
CONSTRAINING COMPETING MODELS OF DARK ENERGY WITH

COSMOLOGICAL OBSERVATIONS

by

ANATOLY PAVLOV

B.S., Saint Petersburg State Polytechnic University, Russia 2005

M.S., Saint Petersburg State Polytechnic University, Russia 2007

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2015



Abstract

The last decade of the 20th century was marked by the discovery of the accelerated ex-

pansion of the universe. This discovery puzzles physicists and has yet to be fully understood.

It contradicts the conventional theory of gravity, i.e. Einstein’s General Relativity (GR).

According to GR, a universe filled with dark matter and ordinary matter, i.e. baryons,

leptons, and photons, can only expand with deceleration.

Two approaches have been developed to study this phenomenon. One attempt is to

assume that GR might not be the correct description of gravity, hence a modified theory

of gravity has to be developed to account for the observed acceleration of the universe’s

expansion. This approach is known as the ”Modified Gravity Theory”. The other way is

to assume that the energy budget of the universe has one more component which causes

expansion of space with acceleration on large scales. Dark Energy (DE) was introduced as

a hypothetical type of energy homogeneously filling the entire universe and very weakly or

not at all interacting with ordinary and dark matter.

Observational data suggest that if DE is assumed then its contribution to the energy

budget of the universe at the current epoch should be about 70% of the total energy density

of the universe. In the standard cosmological model a DE term is introduced into the

Einstein GR equations through the cosmological constant, a constant in time and space,

and proportional to the metric tensor gµν . While this model so far fits most available

observational data, it has some significant conceptual shortcomings. Hence there are a

number of alternative cosmological models of DE in which the dark energy density is allowed

to vary in time and space.
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Chapter 1

Introduction

1.1 Theoretical Cosmology

Cosmology is the study of the universe as a whole. Since ancient times people across the

globe have tried to understand the origins of the universe and predict its future. However, it

was not until the beginning of the 20th century when cosmology emerged as a quantitative

scientific field rather than a philosophical attempt to make sense of the universe in a mytho-

logical manner. The theoretical basis of cosmology lies mainly on Einstein’s description of

gravity, i.e. General Relativity, a theory in which gravity is described as the geometry of

space-time, rather than a force, where the geometry is determined by the matter content

and its distribution. On the other hand, the geometry of space-time governs the motion of

matter.

1.1.1 Short overview of General Relativity

Differential geometry provides a mathematical framework for general relativity. The differ-

ential of distance between two near by points in space-time, xµ and xµ + dxµ, is given by
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the line element which is defined via the following quadratic form

ds2 = gµνdx
µdxν (1.1)

where gµν is the metric tensor and xµ are coordinates. In general relativity coordinates

describe 4-dimensional space-time with one-time dimension and three-dimensions of space.

The coordinate xµ = (x0, x1, x2, x3) where x0 = ct with c being the speed of light and

t is time, while x1, x2, x3 label spatial part of the space-time. The metric tensor gµν is

a fundamental object in general relativity. It may loosely be thought of as gravitational

potentials in Newtonian gravitation terms. It has a total of 16 components but due to

its symmetry gµν = gνµ there are only 10 independent components. The line element ds2

describes the casual structure of space-time. If ds2 > 0, the interval is time-like and the line

element is the proper time interval between the events in space-time traversed by massive

particles. When ds2 = 0, the interval is light-like and the line element is the proper time

interval between events in space-time which can only be traversed by mass-less particles. In

the case when ds2 < 0, the interval is space-like and the absolute value of the line element

describes the proper length between events in space-time that cannot be in casual connection

with one another. The structure of space-time can be represented through the light-cone

diagram which is shown on Fig. (1.1).

