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Abstract 

Enterococcus faecalis is one of the most frequently encountered enterococcal 

isolates and accounts for about 80% of enterococcal infections.  Treatment of 

enterococcal infections has become increasingly difficult as this organism has a high 

incidence of antibiotic resistance.  Lipoteichoic acid (LTA) is an essential amphiphilic 

polymer on the surface of most Gram positive bacteria.  While the molecule’s exact role 

is not yet fully understood, a role in cell-cell contact during conjugation enabling the 

spread of extrachromosomal elements has been discussed.  LTA also has implications in 

regulating autolysis, sequestering cations to the cell surface, adhesion, biofilm formation, 

antibiotic resistance, UV sensitivity, acid tolerance, and virulence.  The gene ebsG was 

identified in a mutant of E. faecalis with major alterations in LTA structure and 

decreased ability to act as a recipient in conjugative mating.  ebsG codes for a 119 kDa 

protein with only weak homology to other surface proteins of Gram positive bacteria.  

Transcriptional linkage analysis indicated ebsG and its downstream genes are organized 

in an operon.  LTA analysis reveals a higher glycosyl content of the molecule in the 

mutant during stationary phase.  Compared to wild type OG1RF, the mutant is more 

sensitive to nisin, shows higher autolysis activity during stationary phase, and is better 

able to serve as a recipient in plasmid transfer.  Our data indicate ebsG and the members 

of the operon play a role in LTA structure and may act to degrade LTA. 
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Literature Review 

Introduction 
When the first known antibiotic became available during World War II, it was 

considered a medical miracle.  The biggest killer among war victims was infected 

wounds and without a reliable and effective treatment option, many soldiers died of 

infections that today would be considered not life-threatening.  Penicillin, the first 

antibiotic discovered in 1928 by Alexander Fleming, is a diffusible β-lactam antibiotic 

produced by the soil mold Penicillium notatum that has antibacterial properties (84).  

However, four years after mass production of penicillin began in 1943, microorganisms 

were isolated that could resist its effects.  

The first bacterium to overcome penicillin was Staphylococcus aureus.  The 

introduction of methicillin in 1959 and 1960 was thought to solve the problem of 

penicillin-resistant S. aureus, but resistance to methicillin occurred almost immediately 

(12).  In 1967, penicillin-resistant pneumonia caused by Streptococcus pneumoniae 

emerged in a remote village in Papua New Guinea.  At the same time, American soldiers 

in Southeast Asia were acquiring penicillin-resistant Neisseria gonorrhoeae from 

prostitutes and by 1976, the returning soldiers brought this new strain of N. gonorrhoeae 

to the United States.   

By 1953, antibiotics such as chloramphenicol, neomycin, terramycin, tetracycline, 

and cephalosporins were in use and were effective in treating bacterial infections resistant 

to penicillin.  With the overuse and misuse of these and other antibiotics, more and more 

microbes are showing resistance.  Vancomycin is an antibiotic that is considered for 

many Gram-positive bacterial infections, the drug of “last resort”.  When all other 

antibiotics fail, patients are treated with vancomycin.  The first strain of vancomycin-

resistant enterococci was discovered in 1988 (102). 

Enterococci have been recognized not only as an important cause of nosocomial 

infections but also because of their remarkable and increasing resistance to antimicrobial 

agents, the most significant being vancomycin.  Vancomycin-resistant E. faecalis and E. 

faecium (VRE) were first reported in England in 1988 (102) and quickly spread 
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throughout the United Kingdom, France, and the United States (11).  Because the 

discovery of novel antimicrobial agents has slowed, researchers must find new ways to 

effectively target pathogenic bacteria.  One approach is to develop analogs to current 

antibiotics in use that have activity against resistant organisms.  Another strategy to 

overcome resistance is to develop new drugs which inhibit novel microbial targets (93).   

Most low G+C Gram-positive bacteria have an anionic membrane-associated 

polymer on their surface called lipoteichoic acid (LTA).  Other Gram-positive bacteria 

lacking the classical LTA molecule have anionic derivatives referred to as 

macroamphiphiles, lipoglycans, or cell surface glycolipids which have been extensively 

reviewed (95).  As of yet, no mutants have been isolated that lack LTA so it is presumed 

to be essential for survival.   

A variety of potential functions have been described for LTA including, 

regulation of autolysis, maintenance of cation homeostasis, biofilm formation, antibiotic 

resistance, UV sensitivity, acid tolerance, and virulence (75).  A logical approach for new 

antimicrobial therapies would be LTA as a whole or to target the specific building blocks 

used to synthesize it.  Since LTA and its derivatives are essential for bacterial survival, 

compounds that either interfere with synthesis or block it from adhering to host tissues 

would be reasonable avenues of research to pursue.  One drawback is that the genes 

involved in LTA biosynthesis are not well characterized and not much is understood 

about the importance of this molecule to the bacterium. 

Enterococci and E. faecalis 
Enterococcus faecalis is a Gram-positive, non-motile, commensal bacterium 

which inhabits the gastrointestinal tract of mammals.  Enterococci were once included in 

the genus Streptococcus, but the results of DNA-DNA hybridization studies 

demonstrated that fecal streptococci were only distantly related to other streptococci so 

the new genus Enterococcus was created (89).  The bacterium is normally found in pairs 

or short chains.  It is a facultative anaerobe that produces lactic acid as the major end 

product of metabolism.  Enterococci can endure temperatures up to 60°C for 30 minutes, 

low pH, and desiccation, and have high endogenous resistance to high salinity, 

antibiotics, and bile acids (77). 
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The E. faecalis genome has been sequenced for strain V583, which is the first 

reported clinical isolate resistant to vancomycin in the United States (87).  There are a 

total of 3337 predicted open reading frames on the chromosome.  The plasmids present in 

E. faecalis V583 are pTEF1 and pTEF2 which are structurally similar to the pheromone-

responsive plasmids pAD1 and pCF10, and pTEF3, which belongs to the family of 

pAMβ1 broad host range plasmids.  Interestingly, over a quarter of the genome consists 

of DNA which is either mobile or exogenously acquired (77).  There are a variety of 

plasmids previously described for E. faecalis, but the plasmids that are of particular 

interest are the pheromone-responsive conjugative plasmids (22).   

Infections Caused by Enterococci 
Although the genus Enterococcus includes 27 species (http://www.atcc.org), E. 

faecalis and E. faecium account for most clinical infections in humans (71).  With the 

increase in antibiotic resistance, enterococci are more notably recognized as a dangerous 

nosocomial pathogen that can be difficult to treat.  In hospital settings, the isolation of 

enterococci which are multi-drug resistant has become more common.  According to the 

National Nosocomial Infections Surveillance (NNIS) data from January to December 

2003, more than 28% of enterococcal isolates from participating hospital ICU’s were 

vancomycin resistant (Fig. 1). 
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Figure 1. Antimicrobial-resistant pathogens associated with nosocomial infections in 

ICU patients, comparison of resistance rates from Jan.-Dec. 2003 (Adapted from 74).  

Vancomycin-resistant enterococci account for 28.5% of enterococcal nosocomial 

infections. 

 

 Enterococci are currently the third leading cause of nosocomial bacteremia in the 

United States (74).  Many cases of bacteremia occur through the use of intravenous lines, 

abscesses, and urinary tract infections, but a large percentage have an unidentifiable 

origin and presumably begin in the intestinal tract.  In these cases, bacteria are engulfed 

by intestinal epithelial cells or intraepithelial leukocytes.  The bacteria can exit on the 

apical side of epithelial cells or migrate in phagocytes to the lymph nodes, where they 

proliferate and spread throughout the body by using the blood stream (48).  The use of 

antibiotics such as cephalosporins, which have little antienterococcal activity, can cause 

enterococcal superinfection and are associated with enterococcal bacteremia (50, 112). 

 The ability of enterococci to bind to endocardial tissue or matrix components is 

critical to cause endocarditis.  Experimental models of endocarditis have shown the 

vegetations on heart valves are mainly composed of fibrin, platelets, and fibronectin, 

providing a place for bacteria to bind (59, 86).  Patients who are at risk of developing 
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endocarditis are those that have congenital heart malformations, acquired valvular 

defects, prosthetic valves, and previous bacterial endocarditis (30).   

 Urinary tract infections (UTIs) are commonly caused by enterococci in patients 

with abnormalities of the urinary tract or those that have indwelling catheters.  Infections 

usually occur through organisms ascending the urethra and ureters from bacteria found in 

the fecal flora and can infect the bladder, prostate, and kidneys (48).     

Treatment 

The treatment of enterococcal infections usually requires a combination approach, 

for example, using penicillin with vancomycin, ciprofloxacin with ampicillin, or 

novobiocin with doxycycline (10).  While the traditional combination approach uses a 

cell-wall active antibiotic and an aminoglycoside, this has been shown to provide no 

special benefit to patients and can lead to nephrotoxicity (25).  An increase in the amount 

of clinical isolates that are vancomycin resistant has made enterococcal infections 

increasingly difficult to treat.  New antibiotics are under investigation, including 

fluoroquinolones, streptogramins, oxazolidinones, semisynthetic glycopeptides, and 

glycylcyclines (45).  While some of these antibiotics are effective against certain strains 

of enterococci, there is no specific drug that can treat all multi-drug resistant enterococci.  

The main drawback of treating these infections with a broad spectrum approach is that 

the more organisms are exposed to the drug (both commensals and pathogens), the more 

opportunities arise for resistance to evolve.  Broad spectrum antibiotics affect both 

disease-causing organisms and commensals present in numbers large enough to generate 

resistance by otherwise rare mutations or genetic exchange.   

Historically, physicians have relied on broad spectrum antibiotic therapy to treat 

infections but the current development and introduction of rapid diagnostic techniques 

may allow for a more focused approach to treating infectious diseases.  Because of the 

complex interactions between host and pathogen during the establishment of infection, 

rapid and accurate diagnosis is required.  If therapeutics are developed which target these 

specific interactions, the diverse commensal flora should essentially be left unaffected 

and the targeted population would be restricted to the relatively small numbers of 
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disease-causing organisms.  As a result, the development of resistance would be less of a 

statistical probability (93). 

Virulence Factors 
Several virulence factors have been discovered which make enterococci, and 

specifically E. faecalis, such an important nosocomial pathogen.  The ability of E. 

faecalis to transfer virulence factors and antibiotic resistance genes through the use of 

pheromone-responsive plasmids has become important in understanding how bacteria 

continue to evolve and evade the immune system.  Aggregation substance (AS), an 

important virulence factor, is now being characterized for the role it plays in virulence 

and the establishment of bacterial attachment to host tissues which leads to infection.  

There has been evidence for AS to play a role in mediating enterococcal adherence to 

renal epithelial cells (56), but AS is not involved in colonizing the urinary tract (49).  

These virulence factors are discussed in detail below. 

Gelatinase, a secreted zinc-containing metalloproteinase, is encoded by gelE on 

the chromosome of E. faecalis.  It has been shown to hydrolyze gelatine, collagen, 

fibrinogen, casein, hemoglobin, insulin, and certain E. faecalis sex-pheromone-related 

peptides (64) and plays a role in enterococcal endocarditis (16, 34).  Enterococcal 

hemolysin is also an important virulence factor as it has been shown to lyse both 

erythrocytes and a variety of Gram-positive bacteria (3, 6) and, when associated with AS, 

contributes to virulence in experimental animal endocarditis (14).  Enterococcal surface 

protein, Esp, is another virulence factor of E. faecalis and has been shown to play a role 

in adherence and colonization of the host bladder tissue but does not cause any 

histopathological changes associated with UTIs (91). 

Sex Pheromones and Gene Transfer 

Enterococci are well known for their tendency to acquire and distribute antibiotic 

resistance genes.  A group of plasmids called pheromone-responsive plasmids have been 

identified and studied for over 30 years and are a mechanism by which gene transfer 

occurs in E. faecalis (19).  These plasmids represent the most extensively characterized 

class of plasmids in the world of Gram-positive bacteria.   
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Pheromone-inducible conjugation in E. faecalis starts with a donor cell, carrying a 

conjugative plasmid, which can detect the presence of plasmid-free recipient cells by a 

recipient-produced sex pheromone.  The excreted pheromone binds to its plasmid-

encoded receptor on the surface of the donor cell and activates transcription of 

conjugation factors, the most notable being AS.  AS is an inducible surface adhesin 

protein that facilitates the attachment of the donor cell to a recipient cell by way of 

enterococcal binding substance (EBS) encoded on the chromosome (22).  The cells form 

high-density aggregates which are very stable and allow the formation of a mating 

channel for plasmid transfer to occur (Fig. 2).  Once a recipient cell acquires a copy of 

the plasmid, it now becomes a donor cell and can pass the plasmid on to a recipient cell 

in the presence of extracellular pheromone (22). 

 

Aggregation Substance

Binding Substance

Sex Pheromone

Pheromone Receptor

 
Figure 2. Model for mating pair formation via Asc10-EBS binding.  See text for 

details. (Adapted from 76). 

