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ABSTRACT

Titanium alloy is one of the most important matlsriased in major segments of
industries such as aerospace, automobile, spaybnds, medical and chemical. Market
survey has stated that the titanium shipment inX84 has increased significantly in last
two decades, indicating its increased usage. Indasare always under tremendous
pressure to meet the ever-increasing demand torloo& and improve quality of the
products manufactured from titanium alloy. Simtiatitanium alloys, silicon carbide and

dental ceramics are two important materials usedany applications.

Rotary ultrasonic machining (RUM) is a non-traditb machining process that combines
the material removal mechanisms of diamond grindamgl ultrasonic machining. It

comprises of a tool mounted on a rotary spindlachttd to a piezo-electric transducer to
produce the rotary and ultrasonic motion. No stidg been reported on RUM of

titanium alloy, silicon carbide and dental ceramics

The goal of this research was to provide new kndgdeof machining these hard-to-
machine materials with RUM for further improvemeimshe machining cost and surface
guality. A thorough research has been conducteddbas the feasibility study, effects of
tool variables, effects of machining variables areeel wear mechanisms while RUM of
titanium alloy. The effects of machining variablésich as spindle speed, feedrate,
ultrasonic vibration power) and tool variables {gize, diamond grain concentration,

bond type) have been studied on the output vasafdach as cutting force, material



removal rate, surface roughness, chipping size) taedwheel wear mechanisms for
titanium alloy. Feasibility of machining silicon ntede and dental ceramics is also

conducted along with a designed experimental study.
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CHAPTER 1

INTRODUCTION

1.1 TITANIUM ALLOY (Ti-6Al-4V)

The unique properties of titanium alloys (such igh lstrength-weight ratio at elevated
temperatures, exceptional corrosion resistancelesated temperatures [Froes et al.
1998], creep strength, stability, and superiorgia¢i strength) make them attractive
materials in industries. Another advantage of titanalloys is the ease of their recycling
[Anonymous 2005a]. It is the fourth most abundamtahelement in the earth’'s crust
after aluminum, iron and magnesium [Orr et al. 198®% the ninth most used metal in

industry [Froes et al. 1998].

In 1990, the total market of titanium alloy in td&A and Europe, who consume about
66% of the world’s titanium [Allen 1997], was 25@M@ns and 9,500 tons respectively.
Figure 1.1 shows the proportion of titanium all®ed in 1990 for jet engines, airframes,
and industrial purposes in the USA and Europe a@ty. Figure 1.2 shows that there
was a gradual increase in the titanium mill prodingpment in the USA for four different
market segments from 1990 to 2000 [Seddon 2004203, 98,000 tons of titanium
alloys were produced worldwide [Seddon 2004]. 60R4he titanium is used in the
aerospace industry [Boyer 1996, Peacock 1988] fanufacturing compressor blades,

stator blades, rotors, and other parts in turbingires [Seddon 2004, Huber 1973,



Anonymous 2 2004]. Other applications of titaniuftoys include such industries as
military [Montgomery et al 2001, Lerner 2004], awtotive [Anonymous 3 1989,
Yamashita et al. 2002], chemical [Farthing 1979y @®®882], medical [Froes 2002,

Abdullin et al. 1988], and sporting goods [Anonyra@u2004, Yang et al. 1999].

Poor machinability of titanium alloys poses consadide problems in fabrication of
components from them. Their low thermal condudgfivieads to high cutting
temperatures, and their high chemical reactivitthwmany tool materials leads to strong
adhesion between the tool and work material. Thwsefactors lead to rapid tool wear
during machining of titanium alloys, which in tuincreases the manufacturing cost

[Anonymous 5 1999].
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Figure 1.1 Proportion of titanium consumed in 1§80onymous 1 2005]



Availability, increased cost of raw material, andrcost of machining [Anonymous 5
1999] limit their use in industry. With the graduacreasing demand for titanium in
various segments of market (Figure 1.2), there @ugial need to reduce the cost of
titanium products. Moreover, composite materialsl aamorphous alloy are being
developed that may replace titanium in many apptioa [Nelson 1991, Li et al. 1996,

Johnson et al. 1993, Jenkins 2003]. Under theseéitoams, the survival of titanium in the
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Figure 1.2 Titanium mill product shipments in th8AJ[after Anonymous 2005a]



market and its expansion will heavily depend oruogty the cost of machining [Kumar
1991]. Therefore, it is critically important to sela new manufacturing processes that

allow machining of titanium and its alloy more ceffectively.

Many conventional and non-conventional machiningcpsses are used for titanium
alloys [Bandopadhyay et al., 2005; Fowler et 0%, Huber, 1973; Koenig et al., 1976;
Lash and Gilgenbach, 1993; Qin et al., 2003; Tai.etl992; Yan and Shieh, 1992]. In
addition to conventional machining processes (hgndrilling, milling, etc.), titanium
alloys have been machined by many non-conventiomathining processes such as
abrasive waterjet machining, electro-discharge mmaadp, laser drilling, and ultrasonic
vibration assisted drilling. Table 1.1 summarizeparted work about non-conventional
machining processes on titanium alloys. Please timecutting tool is a conventional
drill (e.g. a twist drill) in ultrasonic vibratiorassisted drilling. However, it is still

desirable to develop more cost-effective machipirggesses for titanium alloys.



Table 1.1 Reported processes used to machineutiteaind its alloys

Processes Report

Abrasive water-jet machining [Fowler et al 2005pkret al 2001,

Shipway et al 2005]

Electro-chemical machining [Koenig et al 1976]
Electro-chemical polishing [Tam et al 1992]
Electro-discharge machining [Qin et al 2003, Yad &hieh 1992,

Yan and Chen 1994, Lin et al 2000,
Zhao et al 2002, Wang et al 2002,
Kremer et al 1991, Yishuang 1990]

Laser drilling Bandopadhyay et al 2005, Yilbas 1,98&ck et al
1997, Kudesia et al 2002, Arzhaou et al 1989,
Rodden et al 2001, Lash and Gilgenbach 1993,
Yilbas et al 1990, Yilbas and Yilbas 1988, Tam et
al 1990, Bandopadhyay et al 2002,
Bandopadhyay et al 2001]

Ultrasonic vibration assisted drilling  [Huber 1973]

Rotary ultrasonic machining (RUM) is one such maiig process reported in this
thesis. Extensive literature search shows thatethexs been no report about rotary
ultrasonic machining of titanium alloys. One of tiparposes of this thesis is to

investigate the feasibility of machining a titaniafloy with rotary ultrasonic machining.



In the past, rotary ultrasonic machining was useztassfully to machine various brittle

and hard-to-machine materials

1.2 SILICON CARBIDE (SiC)

Silicon carbide has superior properties such ak bigength at elevated temperatures,
resistance to chemical degradation, wear resistaoge density, high stiffness, low
coefficient of thermal expansion, and superior pressistance. The combination of these
properties makes them attractive in many engingeapplications such as high-
temperature engines, nuclear fusion reactors, a@mprocess equipment, and aerospace
components [Anonymous 6; Datta and Chaudhari, 20@3ta et al., 2004; Gopal and

Rao, 2003; Yin et al., 2004].

Reported studies on machining of silicon carbidxuide electrical-discharged machining
[Luis et al., 2005; Puertas and Perez, 2003], nmatiwith abrasive paste [Dolotov et
al., 1986], grinding with diamond wheels [Gopal &do, 2003; Gopal and Rao, 2004;
Kibble and Phelps, 1995; Yin et al., 2004], ion roemilling [Hylton et al., 1993],

lapping/polishing [Chandler et al., 2000], and rienachining with ultra short laser
pulses [Rice et al., 2002]. However, the literatreeiew states that difficulty, high cost
and long time associated with machining of silicanbide limit the use of silicon carbide
in industry. Therefore there is a need to devel@pentost effective machining methods

for silicon carbide.



In this thesis, RUM of silicon carbide will be sted using designed experiments. It
presents and discusses the main and interacti@ctefbf process variables (spindle
speed, feedrate, and ultrasonic power) on cuttingek, surface roughness, and chipping

size.

1.3DENTAL CERAMICS

It has been predicted that the demand for dentadymts and materials would rise 5.7%
annually in the U.S. and dental ceramics are antbegfastest growing biomaterials
[Anonymous 7 2004]. Dentals ceramics find applmasi in aesthetic restorations and
prostheses like molar crowns, anterior and posteoiadges, veneers, and onlays.
Ceramics are preferred for dental crowns becaugbedf high strength, superior wear
resistance, and natural aesthetical appearangrillBih dental crowns are made per year
in the U.S. [Kartz 2000]. The dental crowns havaaket of $200-$250 million per year
in the U.S. [Anonymous 2004; Kartz 2000]. Most @rteramics, however, have very
low tensile strength and fracture toughness. Theyansitive to surface micro-cracks, as
shown in Figure 1.3. Fracture surface analysestijson et al. 1994; Kelly et al. 1990;
Noort 2002] have revealed that most clinical fahkiinitiate from the surface micro-
cracks. Therefore, it is important to use machinprgcesses that minimize surface

micro-cracks.



Currently, high-speed air-driven hand-held diamtyals are used for clinical repair and

restoration. Conventional diamond drilling and dig are employed for producing

gy Fracture
—Internal S

F} surface iy

M .-cracks. T Wi-
. e ~_
Bl

Figure 1.3 Fracture of a ceramic crown initiatezhfrsurface micro-cracks
[Thompson et al. 1994]

dental tissues such as dental inlays and veneersnjgnous 2004]. Various machining
processes (such as turning, grinding, sawing,imgillboring, and tapping) have been
studied to machine macor (one type of dental cagmGrossman 1977]. Grossman
[Grossman 1983] studied the chip formation whilaitug, Dabnun et al. [Dabnun et al.
2005] developed a surface roughness prediction hifodéurning, Claus et al. [Claus et
al. 1979] studied the tool wear behavior for tugiifVeber et al. [Weber et al. 1984]
reported cutting force and surface roughness stiedyturning with ultrasonically

vibrated tools, and Marshall et al. [Marshall et H387] presented the microstructural
effects in grinding. Preventing and minimizing swé micro-cracks still remain a

challenge.



Rotary ultrasonic machining (RUM) produces low mrand hence minimizes surface
micro-cracks. Note that no work has ever been tedasn RUM of macor. One purpose
of this thesis is to test the feasibility of RUMmfcor and study the effects of machining
parameters (spindle speed, feedrate, and ultrasdmation power) on output parameters

(cutting force, surface roughness, and chipping)siz

10



CHAPTER 2

LITERATURE REVIEW ON ROTARY ULTRASONIC MACHINING

2.1 BACKGROUND OF RUM

Continuous research and development has resultetewn materials, which are very
difficult to machine, for example, super-hard mialisy such as tungsten and titanium
carbides, diamonds, rubies, hard steels, magnétigsaAnother group of materials, like
germanium, silicon, ferrites, ceramics, glass, mlasapphire, corundum and some
composites are difficult to machine because of tgredrittleness and hardness
[Rosenthal et al. 1964]. The need for methods afmmang these materials has led to the

introduction of special machining techniques likigasonic machining (USM).

Figure 2.1 is a schematic illustration of USM. Tgwver supply produces an alternating
electric current at ultrasonic frequency (18 to KHiz) and supplies to the transducer
[Goldman 1962]. This causes the core of the trarexdto change in length periodically.

Even at the resonance the amplitude of the vibwadficdhe transducer face is about 0.005
to 0.01 mm. This amplitude is increased by usingceatrator and tool to a value of 0.03
mm, which is sufficient for practical purposes. Ttbhel thus is made to vibrate at a high
frequency (typically 20 kHz) in a direction perpendar to the surface to be machined.

Abrasive particles like aluminum oxide, boron cddjietc. are mixed with water and this

11
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Figure 2.1 Principle of ultrasonic machining [Golam1962]

slurry is allowed to enter the gap between the &mal workpiece. Material is removed in
the form of tiny particles by the successive imparaction of the abrasive particles into

the workpiece [Jana and Satyanarayana 1973].