We now discuss how the geometry of space-time interacts with its matter content and

how geometry governs dynamics of motion of matter. The mechanism of interaction between

geometry and matter is what general relativity is all about, and the Einstein equations give

a quantitative description of this interaction. The Einstein equations are

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.2)

where G is Newton’s gravitational constant, R = gµνRµν the scalar curvature, and Rµν is

2



ct

x

ds
2 =0

ds2<0

ds2>0

Past

Future

Figure 1.1: Light cone diagram.

the Ricci tensor

Rµν =
∂Γλµν
∂xλ

−
∂Γλλµ
∂xν

+ ΓλλκΓ
κ
µν − ΓλµκΓ

κ
λν . (1.3)

Here Γλµν are the Christoffel symbols defined as

Γλµν =
1

2
gλκ
(
∂gκµ
∂xν

+
∂gκν
∂xµ

− ∂gµν
∂xκ

)
. (1.4)

The Ricci tensor is symmetric Rµν = Rνµ as can be seen from the definition above, thus
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there are only 10 independent components. The term on the right hand side of Eq. (1.2)

is the energy-momentum tensor Tµν that describes matter. Einstein’s equations of general

relativity form a system of 10 non-linear equations of second order with respect to metric

tensor gµν . They reduce to Newton’s gravity law in the weak gravity limit. The energy-

momentum tensor Tµν must satisfy a conservation equation of the following form in general

relativity T µν;µ = 0 and it expresses energy and momentum conservation laws. Semicolon

in the equation of energy-momentum conservation refers to co-variant differentiation which

is the appropriate way of computing derivatives in differential geometry. The conservation

equation played a major role when Einstein was trying to guess the right form of the equa-

tions that describe how matter curves space. The very first equation which Einstein wrote

was simply Rµν ∼ Tµν but he quickly discovered that the Ricci tensor alone does not satisfy

the conservation equation. However, the tensor 2Rµν − Rgµν does satisfy the conservation

condition and is what Einstein stated as the equations of general relativity. The tensor on

the left hand side of Eqs. (1.2) Rµν − Rgµν/2 is called the Einstein tensor and labeled Gµν

in the literature.

1.1.2 Friedmann Equations

Observational data of Cosmic Microwave Background (CMB) radiation anisotropy, see

Fig. (1.2), and other measurements [1] indicate that the universe is homogeneous on scales

beyond 100 Mpc while the observable part of the universe is about 4000 Mpc, which makes

it reasonable to chose spatially homogeneous and isotropic metrics to describe the space-

time of the universe. The appropriate form of metrics for the universe was introduced by

Alexander Friedmann in 1922 where he allowed them to be time-variable. Friedmann showed

that the universe would be dynamic and would expand six years before the expansion was

observed by Edwin Hubble in 1928. The line element in Friedmann’s metric is

ds2 = −dt2 + a2(t)γijdx
idxj (1.5)

4



Figure 1.2: Cosmic Microwave Background radiation map of the last scattering epoch.
Data of 2012 WMAP mission, Source: http://map.gsfc.nasa.gov/media/060913/index.html

where we chose units in which c = 1 and metric tensor sign convention (− + ++). The

indexes are labeled with Greek letters when they run in 4-dimensional space-time, i.e. from

0 to 3, and when they run in the 3-dimensional spatial part of space-time labeling is done

with Latin letters that go from 1 through 3. The function a(t) is called the scale factor

and it describes how the distance between two points in space evolves with time. The term

a2(t)γij = gij is the spatial part of the metric tensor. Because of the assumption of isotropy

and homogeneity, adopted based on observational evidence, the metric tensor has to be

diagonal, hence, gij is also diagonal.

The Friedmann equations are a special case of Einstein’s equations of general relativity

Eq. (1.2) for metrics of Eq. (1.5). These reduce the Einsteinian system of 10 equations to a

system of two equations for one unknown function, the scale factor a(t),

(
ȧ

a

)2

+
k

a2
=

8πG

3
ρ, (1.6)

ä

a
= −4πG

3
(ρ+ 3p) . (1.7)

Here ρ is the matter density and p is pressure. The left hand side of Eqs. (1.6)-(1.7) are

5



derived from the left hand side of Einstein’s equations (1.2) which describe the geometry

of space-time, while the right hand side of equations (1.6)-(1.7) are components of the

energy-momentum tensor Tµν . In particular Eq. (1.6) corresponds to equality between the

time components of Einstein and energy-momentum tensors G00 = 8πGT00 and Eq. (1.7)

corresponds to equality between diagonal elements of the spatial part of Einstein and energy-

momentum tensors Gii = 8πGTii and is derived with the use of Eq. (1.6). For more detailed

derivation see paragraph 2.1.3 of [2].

Eqs. (1.6)-(1.7) are written for a universe that has only one form of matter that fills it.