 

The two best characterized conjugative plasmids are pAD1 and pCF10 (21, 99) 

and their respective pheromones, cAD1 and cCF10, respectively.  Considerable work has 

also been done on pPD1, and its cognate pheromone cPD1 (111).  pAD1 and pPD1 carry 

the gene for hemolysin/bacteriocin production and pCF10 harbors Tn925, a transposon 
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similar to Tn916, encoding tetracycline resistance (22, 41).  Pheromone-responsive 

plasmids can transfer to recipient cells at high frequency (10-3 to 10-1 transconjugants per 

donor) in broth matings (20) with a low pheromone concentration present in the culture 

supernatant (~5.0 x 10-12 M) (22).  Two plasmids, pHKK702 and pHKK703, have been 

identified and confer high-level vancomycin resistance in clinical isolates of E. faecium 

(36), and are also closely related to pCF10.  pCF10 was identified 15 years earlier from 

the same hospital as pHKK702 and pHKK703, which suggests the same plasmid has 

circulated around this environment for years and has picked up different antibiotic 

resistance genes over time.  Because the horizontal transfer rate is so high in these 

plasmids, antibiotic resistance genes and other virulence factors are readily spread 

throughout enterococci populations, causing an increase in the prevalence of bacterial 

strains which are resistant to classical antibiotic therapies.   

Aggregation Substance 

As mentioned previously, AS is a surface protein encoded on the pheromone-

responsive plasmids of E. faecalis.  Its expression is induced by sex pheromones, which 

are heat stable, 7- to 8-amino acid hydrophobic peptides (97).  AS expressed by the donor 

cell binds to EBS expressed by the recipient cell, and close cell contact mediates the 

conjugative transfer of the plasmid.  The genes encoding AS from the three most-studied 

plasmids show high sequence similiarity and are named: asa1 from pAD1, asp1 from 

pPD1, and prgB from pCF10 (110).  While their proteins are not identical, they show an 

overall sequence similarity between 75-85%.  An example of a unique AS protein is 

Asa373 from the pheromone plasmid pAM373, which shows little similarity to the other 

AS proteins and appears to use a different mechanism for cellular aggregation (73). 

Besides the role AS plays in the transfer of conjugative plasmids, other roles have 

been described which contribute to E. faecalis virulence.  Previous studies identified a 

role for Asa1 in adherence to porcine renal tubular cells (56) and for adherence to human 

macrophages (94).  E. faecalis bearing AS has been shown to resist killing in 

polymorphonuclear leukocytes (PMNs) despite these cells being activated (83).  Asa1 

and Asc10 have been shown to aid in the binding of E. faecalis to extracellular matrix 

components such as fibrin (40) thrombospondin, vitronectin, and collagen type I (86).  
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This important adherence property of E. faecalis bearing AS can mediate colonization 

and infection through injured epithelium and endothelium in host tissues where these 

extracellular components are exposed. 

Many studies focus on the potential functions of AS, but few have focused on the 

properties of the protein that arbitrate these functions.  One major problem with the use of 

conventional approaches is that the purified AS protein is highly unstable.  Isolation of 

AS gives a 137 kDa product representing the full-length protein and a specific 78 kDa, N-

terminal cleavage product (39).  AS has an N-terminal signal sequence and a C-terminal 

LPXTG cell wall anchor motif, which is common in Gram-positive surface proteins.  

Asa1, Asp1, and Asc10 have two conserved Arg-Gly-Asp (RGD) motifs thought to be 

involved in binding to cell surface integrins (56, 91, 97).  This was disproved by mutating 

the RGD motifs in Asc10 and examining their role in the internalization of E. faecalis 

into HT-29 enterocytes.  This study showed the RGD motifs were not critical for efficient 

internalization into HT-29 enterocytes (107).   

Scanning electron microscopy on Asa1 has found the N terminus is more exposed 

than the C terminus on the cell surface (39).  Aggregation analysis has identified that the 

N- and C-terminal domains of Asc10 play an important role in aggregation and the 

variable region may also play a role in aggregation (106).  The N-terminal domain has 

also been found to mediate clumping activity in Asa1 (72).  Importantly, AS has also 

been found to bind LTA in a dose-dependent manner and a new N-terminal domain from 

amino acids 156 to 358 was found to be required for aggregation (108). 

The Nature of the Binding Partner – Enterococcal Binding Substance 

As previously mentioned, the receptor for AS is EBS, but it has not been well 

characterized and the component(s) are unknown.  According to the model for mating 

pair formation (Fig. 2), both donor and recipient cells express EBS and it has been shown 

that donor cells can self-aggregate when induced to express AS (46).  While the exact 

composition of EBS is unknown, several lines of evidence support a role for LTA 

involvement.   

The work of Ehrenfeld et al. found purified LTA inhibited cell aggregation at 

relatively low concentrations, suggesting LTA could be part of the binding substance 

(23).  A mutant created by Trotter et al. named INY3000, which will be discussed in 
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detail below, has been shown to be deficient in the ability to act as a recipient in 

conjugative matings, due to four Tn916 insertions in the chromosome (100).  When 

INY3000 LTA was examined, it was found to have a shorter polyglycerophosphate 

backbone and the fatty acids associated with the lipid anchor were shortened when 

compared to wild type E. faecalis LTA (100).  This suggested LTA could be partially 

responsible for the decreased recipient ability observed.  Finally, it has been shown that 

an N-terminal domain of Asc10 binds LTA in a dose-dependent manner (108), providing 

further evidence for the involvement of LTA in EBS. 

Bacterial Adherence to Host Tissues 

In order to initiate the infection process, bacterial adherence to host tissues is a 

critical first step.  For enterococci living as commensals in the gastrointestinal tract, 

adhesins that bind to the mucosal surfaces of eukaryotic cells play a critical role in the 

maintenance of colonization.  If enterococci didn’t have a means of attachment, they 

would be eliminated by the flow of materials that normally pass through the intestines.  

As discussed previously, AS is an important bacterial adhesin molecule for E. faecalis.  

In addition to the transfer of pheromone plasmids carrying virulence traits and antibiotic 

resistance genes, AS plays a role in the adherence of enterococci to renal epithelial cells 

and to cardiac vegetations (14, 56).  E. faecalis has also been found to bind to several 

extracellular matrix components (40, 86), which could aid in the establishment of 

infection to damaged tissues. 

There are implications for LTA to act as an adhesin molecule, but not much work 

has been done on E. faecalis LTA to support this theory.  S. saprophyticus LTA has been 

found to possibly act as an adhesin to uroepithelial cells (102).  Chugh et al. found the 

lipid moiety of LTA plays a central role in the adherence of S. epidermidis to fibrin-

platelet clots, an important factor in the establishment of bacterial endocarditis (15).  

LTA of Lactobacillus johnsonii La1has been shown to act as an adhesin factor for the 

attachment of these cells to Caco-2 human intestinal cells (32).  The role of LTA to act as 

an adhesin molecule and the role it plays in enterococcal infections must continue to be 

investigated for a better understanding of how the infection process occurs. 

Lipoteichoic Acid Structure, Biosynthesis, and Functions 
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The bacterial cell wall consists of a dynamic collection of molecules and proteins 

essential for survival, shape, and integrity.  LTA is a membrane-associated polymer 

characteristic of most Gram-positive bacteria.  Those Gram-positive bacteria that lack 

LTA have a similar molecule that performs much of the same functions as LTA (75).  For 

example, Micrococcus luteus has the anion polymer lipomannan in place of LTA.  

Mycobacterium leprae and Mycobacterium tuberculosis have arabinomannan in place of 

LTA on their cell surface (95).  To date, there is no mutant deficient for LTA which 

illustrates the importance of this molecule to the growth and survival of the organism. 

Structure of LTA 

LTA is an amphiphilic molecule that is anchored in the plasma membrane by a 

glycolipid anchor and extends through the peptidoglycan layer to the cell surface.  The 

predominant type of LTA consists of a 1,3-linked polyglycerophosphate backbone 

attached to the glycolipid anchor by a phosphodiester bond (26), but variations to this 

structure have been reported.  LTA from Streptococcus pneumoniae differs from the 

predominant structure by containing ribitol phosphate, galactosamine, glucose, and 

choline phosphate.  Actinomycetes lack classical LTA but contain amphiphilic 

heteropolysaccharides such as lipomannans and lipoarabinomannans (96, 101).   

LTA from E. faecalis has a hydrophilic polyglycerophosphate backbone that 

extends through the peptidoglycan layer which can be between 14 and 33 

glycerophosphate units in length.  This part of the molecule is substituted with D-alanine 

and kojibiose (α-1,2-glucose) moieties.  The polyglycerophosphate backbone is linked to 

a hydrophobic phosphatidylkojibiosyl diacylglycerol anchor located in the cell membrane 

(Fig. 3) (28, 48).  The LTA of enterococci has been shown to be identical to the group D 

antigen and therefore included in the group D streptococci (109). 
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A 

 

B

Figure 3. Lipoteichoic acid structure.  (A) Glycolipid membrane anchor; (B) 

polyglycerophosphate backbone.  X: D-alanyl or kojibiose substituents (Adapted from 

75). 

 

Biosynthesis of LTA 

In 1975 studies were conducted that determined the lipid moiety of LTA from 

Streptococcus faecalis (later named E. faecalis) consists of phosphatidylkojibiosyl 

diacylglycerol.  This lipid portion is linked to the polyglycerophosphate backbone via a 

phosphodiester bond (28).  The same group later identified an enzyme in the cell 

membrane which catalyzes the transfer of glycerol phosphate from phosphatidylglycerol 

to phophatidylkojibiosyl diacylglycerol.  Once the lipid anchor has been synthesized, the 

backbone is made by adding more glycerol phosphate units from phosphatidylglycerol to 

form the glycerol phosphate polymer (29). 

Although there has been much work done on the structure of LTA, the genes 

required for LTA synthesis have not been well characterized.  In Staphylococcus aureus, 

a gene was identified named ypfP, which encodes a processive glycosyltransferase 

required for glycolipid and LTA anchor synthesis in Bacillus subtilis and S. aureus (51, 

53).  Recently, a gene was identified in S. aureus named ltaA, which is involved in LTA 

biosynthesis (32).  An ltaA mutant still synthesizes LTA, but a large portion of the LTA 

is anchored to diacylglycerol instead of diglycosyl-diacylglycerol, the normal LTA 
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anchor in S. aureus.  LtaA is thought to function as a permease which transfers 

glycolipids across the cell membrane following a concentration gradient (32). 

As mentioned previously, the polyglycerophosphate backbone of LTA in E. 

faecalis is substituted with either D-alanine or kojibiose moieties, which can alter the 

charge properties of the molecule.  An operon has been identified which is necessary for 

D-alanylation of LTA in S. aureus and S. pneumoniae and homologs of these genes are 

found in E. faecalis (54, 55).  The operon consists of four genes named dltABCD.  The 

first gene, dltA, is the D-alanyl carrier protein ligase, which activates D-alanine with ATP.  

This activated complex is then transferred to the D-alanine carrier protein (Dcp) encoded 

by dltC with the help of the dltD gene.  The dltB gene is predicted to be a transmembrane 

protein which may be involved in transporting the D-alanyl-Dcp complex across the cell 

membrane where D-alanine is added to the glycerol phosphate backbone of LTA (54, 73).  

Figure 4 depicts the model by which D-alanine is incorporated onto the backbone of 

LTA.  To date, the genes involved in the addition of kojibiose residues to LTA have not 

been characterized. 

 

 

INSIDE

OUTSIDE 

Figure 4. Model for the incorporation of D-alanine onto LTA (Adapted from 75). 

Functions of LTA 

While no one specific role has been assigned to LTA, it has an impact on many 

biological functions of the bacterial cell.  LTA has been proposed to modulate the 

activities of autolysins, play a role in the maintenance of cation homeostasis, and to 
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define the electromechanical properties of the cell wall.  The role LTA plays in plasmid 

transfer has already been explored and is an important contributor to E. faecalis 

virulence.  Additional functions include a role in adhesion, biofilm formation, antibiotic 

resistance, UV sensitivity, acid tolerance, and virulence (75).   

One important role of LTA is its postulated ability to regulate autolysins.  LTA 

has been shown to be an inhibitor of autolysins in pneumococcus (43).  It has been 

suggested that the degree of D-alanylation of LTA has an effect on its ability to regulate 

autolysis.  In E. faecalis, the action of hemolysins and bacteriocins were inhibited by D-

alanyl-wall teichoic acid and the removal of D-alanine residues abolished the inhibitory 

effect and autolysis was induced (17). 

Because LTA has a net negative charge, it has been suggested that this molecule 

might be involved in the binding of cations and sequestering them to the surface of the 

cell.  LTA has been shown to bind Mg2+ in B. subtilis, Lactobacillus buchneri, and S. 

aureus (2, 37, 60).  It has also been observed that the degree of D-alanylation effects 

cation binding.  When LTA from S. sanguis is stripped of D-alanine, one Mg2+ ion binds 

to LTA for every phosphodiester linkage in the backbone (85).  Recently, it was 

discovered that the concentration of NaCl, CaCl2, and MgCl2 can inhibit the transcription 

of the dlt operon in S. aureus, which suggests bacteria are able to adjust the D-alanine 

content of LTA with respect to their environment.  Interestingly, the concentration of 

divalent cations needed to alter transcription was much lower than the concentration of 

monovalent cations, suggesting divalent cations may play a more direct role in this 

process (54). 

