else fprintf(idt,I_XXX);
fflush(idt):
fprintf(idt."%cVvS%2d" ,ESC,vdiptr->parm.mark.type);
fflush(idt):
for (i=0: ((i < vdiptr->gen) && (i < MAXPTS)); i++)
{
f##ifdef DEBUG
printf(" i=%d, Location: x=%d, y=%d\n",i,
vdiptr->parm.mark.c[i].x,
vdiptr->parm.mark.c[i].y);
#endif
fprintf(idt,"%3d%3d",
vdiptr->parm.mark.c[i].x,
vdiptr->parm.mark.c[i].y);
fflush(idt);
}
fprintf(idt,"%c",TERM};
fflush(idt);
break;

default:
fprintf(stderr,"** ERROR - unsupported GDP **")};
return(BAD);
1 /* end switch */
return{GOOD};

} /% end polym_idt */

text_idt(vdiptr)

struct VDI_REC *vdiptr;
{

int line,col,size,num;
char tit[MAXSTRING]:
struct XY xy[2];

Aug 6 23:53 1983 ddidt.c Page B

float fcol,fline;

/ﬁ*****ﬁ**********k****ﬁ****#ﬁk%*kﬁ**ﬁﬁ/

/* Convert ndc to device coordinates. */

/*********ﬂ***#****ﬁ*************ﬁ*****/

xy[1]l.x = xy[1]l.y¥y = 03

xy[0]l.x = vdiptr->parm.text.x;
xy[0l.y = vdiptr->parm.text.y;
num = 1;

ndec_dc(num,xy);
size = tidt.txstyle.size;
strepy(tit,vdiptr->parm.text.stg);

#ifdef DEBUG
printf("\nIn text_idt:\n");
printf("tit=%s\nline=%d, col=%d, color=%d, size=%d\n",
tit,xy[0].y,xy{0].x,tidt.txstyle.color,size);
fiendif

/*“ﬁ*ﬂ********#*ﬁ*ﬁﬁ*iﬁkEﬁ***ﬁﬁﬁ***-r******ﬂ*ﬁ*****ﬁ*ﬁﬁ**ﬁ*ﬁ***ﬂ'“EP*J
/

/* now convert for reverse character screen image */
/*ﬁk**k***ﬂ**ﬁ*ﬁﬁﬁﬁﬁ****ﬁ*"****ﬁ*i***ﬁﬁ*ﬁ****:******ﬁ********i“' "“‘/

/* line = int[(512-y}/10] col = int[85 * x / 512] for regular text®/
/* line = int{(512-y)/21] col = int{42 * x / 512] for large text ¥/

fﬁ**#*ﬁ*ﬁ******ﬁ***kﬁ***ﬁ*****ﬁ**********##****ﬂ******ﬁ*ﬁ************[

if (size == T_LARGE)
{
fcol = 42.0 * xy[0].x / 512.0;
fline = (512.0 - xy[0}.y) / 21.0;
}

else
{
fcol = 85.0 * xy[0).x / 512.0;
fline = (512.0 - xy[0J].y) / 10.0;
}

fcol;
fline;

col
line

#ifdef DEBUG
printf("\nIn text_idt:\n"); ,
printf("tit=%s\nline=%d, col=%d, color=%d, size=id\n",
tit,line,col,tidt.txstyle.color,size);
#endif

#ifdef OUTPUT

if (size == T_LARGE)

{
fprintf(idt,"%eC%1d%14d",

ESC,tidt.txstyle.color,tidt.back});
fflush(idt);
fprintf(idt,"%c(%c@%2d%2d%s%c)",
ESC,ESC,line,col,tit,ESC);

Aug 6 23:53 1983 ddidt.c Page 9

fflush(idt);
3
else /* regular */
{
fprintf(idt,"%cC%1d%1d%c@%2d%2d%s",
ESC,tidt.txstyle.color,tidt.back,ESC,line,col,tit);
fflush(idt);
, :
f#fendif
}

f£ill_idt(vdiptr)

struct VDI_REC *vdiptr;

{ B
int num;
struct xY xYLZJ
‘/ 7 37 Yo e dt Yo de e e T At oo s 7 oo sy s viede e ey e e vedle ol de e e ek /
/¥ Convert ndc to device coordinates. ™/
75 ndc _dc(px, py, &xd &yd);)
/:‘: s e R Ve deve et ek '--’ YedrYeve et e fesky i:-.’n‘n‘n‘:/
xy[1].x = xy{1].y = 03
xy[0].x = vdiptr-»>parm.fill.x;
xyi0]l.y = vdiptr->parm.fill.y;
num = i

ndc_dc(num, xy);

#ifdef DEBUG
printf("\nIn fill idt\n");
printf("x=%d,y=%d\n",xy[0].x,xv[0].y);
fendif

#ifdef OUTPUT
fprintf(idt,"%cv@%3d%3d%eG" ,ESC,xy[0].x,xy[0].y,ESC);
fflush(idt):

fendif

}

cir_idt(vdiptr)

struct VDI_REC *vdiptr;
{

int x,y,rad,color;

jf:'n':-:'::‘n‘n'r:‘:7‘::’::‘::’:3’::‘:1‘::‘::’::‘: oo Ye s s ed dedn v el ey ‘.l“"“"/

/* Convert ndec to device coordinates. */

43

Aug 6 23:53 1983 ddidt.c Page 10

/****ﬁ**ﬁ*************************#*ﬁ#&/

vdiptr->parm.gdp.c[!].x = vdiptr->parm.gdp.gp; /% radius */
ndc_de(2,vdiptr->parm.gdp.c);

x = vdiptr->parm.gdp.c[0].x;
y = vdiptr->parm.gdp.c[0].y;
rad = vdiptr->parm.gdp.c[1].x;
color = lnstyle.color;

#ifdef DEBUG
printf("\nIn cir_idt:\n");

j printf("x=%d,y=%d, rad=%d,color=%d\n",x,y,rad,color);
tendif

f#ifdef OUTPUT
fprintf(idt,"%cV@%3d%3dieviid%e %3d",
ESC,x,y.ESC,color,ESC,rad),
fflush(idt):

jtendif

¥ /" egbe ddt ¥/

ndc_dc(n, coord)

int n;

struct XY coord[];

/3 teivestdridetsedrinavitar ik Vet de e s e i e e AW dr i e S Y oo e el e e

/* scale normalized device coordinates (NDC) to ’/

/* device coordinates (DC). *f
/% dex = int[ndcx/63] dcy = 1nt[ndcy/63} %)
/***ﬁ****ﬁ***ﬁﬁ*ﬁ****ﬁf desesedidest ?***ﬁ/
{

int 13

for (i=0; ({(i < n) && (i < MAXPTS)); i++)
{
if (coord[i].x > DC_MALL)
coord[i).x = DC_MAX;
else
coord(i].x = coord[i].x / S_FACTOR;
if (coord[i].y > DC_MALL)
coord[i].y = DC_MAX;
else
coord(i].y = coord[i].y / S_FACTOR;
}

45
Aug 6 23:54 1983 wvdi.h Page 1

/:‘r:‘n‘n‘n‘n‘r** ool Jeve Ve v dedle ve o de Fe Yo veoe e dedp b e st 7‘::’:1‘:7‘:1’:1‘::‘:/

e vdi.h ¥/
/'.’:1‘::&:‘::‘:'}:*:'::‘:'.’:i‘::’:a'r'."::‘n‘::‘n‘::':7':1‘::‘::'::’{:‘::‘::‘:**3%***:’t**f;:‘:s‘n‘n‘:/
/* Header for VDI device drivers *f
/* To be included in appl. pgm. & driver */
/* ®/
/* Opcodes used follow those used in GSX */
/* (Langhorst article - VDI by hy
/* Digital Research and ¥y
/* Graphics Software Systems Inc.) iy
/'"""“‘7"“"{“"'"'1’:1":‘"‘7!“"""{""" et s"1“'3"---'-'x““-':'.‘:“"""‘"““1&‘/

/% Normalized device coordinates for X and y ¥/

fidefine NDC_MIN 0
#idefine NDC_MAX 32767

f“1’1:1’:}’:"‘3"3:}“’""" Fia /
/“ VDI opcodes */
’/ dedfe eyt f

#define VDIOPEN 1 /¥ initialize 2 graphics workstation

#idefine VDICLOSE 2 /* stop graphics output to this workstation

f#idefine VDICLEAR 3 /¥ clear display device

s#define VDILINE 6 /* output a polyline

fidef ine VDIMARKER 7 /* output a polymarker

#define VDITEXT 8 /* output text starting at a given location

#define VDIFILL 9 /* fill a closed polygonal figure

f#fdefine VDIGDP 11 /* display Generalized Drawing Primitive

fidef ine VDICHRHGT 12 /* set text size

fidefine VDICHRUP 13 /* set text direction

jidefine VDILNTYPE 15 /¥ set polyline type

f#define VDILNCOLOR 17 /¥ set polyline color

fidefine VDIMKTYPE 18 /¥ set marker type for polymarkers

#define VDIMKCOLOR 20 /% set polymarker color

#define VDITXFONT 21 /% set text font

#idefine VDITXCOLOR 22 /* set text color
/* from GSX required CRT opcode list, am missing only 4,5,10,14,25,26 xf
/“-"':""“‘-1"-""--"“3'"’:3 23t Yoo dede e e deak s st :‘“""“"ats'a"**:‘n“-a-:‘-"a‘---a‘--‘r-’t ke 3% f-:—s:---'-“":"‘-'-r-"s Sede de o 3k fedede e e x/
/* for IDT: i
/™ VDIESCAPE 5 - could later add some device dependent operations */
/¥ VDICELL 10 - could probably do - use COLOR MAP (or pattern fill) */

/* VDIFILLCOLOR 25 - not used cause IDT can only fill with outlined color */

/:‘:7‘:1“::‘:-.’::': Fe 3% ¥o vo de do Yoot dr g v st v v et o s e S v o e e v dle e v e Yoot vk e e e de o o sl o s e e st v e de e S Yo e e e e s v e e e e e -:'r/

/* possible colors */

#define BLACK 0
#define BLUE i
#define GREEN 2
f#idefine CYAN 3
#define RED 4
#define MAGENTA 5
#define YELLOW 6

sk oo b

i

s
by

P S E S S R 3
HOR N R N W

e
b

o,
b3
e e e e e T e e e TR TR e T T T T

Aug 6 23:54 1983 wvdi.h Page 2
#define WHITE 7

/* Maximum points for polymarker and polyline */
#define MAXPTS 50

/* Maximum size of text string */
#define MAXSTRING 42

/* Polymarker types */

#define DOT 1 o #®Y
#define PLUS 2 /* o+ ®f
#define ASTERISK 3 % = 8y
#define OH 4 /¥ o */
#define XXX 5 /% x %/
/¥ possible VDIGDP values */

f#fdefine CIRCLE O
/" possible VDICHRHGT values (character size) */

fidefine T_REG 0
#define T_LARGE |

/ Fedededr e drdr oS drfese R ar et s b drde s e e dede e /

/™ global variables, structure definitions */
/';‘:'.*.".’: fede drde vt de s e e dede v e e de el de de e e e e e e e e e e =':=“.'7':/

‘struct VDI_LINE
{

int x;

int ¥;
} 5

struct VDI_MARK
{
int type;
struct
{
int x;
int y;
} c[MAXPTS];
s

struct VDI_TEXT
{

int x;

int y;

char stg[MAXSTRING];
i

struct VDI_FILL
{

int x;

int vy;

Aug 6 23:54 1983

15

struct VDI_GDP
{

int gp; %

struct

{
int x:
int y;
} c[MAXPTS];

L3

union VDI_PARM

1
~struct VDI_LINE

47
vdi.h Page 3

general purpose, e.g. CIRCLE - radius */

/* opcode dependent parameters to pass to driver

line [MAXPTS];

struct VDI_MARK
mark;

struct VDI_TEXT
text:

struct VDI_FILL
fill;

struct VDI_GDP
gdp;

b

struct VDI_REC
{

/* record of paramaters to pass to driver */

int gen: /* general - ffpoints or color #, etc. ¥/

union VDI_PARM
parm;
L}

/* Add later - to
struct COLOR

{

char *str;

int value;

F;

struct LINE_STYLE
{
int type; /¥
int width; /=

int color; /*
b
struct MARK_STYLE
{

int type; AL
int size; /*
int color; /=
s

struct TEXT_STYLE

prompt user for ascii color string */

polyline type */
polyline width */
polyline color */

polymarker type */
polymarker scale factor */
polymarker color */

b3 /

Aug 6 23:54

{

int font;
int size;
int color;

&

1983 wvdi.h Page 4

/* text font */
/* text size */
/* text color */

Aug 6 23:55 1983 idt.h Page 1

/***ﬁ***ﬁﬁ*ﬁ*ﬁ**********ﬁ*ﬁ**************/
/% idt.h */
/k***ﬁ*ﬁ********************************ﬁ/
/* Header for IDT 2200 driver (ddidt.c) */

/ﬁ*ﬁ******ﬁ***ﬂﬂ*******ﬁ*******ﬁﬁ*ﬁ***ﬁﬁ*/

#include "vdi.h"

fdefine IDT_FILE "/dev/1ln66"
FILE *idt;

#define ESC -~~~
#define TERM |~

/* device coordinates for x and y */

#define DC_MIN 0
#define DC_MAX 512

#define DC_MALL 32256

........
E

/* scale factor - highest divisor NDC_MAX/DC_MAX = 63.998046 *
P used to change from ndc to dc *
/* here use 63 so can enter integer ndc so max ndc value
/* actually allowed is 32,256, if too large, use this (512) */
/****ﬁﬁ****k********ﬁ********ﬁ********ﬁ***#***#***#ﬁ*****#**ﬁﬁ/

#define S_FACTOR 63

.............................
||||||||||||

ate

e T e T

/***ﬁ#******ﬁﬁ**ﬂ**********#*#ﬁ********ﬂ*ﬁ*****ﬁk**ﬁﬁ

5j Character coordinates for x and y (col and line) *
/* In character mode, coordinates run from one to
/* the max where 1,1 starts in the upper left-hand *
/* corner and 51,85 or 25,42 are the max values in
/¥ the lower right area of the screen - opposite of ¥
/* regular graphics mode *

/*ﬁ********ﬁﬁ**ﬁ*ﬁ*#******ﬁﬁ**ﬁ***ﬂ#**k*************“

L

s
T e L e T e T T TN

L

fidefine MAX LX 42 /* Large char. max x or col. *
fidefine MAX LY 25 /* Large char. max y or line %/
#define MAX RX 85 /* Reg. char. max x or col. */
fidefine MAX_RY 51 /* Reg. char. max y or line */

/* actually should scale to exact as per VDI - so would */
/* use scale factor 0.0156255 - DC_MAX/NDC_MAX i

#define GOOD O
#define BAD -1

#define OFF O
#define ON 1

/* Marker types - later don’t explicitly define so can adjust size */

#define I_DOT "~-005°v@%3d%3d"G"

49

50
Aug 6 23:55 1983 idt.h Page 2

f#define I_PLUS "“0"HA02444488888888444411i122222222|"

ffdefine I_AST "~0"MAQ03444488888888444411112222222211115555AAAAAAAA5555666699999999 |
f#define I OH '"~- 005"

#define I XXX "~0"MAO55555AAAAAAAA5555666699999999 "

struct XY *
{

int x;
int y;

/* Note: the vdi.h header is included for the following */

static struct LINE STYLE lnstyle;
static struct MARK _STYLE mkstyle;

static struct TEXT_IDT

{
int foreblink; /* foreground blink off or on */
int back: /¥ background color */
int backblink: /¥ backgrounk blink off or on ¥/

struct TEXT_ STYLE txstyle;
b otidt;

Appendix 2

Application Program Examples

51

Aug 6 23:44 1983 compbike Page 1

‘Compile application program bike.c with the idt device driver”

ncc -0 -DOUTPUT bike.c \
ddidt.c \
-13 \
-0 bike

‘run Ex. bike 0 4~
“for black background and red general drawing color’

52

53
Aug 6 23:46 1983 bike.c Page |

/***1‘::‘::‘:*1“::’:*:‘::’:* e e g e e o e g v e g 3 e vk e Fe v v S de e e e v e e o /
/** bike.c &ﬁ[
/ wfet e dedede e B e de e e de Yo e fedede e e ek :‘:'.’::‘::‘:/
/* Advertisement for Bike Meeting at work */
/* Use ndc 0 - 32256 (63*512) *y

/7‘::‘::& oo e vk oo v e de st Ve Ve de v e v s e s s e e e Y S vy v e al e e e :‘:*:‘:s‘n‘:/

#include <stdio.h>
#include "vdi.h" /* virtual device interface header */

#define END -1

struct VDI_REC vdirec; /* record to pass to VDI driver */

main{argec,argv)
int argce;
char *argvi];

int sc_color,color,frame[MAXPTS™2],i:

/* convert to integer before use */

/¥ later - use string-value table & pass color string */
i=atod(argv[1],&sc_color);

i=atod(argv[2]).&color);

/* open workstation ¥/
idt_dvr(VDIOPEN,&vdirec);

/* clear screen ¥/ . .
vdirec.gen = sc_color; /% background color */
idt_dvr(VDICLEAR,&vdirec);

........

/* draw left tire ¥/

/ Fedever e deddo st /

vdirec.gen = color;
idt_dvr(VDILNCOLOR,&vdirec);

circle(6300,6300,4410);
circle(6300,6300,5040);
£i11(6300,11025);

/ b S e L e e e /

/¥ draw right tire */

B I R L i T L e R
/ Fedr e sr Yo st seavdrdr ooy /

circle(18900,6300,4410);
circle(18900,6300,5040);

£i11(18900,11025);

Aug 6 23:46 1983 bike.c Page 2

/ﬁ************ﬁ*ﬁ*ﬁ****/
/* draw frame outline */

/**ﬁ*****#******%*#**ﬂﬁ/

vdirec.gen = BLUE;
idt_dvr(VDILNCOLOR,&vdirec);

frame[0]=7560; frame[1]=18900; frame[2]=6300; frame{[3]=6300;
frame[4])=12600; frame{5]=6300; frame[6]=7560; frame[7]=18900;
frame[8]=17010; frame([9]=18900: frame[101]1=12600; framef11]=6300:
frame[12]=END; :

polyline(frame);

frame[0)=17010; frame[i]=18900; frame[2]=18900; frame[3]=6300;
frame[4 }=END;

polyline(frame);

/* 1 - back stay (seat post to back axle) */

frame[0])=7875; frame[1]=18081; frame[2]=6489; frame[3]=6300;
frame!{ 4 }=END;
polyline(frame);

/% 2 - back tire to bottom bracket ¥/

frame[0]=6300; frame[11=6930; frame[2]=12348; frame[3]=6930;
frame[4]=END:

polyline(frame);

£fill(6615,6804);

/% 3 - crank up to seat post */

frame[0]=8190; frame[1]=18900; frame[2]=12915; frame[3]=7056;
frame[4]=END:

polvline(frame);

£111€12474,7371);

/* 4 - top tube */

frame[0]=8190; frame[1]=18270; frame[2]=16821; frame[3}=18270;
frame[4]=END;

polyline(frame);

£i11(16380,18585);

/* 5 - down tube (from headset) */

frame[0]=16380;: frame[11=18900; frame([21=11970; framel3]=6300;
frame[4)=END;

polyline(frame);

fill(12915,8190);

/% 6 - front fork */

frame{0]=16380; frame[1]=18900; frame[2]=18270; frame{3]1=6300;
framel 4]=END:

polyline(frame);

frame{0]=18270; frame[1]=6300; frame[23=18900; frame[3]=6300;

54

Aug 6 23:46 1983 bike.c Page 3

frame{ 4)=END;
polyline(frame);
£i11(18396,6930);
£i11(17640,11655);

/* fill for back stay ¥/
£i11(7119,12600);
£i11(6804,10080);

/* fill for 2 %/
£i11(10710,6804);

/ Yo s s dedear dede o dodea s o /

/* left spokes */

/ Sededrvrdede dr dedede A Ye St o }f

vdirec.gen = YELLOW;
idt_dvr(VDILNCOLOR,&vdirec);

frame[0]1=6300; frame[1]1=6300; frame![21=6300; frame[3]=1890;
frame[4]=END;

polyline(frame):

frame[01=6300; frame{!11=6300; frame[21}=3780; frame[3]=3780;
frame[4]=END;

polyline(frame);

frame[01=6300; frame[1]=6300; frame[2]=3150; frame[3]=6300;
frame[4]=END; :
polyline(frame);

frame[0]=6300; frame[11=6300; frame[2]=3465; frame[3]=8820;
frame(4]=END:

polyline{frame);

frame[0]=6300; frame[1]=6300; frame[2]=6300; frame[3]=10710;
frame{ 4)=END;

polvline(frame);

frame[0]j=6300; frame[1]=6300; frame[2]=8946; frame[3]1=8946;
frame{ 4]=END;

polyline(frame);

frame[01=6300; frame(11=6300; frame[2)}=9450; frame[3]=6300;
frame[4)=END;

polyline(frame);

frame[()=6300; frame[1]=6300; frame{2]=9135; frame[3]=3780;
frame([4]=END;

polyline(frame);

/ fredbdr et doode v st ot /

#% pokes */
/ ¥ e et /

frame[0]=18900; frame[1]=6300; frame[2]=18900; frame[3]=1890;
frame(4]=END;

polyline(frame);

frame[0]=18900; frame[!]=6300; frame[2]=16380; frame[3]=3780;
frame[4]=END;

polyline(frame);

frame[0]=18900;: frame[1]=6300; frame[2]1=15750; frame[3]=6300;
frame[4]=END;

r
S dlese o de sl sl

35

56
Aug 6 23:46 1983 Dbike.c Page &

polyline(frame);

frame[0]=18900; frame[1}=6300; frame{2]=16065; frame[3]=8820;
frame[4]=END; _

polyline(frame);

frame[0]=18900: frame{1]=6300;: frame[2]=18900; frame[3]=10710;
frame[4]=END;

polyline(frame);

frame[0]=18900; frame{1]=6300; frame[2}=21546; frame[3]=8946;
frame(4]=END;

polyline(frame);

frame[(0]=18900; frame[1]=6300; frame[2]=22050: frame[3]=6300;
frame[4]=END;

polyline(frame);

frame[0]=18900;: frame[!11=6300; frame[2]=21735; frame[3]=3780;
frame[4]=END;

polyline(frame);

/***ﬁﬁﬁ*ﬁ*ﬁ***%/

/*’bandlebars */

..l nla ale wle vle als o nl als wle ule e afs ole o
J el st

vdirec.gen = BLUE;
idt_dvr(VDILNCOLOR,&vdirec);

frame(0]=17010; frame[1]=18900; frame[2]=18900; frame[31=18900;
frame[41=19530; frame[5]=18270; frame[6]=19530; frame[7]1=17325;
frame[81=16380; frame[9]=17010; frame[10]=END;

polyline(frame);

frame[0}=17010; frame[1]=18585; frame[2]=18585; frame[3]=18585;
frame(4}=19215; frame[5]=17955;

frame{6)=19215; framel[7]=17640; frame[8]1=16695; frame[9]=17325;
frame[10]=16380; frame[111=17010; frame[12]=END;
polyline(frame);

Fil1(i17640,18711);

/**ﬁ***ﬁ*/
/* seat */
e ule ale o' uf

.
iy
wta ot i ole
fesedkdeidt f

vdirec.gen = YELLOW;
idt_dvr(VDILNCOLOR,&vdirec);

frame[0]=7875; frame[1]=18900; frame[2]=7560; frame[3]=19530;
frame([4]=END; : ,

polyline(frame);

frame[0]=10395; frame[1]=19530; frame[2]=6615; frame[3]=19530;
frame[4]=6300; frame[5]=20160; frame[6]=6300; frame[71=20475;
frame[B8]=7245; frame[9)=20790; frame[10]=8190; frame([11]=20790;
frame[12]=10395; frame{13]=19530; frame[14]=END;
polyline(frame);

£i11(8820,19845);

/*********/

/* crank */

/*ﬁ*ﬁ*ﬁ**ﬁ/

circle(12348,6930,1890);

Aug 6 23:46 1983 bike.c Page 5

}

/***#******/

/* pedals */

/*ﬁ********/

57

frame[0]=12348; frame[1]=6930; frame[2]=12348; frame[3]=4410;

frame[4]=END;
polyline(frame):

frame[0]=12726; frame[1]=4410; frame[2]=11970; frame{3]=4410;

frame[4]=END;
polyline(frame);

frame[0]=12348: frame[1]=6930; frame[2]=12348; frame[3]=92450;

frame[4]=END;
polyline(frame);

frame[0]=12726; frame[1]=9450; frame{2]=11970; frame[3]=9450;

frame[4]=END;
polyline(frame);

/ 7t e Je Je Te e oy Je e e Yo de e Ve Yo dede ot /
/* write headings */

/ ¥ 3 3t dea A ¥ T Yo v e de e Yot et /

vdirec.gen = color;
idt_dvr(VDITXCOLOR, &vdirec);

vdirec.gen = T_LARGE;
idt_dvr(VDICHRHGT,&vdirec);

text(28287,7623,"CCC Meeting Today"):

text(25641,5355,"11:15 South Blue Room');

/* close workstation */
idt_dvr(VDICLOSE,&vdirec);

/* end of bike main */

circle(x,y,rad)
int x,y,rad;

vdirec.gen = CIRCLE;

vdirec.parm,gdp.¢c{0].x
vdirec.parm.gdp.c{0].y
vdirec.parm.gdp.gp = rad;
idt_dvr(VDIGDP,&vdirec);

X5
Ys

/% de- line 3, col 10 */
/% de- line 5, col 7 %/

Aug 6 23:46 1983 bike.c Page 6

fill(x,y)

int x,y;

{
vdirec.parm,fill.x = xj
vdirec.parm.fill.y = ¥;
idt_dvr(VDIFILL,&vdirec);

polyline(pts)
int pts[]:
{

int i,j:
J ™ 03

for (i=0; ((ptsii] != END) && (pts[i+!] != END))y i=i+2)
{
vdirec.parm.line[j].x = pts[i];
vdirec.parm.line{jl.y = pts{i+!];
J++s
}
vdirec.gen = j;
idt_dvr(VDILINE,&vdirec);

} /* polyline */

text(v.x,stg)

int x,v;

char “stg;

{
strepy(vdirec.parm. text.stg,stg);
vdirec.parm.text.x = X;
vdirec.parm.text.y = y;
idt_dvr(VDITEXT,&vdirec);

} /* text */

Aug 6 23:47 1983 comppool Page |

: ‘Compile application program pool.c with the idt device driver”

nce -0 -DOUTPUT pool.c \
ddidt.c \
-13 \
-0 pool

“run Ex. pool 0 2-
: “for black background and green general drawing color”

59

Aug 6 23:49 1983 pool.c Page |

/*******#**#***#*ﬁ***********ﬁ*************l

i pool.c wkf
/ﬁ**#******ﬁﬁﬁ*ﬁ**********ﬁ#********ﬁ**ﬁ*ﬁ*/

/* Draw a pool table, set up the balls, */
/* rack them, roll the cue ball, erase v/
/* other balls, add title. =

/*******ﬁ*ﬁ#*********k*********ﬁ*ﬁ*ﬁ*******/

#include <stdio.h>
#include "vdi.h"

j#define END =1
struct VDI_REC vdirec; /* record to pass to VDI driver */

main(argc,argv)

int argc;
char *argv(]:
{

int sc_coior,colcr.frame[MAXPTS*ﬁ},i;

/¥ convert to integer before use */

/* later - use string-value table & pass color string */
i=atod(argv[1],&sc_color);

i=atod(argvi2],&color);

/* open workstation */
idt_dvr(VDIOPEN,&vdirec);

/¥ clear screen */
vdirec.gen = sc_color; /* background color */
idt_dvr(VDICLEAR, &vdirec);

/* draw table outline */

vdirec.gen = color;

idt_dvr(VDILNCOLOR,&vdirec);

frame{0]=1890; framel11=5040; frame[2)=30366; framel3]=5040;
frame(4]=30366; frame[5]=27216; frame[6]=1890; frame[7]=27216;
frame[8]=1890; frame[91=5040; frame[10]=-1;

polyline(frame);

frame[0]=2835; framel1]1=6363; frame[2]=29421; frame[3]=6363;
frame[4]=29421; frame[5]=25893; frame{6]=2835; frame[7]=25893;
frame[81=28235; frame{9]=6363; frame[10]=-1;

polyline(frame);

fi11{16065,16065);

/¥ 1 - make pockets */
vdirec.gen = WHITE;
idt_dvr(VDILNCOLOR,&vdirec);
circle(2835,25893,504);
£i11(2835,25893);

circle(16128,25893,504);
fi11(16128,25893);

60

Aug 6 23:49 1983 pool.c Page 2

circle(29421,25893,504);
£i11(29421,25893);

circle(29421,6363,504);
£i11(29421,6363);)

circle(16128,6363,504);
fi11(16128,6363);

circle(2835,6363,504);
£i11(2835,6363);

/* 2 - rack balls */

frame[0])=8505; frame[1]=19656; frame[2)=8505; frame[3]=12474;
frame{&]}=11466; frame[5]=16065; frame[61=8505; frame[7]=196564;
frame[8}=-1;

polyline(frame};

vdirec.gen = BLUE;
idt_dvr(VDILNCOLOR,&vdirec);
circle(10710,16065,315);
£i11(10710,16065);
vdirec.gen = RED;
idt_dvr{VDILNCOLOR,&vdirec);
circle(10269,16695,315);
£i11(10269,16695);
vdirec.gen = YELLOW;
idt_dvr(VDILNCOLOR,&vdirec);
circle(10269,15435,315);
£i11(10269,15435);
vdirec.gen = MAGENTA;
idt_dvr(VDILNCOLOR,&vdirec);
circle(9828,17325,315);
£i11(9828.17325);
vdirec.gen = BLACK;
idt_dvr(VDILNCOLOR,&vdirec);
circle(9828,16065,315);
£i11(9828,16065);
vdirec.gen = CYAN;
idt_dvr(VDILNCOLOR, &vdirec);
circle(9828,14805,315);
£i11(9828,14805);
vdirec,gen = YELLOW;
idt_dvr(VDILNCOLOR,&vdirec);
circle(9387,17955,315);
£111(9387,17955);

vdirec.gen = CYAN;
idt_dvr(VDILNCOLOR,&vdirec);
circle(9387,16695,315);
£111(9387,16695);

vdirec.gen = MAGENTA;
idt_dvr(VDILNCOLOR,&vdirec);
circle(9387,15435,315);
£111(9387,15435);

vdirec.gen = BLUE;

Aug 6 23:49 1983 pool.c Page 3

idt_dvr(VDILNCOLOR,&vdirec);
circle(9387,14175,315);
£i11(9387,14175);

vdirec.gen = CYAN;
idt_dvr(VDILNCOLOR,&vdirec);
circle(8946,18585,315);
£fil1(8946,18585):

vdirec,gen = RED;
idt&dvr(VDILNCOLOR,&vdirec):
circle(8946,17325,315);
£i11(8946,17325);

vdirec.gen = BLUE;
idt_dvr(VDILNCOLOR,&vdirec);
circle(8946,16065,315);
£i11(8946,16065);

vdirec.gen = YELLOW;
idt_dvr(VDILNCOLOR, &vdirec);
circle(8946,14805,315);
£i11(8946,14805);

vdirec.gen = RED:

idt dvr{(VDILNCOLOR,&vdirec);
circle(8946,13545,315);
£111{8946,13545);

vdirec.gen = GREEN;
idt_dvr{(VDILNCOLOR, &vdirec);
frame[0]=8505; frame[1]=19656; frame[2]=8505; frame[3]=12474;
frame[4]1=11466; frame[51=16065; frame[6]=8505; frame[7]=19656;
frame[81=-1;

polyline(frame);

/¥ roll cue ball */
vdirec.gen = WHITE;

idt dvr(VDILNCOLOR,&vdirec);
circle(26271,16065,315);
£i11(26271,16065);
circle(22428,16065,315);
fill(22428,16065);
vdirec.gen = GREEN;

idt dvr(VDILNCOLOR, &vdirec):
circle(26271,16065,315);
fill(26271,16065)
vdirec.gen = WHITE;

idt dvr(VDILNCOLOR,&vdirec);
circle(18648,16065,315);
fil1(18648, 16065)
vdirec.gen = GREEN;

idt dvr(VDILNCOLOR,A&vdirec);
circle(22428,16065,315);
£111(22428,16065);
vdirec.gen = WHITE;

idt dvr(VDILNCOLOR,&vdirec);
circle(14868,16065,315);
£i11(14868, 16065) ;
vdirec.gen = GREEN;

Aug 6 23:49 1983 pool.c Page 4

idt_dvr(VDILNCOLOR,&vdirec);
circle(18648,16065,315);
£i11(18648,16065);
vdirec.gen = WHITE;
idt_dvr(VDILNCOLOR,&vdirec);
circle(11340,16065,315):
Fil11(11340,16065);
vdirec.gen = GREEN;
idt_dvr(VDILNCOLOR,&vdirec);
circle(14868,16065,315);
£ill(14868,16065);

/* erase balls */
vdirec.gen = GREEN;
idt_dvr(VDILNCOLOR,&vdirec):
circle(10710,16065,315):
£i11(10710.16065);
circle(10269,16695,315);
£fill{10269,16695);
circle(10269,15435,315);
£111(10269,15435);
circle(9828,17325,315);
£111(9828,17325);
circle(9828,16065,315);
fi11(9828,16065);
circle(9828,14805,315);
£i11(9828,14805);
circle(9387,17955,315);
£fil1(9387,17955);
circle(9387,16695,315):;
£i11(9387,16695);
circle(9387,15435,315);,
Fill(9387,15435);
circle(9387,14175,315);
fill1(9387,14175);
circle(8946,18585,315);
£i11(8B946,18585);
circle(8946,17325,315);
£il11(8946,17325);
circle(8946,16065,315);
fill(8946,16065);
circle(8946,14805,315);
fill(8946,14805);
circle(8946,13545,315);
£fi11(8946,13545);,

/¥ write headings */
vdirec.gen = color;
idt_dvr{(VDITXCOLOR,&vdirec);

vdirec.gen = T_LARGE;
idt_dvr(VDICHRHGT,&vdirec);

text(30933,7623,"Pool Anyone?"); /% dc -line 1, col 10 */

Aug 6 23:49 1983 pool.c Page 5

/* close workstation */
idt_dvr(VDICLOSE,&vdirec);

} /* end of bike main */

circle(x,y,rad)
int x,v.rad;

vdirec.gen = CIRCLE;
vdirec.parm.gdp.c[0).x = x
vdirec.parm.gdp.c[0].y = ¥;
vdirec.parm.gdp.gp = rad;
idt_dvr(VDIGDP,&vdirec);

}
f£ill(x,y)
int x,¥;
{
vdirec.parm.fill.x = X;
vdirec.parm.fill.y = ¥;
idt_dvr(VDIFILL, &vdlrec)
}
polyline(pts)
int pts[];
{
int i,j;
i=0;

for (i=0; ((pts[i] != END) && (pts[i+1] != END)); i=i+2)
{
vdirec.parm.line{j].x = pts{i];
vdirec.parm.line[j].y = ptsli+1];
T+
¥
vdirec.gen = ji
idt_dvr{VDILINE,&vdirec);

} /¥ polyline */

Aug 6 23:49 1983 pool.c Page 6

text(y,x,stg)

int x.y;

char *stg;

{
strecpy(vdirec.parm.text.stg,stg);
vdirec.parm.text.x = X;
vdirec.parm.text.y = ¥;
idt_dvr(VDITEXT,&vdirec);

} /f: text %':/

65

66
Aug 6 23:49 1983 compdeplot Page |

‘Compile application program plot.c with the idt device driver~
‘Watch trace statements here while running”

ncc -0 -DDEBUG -DOUTPUT plot.c \
ddidt.c \
-13 \
-0 plotd

‘run Ex. plotd 0 5 3~
“for black background, magenta drawing color, asterisk marker~