If there are multiple constituents present, then Eqs. (1.6)-(1.7) have to be generalized by

replacing mass density ρ and pressure p with sums over all types of matter i.e. Σρi → ρ and

Σpi → p. In order to solve the Friedmannian equations one has to know how density and

pressure depend on time. In some cases pressure and density can be related by an equation

of state whose exact form depends on the particular form of fluid. For example, in the case

of barotropic fluids pressure is a function of mass density only i.e., p = p(ρ), hence one needs

to know only how mass density varies with time.

There are three possible spatial geometries that meet requirements of homogeneity and

isotropy of the universe. These are: flat, spherical, and hyperbolic geometries. Flat or

non-curve space, is a space which obeys all properties of Euclidean geometry, and in general

relativity it can be dynamic. Spherical and hyperbolic spaces do not obey the axioms of

Euclidean geometry; these types of spaces are curved. Euclidean relationships of elemental

figures and objects of geometry are not satisfied in curved spaces. For example, the sum

of all angels of a triangle need not equal π and the ratio of circumference of a circle to its

radius r need not equal 2πr. In Fig. (1.3) two dimensional analogies of hyperbolic, flat, and

spherical spaces are shown.

Mathematical description of spaces presented in Fig. (1.3) are given by the following

6



Figure 1.3: Two dimensional analogies of hyperbolic, flat, and spherical manifolds.

metrics, written in Cartesian coordinates

gij =
a2(t)

1− kr2
δij, (1.8)

where r2 = δijx
ixj is square of distance between two points in space, δij is the Kronecker

delta symbol and k is the curvature parameter which takes values k = 0 for flat space, k = 1

for spherically curved space, and k = −1 in case of hyperbolic geometry. The normalization

of the absolute value of curvature parameter |k| = 1 is chosen for convenience.

Geometry of space determines significant two properties of the universe. One property

is whether our universe is finite or infinite and the other characteristic is if the universe is

eternal or has a finite life span from the Big Bang to what is proposed as the opposite of the

Big Bang, the Big Crunch. The universe is finite in case of spherical geometry of space as it

is shown in Fig. (1.3). Such a universe has a limited volume and because of that is called a

“closed” universe. A closed universe, filled with ordinary and dark matter alone, has a finite

life span, but if it contains dark energy there is a set of solutions which allow for an eternal

universe with and without the Big Bang. A non-eternal closed universe expands from the

Big Bang, reaches its maximum volume, and then contracts until it reaches the Big Crunch.
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In the other two cases of geometry i.e. flat or hyperbolic the universe is infinite and will

expand forever after the Big Bang. These two scenarios of infinite and eternal universes are

also called “open” universes. In order to determined which universe we live in, its curvature

parameter has to be measured.

1.1.3 Solutions of Friedmann Equations

Flat Matter and Radiation Dominated Universes, k = 0: Since the second Friend-

mann equation (1.7) does not contain curvature parameter explicitly, reviewing different

scenarios of the universe’s dynamics with respect to its curvature will involve only the first

Friedmann equation (1.6), which for the flat universe is

(
ȧm
am

)2

=
8πG

3
ρm (1.9)

here the subscript m denotes the universe is filled with non-relativistic dust-like fluid and

called a matter dominated universe. It is important to emphasize that the Eq. (1.9) expresses

a condition for matter density to yield flat universe and for this reason the density defined

as

ρcr =
3

8πG

(
ȧ

a

)2

(1.10)

is called critical density of the universe. Substituting the equation of state pm(ρm) = 0 of

non-relativistic matter in the second Friedman equation (1.7) and rewriting it with the use

of Eq. (1.9) yields the conservation equation

ρ̇m + 3ρm
ȧm
am

= 0, (1.11)

from which one recovers a3
m(t)ρm(t) = const. In what follow, I will use the following

conditions: the Big Bang time tBB = 0, the present time will be labeled t0 and it also will

be the age of the universe, the scale factor for the Big Bang and current epoch satisfies
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a(tBB) = aBB = 0, a(t0) = a0 = 1, and ρi(t0) = ρi0 is the present value of matter density of

the type “i”. With the conditions adopted above the solution of the Eq. (1.9) is

am(t) = (6πGρm0)1/3 t2/3. (1.12)

This solution is known as the Einstein-De Sitter model.