Another essential role LTA plays in the biology of Gram-positive bacteria is 

increased resistance to antimicrobial peptides.  A study was initiated to determine if D-

alanine esters on LTA affected sensitivity to cationic antimicrobial peptides in strains of 

S. aureus and S. xylosus which were devoid of D-alanine (78).  Some of the antimicrobial 

peptides were host defense peptides such as human defensin HNP1-3, protegrin from 

porcine leukocytes, magainin II from amphibian skin, and bacteria-derived compounds 

such as gallidermin and nisin.  All of these molecules have a net positive charge but 

differ in their structures.  It was found that all the compounds had lower minimum 

inhibitory concentrations when the dlt operon was inactivated, suggesting that D-alanine 
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residues alter the surface charge of the bacteria and make it less susceptible to killing by 

cationic antimicrobial compounds (78).   

LTA also functions as an inducer of complement, proinflammatory mediators, and 

immunogens.  LTA has been shown to activate the classical complement pathway by 

binding to C1 protein and activating it, which then acts on its substrates C4 and C2.  

Specifically, LTA binds to the C1q subcomponent of C1 (63).  The alternative 

complement pathway can also be activated by LTA and was shown to do so with S. 

pneumoniae LTA (44), although there are substantial differences in structure from E. 

faecalis LTA.  Activation of the complement pathways by LTA is an important virulence 

factor because this can lead to damage of host cells.  LTA can be released by bacteria and 

form micelles, which may consume complement (63).  It can also be inserted into the 

cytoplasmic membrane of host cells and kill them by complement activation (44). 

Recognition of LTA by the host initiates a cascade of inflammatory mediators, 

causes vascular and physiological changes, and recruits immune cells to the site of 

infection.  LTA is able to induce the release of nitric oxide, IL-1, IL-6, and TNF-α by 

monocytes and macrophages and can also activate the oxidative burst in vitro (103).  

LTA can also activate the release of IL-12 through CD14 (15), which is a receptor on 

macrophages and monocytes that also binds lipopolysaccharide (LPS) from Gram-

negative bacteria.  LTA is also recognized by Toll-like receptors (TLR), a family of 

pattern recognition proteins that activate the release of cytokines and recruit macrophages 

and neutrophils to the site of infection.  Specifically, LTA from B. subtilis and S. aureus 

have been shown to bind to TLR2 and TLR6 (38, 90). 

While much work has been done to determine the biological effects of D-alanine 

residues on LTA, the role of sugar moieties has not been explored.  It is important to 

examine the role these molecules play in the biology of bacteria to gain a better 

understanding of how bacteria, and specifically E. faecalis, establish an infection in the 

host. 

Identification of Genes Involved in EBS Formation 
In an attempt to identify genes involved in EBS, mutants were isolated that were 

defective in the ability to bind to donor cells in conjugative mating experiments.  To do 
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this, random insertions of Tn916 carrying a tetracycline resistance marker were 

introduced into the wild type E. faecalis OG1SSp chromosome.  This group had 

previously isolated a lytic phage, NPV-1, capable of lysing E. faecalis OG1 wild type 

cells and its derivatives.  To screen for conjugative-defective mutants (Con-), Tn916 

transconjugants were subjected to NPV-1 to identify mutants that were not lysed by the 

phage, with the rationale that any alterations of the cell surface that left it phage-resistant 

could potentially affect mating ability.  Mating experiments were then performed to 

identify Con- mutants that were unable to act as recipients and showed a 100- to 1000-

fold reduction in recipient ability (100).   

One of these mutants, named INY3000, carried insertions of Tn916 at four 

different sites on the chromosome (100).  Plasmid pAD1 and pCF500, a derivative of 

pCF10, were introduced separately into INY3000 to determine if plasmid transfer could 

occur if this mutant acted as a donor.  No difference was seen between wild type donors 

and INY3000 acting as a donor, suggesting the decreased recipient ability of the mutant 

was due to a lack of effective cell-to-cell contact and not an inability to replicate the 

plasmid or produce AS (100). 

Each of the four Tn916 insertions was separated from the parent strain INY3000 

to examine their individual effects on recipient ability.  These four strains carrying a 

single copy of the transposon (INY3039, INY3040, INY3044, and INY3048) had normal 

recipient frequencies in broth matings, indicating no single insertion was responsible for 

the recipient deficient phenotype (100).   

The cell envelope was then examined to determine what effects the Tn916 

insertions had on the surface of the cell.  When LTA from INY3000 and its derivatives 

was examined and compared to wild type, the polyglycerophosphate backbone of 

INY3000 LTA was shorter in chain length compared to wild type and had an increase in 

the percentage of short chain (12-carbon) unsaturated fatty acids.  Strains carrying only 

one transposon insertion had a normal fatty acid profile.  Cell membrane fatty acids were 

also examined and no difference was seen between wild type OG1SSp and any of the 

strains carrying Tn916 insertions.  This indicates that the changes seen in fatty acid 

composition were specific to the fatty acids of LTA rather than changes in all the cellular 

lipids (100). 
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Because INY3000 is deficient in mating ability and that deficiency is due to a 

defect in binding substance expression, the DNA flanking the Tn916 insertions was 

cloned into E. coli and characterized to identify the genes involved (4).  No stable 

construct was obtained from INY3044 cloned fragments.  For INY3039 and INY3040, 

excision of the transposon resulted in fragments of 3.6 and 9.5 kb respectively.  For 

INY3048, excision of the transposon led to the deletion of the chromosomal insert and 

only left cosmid DNA.  However, a few constructs did produce a 2.0 to 2.3 kb fragment 

after excision (4). 

The excision fragment from INY3039 was sequenced because complementation 

studies determined this region of DNA was able to partially restore the recipient ability of 

INY3000.  Three open reading frames were identified and named ebsA, ebsB, and ebsC.  

EbsA showed 27% identity to the N-terminus of lktD from Actinobacillus 

actinomycetemcomitans, which is homolgous to leukotoxin or hemolysin protein (33).  

EbsB showed 28% identity to the catalytic segment of the cell wall hydrolase N-

acetlymuramoyl-L-alanine amidase, an autolysin from Bacillus licheniformis.  EbsC 

shows 36% identity to a protein from Salmonella typhimurium which may suppress 

transcription of the silent gene ushAo, a nonexpressed gene homologous to ushA from E. 

coli, which encodes a UDP-sugar hydrolase.  A fourth open reading frame designated 

orfD shows 45% identity to a dehydroquinate dehydratase from E. coli (4). 

 It is interesting to note that the excision fragments from INY3044 and INY3048 

were inconsistent in size, and this could be due to high instability or lethality in E. coli.  It 

has also been proposed that these fragments are unstable in E. faecalis and could possibly 

rearrange (4).   

DNA mapping of three of the four regions in INY3000 that play a role in binding 

substance expression has determined these regions are not contiguous on the 

chromosome of E. faecalis and the insertions in INY3039 and INY3048 are 

approximately 600 kb apart (70).  According to the published genome sequence of E. 

faecalis V583, the ebsABC gene cluster and the Tn916 insertion in INY3048 are just over 

944 kb apart.  The difference of roughly 300 kb in V583 compared to OG1RF is most 

likely due to insertions in the V583 chromosome.  Analysis of the excision fragment of 

INY3048 has shown the Tn916 insertion to be just upstream of a previously unidentified 
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cluster of five genes that may play a role in LTA structure and could be responsible for 

the changes in LTA observed in the INY3000 mutant. 

The INY3048 Locus 

There are 5 closely linked open reading frames (ORFs) just downstream of the 

Tn916 insertion in INY3048 whose organization is depicted in Fig. 5.  Almost all of the 

ORFs are novel genes that do not have homologs in other species.  The fourth gene, 

named ebsJ, has similarity to a glycerophosphoryl diester phosphodiesterase, which may 

function in E. faecalis to release glycerophosphate moieties from the unsubstituted 

polyglycerophosphate backbone, an enzymatic activity which has been described in 

Bacillus pumilus (58).  The proximity of the genes in an apparent operon close to one of 

the original insertions of Tn916 in INY3000, and the presence of ebsJ, whose gene 

product could potentially be involved in LTA biosynthesis, prompted us to investigate the 

first ORF in the locus, named ebsG.  The role of ebsG is unknown and is the subject of 

this research project. 

 

 

Tn916 (INY3000/3048) 

465 bp 
ebsJ 

ebsK ebsI ebsH 

ebsG 

Figure 5. Organization of the ebsG operon and location of Tn916 insertion in 

INY3000/INY3048.  There are 463 bp between the predicted start site of ebsG and ORF 

EF0774 upstream of ebsG. 
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Materials and Methods 

Bacterial Strains and Growth Conditions 
The bacterial strains and plasmids used in this study are listed in Table 1.  E. 

faecalis was grown without shaking at 37°C in Todd-Hewitt broth or Brain heart infusion 

(BHI) broth (Difco).  E. coli strains were grown in BHI at 37°C with shaking.  Agar 

plates contained 1.5 % agar.  The following antibiotic concentrations were used: for E. 

coli, kanamycin at 50 μg/ml and erythromycin at 100 μg/ml; for E. faecalis, kanamycin at 

1 mg/ml and erythromycin at 10 μg/ml.   

 

Table 1.  Bacterial strains and plasmids used in this study 

Strain or plasmid Description Reference or source 
Strain 
E. coli 
     EC1000 
E. faecalis 
     OG1RF 
     OG1RF::ebsG 
Plasmids 
     pMSP3535 
     pMSP7551 
     pTCV-lac 
     pMJK203a 

     pMJK204a 

 
 
Kmr, cloning host for repA-dependent plasmids 
 
Rifr, fucidic acid-resistant wild type strain 
Rifr, Ermr 
 
Nisin-inducible cloning shuttle vector 
Nisin-inducible ebsG in pMSP3535 
Ermr, Kmr, shuttle vector with β-galactosidase reporter 
233bp EcoRI-BamHI fragment containing ebsG promoter 
316 bp EcoRI-BamHI fragment containing ebsG promoter 

 
 

59 
 

18 
This study 

 
6 

H. Hirt, unpublished 
78 

This study 
This study 

 
     aThese plasmids are derivatives of pTCV-lac, which contain the inserts described in the text for use in promoter fusion studies. 

DNA Manipulations  
 Plasmid DNA from E. coli was isolated from overnight cultures using the 

QIAprep Spin Miniprep Kit (QIAGEN).  Restriction endonuclease digestions were 

performed according to the manufacturer’s instructions.  A typical digestion contained at 

least 10 μl of DNA, 1 μl of each restriction enzyme, 2 μl of the correct 10X buffer, and 

dH2O for a total volume of 20 μl.  The clean up of restriction endonuclease digestions, 

ligation reactions, and PCR reactions was achieved using the QIAquick PCR Purification 

kit (QIAGEN). 
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 Electrophoresis on 1% agarose gels was performed to screen plasmid DNA, PCR 

products, and digested DNA.  DNA samples were mixed with 10X DNA Loading Dye 

(50% glycerol, 0.1M EDTA pH 7.5, 1.0% SDS, 0.1% bromophenol blue) and loaded into 

individual wells on the gel.  Gels were stained in a solution containing 0.5 μg/ml 

ethidium bromide. 

 DNA ligations were performed at room temperature for 3 hours using T4 DNA 

ligase (Promega).  A typical reaction had a volume of 20 μl and an insert to vector ratio 

of 3:1.  Ligations were cleaned up as previously described above. 

 DNA sequencing was performed using appropriate primers on an Applied 

Biosystems 3730 DNA Analyzer with Applied Biosystems Big Dye chemistries.  

Sequences were compared to the E. faecalis V583 sequenced genome from TIGR 

(www.tigr.org). 

Isolation of Chromosomal DNA 
An overnight culture of E. faecalis OG1RF was prepared in THB and grown at 

37°C without shaking.  Equal amounts of overnight culture and 15% Chelex 100 resin 

(Bio-Rad) were mixed and incubated in boiling water for 10 mins.  Cellular debris was 

pelleted in a table top centrifuge for 5 mins at maximum speed.  The chromosomal DNA-

containing supernatant was stored at -20°C (105). 

PCR 
Primers were acquired from IDT Integrated DNA Technologies, Inc. (Coralville, 

IA) and are listed in Table 2.  Primers were diluted to 2 pmol/μl and stored at -20°C.  

PCR reactions were performed using GoTaq Flexi DNA Polymerase (Promega) 

according to the manufacturer’s instructions.  A typical reaction would contain: 2 μl 

template DNA, 10 μl forward primer (2 pmol/μl), 10 μl reverse primer (2 pmol/μl), 100 

μM total dNTPs, 2.5 mM MgCl2, 10 μl 5X reaction buffer, 0.5 μl GoTaq enzyme, and 

11.5 μl dH20 for a total reaction volume of 50 μl.  Reactions were performed on a 

Mastercycler (Eppendorf) for 35 cycles at annealing temperatures appropriate for the 

primer pair used. 
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Table 2.  Primers used in this studya 

Primer name and function Sequence (5’ to 3’) 
 
Promoter fusion constructs 
     GlacupR-21…………………………..…….…ATATAGGATCCTAAACATTTTAATCCTCC (Bam
     Glacup2

HI) 
24…………………………………….ATATAGAATTCAACCAACTTTGTCAGTGG (EcoRI) 

     Glacup307………………………………...….ATATAGAATTCGTAAAAGGACTGTAAAGG (Ec
     Glacup

oRI) 
386…………………………………….ATATAGAATTCCAGGCTAAACTATTCAGC (EcoRI) 

     Glacup399………………………………...…..ATATAGAATTCTTGTTGAAATAAACAGGC (Ec
 

oRI) 

TF………………………………………………………...…GAAGTGGTTCAAGGCTTATCTG 

TF………………………………………………….CGGAAGAATTAACAGAAATGATGATGC 
   DltARTR……………………………………………………………..ATGAGCCACCTAACGCCAATG 

F………………………………………………..………………CAAGCCAAAACAGGTCGCC 
yrBRTR……………………………………………..…………………...ACCAACACCGTGCAAGCC 

R gene linkage analysis 

774-0775R…………………………………………….……..CGTATTGGTCATTCCTTCTGTATCTC 

775-0776R………………………………………………………CGAAATCCTGACAATCTGAACAG 

775-0778R……………………………………………...……GCTACCGAAATTAAGATGCTCACAC 

778-0779R……………………………………..………AATTCAGGTTATTAAACGAAAGATAAGG 

   0779-0780R…………………………………..……………….ACTGCTAATTCTTCTTTCATTTCACG 
…………………………………..GCCAAACAAGCCCAAGGAAAAG 

781R……………………………………..……………..AATACATCATTGCCATCTTCACCTG 

qRT-PCR 
     EbsGR
     EbsGRTR……………………………………………………………TCGTTAAATCTCCGTGTGTTTG 
     DltAR
  
     GyrBRT
     G
 
RT-PC
     0774-0775F…………………………………………….……..CACTCATTCATCGTATTCACTCCTAC 
     0
     0775-0776F………………………………………….……………….CCAACAAGCCAACCGTAACAC 
     0
     0775-0778F………………………………..…………….CCAATGACTAATACAACAGTAAATCCAC 
     0
     0778-0779F………………………………………………..……..AAGGAACTATTGATGAGCCAGTC 
     0
     0779-0780F…………………………………………………….….TATGCTACCAAGTGTGGCTTCTC 
  
     0780-0781F……………………
     0780-0
 
     aUnder
cloning.  The restriction enzyme is shown in parentheses after the primer sequence. 

lined nucleotides indicate restriction cleavage sites not present in the template sequence and were employed to facilitate 

).  
° 17 

vernight at 37 C.  Cells were collected at 4 C and washed two times with ice-cold 

oration buffer (0.5M sucrose, 10% glycerol).  After the second wash, cells were 

 

Preparation of Competent Cells 
E. coli competent cells were prepared according to established protocols.  E. 

faecalis competent cells were prepared as previously described with modifications (92

Briefly, a 5 ml culture of E. faecalis OG1RF was grown for 12-15 hours at 37 C in M

broth (Difco), diluted 1:100 in 100 ml of SGM17 media containing 5% glycine, and 
° °grown o

electrop

ded in a minimum volume of electroporation buffer and 40 μl aliquots were resuspen

sed immediately or stored at -80°C. either u
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Electroporation Conditions 
In preparation for electroporation, E. coli and E. faecalis cells were thawed on ice 

r 5 minutes along with 2 mm electroporation cuvettes and the resuspension media.  

Plasmid DNA was added (2-3 μl) to each aliquot and allowed to chill for 5 additional 

transferred to a pre-chilled cuvette and pulsed at 

25 μF,  

 

me 

bsG for fusion to a promoterless lacZ 

reporter.  The PCR products were digested with EcoRI and BamHI and cloned into 

omoterless lacZ gene.  Reporter fusions were 

propag

as 

ding to the method of Miller with 

some modifications (67).  After growing cells in respective media conditions, cells were 

4, 40 

mM Na

e 

0 

ere 

fo

minutes.  The cell/DNA suspension was 

200 Ohms, at 2.5 kV using a Bio-Rad Gene Pulser Xcell electroporator.  After

pulsing, the cell/DNA suspension was resuspended in 400 μl of BHI and incubated on ice

for 5 minutes.  The cells were transferred to 37°C for 2 hours and spread on plates 

containing the appropriate antibiotics for selection. 

Construction of Promoter-β-galactosidase fusions in pTCV-lac 
The primers listed in Table 2 were used to amplify regions of the OG1RF geno

encoding the predicted promoter region of e

pTCV-lac, immediately 5’ to the pr

ated in E. coli and correct fragment insertion was identified by colony PCR using 

primers Vlac1 and Vlac2 (80), which amplify across the cloning site.  Plasmid DNA w

isolated as described and introduced into E. faecalis OG1RF by electroporation.  

Transformants were plated on BHI agar supplemented with erythromycin and X-Gal (150 

μg/ml) for the detection of β-galactosidase expression. 

β-Galactosidase Activity Assay 
β-galactosidase assays were performed accor

harvested and cell pellets were washed once with 1.5 ml Z buffer (60 mM Na2HPO

H2PO4, 10 mM KCl, 1 mM MgSO4) and then resuspended in 1.5 ml Z buffer.  

The cell suspension was added to a 2.0 ml screw cap tube which contained 0.5 ml volum

of 0.1 mm diameter glass beads (BioSpec Products, Inc.).  Cells were disrupted for 6

seconds at 4,800 rpm in a mini-beadbeater (BioSpec Products, Inc.).  The tubes w

centrifuged briefly to pellet beads and the aqueous layer removed and centrifuged for 10 

min at maximum speed in a tabletop centrifuge.  Five hundred microliters was removed 

 22



and used for the β-galactosidase assay and the remaining liquid was used to assay total 

protein content using the BCA Protein Assay kit (Pierce).  For the Miller assay, 100 μl of 

ONPG substrate (4 mg/ml o-nitrophenyl-β-D-galactoside in Z buffer) was added to 0.5 

llowed to develop for 30 minutes in a 37°C water 

bath.  T as 

NA 

 

 

d reverse primers, 10 μl of iQ 

SYBR Green Supermix, and dH20 for a total reaction volume of 20 μl, according to the 

ler (Bio-Rad 

Labora

Gene linkage analysis was done using cDNA from OG1RF cells grown for 4 

hours.  Primer pairs specific for each intergenic junction were used to amplify across 

ml of supernatant and the reaction was a

he reaction was stopped by adding 0.25 ml of 1 N Na2CO3.  The color change w

quantified using a microtiter plate reader at 405 nm.  Samples were assayed in triplicate 

and data is expressed as fold induction over empty vector. 

RNA Isolation and Real-time quantitative RT-PCR 
E. faecalis OG1RF total RNA was collected from cells grown between 2 and 6 

hours in BHI at 37°C using the RNeasy Mini kit (QIAGEN).  Quantification of total R

was spectrophotometrically determined using a Nano-Drop ND-1000 spectrophotometer 

(NanoDrop).  RNA concentrations from each time point were standardized to 500 ng/μl. 

cDNA was synthesized using the iScript cDNA Synthesis kit (Bio-Rad Laboratories) 

using random primers.  Each reaction contained: 4 μl 5X reaction mixture, 1 μl iScript 

reverse transcriptase, 2 μl RNA template (1 μg), and dH20 for a total reaction volume of

20 μl. 

For Real-time quantitative RT-PCR, the iQ SYBR Green Supermix (Bio-Rad 

Laboratories) was used with a typical reaction containing the following: 1 μl from each 

20 μl cDNA reaction, 150 nM of the appropriate forward an

manufacturer’s instructions on an iCycler iQ real-time thermocyc

tories).  Fluorescence detection was visualized using iCycler iQ real-time 

detection software.  For use as a positive control, primers were designed to amplify a 110 

bp target of gyrB.  As additional controls, reactions containing no template were used to 

measure interference from primer dimer formation and reactions containing no reverse 

transcriptase were used to assess genomic DNA contamination. 

Gene Linkage Analysis 
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these ju

 

.  

in 

rd protocols (H. Hirt, 

personal communication). 

Trans

 12 

.  Cells were washed 3 times in PBS and collected by 

centrifuging at low speed.  Cells were fixed in a buffer containing 2% paraformaldehyde, 

pH 7.2-7.4) overnight at RT with 

constan

 

uffer, 3 times in 0.2 M sodium acetate buffer (pH 5.2), and 

pre-embedded with 2% uranyl acetate in 0.2 M sodium acetate buffer for 1 hour, 

gain washed 3 times in 0.2 M sodium 

acetate nd 

   

nctions by PCR.  The following is the predicted sizes for the PCR products of 

each junction: product of the EF0774-ebsG junction (610 bp); product of the ebsG-ebsH

junction (474 bp); product of the ebsG-I junction (829 bp); product of the ebsI-ebsJ 

junction (320 bp); product of the ebsJ-ebsK junction (214 bp); and the product of the 

ebsK-EF0781 junction (481 bp).   

Production of Rabbit Polyclonal Antibodies 
A 780 bp fragment of ebsG excluding the signal peptide was cloned into pET28B

Purification was performed according to the manufacturer’s instructions.  Purified prote

was injected into New Zealand white rabbits according to standa

mission Electron Microscopy 
From an overnight culture, 1.5 ml of cells were collected by centrifugation, 

washed 3 times with PBS, and resuspended in PBS + 5% goat serum.  The cells were 

incubated with prepared primary antibody solution (1:50 in PBS) for 2 hours at RT and 

washed 3 times with PBS + 5% goat serum.  The cells were then incubated with 1:40

nm Colloidal Gold-AffiniPure goat anti-rabbit IgG (H+L) (Jackson ImmunoResearch 

Laboratories, Inc.) for 1 hour at RT

2% glutaraldehyde in 0.1 M sodium cacodylate buffer (

t rotation.  The samples were washed 3 times in 0.1 M sodium cacodylate buffer 

and were post-fixed with 2% osmium tetroxide in 0.1 M sodium cacodylate buffer for 1-2 

hours until the sample was black or amber in color.  The sample was washed 3 times in

0.1 M sodium cacodylate b

protected from the light.  The samples were a

 buffer and dehydrated with a sequential treatment of 50, 60, 70, 80, 90, 95, a

100% ethanol.  Polymerization was carried out at 60°C in EMBED 812/Araldite resin.

Sample blocks were trimmed and silver to gold thin sections were cut on a 

Reichert Ultracut S ultramicrotome (Leica).  Thin sections were placed on 200 mesh 
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copper grids and viewed on a CM100 (FEI Company) transmission electron microscope 

at 100 kV.  Images were captured using a Hamamatsu digital camera (C8484 and 

Advanced Microscopy Techniques Corp.) with image capture engine software version 

5.4.2.22B.   

EbsG Expression using Flow Cytometry 
Overnight cultures were inoculated 1:100 in 5 ml fresh media and grown for 6 

hours, with samples taken every 30 minutes between 2 and 6 hours.  Cells were co

at 4°C and resuspended in 5 ml 0.9% NaCl.  A concentration of 1.0 x 106 cells was t

from each time point and resuspended in 200 μl of prepared primary antibody solution 

(1:50 in 0.9% NaCl) for 1 hour at room temperature with rotation.  Cells were collected, 

llected 

aken 

resuspe  the 

  

n 

SP7551 was used as a positive control, with stepwise increases in nisin 

concentration from 0-25 ng/ml.  OG1RF::ebsG was used as a negative control and 

y autofluorescence of the bacterial 

cells.  T

for 4 

me, 

with rotation at 

ns 

e 

nded in 100 μl 0.9% NaCl, and incubated for 1 hour at room temperature in

dark with 10 μl of Alexa Fluor 488 goat anti-rabbit IgG (100 μg/ml concentration, 

Invitrogen).  Cells were again collected, resuspended in 1 ml 0.9% NaCl, and kept on ice.

Flow cytometry analysis of EbsG expression was performed on a Becton Dickinso

FACSCalibur flow cytometer for a minimum of 30,000 gated events.  

OG1RF::pM

unstained OG1RF cells were used to subtract out an

he same experiment was performed with cells grown in serum, which were 

washed 3 times with 0.9% NaCl before labeling.   

SDS-PAGE and Western Blot Analysis 
Overnight cultures were inoculated 1:100 in fresh media and samples were taken 

every hour between 2 and 5 hours for wild type OG1RF.  For the ebsG mutant and 

OG1RF::pMSP7551 uninduced and induced with 20 ng/ml nisin, cells were grown 

hours.  The samples were collected by centrifugation, washed 1-2 times with PBS, and 

resuspended in a small volume (typically 100 μl) of extraction buffer (5 mg/ml lysozy

0.5 mM PMSF, 50 mM Tris pH 8.0, 25 mM EDTA pH 8.0) for 1 hour 

RT.  The extracted cells were collected by centrifugation and the protein concentratio

were determined using a Nano-Drop ND-1000 spectrophotometer (NanoDrop).  Th
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extracts were separated by sodium dodecyl sulfate-8% PAGE by loading equal amounts

of protein per lane. 

The proteins were transferred to a BA 85 ni

 

trocellulose membrane (Schleicher 

and Schuell, Keene, N.H.) and blocked overnight in PBS-T + 10% milk powder.  The 

with anti-EbsG antibody (1:1000) for 2 

hours a

nt of 

.  

 ml 

 and the pellet was resuspended in 20 ml ice-cold 0.1 M sodium 

citrate r 

n 

 

nd resuspended in a minimum 

volume of 0.1 M sodium acetate buffer (pH 4.7, 15% propanol).  The lysate was 

n an octyl-Sepharose column 

equilib

membrane was rinsed with PBS-T and incubated 

t RT with shaking.  The membrane was washed 6 x 5 mintues in PBS-T and 

incubated with HRP-goat anti-rabbit IgG (Invitrogen) for 1 hour at RT.  Developme

the blot was performed using the SuperSignal West Pico Chemiluminescent substrate 

(Pierce) according to the manufacturer’s instructions. 

Lipoteichoic Acid Purification and Analysis 
LTA purification was performed according to the butanol extraction method (68)

Briefly, 4 l of media (THB supplemented with 1% glucose) was inoculated with a 5.0

overnight culture and incubated at 37°C for 12 hours.  Cells were harvested for 15 

mintues at 6000 rpm

(pH 4.0).  Bacterial cells were disrupted with 0.1 mm glass beads in a beadbeate

(Glen Mills, Inc.) 2 times for 2 minutes each.  The cell suspension was extracted with a

equal volume of butanol for 30 minutes at room temperature with vigorous stirring.  After

centrifugation for 30 minutes at 4000 rpm, the aqueous phase was removed and the 

extraction procedure was repeated by adding 0.1 M sodium citrate (pH 4.0) to the 

interphase and butanol.  The aqueous phases were combined and centrifuged for 20 

minutes at 17,000g.  The supernatant was lyophilized a

subjected to hydrophobic interaction chromatography o

rated with 0.1 M sodium acetate buffer.  Elution was performed using a linear 

gradient (15 to 80% propanol) in 0.1 M sodium acetate buffer and aliquots of 5 ml were 

collected, with every 3rd fraction being assayed for phosphate content according to 

previously described methods (13).  Fractions containing phosphate were pooled and 

dialyzed against water in Spectra/Por 3500 Da cut-off dialysis tubing (Spectrum 

Laboratories) and the resulting material was lyophilized.   
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 The resulting lyophilized material was hydrolyzed with 48% hydrofluoric ac

2°C for 48 hours followed by vacuum drying over KOH at 2°C.  Phase separation w

performed in cholorform/methanol/water at 1:1:0.9 v/v.  The aqueous and organic ph

underwent 2.0 M HCl hydrolysis at 100°C for 2.5 hours and were neutralized with NaO

The components of LTA were analyzed as follows.  Glyerol content was 

determined using Glycerol Reagent A (Zen-Bio, Inc.).  Glucose was determined using

Glucose Assay kit (Sigma).  D-alanine was determined by the D-amino acid oxidase 

method (5).  Phosphate was determined as previously described (13).   

Autolysis Assay 
Cell autolysis was determined by modifications of previously described m

(81).  Five-milliliter cultures of OG1RF, OG1RF::ebsG, an

id at 

as 

ases 

H. 

 the 

ethods 

d OG1RF::pMSP7551 with or 

withou

 5 

hours. 

::pMSP7551 with 

or without 25 ng/ml nisin were inoculated 1:100 in THB and grown at 37°C for 150 

D600 being measured every 30 minutes.  Nisin was added to the 

culture  

::ebsG) cells were inoculated 1:10 into fresh THB for 2 hours at 37 C.  In the case 

of the donor strain, 10 ng/ml of pheromone cCF10 was added.  After 2 hours, 1 part 

ded to 9 parts recipient culture and mating was allowed to proceed 

for 10 minutes at 37°C.  The mixture was then plated in triplicate on media selective for 

t 25 ng/ml nisin were inoculated 1:100 in THB and grown to either mid-log or 

stationary phase.  The cells were washed 3 times with dH20 at 4°C, and resuspended in

ml of 10 mM sodium phosphate buffer (pH 6.8) with trypsin (0.5 μg/ml).  The suspension 

was incubated in a 37°C water bath and the OD675 was measured every 30 minutes for 4 

Nisin Challenge 
Five-milliliter cultures of OG1RF, OG1RF::ebsG, and OG1RF

minutes, with the O

s so they each contained a final concentration of 250 ng/ml and the OD600 was

measured for an additional 4 hours. 

Mating Assay 
Mating assays were performed according to previously described methods (69).  

Briefly, overnight cultures of donor (OG1SSp::pCF10) and recipient (OG1RF and 

OG1RF °

donor culture was ad
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the don

ors and recipients.   

e Assay for Biofilm Formation 

were 

titer 

0 minutes at 60°C.  The OD630 was determined and biofilm 

formati  

Silicone Elastomer Disk Assay for Biofilm Formation 
iovascular Instrument Corp. 

(Wakef

 

s 

he wells were 

shaken for 30 minutes.  The saline was discarded to remove any planktonic organisms.  

ors (1 mg/ml streptomycin) or for the transconjugants (200 μg/ml rifampicin + 10 

μg/ml tetracycline).   

Mating assays with concanavalin A were performed as above, with concanavalin 

A (100 ng/ml) added just before the 10 minute mating period.  The mating suspension 

was plated as above to select for don

Microtiter Plat
Biofilm formation was assayed according to previously described methods with 

some changes (24).  Briefly, Costar 3590 polystyrene 96-well plates (Corning Inc.) 

filled with 180 μl of tryptic soy broth (TSB) without the addition of dextrose and 20 μl of 

overnight culture and incubated at 37°C for 24 hours.  The plates were read in a micro

plate reader at OD630, the culture medium was discarded, and the plates were washed 3 

times with PBS.  The plates were dried for 1 hour at 60°C and stained for 2 minutes with 

2% crystal violet.  The stain was removed by rinsing the plate with tap water, and the 

plates were dried for 1

on was normalized to growth with the biofilm index, which is calculated as OD of

biofilm x (0.5/OD of growth) (18).  Each strain was tested in triplicate. 

Silicone elastomer sheets were obtained from Card

ield, MA.).  As per the manufacturer’s instructions, the material was cleaned by 

washing in hand soap and water and rinsed in dH2O.  Flat circular disks, 9 mm in 

diameter, were obtained by cutting with a cork borer (57) and were sterilized by 

autoclaving.  Biofilm formation was measured by previously described methods with 

modifications (57, 82).  A sterile silicone disk was placed at the bottom of each well in a

Costar 3524 24-well culture plate (Corning, Inc.).  Overnight cultures of OG1RF, 

OG1RF::pMSP3535, OG1RF::ebsG, and OG1RF::pMSP7551 uninduced and induced 

with nisin were inoculated 1:100 in fresh THB and 1 ml of each cell suspension wa

added to the wells and incubated at 37°C for 24 hours.  Each strain was tested with three 

disks.  The broth was removed and replaced with 1 ml 0.9% NaCl, and t
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The dis

es per 

rray 

, 

 to 

 

 

til the cell-bound stain was completely solubilized, about 

10 minutes.  Absorbance was determined on a microtiter plate reader at 540-570 nm. 

Mand

ks were then individually placed in 15-ml polystyrene tubes containing 5 ml of 

0.9% NaCl.  The tubes were sonicated for 45 seconds and vortexed for 15 seconds.  

Samples of the cell suspensions were plated in triplicate and the numbers of coloni

milliliter were counted. 

E. faecalis Adherence to Extracellular Matrix Molecules (ECM) 
Bacterial adherence to ECM was measured using the ECM Cell Adhesion A

kit (Chemicon) with some modifications.  Overnight cultures of OG1RF, OG1RF::ebsG

or OG1RF::pMSP7551 induced with nisin were inoculated 1:100 in fresh media and 

allowed to grow until late exponential/early stationary phase.  After rehydrating the 

appropriate number of plate strips with PBS, 100 μl of the cell suspensions were added

each well in a strip and incubated at 37°C for 2 hours.  The media was removed and the 

wells were washed 2 times with Assay Buffer (provided in kit).  The Cell Stain Solution

(provided in kit) was added to each well for 5 minutes at RT and then the strips were

washed gently with dH2O 3-5 times.  Extraction Buffer (provided in kit) was added to 

each well with gentle rotation un

uca sexta Animal Model 
Overnight cultures of OG1RF or OG1RF::ebsG were diluted to a concentration of 

approximately 1.0 x 106 cells in 50 μl of PBS.  Ten fifth-instar Manduca sexta larvae 

were injected for each strain, incubated at 26°C, and monitored daily for survival. 
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Results 

EbsG is a novel surface protein of E. faecalis 
The first open reading frame in the operon (Fig. 5), named ebsG, encodes a 

protein of 962 amino acids.  It contains an LPXTG motif characteristic of other Gram-

positive surface proteins.  Genes ebsH and ebsI encode proteins of 127 and 169 amino 

acids, respectively, and are similar to other hypothetical proteins of Gram-positive 

bacteria.  The next open reading frame, named ebsJ, encodes a protein of 595 amino 

acids and is included in the glycerophosphoryl diester phosphodiesterase (GPDP) protein 

family.  This protein family is involved in fatty acid and phospholipid metabolism and 

hydrolyzes deacylated phospholipids to glycerol-3-phosphate and corresponding 

alcohols.  The last open reading frame in the operon, ebsK, encodes a peptide of 135 

amino acids and is a member of the MutT/nudix protein family.  This protein family is a 

superfamily of Mg2+-requiring enzymes that catalyze the hydrolysis of nucleoside 

diphosphates linked to other moieties (66). 

Upon examination of the amino acid sequence of ebsG, we discovered there are 

four repeats of 154 amino acids in strain OG1RF (H. Hirt, personal communication).  

Interestingly, there are only three of these repeats in strain V583.  The V583 protein 

sequence of ebsG is 154 amino acids shorter than the protein sequence from OG1RF.  

The function and importance of these repeats is unknown. 

BLASTp analysis (www.tigr.org) of the EbsG amino acid sequence from E. 

faecalis V583 reveals this gene is a novel surface protein with weak homology to other 

surface proteins in Gram-positive bacteria.  A hypothetical protein from S. epidermidis 

shows 25.6% identity to the region of EbsG containing the 151 amino acid repeats and 

appears to contain three 148 amino acid repeats similar to the organization in EbsG.  

EbsG also shows 32.3% identity to a putative collagen adhesion protein from B. cereus.  

It is interesting to note that EbsG shows 24.3% identity to Asa1 on plasmid pTEF1 of E. 

faecalis and also shows 22.3% and 22.1% identity to two putative AS proteins located on 

the V583 chromosome. 
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The N-terminus of ebsG (amino acids 77-246) shows homology to von 

Willebrand Factor (vFW) type A domain, which in humans is a glycoprotein that 

participates in platelet adhesion to sites ll injury (52).  The A domain of vWF 

ational 

subend

tral 

 

d 

bsG 

ed with nisin, the resulting material was 

hydroly

d 

lls, 

h is nearly a 2-fold decrease 

compar  

 of vessel wa

is involved in binding to the platelet receptor glycoprotein Ib through conform

changes exposing the domain after other regions of vWF bind collagen on the 

othelium.  This domain also contains distinct binding sites for heparin and 

sulphatides (47).  The protein also contains a sequence motif representing a metal-ion-

dependent adhesion site (MIDAS) that confers divalent metal-dependent binding to 

ligands (79).  Interestingly, amino acids 166-331 of ebsG have homology to the cen

region of DltD.  As discussed previously, DltD brings the activated D-alanine and the

Dcp in close proximity to each other to allow the complex to be transferred across the 

membrane by DltB.  This may be important to note since it is hypothesized that ebsG an

its downstream genes may play a role in LTA structure. 

Analysis of LTA 
After purification of LTA from stationary phase E. faecalis wild type, the e

mutant, and cells carrying pMSP7551 induc

zed and analyzed for glycerol, phosphate, glucose, and D-alanine content.  For 

each strain, the glycerol to phosphate ratio was 1:1 as expected (Table 3).  We observe

glucose to glycerol ratios of 0.72 in the ebsG mutant compared to 0.32 in wild type ce

which is an increase of over 2-fold (Fig. 6).  In cells carrying pMSP7551 induced with 

nisin, we observed a glucose to glycerol ratio of 0.19, whic

ed to wild type.  There was no difference in the ratio of glycerol to D-alanine in

any of the strains tested.  This data suggests ebsG may be involved in removing the 

glucose moieties from LTA when cells are in stationary phase. 

 

Table 3. LTA components in E. faecalis strains (mmol/ml). 

Strain Glycerol Phosphate Glucose D-alanine 
 
OG1RF 
OG1RF::ebsG 
OG1RF::pMSP7551 
 

 
2.16 
2.04 
2.04 

 
2.03 
1.97 
2.01 

 
0.69 
1.46 
0.41 

 
1.00 
0.82 
0.94 
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Figure 6. Ratio of glucose to glycerol and D-alanine to glycerol in E. faecalis strains (

1). 

 

Transcriptional linkage of ebsG and its downstream genes 

n = 

ebsG and its downstream genes, cDNA 

was syn

 

 

 

 

To confirm the transcriptional linkage of 

thesized from OG1RF total RNA and PCR was employed with primer pairs 

spanning the junction between each of the open reading frames throughout this region

(Fig. 7, top panel).  Parallel reactions using RNA as the template to control for genomic 

DNA contamination failed to yield an amplification product.  As shown in the bottom 

panel of Fig. 7, a product of the expected size was seen for PCR spanning each of the 

intergenic regions from ebsG to ebsK, demonstrating the transcriptional linkage of these

genes.  The primer pairs spanning the junctions upstream of ebsG and downstream of 

ebsK did not produce a PCR product, confirming these genes are not transcriptionally 

linked to those within the ebsG operon.  It can therefore be concluded that the genes 

EF0775 (ebsG) through EF0780 (ebsK) form an operon. 
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 left (M).  Arrows indicate 1000 

bp (upper) and 500 bp (lower) respectively. 

 

EbsG is located on the cell surface of E. faecalis 
To confirm EbsG is located on the cell surface, transmission electron microscopy 

(TEM) was performed using a polyclonal anti-EbsG antibody for labeling, along with a 

                 M         1          2          3         4            5          6         7    

Figure 7. Transcriptional linkage of the genes downstream of ebsG.  Primer pair

specific to each intergenic junction were used to amplify across these junctions by PCR, 

shown in the diagram above.  The base pairs in parentheses are the predicted sizes for the

PCR products and the colors correspond to the location of the PCR product with respe

to the operon.  Lane 1, PCR product of the ebsG-ebsH junction (474 bp, blue); lane 2

product of the ebsG-ebsI junction (829 bp, green); lane 3, product of the ebsI-ebsJ 

junction (320 bp, purple); lane 4, product of the ebsJ-ebsK junction (214 bp, orange)

lane 5, product of the EF0774-ebsG junction (481 bp, red); lane 6, product of the ebsK

EF0781 junction (481 bp, magenta); and lane 7, RNA control using primer pair for eb

ebsH junction.  The molecular ladder is shown on the far

ebsG 

ebsH ebsI 

ebsJ 

ebsK 
EF0774 

EF0781 

 33



12-nm-diameter gold particle-labeled secondary antibody.  Labeling was successful using 

OG1RF::pMSP7551 induced with nisin, as shown in Fig. 8C.  E. faecalis OG1RF cells 

grown for four hours were also examined but very little labeling could be seen on the cell 

surface (Fig. 8A), suggesting the protein is not expressed high enough to detect by TEM 

at this time point.  The ebsG mutant showed no labeling on the cell surface (Fig. 8B).  

Uninduced pMSP7551-carrying cells were used as a negative control and did not show 

any labeling (Fig. 8D). 

 

 
icroscopy of EbsG on the surface of E. faecal

C D 

Figure 8. Electron m is.  A primary rabbit 

llowed by a 12-nm diameter gold particle-

th 25 ng/ml nisin; (D) 

A B 

polyclonal antibody against EbsG was used, fo

labeled secondary antibody (see Materials and Methods).  (A) OG1RF; (B) 

OG1RF::ebsG; (C) OG1RF::pMSP7551 induced wi

OG1RF::pMSP7551, no nisin induction.  
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Expression of EbsG in E. faecalis by Western blot analysis 
The expression of EbsG in E. faecalis was investigated by Western blot analysis 

of cell surface extracts with anti-EbsG antibodies.  We wanted to determine when EbsG 

is expressed during growth of wild type OG1RF cells.  We were not able to determine 

when the protein is expressed by Western blot analysis because the primary polyclonal 

antibody was not specific enough and multiple bands were detected in every lane on the 

blot (Fig. 9).  We expected to see a band corresponding to EbsG at 119 kDa, the predicted 

molecular weight of the protein in OG1RF.  When EbsG is overexpressed in cells 

carrying pM 7551 induced with nisin, we ob ed two bands with molecular weights 

of about 90 kDa and 35 kDa (Fig. 9, lane 1).  These same bands appeared very faint in 

uninduced cells carrying pMSP7551 (Fig. 9, lane 2).  This could be a degradation product 

of EbsG.  These same bands present in both induced and uninduced pMSP7551 cells 

indicates the promoter is not silent and some protein product could still be made despite 

no nisin induction.  There didn’t appear to be any major bands missing in the ebsG 

mutant compared to wild type cells and induced cells carrying pMSP7551 (Fig. 9, lane 

3).  The attempt to remove unspecificity of the antibody by absorption to OG1RF::ebsG 

cells was unsuccessful (data not shown). 

 

 

 

 

 

 

 

 

 

SP serv
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                                    1          2          3          4          5          6          7  

                             
 

Figure 9. Expression of EbsG from E. faecalis.  Western blot analysis was performed 

with a polyclonal antibody against EbsG.  The protein concentrations in all lanes ar

identical.  Lane 1, OG1RF::pMSP7551 induced with 20 ng/ml nisin; lane 2, 

OG1RF::pMSP7551 uninduced; lane 3, OG1RF::ebsG; lane 4, OG1RF – grown for 

lane 5, OG1RF – 3 hrs; lane 6, OG1RF – 4 hrs; lane 7, OG1RF – 5 hrs. 

 

 Because we observed labeling usin

130 kDa -  

      92 kDa - 

30 kDa - 

e 

2 hrs; 

g the antibody directed against EbsG in TEM 

experim nts, but did not see specificity with the Western blot, we hypothesized the 

antibody recognizes an epitope only displayed when the protein is in its native 

conform tion.  To assess this possibility, we performed a Western blot using a native gel 

under non-denaturing conditions.  This was unsuccessful as we were not able to detect 

any proteins on the blot. 

 

EbsG expression examined by flow cytometry 
low cytometry was employed to analyze the expression of EbsG during E. 

faecalis rowth.  E. faecalis OG1RF cells were grown for 2-6 hours and samples were 

taken every half hour.  The cells were labeled with anti-EbsG antibody and then labeled 

with Alexa Fluor 488 goat anti-rabbit IgG secondary antibody and the percent positive 

for EbsG was measured.  Maximal expression was seen during 2-3 hours of growth (Fig. 

10, bottom panel).  At 2.5 hours of growth, a drop in expression occurred, with partial 

e

a

F

 g
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recovery at 3 hours of growth.  We did not observe any labeling for ebsG mutant cells.  

When EbsG was overexpressed using a step-wise nisin induction scheme, the percentage 

of positive cells was maximal at 20 ng/ml of nisin, with 80.41% of cells labeling positive 

for EbsG (Fig. 10, top panel). 
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Figure 10. Flow cytometry analysis of EbsG on the surface of E. faecalis during growth.  

Top pa n the 

 

 

. 

nel: step-wise nisin induction of cells carrying pMSP7551 show an increase i

percent positive for EbsG as the nisin concentration increases (n = 3).  Bottom panel:

growth was monitored at 30 minute intervals (right axis) and the percent of cells positive

for EbsG was measured at 30 minute intervals between 2 and 6 hours (left axis) (n = 3)
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Expression of the ebsG operon during growth 
To detect the promoter activity of the ebsG operon, regions upstream of ebsG 

were cloned in front of a promoterless lacZ reporter gene in pTCV-lac (80).  A PCR 

fragment spanning a 185 bp region upstream of the predicted start codon of ebsG was 

loned into pTVC-lac to make pMJK201.  This vector was transformed into E. faecalis 

and the resulting transformants were assessed for promoter activity as reflected by 

reporter β-galactosidase activity.  No activity over basal levels was detected, suggesting 

all the elements required for the promoter were not cloned into the vector. 

A new vector, pMJK202, was constructed to include 440 bp upstream of the 

predicted ebsG start codon.  This vector includes the entire region between ebsG and an 

upstream ORF orientated in the opposite direction, EF0774.  E. faecalis cells 

electroporated with pMJK202 produced no blue colonies on plates containing X-gal.  

DNA sequencing revealed this construct was unstable and therefore was not used to 

assess promoter activity. 

Two more constructs were made, pMJK203 and pMJK204 described in Table 1, 

that included 233 and 316 bp upstream of the ebsG start codon, respectively.  These 

constructs produced white colonies on plates containing X-gal in E. faecalis and their 

sequences were confirmed by DNA sequence analysis.  Promoter activity was assayed 

over time by growing the cells in THB, as shown in Figure 11.  Activity is expressed as 

fold induction over the empty vector pTCV-lac.  Each of these constructs produced 

activity only 1- to 2-fold over the empty vector at each of the time points tested.  This 

suggested the operon might not be expressed when cells are grown in normal media. 

 

c
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Average Fold Induction over Empty Vector: pMJK203
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Figure 11. 

lacZ 

 

 

in expression compared to normal or diluted 

this operon may be expressed in response to a novel environmental condition.  

 

Activity of the ebsG promoter in OG1RF carrying either pMJK203 (left 

panel) or pMJK204 (right panel) over time.  Promoter activity was determined by 

constructing fusions of the upstream region of the ebsG operon with a promoterless 

gene in pTCV-lac.  Data is presented as the average fold induction over the empty vector 

(n = 3). 

Because we saw only a 1- to 2-fold induction of expression over the empty vector 

for cells grown in THB, we tried to stress the cells by growing them in diluted media to 

determine if an environment with limited nutrients initiates transcription.  We grew 

cultures of E. faecalis carrying either pMJK203 or pMJK204 in normal THB, ½ X THB, 

¼ X THB, or 1/8 X THB and assayed them for β-galactosidase activity.  We did not see a 

difference in expression with cells grown in these media conditions compared to cells 

grown in normal strength THB (Fig. 12).  We also tried growing cells in serum to 

determine if the ebsG operon is a serum-induced gene cluster.  We did not see an increase 

THB (data not shown).  This data indicated 
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Figure 12. Activity of the ebsG promoter in OG1RF carrying either pMJK203 (left 

panel) or pMJK204 (right panel) grown in diluted media.  Data is presented as the 

average fold induction over the empty vector (n = 3). 

  

imiting eIn an attempt to identify a factor l xpression of the ebsG operon, 

pMJK203 and pMJK204 were electroporated into 12 different response regulator (RR) 

n act 

 

sion 

 

the 

ontrol of RR14 or RR18, but that could not be determined at this time. 

 

mutants previously identified in E. faecalis (35).  Response regulators are part of two-

component systems which sense an extracellular signal by phosphorylating a histidine 

kinase, and then transfering the phosphoryl group to the response regulator, which ca

as a transcriptional regulator and modulate gene expression (42).  No transconjugants 

were obtained by electroporating pMJK203 into RR10, RR14, and RR18 and no 

transconjugants were obtained by electroporating pMJK204 into RR14 and RR18.  For

mutants carrying pMJK203, the highest activity was detected in RR04, with expres

being 2-fold over the empty vector (Fig. 13, top graph).  For mutants carrying pMJK204, 

the highest activity was detected in RR10, with expression being almost 2.5-fold over the

empty vector (Fig. 13, bottom graph).  It is possible this operon could be under 

c
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Figure 13. Activity of the ebsG promoter in response regulator mutants carrying either

pMJK203 or pMJK204.  Data is presented as the average fold induction over the empty 

vector (n = 3).  

 

 Cations have been shown to alter LTA structure by changing the 

 

level of 

expression of the genes in the dlt operon (54).  Therefore, to determine if expression of 

the ebsG operon was up- or down-regulated by extracellular cations, OG1RF::pMJK203 

and OG1RF::pMJK204 were grown on plates containing X-gal and 5 sterile 6 mm blank 

paper disks (Becton, Dickinson and Company) were placed equidistant apart on the 

plates.  Ten milliliters of 1.0 M MgSO4, KCl, CaCl2, NaCl, and CuSO4 were pipetted 

onto each of the 5 disks and plates were incubated at 37°C.  None of the compounds 
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tested had an effect on promoter activity (data not shown).  This experiment was repeated 

using cationic peptides such as nisin and polymyxin B and other compounds such as 

EDTA and a high concentration of bile salts.  Again, none of the compounds tested had 

an effect on promoter activity (data not shown). 

The same experiment was done testing antibiotic disks containing tetracycline, 

penicillin, ampicillin, vancomycin, and ciprofloxacin (Becton, Dickinson and Company) 

to see if these molecules had an effect on expression of the operon.  Compared to the 

background, a slight increase in blue color was seen at the edge of the zone of inhibition 

for penicillin and ampicillin (data not shown).  When cells were challenged with 

increasing concentrations of penicillin and ampicillin in liquid culture and assayed for β-

galactosidase activity, no change in expression was seen over the empty vector. 

In order to determine when the ebsG transcript appears during E. faecalis growth, 

we used quantitative RT-PCR.  After two and three hours of growth, we saw maximal 

expression of ebsG with cycle thresholds (Ct) of 23.33 and 23.13 respectively (Fig. 14).  

As cells moved from late-exponential to stationary phase, a decrease in the amount of 

transcript was observed, with an ending Ct of 29.8 at 6 hours of growth.  Interestingly, 

when we examined ebsG transcript expression in INY3048 grown for 3 hours, we 

observed a Ct of 17.26, resulting in an increase of 5.87 cycles compared to wild type 

expression at the same time point.  This data suggests the presence of the Tn916 insertion 

upstream of ebsG may play a role in the observed INY3000 phenotype. 
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Figure 14. Expression of ebsG using qRT-PCR.  Abundance of transcript is 

expressed as cycle threshold on the left axis.  Culture growth is expressed as OD600 on the 

 

ct on 

nt, 

se) were used in 

an autolysis assay.  No difference was seen in cultures grown to exponential phase (Fig. 

15, top graph).  In cultures grown to stationary phase, the ebsG mutant lysed faster than 

wild type and the overexpression of EbsG by strain OG1RF::pMSP7551 induced with 

nisin showed a slower rate of autolysis (Fig. 15, bottom graph).  This suggests that the 

increased sugar content of LTA from the ebsG mutant has an effect on cell autolysis. 

 

right axis. 

 

Autolytic properties of the ebsG mutant 
An important phenotype seen in mutants that express altered LTA is a change in

autolytic activity.  In order to detect whether changes in LTA structure have an effe

the autolytic activity of E. faecalis cells, cultures of wild type OG1RF, the ebsG muta

and the EbsG overexpressing strain OG1RF::pMSP7551 induced and uninduced with 

nisin from different growth phases (exponential phase and stationary pha
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Figure 15. Autolysis assay of exponential (A) and stationary phase cells (B) of E. 

faecalis.  Autolysis was monitored at 30 minute intervals for 4 hours in cells grown to 

mid-exponential phase and stationary phase (n = 3). 

 

The ebsG mutant recovers slower when challenged with nisin 
Nisin is a small, positively charged, 34-amino acid antimicrobial peptide 

produced by Lactococcus lactis and is used in dairy fermentations and as a food 

preservative.  Nisin is representative of a class of antibiotics that is characterized by the 

presence of lanthionine, an uncommon amino acid (8).  This peptide forms pores in cell 

membranes and is primarily active against Gram-positive bacteria (65).  An increase in 

the anionic charge of LTA, produced by the removal of D-alanine or kojibiose residues, 

would result in increased sensitivity to cationic peptides.  To test this, we challenged cells 

A 

B 
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with nisin after 2.5 hours of growth and their rate of recovery was recorded at 30 minute 

intervals.  The ebsG mutant recovered slower than wild type OG1RF cells, with growth 

commencing after 90 minutes for wild type and 150 minutes for the mutant after nisin 

addition (Fig. 16).  This could be explained by the changes on the cell surface due to the 

altered LTA structure of the ebsG mutant.  When EbsG is overexpressed, there does not 

appear to be any effect on growth.  Cells carrying uninduced pMSP7551 mirror wild type 

with respect to recovery, suggesting EbsG must be induced prior to the challenge in order 

for recovery to occur at a faster rate. 
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igure 16. Cells were challenged with 250 ng/ml nisin and recovery was monitored at 30

minute intervals. 
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Mating 
Mating assays were performed to determine if changes in LTA structure o

play a role in plasmid transfer.  Compared to wild type, the ebsG mutant was a be

recipient in broth matings by 1.25 fold.  In cells where EbsG is overexpressed, a decrease

in recipient ability of over 3-fold compared to wild type was seen (Table 4).  This 

suggests that a higher glycosylation ratio of LTA confers an increase in mating ability. 

Concanavalin A is a carbohydrate-binding protein (lectin) originally extracted 

from the jackbean (Canavalia ensiformis).  Concanavalin A has been used to isolate E. 
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faecalis LTA using affinity chromatography by its ability to bind the kojibiose moieties 

substituted on the LTA backbone (62).  We therefore decided to investigate whether 

concanavalin A could block mating by binding to the sugar moieties on LTA.  In wild 

type cells, mating decreased by over 10-fold when concanavalin A was added to recipient

cells prior to mating (Table 4).  In the ebsG mutant, a decrease of about 30-fold was seen

with the addition of concanavalin A compared to normal mating conditions.  When 

concanavalin A was added to cells overexpressing EbsG, a decrease of 2-fold was seen 

compared to normal mating condition

 

 

s.  A closer look at the number of transconjugants 

obtained during mating with concanavalin A revealed ebsG mutant cells were impaired as 

recipients compared to wild type and cells overexpressing EbsG were better recipients. 

 

Table 4. Recipient abilities of E. faecalis strains 

Recipient strain Transfer 
frequency/recipient 

OG1RFa 

OG1RF::ebsGa 

OG1RF::pMSP7551a (induced) 
 
OG1RFb 

OG1RF::ebsGb 

OG1RF::pMSP7551b 

 

4.54 × 10-2 
5.73 × 10-2 

1.40 × 10-2 

 
3.85 × 10-3 
1.67 × 10-3 

6.47 × 10-3 

 
aBroth matings were performed with E. faecalis OG1SSp::pCF10 as a donor.   
Donors were induced for 2 hr with pheromone cCF10, combined 1:10 with  

recipients, and allowed to mate for 10 mins.  bBroth matings with concanavalin A. 

Biofilm formation is not affec
Alterations to cell surface molecules such as LTA can affect several bacterial 

 formation.  E. faecalis::pMSP3535, the ebsG 

induced with nisin were compared 

regarding form

 

 

ted by EbsG 

properties such as adherence and biofilm

mutant, and OG1RF::pMSP7551 uninduced and 

ation of biofilm on polystyrene surfaces.  No difference was seen between 

the wild type OG1RF::pMSP3535 and the ebsG mutant (Fig. 17).  Over-expression of

EbsG resulted in a 3.5-fold increase in biofilm density, which suggests that the sugar 

moieties of LTA do not play a role in the formation of E. faecalis biofilms. 
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Biofilm Formation - Microtiter plate
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Figure 17. E. faecalis strains were tested for biofilm formation in polystyrene microtiter 

plates.  The amount of biofilm is expressed as the biofilm index (Deighton).  Error bars 

 

 Because enterococci hav  the ability to adhere to indwelling catheters and form 

biofilms (31), it wa ine this property alis and to determine if 

ebsG and LTA play a role in bioprosthetic colonization  disks were inoculated 

with wild type OG utant, OG1RF::pMSP3535, or OG1RF::pMSP7551 

uninduced and induced with nisin and biofilms were allowed to form for 24 hours.  The 

disks were washed  triplicate to 

determine the num  mutant had 

little effect on biofilm formation compared to wild type OG1RF and OG1RF::pMSP3535 

ilm formation was seen with 

OG1RF  

e 

represent standard errors of the means (n = 3). 

e

s important to exam  of E. faec

.  Silicone

1RF, the ebsG m

a innd sonicated and the cell suspensions were plated 

ber of colony forming units (cfu’s) per disk.  The ebsG

(Fig. 18).  However, an increase of over 4-fold in biof

::pMSP7551 induced with nisin.  If the ebsG operon functions to degrade LTA

and ebsG functions in the removal of sugar moieties from the LTA, this data suggests th

sugar moieties are not important in biofilm formation.   
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Biofilm Production - Silicone Disk Assay
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Figure 18. E. faecalis strains were tested for their ability to colonize 

biopro . 

51 

d 

e 

 is overexpressed, these cells 

bound 1.5 times more collagen IV than wild type, suggesting EbsG may be involved in 

binding collagen. 

sthetical silicone disks.  Error bars represent standard errors of the means (n = 3)

 

Role of EbsG in adherence to Extracellular Matrix Molecules (ECMs) 
The adhesion of bacterial cells to ECMs is an important first step in the 

establishment of an infection.  To test whether changes in LTA have an effect on 

bacterial binding to ECMs, wild type OG1RF, the ebsG mutant, and OG1RF::pMSP75

cells induced with nisin were tested for their ability to bind selected ECMs.  The wild 

type OG1RF did not show strong binding to any of the ECMs tested (Fig. 19).  We di

not see a difference between the wild type and the ebsG mutant in their ability to bind th

selected ECMs.  Overexpression of EbsG showed slightly higher binding to all ECMs 

tested compared to wild type.  Interestingly, when EbsG
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ECM Protein Array Cell Adhesion Profile
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re 19. ECM protein cell adhesion array.  All strains were tested twice

binding to the selected ECM (n = 2). 

 

Manduca sexta virulence model 
M. sexta, the tobacco hornworm, has been used as an insect virulence mo

because it is easy to produce in large numbers, has a large size which facilitates 

inoculation, and virulence can be monitored through death (27).  This insect model was 

explored to determine if ebsG or changes in LTA structure had an effect on virulence. 

The first deaths for the ebsG mutant occurred on day two, with all worms dying by day 

14.  For the wild type, the first death occurred on day two and out of 10 worms, one 

survived and pupated, but did not hatch.  There was no significant difference (Logrank 

test, p = 0.7648) in attenuation of virulence between the wild type OG1RF and the ebs

mutant (Fig. 20), which suggests ebsG does not play a role in virulence. 
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Figure 20. M. sexta insect model for OG1RF and OG1RF::ebsG virulence.  Data is 

presented as the percent survival vs. the number of days elapsed. 
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Discussion 

Enterococci are becoming increasingly prevalent in hospital-acquired infections.  

With the emergence of isolates resistant to all antibiotics, including vancomycin, there is 

great need to develop new therapies which can effectively target these resistant microbes.  

One potential approach is to target LTA, which is present on the surface of many 

clinically relevant Gram-positive bacteria.  To date, there is no mutant which does not 

synthesize LTA, so it is assumed this molecule is essential for survival.  Unfortunately, 

the genetic elements involved in LTA structure are not well characterized and little is 

known about the im  molecule to microorganism

We have identified a novel operon in e 

decided to focus our research atics data 

suggests EbsG is a surface protein with weak homology to other surface proteins in 

Gram-positive bacteria.  We confirmed surface localization with gold-labelled antibodies 

against EbsG (Fig. 8), however, the amount of labeling was low in wild type cells, giving 

us a clue that the protein is not expressed at a high level at 4 hours of growth.  We did not 

observe the same level of labeling between wild type cells and cells carrying pMSP7551 

uninduced.  The reason for this could be that ebsG is downregulated in the presence of 

erythromycin (1), which is needed for pMSP7551 stability. 

It is interesting to note that while ORF SE1500 from S. epidermidis does not show 

high sequence identity to EbsG, it does contains three long amino acid repeats similar to 

the organization of the repeats in EbsG.  The functional importance of these repeats is 

unknown, although it is interesting that EbsG from E. faecalis V583 contains only 3 of 

the 4 repeats.  The importance of these repeats to EbsG will have to be investigated.   

EbsG shows homology to a collagen binding protein from B. cereus, AS proteins 

from E. faecalis, and homology to the A domain of vWF.  While these proteins are not 

involved in LTA structure, they are involved in ligand binding, indicating EbsG may 

have some adhesin properties or may bind specific sites on LTA.  The MIDAS domain 

present in vWF may suggest EbsG requires the presence of a cation to function properly.  

The source of these cations could be from LTA on the surface of the cell, since this 

portance of this s. 

E. faecalis involved in LTA structure.  W

on the first gene in the operon, ebsG.  Bioinform
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molecule is involved in cation sequestering.  It was interesting to see EbsG shows 

homology to DltD.  Since DltD is inv -alanine to LTA, and we propose 

EbsG is involved in LTA structure, it is feasible the gene products of the ebsG and dlt 

operon

peron 

 

l 

PDP, which has been 

shown 

 

 

r 

pared to wild type (Table 3, 

Fig. 6).

 

 

G 

would 

olved in adding D

s may work together to alter LTA structure. 

Because of the close proximity ebsG and its downstream genes have to one 

another, we hypothesized they might be organized into an operon.  Transcriptional 

linkage analysis has determined ebsG and its downstream genes are in fact in an o

(Fig. 7).  This suggests these gene products all work together to degrade LTA when the

cell needs to alter its LTA structure.  The importance of altering LTA structure to the cel

has not yet been determined. 

One of the genes in the operon, ebsJ, is homologous to a G

to degrade the unsubstituted glycerophosphate backbone of LTA in B. pumilus 

(58).  It is therefore possible this gene could perform the same function in E. faecalis and

supports our hypothesis that this operon degrades LTA.  The last gene in the operon,

ebsK, belongs to the MutT/nudix protein family, which requires Mg2+ to catalyze the 

hydrolysis of nucleoside diphosphates (66).  A role for this protein remains unclear. 

The changes in LTA structure in INY3000 and the proximity of the Tn916 

insertion upstream of the ebsG operon prompted us to investigate the structure of LTA 

from strains where ebsG is inactive and overexpressed.  We observed an increase of ove

2-fold in the glucose to glycerol ratio in the ebsG mutant com

  Overexpression of ebsG causes a decrease in the glucose to glycerol ratio.  This 

suggests EbsG may be responsible for removing the glucose moieties from LTA.  This 

fits with our hypothesis that this operon alters LTA structure by degrading it.  We have

proposed the possible function of ebsJ is to breakdown the unsubstituted LTA backbone

because of sequence alignment to the GPDP family of proteins.  If this is the case, Ebs

be needed to remove the glucose units from the backbone before degradation by 

EbsJ can occur.   

The ratios of glucose and D-alanine to glycerol do not add to 1 and there are 

several possible explanations.  The first is that LTA molecules are not homogeneous, 

meaning some can have more sugar or D-alanine substituents than others.  Another 

possibility is that all the possible sites for glucose or D-alanine to be linked to the 
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backbone are not occupied, which would explain ratios that are less than 1.  In the c

ebsG mutant cells, the total ratio of glucose and D-alanine to glycerol is 1.2.  This could 

be possible if glucose and D-alanine are bonded together and then linked to the backbon

The fact that kojibiose is a disaccharide alters the gl

ase of 

e.  

ucose ratio, making it half of what is 

calcula  

t 

olysis).  Due to low sensitivity of the assays we performed 

to deter

ch 

ot 

s.  

We did  

e 

t the antibody was made with only a portion of the protein.  The portion 

of the p y 

ted since the assay is measuring monosaccharides.  For the ebsG mutant, this

would reduce the ratio from 0.72 to 0.36. 

Along with our analysis of the components of LTA, we wanted to determine the 

length of the LTA backbone.  To determine the chain length of LTA, the glycerol conten

from the aqueous phase (after acid hydrolysis) is divided by the glycerol content from the 

organic phase (after acid hydr

mine LTA content, we can not be confident our calculations are correct and 

therefore did not include this data. 

Our attempts to examine when EbsG is expressed during E. faecalis growth were 

hindered for a couple of reasons.  Western blot analysis produced multiple bands in ea

lane and we could not identify which band corresponded to EbsG (Fig. 9).  There did n

appear to be any major bands missing in the ebsG mutant compared to the other lane

, however, find two prominent bands in cells overexpressing EbsG that were

smaller than its predicted protein size, which could be degradation products of EbsG.  

Our attempts to absorb the unspecific antibodies using the ebsG mutant produced no 

bands on the gel.  This suggested our antibody may recognize EbsG in its native 

conformation. 

Since we observed labeling using this antibody in TEM experiments, we 

performed a Western blot under non-denaturing conditions to determine whether the 

antibody would better recognize EbsG in its native conformation.  Our attempts were 

unsuccessful.  This may have been due to the low expression of EbsG, which we 

observed in TEM experiments and ebsG promoter fusion experiments.  This could also b

due to the fact tha

rotein used may fold differently than full-length EbsG, resulting in an antibod

that recognizes an eptitope not present in the normal EbsG structure.  To alleviate this 

problem, the primary antibody will most likely have to be remade. 
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We constructed promoter fusions to a promoterless lacZ gene to determine the 

expression levels of the operon during growth.  We saw a 1- to 2-fold induction over the 

empty vector for all conditions tested when using regions that included 233 and 316 bp 

upstream of the ebsG start site (Fig. 11).  This suggested we might be missing an 

important element for initiation of transcription or the growth conditions were not 

optimal for the operon to be expressed, which correlates with our TEM data.  Our 

attempt

lls in different media conditions, with the thoughts 

that exp

der 

is 

rter 

R10 mutant background.  This RR has been shown to be involved in stress 

toleran n these 

 

ility 

  

.  

r EbsG at 2 hours, 

and expression appeared to decrease as cells moved into late-exponential and log phase 

s to clone the entire region upstream of ebsG into the expression vector were 

hindered because of plasmid instability.  When the insert was sequenced, we observed a 

shorter DNA sequence than what we had cloned.  A recombination event could have 

occurred in E. coli resulting in this shorter product that produced limited activity as seen 

in the reporter assays. 

We also tried growing the ce

ression might increase if the cells were stressed.  Growth of cells in dilute media 

(Fig. 12) or serum, and exposure of cells to cations, cationic peptides, and antibiotics did 

not produce an increase in expression.  This suggests the operon might respond to a 

unique environmental condition which requires the sugar content of LTA to be altered. 

In an attempt to increase expression, we hypothesized the operon might be un

the control of a RR from E. faecalis (35).  We transformed our reporter constructs into 

RR mutants but did not see an increase in expression (Fig. 13), indicating our operon 

not under the control of these RR.  We did, however, see a slight increase in repo

activity in an R

ce and virulence in E. faecalis (98), which may implicate a role for EbsG i

processes and correlates with the hypothesis that the operon might be induced under a

specific environmental condition.  We were not able to obtain any transconjugants by 

transforming RR14 and RR18 with the reporter constructs, so there is still a possib

the ebsG operon might be under the control of one of these RR. 

Since we could not accurately detect EbsG by Western blot but we did see 

labeling using TEM (Fig. 8C), we decided to examine expression using flow cytometry.

To our knowledge, flow cytometry has not been used to label bacterial surface proteins

Even though expression was not high, 40% of cells were positive fo
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(Fig. 10

e 

 data), 

nary 

h 

curring at 2-3 hours of growth (Fig. 14).  As cells move from 

expone e 

 in 

quantit

ar 

here ebsG is inactive, 

we wan shown 

 

wn 

).  In stationary phase, only 2-3% of cells labeled positive for EbsG.  It is 

interesting to note that expression was maximal during the earlier stages of growth.  

Based on LTA structure data, we determined there was no difference between the glucos

content of wild type and ebsG mutant cells during exponential phase (unpublished

only during stationary phase, leading us to believe the operon is expressed in statio

phase.  We did observe a decrease in expression for cells grown for 2.5 hours, whic

partially recovered at 3 hours of growth, which we could not explain. 

Since we could not accurately determine when EbsG is expressed, we decided to 

use RT-PCR to determine when the ebsG transcript is made during the growth of E. 

faecalis.  This data correlates with what we observed using flow cytometry, with 

maximal expression oc

ntial to stationary phase, a decrease in the amount of transcript was observed.  Th

data obtained by flow cytometry also showed a decrease in expression as cells entered 

stationary phase.  Overall, there does not appear to be an abundance of transcript made at 

any time during E. faecalis growth, which indicates either the operon is not expressed

the growth conditions we used or the gene products are only required in limited 

ies.  Further examination is necessary to accurately determine when EbsG and the 

rest of the gene products in the operon are expressed. 

Upon examination of ebsG transcript expression in INY3048, we observed an 

increase in the amount of transcript present when compared to wild type.  This was 

interesting because the Tn916 insertion is just upstream of ebsG, which would make one 

hypothesize the amount of transcript would decrease compared to wild type.  This means 

the transcript is most likely reading out from the end of the transposon and could be 

partially responsible for shortened LTA phenotype observed in INY3000 (4). 

As discussed in the introduction, LTA is proposed to be involved in many cellul

processes.  Since we observed an altered LTA structure in cells w

ted to investigate what this means to the biology of the cell.  LTA has been 

to inhibit autolysins in pneumococcus (43) and the D-alanine content of LTA can inhibit 

the action of hemolysins and bacteriocins in E. faecalis (75).  We investigated what effect

an increase in glucose content of LTA would have on the rate of autolysis.  In cells gro

to exponential phase, we did not observe a difference in the rate of autolysis between 
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wild type, ebsG mutant cells, and cells overexpressing EbsG (Fig. 15).  When cell

grown to stationary phase, ebsG mutant cells lysed at a higher rate compared to wild 

cells.  Overexpression of EbsG resulted in a slower rate of autolysis.  This data suggests 

the sugar moieties may play a role in regulating autolysis when cells are in stationary 

phase. 

LTA is a negatively charged molecule and has been shown to bind cations in B

cereus, S. aureus, and L. buchneri (12, 37, 54, 60).  If the charge of the

s were 

type 

. 

 cell becomes 

more n  

ether 

h nisin.  

d 

d inhibit 

vestigated whether the glucose 

content  

nts 

ing to 

glucose

egative by decreasing the amount of D-alanine substituents on LTA, an increase in

sensitivity to cationic peptides has been observed (78).  We wanted to investigate wh

the sugar moieties of LTA affect cationic peptide binding by challenging cells wit

We observed a slower rate of recovery in ebsG mutant cells compared to wild type an

faster rate of recovery when EbsG is overexpressed (Fig. 16).  This data implies the sugar 

moieties may either directly bind cationic peptides or they mask the anionic charge of 

LTA, allowing positively charged molecules to bind to the cell surface.   

  Another important role for LTA in the biology of E. faecalis is involvement in 

EBS and mating aggregate formation.  LTA has been shown to bind AS (108) an

conjugative mating (23, 100).  INY3000 is deficient in mating ability, which could 

partially be due to its shortened LTA backbone.  We in

 of LTA would alter the transferability of pheromone-responsive plasmids in E.

faecalis.  Compared to wild type, ebsG mutant cells were better able to act as recipients 

for plasmid pCF10.  Conversely, overexpression of EbsG resulted in a decrease in 

recipient ability (Table 4).  This suggests the increase in LTA glucose content confers 

better conjugative plasmid transfer.  To confirm this, we performed mating experime

with concanavalin A, which has been used to isolate enterococcal LTA by bind

 moieties (62).  We predicted that the binding of concanavalin A to LTA would 

block mating if the sugar moieties of LTA are involved in mating aggregate formation. 

In wild type cells, the addition of concanavalin A blocked mating by 10-fold 

(Table 4).  Cells that contain higher LTA glucose content, as seen in the ebsG mutant, 

had a decreased ability to act as recipients and cells containing a lower LTA glucose 

content (pMSP7551) were better able to act as recipients.  This demonstrates the glucose 
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moieties on LTA play a role in plasmid transfer by possibly allowing donor and recipient 

cells to form tighter mating aggregates. 

The ability of bacteria to form biofilms is associated with virulence in a number 

of pathogens, such as Pseudomonas aeruginosa, Streptococcus mutans, S. aureus, and

faecalis

 E. 

 (9).  There have been implications LTA might play a role in biofilm formation 

and for

 be involved in 

adhesio o 

 

see a si  

 this reason, we investigated whether an increase in sugar content of LTA altered 

the ability to form biofilms in E. faecalis.  We did not observe a difference in biofilm 

formation on polystyrene plates or silicone elastomer disks for wild type and ebsG 

mutant cells (Fig. 17 and 18).  Overexpression of EbsG resulted in a denser biofilm 

compared to wild type on both surfaces tested.  While this data does not exclude the 

possibility LTA is involved in biofilm formation, it does indicate the sugar moieties on 

LTA are not required for biofilm formation. 

The adherence of bacterial cells to ECMs is important in the successful 

establishment of an infection.  Since LTA is a surface polymer that might

n, we investigated whether alterations in LTA had an affect on the cell’s ability t

bind ECMs.  We did not see a difference between wild type and ebsG mutant cells in 

their ability to bind ECMs, but we did see a slight increase in the binding of cells 

overexpressing EbsG to all ECMs tested, and in particular, collagen IV (Fig. 19).  This 

correlates with bioinformatics data indicating EbsG shares homology with a collagen 

binding protein from B. cereus.  While this does not support a role for EbsG in LTA 

structure, it does indicate the protein might have some adhesive properties, which is

supported by bioinformatics data. 

LTA has been shown to be a virulence factor for Gram-positive bacteria by 

activating complement, proinflammatory mediators, and immunogens (15, 38, 63, 88, 

96).  We investigated whether ebsG contributes to E. faecalis virulence by injecting 

Manduca sexta with ebsG mutant or wild type cells and monitoring death.  We did not 

gnificant difference in attenuation of virulence between the wild type and ebsG

mutant (Fig. 20).  Inactivation of the dlt operon resulted in attenuated virulence of the 

mutant compared to wild type (Allen et al., unpublished data) and we hypothesized 

inactivation of ebsG might have the same results.  Our data indicates ebsG inactivation 
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does not attenuate virulence in this insect model and LTA glucose content does not play a 

role in E. faecalis virulence. 

The data presented here indicate ebsG is involved in LTA structure and may alter

the structure by removing the kojibiose moieties from the polyglycerophosphate 

backbone.  We have shown an increase in glucose content of LTA plays a role in 

autolysis during stationary phase, cationic peptide sequestering, and the transfer of 

conjugative plasmids in E. faecalis.  This altered LTA structure does not appear to be 

involved in biofilm formation, virulence, or adherence to ECMs.   

We noticed some of the phenotypes we observed in the ebsG mutant such as 

from autolysis assays and the LTA structural data only when the cells were in stationa

phase.  This led us to believe ebsG, and the rest of the genes in the operon, are expressed

during stationary phase.  Analysis of the data

 

data 

ry 

 

 obtained by RT-PCR and flow cytometry 

howeve rlier 

its 

cture, 

s 

vels 

tivated, suggesting the process of altering glucose 

content  

d 

A.  

an 

(54).  

d 

signal.  The role LTA plays in the biology of Gram-positive bacteria is still unclear.  By 

r have shown the ebsG transcript and protein are expressed during the ea

stages of growth.  This may indicate the gene products of the ebsG operon are made 

during exponential phase but are not functional until stationary phase.   

EbsG is a novel suface protein in E. faecalis, along with the other members of 

operon.  It is unclear how the other members of the operon participate in LTA stru

except for ebsJ, which probably functions in the breakdown of the glycerolphosphate 

backbone.  Since GPDP proteins have been shown to degrade the unsubstituted LTA 

backbone (58), this operon may break down LTA by first removing the kojibiose unit

and then degrading the backbone.  EbsG is not crucial to survival and cells grow to le

similar to wild type when it is inac

 does not appear to be essential.  The reason for altering LTA structure is not

known, but may provide the cell with an additional level of defense against cationic 

peptides and may aid in preventing autolysis.  This cellular event must be investigate

further. 

This would be the first set of genes described to alter the glycosyl content of LT

The reason for altering LTA structure remains unclear.  Studies have shown S. aureus c

alter the D-alanine content of LTA in the presence of increased cation concentration 

It is possible the glucose content can also be altered in response to an as yet undiscovere
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identifying genes involved in LTA structure and determining how these genes are 

regulated, we can get a better idea of the function of LTA and its purpose not only in E. 

faecalis, but for other medically important Gram-positive species. 
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