Aug 6 23:50 1983 plot.c Page 1

/******ﬁ******ﬁ***ﬁﬁ***ﬁﬁ**********#*ﬁ**#**l
/E* plot.c sk f

/**********ﬁk****ﬁ*****ﬁ****ﬁ#**ﬁ*ﬁﬁ*ﬁ*ﬁ*#k/

/* Part of a graph testing polymarkers. %/

/******ﬁ#*ﬁﬁ#**ﬁﬁﬁ*********ﬁ******ﬁ**ﬁ*****/

#include <stdio.h>

#include "wvdi.h" /¥ wirtual device interface header

struct VDI_REC vdirec; ' /¥ record to pass te VDI driver

main{arge,argv)
int argc;

char Targv([];

{

int sc_color,color,mktype,i:

/* convert to integer before use */

/* later - use string-value tables for friendlier interface

i=atod(argvit]l,&sc_color);
i=atod(argvi2],&color);
i=atod{argvi{3],amktype);

/¥ open workstation */
idt_dvr(VDIOPEN,&vdirec);

/¥ clear screen ¥/
vdirec.gen = sc¢_color;

2 /* background color */
idt_dvr(VDICLEAR,&vdirec);

/* write headings */

/ﬁ*****ﬁ***********/

vdirec.gen = color;
idt_dvr(VDITXCOLOR,&vdirec);

vdirec.gen = T_LARGE;
idt_dvr(VDICHRHGT,&vdirec);

text(19026,1575, "POLYMARKER");

/ﬁ*****ﬁ**ﬁ****ﬁﬁﬁﬁ/

/* plot points %/

/**ﬂ*****ﬁ*ﬁxwrxwwx/

vdirec.gen = color;
idt_dvr(VDIMKCOLOR,&vdirec);

vdirec.parm.mark.c{0].x
vdirec.parm.mark.c{1].x

3150; wvdirec.parm.mark,c|
6300; wvdirec.parm.mark.c|

:':/

0].
1]

¥y
y

ﬁf

1] /

14490
25200;

67

Aug 6 23:50 1983 plot.c Page 2

vdirec.parm.mark.c[2].x = 19450;
vdirec.parm.mark.c{3].x = 12600;
vdirec.parm.mark.c{&4].x = 15750;
vdirec.parm.mark.c[5].x = 18900;
vdirec.parm.mark.c[6].x = 22050;
vdirec.parm.mark.c[7].x = 25200;
vdirec.parm.mark.c[8].x = 28350;

vdirec.gen = 9;
vdirec.parm.mark.type = mktype;

idt_dvr(VDIMARKER,&vdirec);

/¥ close workstation */
idt_dvr(VDICLOSE,&vdirec);

/* end of plot main */

text{v,x,stg)

int x,v;

char stg[MAXSTRING];
{

}

strepy(vdirec.parm.text.stg,stg);

vdirec.parm.text.x = x,
vdirec.parm.text.y =
idt_dvr(VDITEXT, &vdxrec)

/¥ text */

vdirec.
vdirec.
vdirec.
vdirec.
vdirec.
vdirec.

vdirec

parm.mark.
parm.mark.
parm.mark.
parm.mark.
parm.mark.
parm.mark.c
.parm.mark.

c[2].
c[3].
cl4],
c[5].
cl[é].
E7
c{8].

O R RV RV

28350;
23940;
18900
27090;
28980;
31500;
31500;

Aug 6 23:51 1983 plotdout Page 1
Plot.c trace (DEBUG) on.

In res_idt
In cir_idt
In clr_idt

In text idt:

tit=POLYMARKER

line=302, col=25,

In text_idt:

tit=POLYMARKER

line=10, col=2,

In polym idt:

Ble Bee b B R e e e

W nnnoun
D~ =0
“ % 4 4 4 e 2 = =

as
[

In res_idt

marker=3, color=5, #points=9
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

color=5, size=l

color=3, size=l

x=50, y=230

x=100,
x=308,
x=200.
x=250.
x=300,
x=350,
x=400,
x=450,

y=400
¥v=450
y=380
y=300
y=430
v=460
¥v=500
y=500

69

Appendix 3

Application Program Outputs

70

71

REVIEW OF COMPUTER GRAPHICS
STANDARDIZATION EFFORTS WITH EMPHASIS ON

GKS, VDI, and VDM

by
DEBRA MAE HERRING

B.S., Ohio State University, 1979

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1983

Abstract

Recent proposals in computer graphics software standards are
investigated with emphasis on the problem of computer graphics
software portability. The specific standards studied include the
application level Graphical Kernel System (GKS), the device level
Virtual Device Interface (VDI), Virtual Device Metafile (VDM) and
GKS Metafile. GKS, developed in Germany, is a draft proposal for
the first international graphics standard. The VDI and VDM are
being developed by the American National Standards Institute to
standardize the interface to graphics device drivers and allow
portability of files containing picture descriptions. As part of
the study, a small graphics device driver was developed based on a
subset of the VDI functionms. The implementation, written in C
language, provides subroutine calls to the device driver which will
draw the requested picture or text on the graphics device screen.
The metafile concept was studied and a simple metafile was written
and transferred to a KSU computer to be read by the KSU metafile
reader and redrawn by the KSU GKS package.