In case when the universe dominated by relativistic type of fluid, i.e. particles that

move with speeds close to the speed of light (neutrinos for example) or mass-less particles

(photons), the equation of state is the same as for radiation pr = ρr/3, where subscript r

denotes radiation and thus this type of universe is called radiation dominated. Substitution

of this equation of state in the second Friedmann Eq. (1.7) results in the conservation relation

a4
r(t)ρr(t) = const, which provides the following solution of Eq. (1.9),

ar(t) =

(
2

3
πGρr0

)1/4

t1/2. (1.13)

Closed Matter and Radiation Dominated Universes, k = 1: Now, let us derive

solutions for the previous two matter constituents but in presence of positive curvature

parameter k = 1 which corresponds to closed spherically curved universe. First I will solve

Friedmann equations for non-relativistic matter dominated case i.e.

(
ȧm
am

)2

+
1

a2
m

=
8πG

3
ρm, (1.14)

where ρm ∼ a−3. The solution in this case cannot be obtained as an explicit function of

time however, parameterization through conformal time, defined as dη = dt/a(t), yields the
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cycloidal solution

am(η) =
q0

2q0 − 1
[1− cos(η)] , (1.15)

t(η) =
q0

2q0 − 1
[η − sin(η)] . (1.16)

Here q0 is the value of the deceleration parameter at the current epoch q0 = q(t0) where the

deceleration parameter is defined as

q = − äa
ȧ2
, (1.17)

and its physical meaning is that it gives a quantitative measure of the deceleration rate of

the universe’s expansion. It can be rewritten with the use of Friedmann equations (1.6)-(1.7)

as

q =
ρ

2ρcr
(1.18)

from which one can notice that the deceleration parameter can also be thought of as a

measure of how much the universe deviates from being flat in case when it has curvature

and deceleration parameter q 6= 1/2. In order to quantify more strictly how the deceleration

parameter q depends upon the curvature parameter k one has to substitute the expression

for the matter density ρ from the first Friedmann equation (1.6) into the Eq. (1.18) from

which one can retrieve the following

k = 1 then q >
1

2
(1.19)

k = −1 then q <
1

2
. (1.20)

Relations (1.19)-(1.20) show that when matter density is higher than critical density the

universe is closed while when the matter density is less than critical density the universe is

open. If one introduces the dimensionless density as the ratio Ω = ρ/ρcr then the deceleration
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parameter can be simply written as q = Ω/2. In this particular example of a matter

dominated universe one has ρm, hence q = Ωm/2, where Ωm = ρm/ρcr.

In case of a radiation dominated universe one has

(
ȧr
ar

)2

+
1

a2
r

=
8πG

3
ρr, (1.21)

where ρr ∼ a−4. The solution is

ar(η) =

√
2q0

2q0 − 1
sin(η), (1.22)

t(η) =

√
2q0

2q0 − 1
[1− cos(η)] , (1.23)

where q0 = Ωr0/2.

Open Matter and Radiation Dominated Universes, k = −1: The Friedmann

equation for an open universe is

(
ȧi
ai

)2

− 1

a2
i

=
8πG

3
ρi, (1.24)

where i takes the values m for a matter dominated universe and the value r for a radiation

dominated universe. The solution for the matter dominated universe is

am(η) =
q0

1− 2q0

[cosh(η)− 1] , (1.25)

t(η) =
q0

1− 2q0

[sinh(η)− η] . (1.26)
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And for radiation dominated case the solution is

ar(η) =

√
2q0

1− 2q0

sinh(η), (1.27)

t(η) =

√
2q0

1− 2q0

[cosh(η)− 1] . (1.28)

The solutions we derived are shown below in Fig. (1.4).
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Figure 1.4: Solutions of Friedmann equations for a single component universes with flat,
closed, and open geometries. The time and the scale factor in arbitrary units.

In the above we reviewed examples of ideal universes which contain one type of matter

i.e. non-relativistic dust or radiation. The real universe consists of both types of matter

and possibly dark energy. In the section below I investigate more realistic solutions of the
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Friedmann equations for a universe with multiple types of matter content.