In order to overcome the shortcomings of USM, rotdtrasonic machining (RUM) was

invented. Rotary ultrasonic machining (RUM) is abhg machining process that

12



combines the material removal mechanisms of diangimdling and USM, resulting in
higher material removal rate (MRR) than that olsdimby either diamond grinding or
USM [Pei 1995]. In RUM, the slurry is replaced wdbrasives bonded to the tool. A
rotating core drill with metal-bonded diamond abres is ultrasonically vibrated and fed
toward to the workpiece at a constant pressure ammatant feedrate. Coolants pumped
through the core of the drill wash away the swarévent jamming of the drill, and keep
it cool so that the RUM process could be condustadothly. The process is illustrated

in Figure 2.2.

Experimental results [Prabhakar 1992] have showhttie machining rate obtained from
RUM is nearly 6-10 times higher than that from aantional grinding process under
similar conditions. In comparison with USM, RUM &bout 10 times faster [Cleave
1976]. Especially, it is much easier to drill desmpd small holes with RUM than with
USM. Other advantages of improved hole accuracy lamd tool pressure are also

reported [Graff 1975, Stinson 1979].

Figure 2.2 Schematic illustration of RUM processi[ét al. 1995]

13



22HISTORICAL REVIEW RUM PROCESS

221 REVIEW OF USM HISTORY

Up to early 1960’s, some three to four hundred mapad been published covering the
various aspects of ultrasonic machining. Much o$ tmaterial was covered by two
monographs: Ultrasonic machining of intractable enats by A.l. Markov and
Ultrasonic cutting by L.D. Rozenberg et al., botlgimally published in Russian in 1962
and then translated into English [Markov 1966; Rime¥g et al. 1964]. Ultrasonic
machining is also referred as ultrasonic impachdjng [Moore 1986; Tyrrell 1970;
Kohls 1984; Shaw 1956], ultrasonic grinding [Schwat992], and ultrasonic abrasive
machining [Anonymous 8 1964]. Compared with conwaral machining process like
grinding and drilling, ultrasonic machining has #edowing advantages. Firstly, both
conductive and nonconductive materials can be madhi and complex three-
dimensional contours can be machined as quicklsiraple ones. Secondly, the process
does not produce a heat-affected zone or causeclagmyical/electrical alterations on
workpiece surface. Finally, a shallow, compressigsidual stress generated on the
workpiece surface may also increase the high datigue strength of the machined part

[Markov 1966; Rozenberg et al. 1964].

However, in ultrasonic machining, the slurry hadéofed to and removed from the gap

between the tool and the workpiece. Because offdlots there are some disadvantages to

this method: 1) material removal rate slows dowmstderably and even stops as

14



penetration depth increases; 2) the slurry may weamwall of the machined hole as it
passes back towards the surface, which limits toerracy, particularly for small holes;
and 3) the action of the abrasive slurry also thestool itself, thus causing considerable
tool wear, which in turn makes it very difficult twld close tolerances. To overcome the
shortcomings of ultrasonic machining, rotary ultrais machining was invented in 1964
by Mr. Percy Legge, a technical officer at Unitethggdom Atomic Energy Authority

(UKAEA) [Legge 1964].

2.2.2 REVIEW OF RUM HISTORY

Although Mr. Percy Legge firstly presented rotafyrasonic machining in 1964, the

initial idea of combining drilling with vibrationssistance was proposed in G. C. Brown
et al's patent (U.S. Patent 2,942,383). In G.C.vBret al’'s patent, the drilling process
was assisted by some low frequency (lower than )YkHaration. Also, this drilling

process is only proposed for machining wood mdteria

In Mr. Percy Legge’s first RUM device, slurry walsamdoned and the combination of
abrasive slurry and metal tool in USM was replaloga diamond impregnated tool and
rotating workpiece. But, because the workpiece hald in a rotating four-jaw chuck,

this device had the following drawbacks: 1) onlscular holes could be machined; and

2) only comparatively small workpiece could belddl

15



Further improvement carried out at United KingdotorAic Energy Authority (UKAEA)

led to the development of a machine comprising tatir@y ultrasonic transducer. The
rotating transducer head made it possible to pecimachine stationary workpieces to
extremely close tolerances. With different shapmalst the range of operations could
extend to end milling, tee slotting, dovetail aodti screw threading and internal and

external grinding.

The work at UKAEA became almost the only sourceenflish literature on RUM in
1960’s [Anonymous 9 1966; Legge 1966; Hards 1968w® Instruments Ltd. 1967;
Chechines and Tikhonov 1968]. Several years’ [®essian literature on RUM appeared
[Markov 1969; Petruka et al. 1970], with work dateMoscow Aviation Institute. In the
1970s, reports on RUM in USA began to appear [@eE76; Kohls 1984; Anonymous

10 1973]. The work was carried out at Branson SBoiwer Company.

All the above technical articles were devoted tplaxing the principle of RUM and

describing the equipment and diamond tools. Expamtad investigation on the relations
between the process input variables (such as wbramplitude, static force, rotational
speed, grit size, etc.) and the output variablasnsas MRR, tool wear, surface finish,
etc.) were carried out by Russian and Japanesarcbsges and reported in the literature

in the 1970s [Markov and Ustinov 1972; Markov 19Kidpota 1977].

For a long time, RUM had been viewed merely asnaprovement of USM. Another

perspective of RUM is to consider RUM as a hybridcess, which combines two
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machining process-diamond grinding and USM [Anonym@& 1964; Prabhakar 1992;

Dam 1993; Legge 1964].

RUM is sometimes called Ultrasonic Vibration Gringli[Moore 1986; Kohls 1984],
Ultrasonic Drilling [Anonymous 8 1964; Legge 1964llitrasonic Twist Drilling

[McGeough 1988], and Ultrasonic Grinding [Suzuki at 1988]. The term Rotary
Ultrasonic Machining also refers to a different ggss, where the rotation of the

workpiece is introduced into USM [Komaraiah and &ed991].
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2.3 EXPERIMENTAL STUDY OF RUM

231 MACHINABILITY OF HARD-TO-MACHINE MATERIALSUSING RUM

Table 2.1 Summary of workpiece materials machine®UM and USM

Workpiece material

Experimental study Theoretitatly

Alumina

Canasite

Glass

[Hu et al 2003, Li et al 2005, [Zhang et al 2000, Li et al
Ramu et al 1989, Zeng etal 2004, Jiao et al 2004]
2004, Jiao et al 2004]

[Khanna and Pei, 1995]

[Jana 1973, Anonymous 9 [Luzner 1973]
1966, Anonymous 10 1973,

Treadwell and Pei 2003]

Polycrystalline Diamond [Li et al 2004]

Compacts
Silicon Carbide

Silicon Nitride

Stainless Steel

Titanium Boride

Zirconia

[Dam et al 1993]

[Dam et al 1993]

[Dam et al 1993, Deng et al [Deng et al 1993]
1993]
[Dam et al 1993]
[Prabhakar 1992, Pei 1995, PdiPei and Ferreira 1998,
et al, 1995, Ramu et al 1989, Ramu et al 1989, Ya et al
Pei et al 1995] 2002, Zhang et al 1998,

Deng et al 1993]
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Despite the simple geometry of the round hole, feachining operations display more
versatility in the type of equipment available thdmiling. The development of hard-to-
machine materials like advanced ceramics, technta$ses, and some composites
possessing enhanced properties is leading to there widespread consideration for
industrial application. However, drilling of smalbles was always recognized as one of
the most serious challenges in machining diffi¢altmachine materials. Now, RUM
method has been utilized to machine many diffetgoés of hard-to-machine materials
in industry. Table 2.1 summarizes reported workRdiM (or USM) process since it was

invented in 1960’s. RUM has been employed to machany types of materials.

2.3.2EFFECTSOF CONTROL VARIABLESON RUM PERFORMANCE

In this section, past research work and experinh@ntastigations about the effects of the
RUM process parameters (like applied static pressteedrate, rotational speed,
ultrasonic vibration amplitude and frequency, diachdype, size, concentration, and
bond type, etc.) on the RUM drilling performancesaterial removal rate, tool wear,
surface roughness or hole clearance) for diffetgpeés of hard-to-machine materials
including advanced ceramics [Hocheng et al. 20G@haJand Satyanarayana 1973;
Anonymous 8 1964; Hards 1966; Dawe Instruments 1987; Petruka et al. 1970;
Markov and Ustinov 1972; Markov et al. 1977; Kubetal. 1977, Legge 1964, Pei et al.
1995; Hu et al. 2003; Li et al. 2005; Ramu et 889; Zhang et al. 1998, Ken-ichi et al.

1998; Adithan and Venkatesh 1976; Jia and Ai 199%5and Chen 1996; Adithan 1983;
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Adithan 1974; Hocheng et al. 1999; Keisaku et @88l, technical glass [Anonymous 9
1966; Adithan 1976; Diepold and Obermeier 1996;d6ga et al. 2002; Karpov and
Stepanov 1986; Saha et al. 1977; Hahin and Scti828; Ya et al. 2001] and some
composites [Hocheng et al. 2000, Cusumano et @4]1&e reviewed and discussed. The

major conclusions are summarized.

2321 EFFECTSOF STATIC PRESSURE

The static pressure has a great effect on RUMimdgilperformance. For advanced
ceramics (like AO3, SIC, SiN4, ZrO, and BC), as the static pressure increases, MRR
will increase to a maximum value and then decrfldeeheng et al. 1999], tool wear will
increase [Hocheng et al. 1999], surface roughnésde (clearance) will decrease
[Petrukha 1970, Ramu et al. 1989, Adithan and Vea#a1976, Jia and Ai 1995, Liu and

Chen 1996, Adithan 1983, Adithan 1974, Hochend. €it9%9].

For the technical glass including regular platesglaorcelain, and borosilicate glass etc,
as the static pressure increases, similar tendenthose of advanced ceramics could be
found in some past reports [Adithan and Venkateésr61Diepold and Obermeier 1996;

Saha et al. 1977; Hahin and Schulze 1993].
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For the hard-to-machine composites (only C/SiC ausiip was reported until now), as
the static pressure increases, MRR will increasde Itlearance and tool wear will

decrease [Hocheng et al 2000, Hocheng et al. X®99ymano 1974].

2.3.2.2 EFFECTSOF ULTRASONIC VIBRATION AMPLITUDE

For technical glasses and advanced ceramics, feetefof vibration amplitude are
reported by Pei et al. 1998, Hocheng et al. 19%9th& vibration amplitude increases up
to some value, MRR increases. A further increasalwtion amplitude above the value
will result in a reduction, to some extent, in MRRhe reduction in MRR could be
attributed to “an excessive increase in alternataading on the diamond grits and a
weakening of the bond” [Karpov and Stepanov 1986kre is no significant change of

hole clearance (surface roughness) with the chahgération amplitude.

For the hard-to-machine composites (only C/SIiC ocamsitp was reported until now),
optimal vibration amplitude produces the maximummaegal rate and the hole clearance
increases with the increase of amplitude [Hochengl 000, Cusumano et al. 1974].
There is no report in detail about tool wear arelédge quality at the hole entrance and

exit.
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2.3.2.3EFFECTSOF ULTRASONIC VIBRATION FREQUENCY

The vibration frequency used in the reported expents [Petruka et al. 1970] ranges
from 18 to 24 kHz. For titanium alloy, silicon cab and dental ceramic, no systematic
research work of vibration frequency effects on RUMIlling process was ever

conducted.

2.3.24EFFECTSOF ROTATIONAL SPEED

The influence of rotational speed on RUM drillingppess is only studied in MRR for
some type of advanced ceramic by Pei et al. [199B¢ MRR will increase with the
increase of rotational speed. The influences orerotutputs (such as tool wear and
surface roughness) and other hard-to-machine raldglass and composites) have not

been reported.

2.3.25 EFFECTS OF ABRASIVE (CONCENTRATION, SIZE, TYPE AND BOND

TYPE)

As for advanced ceramics, many papers have reptreedffects of abrasives on RUM

drilling process. MRR will increase as the diamar@hcentration increase up to an

optimum value. A further increase in diamond comion results in lower MRR [86].
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According to past research work, it is due to “tbensiderable reduction in the
mechanical strength of the diamond-impregnatedridydang et al. 1998] that a further
increase in diamond concentration results in loOMBIR and greatly increased tool wear.
For surface roughness, Petrukha et al. [Petrukh @070] reported that Ra increases to a
maximum value and then decrease as the grit siaeadses. As the bond strength is
increased, MRR is reduced and tool wear is padibpreduced. Also, stronger diamond

requires stronger binders.

