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GRAPH-COMPLEXES COMPUTING THE RATIONAL
HOMOTOPY OF HIGH DIMENSIONAL ANALOGUES

OF SPACES OF LONG KNOTS

by Gregory ARONE & Victor TURCHIN (*)

Abstract. — We continue our investigation of spaces of long embeddings
(long embeddings are high-dimensional analogues of long knots). In previous work
we showed that when the dimensions are in the stable range, the rational homol-
ogy groups of these spaces can be calculated as the homology of a direct sum of
certain finite graph-complexes, which we described explicitly. In this paper, we
establish a similar result for the rational homotopy groups of these spaces. We
also put emphasis on the different ways the calculations can be done. In particular
we describe three different graph-complexes computing these rational homotopy
groups. We also compute the generating functions of the Euler characteristics of
the summands in the homological splitting.
Résumé. — On continue notre étude des espaces de plongements longs (les

plongements longs sont des analogues en dimension supérieure des nœuds longs).
Dans notre travail précédent, on a montré que dans le cas où les dimensions sont
dans le rang stable l’homologie rationnelle de ces espaces peut être calculée comme
l’homologie d’un certain complexe de graphes que l’on a décrit explicitement. Dans
ce travail, on établit un résultat similaire pour les groupes d’homotopie rationnelle
de ces espaces. On met aussi un accent sur les différentes façons d’effectuer ces
calculs. En particulier, on décrit trois complexes de graphes différents calculant les
groupes d’homotopie en question. On calcule également les fonctions génératrices
des caractéristiques eulériennes des termes d’une décomposition en somme directe
des complexes calculant les groupes d’homologie.

Keywords: Spaces of embeddings, little discs operad, rational homotopy, graph-
complexes.
Math. classification: 57R40, 57R42, 55P48, 55P62, 18D50.
(*) Both authors gratefully acknowledge NSF support via collaborative grant DMS
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1. Introduction

1.1. Overview

In this paper we continue the study of spaces of high-dimensional long
knots that we began in [4]. Let Embc(Rm,Rn) be the space of smooth em-
beddings Rm ↪→ Rn that coincide with a fixed linear embedding i : Rm ↪→
Rn outside a compact subset of Rm. For m = 1 this space is usually called
the space of long knots, and for a generalm we will be calling it the space of
long embeddings. Let Immc(Rm,Rn) be the analogous space of immersions
Rm # Rn with the same behavior at infinity. The space Embc(Rm,Rn)
is an open subset of Immc(Rm,Rn); in case n > 2m + 1, this subset
is dense. Denote by Embc(Rm,Rn) the homotopy fiber of the inclusion
Embc(Rm,Rn) ↪→ Immc(Rm,Rn) over the fixed linear embedding i. The
subject of this paper is the rational homotopy type of Embc(Rm,Rn) and
Embc(Rm,Rn), when n > 2m+ 2.
The case m = 1 (which is the case of usual long knots) has been studied

extensively, see [2, 20, 21, 40]. Our goal is to achieve the same level of
understanding of the rational homology and homotopy of these spaces in
cases m > 1. Our methods do apply to the case m = 1, but in this case all
our results are known.
Our point of departure is Theorem 0.2 of [4] (first part of Theorem 1.1 be-

low). This theorem describes the rational homology groups H∗(Embc(Rm,
Rn),Q) as the homology of a “space of derived maps” of certain right Ω-
modules (right Ω-modules are the same thing as right modules over the
commutative operad without unit). In Subsection 1.3 we briefly explain
how [4, Theorem 0.2] was obtained. Using this theorem in Sections 2 and 5
we define two explicit complexes computing the homology H∗(Embc(Rm,
Rn),Q). The complex from Section 2 is obtained by taking a fibrant re-
placement (in the injective model structure) for the target Ω-module and
the one from Section 5 is obtained by taking a cofibrant replacement (in
the projective model structure) of the source Ω-module. Actually the latter
complex appeared already in [4]. It is given here for completeness of exposi-
tion and also because it is used in computations of the Euler characteristics
of the double splitting, see Section 6. We also compare this latter complex
with a certain deformation complex of a morphism of operads. In Section 2
we obtain that the rational homotopy Q⊗ π∗(Embc(Rm,Rn)) can also be
described as the homology of a space of derived maps between certain
Ω-modules. This result is equivalent to saying that the spectral sequence
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RATIONAL HOMOTOPY OF SPACES OF LONG EMBEDDINGS 3

computing Q ⊗ π∗(Embc(Rm,Rn)) and associated with the Goodwillie-
Weiss tower collapses at the second term. Similarly we obtain two different
complexes computing Q ⊗ π∗(Embc(Rm,Rn)), see Section 2 and 5. It is
quite interesting that all the obtained complexes computing the rational
homology and homotopy of Embc(Rm,Rn) look very similar to the graph-
complexes arising in the Bott-Taubes integration for the space of long knots
and their higher dimensional analogues [8, 9, 31, 32, 42]. In the paper we
also determine how the rational homotopy type of Embc(Rm,Rn) is related
to that of Embc(Rm,Rn), see Section 4.
As it follows from [4, Theorem 0.2] the rational homology H∗(Embc(Rm,

Rn),Q), n > 2m + 2, has a natural double splitting and the terms of the
splitting depend only on the parities ofm and n (but the homological degree
in which these terms appear do depend onm and n). In other words up to a
certain regrading this homology is the same for spaces Embc(Rm,Rn) with
m and n of the same parities. In particular if we know this splitting in the
homology of Embc(R1,Rn), we can determine the homology of any space
Embc(Rm,Rn) with m odd. This biperiodicity is quite surprising. Notice it
does not hold for the initial spaces of long embeddings Embc(Rm,Rn) since
it is false for Immc(Rm,Rn). In Section 6 we produce generating functions
of the Euler characteristics of this splitting. We mention that in the case
m = 1 this splitting was earlier considered by the second author in [40]. Our
computations are completely analogous. In Appendix we present results of
computer calculations of the Euler characteristics of the splitting in small
degrees both for the homology and homotopy.

1.2. Rational homology and homotopy of Embc(Rm,Rn)
in terms of maps between Ω-modules

As we mentioned in the previous subsection, our starting point for this
paper is [4, Theorem 0.2]. In order to formulate this result we need to
evoke some terminology. Let Ω be the category of finite (possibly empty)
sets with morphisms - surjective mappings. Let Γ be the category of finite
pointed sets with morphisms - maps preserving the based point. For a small
category C we will call a right C-module a contravariant functor whose
source category is C. Similarly a left C-module is a covariant functor with
source C. The target category usually is going to be the category of vector
spaces over Q or the category of non-negatively graded chain complexes
over Q. The category of right C-modules in Q-vector spaces will be denoted
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4 Gregory ARONE & Victor TURCHIN

mod−C. In [29] Pirashvili constructs a functor

(1.1) cr : mod−Γ −→ mod−Ω

which defines an equivalence of categories. The functor cr is defined in the
following way. Let F be a right Γ-module. Let k denote the set {1, 2, . . . , k}
and k+ denote the set {0, 1, 2, . . . , k}, pointed at 0. The component crF (k)
is the quotient of F (k+) by the images of the maps

α∗i : F ((k − 1)+)→ F (k+)

induced by the maps αi : k+ → (k − 1)+, i = 1 . . . k, defined as

αi(j) =


j, j < i;
0, j = i;
j − 1, j > i.

The Ω-module crF is called cross-effect of F .
For any m > 1 we can consider a contravariant functor

Sm• : Ω→ Top

that sends a set k to the sphere Smk. On morphisms this functor is defined
by means of the diagonal maps (here Smk is viewed as a one-point compacti-
fication of Rmk = Rm × . . .× Rm︸ ︷︷ ︸

k

). Composing with the reduced homology

functor produces the graded right Ω-module H̃∗(Sm•,Q). It is easy to see
that this Ω-module is the cross-effect of the Γ-module H∗((Sm)•,Q) that
assigns to a pointed set k+ the homology of the space (Sm)k of pointed
maps k+ → Sm.
It is not hard to see that for n > 2 the assignment

k+  Emb∗(k+, S
n),

where Emb∗(k+, S
n) is the space of pointed embeddings k+ ↪→ Sn, defines

a contravariant functor

Emb∗(•, Sn) : Γ→ hTop

where hTop is the homotopy category of topological spaces (whose mor-
phisms are homotopy classes of maps). Notice that Emb∗(k+, S

n) is home-
omorphic to the configuration space C(k,Rn) of k labeled points in Rn.
Composing with the homology functor one gets a right Γ-module (again
with trivial differential) H∗(Emb∗(•, Sn),Q). In case n > 3 these configu-
ration spaces are simply connected which allows us to define a Γ-module
Q⊗π∗(Emb∗(•, Sn)). The cross-effect of these two functors will be denoted
by Ĥ∗(C(•,Rn),Q) and Q ⊗ π̂∗(C(•,Rn)) respectively. The corresponding
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RATIONAL HOMOTOPY OF SPACES OF LONG EMBEDDINGS 5

groups are sometimes called the normalized (rational) homology and ho-
motopy of configuration spaces.
The differential non-negatively graded right Ω-modules form a category

Ch>0 (mod−Ω) with a natural projective model structure enriched over
chain complexes. In this model structure weak equivalences are quasi-
isomorphisms, fibrations are surjective maps in all strictly positive degrees,
cofibrations are inclusions with degree-wise projective cokernels. For a pair
of Ω-modules F and G, we will denote by hRmod

Ω
(F,G) the corresponding

derived hom object, which is a chain complex.(1)

Theorem 1.1. — For n > 2m+ 2, one has natural isomorphisms
(i)

(1.2) H∗(Embc(Rm,Rn),Q)'H
(
hRmod

Ω

(
H̃∗(Sm•,Q), Ĥ∗(C(•,Rn),Q)

))
;

(ii)

(1.3) Q⊗ π∗(Embc(Rm,Rn)) ' H
(

hRmod
Ω

(
H̃∗(Sm•,Q),Q⊗ π̂∗(C(•,Rn))

))
.

The first part of this theorem is the main result [4, Theorem 0.2] of our
previous paper. The second part of this theorem is proved in Section 2. It
is a consequence of Theorems 2.1-2.2.

Notice that the source and the target objects in (1.2) and (1.3) have
trivial differential. This means that the right-hand sides are just products
of certain Ext groups in the abelian category mod−Ω of Ω-modules in
Q-vector spaces.
Another way to understand the theorem above is that it describes the

rational homology and homotopy of Embc(Rm,Rn) in terms of the higher
order Hochschild homology defined by Pirashvili [29].

1.3. Theorem 1.1 (i)

To make the presentation self-contained we present below the main ideas
behind the proof of Theorem 1.1 (i) (a.k.a. [4, Theorem 0.2]). In short this
result is a combination of the Goodwillie-Weiss manifold calculus of func-
tors and a result about the relative formality of the little discs operads [22,
Theorem 1.4]. By standard discs in Rm we will understand discs obtained

(1)One could choose instead to work with the category of unbounded complexes of Ω-
modules. The theorem below would still be true. But it just takes a little bit more work
to define a model structure.

TOME 65 (2015), FASCICULE 1



6 Gregory ARONE & Victor TURCHIN

from the unit disc by translations and rescaling. Let Õst∞(Rm) denote the
subcategory of open subsets of Rm which are finite unions of open stan-
dard discs union a complement of a closed standard disc (we call it the
anti-disc). All the discs and the anti-disc are supposed to be disjoint. We
will view Rm as a subset of Rn via inclusion i. By a standard embedding
of a subset X of Rm in Rn we will understand an embedding which is a
composition of the inclusion, translation, and rescaling on each connected
component of X. Consider the cofunctor

Embstc (•,Rn) : Õst∞(Rm)→ Top,

that assigns to an open set U the space of standard embeddings U ↪→ Rn.
It follows from the Goodwillie-Weiss manifold calculus of functors [44], that
in the range n > 2m+ 2 one has a quasi-isomorphism

C∗(Embc(Rm,Rn)) ' holim
Õst∞(Rm)

C∗(Embstc (•,Rn)),

where C∗(−) is the functor of singular chains and the homotopy limit is
taken in the model category of non-negatively graded chain complexes of
abelian groups, see [4, Lemmas 4.4 and 5.1].

Let Bm and Bn be the operads of little m-discs and n-discs respectively.
One can define a natural inclusion i : Bm ↪→ Bn induced by the fixed linear
inclusion i : Rm ↪→ Rn (we are abusing notation by denoting both inclusions
by i). It was shown in [22] that the morphism of operads

i∗ : CR
∗ (Bm)→ CR

∗ (Bn)

is a formal map of operads when n > 2m + 1. This means that the mor-
phism of operads i∗ is connected by a zig-zag of quasi-isomorphisms to the
morphism H∗(Bm,R)→ H∗(Bn,R). Using this result one can show that the
functor CR

∗ (Embstc (•,Rn)) is formal, i.e., quasi-isomorphic to the functor
H∗(Embstc (•,Rn),R). One gets

CR
∗ (Embc(Rm,Rn)) ' holim

Õst∞(Rm)
H∗(Embstc (•,Rn),R).

Over a field any complex is quasi-isomorphic to its homology (viewed as a
complex with zero differential). On the other hand, a tensor product of a
Q-complex with R preserves the dimensions of the homology groups, thus
the above quasi-isomorphism also (non-naturally) holds over Q:

CQ
∗ (Embc(Rm,Rn)) ' holim

Õst∞(Rm)
H∗(Embstc (•,Rn),Q).

ANNALES DE L’INSTITUT FOURIER



RATIONAL HOMOTOPY OF SPACES OF LONG EMBEDDINGS 7

We prefer to use the singular chains rather than homology for the left-
hand side to stress the fact that the right-hand side in the above quasi-
isomorphism is viewed as a complex.
It is easy to see that the functor

H∗(Embstc (•,Rn),Q) : Õst∞(Rm) −→ ChQ
>0

can be factored through the category Γ. Indeed, the above functor is the
composition of the functor H∗(Emb∗(•, Sn),Q) considered in Subsection 1.2
and the functor

π0 : Õst∞(Rm) −→ Γ,
that assigns the set of connected components based in the anti-disc. In case
m = 1 the anti-disc has two connected components, thus we modify a little
bit π0 so that it assigns only one point to an anti-disc.

Intuitively the Goodwillie-Weiss manifold calculus is a machinery that
scans a manifold (in our case Rm or rather its one-point compactification
Sm) with finitely many discs, evaluate the functor on these collections
of discs, and then extrapolate the functor from these data on the entire
manifold. The fact that the functor H∗(Embstc (•,Rn),Q) factors through Γ
means that instead of scanning our manifold Sm with finitely many discs
we can scan it with finitely many points and extrapolate from there. More
precisely in [4] we proved the following:

(1.4) CQ
∗ (Embc(Rm,Rn)) ' hRmod

Γ

(
CQ
∗ ((Sm)•),H∗(Emb∗(•, Sn),Q)

)
,

see [4, Proposition 6.3].
It turns out that the Γ-module CQ

∗ ((Sm)•) is formal, see [4, Lemma 6.5].
Thus we can replace CQ

∗ ((Sm)•) in (1.4) by H∗((Sm)•,Q).(2) Applying Pi-
rashvili’s cross-effect functor (1.1) we obtain exactly the statement of [4,
Theorem 0.2]. The reason we use Ω-modules instead of Γ-modules is that
working with Ω-modules considerably reduces computations.

1.4. Double splitting

It turns out that in the rational homology and homotopy of Embc(Rm,Rn)
one can introduce two additional gradings that we consider below. One ob-
viously has

H̃∗(Sm•,Q) =
+∞⊕
s=0

H̃ms(Sm•);

(2)The formality of CQ∗ ((Sm)•) is in fact the main reason for the Hodge splitting in the
higher order Hochschild homology [29] for which our case is a particular example. This
splitting (by Hodge degree s) is discussed in the next subsection.

TOME 65 (2015), FASCICULE 1



8 Gregory ARONE & Victor TURCHIN

Ĥ∗(C(•,Rn),Q) =
+∞∏
t=0

Ĥt(n−1)(C(•,Rn),Q);

Q⊗ π̂∗(C(•,Rn)) =
+∞∏
t=0

Q⊗ π̂t(n−2)+1(C(•,Rn)).

In the above each summand/factor is viewed as a chain complex concen-
trated in a single homological degree. Obviously in the above the infinite
direct sum can be replaced by a direct product and vice versa. We need the
sum for the first decomposition and the product for the second and third
ones to obtain the following factorizations:

(1.5) hRmod
Ω

(
H̃∗(Sm•,Q), Ĥ∗(C(•,Rn),Q)

)
=
∏
s,t

hRmod
Ω

(
H̃ms(Sm•,Q), Ĥt(n−1)(C(•,Rn),Q)

)
;

(1.6) hRmod
Ω

(
H̃∗(Sm•,Q),Q⊗ π̂∗(C(•,Rn))

)
=
∏
s,t

hRmod
Ω

(
H̃ms(Sm•,Q),Q⊗ π̂t(n−2)+1(C(•,Rn))

)
.

It is not hard to show that when the dimensions are in the stable range,
that is when n > 2m+ 2, the product in (1.5) can be replaced by a direct
sum, see [4]. Again this is equivalent to saying that only finitely many fac-
tors are non-trivial in any given homological degree. We show in Section 5
that the same is true for the second equation (1.6). Thus Theorem 1.1 nat-
urally defines a double splitting in the rational homology and homotopy of
Embc(Rm,Rn):
(1.7)
H∗(Embc(Rm,Rn),Q) ∼=

⊕
s,t

hRmod
Ω

(
H̃ms(Sm•,Q), Ĥt(n−1)(C(•,Rn),Q)

)
;

(1.8)
Q⊗π∗(Embc(Rm,Rn))∼=

⊕
s,t

hRmod
Ω

(
H̃ms(Sm•,Q),Q⊗π̂t(n−2)+1(C(•,Rn))

)
.

The additional grading t will be called complexity. It is related with the
Vassiliev filtration in the homology by complexity of strata in the dis-
criminant [41]. The grading s will be called Hodge degree. It comes from
the Hodge type decomposition in the Hochschild cohomology of a com-
mutative algebra and more generally in the (higher order) homology of
Γ-modules [15, 25, 29].
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We expect that the bialgebra structure of H∗(Embc(Rm,Rn),Q) does not
respect this splitting as a bigrading (we know this is false for m = 1), but
it must respect the splitting as a bifiltration. And the ranks of the terms
of the splitting still behave in a way as if the splitting was respected as a
bigrading. This follows from the fact that the graph-complex Em,nH comput-
ing H∗(Embc(Rm,Rn),Q) is naturally a polynomial bialgebra generated by
the graph-complex Em,nπ computing Q⊗ π∗(Embc(Rm,Rn)), see Section 2.
This fact is used in Lemma A.1.

1.5. Operads

In recent years it became clear that manifold calculus is deeply related
to the theory of operads [36, 3, 4]. This paper continues this tradition.
We will now review briefly some relevant notions about operads. A good
introduction to the theory of operads can be found in [26].

1.5.1. Operads as monoids

Let (C,⊗, 11) be a cocomplete symmetric monoidal category, where ⊗
distributes over colimits, and let S be the category of finite sets with mor-
phisms bijective maps. A right S-module with values in C is a contravariant
functor M : S → C. This functor can be viewed as a sequence of objects
{M(n), n > 0} with a right action of Σn on each M(n). We view elements
of M(n) as something that have n inputs and one output. The symmetric
group action permutes the inputs. With a right S-module one can assign a
power series functor FM : C → C, that is a functor of the form

FM (V ) =
⊕
n

M(n)⊗Σn V
⊗n.

It turns out that a composition of two power series functors is again a
power series functor. And we define composition M ◦N of two S-modules
M and N in such a way that FM◦N = FM ◦ FN . For an explicit definition
of M ◦N , see [26, Chapter 5]. Intuitively elements of M ◦N are objects of
the form:

TOME 65 (2015), FASCICULE 1



10 Gregory ARONE & Victor TURCHIN

...

m

n1 n2 nk

In each input of some element of M we insert elements of N . The opera-
tion ◦ turns the category of right S-modules into a monoidal category with
unit id:

id(n) =
{

0, n 6= 1;
11, n = 1,

where 0 is the initial object of C. The symmetric group action is trivial for
all components of id. An operad is a monoid in the category of S-modules: it
is an S-module P endowed with morphisms P ◦P → P, and id→ P which
satisfy natural associativity and unit axioms. Left and right modules over
an operad are defined in an expected way.
Let now C be the category of chain complexes over Q. Let Σ be a suspen-

sion functor that shifts a complex in degree by +1. An operadic suspension
is an endofunctor of the category of right S-modules, that assigns to an
S-module M an S-module M [1] defined as

M [1](n) = Σn−1M ⊗ signn,

where signn is the sign representation of Σn. One can view this operation
as a suspension of each input and desuspension of the output for every
element ofM . One can also defineM [1] as a symmetric sequence such that
FM [1] = Σ−1◦FM ◦Σ. It is easy to see that the operadic suspension respects
the monoidal structure:

id[1] = id;
(M ◦N)[1] = (M [1]) ◦ (N [1]).

Thus an operadic suspension of an operad is again an operad.

1.5.2. Operads Com, Lie, Assoc, Poiss, Bn, H∗(Bn)

The main classical operads we make use of are the operads Com of com-
mutative unital algebras, Com+ of commutative non-unital algebras, Lie
of Lie algebras, Assoc of associative unital algebras, Poiss of Poisson al-
gebras. We will also need the topological operad Bn of little n-discs. The

ANNALES DE L’INSTITUT FOURIER
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latter operad is central for the manifold calculus of functors. It was shown
by F. Cohen [11] that the homology operad H∗(Bn) is the associative operad
Assoc if n = 1 and is the operad Poissn−1 of graded Poisson algebras with
a commutative product of degree zero and a Lie bracket of degree (n−1) in
case n > 2, see also [16, 37]. For n > 2, one has H0(Bn) is the operad Com,
and H(•−1)(n−1)(Bn(•)) is the operad Lie[n− 1] – the (n− 1)-fold operadic
suspension of the operad Lie.
Each component Bn(k) is homotopy equivalent to the configuration space

C(k,Rn) whose cohomology algebra is generated by the elements αij , 1 6
i 6= j 6 k, of degree (n− 1). The relations are{

αij = (−1)nαji, α2
ij = 0;

αijαjk + αjkαki + αkiαij = 0,

see [1, 11]. The last relation is often called Arnol’d relation. To every mono-
mial of this algebra one can assign a directed graph putting an edge from
vertex i to j for every factor αij . Using the above relations one can show
that a monomial is non-zero if and only if the corresponding graph is a
forest. Thus H∗(Bn(k)) can be described as a certain space of forests on
k vertices modulo orientation and Arnol’d relations. Notice that the top
cohomology group H(k−1)(n−1)(Bn(k)) is the space of trees (forests with
exactly one component). They form an S-module H(•−1)(n−1)(Bn(•)) which
is naturally isomorphic to the cooperad coLie[n − 1] dual to the operad
Lie[n − 1]. We refer to [35] where the reader can find how exactly this
duality works and how exactly the cooperad structure on H ∗(Bn(•)) looks.

1.5.3. Infinitesimal bimodules

It is almost straightforward to see that the structure of a right Ω-module
is equivalent to the structure of a right module over the operad Com+
of commutative algebras without unit. The structure of a right Γ-module
is also intimately related to the commutative operad, more precisely we
have seen in [40, 4] that a right Γ-module is the same thing as a weak
bimodule over Com. In this paper we adopt the terminology of Merkulov-
Vallette-Loday [27, 26] and call them infinitesimal bimodules. This term is
more appropriate here since we are using this notion only for the abelian
category of chain complexes. Let us recall that an infinitesimal (or weak)
bimodule over an operad O is a right S-module M endowed with a family
of maps:

(1.9) ◦i : O(n)⊗M(k)→M(n+ k − 1), i = 1 . . . n, (left action);

TOME 65 (2015), FASCICULE 1



12 Gregory ARONE & Victor TURCHIN

(1.10) ◦i : M(k)⊗O(n)→M(k + n− 1), i = 1 . . . k, (right action),

satisfying natural unity, associativity, and compatibility with the Σn-group
action conditions, see [27, 40, 4]. Each element of O and of M is viewed as
an object with some number of inputs and one output. The composition
is obtained by inserting an output in one of the inputs, see Figure 1.1
below. The result of composition ◦i(o,m), and ◦i(m, o), for o ∈ O(n), and
m ∈M(k), will be denoted by o ◦i m, and m ◦i o.

Right action

= =;

Left action

o ◦3 m m ◦2 o

o

o m

m

Figure 1.1

For example, if P is an operad endowed with a morphism O → P, then
P is naturally an infinitesimal bimodule over O. Applying this construction
to the map

H0(Bn(•),Q)→ H∗(Bn(•),Q), n > 2,
we obtain that H∗(Bn(•),Q) is automatically an infinitesimal bimodule over
Com, thus H∗(Bn(•),Q) is naturally a right Γ-module. One can easily see
that this Γ-module is exactly H∗(Emb∗(•, Sn),Q) considered in Subsec-
tion 1.2. We will use both Ĥ∗(C(•,Rn),Q) and Ĥ∗(Bn(•),Q) to denote its
cross-effect Ω-module. Notice that its dual left Ω-module Ĥ∗(Bn(•),Q) in
degree k is the subspace of H∗(Bn(k),Q) spanned by forests with the prop-
erty that all connected components have at least two vertices.

1.6. A section by section outline

In Section 2 we construct a graph-complex Em,nH computing the rational
homology H∗(Embc (Rm,Rn),Q). This construction is obtained by replac-
ing the target Ω-module Ĥ∗(C(•,Rn),Q) in (1.2) by a quasi-isomorphic
complex of injective Ω-modules. Similarly we construct a graph-complex
Em,nπ computing the right-hand side of (1.3). It turns out that Em,nH is
a polynomial bialgebra whose subcomplex of primitives is its subcom-
plex of connected graphs which is exactly Em,nπ . This immediately im-
plies Theorem 1.1 (ii). In Section 3 we compute the rational homotopy of
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Embc(Rm,Rn) in small dimensions. In Section 4 we compare the rational
homotopy of Embc(Rm,Rn) with that of Embc(Rm,Rn) assuming as usual
n > 2m + 2. By the Smale-Hirsch theorem [17] the space Immc(Rm,Rn),
n > m, is weakly equivalent to them-fold loop space ΩmInj(Rm,Rn), where
Inj(Rm,Rn) is the Stiefel manifold of isometric linear injections Rm ↪→ Rn.
One has a fibration

Ωm+1Inj(Rm,Rn) ι−→ Embc(Rm,Rn) −→ Embc(Rm,Rn).

Since the rational homotopy of the Stiefel manifold Inj(Rm,Rn) is finite-
dimensional, it follows that up to a finite-dimensional correction the ratio-
nal homotopy of Embc(Rm,Rn) is the same as that of Embc(Rm,Rn). In
Section 4 we determine this correction. It is again quite surprising that the
image of the induced map ι∗ in rational homotopy depends on the parities
of m and n only.

In Section 5 we construct an explicit cofibrant replacement (in the projec-
tive model structure) of the right Ω-module H̃∗(Sm•,Q). This allows us to
construct another type of complexes computing H∗(Embc(Rm,Rn),Q) and
Q ⊗ π∗(Embc(Rm,Rn)). The corresponding complexes are denoted Km,nH
and Km,nπ . We are calling them Koszul complexes, since the main ingredient
in the construction of the cofibrant replacement is the Koszul duality be-
tween the commutative and Lie operads.(3) In Subsection 5.3 we describe
the complex HHm,n dual to Km,nH as a certain complex of graphs whose
edges can have two colors. Its subcomplex HHm,n

π of connected graphs is
our third complex computing Q⊗π∗(Embc(Rm,Rn)). In Subsection 5.4 we
interpret Km,nH as the deformation complex of the morphism of operads

H∗(Bm,Q) i∗−→ H∗(Bn,Q),

where i : Bm ↪→ Bn is the inclusion of the operad of little m-discs into the
operad of little n-discs (induced by our fixed linear embedding Rm ↪→ Rn).
This gives a connection between the homology of a certain deformation
complex of a morphism of operads with the homology of the space of long
embeddings — a connection earlier conjectured by Kontsevich.
In Section 6 we compute the generating function of the Euler charac-

teristics of the double splitting in H∗(Embc(Rm,Rn),Q). In Appendix we
present results of computer calculations of these Euler characteristics in
small dimensions for the splitting both in homology and in homotopy.

(3)This construction can actually be used to compute the Hochschild-Pirashvili homol-
ogy [29] in any general situation.
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14 Gregory ARONE & Victor TURCHIN

2. Graph-complexes

2.1. Complexes of uni-> 3-valent graphs

In this section we introduce complexes Em,nH , Em,nπ calculating the ra-
tional homology and rational homotopy of Embc(Rm,Rn). The starting
point for the derivation of the complex Em,nH is Theorem 1.1 (i), which
presents CQ

∗ (Embc(Rm,Rn)) as the derived “space” of maps between right
Ω-modules H̃∗(Sm•,Q) and Ĥ∗(Bn(•);Q). The complex Em,nH will be ob-
tained by taking an injective resolution of Ĥ∗(Bn(•);Q).
The main attraction of the complex Em,nH is that it will enable us to

construct another complex, denoted Em,nπ , which calculates the rational
homotopy groups of the space Embc(Rm,Rn). In particular, this will enable
us to prove the homotopical part of Theorem 1.1.
The complex Em,nπ is defined as a complex of connected uni-> 3-valent

graphs. We mention that such graph-complexes appeared earlier in the
study of the Hodge decomposition of the homology groups of the space of
long knots Embc(R,Rn), see [40, Section 11]. Our Theorem 2.1 below is
exactly [40, Conjecture 11.1] from the above reference. The construction
of Em,nπ was inspired by a work of Bar-Natan [5] where he studies the
bialgebra of chord diagrams – an object that combinatorially encodes finite
type invariants of classical knots in R3. He shows that the space of primitive
elements of this bialgebra is naturally isomorphic to a certain space of uni-
trivalent graphs quotiented out by some orientation and IHX relations.
One can easily see that this space is precisely the degree zero homology of
our complex E1,3

π that we define below.
Let us define the complex Em,nπ . It is spanned by abstract connected

graphs having a non-empty set of non-labeled external vertices of valence 1,
and a possibly empty set of non-labeled internal vertices of valence > 3.
The graphs are allowed to have loops (edges joining a vertex to itself) and
multiple edges. For such graph define its orientation set as the union of the
set of its external vertices (considered as elements of degree −m), the set
of its internal vertices (considered as elements of degree −n), and the set
of its edges (considered as elements of degree (n − 1)). By an orientation
of a graph we will understand ordering of its orientation set together with
an orientation of all its edges. Two such graphs are equivalent if there is a
bijection between their sets of vertices and edges respecting the adjacency
structure of the graphs, orientation of the edges, and the order of the ori-
entation sets. The space of Em,nπ is the quotient space of the vector space
freely spanned by such graphs modulo the orientation relations:
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(1) Υ1 = (−1)nΥ2 if Υ1 differs from Υ2 by an orientation of an edge.
(2) Υ1 = ±Υ2, where Υ2 is obtained from Υ1 by a permutation of

the orientation set. The sign here is the Koszul sign of permutation
taking into account the degrees of the elements.

The differential ∂Υ of a graph Υ ∈ Em,nπ is defined as the sum of expan-
sions of its internal vertices. An expanded vertex is replaced by an edge.
The set of edges adjacent to the expanded vertex splits into two sets – one
containing the edges that go to one vertex of the new edge and the other
set containing the edges that go to the other vertex. An expansion of a
vertex of valence ` is a sum of 2`−2`−2

2 = 2`−1 − ` − 1 graphs obtained in
such way. One subtracts 2`+ 2 to exclude graphs with internal vertices of
valence < 3, and one divides by 2 because of the symmetry. The orientation
set of a new graph is obtained by adding the new vertex and the new edge
as the first and second elements to the orientation set, and by orienting the
new edge from the old vertex to the new one. There is a freedom which of
2 vertices of the new edge is considered as a new one and which as an old
one, but regardless of this choice, the orientation of the boundary graph is
the same. All the graphs in the differential appear with positive sign (the
sign is hidden in the way we order the orientation set and orient the new
edge).
Finally define the graph-complex Em,nH as the free polynomial bialgebra

generated by Em,nπ . In other words Em,nH can be viewed as a graph-complex
spanned by possibly empty or disconnected graphs with each connected
component from Em,nπ .
In addition to the total grading (which is the sum of the degrees of the

elements in the orientation set of a graph), we define two other gradings:
complexity — the first Betti number of the graph obtained from initial
graph by gluing together all univalent vertices, and Hodge degree — the
number of external vertices. Notice that the differential preserves both the
complexity and the Hodge degree. Section 3 describes Em,nπ in complexi-
ties 6 3. We will denote the part of Em,nH , Em,nπ concentrated in complexity
t and Hodge degree s by Em,nH (s, t), Em,nπ (s, t) respectively.

Theorem 2.1. — For n > 2m+ 2, the homology of the graph-complex
Em,nH (respectively Em,nπ ) is isomorphic to the rational homology (respec-
tively homotopy) of Embc(Rm,Rn):

(2.1) H(Em,nH ) ' H∗(Embc(Rm,Rn),Q);

(2.2) H(Em,nπ ) ' π∗(Embc(Rm,Rn))⊗Q.
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It is well-known that the space Embc(Rm,Rn), n > 2m+2, is a connected
(m + 1)-loop space [6, 40]. This implies that its rational homology is a
graded polynomial bialgebra generated by its rational homotopy groups.
As a consequence the statements (2.1) and (2.2) of the previous theorem
are equivalent. The statement (2.1) follows from Theorem 1.1 (i) and the
statement (2.3) of Theorem 2.2 below.

Theorem 2.2. — For n > 2m + 2, one has weak equivalences of chain
complexes

(2.3) Em,nH ' hRmod
Ω

(
H̃∗(Sm•,Q), Ĥ∗(Bn(•),Q)

)
.

(2.4) Em,nπ ' hRmod
Ω

(
H̃∗(Sm•,Q), π̂∗(Bn(•))⊗Q

)
.

Moreover the above isomorphisms preserve both the complexity and the
Hodge degree, which means

(2.5) Em,nH (s, t) ' hRmod
Ω

(
H̃ms(Sm•), Ĥ(n−1)t(Bn(•),Q)

)
.

(2.6) Em,nπ (s, t) ' hRmod
Ω

(
H̃ms(Sm•), π̂1+(n−2)t(Bn(•))⊗Q

)
.

This theorem will be proved in Subsection 2.1.2. The idea of the proof is
to replace the right Ω-modules π̂∗(Bn(•)) ⊗ Q and Ĥ∗(Bn(•),Q) by quasi-
isomorphic differential graded right Ω-modules P̂n•, D̂n

•, which happen to
be injective in each homological degree. All their components P̂nk, D̂n

k,
k > 0, are certain graph-complexes, see Subsections 2.1.1-2.1.2.
Notice that the second statement of Theorem 2.1 together with the state-

ment (2.4) of Theorem 2.2 imply Theorem 1.1 (ii).

2.1.1. Right Γ-modules Dn
•, Pn•

The right Γ-modules that we define in this section were introduced in [40].
The k-th component Dn

k is a vector space spanned by the graphs with k
external vertices labeled by 1, 2, . . . , k, and a bunch of non-labeled inter-
nal vertices. The external vertex can have any valence (including zero),
the internal vertices are of valence > 3. The graphs are allowed to be dis-
connected, but each connected component of a graph should have at least
one external vertex. The graphs can have loops and multiple edges. Orien-
tation set of such graph consists of the set of its internal vertices (having
degree −n), and edges (having degree (n−1)). By an orientation of a graph
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we understand an ordering of its orientation set and a choice of orienta-
tion made for each one of its edges. Two graphs are equivalent if there is
a bijection between their sets of internal vertices and edges respecting the
adjacency structure of the graphs, orientation of the edges, and the order of
their orientation sets. The orientation relations are the same as in Subsec-
tion 2.1. The differential is the sum of expansions of vertices. An expansion
of an external vertex produces one external vertex with the same label and
one internal one. An expansion of external vertices of valence ` is a sum of
2`−`−1 graphs. We excluded `+1 cases to make sure that the new internal
vertex has valence > 3. The sequence of differential graded vector spaces
Dn

k, k > 0, forms an operad. The composition Υ1 ◦i Υ2 of two graphs is
defined as insertion of Υ2 into the i-th vertex of Υ1, see Figure 2.1. The
orientation set of each graph in the sum is obtained by concatenation of
the orientation set of Υ1 and that of Υ2. With this definition all signs are
positive in this figure.

=

1 2 3 41 2 3 4

1 2 3 4 1 2 3 4

1 2 3 1 2

=

1 2 3

1 2 3 41 2 3 4

1 2 3 4 1 2 3 4

1 2

= =◦2

◦3

±±

±±

±±

±±

Figure 2.1. Examples of composition

Recall that {H∗(Bn(•),Q)} is the homology operad of n-dimensional little
cubes. This homology operad is the operad of (n−1)-Poisson algebras, i.e.,
operad of graded Poisson algebras with a commutative product of degree
zero and a Lie bracket of degree (n− 1).

Proposition 2.3 ([22, 20, 40]). — For n > 2, the assignment

x1x2 7→ r r
1 2 , [x1, x2] 7→ r r

1 2 ,
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where x1x2, [x1, x2] ∈ H∗(Bn(2),Q) are the product and the bracket of the
operad of (n− 1)-Poisson algebras, defines an inclusion of operads

(2.7) H∗(Bn(•);Q) � � ' // Dn
•

that turns out to be a quasi-isomorphism (H∗(Bn(•),Q) is considered to
have a zero differential).

The operad Dn
• is an operad in the category of differential graded co-

commutative coalgebras. The coproduct in each component is given by
cosuperimposing, see Figure 2.2.

3

1 2 3

( ) =
1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2

∆

±

±±

± ⊗ ⊗

⊗⊗

Figure 2.2. Example of a coproduct in Dn
3

In general for a graph Γ ∈ Dn
k its coproduct ∆(Γ) ∈ Dn

k ⊗Dn
k is a sum

of 2c summands, where c is the number of the connected components of
the graph obtained from Γ by removing its labeled vertices together with
their small vicinities. For the graph from the above figure c = 2. Its first
connected component corresponds to the edge 12, the second connected
component corresponds to the subgraph consisting of the only internal
vertex and its 3 adjacent edges. The counit is defined as 1 on the trivial
diagram without edges and internal vertices and as 0 on all the others.
The morphism (2.7) is a morphism of operads in coalgebras. Due to this
morphism,Dn

• is an infinitesimal bimodule over H∗(Bn(•),Q) and therefore
over H0(Bn(•),Q) = Com as well, see Subsection 1.5.3. Thus Dn

• is a
right Γ-module. Explicitly Com in Dn

• is spanned by the diagrams without
edges (and without internal vertices). The infinitesimal left Com action adds
isolated label vertices. The infinitesimal right action is given by insertion
of the product as in the lower part of Figure 2.1. It is easy to see that the
Γ structure maps respect the coalgebra structure, therefore Dn

• is a right
Γ-module in the category of coalgebras.
Let Pnk denote the primitive part of Dn

k. The space Pnk is spanned by
the graphs with k labeled external vertices that become connected if one
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removes all the external vertices together with their small vicinities. The
family of spaces Pn• = {Pnk, k > 0} is preserved by the Γ structure maps,
simply because these maps respect the coalgebra structure of Dn

k, k > 0.

Proposition 2.4 ([40, 34]). — For n > 3, the right Γ-modules π∗(Bn(•))
⊗Q and Pn

• are quasi-isomorphic (by a zigzag of quasi-isomorphisms),
where π∗(Bn(•))⊗Q is considered to have a zero differential.

For each • = k, the morphism (2.7) is a quasi-isomorphism of differen-
tial graded cocommutative coalgebras. The configuration spaces Bn(k) are
known to be formal, thus the dual of Dn

k is a rational model for Bn(k).
On the other hand the coalgebras Dn

k are quasi-cofree with the space of
cogenerators Pnk. This explains why the homology of Pnk is Q⊗ π∗Bn(k).
The precise zigzag of quasi-isomorphisms is given in the proof of [20, The-
orem 9.3], see also [40, Proposition 9.5]. The same construction was inde-
pendently discovered and described in [34, Section 3].

Remark 2.5. — One can easily see that this zigzag respects the com-
plexity t, which is the first Betti number of the graphs obtained by gluing
all external vertices for the graphs from Pn

•. For π∗(Bn(•)) ⊗ Q, the part
of complexity t is simply Q ⊗ πt(n−2)+1(Bn(•)). Moreover, for any given
complexity one can also check that the zigzag of quasi-isomorphisms given
in [20] goes always through the bounded above non-negatively graded com-
plexes.

2.1.2. Right Ω-modules D̂n
•, P̂n•

Recall that in [29] Pirashvili defines a functor

cr : mod−Γ −→ mod−Ω,

that turns out to be an equivalence of abelian categories, see Subsection 1.2.
Denote by D̂n

• and P̂n• the right Ω-modules cr(Dn
•) and cr(Pn•) respec-

tively. In each degree D̂n
k and P̂nk are spanned by the same graphs as Dn

k,
Pn

k with the only restriction that all the external vertices in these graphs
are of valence > 1. According to the definition of the cross-effect, D̂n

k and
P̂n

k should be viewed as quotient spaces of Dn
k and Pnk, respectively (by

the subspace spanned by the graphs having external vertices of valence 0).
The category Ω can be viewed as a subcategory Γ by adding to any finite
set a base-point ∗. The right action of Ω is the restriction action of Γ on
these quotient spaces. For example, in the second composition in Figure 2.1
one has to throw away the 2 graphs with external vertices of valence 0 to
get the corresponding picture of the Ω-action.
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Proposition 2.6. — The right Ω-modules D̂n
• and P̂n

• are finite-
dimensional and injective in each homological degree.

Proof. — We show first that they are finite-dimensional in each homo-
logical degree, which in particular means that all except a finite number
of components of the right Ω-modules are trivial for any given homological
degree. Let Υ ∈ D̂n

k be a graph with E edges, I internal vertices, and k
external vertices. To recall the complexity t of Υ is the first Betti number
of the graph obtained from Υ by gluing together all external vertices. So,
one has

(2.8) t = E − I.

The total degree of Υ is (n− 1)E − n · I = (n− 1)t− I. Since the valence
of any internal vertex is > 3, and the valence of any external one is > 1,
one gets

3I + k 6 2E.
Which implies I 6 2

3E, k 6 2E. From (2.8) one has E = t+ I 6 t+ 2
3E, so

E 6 3t, I 6 2t, k 6 6t. This very rough estimation shows that the set of
graphs Υ in any given complexity t is finite. On the other hand for a given
complexity t the total homological degree of any graph is (n − 1)t − I >
(n− 3)t. Therefore there are finitely many complexities t that can produce
non-trivial graphs in a given homological degree.
Before proving the injectivity, recall [29] that the category mod − Ω of

right Ω-modules in Q-vector spaces has injective cogenerators Ω∗k, k > 0.
First one defines the left Ω-modules Ωk, k > 0, as

Ωk(•) = Q[MorΩ(k, •)],

which are projective generators of the category Ω−mod of left Ω-modules
in Q-vector spaces. Their duals Ω∗k are therefore injective right Ω-modules.
For any right Ω-module F one has

Rmod
Ω

(F,Ω∗k) ' (F (k))∗,

where (−)∗ denote the dual vector space. This isomorphism is due to the
Yoneda lemma. Notice that Ω∗k has a natural action of the symmetric group
Σk that comes from the automorphisms of k ∈ Obj(Ω). Given any repre-
sentation V of Σk one can define a right Ω-module Ω∗k ⊗Σk V whose `-th
component is Q[MorΩ(k, `)]⊗Σk V .

Lemma 2.7. — For any finite-dimensional representation V of Σk, the
right Ω-module Ω∗k ⊗Σk V is injective. Moreover for any right Ω-module F ,
one has Rmod

Ω
(F,Ω∗k ⊗Σk V ) ' homΣk(F (k), V ).
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Proof of Lemma 2.7. — Since the ground field is Q, any finite-dimensio-
nal Σk-module V is a direct summand of a finitely generated free Σk-
module. Thus V ⊗Σk Ω∗k is a direct summand of a finite sum of copies of
Ω∗k and therefore is also injective. For the second statement, since V is
finite-dimensional, one has:

Rmod
Ω

(F,Ω∗k ⊗Σk V ) ' Rmod
Ω

(F,Ω∗k)⊗Σk V ' (F (k))∗ ⊗Σk V

' homΣk(F (k), V ).

�

Now let us show that D̂n
•, P̂n• are injective in each degree. Denote by

M(Dn
k),M(Pnk) the subspaces (which are actually subcomplexes) of D̂n

•,
P̂n
• respectively spanned by the graphs whose external vertices are all uni-

valent. This notation comes from the fact that these spaces are spaces of
multiderivations in Dn

k, Pnk, see [40, Section 10]. Each M(Dn
k), M(Pnk)

has a natural Σk action given by relabeling the external vertices. The fol-
lowing lemma finishes the proof of Proposition 2.6. �

Lemma 2.8. — The graded right Ω-modules D̂n
•, P̂n• are isomorphic

to
⊕+∞

k=0 Ω∗k ⊗Σk M(Dn
k), and

⊕+∞
k=1 Ω∗k ⊗Σk M(Pnk), respectively.

Proof. — Below we construct isomorphisms
+∞⊕
k=0

Ω∗k ⊗Σk M(Dn
k) '−→ D̂n

•,(2.9)

+∞⊕
k=0

Ω∗k ⊗Σk M(Pnk) '−→ P̂n
•.(2.10)

To recall Ω∗k in degree ` is a vector space whose basis is the set of surjective
maps k � `.(4) Given a surjective map α : k � `, viewed as an element of
Ω∗k, and a graph Υ ∈ M(Dn

k), which means Υ has k external vertices all
of valence 1, one can construct a graph in Dn

` as follows: take Υ and take
` vertices labeled by 1 . . . `, and then join each external vertex i of Υ with
the labeled vertex α(i):

(4)The right action of Ω on Ω∗k is as follows. Given a basis element α : k � ` of Ω∗k and a
morphism f : `′ � ` in Ω, the result of the action of f on α is the sum (with all positive
signs) of all surjections α′ : k � `′, such that α = f ◦ α′.
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4321

1 2

1 2 3 4

1 2

⊗

It is easy to see that the maps (2.9)-(2.10) defined as above are isomor-
phisms of Ω-modules. �

We warn the reader that the isomorphisms (2.9), (2.10) send the differ-
ential of the source to the sum of expansions of internal vertices, which is
only a part of the differential in D̂n

•, P̂n•. The other part is the sum of
expansion of external vertices. In other words, they are not morphisms of
right Ω-modules of chain complexes, but only of right modules of graded
vector spaces. But the right hand sides of (2.9) and (2.10) do admit fil-
trations whose associated graded modules are isomorphic to the left hand
sides. The r-th term of such filtration is spanned by the graphs whose sum
of valences of external vertices is 6 r.

Remark 2.9. — If n is odd, the graphs with loops (edges connecting a
vertex to itself) are canceled out by the orientation relations. For even n

if we quotient out Pn• by the graphs with loops, the isomorphism (2.10)

fails to be true only in complexity 1, since there is only one graph r r
1 2

in M(Pn•) that can produce a loop by gluing external vertices. Because
of that in complexity > 2 the graph-complex Em,nπ can be reduced to a
quasi-isomorphic complex consisting of graphs without loops.

Now we finish the proof of Theorem 2.2.
Proof of Theorem 2.2. — One has

hRmod
Ω

(
H̃∗(Sm•,Q), Ĥ∗(Bn(•),Q)

)
' Rmod

Ω
(H̃∗(Sm•,Q), D̂n

•))

'
∞⊕
k=0

homΣk(H̃∗(Smk),M(Dn
k)).

To recall the derived hom is taken in the model category Ch>0(mod−Ω).
The first isomorphism is due to the fact that the left-hand side can be writ-
ten as a product of Ext groups (in the abelian category mod−Ω of right
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Ω modules in Q vector spaces) since it is a space of derived maps between
objects with trivial differential and D̂n

• in any complexity t is an injec-
tive resolution of the right Ω-module Ĥt(n−1)(Bn(•),Q). Indeed it follows
from Proposition 2.3 that the inclusion (2.7) is a quasi-isomorphic inclusion
of right Ω-modules. On the other hand Proposition 2.6 tells us that D̂n

•

is injective in any homological degree. The second isomorphism is due to
Lemmas 2.7 and 2.8. Finally one can notice that the graded vector space⊕

k homΣk(H̃∗(Smk),M(Dn
k)) =

⊕
s homΣs(H̃ms(Sms),M(Dn

s)) is ex-
actly Em,nH defined at the beginning of Subsection 2.1. We only need to check
that the differentials are the same. Any element φ ∈ homΣs(H̃ms(Sms),
M(Dn

s)) in the above direct sum should be understood as an Ω-module
map φ : ⊕k H̃mk(Sm•)→ D̂n

• that sends all the summands to zero except
the s-th one H̃ms(Sm•). The latter Ω-module is one dimensional and is con-
centrated in the s-th component. By Lemmas 2.7 and 2.8 the map φ must
send the generator of the one dimensional space H̃ms(Sms) to some element
ψ ∈ M(Dn

s) ⊂ D̂n
s. But the part of the differential in D̂n

• that expands
the external vertices must act trivially on ψ (since all the external vertices
in any graph fromM(Dn

s) are univalent). The other part of the differential
corresponds to the expansion of internal vertices, which produces exactly
the differential on Em,nH .
The proof of (2.4) goes in the same way:

hRmod
Ω

(
H̃∗(Sm•,Q), π̂∗(Bn(•))⊗Q

)
' Rmod

Ω
(H̃∗(Sm•,Q), P̂n•)

'
∞⊕
k=0

homΣk(H̃∗(Smk),M(Pnk)).

But in this case even though P̂n• is still a complex of injective Ω-modules
it is no more an injective resolution of π∗(Bn(•)) ⊗ Q, but is only quasi-
isomorphic to it, see Proposition 2.4. However for any given complexity this
quasi-isomorphism is a zigzag that goes through bounded above complexes,
see Remark 2.5. Thus the standard “balancing Ext” argument can still be
applied, see the proof of [43, Theorem 2.7.6] and also [43, Exercise 10.7.1].
The second isomorphism and the fact that the obtained complex coincides
with Em,nπ are proven in the same way.

A scrupulous reader might prefer to see a product instead of a direct
sum in (2.9), (2.10) and also in the two formulas above. But D̂n

• and P̂n•
are finite-dimensional in any homological degree (by Proposition 2.6) and
so are complexes Em,nH , Em,nπ , n > 2m+ 2 (by a similar argument). Thus in
all these expressions the direct sum can be considered as a product. �
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3. Rational homotopy of Embc(Rm,Rn) in small dimensions

In this section we describe the rational homotopy of Embc(Rm,Rn) in
complexities t 6 3. The table in Subsection 3.7 summarizes these computa-
tions. Recall that we defined graph-complexes Em,nπ computing the rational
homotopy of Embc(Rm,Rn), see Theorem 2.1. It is clear from the definition
that up to a regrading the graph-complexes Em,nπ depend on the parities
of m and n only. The case m = 1 was considered in [40, Section 9] which by
a regrading describes the situation when m is odd. Notice that for even n
the graphs with multiple edges cancel out by the orientation relations. For
odd n the graphs with loops disappear by the same reason. Due to Re-
mark 2.9 in complexities > 2 even when n is even one can consider the
reduced version of Em,nπ spanned only by the graphs without loops.

We only give a brief summary of our computations that gives an idea of
how these graph-complexes look like in small degrees. In most of the cases
the sign matters only when we check whether the corresponding graphs
survive their symmetries. As for the differential in small complexities often
the sign is not important — for any choice of sign the resulting homology
is the same. For this reason we do not specify how exactly the graphs are
oriented, see Subsection 2.1 for the definition of the orientation of a graph
and the differential in the graph-complex.

3.1. Complexity 1

There are only two graphs in this complexity:

�
��

��
n

These graphs are in Hodge degrees 2 and 1 respectively. They survive the
orientation relations and define non-trivial generators in rational homotopy
according to Table 3.1.
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Cycle appear when degree

��
�

n−m even n− 2m− 1

��
n

n even n−m− 2

Table 3.1. Rational homotopy generators in complexity 1

3.2. Complexity 2

Due to Remark 2.9 one should consider only graphs without loops.
Among those graphs there are only three that might survive the orientation
relations, with only one graph in each of the Hodge degrees 3, 2, and 1.
These graphs define non-trivial generators in rational homotopy according
to Table 3.2.

Cycle appear when degree

n−m odd 2n− 3m− 3

m odd, n odd 2n− 2m− 4

n odd 2n−m− 4

Table 3.2. Rational homotopy generators in complexity 2

Notice that only the last graph is not uni-trivalent. The uni-trivalent
graphs for all parities of m and n cancel out by the orientation relations in
Hodge degree 1.

3.3. Image of the connecting homomorphism

One has a homotopy fibration

Embc(Rm,Rn)→ Embc(Rm,Rn)→ ΩmInj(Rm,Rn),
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that produces a long exact sequence of homotopy groups:

(3.1) . . .→ π∗+1ΩmInj(Rm,Rn) ∂∗→ π∗Embc(Rm,Rn)→
→ π∗Embc(Rm,Rn)→ π∗ΩmInj(Rm,Rn)→ . . .

Perhaps surprisingly for n > 2m+ 2 the image of ∂∗ in rational homotopy
depends on the parities of m and n only. The following is an equivalent
reformulation of Theorem 4.1 or of Corollary 4.3.

Theorem 3.1. — For n > 2m + 2, the image of the connecting homo-
morphism

(3.2) ∂∗ : Q⊗ π∗+1ΩmInj(Rm,Rn)→ Q⊗ π∗Embc(Rm,Rn)

in rational homotopy is described by the homology of Em,nπ spanned by the
following graphs

(3.3) ���

��
n

These classes are non-zero according to the following table:

Cycle appear when degree complexity

�
��

n−m even n− 2m− 1 1

��
n

n even n−m− 2 1

n odd 2n−m− 4 2

We don’t prove this result now. This theorem is equivalent to Theo-
rem 4.1. We will also see in Section 4 that the first and the second cycles
come from the Euler classes of Q⊗ π∗Inj(Rm,Rn), and the last one comes
from the top Pontryagin class of Q⊗ π∗Inj(Rm,Rn).

3.4. Complexity 3

The rank of the homology of Em,nπ in complexity 3 is always two. The
homology generators are represented by the graphs shown in Table 3.3.
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Cycle appear when degree

m even 3n− 3m− 6

m odd 3n− 2m− 7

always 3n−m− 7

Table 3.3. Rational homotopy generators in complexity 3

Notice that the cycles depend only on the parity of m. The graph-
complexes actually do depend on the parity of n. As it follows from Re-
mark 2.9, when n is even one can consider a quasi-isomorphic complex
consisting of graphs without loops. It turns out that for even n the only
such graphs that are not canceled out by the orientation relations are those
that appear in the above table. When n is odd the complex is more compli-
cated because of the presence of graphs with multiple edges. For the case
m odd, n odd, see [40, Section 11]. The case m even, n odd is considered
below.
m even, n odd. For the Hodge degree 4 one has two non-trivial graphs:

(3.4)

∂

The homology is still trivial, since ∂( ) = 3 .
In the Hodge degree 3 one has the complex

∂

with the differential

+( ) = 2∂
.
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This part of Em,nπ produces only one-dimensional homology group span-
ned by the first graph from Table 3.3.
In Hodge degree 2 one has the complex

∂

Which is acyclic.
In the Hodge degree 1, one has the complex

∂ ∂

Which produces the last cycle from Table 3.3.

3.5. Subcomplex of trees or s = t+ 1

Denote by π
(s,t)
∗ (Embc(Rm,Rn)) the part of the rational homotopy of

Embc(Rm,Rn) which lies in Hodge degree s and complexity t. The sum-
mand Em,nπ (s, t) in Hodge degree s and complexity t is non-trivial only if
s 6 t + 1. The case s = t + 1 corresponds to the subcomplex of trees or
graphs without cycles.

Proposition 3.2. — For t > 3, one has π(t+1,t)
∗ (Embc(Rm,Rn)) = 0

(with the usual assumption n > 2m+ 2).

Proof. — Let Mt(Pnt+1) denote the subcomplex of M(Pnt+1), see Sec-
tion 2.1.2, spanned by the trees. It is well known that the homology of this
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graph-complex is concentrated in the lowest degree and is described as the
space of binary trees modulo IHX relations [45]. Up to a sign represen-
tation signt+1 of the symmetric group Σt+1 this homology is isomorphic
to the t-th component Lie(t) of the cyclic Lie operad. The subcomplex of
Em,nπ is isomorphic to

Mt(Pnt+1)⊗Σt+1 (signt+1)⊗m.

But it is well known, see for example [18, 30], that both the invariants and
anti-invariants of Lie(t) are trivial for t > 3. The result thus follows. �

As an example illustrating this result, the complex (3.4) has trivial ho-
mology. Notice however that for the complexity t = 1 and 2 one has non-
trivial classes in Hodge degree t+ 1, see Tables 3.1-3.2.

3.6. Subcomplex of graphs with one cycle or s = t

It turns out that the homology of Em,nπ can also be easily understood
when the complexity t equals the Hodge degree s, or in other words the
homology of the subcomplex

⊕
t>1 Em,nπ (t, t) spanned by graphs with ex-

actly one cycle. For any k > 1, define a k-wheel as a graph with k univalent
external vertices and k trivalent internal vertices, which is obtained from
a k-gon by adding an edge from each vertex. As an example a 5-wheel is
pictured below:

Proposition 3.3. — The homology of Em,nπ (t, t) has rank 0 or 1 and is
generated by the t-wheel, which is non-zero

• for m odd, n odd, if t = 2k, k ∈ N;
• for m odd, n even, if t = 4k − 3, k ∈ N;
• for m even, n odd, if t = 4k − 1, k ∈ N;
• for m even, n even, if t = 2k − 1, k ∈ N.
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Notice that 1, 2, and 3-wheels appeared already in our computations.
Since we are not going to use this result, we explain very briefly the way it
can be proved.

Idea of the proof. — The idea is that one can reduce Em,nπ to a smaller
complex of graphs without cut-vertices [12]. The argument is similar to
the one given in the above reference. For the case s = t the only such
graph is the t-wheel. One only needs to check when this t-wheel survives
the dihedral symmetries. �

Remark 3.4. — The results of Subsections 3.1-3.6 are consistent with
the computations of the Euler characteristics presented in Appendix in Ta-
bles A.1, A.3, A.5, A.7. All these computations are also consistent with the
previous computations of the rational homotopy of Embc(R,Rn), see [39,
Appendix B, Tables 5-6].

Recently the second author together with Baltazar Chavez-Diaz, James
Conant, Jean Costello, and Patrick Weed computed the homology of the
subcomplex of Em,nπ of graphs with two cycles (s = t − 1). The results of
these computations show that the ranks of the homology of this part of the
graph-complex grow linearly with t. We believe the following is true.

Conjecture 3.5. — For ` fixed, the rank of π(t−`,t)
∗ (Embc(Rm,Rn))

has asymptotic t` when t→ +∞.

As another confirmation for this conjecture, the ranks of the spaces of 3-
loop uni-trivalent graphs modulo IHX relations (see Subsection 2.1) grow
quadratically with the number of univalent vertices in the graphs [13].(5)

3.7. Recollecting results of computations

The table below resumes the results of computations from 3.1-3.6 and
describes the dimensions of the first few linearly independent generators of
Q⊗π∗(Embc(Rm,Rn)), n > 2m+ 1. To obtain a similar description of the
rational homotopy of Embc(Rm,Rn), n > 2m+ 1, in small dimensions one
can use Corollary 4.3.

(5)These spaces are non-trivial only when the number of univalent vertices in 3-loop
graphs is even [28].
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Case Dimensions of rational homotopy Other generators
generators have dimension

m odd, n odd n− 2m− 1, 2n− 2m− 4, 2n−m− 4, > 4n− 3m− 9
3n− 2m− 7, 3n−m− 7, 4n− 4m− 8

m odd, n even n−m− 2, 2n− 3m− 3, 3n− 2m− 7, > 4n− 3m− 9,
3n−m− 7

m even, n odd 2n− 3m− 3, 2n−m− 4, 3n− 3m− 6, > 4n− 3m− 9
3n−m− 7

m even, n even n− 2m− 1, n−m− 2, 3n− 3m− 6, > 4n− 3m− 9
3n−m− 7

4. Rational homotopy of Embc(Rm,Rn)

It is natural to ask ourselves: “Is it possible to reconstruct from Q ⊗
π∗(Embc(Rm,Rn)) the rational homotopy of the initial embedding space
Embc(Rm,Rn)?” To answer this question it is enough to know the rational
homotopy of ΩmInj(Rm,Rn) (which is the homotopy of Inj(Rm,Rn) shifted
by m), and the image of the morphism

(4.1) Q⊗ π∗Embc(Rm,Rn) D∗−→ Q⊗ π∗ΩmInj(Rm,Rn)

induced by the Smale-Hirsch map D. The space Inj(Rm,Rn) is the Stiefel
variety of isometric linear injections of Rm into Rn. The rational homotopy
of Inj(Rm,Rn) is finite-dimensional, see Theorem 4.2. As a consequence up
to a finite-dimensional correction the rational homotopy of Embc(Rm,Rn)
and of Embc(Rm,Rn) is the same. We mention also that the rational ho-
mology of Embc(Rm,Rn), n > 2m+ 2, is a polynomial bialgebra generated
by the rational homotopy. This follows from the fact that Embc(Rm,Rn),
n > 2m+ 2, is a double loop space. For m > 2 it is straightforward, since
the spaces Embc(Rm,Rn), n > 2m + 2, are connected and have an ob-
vious action of the operad of m-cubes. For m = 1 this result is due to
Salvatore [33].

Theorem 4.1. — Let n > 2m + 2. A non-zero element of Q⊗
π∗ΩmInj(Rm,Rn) is in the image of (4.1) if and only if it is both of degree
> 2n− 3m− 4 and in the image of (Ωmi)∗, where i is the natural inclusion

(4.2) Inj(Rm−1,Rn−1) i
↪→ Inj(Rm,Rn).

Proof. — R. Budney proved that Embc(Rm,Rn) is (2n−3m−4)-connec-
ted [7, Proposition 3.9]. In the same paper he showed that the map D up
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to homotopy factors through ΩmInj(Rm−1,Rn−1) [7, Theorem 2.5]:

Embc(Rm,Rn) D //

hol ))SSSSSSSSSSSSSS
ΩmInj(Rm,Rn)

ΩmInj(Rm−1,Rn−1)
Ωmi

55kkkkkkkkkkkkkk

Thus to prove the above theorem, one only needs to show that every class
ω ∈ Q ⊗ π∗ΩmInj(Rm,Rn), such that deg ω > 2n − 3m − 4 and ω ∈
Im (Ωmi)∗, does appear in ImD∗. Notice that if ω /∈ ImD∗, then ∂∗ω 6= 0,
where ∂∗ is the connecting homomorphism (3.2). One also has

deg ∂∗ω = deg ω − 1.

The end of the proof will go as follows. Assuming ∂∗ω 6= 0 we will
show that deg ∂∗ω is too big to make ∂∗ω appear in complexity 1, too
small to make it appear in complexity > 3, and its parity does not match
to appear in complexity 2. The space Inj(Rm,Rn) is a fibered product
Sn−1 n Sn−2 n . . .n Sn−m, and moreover the inclusion (4.2) is

Inj(Rm−1,Rn−1) � � // Inj(Rm,Rn)

Sn−2 n . . .n Sn−m
� � // Sn−1 n Sn−2 n . . .n Sn−m

The rational homotopy of Inj(Rm,Rn) is described by the following well
known result whose proof we will sketch.

Theorem 4.2. — Assuming n > 2m > 2, one has
• for m odd, n odd:

Q⊗ π∗Inj(Rm,Rn) =
{
Q, ∗ = n−m or 2n− 3− 4k, 0 6 k 6 m−1

2 ;
0, otherwise.

• for m odd, n even:

Q⊗ π∗Inj(Rm,Rn) =
{
Q, ∗ = n− 1 or 2n− 5− 4k, 0 6 k 6 m−3

2 ;
0, otherwise.

• for m even, n odd:

Q⊗ π∗Inj(Rm,Rn) =
{
Q, ∗ = 2n− 3− 4k, 0 6 k 6 m−2

2 ;
0, otherwise.
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• for m even, n even:

Q⊗π∗Inj(Rm,Rn) =
{
Q, ∗ = n− 1, n−m, or 2n− 5− 4k, 0 6 k 6 m−2

2 ;
0, otherwise.

The classes of degree n−1 and n−m will be called Euler classes, the other
classes will be called Pontryagin classes. Notice that Pontryagin classes have
degrees 4`− 1, ` ∈ N. A similar statement is true in the range n > m > 1,
but if n 6 2m the Euler and Pontryagin classes can lie in the same degrees,
which makes more difficult to formulate the result.
Sketch of the proof. — One has a fibration

SO(n−m) ι→ SO(n) p→ Inj(Rm,Rn).

The rational homotopy of Inj(Rm,Rn) can be split into a direct sum of the
image of p∗ (containing all the Pontryagin classes of Inj(Rm,Rn) and the
Euler class of degree n−1, appearing if n is even) and a space transversal to
Im p∗ which gets mapped by a connecting homomorphism ∂∗ isomorphically
on Im ∂∗ (this space has dimension zero or one and is generated by the Euler
class of degree n −m, appearing if n −m is even). Theorem 4.2 is easily
proved by a careful study of the map ι∗ in rational homotopy. As we already
mentioned Inj(Rm,Rn) is a fibered product of spheres:

(4.3) Inj(Rm,Rn) = Sn−1 n Sn−2 n . . .n Sn−m.

The Pontryagin class of degree 4`− 1 appears either from the factor S2` n
S2`−1 of (4.3) or from the Hopf class of the last sphere if n − m = 2`.
The Euler class of degree n− 1 comes from the first sphere of (4.3) and it
appears only if n is even. The Euler class of degree n −m corresponds to
the last sphere of (4.3) and it appears only if n−m is even. The case m = 1
fits into Theorem 4.2: when n is even the only sphere Sn−1 is treated as
the first sphere in (4.3); when n is odd it is treated as the last one. �

We now return to the proof of Theorem 4.1. We first list the classes
in Q ⊗ π∗ΩmInj(Rm,Rn) that can not lie in ImD∗ by Budney’s result.
Basically these are the Euler classes (since their dimensions are too small)
and the top Pontryagin class when n is odd (since it is not in the image
of i∗). When n is even the only class which is not in the image of i∗ : Q⊗
π∗Inj(Rm−1,Rn−1)→ Q⊗π∗Inj(Rm,Rn) is the Euler class of degree n−1.
Via the image of ∂∗ it appears as a class of degree n − m − 2 in Q ⊗
π∗Embc(Rm,Rn). The shift of degree by m comes from m loops. This class
corresponds to the graph

��
n
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from (3.3).
When n is odd and m > 2 there is only one class not lying in Im i∗ which

is the top Pontryagin class whose degree is 2n−3. Via the connecting homo-
morphism it appears as a class of degree 2n−m−4 in Q⊗π∗Embc(Rm,Rn).
The corresponding graph from (3.3) is

.

For n odd and m = 1, there are two classes not in the image of i∗ (which
is a zero map since the source is zero): the Pontryagin class of degree 2n−1
and the Euler class of degree n− 1. The corresponding graphs are

���
, .

Assuming n > 2m+ 2, the Euler class of degree n− 2m in Q⊗ π∗ΩmInj
(Rm,Rn) can not lie in ImD∗ since by Budney’s result [7, Proposition 3.9]
the space Embc(Rm,Rn) is (2n− 3m− 4)-connected and

n− 2m > 2n− 3m− 4

is possible only if n = 4 and m = 1, but the case m = 1 excludes the Euler
class from the image of D∗ by the previous argument. Via the connecting
homomorphism this class produces a generator of degree n − 2m − 1 in
Q⊗ π∗Embc(Rm,Rn). The corresponding graph from (3.3) is

���
.

The degree of the bottom Pontyagin class of Inj(Rm,Rn) is 2n− 2m− 1
or 2n−2m+1 depending on the parity of n−m. Shifted by m it appears in
degree> 2n−3m−1 ofQ⊗π∗ΩmInj(Rm,Rn). But 2n−3m−1 > 2n−3m−4,
so neither of the other Pontryagin classes are excluded from ImD∗ by
Budney’s results.
Notice that the above analysis shows that Theorem 4.1 is equivalent to

Theorem 3.1.
To finish the proof of Theorem 4.1 one has to show that all the Pontryagin

classes except the top one (when n is odd) lie in ImD∗. Notice that the
degree of such class ω ∈ Q ⊗ π∗ΩmInj(Rm,Rn) is 4` − 1 − m for some
` > 0. If ω does not lie in ImD∗, then ∂∗ω 6= 0 and the degree of ∂∗ω
is 4` −m − 2. One has ∂∗ω can not lie in complexity 1, since complexity
one is already taken by the image of the Euler classes. It can not lie in
complexity 2, since the parity of its degree is m, and there are no classes
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other than of this parity in complexity 2, see Table 3.2, which is also
already taken by the image of the top Pontryagin class. Finally let us check
that ∂∗ω can not lie in complexity > 3. Assuming that ∂∗ω corresponds to
a cycle in graph-homology of Em,nπ in complexity t and Hodge degree s, let
I denote the number of internal vertices of one of the graphs in the linear
combination representing ∂∗ω, and E be the number of edges in this graph.
One has

E >
3I + s

2 .

One also has that the complexity t is

t = E − I.

From the above
E 6 3t− s.

The total degree is

deg ∂∗ω = (n− 1)E − n · I −ms = nt−ms− E > (n− 3)t− (m− 1)s.

Since for t > 3 one has s 6 t (Proposition 3.2), the total degree can be
estimated as

deg ∂∗ω > (n− 3)t− (m− 1)s > (n−m− 2)t > 3(n−m− 2).

On the other hand the degree of the highest Pontryagin class, which is in
the image of (Ωmi)∗, is 2n− 5−m or 2n− 7−m depending on the parity
of n. One can easily check that n > 2m+ 1 implies

3(n−m− 2) > 2n− 5−m,

which finishes the proof of Theorem 4.1. �

Theorem 3.1 is an equivalent reformulation of Theorem 4.1. Another
equivalent reformulation is given below.

Corollary 4.3. — Assuming n > 2m + 2, the ranks of the rational
homotopy of Embc(Rm,Rn) are related to that of Embc(Rm,Rn) as follows:

• for m odd, n odd:

rankQ⊗ π∗Embc(Rm,Rn) =
rankQ⊗ π∗Embc(Rm,Rn) + 1, ∗= 2n−m− 7− 4k, 0 6 k 6 m−3

2 ;
rankQ⊗ π∗Embc(Rm,Rn)− 1, ∗= 2n−m− 4, n− 2m− 1;
rankQ⊗ π∗Embc(Rm,Rn), otherwise.
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• for m odd, n even:

rankQ⊗ π∗Embc(Rm,Rn) =
rankQ⊗ π∗Embc(Rm,Rn) + 1, ∗= 2n−m− 5− 4k, 0 6 k 6 m−3

2 ;
rankQ⊗ π∗Embc(Rm,Rn)− 1, ∗= n−m− 2;
rankQ⊗ π∗Embc(Rm,Rn), otherwise.

• for m even, n odd:

rankQ⊗ π∗Embc(Rm,Rn) =
rankQ⊗ π∗Embc(Rm,Rn) + 1, ∗= 2n−m− 7− 4k, 0 6 k 6 m−4

2 ;
rankQ⊗ π∗Embc(Rm,Rn)− 1, ∗= 2n−m− 4;
rankQ⊗ π∗Embc(Rm,Rn), otherwise.

• for m even, n even:

rankQ⊗ π∗Embc(Rm,Rn) =
rankQ⊗ π∗Embc(Rm,Rn) + 1, ∗= 2n−m− 5− 4k, 0 6 k 6 m−2

2 ;
rankQ⊗ π∗Embc(Rm,Rn)− 1, ∗= n−m− 2, n− 2m− 1;
rankQ⊗ π∗Embc(Rm,Rn), otherwise.

5. Koszul complexes

5.1. Cofibrant model for H̃∗(Sm•,Q)

In this section we introduce an explicit cofibrant model (in the pro-
jective model structure) of the right Ω-module H̃∗(Sm•,Q). In Subsec-
tion 5.2 using this cofibrant replacement we produce another model for
the complex of derived maps hRmod

Ω
(H̃∗(Sm•,Q), N), where N is any

right Ω-module. Applying this to the case N = Ĥ∗(C(•,Rn),Q) or N =
Q⊗ π̂∗(C(•,Rn)) one obtains complexes Km,nH and Km,nπ computing respec-
tively H∗(Embc(Rm,Rn),Q) and Q⊗ π∗(Embc(Rm,Rn)).

One has H̃∗(Sm•,Q) =
⊕

s>0 H̃ms(Sm•,Q). Denote by Qms the Ω-module
H̃ms(Sm•,Q). It is concentrated in a single component

Qms (k) =
{

ΣmsQ, k = s;
0, k 6= s.
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In the above expression Σms means that the corresponding 1-dimensional
vector space lies in the grading ms. The symmetric group action on this
component coincides with the sign representation in case m is odd and is
trivial in case m is even.
Below we describe explicitly a cofibrant replacement CQms of Qms . This

construction comes from the theory of operads. As we explained in Subsec-
tion 1.5 the structure of a right Ω-module is the same thing as the struc-
ture of a right module over the operad Com+ of commutative non-unital
algebras. In [14, Section 5.3] Fresse defines a cofibrant replacement of a
right module M over any Koszul operad P. He denotes such replacement
CM by K(M,P, P ). As a symmetric sequence it is CM = M ◦ P ¡[1] ◦ P,
where P ¡ is the cooperad Koszul dual to P, and “[1]” denotes the operadic
suspension, see Subsection 1.5. The differential in M ◦ P ¡[1] ◦ P comes
from two ingredients: when a cooperation from P ¡[1] acts from the right
on M or when it acts from the left on P. For the precise definition and
construction, see [14]. Below we explain this construction in the case of
CQms = K(Qms , Com+, Com+). Notice that the action of Com+ on Qms is
trivial. Because of that only the second part of the differential is non-trivial
for CQms . The operad Com+ is well known to be Koszul whose Koszul dual
is the operad Lie of Lie algebras. We will use the description of the cooperad
coLie = Com+

¡ of Lie algebras that interprets the components of the co-
operad as spaces of trees modulo Arnol’ld relations. This description arises
from the duality between the homology and cohomology of configuration
spaces, see for example [35] or [39, Section 5], see also Subsection 1.5.2.
For a finite set K with k elements, the component CQms (K) of CQms =

Qms ◦ coLie[1] ◦ Com+ is a chain complex spanned by oriented forests with
s connected components. The vertices of the forests are disjoint subsets of
K so that all the vertices of any such forest define a partition of K. An ori-
entation set of a forest is the union of the set of its connected components
(considered as elements of degree m) and the set of edges (considered as
elements of degree 1). An orientation of a forest is an ordering of its orienta-
tion set. The relations in CQms are the orientation relations and the Arnol’d
relations. More precisely one has T1 = ±T2 if the forest T1 differs from T2
only in reordering of the orientation set. The sign is the corresponding
Koszul sign of permutation. The Arnol’d relations have the form:
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01 2 1

2

2

1

+ + =

S1 S1S1

S2 S2S2

S3 S3S3

where Si, i = 1, 2, 3, are disjoint subsets of K. All the other edges (and
vertices) in each of the three forests are the same. The differential in CQms
is the sum (with appropriate signs) of contractions of edges. The new ver-
tex is labeled by the union of two sets corresponding to the vertices that
bounded the collapsed edge. The sign is obtained by pulling the edge that
is contracted to the first place in the orientation set and then forgetting it
since it is no more present in the orientation set of the new forest:

6,7
−

6,7

3,5
3,5

21

=
1,2,4 1,2

3,5

4,6,741,2

∂

For a surjective map g : K1 → K2 between two finite sets, one has the
induced map

g∗ : CQms (K2)→ CQms (K1),
that sends any forest T ∈ CQms (K2) to the forest g∗(T ) obtained from T

by replacing each vertex Si ⊂ K2 with g−1(Si).
The map CQms → Qms sends everything to zero except the forest without

edges and whose all vertices are singletons. The latter forest gets mapped
to a generator of Qms (s).
From the definition it is clear that CQms as a right Com+ module is freely

generated by a certain symmetric sequence KQms = Qms ◦ coLie[1] that we
call the Koszul dual of Qms . Notice that KQms is naturally a (cofree) right
comodule over the cooperad coLie[1]. Explicitly KQms (K) is a subspace of
CQms (K) spanned by forests whose all vertices are singletons. Notice also
that KQms (K) is concentrated in the single homological degree ms+ (k −
s) = (m − 1)s + k (such forests have s connected components and k − s
edges).
It is easy to show that for m > 2 one has a natural isomorphism of

symmetric sequences:

(5.1) KQms (•) ' H̃(m−1)s+•(Sm•/∆•Sm,Q),

where ∆kSm denotes the “fat diagonal” in Smk — the union of subspaces
xi = xj , 1 6 i 6= j 6 k, in the smash product Sm ∧ . . . ∧ Sm = Smk.
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To see this isomorphism one can notice first that

(5.2) H̃∗(Smk/∆kSm,Q) = H∗(C(k,Rm),Q),

where H∗(−) denotes the locally compact singular homology. Then one
should use the Poincaré duality together with the description of the co-
homology groups of C(k,Rm) in terms of spaces of trees modulo Arnol’d
relations [1]. We leave it as an exercise to the reader. In [4] we gave a more
geometric explanation for the isomorphism (5.1).
To finish this section we mention that the Koszul dual of H̃∗(Sm•,Q)

is the sum of Koszul duals to Qms , s > 0, and is exactly the symmetric
sequence H∗(C(•,Rm),Q).

5.2. Koszul complex of derived maps

Let N be a right Ω-module. For simplicity we will be assuming that
N has a trivial differential, as is the case with Ĥ∗(C(•,Rn),Q) and Q ⊗
π̂∗(C(•,Rn)). We will now desrcibe explicitly the complex of derived maps

(5.3) hRmod
Ω

(H̃∗(Sm•,Q), N) =
∏
s>0

Rmod
Ω

(CQms , N).

Since CQms is freely generated by the symmetric sequence KQms , one has
that the space of the above complex is the product

(5.4)
∏
s>0

∏
k>s

homΣk(KQms (k), N(k)).

In the case N = Ĥ∗(C(•,Rn),Q) or N = Q⊗ π̂∗(C(•,Rn)), n > 2m+2, the
product above can be replaced by a direct sum. Indeed, the homological de-
gree ofKQms (k) is (m−1)s+k. The spaces Ĥ∗(Bn(k),Q) and Q⊗π̂∗(Bn(k))
are concentrated in the degrees > k

2 (n−1) and > (k−1)(n−2) + 1 respec-
tively. Therefore homΣk(KQms (k), Ĥ∗(Bn(k),Q)) and homΣk(KQms (k),Q⊗
π̂∗(Bn(k))) are concentrated in the degrees > k

2 (n − 3) − (m − 1)s and
> k(n − 3) − (m − 1)s − n + 3 respectively. Notice that when s is fixed
this gradings go to infinity with k. As a consequence the second product
in (5.4) can be replaced by a direct sum in these two cases. On the other
hand since k > s , we obtain

k

2 (n− 3)− (m− 1)s > n− 2m− 1
2 s,

k(n− 3)− (m− 1)s− n+ 3 > (n−m− 2)s− n+ 3.
Since n > 2m + 2 we obtain that this minimal grading goes to infinity
with s, and therefore the first product in (5.4) can also be replaced by a
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direct sum. A similar argument shows that homΣk(KQms (k), N(k)) is also
a direct sum of spaces taken by the homological degree of N(k). Thus the
complexes of derived maps we are interested in can be written as direct
sums of complexes

(5.5) Km,nH = hRmod
Ω

(
H̃∗(Sm•,Q), Ĥ∗(C(•,Rn),Q)

)
=
⊕
s,t

(⊕
k>s

homΣk

(
KQms (k), Ĥt(n−1)(Bn(k),Q)

)
, ∂

)
;

(5.6) Km,nπ = hRmod
Ω

(
H̃∗(Sm•,Q),Q⊗ π̂∗(C(•,Rn))

)
=
⊕
s,t

(⊕
k>s

homΣk
(
KQms (k),Q⊗ π̂1+t(n−2)(Bn(k))

)
, ∂

)
.

In the first case one has a restriction k 6 2t. In the second case one has
restriction k 6 t+ 1.
Now let us describe the differential in the complex Rmod

Ω
(CQms , N). Let

f be a pure element in this complex lying in homΣk(KQms (k), N(k)). The
element ∂f is also pure and lies in homΣk+1(KQms (k + 1), N(k + 1)) (here
we are using the fact that N has trivial differential). Let T be a forest in
KQms (k + 1). One has

(∂f)(T ) = ∂(f(T ))− (−1)|f |f(∂T ).

Since we assume that N has trivial differential the first summand can be
ignored, and one has

(∂f)(T ) = (−1)|f |−1f(∂T ).

On the other hand,
∂T =

∑
e∈E(T )

±γ∗e (T/e),

where E(T ) is the set of edges of T ; T/e is the forest obtained from T by
contracting edge e. We view T/e as an element of KQms ((k + 1)/e) with
(k + 1)/e being the set obtained from {1, 2, . . . , k + 1} by identifying the
endpoints of e. The map

γ∗e : CQms ((k + 1)/e)→ CQms (k + 1)

above is induced by the surjective map

γe : k + 1→ (k + 1)/e.
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(Abusing notation γ∗e also denotes below the induced map γ∗e : N((k +
1)/e)→ N(k + 1).) Since f is a morphism of Ω-modules, we finally get

(5.7) (∂f)(T ) =
∑

e∈E(T )

±γ∗e (f(T/e)).

The sign is (−1)|f |−1 times the sign obtained by pulling the edge e on the
first place of the orientation set of T .

5.3. Complex of bicolored graphs

In this subsection we will describe a complex HHm,n dual to Km,nH . The
construction is a straightforward application of the duality between the
homology and cohomology of configuration spaces [35] to the description
of Km,nH that we gave in the previous subsection. This dual complex HHm,n

was already described in our previous paper [4, Section 11], but it was
constructed using a different approach. The complex HHm,n computes the
rational cohomology H∗(Embc(Rm,Rn),Q). Applying (5.1), (5.2), (5.5),
(5.6) one gets that this dual complex has the form

(5.8) HHm,n =
(⊕

k

H−∗(C(k,Rm),Q)⊗Σk Ĥ∗(C(k,Rn),Q), d
)
.

To recall Subsections 1.5.2-1.5.3, Ĥ∗(C(k,Rn),Q) and H ∗(C(k,Rm),Q) are
described as certain spaces of forests modulo Arnol’d relations. Finally
applying Poincaré duality

(5.9) H∗(C(k,Rm),Q) ' Hmk−∗(C(k,Rm),Q)⊗ (signk)⊗m

we can describe HHm,n as a complex of graphs that have two types of
edges: dotted and full. The dotted edges correspond to the generators
of H∗(C(•,Rm),Q) and the full edges correspond to the generators of
H∗(C(•,Rn),Q). The vertices of the graphs are non-labeled (this corre-
sponds to the fact that in (5.8) the tensor product is taken over Σk). There
are two restrictions on the graphs. If we remove the dotted edges the re-
sulting graph is a forest whose all connected components have at least two
vertices. If we remove the full edges the resulting graph is a forest with
any type of connected components. The number of full edges in a graph is
its complexity, the number of connected components obtained by removing
full edges is its Hodge degree. The space of graphs is taken modulo Arnol’d
relations with respect to both types of edges. The differential is the sum of
contractions of dotted edges. There are two equivalent ways two define the
orientation set of a graph. In the first way, see (5.8), (5.9), it consists of

TOME 65 (2015), FASCICULE 1



42 Gregory ARONE & Victor TURCHIN

• full edges (of degree (n− 1))
• dotted edges (of degree (m− 1))
• vertices (of degree −m)

It is easy to see that equivalently we can define an orientation set as a
union of

• full edges (of degree (n− 1))
• dotted edges (of degree −1)
• connected components with respect to dotted edges (of degree −m).

The edges are oriented. Changing orientation of an edge produces the sign
(−1)n in the case of a full edge and (−1)m in the case of a dotted edge
(assuming we choose the first way to define an orientation set, otherwise
there is no sign). The latter way is more natural to the operadic approach,
see Subsections 5.1, 5.2 in which we describe KQms = Qms ◦ coLie[1].
The complex HHm,n naturally carries a structure of a polynomial bial-

gebra (with respect to the operation of connected sum). The space of gen-
erators is given by its subcomplex HHm,n

π of connected graphs. Obviously
HHm,n

π computes the dual of the rational homotopy of Embc(Rm,Rn). The
table below describes the homology generators of HHm,n

π in complexities
6 2 and the corresponding to them generators of Em,nπ .

HHm,n
π ��

� 2+

Em,nπ �
��

��
n

As we mentioned earlier all our graph-complexes look very similar to the
graph-complexes that appear in the Bott-Taubes type integration construc-
tion for spaces of long embeddings [9, 31, 32, 42]. The latter construction
produces a map from a certain graph-complex to the de Rham complex of
differential forms on Embc(Rm,Rn). Unfortunately form > 2 this construc-
tion works nicely only on the level of graphs with no more than one cycle.
As example if we look at the classes from the previous table, only the third
and the forth ones are proper to Embc(Rm,Rn), see Theorem 3.1. Both
classes are recovered by Sakai in his construction [31]. The third class from
our table is the Haefliger class. It is the only class proper to Embc(Rm,Rn)
and appearing on the level of graphs without loops. The corresponding
cycle in Sakai’s graph-complex is
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+
1
3

.
It is quite interesting that both graphs appear in our computations but
in two different complexes. As another example, most of the wheel-type
cocycles considered in Proposition 3.3 are constructed in [32].

5.4. Complex of deformations

It turns out that the complex Km,nH has a natural interpretation from
the point of view of the deformation theory of operads. This theory was
initiated by Kontsevich and Soibelman [19] and was further developed by
Merkulov and Vallette [27]. Given m < n, one has inclusion of the operads
of little discs:

Bm
i
↪→ Bn.

inducing morphism in the homology

(5.10) H∗(Bm,Q) i∗−→ H∗(Bn,Q).

The operad H∗(Bm,Q) is the associative operad Assoc if m = 1 and is
the operad Poissm−1 of graded Poisson algebras with bracket [x1, x2] of
degree (m−1) and commutative product x1x2 of degree 0. The map (5.10)
sends the product to the product and the bracket to zero. We notice that
i∗ factors through the commutative operad.

Theorem 5.1. — For n > 2m+ 2, one has

CQ
∗Embc(Rm,Rn) ' Σ−m−1Def

(
H∗(Bm,Q) i∗→ H∗(Bn,Q))

)
.

In the above Def(• → •) states for a deformation complex of a mor-
phism of operads as defined in [19, 27]. For simplicity the operads Bm, Bn
in the above theorem are taken without the degree zero component.(6)

The case m = 1 of this theorem is well known. Indeed, the complex
Def

(
Assoc i∗−→ H∗(Bm,Q)

)
is the usual Hochschild complex of the operad

H∗(Bn,Q) = Poissn−1, see [19, 38, 21]. For m > 2 this relation between the
homology of higher dimensional long knots and the deformation homology
of the morphism (5.10) was conjectured earlier by Kontsevich.

(6)We believe that the result is still true even if one includes the degree zero components,
but technically it is more complicated, since one has to find a cofibrant model of the
unital Poisson and associative operads.
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We should also mention that the deformation complex of the map (5.10)
in case m = n, i.e., when i∗ is the identity map, was studied by Willwacher
in [46]. In the latter work several graph-complexes similar to those ap-
pearing in our paper are produced. Moreover in [46, Section 4], the author
considers a filtration in one of his graph-complexes whose associated graded
quotient up to a regrading is quasi-isomorphic to our deformation complex
(assuming m and n are of the same parity), see [46, Remark 4.7]. One of
the interesting consequences of Willwacher’s work for us is that in case n is
even, the Hodge degree one part of the rational homotopy of Embc(Rm,Rn)
always contains the non-completed Grothendieck-Teichmüller Lie algebra,
see [46, Proposition 7.2]. Since the Hodge degree one part of the complex
Em,nπ depends only on the parity of n the latter result holds for either parity
of m, but of course always assuming the stable range n > 2m+ 2. Besides
that a careful reader might also find several overlaps between our paper and
the one of Willwacher [46] in the way of working with graph-complexes.
Let Poiss∞m−1 be a cofibrant model of Poissm−1, that is a quasi-free

operad quasi-isomorphic to Poissm−1 via a projection

Poiss∞m−1
p−→ Poissm−1.

The operad Poissm−1 is known to be Koszul [16]. Its Koszul dual Poiss!
m−1

is the operad of graded Poisson algebras with bracket of degree zero and
commutative product of degree (m−1). The cofibrant model Poiss∞m−1 can
be chosen as the quasi-free operad F(Σ−1Poiss¡

m−1[1]) generated by the
symmetric sequence Σ−1Poiss¡

m−1[1], where Poiss¡
m−1[1] is the cooperad

whose dual is the operad Poiss!
m−1[1] of graded Poisson algebras with

bracket of degree 1 and commutative product of degree m,(7) and Σ−1

is the desuspension of each component in the symmetric sequence. The
differential in F(Σ−1Poiss¡

m−1[1]) comes from the cooperadic structure of
Poiss¡

m−1[1]. We refer to [27] for a better account on the deformation theory
of Koszul objects. The space of the complex Def

(
Poissm−1

i∗→ Poissn−1

)
is the space of infinitesimal deformations (derivations) of the morphism of
operads:

F(Σ−1Poiss¡
m−1[1]) p◦i∗−→ Poissn−1,

(7)The operad Poiss!m−1[1] is obtained from Poiss!m−1 by an operadic suspension, see
Subsection 1.5.1.
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that is

(5.11) Def
(
Poissm−1

i∗→ Poissn−1
)

=
⊕
k>2

homΣk
(
Σ−1Poiss¡

m−1[1](k),Poissn−1(k)
)
.

One has a natural isomorphism of graded Σk-modules

H̃∗(Smk/∆kSm,Q) ' ΣmPoiss¡
m−1[1](k),

that one can see for example from the forest description of H̃∗(Smk/∆kSm,

Q) = H∗(C(k,Rm),Q) given above and a similar forest description of the
cooperad of Poisson algebras given in [35] (here H denotes singular locally
finite homology). The differential in (5.11) is the pre-Lie commutator with
µ = x1x2, see [27]:(8)

df = µ ◦ f − (−1)|f |−1f ◦ µ.

The second summand is exactly the right-hand side of (5.7). The first
summand can be written as follows

(5.12) (µ ◦ f)(T ) =
∑
v

(−1)δxv · f(T \ v),

where the sum is taken over the univalent vertices of the forest T . The sign
(−1)δ is the Koszul sign of permutation taking the only edge adjacent to v
on the first place of the orientation set of T , and T \ v denotes the forest
obtained from T by removing the vertex v and the edge adjacent to it. The
total complex (5.11) can be written as⊕

k>2
Σm+1homΣk

(
H∗(C(k,Rm),Q),H∗(C(k,Rn),Q)

)
.

This complex contains an acyclic complex spanned by degeneracies. The
quotient-complex is exactly the (shifted by m+ 1 gradings) complex Km,nH :

(5.13)
⊕
k>2

Σm+1homΣk
(
H∗(C(k,Rm),Q), Ĥ∗(C(k,Rn),Q)

)
,

computing the reduced rational homology of Embc(Rm,Rn). This is
straightforward and similar to the fact that the Hochschild complex of the
Poisson operad is a direct sum of its normalized subcomplex and an acyclic
one spanned by degeneracies. The complex (5.13) can also be interpreted
as the complex of unital deformations of the morphism Poissm−1

i∗−→

(8)Here we use the fact that i∗ sends [x1, x2] to zero.
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Poissn−1. By unital we mean deformations preserving the zero-ary opera-
tion 11 ∈ Poissm−1(0) (the deformation of higher operations are annihilated
when applied to 11) if the latter one is added to the operad Poissm−1.

6. Euler characteristics of the double splitting

In this section we investigate the generating function of the Euler charac-
teristics of the double splitting in the rational homology of Embc(Rm,Rn).
Let χst denote the Euler characteristic of the summand Km,nH (s, t) of com-
plexity t and Hodge degree s, see (5.5). This summand is finite dimensional,
so the homology should also be finite dimensional and the Euler character-
istic is well defined. Let

(6.1) Fmn(x, u) =
∑
st

χstx
sut

denote the generating function of the Euler characteristics of the double
splitting in H∗(Embc(Rm,Rn);Q). It is clear that this function depends
only on the parities of m and n.

Theorem 6.1. — One has

(6.2) Fmn(x, u) =
∏
`>1

Γ((−1)n−1E`( 1
u )− (−1)m−1E`(x))

((−1)n−1`u`)(−1)m−1E`(x)Γ((−1)n−1E`( 1
u ))

,

where each factor in the product is understood as the asymptotic expansion
of the underlying function when u is complex and (−1)n−1u` → +0 and x
is considered as a fixed parameter. In the above Γ(y) is the gamma function
which is (y− 1)! on positive integers, E`(y) = 1

`

∑
d|` µ(d)y`/d (where µ(−)

is the standard Möbius function).

Tables A.2, A.4, A.6, A.8 describe χst for complexities t 6 23. From
these tables the above generating functions start as follows:

Foo(x, u) = 1 + x2u+ (x4 + x2 − x)u2 + (x6 + x4 − x3 + x2 − x)u3 + . . .

Foe(x, u) = 1− xu+ x3u2 + (−x4 − x2 + x)u3 + . . .

Feo(x, u) = 1 + (−x3 + x)u2 + (−x3 + x)u3 + . . .

Fee(x, u) = 1 + (−x2 + x)u+ (−x3 + x2)u2 + (−x4 + 2x3 − x)u3 + . . .

The subscript o refers to the case when the corresponding variable m or n
is odd, and the subscript e refers to the situation when m or n is even.

The case m = 1 of this formula was proved in [40]. We refer the reader
to this paper which explains this formula in more details. In the rest of the
section we sketch the main steps of the computations.
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From Subsection 5.2 the complex computing H∗(Embc(Rm,Rn),Q) in
complexity t and Hodge degree s is( 2t⊕

k=s
homΣk

(
KQms (k), Ĥt(n−1)(C(k,Rn);Q)

)
, ∂

)
.

To recall (5.1), the Σk-module KQms (k) is H̃k+s(m−1)(Smk/∆kSm;Q) =
Hk+s(m−1)(C(k,Rm);Q) (assuming m > 2), where H denotes the locally
compact singular homology. The entire complex computing H∗(Embc(Rm,
Rn);Q) is(⊕

k>0
homΣk

(
H∗(C(k,Rm);Q), Ĥ∗(C(k,Rn),Q)

)
, ∂

)
.

The above formula is also true for m = 1, but in that case the splitting over
the Hodge degree can not be defined in the same way. For m = 1 this split-
ting is similar to the Hodge-type splitting in the Hochschild (co)homology
of a commutative algebra [40]. As we mentioned earlier the case m = 1 of
Theorem 6.1 was done in [40, Theorem 13.1]. For simplicity of exposition
we will be assuming below that m > 2.
We start by introducing some standard notation. For each permutation

σ ∈ Σk define Z(σ), the cycle indicator of σ, by

Z(σ) =
∏
`

a
j`(σ)
` ,

where j`(σ) is the number of `-cycles of σ and where a1, a2, a3, . . . is an
infinite family of commuting variables.
Let ρV : Sk → GL(V ) be a representation of Σk. Define ZV (a1, a2, . . .)

the cycle index of V , by

ZV (a1, a2, . . .) = 1
n!
∑
σ∈Σk

tr ρV (σ) · Z(σ).

Similarly for a symmetric sequence W = {W (k), k > 0} — sequence of
Σk-modules, one defines its cycle index sum ZW by

ZW (a1, a2, . . .) =
+∞∑
k=0

ZW (k)(a1, a2, . . .).

The following lemma is well known [40, Lemma 15.4].

Lemma 6.2. — Let V and W be two Σk-modules, then

dim homΣk(V,W ) =
(
ZV (a` ← ∂/∂a`, ` ∈ N) ZW (a` ← `a`, ` ∈ N)

)∣∣∣a`=0,
`∈N

.
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In the above formula ZW (a` ← `a`, ` ∈ N) is a polynomial obtained
from ZW (a1, a2, . . .) by replacing each variable a` by `a`. The expression
ZV (a` ← ∂/∂a`, ` ∈ N) is a differential operator obtained from the polyno-
mial ZV (a1, a2, . . .) by replacing each a` by ∂/∂a`. The differential operator
is applied to the polynomial and at the end one takes all the variables a`,
` ∈ N, to be zero.

In case V =
⊕

i Vi, W =
⊕

iWi are graded Sk-modules, and dim homΣk
(V,W ) is the graded dimension:

dim homΣk(V,W ) =
∑
i,j∈Z

dim homΣk(Vi,Wj)zj−i,

and ZV , ZW are graded cycle indices:

ZV (z; a1, a2, . . .) =
∑
i∈Z

ZVi(a1, a2, . . .)zi,

ZW (z; a1, a2, . . .) =
∑
i∈Z

ZWi
(a1, a2, . . .)zi.

Then

(6.3) dim homΣk(V,W )

= ZV (1/z; a` ← ∂/∂a`, ` ∈ N) ZW (z; a` ← `a`, ` ∈ N)
∣∣∣a`=0,
`∈N

.

We will be considering bigraded symmetric sequences. Similarly in our
computations we will add one more variable x or u responsible for the
second grading.
Next step is to find the graded cycle index sum of the symmetric se-

quences H∗(C(•,Rm);Q), and Ĥ∗(Bn(•),Q). The symmetric group action
on the homology of configuration spaces C(k,Rn) is well understood [10,
23, 24].

Proposition 6.3. — The graded cycle index sum for the symmetric
sequence

H∗(C(•,Rn),Q) = {H∗(C(k,Rn),Q)| k > 0}
is given by the following formula:
(6.4)

ZH∗(C(•,Rn),Q)(z; a1, a2, . . .)=
+∞∏
`=1

(
1 + (−1)n(−z)(n−1)`a

)̀(−1)nE`
(

1
(−z)n−1

)
,

where E`(y) = 1
`

∑
d|` µ(d)y `d .

Proof. — It is an easy consequence of [23, Theorem B]. �
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Let us add another variable u that will be responsible for the complexity,
which is the homology degree divided by (n− 1). Thus the u-degree is the
z-degree divided by (n− 1):

(6.5) ZH∗(C(•,Rn),Q)(z, u; a1, a2, . . .)

=
+∞∏
`=1

(
1 + (−1)n((−z)(n−1)u)`a`

)(−1)nE`
(

1
(−z)n−1u

)
.

The following result is easily obtained from (6.5), see [40, Section 15.2].

Proposition 6.4 ([40]). — One has

(6.6) ZĤ∗(C(•,Rn),Q)(z, u; a1, a2, . . .)

=
+∞∏
`=1

e−
a`
`

(
1 + (−1)n((−z)(n−1)u)`a`

)(−1)nE`
(

1
(−z)n−1u

)
,

where the variable u is responsible for the complexity and z for the homol-
ogy degree.

Proposition 6.5. — One has

(6.7) ZH∗(C(•,Rm),Q)(z, x; a`, ` ∈ N) =
+∞∏
`=1

(1 + (−z)`a`)(−1)mE`((−z)m−1x),

where the variable x is responsible for the Hodge degree and z is responsible
for the homology degree.

Proof. — From the Poincaré duality one has an isomorphism of Σ`-
modules:

(6.8) H∗(C(`,Rm),Q) ' H`m−∗(C(`,Rm),Q)⊗ (sign`)⊗m.

The sign representation appears due to the fact that the Poincaré duality
uses the orientation of the variety. From the above one has

Hi(m−1)+`(C(`,Rm),Q) ' H(`−i)(m−1)(C(`,Rm),Q)⊗ (sign`)⊗m.

So, the part of H∗(C(`,Rm),Q) lying in Hodge degree i corresponds to the
part of H∗(C(`,Rm),Q) lying in complexity (`− i).
It follows from this, that

(6.9) ZH∗(C(•,Rm),Q)(z, x; a`, ` ∈ N)

= ZH∗(C(•,Rm),Q)(z ← 1/z;u← 1/x; a` ← (−1)(`−1)mx`zm`a`, ` ∈ N).

Indeed, the sign (−1)(`−1)m arises because of the factor (sign`)⊗m in (6.8).
The isomorphism (6.8) sends the complexity t to the Hodge degree s = `−t,
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which explains why u is replaced by 1/x, and also the presence of the factor
x` in a` ← (−1)(`−1)mx`zm`a`. The total homological degree ∗ of the left-
hand side corresponds to (m` − ∗) of the right-hand side in (6.8): this
explains why z is replaced by 1/z, and also the presence of the factor zm`
in a` ← (−1)(`−1)mx`zm`a`.
The equation (6.7) follows immediately from (6.9) and (6.4). �

Proof of Theorem 6.1. — Define Ψmn(x, u, z) as the following generating
function:

Ψmn(x, u, z) =
∑
s,t,k

dim
(

homΣk

(
Hs(m−1)+k(C(k,Rm);Q),

Ĥt(n−1)(C(k,Rn);Q)
))
xsutzt(n−1)−s(m−1)−k.

The variable x is responsible for the Hodge degree; the variable u is re-
sponsible for the complexity; and the variable z for the total homological
degree. It follows from (6.3), and Propositions 6.4-6.5 that

Ψmn(x, u, z)

=
(+∞∏
`=1

(
1 + (−1/z)`∂/∂a`

)(−1)mE`
(

x

(−z)m−1

)
+∞∏
`=1

e−a`
(
1 + (−1)n`((−z)(n−1)u)`a`

)(−1)nE`
(

1
(−z)n−1u

))∣∣∣∣∣a`=0,
`∈N

=
+∞∏
`=1

((
1 + (−1/z)`∂/∂a`

)(−1)mE`
(

x

(−z)m−1

)

e−a`
(
1 + (−1)n`((−z)(n−1)u)`a`

)(−1)nE`
(

1
(−z)n−1u

))∣∣∣∣∣
a`=0

.

Since Fmn(x, u) = Φmn(x, u,−1) we get

Fmn(x, u)=
+∞∏
`=1

(
(1+∂/∂a)(−1)mE`(x)

e−a
(
1+(−1)n`u`a

)(−1)nE`( 1
u )
)∣∣∣∣
a=0

.

Notice that in the above formula we replaced a` by a. We could do so
because each factor uses only one variable a` which is anyway taken to be
zero.
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The rest follows from the formula(
(1 + ∂/∂a)(−1)mE`(x)

e−a
(
1 + (−1)n`u`a

)(−1)nE`( 1
u )
)∣∣∣∣

a=0

=
Γ((−1)n−1E`( 1

u )− (−1)m−1E`(x))(
(−1)n−1`u`

)(−1)m−1E`(x)Γ((−1)n−1E`( 1
u ))

,

which is proved in [40, Proposition 15.7]. �
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Appendix A. Tables of Euler characteristics

We present below results of computer calculations which were produced
using Maple. These results appeared partially in [40]. We add here the case
of even m. For completeness of presentation we keep the case of odd m as
well. To recall χst denotes the Euler characteristic of H∗(Embc(Rm,Rn),Q)
in complexity t and Hodge degree s. Let χπst denote the Euler characteristic
of an analogous component of Q⊗ π∗Embc(Rm,Rn).

Lemma A.1.

(A.1) Fmn(x, u) =
∑
st

χstx
sut =

∏
st

1
(1− xsut)χπst .

Proof. — See [40, Lemma 16.1]. �

This formula was used to fill Tables A.1, A.3, A.5, A.7. The last column
“total” stays for the sum of absolute values of the Euler characteristics of
the terms in a given complexity. This gives a lower bound estimation for
the rank of the rational homotopy in a given complexity.
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 total

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

4 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

5 -2 2 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

6 -1 2 -3 2 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

7 -2 3 -4 4 -3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18

8 -2 4 -6 7 -6 4 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

9 -2 5 -1
0

12 -1
1

9 -5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56

10 -1 5 -1
4

20 -2
2

19 -1
2

6 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 102

11 -2 7 -1
7

30 -3
9

38 -2
9

16 -6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 186

12 0 5 -2
2

45 -6
6

72 -6
0

40 -2
0

7 -2 1 0 0 0 0 0 0 0 0 0 0 0 340

13 0 4 -2
5

60 -1
04

13
3

-1
25

91 -5
2

24 -9 3 0 0 0 0 0 0 0 0 0 0 0 630

14 -1 2 -2
2

79 -1
55

22
1

-2
44

20
3

-1
30

68 -3
0

11 -3 1 0 0 0 0 0 0 0 0 0 1170

15 -1 3 -1
7

81 -2
17

36
8

-4
45

41
3

-3
08

18
6

-9
1

37 -1
2

3 0 0 0 0 0 0 0 0 0 2182

16 -4 3 -1
2

83 -2
75

54
9

-7
69

82
3

-6
85

45
5

-2
55

12
1

-4
5

13 -3 1 0 0 0 0 0 0 0 4096

17 -1
8
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2
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2
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Figure A.1. Table for Euler characteristics χπst by complexity t and
Hodge degree s of π∗Embc(Rm,Rn)⊗Q for both m and n odd
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 -1 1 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 -1 1 -3 3 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 -2 3 -4 3 -3 3 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 -1 3 -8 8 -8 6 -3 3 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

7 -2 6 -1
1

13 -1
7

13 -8 6 -3 3 -1 1 0 1 0 0 0 0 0 0 0 0 0

8 -2 7 -1
6

25 -3
0

25 -2
5

18 -8 6 -3 3 -1 1 0 1 0 0 0 0 0 0 0

9 -2 10 -2
5

41 -5
5

57 -5
1

34 -2
5

18 -8 6 -3 3 -1 1 0 1 0 0 0 0 0

10 -1 11 -3
6

67 -9
5

10
8

-1
07

86 -6
5

41 -2
5

18 -8 6 -3 3 -1 1 0 1 0 0 0

11 -2 15 -4
5

10
1

-1
66

20
7

-2
17

18
8

-1
50

10
2

-6
5

41 -2
5

18 -8 6 -3 3 -1 1 0 1 0

12 0 14 -6
1

15
3

-2
67

36
7

-4
22

40
5

-3
40

24
4

-1
73

11
3

-6
5

41 -2
5

18 -8 6 -3 3 -1 1 0

13 0 15 -7
4

21
0

-4
21

64
8

-7
95

82
0

-7
43

58
4

-4
22

27
1

-1
73

11
3

-6
5

41 -2
5

18 -8 6 -3 3 -1

14 -1 12 -8
3

29
0

-6
33

10
63

-1
44
9

16
29

-1
55
7

13
07

-1
00
3

69
2

-4
60

28
6

-1
73

11
3

-6
5

41 -2
5

18 -8 6 -3

15 -1 13 -8
8

35
5
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19

17
30
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52
9
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19
0

28
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8

16
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11
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1
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05
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0
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0
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Figure A.2. Table for Euler characteristics χst by complexity t and
Hodge degree s of H∗(Embc(Rm,Rn);Q) for both m and n odd
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 total

1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

6 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

7 1 0 -1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

8 -1 1 1 -2 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

9 0 0 2 -1 0 0 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

10 -2 0 3 -2 0 3 -4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

11 2 -3 1 3 -6 5 -1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 24

12 0 -1 0 4 -6 4 2 -6 5 -3 1 0 0 0 0 0 0 0 0 0 0 0 0 32

13 3 -2 -3 12 -1
0

-6 15 -1
3

5 1 -2 1 -1 0 0 0 0 0 0 0 0 0 0 74

14 0 3 -1
3

8 10 -2
0

19 -8 -4 10 -8 4 -1 0 0 0 0 0 0 0 0 0 0 108

15 0 5 -1
5

5 23 -3
6

23 11 -3
2

25 -1
1

1 3 -2 0 0 0 0 0 0 0 0 0 192

16 -7 18 -9 -3
0

59 -3
8

-2
1

68 -5
9

17 11 -1
6

11 -5 1 0 0 0 0 0 0 0 0 370

17 -1
4

19 23 -8
2

64 34 -1
00

96 -4
3

-2
1

56 -4
9

21 -2 -3 2 -1 0 0 0 0 0 0 630

18 -1
6

-1 52 -1
20

78 15
2
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68

12
2

85 -1
68

12
6
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5
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2

26 -1
6

6 -1 0 0 0 0 0 0 1294
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2
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8

17
6
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86

29
0
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0

34
6

-3
39

10
0
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08
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3

5 3 -2 0 0 0 0 0 2142
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Figure A.3. Table of Euler characteristics χπst by complexity t and
Hodge degree s of π∗Embc(Rm,Rn)⊗Q for m odd and n even
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 -1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 0 -1 2 -2 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 -1 1 -1 1 -2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 -3 2 1 -2 2 -2 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 -1 1 0 -3 5 -5 3 -2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0

9 0 0 3 -2 4 -7 4 1 -3 2 -2 0 -1 0 0 0 0 0 0 0 0 0 0

10 -2 2 3 -1
0

6 3 -1
0

11 -7 4 -2 2 0 0 1 0 0 0 0 0 0 0 0

11 2 -3 3 1 -8 14 -1
2

12 -1
1

4 1 -3 2 -2 0 -1 0 0 0 0 0 0 0

12 0 -2 3 1 -1
1

21 -2
3

6 11 -1
8

15 -7 4 -2 2 0 0 1 0 0 0 0 0

13 3 -6 3 20 -3
3

14 15 -3
6

41 -2
8

19 -1
3

3 1 -3 2 -2 0 -1 0 0 0 0

14 0 4 -1
6
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6

45 -5
9

51 -3
0

0 19 -2
2

17 -7 4 -2 2 0 0 1 0 0

15 0 2 -2
0

33 3 -6
0

10
5

-8
3

2 65 -8
8

72 -3
8

20 -1
4

3 1 -3 2 -2 0 -1 0

16 -7 25 -2
7

-1
1

88 -1
39

67 60 -1
47

16
5

-1
27

75 -3
0

-9 25 -2
2

17 -7 4 -2 2 0 0

17 -1
4

22 10 -8
6

12
6

-7
4

-3
3

19
0

-2
95

25
7

-9
1

-7
9

14
8

-1
35

90 -4
2

19 -1
4

3 1 -3 2 -2

18 -1
6

20 31 -1
88

26
6

29 -4
25

52
6

-3
26

-4
2

33
2

-4
13

33
0

-1
88

80 -2
2

-1
3

27 -2
2

17 -7 4 -2

19 -1
2

-8
4

21
6

-1
36

-3
8

36
8

-7
61

55
6

18
4

-7
21

81
4

-6
22

31
8

-4 -1
93

21
9

-1
61

94 -4
3

19 -1
4

3 1

20 7 -1
65

51
9

-7
7

-9
91

10
31

-4
44

-2
7

95
1

-1
73
9

13
32

-2
32

-6
16

87
1

-7
25

45
2

-2
10

73 -1
6

-1
3

27 -2
2

17
21 16

8

-7
4

24
5

-4
95

-1
70
5

32
09

11
7

-3
47
5

30
50

-1
41
6

-9
6

16
24

-2
22
3

16
91

-8
32

21
4

14
1

-2
85

25
5

-1
69

93 -4
3

19

22 63
8

-4
25

-2
71
0

21
45

20
11

40
4

-1
31
1

-5
57
8

63
95

63
2

-4
76
9

46
16

-3
31
8

13
72

60
2

-1
56
6

14
55

-9
44

49
8

-2
09

69 -1
3

-1
3

23 46
8

-3
29
0

-2
54
4

16
30
0

-1
62
0

-2
19
38

87
61

53
88

14
24

16
76

-1
17
16

91
57

-4
35

-4
21
4

49
86

-3
97
4

22
52

-7
94

35 25
9

-3
29

26
3

-1
71

Figure A.4. Table for Euler characteristics χst by complexity t and
Hodge degree s of H∗(Embc(Rm,Rn);Q) for m odd and n even
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 total

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

4 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

5 2 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

6 1 1 -2 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

7 2 1 -3 -1 2 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

8 2 2 -4 -3 3 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

9 2 3 -4 -5 4 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

10 1 6 -4 -1
0

6 5 -4 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38

11 2 5 -3 -1
5

5 14 -6 -4 3 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 58

12 0 8 0 -2
2

3 24 -7 -1
2

6 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 86
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9
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8
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Figure A.5. Table of Euler characteristics χπst by complexity t and
Hodge degree s of π∗Embc(Rm,Rn)⊗Q for m even and n odd
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 2 1 -2 -2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 3 -1 -4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 2 4 -2 -7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 2 6 -1 -1
0

-3 5 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 2 8 2 -1
6

-8 10 5 -3 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 14 5 -2
5

-1
5

15 12 -6 -3 2 0 0 0 0 0 0 0 0 0 0 0 0 0

11 2 13 13 -3
2

-3
4

26 26 -9 -8 2 1 0 0 0 0 0 0 0 0 0 0 0 0

12 0 18 26 -3
9
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4

33 55 -1
7
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1

6 5 -1 -1 0 0 0 0 0 0 0 0 0 0

13 0 19 45 -4
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Figure A.6. Table for Euler characteristics χst by complexity t and
Hodge degree s of H∗(Embc(Rm,Rn);Q) for m even and n odd
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 total

1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

6 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

7 -1 0 0 1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

8 1 0 -1 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

9 0 -2 0 2 -1 1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

10 2 0 1 -1 -4 2 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

11 -2 -1 3 0 0 3 -4 -1 2 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 18

12 0 2 2 -8 1 5 -5 4 1 -3 1 0 0 0 0 0 0 0 0 0 0 0 0 32

13 -3 0 0 -5 12 1 -1
2

8 -1 -2 3 -2 1 0 0 0 0 0 0 0 0 0 0 50
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4
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3
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Figure A.7. Table of Euler characteristics χπst by complexity t and
Hodge degree s of π∗Embc(Rm,Rn)⊗Q for both m and n even
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t Hodge degree s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 -1 0 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 -1 1 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 -1 0 -1 1 3 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 -1 0 -2 1 4 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 -1 1 -2 1 -1 1 5 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 0 1 -3 0 -3 2 7 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 -2 -1 4 -3 1 -3 2 8 -6 0 0 0 0 0 0 0 0 0 0 0 0 0

10 2 1 -1 0 -1 -6 4 -5 3 11 -8 0 0 0 0 0 0 0 0 0 0 0 0

11 -2 -1 2 1 0 5 -6 -1 -6 5 13 -1
0

0 0 0 0 0 0 0 0 0 0 0

12 0 2 5 -4 -7 2 3 -8 7 -7 3 16 -1
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Figure A.8. Table for Euler characteristics χst by complexity t and
Hodge degree s of H∗(Embc(Rm,Rn);Q) for both m and n even
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