1.1.4 Cosmological Constant

The cosmological constant was first introduced by Albert Einstein when he was attempting

to apply his theory of general relativity to the entire universe. It was commonly assumed in

the early 20th century that the universe was static. However, since gravity is an attractive

force with bottomless potential to find a static solution Einstein introduced the cosmological

constant labeled by Greek letter Λ, in his equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.29)

The effect of the cosmological constant is to causes space to expand as if there were a

repulsive gravitational force. Einstein’s idea was to use the effect of repulsion from the cos-

mological constant to cancel out ordinary matter’s attraction and so have a static solution

for the universe. However, it was shown that even with a cosmological constant a static

solution is not stable with respect to small perturbations in matter density and eventually

the idea of a static universe was abandoned after Hubble’s discovery of the expansion of the

universe. Einstein called his invention of a cosmological constant as his biggest blunder.

However, since Einstein’s times scientists keep coming back to the idea of a cosmological

constant over and over again because of theoretical physics considerations such as the quan-

tum vacuum and cosmic inflation. However, it was not until the discovery of the accelerated

expansion of the universe in the late 1990’s which provided the first observational evidence

for a cosmological constant.

The way Einstein thought of the cosmological constant was that it was a fundamental

constant of nature and was part of the gravity law, thus Einstein was the first who developed

a “Modified Gravity Theory” with Λ placed on the left hand side of Eq. (1.29), i.e. geo-

metrical part of the Einstein equations. The modified gravity as an alternative explanation
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of the accelerated cosmological expansion is highly discussed topic in modern cosmology,

however I do not address this approach in a great details. For recent reviews of modified

gravity see [3] and [4].

When cosmological constant is written on the right hand side of Einstein’s equations it

introduces a type of energy that fills the universe homogeneously and causes repulsion on

the scales determined by the cosmological constant. This view gives the first Friedmann

equation as (
ȧ

a

)2

=
8πG

3

(ρr0
a4

+
ρm0

a3
+
ρk0

a2
+ ρΛ

)
, (1.30)

where ρk0 = −3k/8πG is the present value of “curvature density” chosen to represent

curvature as if it were a type of matter and the meaning of this representation is that it

shows amount of matter density deficit in the universe to make it flat when it has hyperbolic

geometry while in case of spherically curved universe ρk represents how much extra matter

density in the universe over critical density. Here ρΛ is the energy density associated with

the cosmological constant

ρΛ =
Λ

8πG
, (1.31)

which is constant in time with equation of state

pΛ = −ρΛ. (1.32)

Energy density associated with a cosmological constant is called Dark Energy, where “dark”

refers to the fact that it does not shine like ordinary Byronic matter i.e. protons, nuclei,

ions, atoms, and electrons. The Eq. (1.30) does not have analytic solution in general case.

Numerical solutions for standard cosmological model are presented in Fig. (1.5). It is worth

to emphasize how different constituencies that fill the universe evolve with time after the

Big Bang. For that purpose I plot log10(ρi/ρcr) vs the log of the scale factor log10(a) for

each component in a single graph shown in Fig. (1.6).

Motivation for a cosmological constant as a type of energy comes from quantum field
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Figure 1.5: Numerical solution of Eq. (1.30) for standard cosmology. Time and the scale
factor presented in arbitrary units, where a = 1 corresponds to the current epoch.

theory. In quantum mechanics absolute vacuum as empty space does not exist. Quantum

mechanics predicts fluctuations of energy in otherwise empty space whose average value

yields total non-zero energy density always present in space called the Zero-Point Energy

Density whose value for a scalar field with mass m can be expressed as [e.g., 5]

ρvac =
m4

64π2
ln

(
m2

µ2

)
, (1.33)

where µ is renormalization scale. The equation of state of the vacuum energy is the same

as the equation of state for dark energy, Eq. (1.32), i.e. pvac = −ρvac, which is what

supports the assumption of the quantum vacuum as a possible candidate for dark energy.

However, computation of the vacuum energy density predicts it to be in the range ρvac '

108−1072GeV4 while ρΛ ' 10−48GeV4 is observed which deviates from the quantum vacuum

prediction by 120 orders of magnitude! This inconsistency is known as the quantum vacuum
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Figure 1.6: The plot of log10(ρi/ρcr) vs the log of the scale factor log10(a) for each compo-
nent. One can see that the early universe was dominated by radiation, however since energy
density of radiation dissipates as a−4 while energy density of ordinary matter decreases as
a−3, the radiation dominated epoch switches to matter dominated. Eventually, the universe
becomes dominated by the cosmological constant, since its energy density does not evolve in
time.

problem in cosmology.

1.1.5 Standard Cosmological Model

According to general relativity (GR), any form of energy affects space-time dynamics and

so cosmological evolution. This fact allows for a very simple phenomenological explanation

of the observed accelerated expansion, attributing it to a cosmological constant Λ, homoge-

neously distributed in space and constant in time. This ΛCDM model [6] is now accepted

as the standard cosmological model. At the current epoch Λ dominates the energy budget,

with nonrelativistic cold dark matter (CDM) being the next largest contributor, followed

by ordinary baryonic matter in third place. A widely discussed generalization of ΛCDM is
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the φCDM model in which Λ is replaced by a time-varying dark energy density modeled by

a self-interacting scalar field φ [7]. For recent reviews see [8], [9], [10], and [11].

Observational data available [1] indicate that energy budget of the universe at the current

epoch is largely dominated by dark energy contributing about 68.25%, with 26.86% for cold

dark matter and 4.89% of baryonic matter. Curvature is constrained to less than 2.00%

of the energy budget if the cosmological constant is dark energy. See Table 2 of [1] for

the most recent and complete list of the parameters of the standard cosmological model or

ΛCDM cosmology, where CDM stands for Cold Dark Matter and Λ refers to dark energy

modeled by cosmological constant Λ. It is common in the field of physical cosmology to

name alternative cosmological models of dark energy in a similar way by replacing only Λ

with a symbol that refers to a particular alternative form of dark energy.

1.2 Observational Cosmology

In previous sections I have reviewed theoretical aspects of physical cosmology. In this section

I provide a short overview of observational cosmology.

1.2.1 Redshift

The scale factor is a fundamental object in cosmology, although its absolute value does not

have any useful physical meaning. What does have physical meaning and can be measured is

the ratio of the scale factor taken between different epochs. It is a quantitative measurement

to how much the universe has expanded between those two epochs. This ratio, as will be

shown later, comes into many observable quantities. How can the ratio of scale factors at

different epochs be measured? The physical meaning of expansion of space is that if one

chooses any two arbitrary points in space with initial separation l0 this physical distance will

evolve in time approximately proportional to the scale factor i.e. l(t) ∼ l0a(t). In general

relativity time-evolving spatial metrics causes a change in the wavelength of electromagnetic
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radiation which can be expressed as

λemaobs = λobsaem, (1.34)

where λem is the photon’s wavelength when it was emitted by its source at epoch aem and

λobs is its wavelength when it was observed at epoch aobs. This change in wavelength results

in a so called, cosmological redshift. Redshift is when the wavelength of electromagnetic

radiation increases. The cause of increase of wavelength determines the type of redshift.

Thus there is a Doppler redshift, due to motion away from the source of radiation, gravita-

tional redshift, due to radiation propagating away from the source of the gravity field, and

cosmological redshift, due to the expansion of space. The word “redshift” originated from

the optical effect when the wavelength of radiation increases towards the red part of the

spectrum. The definition of redshift is

z =
λobs − λem

λem

, (1.35)

which, after substituting cosmological wavelength change via scale factor given in Eq. (1.34)

and recalling that aobs = 1, yields the equation for cosmological redshift

z =
1

a
− 1. (1.36)

Redshift is a directly measured quantity determined from analysis of spectral lines emitted

by the observed source of radiation.

1.2.2 Hubble parameter

The name “Hubble parameter” originates from the Hubble law discovered by astronomer

Edwin Hubble in 1928, which states that the velocity of recession v of a galaxy from an

observer anywhere in the universe is proportional to the physical distance l between the
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galaxy and observer, and the coefficient of proportionality is the Hubble constant H0. Thus,

the Hubble law is

v = H0l, (1.37)

where v = l̇ and H0 is the value of the Hubble parameter at the present epoch. Hubble law

was first derived from the Einstein equations by George Lemâıtre in 1927 who independently

derived the same equations of motion for the universe as Friedmann did. Recalling from the

previous section l(t) ∼ l0a(t), which after differentiating yields l̇ ∼ l0ȧ = v and v/l = ȧ/a,

therefore one has for the Hubble parameter the following

H =
ȧ

a
. (1.38)

As we can see the Hubble parameter is not a constant.

Now we can rewrite the first Friedmann equation in terms of measurable quantities,

which is used most of the time for practical purposes in physical cosmology. Below is an

example for a universe filled with radiation, matter, cosmological constant, and non zero

curvature

H2(z) = H2
0

[
Ωr0(1 + z)4 + Ωm0(1 + z)3 + Ωk0(1 + z)2 + ΩΛ

]
. (1.39)

1.2.3 Luminosity Distance

Distance measurement in astronomy is based on the parallax method and provides direct

measurement up to about 100 pc; any distance beyond this limit has to be measured with

the use of indirect techniques. Physical cosmology deals with intergalactic objects, thus

distances involved are of order 106 pc. A major method widely used in cosmology is based

on observations of Supernovae explosions of a specific type called Ia (reads as “one a”).

Supernovae of type Ia are the only to be stars from binary systems where one of the stars

is a white dwarf that is orbiting close enough to its partner so that it strips matter from it

which accretes back to the white dwarf causing it to increase its mass until it reaches the so
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called Chandrasekhar limit. At this point the white dwarf’s internal electron pressure unable

to resist against gravitational pull and the star collapses on itself triggering thermonuclear

reactions in its interior which results in an explosion. Thus allowing for a determination of

their absolute luminosity. Supernovae Ia are “standard candles” in determining distances

on intergalactic scales. Measuring flux at a distance r
(obs)
L from a star can be used to figure

out that distance via the relationship between absolute luminosity and observed flux

Fobs =
Lem

π
(

2r
(obs)
L

)2 , (1.40)

where Fobs is observed flux and Lem emitted absolute luminosity. This is closest method to

what could be considered as a direct method of distance measurement. It is independent of

the cosmological model, thus it can be used to study different cosmologies.

Theoretical prediction of distance traveled by photon between two points in space can

be derived from the equation of the line element Eq. (1.1), or for our purposes we use the

line element written in Friedmann metrics Eq. (1.5). For a photon ds2 = 0, so one concludes

that the distance traveled by a photon written in spherical coordinates is

dt = a(t)
dr√

1− kr2
, (1.41)

where dr/
√

1− kr2 is the coordinate distance between two neighboring points that does not

change as space expands or contracts. The physical distance however, does change as space

expands or contracts. It is very easy to see from Eq. (1.41) that in case of flat space the

coordinate distance between an object that emitted light at the time tem and an observer

receiving the signal at the current epoch t0 is

r =

∫ t0

tem

dt

a(t)
. (1.42)
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In the more general case with non-flat spatial geometry one can derive the expression

r =
1√
−Ωk0

sin

(√
−Ωk0

∫ t0

tem

dt

a(t)

)
, (1.43)

here Ωk0 is the present value of the curvature energy density defined as Ωk0 = ρk0/ρcr0. Let

us rewrite Eq. (1.43) using redshift as a variable. Expressing dt = da/ȧ and using Eq. (1.39)

for ȧ/a Eq. (1.43) transforms to

r(z) =
1√
−Ωk0

sin

(√
−Ωk0

∫ z

0

dz′

H(z′)

)
. (1.44)

This determines the relation between coordinate distance and redshift. However, coordinate

distance is not directly observable since observations done via measurements of the flux of

radiation coming from distant which lose energy due to redshift, thus the physical distance

r
(obs)
L in Eq. (1.40) is different from coordinate distance by a factor (1+z) which accounts for

the decrease in observable flux due to redshift. The distance r
(obs)
L called physical or photo-

metric or luminosity distance and its physical meaning is it gives estimate of how much the

flux from a star with redshift z decreased by the time it reached the observer. Therefore the

appropriate theoretical physical distance suitable for comparison with observable physical

distance is

r
(th)
L (z) =

1 + z√
−Ωk0

sin

(√
−Ωk0

∫ z

0

dz′

H(z′)

)
. (1.45)

Distance measurements are expressed using the distance modulus µ = m − M , which is

the difference between the apparent magnitude m and the absolute magnitude M of an

astronomical object. It is related to the luminous distance rL as

µ = 5log10(rL)− 5. (1.46)

In the Fig. (1.7) the collection of the most recent Supernovae Ia data of Union 2.1 compilation

from Ref. [12] are shown.
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Figure 1.7: Hubble diagram for the Union2.1 compilation. The solid line represents the
best-fit cosmology for a flat ΛCDM universe for supernovae alone. Source: Fig.(4) of [12]
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Chapter 2

Forecasting cosmological parameter

constraints from near-future

space-based galaxy surveys

2.1 Introduction

Recent measurements of the apparent magnitude of Type Ia supernovae (SNeIa) continue to

indicate, quite convincingly, that the cosmological expansion is currently accelerating [see,

e.g., 12–15].

There is good observational evidence that the large-scale radiation and matter distribu-

tions are statistically spatially isotropic. The (Copernican) cosmological principle, which

is also consistent with current observations, then indicates that the Friedmann-Lemâıtre-

Robertson-Walker (FLRW) models provide an adequate description of the spatially homo-

geneous background cosmological model.

In the FLRW models, the current accelerating cosmological expansion is a consequence

of dark energy, the dominant, by far, term in the current cosmological energy budget. The

dark energy density could be constant in time (and hence uniform in space) — Einstein’s
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cosmological constant Λ [6] — or gradually decreasing in time and thus slowly varying in

space [7].

The “standard” model of cosmology is the spatially-flat ΛCDM model in which the cos-

mological constant contributes around 68.25% of the current energy budget. Non-relativistic

cold dark matter (CDM) is the next largest contributor, at around 26.86%, with non-

relativistic baryons in third place with about 4.89%. For a review of the standard model

see [16] and references therein.

Recent measurements of the anisotropies of the cosmic microwave background (CMB)

radiation [e.g., 17, 18], in conjunction with significant observational support for a low density

of non-relativistic matter [CDM and baryons together, e.g., 19], as well as measurements of

the position of the baryon acoustic oscillation (BAO) peak in the matter power spectrum

[e.g., 20–23], provide significant observational support to the spatially-flat ΛCDM model.

Other data are also not inconsistent with the standard ΛCDM model. These include strong

gravitational lensing measurements [e.g., 24–26], measurement of Hubble parameter as a

function of redshift [e.g., 27–30], large-scale structure data [e.g., 31–34], and galaxy cluster

gas mass fraction measurements [e.g., 35–37]. For recent reviews of the situation see, e.g.,

[38], [39], and [40].

While the predictions of the ΛCDM model are in reasonable accord with current obser-

vations, it is important to bear in mind that dark energy has not been directly detected (and

neither has dark matter). Perhaps as a result of this, some feel that it is more reasonable to

assume that the left hand side of Einstein’s Eq. (1.2) needs to be modified (instead of pos-

tulating a new, dark energy, component of the stress-energy tensor on the right hand side).

While such modified gravity models are under active investigation, at present there is no

compelling observational reason to prefer any of these over the standard ΛCDM cosmological

model.

The ΛCDM model assumes that dark energy is a cosmological constant with equation
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of state

pΛ = −ρΛ, (2.1)

where pΛ and ρΛ are the pressure and energy density of the cosmological constant (fluid).

This minimalistic model, despite being in good agreement with most observations avail-

able today, has some potential conceptual shortcomings that have prompted research into

alternative explanations of the dark energy phenomenon.1

To describe possible time-dependence of the dark energy density, it has become popular

to consider a more general equation of state parametrization

pω = ω(z)ρω. (2.2)

Here pω and ρω are the pressure and energy density of the dark energy fluid with redshift

z dependent equation of state parameter ω(z). The simplest such parametrization is the

XCDM one for which the equation of state parameter is constant and results in accelerated

expansion if ω(z) = ωX < −1/3. In this case the dark energy density decreases with time

and this allows for the possibility that the fundamental energy density scale for dark energy

is set at high energy in the early Universe and the slow decrease of the energy density over

the long age of the Universe ensures that the characteristic dark energy density scale now

is small (a few meV). This also ensures that the dark energy density remains comparable

to the matter energy density over a longer period of time (compared to that for the ