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INtllODUCriON

VJtiensver suDpliec are ordered, whether they are for the

office, for productioa, or for research, v;hether they are :>ur-

chased or manufactured, there is a cost associated with each

order • In the cm^e of purc.iOsed iteiaS, it is called, simply order

cost, but i.i the case of manufactured items it ii> usually called

setup cost. The setup co6t embodies such costs as aacuine *etup,

associated paperwork, idle production tiae during change over,

and other tangible and intangible cot-ts*

These yrocureraent or setup costs can sonetinies be extrewely

high; tliCrefore, it is natural to place as large an order as

possible, but a hidden factor in this reasoning ia the result-

ant coi-t of carrying and holding this inventory, be it njanufac*

tured or purchai^ed. There then must be soiae aeaas of balancing

these t\to costs, that is, production costs versus inventory costs,

and the nethod developed approximately a half-century ago is call-

ed an economic order quantity. The tena "qcogojixc'^ used in the

order quantity context sliould carry the connotation of "s.>ending

or saving resources or time to the best possible advantage", as

defined oy Mayuard (3).

Over tlie ;>ast fifty years there have been laany ecouoiiic order

quantity forrmlae derived. Many of tLese forrjuiae were derived

for specific cases aiid v.-cre not general fori.iulae» oiuce it is

impossible to include into a single foroula all associated costs.



only the relevant costs are included, Al&o there are always some

simplifying assuraptions made so the formula can readily be uaed.

It is t'ne effect of one of these assuwptions that we want to in-

vestigate in this thesis. r

Man has knovm since the beginning of tisae that as he r)erforms

certain tasks he becomes more proficient in each succeeding re-

petition of these tasks, but it was not until recent times that

this decrease in productioa time was predictable. The decrease ,

in production time is called learning and, as noted by Andress

(1), there is a "rising productivity," It is the affect of this

rising productivity verses linear productivity in determining

econonic order quantities that is under investigation.

It was discovered just prior to v.'orld War II that the rate

of iiaproveinent in manufacturing is predictable. It v.as found

that as the quantity of units produced is doubled, the time re-

quired to produce each of these units v^rill decrease by a con-

stant; thereby, making it possible to !7redict production time

on a future item. The discovery was made in the aircraft in-

dustry where the total item cost is large and a slight rise in

productivity will produce a noticeable decrease in the total

item cost. The decrease in total item cost, including setup

cost, production time, direct labor cost, carrying cost, and

holding cost, holds true for most ty >es of industry such as air-

craft, electronics, textile, metal working, or candy making. As

will be shown in subsequent sections, the difference in annual



cost obtained by using the learning curve production rate as

opixjsed to the linear production rate is significant, and could

have a detrimental effect on predictet future costs and txidget-'

ing« This could be especially true if the project is on a bid

contract basis* It could mean a loss of business or a project-

ed deficit if the project is contracted. The effect of the

learning process in determining economic order quantities will

occupy the reaaining iX>rtion of this thesis.



BACKGROUND

Economic Order Quantities Under
Linear Production Rate

Industry has long used the economic order quantity to guide

the scheduling of production and inventory control • This is

particularly true of continuous production and deiaand industries,

such as electronics, household goods, and appliances. Usually

the manufacturer has numerous product lines and it is icDossible

and impractical to have every different item on a continuous pro-

duction basis. The most logical decision would then be to stock

these items in inventory and schedule production to maintain an

adequate inventory level,

What is the proper production and inventory schedule? Cer-

tainly it is not economical to produce a full year*s demand for

each item during each procuction run. The most feasible solution

vjoxxlcl be to find the minirauia annual cost policy incurred by each

item and use that oolicy. The optimal policy v«)uld take into

consideration the relevant costs, the production rate, and the

usage or demand rate. In order to arrive at an optimal policy

a isathematical model will be constructed for the situation.

As in the derivation of any model, the boundaries must be

defined by some stipulations and assuraptions. The following

••suraptions will be follov/ed throughout the paper with a few

exceptions to be noted later.



1« Assumptions pertaining to the production-inventory mechanisai:

a. Demand is continuous at a linear or constaxit rate R

with dimensions of units i>er tiirect labor maii'-liour*

The inventory level will remain positive, making the

output rate equal to the demand rate.

b. Production occurs at a constant rate A, wlierc 1/a is

greater than R, and the dimensions of A are clmhrs per

unit.

c. The aiaount produced eacli production cycle (X) is con-

stant,

d# All time units (t) are measured in direct labor man-hours

(dlmhr)

•

e. Tiie process is continuous,

2» Assumptions pertaining to the measure of effectiveness (cost):

a. There is a fixed charge (i.) for each setup. This cost

includes machine setup, necessary paperwork, idle time

necessitated by the setup, and so forth,

b. There is an inventory holding cost (H), vihich includes

only the cost of physical storage, such as warehouse

cost, warehouse labor, warehouse overhead cost, and so

forth. The dimensions for H arc dollars per unit per

dlmhr.

c. Tliere is also an inventory carrying cost (id) which is

the interest (i in per cent ler dlmhr) on the original

cost of the product (d in dollars per dliahr); that is,

the interest on the idle capital. This cost v»rill be



directly proportional to ti c direct labor mr_n-hours

consuiaed per unit,

d« The original material costs i ave been disregarded in

this report in order to si ;:>lify tie resultant equation.

The model described by the above assumptions is shovm in

granhical form in Pig, 1, The figure shows the inventory level

under a linear production input during any production cycle.

Fig, 1, Inventory level under a
linear production input.

ProBi Pig, 1 we see the cycle duration is X/r, and the length

of production during the cycle is XA* c>ince R and X are constants,

the cycle duration will also renain a constant. The mathematical

model which describes the above situation is given by the total

cycle linear cost equation.

TCLNC B 5 (II idA)QCl - X^A)m IT (1)



The derivation of equation (1) is included in the Ap;>endix4

Consecjuently ti-.e total annual cobt is simply a sum"3ation of each

cycle cost during the year. Since each cycle ha^ the same cost

then the total annual linear cost is.

TALNC s= (TCLNCXNHimber of cycles per year) <2)

This is, then, the classical order quantity raodel described by

Hansnnann (6)«

Most inventory models are simplified to a per unit cost,

but for commrativc reasons, which will be manifested later, the

linear annual cost is the de^^ired equation.

The desired solution to equation (2) is the value of X which

will produce tie minimum annual cost. In tl^e linear cate an ex-

plicit minimal i>olution can be found, but a simulation technique

will be used instead. By varying the different parameter values

Production (Quantity (X)

Pig* 2, Total annual cost curve for
a linear production input.
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of equation (2) a parabolic curve is produced as shown in Fig. 2,

It can be seen from Fig* 2 that the optirauin X, X*, value can be

found that will give the miniriuia annual cost# Fortunately, a

cost curve of t e type shown in Pig, 2 is not extremely sensitive

to deviations from the optimum X value.

The preceding discussion was pret.ented as a background for

the total cost equation unaer learning to be derived later, A

comfjarison will be presented to show the difference in the total

annual cost obtained by using the linear input opposed to a

learning input.

Learning and Retention

The psychologist along with the industrial engineer is inter-

ested in the subject of the why's and hot^'s of learning-. The

subject of learning is indeed a complex subject and considerable

research has been done on the many facets of learning, but sur-

prisingly enough, the facet of long-term retention of ciotor skills

has not produced its share of technical papers. In fact, the last

century has produced only about two papers per year, which is a

drastically small number in proportion to tUe importance of the

subject.

The question of how or why does a person learn is not an

eai,y one to answer. In fact, the question has not been explic-

itly answered. There have been many theories presented, with



some of these being contratiictory. The antiwer to the original

question is probably some distance in the future, but this does

not obscure the fact ti'.at learning does take place. Even though

it is not known why or how learning talces place, through empirical

means it has been established that learning is predictable. For

instance, in the industrial environment it has been found that

learning takes place in an exponential manner. The rate or slope

of this exponential decrea..e in production time varies with the

complexity of the task, but it remains that learning is present

and predictable.

It hai. been found that many things could cause the learning

process to deviate frcra the exponential curve. This is especially

true when production on an item is com.senced for the first time.

The early stage of production is a period of laany changes. The

methods department is still in the experimental stage and has not

decided on a specific jig or fixture. The research and develop-

aent engineers are still making some last minute revisions, and

there are many more factors v/hicli could affect the learning pro-

cess, i/henever one of these changes go into affect, it could

introduce a strange atid new challrnge to the operator and produce

a regression in learning. It is changes of this type that >ro-

duce an "i>»» shaped curve instead of an exponential curve.

Regression can be produced by many factors. As seen above,

production, procedure, and product changes all produce to a

varyinr degree saae type of regression. Regression can also be

produced by non-reiuforceaent of the learned skill. This type
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of regression is found in industry when production is stopped

for a finite period of time and then resumed. If the operator

has been reraoved from prodi^ctiou and has had no reinforccwent on

the original production task during tie time lapse then there

most certainly vdll be a regression in learning. If the operator

is put on an associated task the regression laay be very siaall

and insignificant.

If production is continued only during a portion of eaeb

cycle on a specific product, will the regression be the ftame each

cycle or will it vary? The <ins\*er to this question could well

be the subject for aii extended research project, c-ince the re-

gression is of secondary importance in this paper, it has been

assumed that the regression during eac cycle of production will

reraai.i constant. This assumption could very easily be valid

since the off production ti ae for each cycle is a constant for

a particular itea. The effect of the regression on the totaX

annual cost will he shown in a subsequent section.

In this section, we have had a brief look at learning and

some of its implications. Also the subject of regression was

presented to give a background for a total annual cost equation

under learning. In the next section, we will investigate learn-

ing in an industrial situation.
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THE MANUFACTURING PROGRBSii FU^K7^I0N

DeveloiJment of the Unit Foraula

A brief review of learning and retention was presented in

the previous section. In this section we will see how learning

can be used in manufacturing. Learning, wlien applied to manu-

facturing, is usually used in the form of a curve for estimating

future production time. The curve used in this instance is call-

ed the learning: curve; a wore descriptive name toraetimes used is

the manufacturing progress function. Tae manufacturing pro^^ress

function is based on the relationship that the time to conplete

a unit of production will decrease by a constant >ercentage with

each doubled quantity of production. This empirical relationship

was firt-t put forth by T. P. Wright in 1936, in a related but

somewhat different form. It is well to note at this ooint that

the ideas in this section draw heavily on Torgcrion (13),

Tlie progress function states that the second unit Mill takt

eighty per cent as long to produce as the first unit, and the

fourth unit will take ei-hty i>er cent as long to produce as the

second, and the eij^hth unit eighty per cent as lone as the fourth,

ad infinitum. It will be noted that tbe eighty per cent, or a

twenty per cent reduction, was arbitrarily chosen. The progress

function could be seventy oer cent, eirhty-five per cent, ninety

per cent or any other feasible figure.
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One might ret the first impression that the reduction in

production time could not go on indefinitely. However, this is

not true. It should be noted that the reduction holds true for

doubled quantities only. This means that if the annual produc-

tion of an item is 1,000,000 units and 10,000,000 units have

been produced to date, it will be another ten years before the

full percentage improvement is realized. This type of improve-

ment is not unrealifitic. Take the automobile industry for an

example, Tliey could very easily be in the position described

above. If the manufacturer is operating on an eighty per cent

progress function, he will have to improve only two per cent per

year for the next ten years to realize the lull twenty per cent

improvement. It would be safe to state that technology is moving

much fatter than a two xjr cent inprovewent per year. This ex-

ample lias been greatly oversimplified, but the idea has been con-

veyed. One gross simplification is that the world today is far

from static and it is doubtful if the same curve could he used

for a p«#iod of ten years.

The progress function has gained initial accotauce and one

reason for that is the ease with which it can be applied. All

one needs to know is the initial unit production time, the slope

of the progress function, and some graph paper, As&uning an

eighty per cent orogrest curve with unit nuciber one taking 100,000

direct labor man-hours to produce, the graph of the unit direct

labor man-hours can be plotted as i^hown in Fig, 3,
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Pig, 3, An eighty per cent progress
function with unit number one
consuaing 100,000 Ulmhrs.

I'ircHi Pig, 3 the direct labor man-hours for any future unit

can be found, but to jlot Fig. 3 it was necessary to calculate

every needed point on the curve, A convenience not noted until

now can make the plotting of the curve considerably easier.

Since the curve is exponential, by taking the log of every point

a straight line can be effected. This relationship is also

visible by plotting the points on log-log graph paper. It will

be noted that the unit curve olots a straight line. Pin. 4, but

the cumulative average curve is curved until one gets past ap-

proximately unit number twenty and then it is also straight.

The unit curve is of primary importance here.
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Fig. 4* An eir-hty per cent progress
function with unit number one
consuming 100,000 dlialirs.

The straight line unit curve is very easy to construct and

can also be quite helpful to [jrouuction engineers, Dy plotting

actual consuraed time against an estiraatcd unit curve, it is very

easy to observe slight deviations from expected values and cor-

rective action can be taken tc bring the cof ts back into line.

Since the curve is easily constructed, it is also quite useful

for costing and bidding, especially on large equipment such as

airplanes.

iince the analytical solution of the learning curve is of

prime importance to a total annual cost equation under learning,

a complete derivation will be presented.
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Tbc empirical relationship, stated before, on v;hich this

analytical derivation is based is as follows, as the production

quantity of units is doubled, the number of dirt ct labor man-

hours required to produce these doubled units will decrease by

a constant percentage.

As in any derivation, symbols and definitions are needed.

The follovtfinc terms will be defined as:

X c the number of units proc-uced, counting from the
first unit.

Yjj a the number of direct labor man-hours required
to proc'uce the Xth unit.

A = the nujnber of direct labor man-hours required
to produce the first unit.

N a the per cent iraproveraent expressed as a decimal,
for exaar>le, for an eighty-five per cent progress
function, N a ,85.

n = JogipN

logio2

A general equation involving X and Y^^ can be derived as

follovjs:

Yjj a Alfi Where X «= 2<*

Yjj s AN^ where X a 2^

Yjj a .Mf' where X = 2^

Yjj = AN^ where X a 2^

thus.

Yjj = AN* wiiere X a 2^ (3)
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taking the logarithm of twth equations,

log Yjj = a log N + log A, and log X = a log 2

and solving both equations for a,

a s: log Y„ - log A , and a = lor; X

I^FlJ IBTT

equating the two equations,

log Y.^ » log A = log X
log N log 2

solving^

log Yx - log A = log N log X
log 2

by original definition, n = IokN, therefore.
log 1

log Yjj = n log X log A (4)

taking the antilog of both sides.

Yx = AX°
(5)

Thus, equation (5) is the manufacturing [progress unit for-

mula. In a following section several examples in ti>e use of the

unit foroula will be given.



17

The Cumulative Forumla

In the development of a total cost equation it will also be

necessary that ti-.e cumulative direct labor raan-hours be known;

therefore, in this section a cunmlative formula will be developed*

Let,

T^ = the cumulative number of direct labor man-hours
required to produce X unitt, of production. The
dimensions of T^ will be direct labor man-hours •

The cuiiul stive formula is then.

X
Tx = Yj Y2 ¥34 Y4 + ... * y^ r y Yx (6)

1

^ince the suimation of equation (6) could become quite lengthy

for large values of X, an approximation can be made,

X x+0.5

1 0,5

Txryf ^ . <^ * 0.5)°*^ - C0.5)«*l-I (7)

Grar>hical representation of the approximation of equation

(6) can be seen in Pig. 5.

An example will illu&trate the relative error experienced

by using the integral function. Assuming a progress function of

eighty per cent and production tirne for unit number one to be

100,000 direct labor raan-hours, by using equation (7),
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>...5

X
Pig, 5. The function ^ ^x and

I
x<fO,5

the integral r y^ dX.

0.5

^4 JL2O4OOO r(4,5)('678) ^ (o,5)^*^7a)-j
.678 L J

«s 316,667 cilrnhrs

The correct answer i& 314,210 direct labor raan-hours, giving in

this example an error of +0,78 per cent. This error i& indeed

not a serious error and for the purposes of this paper will be

sufficient.

It i^ill be noted that for limitt not including the first

unlti the integral will apf>roxiniate the step function quite
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closely. The validity of the approximations ir. this section rest

on the poiitulate that the area under the integral approximates

that under the step function.

Example Using the Manufacturing
Progress Function

It is sometimes necessary to know iiow long a time is required

for the manufacture of a specific unit. An example will, there-

fore, be presented illustrating the use of equation (5)« lising

N » .80, A = 100,000 dlmhrs, and solving for ¥5,

^
~

( lof? .0 )

Y5 = 105 X 5^^0g 2 )

( -.0969 )

= 10^ X 5< -3010)
>

= 10^ X 5-*222

Y5 s 59,600 direct labor man-hours

This is, the?, the time required to produce the fifth unit of

production.

The time required to produce the first five units can be

foui^ from equation (7).

1\ = 10loi. r(5,5)<«<i78) . (o.5)<-67r.)-|

.073 L J

= 2.547 X 10^ = 373,000 direct labor man-hours
.678

This is the time required to produce the first five units of

production.
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The Uses

In Pricinf;. As has been pointed out in previous sections

,

the progress function has realized a f^reat deal of use in the

area of pricing and contracting. The Air Force and the Navy use

the progress function to nrcdict tlie coiit of a predetermined

number of airframes for negotiating prices with prospective con-

tractori.. The days of cost plus federal contracting are gone

and now tbe governaent wants to know exactly what a certain item

or items will cost. It therefore behooves industry to utilize

t)*e most efficient and expedient raeans possible in costing pro-

duction items. This is where the progress function plays an im-

portant !->art. If learning \^ere not taken into consideration,

the cost of the frames would be grossly overestimated, leaving

so'-neone to pay for something not received. This is but one use

for the manufacturing progress function,

MM£ 2L Buy. ITie decision to laake or buy an item is a pro-

blem most industries face. Certainly the item should be produced

where the best cost advantage is available. This is where tixc

progress function agair. plays its role. If the progress function

is applied to t ;e in-house situation, it must also be used by the

external supplier. Tliis would seera to have a balancing effect,

but what if one party or the other has already produced several

production quantities of the item? Then most certainly both oar-

ties will not start at the same place on the progress function.
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Using a linear cost curve could very easily have produced a wrong

decision; one which could be very costly and one n^ich could have

been avoided,

la Production. The bcbetiuliag of production is one of the

tnost perplexing Jobs in a manufacturing or^^anization, and any-

thing which will facilitate the determining of schedules is alxvays

welcome. The progress function can be a helpful tool in project-

ing schedules, :.ince a rise in productivity is evident over a

long period of time with the same size wrk force, action can be

taken at tlie proper time to increase or decrease the work force

to meet the dCi^ired output. If this rise in productivity were

not visualized, an overstock of inventory could result, which

could carry a very high carrying and holding co^t and result in

needlessly spent capital.

Is financial Planning;. There are not many companies today

that can afford to disregard financial planning. It is, there-

fore, of utmost importance that available capital is used to the

benefit of the company. Since the preponderance of a company's

capital is usually constrained in the form of inventory, both

finished and in-process, it is therefore helpful to the treasurer

if he knows at what point in time the financial drain will fluc-

tuate, in what direction, and for what duration. The progress

function is a device wldch can hel'j in predicting the rate of

drain on the company »s capital. This use is closely allied vdth
production sc eduling and inventory control.
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Other Uses, This Is by no means all of the possible uses

for the progress function. As is evident, the majority of uses

lies in the predicting and planning of costs. Since the progress

function is a dynamic cool, not static, it can be used to predict

a dynandc situation, such as manufacturing. As the progress

function becomes more widely used, it is certain nevj and inter-

esting uses will be found for such a tool.

In this section the development and uses of the manufactur-

ing progress function have been discussett. The {mrpbse of this

section \sras to derive the progress function so it can be used in

the derivation of an order quantity formula to be presented in

the next section.
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DEVELOPMENT OF A TOTAL ANNUAL C506T
EQUATia^ UNDER LBAi<iMlNG

SoiMt Calient Features

One might a&k, i^iy develop another order cjuantity formria

to add to the already bulging library si elves? The answer is

very simole# In order for a matheraatical nodel to be useful, it

must be realistic, that is, it must be accurate in its conclus-

ions if it is to be used in making a decision in the real worlds

If the model does not accurately represent the real world it

would be very easy to make a v/roug decision based on tUe model;

therefore, the model would be useless except as an academic ex-

ercise.

It has been seen in nany industrial situations that there

is opportunity f-^r *«araing, therefore, any scheduling or cost-

ing decision sltould not disregard that fact in making a decision.

In view of t\)c progress function, it has been seen that there is

a rise in productivity as production advances* It was also no-

ticed in the develooiBent of the clastical linear model that this

rii,e in productivity was not included. What is the cost of the

exclusion of tlie rising productivity? The answer to that ques-

tion is t e purpose of this thesis anu, more expecially, of this

section.
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The Pir^t Production Cycle

In the derivation of the order quantity formula under learn*

iagiF the amount of inventory in holding must be obtained so that

the cost equation can be formulated.

The assumptions and definitions of t; e linear derivation

will be used witl) the following additions and exceptions:

1# There will be a rise in proc^uctivity as Droduc-
tion advances and will follow the manufacturing
progress function Y^j » AX*^*

2. The quantity produced (X) during each cycle of
production will be the same in each succeeding
cycle*

3. The time, in direct labor man-hours, required to
produce the fir^t unit v/ill be A,

4. There will be a regression in learning during
each off-production cycle of a constant number
of units (la),

5. Tlie 5«"oduction cycle will be designated by k,
xviiere k =s 1,2,.. •,!{:,

6. For simplicity, let n •• 1 = q,

7» The annual demand rate is represented by B which
is in units per year.

The inventory in holding during the first cycle, using an

exponential input and a linear output, will be as si own in Fig,

6, The holding inventory for cycle one is then tr^e area under

the curve in Fig, 6, The area can be obtained by integrating
the curve from t^ to t^. The equation for ti.e holding inventory
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>
a

1

Time (MJ^IHR)

Pig» 6» First cycle inventory in holding*

<!uring cycle one is;

I =

/
1 *2

(X - R)t dt +

At /
*1

(X - Rt) dt (8)

The inptat quantity during cycle one totals X unitti, but the rate

of input per unit will vary so the cycle avertige X/T^ is used,

Siraplifying equation (B),

I = xt2 - Xtj - Rt£;

«fli*re»

ti - to =^ Tx

t2 - t,, a X
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then.

o

2R ^^

where T^ is the tine required to produce the production during

this cycle only, T^j for the first cycle is simply equation (7),

because there is no regression of learning during the first

cycle. The inventory in holding during the first cycle is then

given by equation (9)* *

U'hc Second Production Cycle

During the second cycle the first regression in learning,

due to the interruption in proviuction during cycle one, is ex-

perienced. The quantity produced during the second cycle will

be Q units, which will equal X, and the time required to produce

these Q units will be Tq, which is not equal to Tx.

Because of the rise in productivity the holding inventory

for the second cycle will be greater than for the first cycle,

this is shown in Fig. 7. By virtue of the fact that the quan-

tity produced remains the same and tae demand function ii. con-

stant, the duration of each cycle wil.l remain constant. That is,

t2 - to « t4 - t2 (10)

The total inventory in holding during the second cycle is

then,

I - r (Q - R)t dt *^ (Q - Rt) dt (11)

t ^ i*2 t3
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Pig, 7, Second cycle Inventory in holding,

siraplifying,

I « ^ Qt4 .^ * R(t2^ - t/)

where.

*4 - *;

8

Q = C

resulting in.

1 sr X- -

5r ^
(12)
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Since there is a regression accounted for during the second

cycle, the value of Tq will have to be adjusted to accomplish

this fact, Tlic regression (a) is sbov.-n in Pig* 8,

I

Ci - m) X (X + Q - ffl) =

Unit WuBibf r

Pig, 8. ITie shJMied area is tie value
of Tq including the regression
in learning,

Tq is found by integrating the curve in Pig. 7 frora (X - m) to

(2X • la). Thus,

(2X - b)
Tq = r /\X° dX

= A n(2X - m)^ - (X - Bi)«J-A r-(2X - m)** - (X - Bi)*^-]

The inventory in holding during the second cycle can then be

found from equations (12) and (13),

(13)
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The Third Production Cycle

The third production cycle it. simply an extension of the

first and second cycles, but is presented here so a general equa-

tion can be deduced from the previous cycles.

The holding? inventory during the third cycle is shown in

Pig, 9, The a^iount produced during cycle throe ivill be design

nated P, where P = X « Q, The time required to produce these P

units will be designated Tp, where Tp Tq T^. The inventory

in holding is then.

I - r (P - R)t dt
t

/ ? (P • RRt) dt (14)

Siiaplifying equation (14),

I = P|4 - Pt5 * Pt4 * R(t42 . t^^)
til 2

Time (DLt^IR)

Pig. 9, The thir<i cycle inventory in holding.
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t6-t, = P

*6 - *5 =
I

- ^P

P = X

resulting in.
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2lt ~T (15)

I

X I (2X - la)

(X - in) (2X - 2ra)

<2X P -2ra)=

(3X - 2m)

Unit Number

Pig, 30, The shaded area is the value
for Tp including the regression
from the previous cycles.
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The value for Tp will have to be adjusted for another re-

gression because of the interruptions experienceti during cycles

one and tv.'o. ThQ limits of integration can be . *_va in Fig, 10,

Thus

,

3X-2m
Tp = /- .\X^ dX

2X«»2!n

r(3\' - 2m)^ - (2X - 2ra)Qn= A [-(3\' - 2m)^ - (2X - 2ra)Q-] (16)

The inventory in holding during cycle three is civen by equations

(15) and (16).

The kth Production Cycle

The kth cycle is used to represent the general cate and will

be developed by deduction from the previous cycles. The inventory

in holding during any cycle is showti in Fig. 11, Using K to

represent the quantity produced and Tjj. the tirae required to pro-

duce these K units, the resulting equation is,

*!! t£^2
^ ~ r <| - R)t dt + /- <K - Rt) dt (17)

wliere

,

^i H+1

ti+2 - ti = K

*i+l ' H = ^k

i: = X
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Pig, !! The inventory in holuitig for
any production cycle k.

then,

I =̂ v2^ - 2^ (18)

The li' its of integration for Tj^ can be deduced from cycles

two and three and are shown in Fig, 12,

Thus,

(kX - (k-l)ra)

fTj£ = /- AX" dX

(k-l)(X-ra)

A n(kX - (k-l)ffl)^ - ( (k-l)(X-m) )<3-l (19)

J
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o

X*ffl (L-. .

Unit fluobct

Pig. 12. The shadecl area is the value of
Tjj including preceding regressions.

\4iere,

k denotes the cycle in virhich production is presently
in progress, for example: k = 2,3, ...jk.

Thus, tbe holding inventory for any cycle (k) is given by

equations (18) and (19) with the exception of the first cycle.

As was noted when the cu-^iulative forrjula was derived, v/henever

the limits of integration include the first unit, the approxi-

mation, equation (7), will have to be used. Therefore, equa-

tions (18) and (19) can be used for k = 2,3,...,k; and for k = 1

equations (7) and (9) should be used.
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A Total /\nn«al Cost Bquatioa

In the derivation of a total cost equation, a cycle cost

equation must be derived first. The cycle cost equation under

lear«I..g will reserable the cycle co&t equation presented using

a linear input, equation (1), v^rith the exception that the input

vdll now be exponential. The cost factors under consideration

vdli be defined as tiiey were in the linear case. There will be

a setup cost, a holding cost proportional to the quantity of

goods in storage, and there vdll also be a carrying cost pro-

portional to tie invested cost of each item in inventory.

For the first cycle, the total coi>t equation will use the

holding inventory for the first cycle, equation (9), and the

time required to produce the first X units, T^, from equation

(7). Thus, the total cycle cost for cycle one, TCCA, is

TCCA =. S (II id T,,)(^ . XTx> (20)

The total cycle cost for any kth cycle, otier than the first,

will use equations (18) and (19) and will be designated TCCk,

TCCk = 6 (H id Tj,)(X^ . XT,.) (21)

Thus, the total cycle co&t for any cycle can be obtained by using

the appropriate equation, either equation (20) or (21),

The total annual cost equation is merely a combination of

the cycle cost equations. Thus, a total annual cost equation
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under learning (TAG) can be written as,

k
T/\C ^ TC5CA y TCCk

,0
S (11 * idTxXX^ - XT^.)

k=2

where.
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^x j~S * 01 i^)<5 - 2|k>-l (22)

Tjj = A rex 0.5)*' - (0.5)^-]

Tk = A rCkX + (k-Dm)^ - ( Ck-lXX-ra) )^"]

Equation (22) will give the total annual procuction and

inventory cost for a given set of parameters. The desired solu-

tion to an equation of this type is the production quantity which

will lainimize the total annual cost, A method of solution and

some specific examples are discussed in the next section.



36

TO AN OPTIMAL ORDER QUAr^'TIT?
UNDER LEAiiNING AND lTi» lMt'LIGATI0r4i>

Simulation

Simulation is a terra covering a broad expanse of techniques

for problem solving. Generally siiimlation is used when the pro-

blem is too large and complex to be descrilxjd by a few aatheraati-

cal e<juations or when after deriving a matheiaatical model, one

finds the model unsolvable by mataematicSt The alternate aethod

of solution is then simulation.

Morris (9) defines, generally speaking, three broad classes

of simulation, as follows:

1, Iconic schemes — For example, flight simulator,

2, -Analogue schemes — For example, plant layout models,

3, Symbolic schemes — For example, raatheiaatical models.

Of course, a simulation could be a combination of the several

classes of simulation.

The iconic schemes usually have a huraao decision-maker in-

corporated into the system. The human then is expected to make

certain decisions based on his environmental parameters presented

to him at the time. For example, if the fligi:t simulator showed

an altitude of 1,500 feet and the airplane in a dive, the pilot

would be expected to take the proper corrective action. Thus,

the iconic scheme usually has a human decision-maker incorporated

into the system in order to simulate reality.
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The analogue schemes usually involve models of reality. It

is true that the fligi;t simulator described above is an analogue,:

but it is included in the iconic schemes because of the human

element in t'ie system. The types of analogues are numerous. For

example, one might use an analogue computer to simulate a traffic

queuing problem, or one could use templates to simulate t .e lay-

out of a plant in orter to effect an efficient layout.

The third class of simulation is symbolic schemes. In this

scheme the real world is represented by abstract sjiubols, not

analogues. It is the symbolic class vv'hich embraces tlie world of

mathematical models. After derivation of a mathematical moael

it has to be tested for its proximity to reality, for its sensi-

tivity, and for its use as a decision making tool; thus the need

fc** siamlatior..

As was noted above, most simulations cross class lines. Tlie

flight simulator has to pass ti rough the symbolic stage before it

can be built, tl.en because it has a human element in the system

it is iconic, and more than likely the flight simulator will have

many analogue schemes to accurately simulate flight.

Of course, tlie clast. that is of interest at the present time

is the symbolic class, into which the production-inventory model

derived in tUe previous section fits. The symbolic scheme of

solution will become more evident as it is used in the next sec-

tion, simulation is then another of the tools available for

solving the many problems of the world today. HovK>ver as

Ilanssmann (6) states:
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Unfortunately, it is not needless to say that the
only reason for resorting to a simulation is the com-
plexity of tfje Model ivhich prcventi> one fron writing
dovm the desired measure of performarice in closed,
"Analytical" forra.

Solution to the Total Annual Cost Equation

The desired solution to the total annual coi.t equation*

equation (22), is an explicit optimal value for the production

quantity (X), Tliereby, simply solving for X one could quickly

and easily find the optiraura value.

Of course, when an econoKical o^->tii?iura is sought the optiaieB

is usually the lowest total expenditure. This is usually found

by differentiating the total cost equation with retpect to the

independent variable and solving for that variable. But by dif-

ferentiating equation (22) with respect to X and setting it equal

to zero, it was found that it was impossible to solve for X and

obtain a reasonably easy equation to manipulate.

Since an explicit solution could not be found, another meth-

od was used, A simulation niethod, as aiccussed in the previous

section, i;as used. The simulation metLod is not a wholly de-

sirable method of solution, because all that can be done is to

select parameter values and observe fluctuations and character-

istics of t le equation using the specific values. The simulation

oethod, in this catie, will not give a general equation so S'>ecific

generalisations cannot be stated. In order to be able to make a

generalized statement, all possible combinations of parameter
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values would have to be investigated, which of course is virtu-

ally impossible. iXit since the siaiulation method ii«as the only

alternative, it v^as used.

The IBA 1620 digital computer was programmed, the computer

progran and sample output are given in the Appendix, so that

different parameter values could be investigated. After con-

siderable investigation, a set of parameter values were chosen

for illustration here because of their possible feasibility and

also in order to manifest some of the characteristics of the

total annual cost equations.

The parameter values chosen could easily pertain to some

fairly complex rainature electronic subasseiably. This type of

v/orVr \vould provide the opportunity for learning and, beiag a

reasonably connlex subassembly, would also incur a regression

in learning if the operator \m& reaoved frcaa the task for a

length of time exceeding two or three days. An eighty-five per

cent learning curve (L/C = N) was used which provides aiaple oppor-

tunity for learning, and a regression (m) per production cycle of

15 units was also incorporated. The first unit production time

(A) was set at 1.50 hours per unit and a demand function (R) of

one unit every two hours or 0.50 units per direct labor raan-hour

was also used. ^>ince the production item is not exceptionally

bulky and did not require excess setup time, a setup cost (6) of

^.9.00 per setup was used. The operator in this case is probably

a skilled xvorker so a direct labor man-hour cost (d), including

manufacturing overhead, of $5.00 per direct labor man-hour was
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decided upon* In view of the size of the item a holding cost (11)

of $7»00 X 10"^ per direct labor man-hour per unit, that is ap-

proximately $0*02 per year per unit, was used and an interest

rate (i) in the carrying cost was set at 10 per cent per year

which is equal to 3*43 x 10'"'^ per cent per direct labor nan-hour.

Then using the preceding parameters* and by varying one variable

at a time in order to observe its influence on the TAG, the

following results were obtained and are shown in the following

plates. Th« preceding parameter values vv^ere used for all plates

except Plate I where a specific characteristic is being displayed.

Each plate shows the specific parameter values used. The total

animal cost under learning is also compared to the total annual

linear cost. The parameters for tr.e linear ca&e are tiie same as

for the learning case,

Plate I shows the effect of varying the learning rate using

the given parameter values. At firtt analysis, Plate I shows

what itfould be expected; that is, the linear curve, L/C *= 1,00,

would incur the higher total annual cout, IJut the linear curve

will not always incur the liigliest cost. A c<»'jparison of the

cycle cost equations for t> e linear and the learning case will

point out the reason. It will be noted that the inventory in

holding for the learning case will always be larger ti.an in the

TCLNC « £ (H id A) X^ (1 - UA) (23)

a S (n id A)(x2 « x^A) (24)
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TCCk s= S (H + id Xj.>(X^ - tt,.) (25)

linear ca£.e; thereby, maiding the parameters U, i, d| A, and Tj^

determine whether the linear or learning cost Is higher. This

phenomenon is illustrated in Plate II, v.'here tSie linear cost is .

not larger than some of tie learning costs. The variation was

caused principally by changing R and A, In this case, . the

linear curi'e iTciiis between the eighty-five and ninety per cent

learning curves.

The primary purpose of this investigation was to find the

effect of learning on the optirauia production or order quantity,

but because of the prominent effect of the various «>arameter£ on

the relation between the linear and the learning functions an

encompassing generalization cannot be stated. It can be sl.o««i

from Plate I that, depending upon the specific paranieter values,

the optinuBi X will become less as the learning curve is increased.

In the case of Plate I, a significant change occurred in X*,

optirausi X, as the learning curve was varied from 80 to 1.00

causing X* to vary from approxiiaately 275 units to 175 units,

A similar result is noted for Plate II.

A variable wliich was expected to be awre significant than

resulted was the regression j:»€r cycle (n). Examination of Plate

III shows that as m is varied from to 55 units per cycle, the

resulting change in TAG was aporoxiiaately $0,25 per an increase

of 15 units per cycle The regression value v/as varied from

zero to more than 10 per cent of the production quantity. This



EXPLANATION OF PLATE 1

TAG as a function of X for various learning rates,

Thci.e curves compare the effect of various learning rates,

from .80 to 1.00, on the Ti\C and on X*, using the follow-

ing parameter values:

L/C b variable q «• variable
A = 2,00 ai « 10.00
B = 520.00 R « 0,25
S a 9,00 H n 7.00 X 10-6
d a 5.00 i s= 3.43 X 10"^
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EXPLANATION 0? PLATE II

TAC as a function of X for various leajming rates*

These cuni-cs comDare the effect of various Icas&ing rates

from ,75 to i#00 oi: t.c TAG aiid on the ontimum order

quantity X, using the follovdng parameter values:

L/C ^ variable q m. variable
A = 1,50 asi n 15.00
B s 1040*00 E m 0.50

7»00 K lO*'^S n 9.00 H e
a = 5*00 i m 3*43 X 10-5
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means, at the taaxiaum regression, that the production rate re»

gressed an equivalent of 55 units each cycle of production*

Since research is very lir.itcd in the regression of tliis

type of raotor skill, it cannot be said for certain that a con-

stant type of regression accurately represents the actual, but

it can be stated that a constant regression up to 10 per cent of

the productioi* quantity docs not have a si£;nificant effect on

the total annual cost. It can also be stated that, using similar

parameter values, the expense of finding the regression quantity

in a specific situation could not be justified Ijy a more accurate

total annual cost, as long as the actual regression was not more

than 10 '>er cent of the production quantity* The sasn^ conclusion

can also be drawn with respect to the optinura X«

A quid: glance at equations (24) and (23) will raanifest the

effect of 6 on the total annual cost and on X*« It can be seen

that as S is increased, the total axmual cost approaches a laul-

tiple cf i>. This relationship can be seen in Plate IV. Depend-

ing on the specific parameter values whether tie linear curve is

above or below the learning curve, a change in if will not alter

the relationship of the two curves. That is, if tiie linear is

above the learning curve, as in Plate IV, it will remain so as

S is varied. It is also seen in Plate IV that as i) is increased

from $2.00 to $40.00 per setup, X* moves toward larger produc-

tion quantities. As ii laoves from $2,00 to $12,00 per setup, X*

moves from approximately 175 units to 450 units per cycle. The



BXPLWATION OF PLATE IV

TA€ as a function of X for various values of S,

Tbese curves corapare the effect of a range of i» values

from $2»00 to $40,00 per setup on the TAG and on X*» The

paraiBeter values uced are as follovre:

q = 0.765
at » 15,00
R a 0,50
H ss 7.00 X 10"2
i « 3,43 K 10-5

L/C = 0.35
A - 1,50
B = 1040.30
S K variable
d a 5,00
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PLATE IV

200 300 400

Units of Production (X)
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reason for the move to larger production quaiitities is obvious.

As the setup cost dominates the holding and carrying cost it be«

comes more econoioical to manufacture larger production quantities,

A decision based on tl^e learning or the linear function

would produce almost the sasic conclusion as to the optimum pro-

duction quantity, X*, It can then be stated with respect to the

faetup cost, using similar parasietert., that tl ere is not a signif-

icant difference betv/een X" found by the linear or learning

methods. It must be pointed out ti.at different parameter values

could have a proriounced effect on t.e relationship between the

two curves

#

The variation of the holding cost (II) exeraplifies an inter-

esting characteristic of t^e total cost equations. The phenome-

non is illustrated in Plate V, Since the inventory in holding

in the learning case is alivays larger than in the linear case,

it can be seen from equations (24) and (25) that as H begins to

dominate the value of (id Tk/x) the learning curve will be above

the linear curve and vise versa, Ti erefore, it is evident that

this crossover point will depend entirely on the specific parame-

ter values, but it can be stated that there will be a point at

which the two curves v;ill crossover.

It is evident from Plate V, that as 11 becomes larger, the

optimum production quantity, X*, moves toward smaller lot quan-

tities. This is obviously just the reciprocal of the setup case,

because as H rises the inventory cost becomes larger than the

setup cost and thereby makes it less econonical to produce large



BXPL/m-vnoN OP plate v

TAC as a function of X for various values of H#

These curves illustrate the effect of varying II from $0,02

to $2,00 per year pet unit on TAC and on X*. The para-

meter values used are as follows

i

L/C: « 0.85 q ts 0.765
A a 1,50 ffl is 15.00
B s 1040.00 R ts 0.50
& =! 9.00 H « variable
d a 5,00 i a 3.43 X 10*5
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quantities of production and carry these in inventory, therefore,

more setups are made and smaller quantities ar: produced in

order to effect the optimum total annual cost. It is also shown

that as II becomes larger, tiie difference betv;cen the deciticn

based on the linear curve and on the learning curve becomes aiore

significant. In the case illustrated in Plate V, the difference

betxfeen the X* based on H = 2,00 &qA H = 2.00 linear is af->^roxi-

mately 75 units per cycle* This difference is indeed significant

when X* is in the 100 to 200 units/cycle range*

The effect of varying d is similar to that of varying i as

displayed in Plates VI and VII, respectively. The relationship

between tie txvo variables can be clarified by equations (24) and

(25). It is seen that i end d appear only as id and in only one

position, thereby, making corresponding changes in either vari-

able similar. It is seen that as d or i are varied, they effect

a linear and learning curve crossover, raiuch as exciaplified by H

and for the same reasons. K can be made to dominate by either

increasing II or as in this case by decreasing either i or d«

Thus, from Plates VI and VII, as d or i are decreased, a cross-

over is effected. The point of crossover 'ill depend on the

parameter values chosen,

A definite trend is noticed in the value of X* as i or d

is increased. This is true again because as the inventory costs

rise it becowes sore econoiaical to make smaller production quan-

tities and, therefore, acre setups. The difference between tlie



EXPLANATION OP PLATE VI

TAC a£. a function of X for various values of d#

These curves illustrate the effect of varying d, from $1#00

to $15,00 Der direct labor man-hour, on TAC and on X*. The

parameter values used are as follows:

L/C = 0.85 <l
a 0,765

A » 1.50 m a 15.00
B = 1040.00 R 0.50

a 7,00 X lu-oS 9.00 H
d = variable = 3,43 X 10--5
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BXPLAI^ATION OP PLATE VII

TAC as a function of X for various values of i«

These cur\'cs compare tiie effects of varying i, from 3 to

15 per cent c>ex year, on TAC and on X*. The parameter

values used are as follows*

L/C « 0,S5 <3 m 0.765
A a 1.50 n m 15,00
D = 1040.00 R u 0,50

7i00 >;
10"-^S = 0,00 H as

d ;= 5,00 i m variable
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optimum X, X*, found in the linear case and the one found in the

learnin^j case becomes more significantly oifferent as d or i

decreases.

Plate VIII illustrates the effect of varying A on the TAG

and on X*, As A is varied frora .75 to 2.00 direct labor nrai-

hours per unit, the linear-learning relation again effects a

crossover. By examining equation (2s^) it is seen that as A ap-

proaches tlie reciprocal of R, the T^\LM::; vdll approach a multiple

of the setup cost. This relation is shown by A a 2,00, thereby,

malting the demand rate equal the production rate* Because the

learning function still has inventory in holding, its total

annual cost will exceed the cost incurred in the linear case*

It is also evident from Plate VIII that the difference between

X- found by the linear curve aiid X* found by the learning curve

is significant on both sides of the crossover, that is at A =

0,75 and A = 2,00»

Plate IX exeinplifies a strange curve made by varying R« In

prograraiaing t e computer it v;as necessary to iiiclude a value for

the annual deuiand (B) in order to make the cycles per year an

integer* An X was found in this nauiier which vj^ould provide an

integer number of cycles per year. The value B is merely another

way of stating R, which is the direct labor man-hour demand func-

tion. In most of t'ic parameter variations, a value of K » 0,50

\fSLb used whicl; would make B ~ 1040 dlnhrs/year using 20SO as an

annual man-hour figure.



BXPLAimTICK OF PL/\TE VIII

TAC as a function of X for various values of A*

These curves illiistrate the effect of varying A froai ^75

to 2»00 direct labor nan-hours per unit on TAC and X*,

The parameter values used are as fcllowi.

:

L/C e 0,85 q m 0,765
A s= variable m » 15*00
B a 1040*00 R s: 0»5Q
S « 9,00 H B 7,00 >: lO"*^
<i = 5»00 i w 3.43 X 10--5
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PLATE VIII
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UXPhMihTim OF PLATE IX

TAC as a function of X for various values of Rt

Thene curves illustrate the effect of varying R froia ,40

to .60 units per direct labor raan-hours on TAC mvl on X»

The parameter values used are as follows:

L/C a 0.85 Q « 0,765
A = U50 m • 15.00
B rr varial.dc R ~ variable

= 7,00 X 10-^^S a c.oo H
d = 5,00 i a 3,43 X 10"^^
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The phenotnenon of the linear-learninj; crosso^'er is again

illustrated in Plate IX» It is also evident that on either side

of the crossover, the X* linear is si0nif icaiitly different from

X* learninr

,

In this section a pre&eatation of a method of solution to

the total auiual cost equation was made along with the results

of a sim«l.:.»,ion solution. The coiiclui^ions drawn from the data

collected and illustrated here will be presented and fciaoiaarizcd

in the next section*
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SUMMARY AND CONCLUSIONS

Tlie results of matheiniaiical analysis dei^eix! for their valid-

ity and uj:.e£ulness on the assumptions on wiiicli they are based.

In an industrial situation it might be felt that one or more of

the assuiapticas laade in this i>aper are not valid for a specific

situation and would have to be modified by the analyst* As

Morris (9) has stated, '^\nalytical wodeli* of the type discussed

here are rarely presented in * ready- to-v/ear' foria* They /aust be

tailored to fit Sjjecific situations*" A different type of learn-

ing curve might fit a &i>ecific situation better or the rcijressloii

might be altered to give a more accurate representation of a

specific situation or maybe another variable nee<iS to be added

to increase the validity, /\ay alteration iwuld be for a specific

situation,

i'roia a research point of view, tSiere is no limit to how

many variables there might be accounted foir in constructing a

model* However, as a practical ujatter a compromise between re-

ality and simplicity wust be reached. I^ model will ever be ab-

solutely "true". Of course, after deriving; a model the next

step is to verify the model by applying it to the xcal world and

finding its weak points*

In this paper, an attempt has been made to try to malte an

already existing model more realistic; whether this has been

accomplished v/iil remain for another investigation to establish*
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Along with the validation of this model there are sosse questions

to be answered, lifliat kind of regression really exists? Could

the learning curve be mo<2ified to better fit industry? The long

li&t of "things to do" continues,

li is regretful that a general economic order quantity enua-

tion under learning could not be explicitly stated, but aathe-

aatical corapler.ity sosietiraes sty^-ies a solution. In spite of

the absence of an explicit solution, the sieiulation method pro-

vided sorae insight into the characteristics and relationshir>s

between the learning and linear cost equations^

One concrete conclusion is tliat at points on cither side of

the crossover the tv/c curves, linear and learning, a^re signifi-

cantly different. Therefore, if the learning situation ar)f>lies

to an inductri?! concern it isjould be wise to incor!x>rate the

learning curve into the decision making. In some instances, the

X* wao not significant, but the TiVC was significaiat, and could

be the basis for a %*roag decision if tr:© curves were used for

financial planning,

Another significant phenomenon was that the rej^ression quan-

tity did not provide for a significant difference between differ-

ent regression aimountf. Tliis vras an intere3tin0 r'rvciopiiient

because before the investigation it was certain tl e regression

quantity would be significant. Based on the data given, it can

be :itated that, if the actual regression curve follows the assuap-

tions given, it would be uneconoraical for a manufacturer to in»

vestigate to find out what the actual regression quantity is.
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Of course, more investigation is needed to find out the exact

pattern of the regrecsion.

The phenomenon of ti e learning-linear croscover was also

surprising, because at first blush it would appear that the

lineax* curve would ali/ays incur a larger cost than the learning

curve, i>uch is not the cacc, though because of variations in

parameter values, the linear and the ieamiuE curves could be

equal, one l.igher, or vise veri^u..

The primary purpose of the investigation ivas to find the

effect of t; e learning process on deteriaining economic order

quantities* Bvcn though an explicit formula for X* caiinot be

stated, it has been eho\TO tf.at there could be a very significant

difference betv-'ecn tlie learning cost and the linear cost, depend-

ing upon the parameter values. If for no other reason, this In

itself justifies the investigation.
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APPENDIX

Glossary

Soecial Terms. Some special terras discussed in this paper

are defined as follows:

Carrying cost. The cost of having idle capital in storage.

The carrying cost will be directly proixirtional to

the direct labor man-hours consumed per unit.

Crossover. The point at vrfiich the linear cost curve and the

learning cost curve are equal is designated the

crossover point.

Holding cost. The cost of physical storage of any item in a

warehouse is the holding cost and includes such

costs as, warehouse overhead, warehouse direct labor

costf physical storage cost, etc.

Inventory cost. The cost directly incurred during holding in

storage is designated inventory cost and includes

the holding and carrying costs.

Production cost. The cost directly incurred during the pro-

duction cycle is designated production cost and

includes, in this paper, only the setup cost.

Total annual cost. In the learning context the total annual

cost refers to the cost incurred during the year

using the learning input rate. \i?hen the total
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annual cost is used in an undesignated context it

refers to the yearly cost incurred by either the

linear or the learning iaethods.

Total annual linear coi>t» When using a linear production

input the cost incurred by such a policy is called

the total annual linear cost.

Total cycle cost. The cost incurred during any production-

inventory cycle is designated the total cycle cost

and usual.ly refers to the learning production input,

but can apply either to the learning or linear case.

Symbols . Tlie algebraic synbols used in mathesiatical for-

mulae are defined as follows:

A = the first unit production tine in the learning case
and the constant production rate in the linear cai-e.

B a the total aimual demand.

<t 2= the direct labor man-hour cost.

dlmhr = direct labor man-hours.

H = holding cost in dollars per direct labor man-hour
per unit.

i = interest cost in per cent per direct labor man-hour.

k « the production cycle under consideration.

K = the production quantity in the kth cycle.

l/c = rate of learning and is equal to N,

a =» the regression quantity in units per cycle.

n = log N / log 2

If a the rate of iiaproveraent in the learning situation.
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F a the production quantity in the third cycle.

q = n 1

Q = the production rate in the iifcond cycle*

R « the demand rate in units per direct labor man-hour.

S = setup cotit in dollars per setup*

t = tine in direct labor man-hours,

TAC =: total annual cost,

TALNC ^ total annual linear cost.

TCC ^ total cycle co&t»

TCLNC a total cycle linear cost.

TOGA = total cycle cost for cycle one under learning.

TC5CB ~ total cycle cost for any cycle after cycle one under
learning.

TCCk » total cycle cost for the kth cycle.

IB^ = the time in dlmhr required to produce K units in the
kth cycle.

Ty « the time in dlmhr required to produce P units in th«
third cycle.

Tq = the time in dlmhr required to pro'.iuce Q units in the
second cycle.

Tj_ = the time in dlmhr required to produce X unit;- in the
firiit cycle*

X = the proiiuction quantity per cycle,

X* » optimura X.

Y- = t: e tiiae required to produce the Xth unit.
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Computer Prograai

The following computer program was written, for the IIM

I62O0 to compute the total annual cost for both a linear and

a learning production input. In this program, the interest

rate is rcpresenteti by T, the direct labor man-hour cost as D^

the learning improvement rate as G, the regression quantity as

0, Tx by W, and Tj^ by Y» Statement 50, 55, 65, and 70 repre-

sent equations (7), (20), (19), and (21), respectively. Data

cards with appropriate values of the various paraaietcrs were

prepared to accompany this progriaa.

C TOT.'\L AIMJAL INVENTORY C06T UNDER LEARi>IING-TIIEi>l6 1963

1 PORMAT(12(E0.1))

5 PORMATdfiH DUiHRAJNIT A =sE18,7,17H i)BlANDA>U>fiiR R s:ElD.7)

6 PORMATClSH SBTUP S =£18,7,1711 QlRRYIi^ C05T Iia£ie..7)

7 F0RMAT(18H INT PBR/DIMIR T a£l 8.7,1711 DOL/DUIHR D =£18,7)

8 P0RM.\T(18II LB/yiNING CURVE G=£10.7,17K N+1 Q »E16,7)

9 F0RM.\T(18H REG UNIT/CYC «B18, 7,1711 Kf\l^GE U TE^T =£13.7)

10 POR^iATdSII DEMANDABAR B aEl8,7,17H DEMAND/DUtllR R =£18,7)

11 PORMATdSH CYCLBSAEAR U=£20.7,6II TCGA=£20,7)

12 P0RMAT(6H Ti\C a£18,7,4H X aB18,7,8H TALMC b£13,7)

13 FOR;1AT(B20.7)

25 READ l,R,H,T,D,A,B,0,P,Q,S,T£bT,G

26 IPCSENSfi SWITCH2)27,33

27 ?RINT5,A,R

28 PRI1mT6,S,H
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29 PRI^^^7,T,D

30 PRIOT8,G,Q

31 PRIIvT9,0,T£^T

32 PRir^lO,3,R

33 PU?iai5,A,R

34 Pl]NC:H6,iiH

35 PUNa!7,T,P

36 PWWi8,G,Q , . .

37 Pl'Nai9,0,TE^

38 PUNCH10,B,R

45 M«TB5T

46 DO 120 1=2,

M

47 Ual

48 XeD/U

50 V«»(((X+,5)**Q)-((.5)**q))*A/Q

55 TCCA= < ( < X**2. )/(2 . *R) )«(X*w/2, )
) *<P* (T*D*w/x) )*S

56 TACsTCCA

57 L^D

60 DO 76 J=:2,L

61 OJ

65 y*<((C*X)-(C-l,)*0)**Q-((C-l.)*(X-0))**Q)*A/Q

70 TCCBR(((X))2.)/(2,*R))-(X*Y/2,))*(K*(T*D*y/X))*S

75 TAO TACfTCCB

76 (301-1X1NUB

80 TCLNCai^((X**2.)/<2,*R))*<l.-(R*A))*(II+(T*i>*/0)

85 TALKCa<TCLNC)*(U)
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89 IP(SEf^SB SWITCS12)90»95

90 PRIOT12 ,TAC , X,TiVLNC

91 PRIOT11,U,TCCA

95 TyPE13,U

96 PUNaa2,TAC,X,Ti\LNC

97 puNaiii,y,.rcx:A

120 COCTIIJUE

121 GO TO 25

140 STOP

END

Sample of Cora:>uter Output

The output from the previous conputcr program appeared in

the following form:

l,5000000E+00 DEMi\ND/DLM!iR R c

9,0000000B*00 aiimyiNG COi>T Ii)=

3.4300000E-05 DOL/DUSIR D «

8.5000000E-01 N*l Q a

1.5000000£+01 R-\i^£ U TBiT a

1.0400000Ef03 DEMAND/DLMim R =

TAC = 4.9578618fi+01 X a 5.2000000E+02 Tvli-NC =

CYCLES/YEAR Ua 2.0000000E+00 TCCA?= 2.6617698E+01

TAC m 4,302982SE*01 X s 3,4666666E+02 lALUC a 5,0817720E+01

CYCLESABAR Ijs 3.0000000B+00 TCCAp l,7293146E-t-01

flLMHR/j^^IT A a

SETUP S a

INT VER/mjmm T a

LEARNING CURVE Ga

REG UNIT/CyC =

deiiandAb.'^R Q =

5.0000000E-01

7.0000000E«06

5.0000000B+00

7,6500000E-01

l.OOOOOOOE+01

5.0000000E-Ol

5.3726576E+01
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TAC = 5*1776596E+01 X a 2*60000002*02 T/\LNC a 5.3G63292E*01

CYCLB^AhAR Uk 4*00000002*00 TCCAs 1*3S43941£*01

TAC n 5.7632940B*01 X » 2*0800000F>02 TALI^iC a 5.9290635E*01

CYCLESABAR U« 5,0000000E*00 TCCA= 1*2193517E*01

TAC « 6*45412592+01 X =» 1*7333333E*02 TALWC k 6,5908866£+01

CYCLESABAR Ua 6»0O0O000E*00 TCCAs ' 1,1268013E+01

TAC « 7.2049537E+01 X s 1,43571422*02 TAL^Hl « 7 •32075892+01

CYCLESAEAR Us 7,OOOOOOOB*00 TCCAs 1.06969122*01

TAC « 7.9932258B+01 X « 1.30000002*02 TALNC s 8.0931648E+01

CYCLEsAE^'^ U« 8.0000000E+00 TCCA= 1,0319067E*01

TAC = 8.8064295E*01 X = 1«1555555E*02 TALNC - 0.39392422+01

CYCLEi»ABAR U= 9.00000002+00 TCCA?: 1.00557572*01

TAC a 9.63706932*01 X = 1.04000002*02 Ti\LWC a 9.71453172*01

GYCLBSABim U= U000OO00E*01 TCCAs: 9.8647355E+00

.. ematical Derivation

Equation (1) expresi^ed the total annual cost under a linear

production rate and is derived from Pig, 1. The inventory units

in holding during the production cycle is the area under the tri-

angle in Pig; 1.

XA x/n
I = (1 - R)t dt + (X - Rt) dt

O XA

a X2
[^-^J

= X2 (1 • RA)
Tr
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Now by coiQbining the carrying cost and the holding cost

<H 4. idA)

and Multiplying by the inventory in nolding, then aclciing in the

setup cost the total cycle cost is obtained.

TCLNC B S (H + idAXX^ «• X^A) (1)
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Tlie many econosiic order quantity forntulae that have been

derived over the past quarter of a century have one thing in

cownon and that is, they all have made sotae siraolifying assump-

tions. The effect of the assumptions depends on tiie specific

situation under consideration. One formula cannot hope to be

all-encompassing, which is the primary reason for the many for-

amlae wliicb have been derived. However, the one assumption

which many of these formulae have made is that the production

input to the inventory is linear. It is the effect of this

tMUlic assunir>tion opposed to a rising productivity that is under

investigation.

In 1939, T, Wright discovered the phenomenon that learning

in an industrial situation is predictable. It was found in the

aircraft industry that the time required to produce doubled

quantities of production decreased by a constant percentage.

That is, the time required to produce the eighth unit is eighty

per cent of the time required for the fourth unit, and the time

required to produce the sixteentl unit is eighty iier cent of

the time required to produce the eighth unit, and so forth. Of

course, the percentage improvement depcudfi. upon the complexity

of the task being performed.

Just as it Is known that man learns, it is also known that

he forgets if the learned skill is not reinforced. The exact

rate or type of regression is not known. Research on the sub-

ject of long-term retention of learned skills is indeed scarce,



and much more research needs to be conducted before the forget-

tinc of an industrial operation can be predicted. For the pur-

pose of this investigation, a constant regression per cycle of

production was assuned.

Using the exponential learning curve as tie production rate

and a constant regression per production cycle, a total annual

cost equation for a production-inventory mechanism was derived.

The total annual co&t equation included such relevant costs as:

1, Setup cost

2, Inventory holding costs

3, Inventory carrying costs

4, Regression coi>ts

5, Costs of a rising productivity

After deriving the total annual cost equation under learning, it

was found that an explicit optimum equation could not be written

for the production quantity per cycle. Tlie simulation nethcJ of

solution was then used. By choosing different parajneter values,

the familiar economic order quantity parabolic curve was drawn

and the optimum production quantity was found, although, this

method of solution is not wholly desirable because all possible

combinations of parameters cannot be investigated to find the

different idiosyncrasies of the equation.

The total annual cost equation under a linear input was C0M»

pared to the cost equation unoer learning and the results ana-

lysed. Since an explicit equation could not be found, the results



of the analysis only ap:)ly to the specific paraaeter values used,

but several general results can be visualized.

The linear optimum value was not always larger than the

learning value as at first glance would be expected. The linear

curve may or nay not be larger than the learning curve, depend-

ing upon the specific parameter values. A regression of up to

ten per cent of the production quantity did not produce a signif-

icant change in the total annual cost or in the optiama produc-

tion quantity.

A definite conclusion can be drawn from the investigation

and that is that if the learning curve applies to a specific in-

dustrial situation it should be used in arriving at an economic

order quantity decision because, dependiiig upon the specific

parameter values, the difference between the learning and the

linear equations could be significant. Also, tie regression

quantity did not seem to produce a significant affect on the

total annual cost.