As for glass and composite materials, past reseaock mainly deals with the effects of
abrasive grit size (sometimes cubic boron nitriole)tool wear and hole clearance. For
nearly all types of hard-to-machine materials, retudiamond and high-strength
synthetic diamond give better performances tharkermresynthetic diamond. With natural
diamond the MRR is lower but the tool wear is lasd surface roughness is lower than
that with the strong (high-strength) synthetic diewth. For technical glass, some
experimental work was conducted by using cubic bonitride as abrasives [88].
Systematic work on titanium alloy, silicon carbided dental ceramic has not been

reported.

2.3.26 EFFECTSOF COOLANT

Experimental investigations have been conductedefbects of coolant pressure and

coolant type on the performance of RUM. Coolanspuee does not have a significant
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effect on MRR but the lowest surface roughnessbeaachieved at an optimal pressure
level [Pei et al. 1995]. As for coolant type, thathetic coolant and tap water show
better performances in RUM drilling than the watased coolant [Hu et al. 2003]. The
latest experimental studies present that the araipd-double-diaphragm pump can be
introduced into RUM coolant system to decreasemehined surface roughness [Li et
al. 2004, Li et al. 2005]. There are no systenstticlies about effects of coolant on RUM

machining of titanium alloy, silicon carbide anchtid ceramic until now.

24REVIEW OF THEORETICAL STUDY

Since the invention of RUM process, various anedjtimodels were presented.
Prabhakar et al. proposed a theoretical MRR modskd on brittle fracture whose
predictions do not agree with the experimental nlz®ns [Prabhakar et al. 1993],
while Pei et al. reported a mechanistic model edpt MRR [Pei et al. 1995]. Then, Pei
and Ferreira also reported the modeling of mategaioval in RUM by ductile mode
[Pei and Ferreira 1998]. Zhang et al. introduced #ifective number of diamond
abrasives in RUM process into the MRR model basedrdtle fracture [Zhang et al.
2000]. Ya et al. proposed that cavitation couldabether material removal process in

RUM [Ya et al. 2002].
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25REVIEW OF WHEEL WEAR MECHANISMS

A review of the literature shows that the wear ohding wheels has been studied for
workpiece materials such as ceramics (includingnaia, silicon carbide, and silicon
nitride), cermet, steel, and silicon with surfacending, RUM, and wafer grinding
[Kuriyagawa and Syoji 1990; llhan et al. 1992; Warkn and Bauer 2003; Pecherer and
Malkin 1984; Oliveira et al. 1999; Xie et al. 20Q3a0 et al. 1997; Li et al. 1997; Hwang
et al. 1999; Huang et al. 2003; Zeng et al. 2008nshoff et al. 1997]. Table 2.2

summarizes the reported studies on wheel wear §€hal].

Table 2.2 Summary of studies on wheel wear

Process Workpiece material Reference
Surface grinding Cermet [Kuriyagawa and Syoji 1990]
Steel [llhan et al 1992, Warkentin and Bauer 2003,

Pecherer and Malkin 1984]
Ceramics [Oliveira et al 1999, Xie et al 2003, Liao et al

1997, Li et al 1997, Hwang et al 1997, Huang

et al 2003]
Rotary ultrasonic Silicon carbide [Zeng et al 2005]
machining
Wafer grinding Silicon [Shaw 1996]
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Although a lot of research has been conducted ogelwvear mechanisms in grinding,
there is no reported research on wheel wear mesingnin RUM of titanium alloys. A
brief review of wheel wear mechanisms in grindinidj e conducive to the study on

wheel wear mechanisms in RUM of titanium alloys.

Researchers have focused their attention mainlythenwheel wear mechanisms of
individual abrasive particles (using single-gritees). An entire chapter is devoted to
the wear mechanisms of individual abrasive padiatethe book by Shaw [Shaw 1996].
There are four main types of wheel wear mechanifgmaw 1996; Malkin 1996;

Jahanmir 1998; Malkin 1989; Cho et al. 1994] (Athus wear, grain fracture, bond
fractures, and grain pullout). Figure 2.3 shows #uolematic illustration of these

mechanisms. More discussion on each of the weahanéms is in chapter 6.

- ‘ - A
W
A- attritious wear, B- grain fracture, C- bond fia@, D- grain pullout

Figure 2.3 lllustration of wheel wear mechanismatiganarayanan 1985]
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The overall wear and total weight loss of a grigdiwheel is predominantly determined
by grain fracture and bond fracture whereas aitriand grain pullout wear contribute

only few percent [Yoshikawa and Sata 1963; Yosh&a®63; Yoshikawa 1963].

In the past, researchers have conducted more cbsearwear mechanisms of wheels
comprising of alumina, silicon carbide and diamamdeels in grinding of metals and
ceramic materials [Xie et al. 2003; Li et al. 1990nshoff et al. 1997; Chu et al.; Shaw
1996; Malkin 1996]. Petrukha [1970] experimentaihyestigated the wheel wear in
RUM by studying the effects of static load, ultmasovibration and amplitude, diamond
concentration, diamond type, grit size, and bomengtth on the specific wheel wear (as

described by the following equation).

. Volumeof materialremoved
Specificwheelwear=

Volumeof wheelwear

But this hardly discloses any information on wheekr mechanisms in RUM. Titanium
alloys are gaining many applications in variousustdes such as aerospace [Boyer 1996;
Peacock 1988], automotive [Anonymous 12 1989; Yédmtaset al. 2002], chemical
[Farthing 1979; Orr 1982], medical [Froes 2002; Allid et al. 1988] and sporting goods
[Anonymous 13 2004; Yang and Liu 1999] due to thegh strength to weight ratio at
elevated temperatures, exceptional corrosion segist and superior fatigue strength.
There is a crucial need for conducting a systemstiitly on wheel wear in rotary
ultrasonic machining of titanium alloys. Such studhay lead to findings practically

useful to the wheel design and process control.
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This investigation aims to understand the wheelrwachanisms in RUM of a titanium
alloy (Ti-6Al-4V). Results from this study can nonhly shed lights on the wheel wear
mechanisms in RUM of titanium alloys, but also pdevsome practical guidance for the

design and manufacture of RUM wheels.

2.6 SUMMARY

In this chapter, RUM process is reviewed histolycalhe literature review on studies of
RUM process theoretically and experimentally shovesy research papers about RUM
on various hard-to-machine materials, but no stuay ever been reported on RUM of
titanium alloy, silicon carbide and dental cerami&sgjuestion immediately raised is: is it
possible to utilize RUM to machine titanium allgyjcon carbide and dental ceramics. If
it is possible, then what are the principles urttier material removal process and what

types of factors should be considered and studigtdr?
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CHAPTER 3

ROTARY ULTRASONIC MACHINING OF TITANIUM ALLOY: A

FEASIBILITY STUDY

This chapter presents the experimental resultgasilfility study during rotary ultrasonic
machining of a titanium alloy. The parameters stddare: tool wear, cutting force,

material removal rate, and surface roughness.

3.1 SETUP AND CONDITIONS

Machining experiments were performed on a machin8amic Mill Series 10 (Sonic-
Mill, Albuquerque, NM, USA). The experimental setigposchematically illustrated in
Figure 3.1. It mainly consists of an ultrasonicnsieé system, a data acquisition system,
and a coolant system. The ultrasonic spindle systamprises of an ultrasonic spindle, a
power supply, and a motor speed controller. Thegvaupply converts 60 Hz electrical
supply to high frequency (20 kHz) AC output. Thesfeéd to the piezoelectric transducer
located in the ultrasonic spindle. The ultrasonams$ducer converts electrical input into
mechanical vibrations. The motor attached atop uhleasonic spindle supplies the
rotational motion of the tool and different speeds be obtained by adjusting the motor
speed controller. The fixture to hold the specinmas mounted on a dynamometer that

was attached to the machine table.
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Figure 3.1 Experimental set-up

Table 3.1 Experimental conditions

Parameter Unit Value
Spindle speed reves® (rpm) 67 (4000)
Feedrate mmes! 0.06
Vibration power supply % 0 or 40
Vibration frequency KHz Oor20

* Vibration power supply controls the amplitudeudtfrasonic vibration
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Table 3.1 shows the experimental conditions. Mob#& S122 water-soluble cutting oil
(MSC Industrial Supply Co., Melville, NY, USA) wassed as the coolant (diluted with

water at 1 to 20 ratio). The workpiece materiasweanium alloy (Ti-6Al-4V) provided

Table 3.2 Properties of titanium alloy (Ti-6Al-4Y8fter Allen 1997].

Property Unit Value
Tensile strength MPa 950
Thermal conductivity wW-mt K1 21

Melting point K 1941 + 285
Density Kg-n? 4510
Coefficient of thermal expansion K 8.64 x 10°
Vickers hardness 300

by Boeing Company. The mechanical properties amvshin Table 3.2. The size of
workpieces was 115x85x11.94 mm. Diamond core duileye provided by N.B.R.
Diamond Tool Corp. (LaGrangeville, NY, USA). Theteuand inner diameters of the
core drills were 9.6 mm and 7.8 mm respectivelye Thesh size of the diamond

abrasives was 60/80.

Three different tools (two tools with slots and doel without slots) were used. Figure

3.2 illustrates the cutting tool with slots.

The tools are designated as:
Tool #1 — The tool with slots (without ultrasonibsation).
Tool #2 — The tool with slots (with ultrasonic \abion).

Tool #3 — The tool without slots (with ultrasonibsation).
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End face

Lateral face

£

o

(a) 3D view

(c) top view {(h) side view

Figure 3.2 lllustration of the cutting tool withos$ for rotary ultrasonic machining

3.2MEASUREMENT PROCEDURES

During rotary ultrasonic machining, the cuttingderalong the feedrate direction was
measured by a KISTLER 9257 dynamometer (Kistletrimsent Corp, Amherst, NY,

USA). The dynamometer was mounted atop the mackeaide and beneath the
workpiece, as shown in Figure 3.1. The electricghas from the dynamometer were

transformed into numerical signals by an A/D coteterThen the numerical signals to
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measure the cutting force were displayed and sawethe computer with the help of
LabVIEW™ (Version 5.1, National Instruments, Austin, TXSA). The sampling
frequency to obtain the cutting force signals wa@e Hz. The cutting force reported in
this chapter is the maximum cutting force on th#iwg force curve, as illustrated in
Figure 3.3. The material removal rate (MRR) in tlegary ultrasonic machining was
calculated using the following equation:

VolumeofMaterial Removed

MRR = :
Time
2 _ 2
MRR: ﬂ[ﬂ(Dout /2) (Din /2) ]l]j
T
225
Maximum cutting force
200

175

Cutting Force (N)
o
S

0 L L L L L 1 " 1 L 1 L 1 L
0 50 100 150 200 250 300 350
Cutting Time (sec)

Figure 3.3 Measurement of maximum cutting force
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Figure 3.4 lllustration of the hole and rod machi rotary ultrasonic machining

where, Doy is the diameter of machined holB;, the diameter of machined rod,
workpiece thickness, antl the time it takes to drill the hole. Figure 3.4ddftrates the
machined hole and rod. After each drilling tekg tutting tool was removed from the
machine for observation under a digital microscq@dympus DVM-1, Olympus
America Inc., New York, USA). The magnification thfe digital microscope was from
50 to 200. The topography was observed on botkerleface and lateral face of the tool
(see Figure 3.5). In order to ensure that the samea of the tool surface was observed
every time, a special fixture was designed for mgjdhe tool. The position shown in

Figure 3.5 was for observation of the tool latéaake.

A vernier caliper (Mitutoyo IP-65, Mitutoyo Corpdian, Kanagawa, Japan) was used for

measurements of the length of the core drill. Tdw tength was measured after each
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test. The axial tool wear was determined by théedihce between the two lengths
measurements before and after each test. The sudaghness was measured on both
the machined rod surface and the hole surface adten test with a surface profilometer

(Mitutoyo Surftest-402, Mitutoyo Corporation, Karaaggp, Japan).

Figure 3.5 Position of tool holding for observatwitool lateral face

3.3 EXPERIMENTAL RESULTS

3.3.1TOOL WEAR

The tool wear curves for the three tools are shmwifigure 3.6. For Tool #1 (with slots,
without vibration), the tool wear rate was the tagh For Tool #2 (with slots, with
vibration), the tool wear rate was lower than tloatTool #1. For Tool #3 (without slots,
with vibration), the tool wear was the lowest. Stimes, severe tool wear can be

observed at the edge of the slots (Figure 3.7).
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Figure 3.6 Tool wear vs. number of holes machined
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Figure 3.7 Severe wear at the slot edge of the tool
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The above results about the effects of ultrasoiuation on tool wear with the titanium
alloy are consistent with those reported by Markod Ustinov [1972] with workpiece
material being quartz glass. They are also comgistgh those reported by Egashira and
Mizutani [2002] in a study on ultrasonic vibratiassisted drilling of glass (Please note
that ultrasonic vibration assisted drilling is difént from rotary ultrasonic machining).
They reported that the tool wear without vibratisas approximately twice of that with

vibration [Egashira and Mizutani 2002].

3.3.2CUTTING FORCE

Cutting force data points are plotted in Figure &8 The average value of cutting force
data points for Tool #1, Tool #2, and Tool #3 dreven in Figure 3.8 (b). It can be seen
that the cutting force was significantly reducedbaia 20%) with rotary ultrasonic

machining (Tool #1 and Tool #3) compared to diamgndding. Presence of slots in the
tool reduces the cutting forces by 7%. The abogelte about the effects of ultrasonic
vibration on cutting forces are consistent with tiservations by Li et al. [2005] when

rotary ultrasonic machining of ceramic-matrix corsp@s and alumina.

3.3.3MRR

The results on material removal rate for the thoeds are shown in Figure 3.9 (a). The

average material removal rate values for Tool #dg9l®#2, and Tool #3 are shown in
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Figure 3.9 (b). It can be observed that the mdtegraoval rates measured for the three
tools do not vary significantly. The above resalt®ut the effects of ultrasonic vibration
on material removal rate are consistent with tisellte reported by Li et al. [2005] when

rotary ultrasonic machining of ceramic-matrix corsp@s and alumina.

S0
400 o
z EU}QO
. A % cmgg
2 00F A %, 2 i
2 A Ma A
=]
= 200}
&
[0
|'| Il L 1 2 Il 2 Il " Il 2 Il L 1
0 5 o 15 200 25 30 35
MNumber of holes
Y Tool #1 - with slots, without vibration

A Tool #2 - with slots, with vibration
9O Tool #3 - without slots, with vibration

{a) Cutting force vs. number of holes

5000

+

L 300k

200

Average cutting force (N)

[0

(b Average cutling force for each tool
Figure 3.8 Effects on cutting force

38



{6

MRR (™)

0.1

.0

1 510 15 200 25 30

MNumber of holes

e
£

v Tool #1 - with slots, without vibration
A Tool #2 - with slots, with vibration
O Tool 53 - without slots, with vibration

(a) MER vs. number of holes

3'4_|}

Averace MER {mm
o

e
s

Figure 3.9 Effects on material removal rate (MRR)

Tool #1 Tool #2 Tool #3

by Average MRER for each tool

39



3.3.4 SURFACE ROUGHNESS

3.3.4.1 RFACE ROUGHNESS ON MACHINED HOLES

Surface roughness curves for machined holes apagied in Figure 3.10 (a). The
average surface roughness values for Tool #1, #»oand Tool #3 are shown in Figure
3.10 (b). It can be seen that the average surfaoghness with rotary ultrasonic
machining is reduced by about 20% compared to diahgoinding. Furthermore, surface

roughness when the tool has slots is lower tharvthan the tool has no slots.

3.3.4.2 RFACE ROUGHNESS ON MACHINED RODS

Surface roughness curves for machined rods aréaglespin Figure 3.11 (a). The average
surface roughness values for Tool #1, Tool #2, Boml #3 are shown in Figure 3.11 (b).
Similar to machined holes, the average surface hoegs is lower when there is
ultrasonic vibration. Note that the roughness valas reduced by 85% with ultrasonic
vibration, a significant roughness improvement. temmore, surface roughness is
improved by 43% when the tool has no slots. Markad Ustinov [1972] studied the
effects of ultrasonic vibration on surface rougl@gen machining of quartz glass.
They found that the roughness could be either aszé or decrease, depending on the

vibration amplitude.
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3.4 SUMMARY

The experimental results presented here is the ditempt to drill titanium alloy with
RUM. The tool wear, cutting forces, and surfacegtmess are compared with three

different tools. The following conclusions can brawn:

1. Compared with diamond drilling process, the taaar rate with rotary ultrasonic
machining is about 85 % lower.

2. The cutting force and surface roughness witaryotltrasonic machining are lower
than those with diamond grinding.

3. The tool with slots reduces cutting force bur@ases surface roughness and tool wear,

compared with the tool without slots.
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CHAPTER 4

ROTARY ULTRASONIC MACHINING OF TITANIUM ALLOY: EFECTS OF

TOOL VARIABLES

This study reports the experimental results ontdloé wear, cutting force, and surface

roughness during rotary ultrasonic machining afamium alloy with four different tools.

4.1 EXPERIMENTAL CONDITIONS AND PROCEDURES

Workpiece material, machine, coolant and measuremgmpment are the same as
described in section 3.1. The experimental conufitiare shown in Table 4.1. Four
different tools were used. Table 4.2 shows theeacHations. When 72 carats of
diamond particles are added in 1 cubic inch of bomaterial then the diamond

concentration is called as 100 concentration.

Table 4.1 Experimental conditions

Parameter Unit Value
Spindle speed reves® (rpm) 67 (4000)
Feed rate mmes’ 0.06
Vibration power supply % 0, 40
Vibration frequency KHz 0, 20
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Table 4.2 Specifications of tool

Tool# Grit size (mesh #)  Grain concentration Boypkt
1 60/80 100 B
2 60/80 100 C
3 60/80 80 B
4 80/100 100 B

4.2 EXPERIMENTAL RESULTS

The results of experiments are presented and disduis this section. Experimental
data has been processed using the software call&€dR®ICAL ORIGIN (Version 6,

Microcal Software, Inc., One Roundhouse Plaza, iNoripton, MA, USA).

4.2.1 EFFECTSON CUTTING FORCE

Figure 4.1 (a) shows the curves of cutting forcenesnber of holes for the four tools. It

can be clearly observed that tool #2 and tool #4 the maximum and minimum cutting

forces respectively. Furthermore, the cutting fertmr all the four tools do not change

much as the number of holes increases.
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42.1.1GRIT SIZE

Figure 4.1 (b) shows the cutting force vs. griesigaph. It can be clearly observed that

the cutting force is reduced by approximately fefthe grit size changes from mesh

#60/80 to 80/100. These results are similar tardéiselts reported by Jiao et al. [2005] in

rotary ultrasonic machining of alumina.

4.2.1.2 DIAMOND CONCENTRATION

Figure 4.1 (c) shows the effect of diamond con@diun on cutting force. It can be seen

that the cutting force is reduced significantlytlas diamond concentration increases from

80 to 100.

4.2.1.3METAL BOND TYPE

Figure 4.1 (d) shows the relation between cuttorgd and metal bond type. It can be

observed that the cutting force is lower for boypktB as compared to bond type C.

4.2.2 EFFECTS ON SURFACE ROUGHNESS OF MACHINED HOLE

Figure 4.2 (a) shows the experimental data dasa roughness of hole vs. number of

holes for the four tools. It can be clearly obsdrtieat tool #1 and tool #4 produce the

maximum and minimum surface roughness values @& reslpectively. Large variation is
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observed while machining first few holes with tédl. The surface roughness of hole for

the other three tools remains relatively constant.
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42.21GRIT SIZE

Figure 4.2 (b) shows the effect of grit size onfate roughness of hole. It can be
clearly observed that the surface roughness ofieakeduced significantly as the grit size
changes from mesh #60/80 to 80/100. These remdtsonsistent with the results stated
by Li et al. [2004] and Pei et al. [1995] for rotaritrasonic machining of ceramics. They
reported that the surface roughness increasemtiptimum value and then decreases as

the grit size increases.

4.2.2.2 DIAMOND CONCENTRATION

Figure 4.2 (c) shows the graph of surface roughoébsle vs. diamond concentration.
As the diamond concentration increases from 8@ the surface roughness of the hole
increases. It is interesting to observe that thesalts are different from those reported
by Li et al. [2004] and Pei et al. [1995] for rotaritrasonic machining of ceramics. They

reported that the surface roughness decreasesertfasing diamond concentration.

4223 METAL BOND TYPE

Figure 4.2 (d) shows the effect of bond type orfaz@ roughness of hole. It can be

observed that surface roughness is higher for lyp® B as compared to bond type C.
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4.2.3 EFFECTS ON SURFACE ROUGHNESS OF MACHINED ROD

Figure 4.3 (a) shows the curves of surface roughnésod vs. number of holes curves
for the four tools. It can be observed that toola#2 tool #4 produce the maximum and
minimum surface roughness values of rod respegti@irface roughness of rod remains

more or less constant for all the four tools asmmber of holes increases.
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423.1GRIT SIZE

Figure 4.3 (b) shows the effect of grit size onfatg roughness of rod. The surface
roughness reduces significantly when the grit sizanges from 60/80 to 80/100. This
finding is similar to the results stated by Li &€t[@004] and Pei et al. [1995] for rotary

ultrasonic machining of ceramics.

4.2.3.2 DIAMOND CONCENTRATION

Figure 4.3 (c) shows the graph of surface roughoéssd vs. diamond concentration.

Surface roughness of rod increases significantlthasdiamond concentration increases

from 80 to 100. This result is different from thagated by Li et al. [2004] and Pei et al.

[1995] for rotary ultrasonic machining of ceramics.

4.2.3.3METAL BOND TYPE

Figure 4.3 (d) shows the graph of surface roughoéssd vs. types of metal bond. It

can be observed that the surface roughness is foweretal bond type B as compared to

metal bond type C.
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424 EFFECTSONTOOL WEAR
Figure 4.4 (a) shows the curves of cumulative t@ear vs. number of holes for the
four tools. It can be observed that tool #2 and ##have the maximum and minimum

axial tool wear respectively.
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42.41GRIT SIZE

Figure 4.4 (b) shows the effect of grit size onltawar. The tool wear increases
slightly as the grit size changes from mesh # 6@d380/100. This result is similar to the
results reported by Li et al. [2004], Pei et al92p Ferreira and Pei [1999], and Zeng et

al. [2004] for rotary ultrasonic machining of celiam

4.2.4.2 DIAMOND CONCENTRATION

Figure 4.4 (c) shows the graph of tool wear vsigiad  concentration. The axial tool
wear increases slightly as the diamond concentraticreases from 80 to 100. This result
is similar to the results reported by Li et al. (2], Pei et al. [1995], Ferreira and Pei

[1999], and Zeng et al. [2004] for rotary ultrasomachining of ceramics.

4243 METAL BOND TYPE

Figure 4.4 (d) shows the graph of tool wear vsesypf metal bond. It is observed that

the tool wear is lower for metal bond type B as pamred to metal bond type C. Note

that the effects of bond type on tool wear andwifase roughness are similar.
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4.3 SUMMARY

Rotary ultrasonic machining (RUM) of titanium alleyth four different tools has been
studied. The effects of different tool variablesit(gize, metal bond type, and diamond
concentration) on output variables (tool wear,ingtforce, surface roughness) has been
investigated. The following conclusions can be drdésem the study:

1. The tool with grit size of mesh #60/80 givesh@gcutting force and surface roughness
but lower tool wear compared to the tool with grte of mesh #80/100.

2. The tool with lower diamond concentration (8&eg lower surface roughness and
tool wear but higher cutting force compared to teel with higher diamond
concentration (100).

3. The tool with bond type B gives lower cuttingde, surface roughness for rod, and

tool wear but higher surface roughness for holepamed to the tool with bond type C.
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CHAPTER S

ROTARY ULTRASONIC MACHINING OF TITANIUM ALLOY: EFFECTS OF

MACHINING VARIABLES

5.1 EXPERIMENTAL CONDITIONSAND PROCEDURES
Table 5.1 shows the experimental conditions. Ottmmnditions including workpiece
material, machine, coolant and measurement equip@renthe same as described in

section 3.1.
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Table 5.1 Experimental conditions

Order of tests Spindle speed Feedrate Ultrasonic
(rev-$Y) (mm-sY vibration power
Tool Tool Tool (%)

1 2 3

1 1 1 66.7 0.06 40
2 2 2 33.4 0.06 40
3 3 9 100 0.06 40
4 4 10 50 0.06 40
5 5 11 66.7 0.06 40
6 6 12 66.7 0.25 40
7 7 3 66.7 0.14 40
8 4 66.7 0.19 40
9 5 66.7 0.06 60
10 6 66.7 0.06 40
11 7 66.7 0.06 30
12 8 66.7 0.06 50

The outer and inner diameters of the core drillsen®6 mm and 7.8 mm respectively.
The mesh size of the diamond abrasives was 80/Lf&e sets of experiments were
conducted with three identical tools. Four diffdrdavels of the three machining

variables (spindle speed, feedrate, and ultragooneer) were studied, one variable was
varied at a time while keeping the other two vdgaltonstant to study the effects on the

output.
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52 EXPERIMENTAL RESULTS
In this section, the results of the experimentspaesented. The cutting force, MRR, and

surface roughness results are shown in Table aldeT5.3, and Table 5.4 respectively.

Table 5.2 Results on cutting force (N)

Spindle Feedrate Ultrasonic Tooll Tool 2 Tool 3
speed (mm-sY) vibration
(rev-$Y) power (%)
66.7 0.06 40 118 111 123
33.4 0.06 40 547 534 565
100 0.06 40 98 102 97
50 0.06 40 298 264 244
66.7 0.06 40 118 119 134
66.7 0.25 40 680 750 695
66.7 0.14 40 390 385 402
66.7 0.19 40 448 468
66.7 0.06 60 145 138
66.7 0.06 40 118 106
66.7 0.06 30 161 172
66.7 0.06 50 109 101
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Table 5.2 Results on MRR (nins?)

Spindle Feedrate Ultrasonic Tooll Tool 2 Tool 3
speed (mm-sY) vibration

(rev-$Y) power (%)
66.7 0.06 40 0.56 0.418 0.47
334 0.06 40 0.582 0.447 0.481
100 0.06 40 0.539 0.441 0.464
50 0.06 40 0.539 0.43 0.487
66.7 0.06 40 0.56 0.49 0.56
66.7 0.25 40 1.68 2.01 181
66.7 0.14 40 1.27 1.3 1.28
66.7 0.19 40 14 1.5
66.7 0.06 60 0.565 0.474
66.7 0.06 40 0.56 0.452
66.7 0.06 30 0.591 0.448
66.7 0.06 50 0.567 0.452
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Table 5.3 Results on surface roughness (um)

Spindle  Feedrate Ultrasonic Tool 1 Tool 2 Tool 3
speed (mm-s') vibration hole rod hole rod hole  rod

(rev-$Y) power

(%)

66.7 0.06 40 0.69 0.48 0.76 05 075 0.52
33.4 0.06 40 201 1.75 1.98 1.8 193 1.69
100 0.06 40 0.63 0.3 0.65 0.31 058 0.33
50 0.06 40 1.29 0.93 1.35 0.88 1.31 0.94
66.7 0.06 40 0.69 0.48 0.79 048 081 054
66.7 0.25 40 464 351 4.23 3.8 4,19 3.89
66.7 0.14 40 1.27 0.7 1.19 0.63 1.22 0.69
66.7 0.19 40 291 2.32 2.79 2.2
66.7 0.06 60 0.63 0.28 0.58 0.22
66.7 0.06 40 0.69 0.48 1.01 05
66.7 0.06 30 166 144 147 1.89
66.7 0.06 50 0.66 0.31 0.57 0.35
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5.2.1EFFECTSON CUTTING FORCE

5.2.1.1 SPINDLE SPEED

The maximum cutting force vs. spindle speed cusvehiown in Figure 5.1. The cutting

force decreases significantly as the spindle speadases.
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Figure 5.1 Effects of spindle speed on cuttingdorc

These results are consistent with those reportetidunyet al. [2005] for rotary ultrasonic
machining of alumina. However, it is interestingnatice that these results are different

from those reported by Li et al. [2005]. They rapdrthat the spindle speed did not have
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significant effects on cutting force for rotary radonic machining of ceramic matrix
composite materials. Therefore, it can be saidttaeffects of spindle speed on cutting

force vary for different workpiece materials.

It is also observed that the rate of decreasedarctiting force decreases when the spindle
speed increases. In summary, the spindle speedidraficant effects on cutting force;

the lower the spindle speed, the higher the cutonge.

5.2.1.2 FEEDRATE

The feedrate has significant effects on cuttingdoas shown in Figure 5.2. The cutting

force increases significantly as the feedrate mm®s, which are consistent with the

observation by Jiao et al. [2005] and Li et al.d2pfor rotary ultrasonic machining of

alumina and ceramic matrix composite material respaly.
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Figure 5.2 Effects of feedrate on cutting force

5.21.3ULTRASONIC VIBRATION POWER

The ultrasonic power has significant effect on iogttforce, as shown in Figure 5.3.
Cutting force decreases initially as ultrasonic povevel increases and then increases at
higher power level. This observation is differerni that previously reported by Jiao et
al. [2005] and Li et al. [2005]. Jiao et al. found significant effects of ultrasonic power
on cutting force when rotary ultrasonic machininfgatumina. Li et al. reported that

cutting force increases as the ultrasonic poweresses for rotary ultrasonic machining
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of ceramic matrix composites. Please note that Batb et al. and Li et al. used much

smaller range of ultrasonic power in their expenise
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Figure 5.3 Effects of ultrasonic power on cuttiogcke

5.2.2EFFECTSON MATERIAL REMOVAL RATE

5.2.2.1 SPINDLE SPEED

70

The effects of spindle speed on MRR are shown gure5.4. It can be seen that the

spindle speed has no obvious effects on MRR. B®nsistent with the results reported

by Jiao et al. [2005] for rotary ultrasonic machmiof alumina. However, it is interesting
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to notice that this observation is different frohoge previously reported by Li et al.
[2005]. They found that MRR increases as the spimgjpeed increases for rotary

ultrasonic machining of ceramic matrix compositeéemnals.
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5.2.2.2 FEEDRATE

As shown in Figure 5.5, when the feedrate incread&R increases. This is because as
the feedrate increases, the tool travels fastelowwnward direction causing increase in

material removal rate. Jiao et al. [2005] and Lale{2005] reported a similar relationship
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between MRR and feedrate for rotary ultrasonic rmach of alumina and ceramic
matrix composite material respectively. Thus, even different material properties,

MRR always increases with feedrate.
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Figure 5.5 Effects of feedrate on MRR

5.2.2.3ULTRASONIC VIBRATION POWER

The ultrasonic power has no significant effectsMRR, as shown in Figure 5.6. The
MRR observed at various levels of ultrasonic poisealmost constant. This is consistent
with the results reported by Jiao et al. [2005]widwer, it is interesting to notice that this

observation is different from those previously néed by Li et al. [2005]. They reported
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that MRR increases as the ultrasonic power inceefgerotary ultrasonic machining of

ceramic matrix composites.
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Figure 5.6 Effects of ultrasonic power on MRR

5.2.3 EFFECTS ON SURFACE ROUGHNESS

5.2.3.1 SPINDLE SPEED

The surface roughness curve for the machined kalepicted in Figure 5.7. The surface

roughness becomes significantly lower as the spiadeed increases. This observation is
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consistent with those reported by Jiao et al. [2G065 rotary ultrasonic machining of
alumina. It is also observed that the rate of deszeof surface roughness decreases with
the increase in spindle speed. It can be conclubat spindle speed has significant

effects on surface roughness on the machined hole.
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Figure 5.7 Effects of spindle speed on surfacemoags measured on machined hole

52311 ON SURFACE ROUGHNESSMEASURED ON MACHINED HOLE
The surface roughness curve for machined rod isctdepin Figure 5.8. The surface

roughness becomes significantly lower as the spiadeed increases. This observation is

consistent with those reported by Jiao et al. [2G05 rotary ultrasonic machining of
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alumina. It is also observed that the rate of deszeof surface roughness decreases with
the increase in spindle speed. Compared with thehmad hole, the surface roughness
observed on the rod is lower. It is concluded #mndle speed has significant effects on

surface roughness on the machined rod.
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Figure 5.8 Effects of spindle speed on surface moegs measured on machined rod

5.2.3.2 FEEDRATE

The effects of feedrate on the machined hole serfacghness are depicted in Figure

5.9. The surface roughness measured on the haleases significantly as the feedrate
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increases. This is consistent with the results ftoenstudy of Jiao et al. [2005] for rotary

ultrasonic machining of alumina.

The effects of feedrate on surface roughness omtehined rod are depicted in Figure
5.10. At lower feedrates, there is no significartrease in surface roughness as feedrate
increases. However, at higher feedrates, the sunfaaghness increases significantly
with feedrate. Comparison of surface roughnessegaihows that roughness values for

the machined rod are lower than those for the nmachihole.
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Figure 5.9 Effects of feedrate on surface roughnesssured on machined hole
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Figure 5.10 Effects of feedrate on surface roughnesasured on machined rod

5.2.3.3ULTRASONIC VIBRATION POWER

The effects of ultrasonic power on surface rougemesasured on the machined hole are
depicted in Figure 5.11. The surface roughness uned®n the machined hole decreases
significantly as the ultrasonic power increasesesehresults are consistent with those
reported by Jiao et al. [2005] and Li et al. [20@8] rotary ultrasonic machining of

alumina and technical glasses respectively.
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Figure 5.11 Effects of ultrasonic power on surfem@ghness measured on machined hole

5.2.3.4 ON SURFACE ROUGHNESS MEASURED ON MACHINED ROD
The effects of ultrasonic power on measured surfameghness measured on the

machined rod are depicted in Figure 5.12. It iseol=d that as the ultrasonic power

increases, the surface roughness measured ondisenface decreases significantly.
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Figure 5.12 Effects of ultrasonic power on surfemeghness measured on machined rod
5.3 SUMMARY
In this chapter, the effects of three machiningialdes (spindle speed, feedrate, and
ultrasonic power) on three output variables (cgtfiorce, MRR, and surface roughness)

while rotary ultrasonic machining of a titanium ogll are studied. The following

conclusions can be drawn from the study:
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1) The spindle speed has significant effects on aytiimce and surface roughness, but
its effects on material removal rate are not sigaift. Cutting force and surface
roughness decrease as the spindle speed increases.

2) The feedrate has significant effects on cuttingcéprmaterial removal rate, and
surface roughness. Cutting force, material remaedé, and surface roughness
increase significantly as the feedrate increases.

3) The ultrasonic power has significant effects ortiegtforce and surface roughness,
but its effects on material removal rate are nghificant. Cutting force decreases
initially and then increases as the ultrasonic powmereases. Surface roughness

decreases as the ultrasonic power increases.
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CHAPTERG

ROTARY ULTRASONIC MACHINING OF TITANIUM ALLOY:

WHEEL WEAR MECHANISM S

6.1 EXPERIMENTAL CONDITIONS AND PROCEDURES

Table 6.1 shows the experimental conditions. Ottmmditions including workpiece
material, machine, coolant and measurement equiparenthe same as described in

section 3.1. Seven different wheels were used lagid $pecifications are shown in Table

6.2.
Table 6.1 Experimental conditic
Paramete Unit Value

. reves ™ 67

Spindle speed (rpm) (4000
Feedrat mmes™ 0.0¢
Vibration powel 0
supply % Oor40
Vibration frequenc KHz 0 or 2(

* Vibration power supply controls the amplitude of
ultrasonic vibratior
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Table 6.2 Specifications of the tools and testionditions

Wheel Slots Gritsize Grain concentration Bond tygéltrasonic vibration

1 Yes 60/80 100 B No

2 Yes 60/80 100 B Yes
3 No 60/80 100 B Yes
4 No 60/80 100 C Yes
5 No 60/80 80 C Yes
6 No 60/80 80 B Yes
7 No 80/100 100 B Yes

6.2 MEASUREMENT PROCEDURES

After each drilling test, the grinding wheel wasmmved from the machine for
observation under a digital microscope (Olympus DYMOlympus America Inc., New
York, USA). The magnification of the digital miclmspe was from 50 to 200. The
topography was observed on the end face of the lwlmeerder to ensure that the same
area of the wheel surface was observed every t@nspecial fixture was designed for

holding the wheel.
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6.3WEAR MECHANISM S

6.3.1ATTRITIOUSWEAR

Attritious wear [Malkin 1989] is referred to a typé wear where sharp edges of an
abrasive grain become dull due to attrition by vpoeke material, developing flat areas.
The sharp edges of diamond grains are convertedduit or flat areas. Attritious wear

increases the area of wear flats and determinem#gmitude of the grinding force and
quality of the ground surface. Attritious wear heesen observed by Shi et al. [Shi and
Malkin 2003] in grinding of hardened bearing steeth electroplated CBN wheels.

Sathyanarayanan et al. [Satyanarayanan and P&8%} tonducted a study on attritious

wear rates in grinding of steel.

Larger flat areas on diamond abrasives due tatiatisi wear were observed for every
RUM tool tested. Figure 6.1 shows two examples haf attritious wear mechanism
(marked in the circle). A certain amount of mateisaremoved from the diamond grain

making the top surface to be flat after a few uhgjltests.
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Initial diamondn

grain Diamond grain

after 4 drilling tests

Figure 6.1 Attritious wear
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6.3.2 GRAIN PULLOUT

Grain pullout has been observed by Cho et al. [€hal 1994] for grinding of Si3N4,
ZrO2, SiC and AJO; with resin-bonded diamond wheels. Xie et al. [0ft3served this
type of wear (grain pullout) during grinding of der tailoredu-sialon microstructures. In
the experiments of RUM of titanium alloy, many d@m grains on the wheels were
dislodged prematurely, before completing their @ffe working lives. Figure 6.2 shows
two examples of the grain pullout type wear meckaniln these figures, it can be clearly
observed that the diamond grain that is preseitigare 6.2 (a) (marked by circles) is
seen to be dislodged in Figure 6.2 (b). A certamoant of metal bond material was
removed leading to the grain to be completely pulésaving a cavity in the metal bond

after the next drilling test.
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Figure 6.2 Diamond grain pullout
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6.3.3 GRAIN FRACTURE

For grain fracture, the abrasive fragment is rerddwe fracture within the grain and the
fractured area exposes new cutting edges [MalkiB9L9Hagiwara et al. [1994]
evaluated the grain fracture characteristics omdiad grains in stone grinding process.

Shih and Akemon [2001].

- Wheel# 6

Figure 6.3 Diamond grain fracture
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reported brittle fracture of diamond abrasives whigreous-bond diamond wheels were

trued using blade diamond tools.

Figure 6.3 shows the grain fracture type wear masha (marked by circles) on seven
different wheels used in the investigation. It tenseen that the grains were cracked or
their top surfaces were fractured abruptly. Abrggatin surfaces and depressions on the

grain surface are visible.

6.3.4 BOND FRACTURE

In this type of wear, the bond material is erodbtalkin 1989]. The bond strength is
reduced and diamond grain dislodgement is promdbedto bond fracture. Bond fracture
is responsible for the self-sharpening of grindiviteels and loss of form and size of the
grinding wheels. Shih and Akemon [2001] have regmbrracture of vitreous-bond in

diamond wheels when the wheels were trued by lladaond tools.
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Wheel# 5
Figure 6.4 Metal bond fracture

Figure 6.4 shows two examples of the bond fradlype of wear mechanism (marked by
circles). It can be observed that the majorityhaf bond fracture occurred along the edges

of the wheel rather than towards the center.

6.3.5 CATASTROPHIC FRACTURE

Figure 6.5 shows some pictures of cracking of mietald and diamond grains (marked
by circles). They are also classified as catastooghilure because they occur at

macroscopic scale; the tool fails (or breaks) aftesurrence of these types of failures.

Figure 6.5 shows cracking of the metal bond. Theseks grew with the number of
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drilled holes and eventually caused sudden fai{areakage) of the wheel. Cracking of

metal bond is

Metal bond

\ cracking

Eroded

metal bord\A

Crack in the
metal bond

(b) Cracking o tal od alng
eroded metal (lateral face)

Figure 6.5 Cracking of metal bond

more undesirable than cracking of diamond grairabse it has more significant effects
on wheel life. The crack shown in Figure 6.5 (bjdaswheel # 5 after drilling 7 holes.
This crack grew rapidly and the wheel failed whitidlling the 8" hole. The catastrophic

type of wear mechanism occurred only once duriegnthole set of experiments.
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6.4 SUMMARY

Wheel wear mechanisms in RUM of titanium alloy 6R+4V) have been studied by
observing the topography of the end faces of ntetad diamond wheels under a digital
microscope. The following conclusions can be drawn:

1. Attritious wear, grain pullout, grain fractureond fracture, cracking of metal were
observed in RUM of titanium alloy.

2. In RUM of titanium alloy, more severe bond fraet and grain pullout were observed

on the edges of the wheel end face than at thercent
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CHAPTER 7

ROTARY ULTRASONIC MACHINING OF SILICON CARBIDE

Literature review shows that no study on rotaryasibnic machining of silicon carbide
has been reported. This chapter presents an exg@ahstudy on designed experiments
of RUM of SiC. A two-level four-factor experimentdésign has been employed to study
the effects of spindle speed, ultrasonic powerd&te and grit size on the cutting force,
chipping size and surface roughness. Other comditincluding machine, coolant and

measurement equipment are the same as describedtion 3.1.

7.1 EXPERIMENTAL CONDITIONS AND PROCEDURES

7.1.1 SETUP AND CONDITIONS

Table 7.1. Properties of silicon carbide (SiC)

Property Unit Value
Tensile strength MPa 3440
Thermal conductivity W- i K? 120
Melting point K 56
Density Kg-nt 3100
Coefficient of thermal expansion inlin™* F* 2.2 x 10°
Vickers hardness 2150
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The workpiece material was silicon carbide (SiCvmied by Saint-Gobain Ceramics
(Niagara Falls, N.Y). The size of workpiece was 1@ x 50 mm x 6 mm. Table 7.1

shows the properties of silicon carbide.

7.1.2 DESIGN OF EXPERIMENTS

A 2* (two-level four-factor) full factorial design wasmployed. There were 16 unique
experimental conditions. Based on preliminary expents and due to the limitations of
the experimental set-up, the following four processables were studied:
» Spindle speed: rotational speed of the core drill.
» Ultrasonic power: percentage of power from ultrasomower supply, which
controls the ultrasonic vibration amplitude.
» Feedrate: feedrate of the core drill.

» Grit size: abrasive patrticle size of the core drill

Table 7.2 shows the low and high levels of the @ssovariables. Test matrix is shown in
Table 7.3. The high and low levels of the procemsables were determined according to
the preliminary experiments. Furthermore, considgrine variations associated with
ceramic machining experiments, two tests were cowedufor each of the 16 unique
experiment conditions, bringing the total numbertedts to 32. The output variables

studied include cutting force, surface roughnesd,chipping size.
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Table 7.2 Low and high levels of process variables

Process Variable Unit Low level (-) High level (+)
Spindle speed rev's 33.3 66.6
Feedrate mm-s 0.008 0.015
Ultrasonic power % 25 50
Grit size mesh 60/80 80/100

* To control ultrasonic vibration amplitude.

Table 7.3 Test matrix

Test Test order SpindleVibration Feedrate Grit
# speed power size
Test 1 Test 2
1 1 14 - - - -
2 10 8 + - - -
3 4 3 - + - -
4 5 16 + + - -
5 3 10 - - + -
6 7 2 + - + -
7 2 9 - + + -
8 16 15 + + + -
9 6 1 - - - +
10 12 11 + - - +
11 11 5 - + - +
12 13 12 - + - -
13 9 4 - ] + .
14 8 7 + - + +
15 15 6 - + + +
16 14 13 + + + +
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A digital video microscope of Olympus DVM-1 (Olymp#merica Inc., Melville, NY,
US) was utilized to inspect the chippings at thi sixle of the machined hol&he hole
quality is quantified by the size of the edge cimgpformed on the machined rod as
illustrated in Figure 7.1. The chipping size wasaswed with a vernier caliper (Mitutoyo

IP-65, Mitutoyo Corporation, Kanagawa, Japan).

Machined hoI

Machined rod

t = chipping size

Figure 7.1 lllustration of chipping size

7.2EXPERIMENTAL RESULTS

Table 7.4 displays the experimental data. The so#wcalled MINITAB Statistical
Software (Version 13.31, Minitab Inc., State Colle®A, USA) was used to process the
data and to obtain the main effects, two-factoermttion and three-factor interaction
effects. Geometric representations of these eflaetpresented in Figs. 7.2-7.7. Analysis
of variance (ANOVA) has been conducted to deterntingesignificance of each effect.

However, ANOVA tables are omitted in this chapter.
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Table 7.4 Experimental results

Test # Cutting force Chipping size Surface roughness
(N) (mm) Ra (um)
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

1 1400 1350 14 16 0.38 0.40
2 1010 980 10 11 0.32 0.35
3 1230 1205 16 18 0.33 0.37
4 990 950 13 12 0.27 0.29
5 1930 1965 17 16 0.49 0.51
6 1420 1450 15 17 0.41 0.43
7 2120 2145 20 22 0.41 0.42
8 1650 1710 19 20 0.36 0.38
9 1290 1230 13 13 0.29 0.29
10 970 950 9 10 0.24 0.27
11 1090 1060 14 13 0.25 0.27
12 850 900 12 14 0.23 0.23
13 1810 1770 15 16 0.38 0.40
14 1340 1390 14 14 0.36 0.37
15 2080 2180 17 16 0.34 0.37
16 1340 1310 15 16 0.30 0.33
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7.2.1 MAIN EFFECTS

7.21.1ON CUTTING FORCE

The main effects of the four process variablesn@pi speed, feedrate, vibration power,
and grit size) on cutting force are shown in Figar2a The effect of feedrate is the most
significant (with P-value = 0.031). The secondlgrsiicant effect is spindle speed (P-
value = 0.045). It can be seen that, as spindledsplecreases and feedrate increases,
cutting force will increase. These trends are inst with those observed by Jiao et al.

[2005] for RUM of alumina and by Li et al. [2005prf RUM of ceramic matrix

composites.
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Figure 7.2 Main effects on cutting force
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7.2.1.2 ON SURFACE ROUGHNESS

The main effects of the four process variablesn@pi speed, feedrate, vibration power
and grit size) on surface roughness are shownguar€i7.3. The effect of feedrate is the

most significant (with P-value = 0.069). The sedgraignificant effect is grit size (P-

value = 0.087) followed by spindle speed (P-valu®.£32), and vibration power (P-

value = 0.132). As it can be seen, surface rough(lRa) decreases as spindle speed,
vibration power and grit size increases, and aslréde decreases. These trends are

consistent with those reported by Jiao et al. [2005RUM of alumina.
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Figure 7.3 Main effects on surface roughness
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7.2.1.3 ON CHIPPING SIZE

The main effects of the four process variablesn@pi speed, feedrate, vibration power
and grit size) on chipping size are shown in Figure The effect of feedrate is the most
significant (with P-value = 0.061). The secondlyrsiicant effects are spindle speed and
vibration power (both have P-value = 0.1). As ihdse seen, as spindle speed and grit
size increase, or feedrate decreases, chippingdsizeases. These trends are consistent
with those reported by Jiao et al. [2005] for RUMatumina and by Li et al. [2005] for

RUM of ceramic matrix composite.
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Figure 7.4 Main effects on chipping size
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7.2.2TWO FACTOR INTERACTIONS

7.2210N CUTTING FORCE

For the four-factor two-level factorial design,w@otfactor interactions can be obtained.

The results are shown in Figure 7.5. The interastinetween spindle speed and feedrate

(P-value = 0.15) as shown in Figure 7.5 (b), betweibration power and feedrate (P-

value = 0.126) as shown in Figure 7.5 (d), betwebration power and grit size (P-value

=0.151) as shown in Figure 7.5 (e), are signifi@ancutting force at a significance level

ofa=0.2.

As shown in Figure 53(b), at the high level of fiedd, the change of spindle speed

causes a larger change in cutting force than ataelevel of feedrate. As shown in

Figure 53(d), at
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Figure 7.5 Two-factor interactions on cutting force
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the high level of feedrate, the cutting force imses with the change of vibration power
from low level to high level, whereas, at the logwvél of feedrate, the cutting force
decreases with the change of vibration power from level to high level. As shown in
Figure 7.5 (e), at low level of grit size, the auit force increases with change of
vibration power from low level to high level, whase at high level of grit size, the
cutting force remains about the same with changelwhtion power from low level to

high level.
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7.2.2.2 ON SURFACE ROUGHNESS

The 6 two-factor interaction effects on surfaceglmess are shown in Figure 7.6. The
interaction effect between spindle speed and gz# $P-value = 0.174) as shown in
Figure 7.6 (c) is significant at a significancedewsfa = 0.2. It can be seen that at the low
level of grit size, the change of spindle speedseala larger change in surface roughness

than at the high level of grit size.
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Figure 7.6 Two factor interactions on surface roegs
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7.2.2.3 0N CHIPPING SIZE

The 6 two-factor interaction effects on chippingesiare shown in Figure 7.7. The
interaction effect between spindle speed and vidmgiower (P-value = 0.2) as shown in

Figure 7.7 (a) is significant at a significancedeofa = 0.2.

It can be seen that at the high level of vibrapower, the change of spindle speed causes

a smaller change in chipping size than at the el of vibration power.
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Figure 7.7 Two-factor interactions on chipping size
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7.2.3THREE FACTOR INTERACTIONS

At the significance level oft = 0.3, none of the three-factor interactions gnsicant.

Therefore, their geometric representations andudson are omitted in the chapter.

7.3 SUMMARY

A four-factor two-level factorial design is used study the relationships between the
outputs (cutting force, surface roughness, and pihip size) and the four process
variables (spindle speed, feedrate, vibration ppweerd grit size). The following

conclusions are drawn from this study:

1) The main effects of spindle speed and feedrate bigwificant effectsq = 0.05)
on the cutting force. As spindle speed decreasdsfeadrate increases, cutting
force increases.

2) Spindle speed, vibration power, feedrate, andsigeg have significant effects on
surface roughness. Surface roughness decreaspwmadle speed, vibration power
and grit size increases, and as feedrate decreases.

3) Spindle speed, feedrate, and vibration power hagrefieant effects on chipping
size. As spindle speed and grit size increasegcedrite and vibration power
decrease, chipping size decreases.

4) Some of the two-factor interactions are also sigaift.
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CHAPTER 8

ROTARY ULTRASONIC MACHINING OF DENTAL CERAMICS

This chapter presents an experimental study orgdediexperiments of RUM of dental
ceramics Literature review shows that no study on rotaryasibnic machining of dental
ceramics has been reported. The effects of spisgked, feedrate and ultrasonic

vibration power on cutting force, surface roughreess chipping size have been reported.

8.1 EXPERIMENTAL CONDITIONS

Macor panels (Corning Incorporated, Macor prod@risup, Corning NY, USA) (55 mm
x 55 mm x 4.5 mm) were used in this study. The amitipn of the material is shown in
Table 8.1. The mechanical properties of macor igted in Table 8.2. Other conditions
including machine, coolant and measurement equipraenthe same as described in

section 3.1.

Table 8.1 Composition of macor [after Noort, 2004]

Compound Approximate

weight %
SIO, 46
MgO 17
Al,05 16
K20 10
B2Os 7
F 4
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Table 8.2 Mechanical properties of macor [after Ka2004]

Property Value

Density 2.52 g/crh

Young’s Modulus (at 25° C) 66.9 GPa

Poisson’s Ratio 0.29
Shear Modulus (at 25° C) 25.5 GPa
Rockwell Hardness 48

Modulus of Rupture (at 25° C) 94 MPa
Compressive Strength 345 MPa

Fracture Toughness 1.53 MP&m

The process parameters that were investigated spandle speed (rotational speed of the
diamond core drill), feedrate (linear velocity dketdrill in the direction normal to the
workpiece surface), and ultrasonic vibration pogpe&rcentage of electrical power, which
controls the amplitude of ultrasonic vibration).uFdlifferent levels of these process
parameters were studied. One parameter was variedtime keeping the other two
parameters constant. The order of the RUM tests naadomized. The values of the

parameters for the feasibility experiments areqmesd in Table 8.3.
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Table 8.3 Experimental conditions

Test# Spindle speed (re¥)s Feedrate (mm-3 Ultrasonic power (%)

1

10

11

12

2000

3000

4000

5000

4000

4000

4000

4000

4000

4000

4000

4000

0.0635

0.0635

0.0635

0.0635

0.0635

0.138

0.1957

0.2475

0.0635

0.0635

0.0635

0.0635

40

40

40

40

40

40

40

40

20

30

40

50
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8.2EXPERIMENTAL RESULTS

821 EFFECTSON CUTTING FORCE

8.2.1.1 SPINDLE SPEED

Figure 8.2 shows the cutting force curve as spisgied increases. It is observed that the
cutting force decreases with the increase in spisgeed. This finding is consistent with
that by Jiao et al. [2005] for alumina and thatQiyri et al. [2006] for silicon carbide.
However, Li et al. [2005] reported that the cuttilogce increased with the increase of

spindle speed when RUM of ceramic matrix compq§iteC).
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Figure 8.2 Cutting force vs. spindle speed
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8.2.1.2 FEEDRATE

Figure 8.3 shows the cutting force curve as feedmatreases. It can be seen that the
cutting force increases with the increase in fetedréhis result is consistent with those
reported by Jiao et al. [2005] for alumina, by Ghatral. [2006] for silicon carbide, and

by Li et al. [2005] for CMC.
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Figure 8.3 Cutting force vs. feedrate
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8.2.1.3ULTRASONIC VIBRATION POWER

Figure 8.4 shows the cutting force curve as ultnaseibration power increases. It is
observed that the cutting force reduces when tlrasanic vibration power increases
from 20 % to 30 %, then remains almost stable wherultrasonic power changes from
30 % to 40 %, and then starts increasing with ticeeiase in ultrasonic vibration power.
This result is different from those reported byesthon RUM of different materials. As
ultrasonic vibration power increased, the cuttiogcé decreased for alumina [2005],

increased for CMC [2005], and did not vary muchditicon carbide [2006].
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Figure 8.4 Cutting force vs. ultrasonic power
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8.2.2 EFFECTS ON SURFACE ROUGHNESS

8.2.2.1 SPINDLE SPEED

Figure 8.5 shows the surface roughness curve amsllepspeed increases. It can be
observed that the surface roughness decreases tWwbespindle speed increases from
2000 rpm to 3000 rpm, then it increases with tloeaase in spindle speed from 3000 rpm
to 5000 rpm. These findings are different from thosported by Jiao et al. [2005] for
alumina and Churi et al. [2006] for silicon carbi@®th Jiao et al. [2005] and Churi et al.

[2006] reported that the surface roughness dealeask the increase in spindle speed.

8.2.2.2 FEEDRATE

Figure 8.6 shows the surface roughness curve dsateeincreases. It can be seen that the
surface roughness increases as the feedrate iasré@sn 0.06 to 0.14 mni‘sthen
decreases as feedrate increases from 0.06 to 25'mThese findings are different
from those reported by Jiao et al. [2005] for albanand Churi et al. [2006] for silicon

carbide. They stated that the surface roughnessased with the increase in feedrate.
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8.2.2.3ULTRASONIC VIBRATION POWER

Figure 8.7 shows the surface roughness curve essoitic vibration power increases. It
is observed that the surface roughness increapalyravhen ultrasonic vibration power
increases from 20% to 40%, and then decreases. ififpBes that there exists an
ultrasonic vibration power level at which the sadaroughness is minimum. These
findings are different from those reported by Je@l. [2005] for alumina and Churi et
al. [2006] for silicon carbide. They stated that gurface roughness decreased with the

increase in ultrasonic vibration power.
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Figure 8.7 Surface roughness vs. ultrasonic power
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8.2.3EFFECTSON CHIPPING SIZE

8.2.3.1 SPINDLE SPEED

Figure 8.8 shows the chipping size curve as spigpéed increases. It can be observed
that the chip size decreases rapidly initially wiiee spindle speed increases from 2000
rpm to 4000 rpm, then decreases at a lower ratéhélspindle speed reaches 5000 rpm.
These results are consistent with those reporte@huyi et al. [2006] for silicon carbide.

But Li et al. [2005] reported that, for CMC, theighing size increased with the increase

in spindle speed.
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Figure 8.8 Chipping size vs. spindle speed
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8.2.3.2 FEEDRATE

Figure 8.9 shows the relation between chipping arm feedrate. It can be observed that
the chipping size increases with the increaseedrate. These results are consistent with
those reported by Churi et al. [2006] for silicarkmde. But Li et al. [2005] reported that,

for CMC, the chipping size decreased with increadeedrate.

8.2.3.3ULTRASONIC VIBRATION POWER

Figure 8.10 shows the change of chipping size wiitasonic vibration power. It can be
observed that the chipping size increases slowlgnatine ultrasonic power increases
from 20% to 40%, and then increases rapidly whenultrasonic power increases from
40% to 50%. These results are consistent with thegerted by Churi et al. [2006] for
silicon carbide. But Li et al. [2005] reported thidr CMC, the chipping size decreased

with the increase in ultrasonic vibration power.
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8.3 SUMMARY

This chapter reports a study on the effects ofethpmecess parameters (spindle speed,

feedrate, and ultrasonic power) on three outputialbles (cutting force, surface

roughness, and chipping size) while rotary ultrasanachining of a dental ceramic

material (macor). The following conclusions cardoawvn from the study:

1) As spindle speed increases, cutting force and aigppize decrease while surface
roughness decreases initially and then increases.

2) As feedrate increases, cutting force and chippimge sncrease while surface
roughness increases initially and then decreases.

3) As ultrasonic vibration power increases, cuttingcéodecreases initially and then
increases; surface roughness increases initiathytlaen decreases, while the chipping

size increases.
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CHAPTER 9 PREDICTIVE FORCE MODEL IN ROTARY

ULTRASONIC MACHINING OF TITANIUM

9.1 ASSUMPTIONS

Rotary ultrasonic machining is considered as aibymocess that combines the material
removal mechanisms of diamond grinding and ultreessorachining. Therefore, there are
two principle approaches for development of a maoodgdredict cutting force. In the first
approach the process is considered as ultrasonthimiag and the effect of diamond
grinding is superimposed as a rotational effecthef tool. In the second approach, the
effects of these processes are reversed. Thafimsbach is used in this study.

The list of assumptions and terminology used atedtbelow:

1. Workpiece material = rigid plastic

2. Diamond abrasive = rigid sphere

3. Diamond abrasive size = same for all

4. Working particle height = all particles are at samegght

5. All abrasive particles take part in cutting durigach ultrasonic cycle

6. Volume of material removed by one abrasive partielenteraction volume of
abrasive particle swept volume

7. Material removal rate for a tool is constant

8. Tool thickness remains constant for all the todtl thickness = 1.8 mm
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TERMINOLOGY

D, = Outer diameter of the tool (mm)

D; = Inner diameter of the tool (mm)

h = Workpiece thickness (mm)

S = Spindle speed (rpm)

f = Ultrasonic vibration frequency (Hz)

A = Ultrasonic vibration amplitude (mm)

d = Diameter of diamond particle (mm)

r = Radius of diamond particle (mm)

L = Distance moved by diamond particle during peat&in in workpiece (mm)
o = Depth of maximum penetration (mm)

T = Time of machining (sec)

n = Number of diamond particles taking part in maciy
MRR = Material removal rate (mitsec)

F = Maximum contact force between tool and workeiéx)
oy = Compressive strength of workpiece

B = Projected area (mfn

9.2INDENTION DEPTH OF A DIAMOND GRIT INTO THE WORKPIECE

L= D,S x E—arcsir(l—é --------------------------- Equation (1)
60f 2 A
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Detailed derivation of the equation can be found in (Pei et al. 1995). L andl are the

two unknowns in Equation (1).

The material removal rate can be given by:

MRR = volume of material removed per unit time

2 N2
MRR = nlD" D, th ------------------------------------------- Equatian (2)

Material removal rate is also given by Pei et B95) as -
MRR = 71 1+ 1 | x| 4 = | 5 oo Equation (3)
d 2 3

L andé is the unknowns in Equation (3).

The value ob can be derived by solving Equations (1), (2) é)d

9.3ESTIMATION OF CUTTING FORCE
When A diamond particle acts against workpiece aag@f an indentation is formed.
Diamond abrasive is rigid sphere and titanium wa&e is rigid plastic. Therefore, the

following equation can be derived:
— =0 B Equation (4)

Where B = projected area of the contact betweenidraond particle and workpiece.

B can be further simplified as:

B = JTX [y =mmmemmme oo e eeee Equation (5)

And by Hypotenuse theorem,
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Fg> = Q28 = J)menmmmemmeemnemememee e meeeme e e Equation (6)

B= 715(2r - 6) ------------------------------------------------------ Equation (7)
Substituting Equation (5) in Equation (4)

% =o,[m(2r - )]

R ) Equation (8)

9.4 THE INFLUENCE OF DIFFERENT PARAMETERS ON CUTTING FORCE

In the previous sections, we have developed a digtplanalytical model for cutting
force in rotary ultrasonic machining for titaniunmatarial. In this section, we will use this
model to study how individual machining paramet@ffuence the cutting force and
compare the trends predicted by the model withdluiserved by experimental results. It
must be noted here that only trends can be comp@alise our model is based on some
assumptions; and the predicted values from the heote the experimental results may
not exactly match. The model is applied to prettietrelations between the cutting force

and the different parameters for rotary ultraseonachining of titanium alloy.
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9.41GRIT DIAMETER

The predicted relation between cutting force atiffei@nt levels of grit diameter are
plotted against tool diameter, number of graindghdip speed, machining time and
amplitude (Fig. 9.1 to 9.5). The experimental respresented in Chapter 4 also show
that cutting force increased with increase in drégmeter. This may be because as the
diameter of the grain increases, the projected afeantact also increases. The cutting
force is directly proportional to the projected aref contact. Figure 9.6 shows the
variation of different important components of Egom 1 (the cutting force equation)
with variation in grit diameter. Specifically, traepth of indentationd], the distance
moved by an indenter when in contact with the wm&e (L), material removal rate
(MRR) and cutting force (F) are shown in this figufwo important effects are visible.
First, the depth of indentation and length of cohtdecrease at a decreasing rate with
increase in grit diameter. Second, the cuttingdancreases with a decrease in depth of

indentation and length of contact.
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Figure 9.1 Relation between tool diameter and rgtiorce at 5 different levels of grit diameter

116



200

175+

1501
2 L
o 125t
o SS = 2000 rpm
o Do=9.6 mm
'éjﬂof A =0.02 mm
% - /D/D T =200 sec
O I —{1+—d=0.1mm
50+ —O—d=0.125 mmn
- —/A—d =0.15mm
25} —/—d=0.2 mm
I —<}—d=0.4mm
O 1 " 1 " 1 " 1 N 1
50 100 150 200 250

Number of Grains

Figure 9.2 Relation between number of grains antinguforce at 5 different levels of grit diameter
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Figure 9.3 Relation between spindle speed andhgufitirce at 5 different levels of grit diameter
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The predicted relation between cutting force atftei@nt levels of amplitude are plotted

against grit diameter, tool diameter, number ofrgraspindle speed and machining time

(Fig. 9.7 to 9.11). It is observed that the cuttiagce steadily increases with increase in

grit diameter, tool diameter and number of gralWhereas, it decreases at a very low

rate with increase in spindle speed and it hasidetecy to decrease at a higher rate with

increase in machining time. The experimental resptesented in Chapter 5 shows a

different trend. They reported that the cuttingcérdecreases initially, then remains

constant for a certain level of amplitude and thmcrease beyond certain limit. The

variation in trends between our model and the teploresults may be due to the

difference in basic assumptions. Also the resuktsgnted in Chapter Swere for specific
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sets of conditions. The results may be different ddferent conditions. Figure 9.12
shows the variation of different important compaiseof Equation 1 (the cutting force
equation) with variation in amplitude. Two imporntagifects are visible. First, the depth
of indentation increases at a decreasing rateamtplitude. Second, the length of contact
decreases with amplitude. This clearly states tihat depth of indentation and length of

contact are related inversely. This inverse effeetses the cutting force to remain fairly

constant.
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Figure 9.7 Relation between grit diameter and egttorce at 5 different levels of amplitude
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9.4.3TOOL DIAMETER

The predicted relation between cutting force atiffei@nt levels of tool diameter are

plotted against grit diameter, number of graingndlp speed, machining time and

amplitude (Fig. 9.13 to 9.17). It is observed ttet cutting force steadily increases with

increase in grit diameter and number of grainsddtreases at a very low rate with

increase in spindle speed and it has a tendendgdease at a higher rate with increase

in machining time; and it fairly remains constanthwincreasing amplitude. Figure 9.18

shows the variation of different important compaiseof Equation 1 (the cutting force

equation) with variation in tool diameter. The ongible effect is that the depth of

indentation, length of contact and material remaadé increase with increase in tool

diameter. And this causes the cutting force togase.
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9.4.4 NUMBER OF GRAINS

The predicted relation between cutting force atftei@nt levels of number of grains are
plotted against grit diameter, tool diameter, sf@rspeed, machining time and amplitude
(Fig. 9.19 to 9.23). It is observed that the cgttiorce steadily increases with increase in
grit diameter and tool diameter. It decreases &trg low rate with increase in spindle
speed and it has a tendency to decrease at a magkeawith increase in machining time;
and it remains fairly constant with increasing aitople. These trends are consistent with
the experimental data presented in Chapter 4. @allysis says that with the increase in
number of grains, the total projected area in adntecreases. This leads to increase in
cutting force. Figure 9.24 shows the variation dfedent important components of
Equation 1 (the cutting force equation) with vaaatin number of grains. It is observed
that the depth of indentation and length of contlextreases at an increasing rate; and
material removal rate remains constant. These teffeause the cutting force to increase

with increasing number of grains.
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200

T

175

=

a1

(@)
I

SS = 2000 rpm
Do=9.6 mm

A =0.02 mm

d =0.2 mm

(SR

o

o
I

T

75

Cutting Force (N)

ul
o
—

N
()]
—

|

| ' ' | ' | '
100 200 300 400 500

o

Machining Time (sec)

Figure 9.22 Relation between machining time antdrauforce at 5 different levels of number of giin

131



175

Cutting Force (N)

i —{3—n=50
150+ —0O—n=100
—/\—n =150
P —/— nh =200
125 << < <H =250
\Vau -\ V \/ V4
100F A /N /N AS AN SS = 2000 rpm
Dg=9.6 mm
751 O C O O O d =0.2 mm
T =200 sec
O O O O
sof
25+
0 1 1 1 1 1 1 1 1 1
0.01 0.02 0.03 0.04 0.05

Amplitude (mm)

Figure 9.23 Relation between amplitude and cufiinge at 5 different levels of number of grains

0.0024 0.0078,
@]
00021t O 0.0072F
2 0.0066}
£ 0.0018¢ z o
= £ 0.0060 \
© 0.0015" (@) - @)
[a]
\ 0.0054} ~__ 5
L O T
0.0012) ~__ 0.0048 )
O\
0.0009F O 0.0042+ SS - 2000 rpm
50 100 150 200 250 50 100 150 200 250 Do=9.6 mm
Number of Grains Number of Grains A = 002 mm
25 d =0.2 mm
125} ©) —
o T =200 sec
2.0f __ 100f O/
o <
x 15 O o o) o) LE, /
@
= £ s0f ©
3
1.0f
25}
05 1 1 1 1 1 0 1 1 1 1 1
50 100 150 200 250 50 100 150 200 250
Number of Grains Number of Grains

Figure 9.24 Influence of number of grains

132



9.4.5 SPINDL E SPEED

The predicted relation between cutting force atiftiei@nt levels of spindle speeds are
plotted against grit diameter, tool diameter, macty time, amplitude and number of
grains (Fig. 9.25 to 9.29). It is observed that théting force steadily increases with
increase in grit diameter, tool diameter and nundfegrains. The force decreases at a
very low rate with increase in amplitude and it kaendency to decrease at a higher rate
with increase in machining time. The experimentahds reported in Chapter 5 are
similar to the model predictions. The only diffecens that the cutting force decreases at
a higher rate for the data reported in Chapterigs€ observed differences in our model
and experiments may be explained by the differencassumptions and different sets of
conditions reported. The trend predicted by our eh@dn be explained with the help of
Figure 9.30, which shows the variation of differenportant components of Equation 1
(the cutting force equation) with variation in sl speed. Two effects are visible. First,
it is observed that the depth of indentation desgedinearly with increase in spindle
speed. Second, the length of contact increasesanstant rate with the spindle speed.
These two effects cause the cutting force to is@dmearly with increasing spindle

speed.
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Figure 9.25 Relation between grit diameter androgiforce at 5 different levels of spindle speed
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9.46 MACHINING TIME

The predicted relation between cutting force atfteent levels of machining time are
plotted against grit diameter, tool diameter, atnge, number of grains and spindle
speed (Fig. 9.31 to 9.35). It is observed that dbting force steadily increases with
increase in grit diameter, tool diameter and nundfegrains. The force decreases at a
very low rate with increase in amplitude and spndpeed. These predictions are
consistent with the data reported in Chapter 5ur€ig9.36 shows the variation of
different important components of Equation 1 (th#ing force equation) with variation
in spindle speed. It is observed that the depthndéntation, length of contact and

material removal. All these factors have direceetffon cutting force.
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9.5 SUMMARY

This chapter reports a theoretical model to predidting force for rotary ultrasonic
machining of titanium. The model is based on tleuagption that the workpiece material
is rigid plastic and diamond abrasive grain isdriigiaterial; and the material removal rate

iS constant.

In order to verify the model, the predicted reswere compared to experimental data
reported by the authors in different published &sidFor all the cases except one, the
trends matched for the model and experimental te$uit there were differences in the
estimated values. Our analysis states this mighde to the differences between

assumptions and actual conditions.
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CHAPTER 10

CONCLUSIONS

10.1 SUMMARIES AND CONCLUSIONSOF THISDISSERTATION

In this dissertation, rotary ultrasonic machinir@UM) process is used to machine
titanium alloy, silicon carbide and dental cerami@e feasibility of drilling these

materials by RUM is studied and the effects ofatéht machining and tool variables are
studied on different output variables (cutting fgranaterial removal rate, surface
roughness, etc.). The different studies presemdtlis dissertation are shown in Figure

10.1
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Effects of Tool Variables

Wheel Wear Mechanisms

Theoretical Study

Cutting Force
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Figure 10.1 Achievements of this dissertation
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The conclusions drawn from this dissertation are:

1.

The results on RUM of titanium alloys show thatsifeasible to machine titanium
alloy using RUM. Furthermore, tool wear and cuttiogce are lower with RUM
compared with the diamond drilling process.

When machining titanium, the RUM tools with higlggit size produces lower tool
wear but higher cutting force and surface roughngssilarly, the RUM tools with
lower diamond concentration give lower surface foegs and tool wear but higher
cutting force.

When machining titanium, with the increase in sf@repeed, the surface roughness
and cutting force decreases significantly. Theiwegttorce decreases initially and
then increases as the ultrasonic vibration powereases. The surface roughness
shows a steady decrease with increase in ultrasdmation power.

Attritious wear, grain pullout, grain fracture, lwbfracture and catastrophic types of
failures are the different wheel wear mechanisnmsenied while RUM of titanium
alloys.

Results on RUM of on silicon carbide show that df@nspeed and feedrate have
significant effects on cutting force, surface roogés and chipping size.
Additionally, ultrasonic vibration power and grize also have significant effects
on surface roughness and chipping size.

Results on RUM of dental ceramics show that thexdipi speed, feedrate, and
ultrasonic vibration power have variable effectstioa cutting force, chipping size,

and surface roughness.
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10.2 CONTRIBUTIONS OF THISDISSERTATION

The contributions of this research are:

1.

For the first time in the public domain, systemattadies on machining three
hard-to-machine materials (titanium alloy, siliccarbide and dental ceramics) have
been conducted.

The results stated are of practical use in industrymachining these materials
cost effectively by reducing the time of machinengd improved machined surface
quality.

The research achievements will have positive ingpact the future machining
processes since RUM is a comparatively new maahit@ichnology.

Since it is proved in this dissertation that ifeasible to machine the three hard-
to-machine materials with RUM, a thorough futurse@ch focused on improving
the machining time and surface quality will be Helpfor its successful
implementation in the leading industry segmentsli{sas aerospace, automobile,

medical, and sporting goods) where these matearalsvidely used.
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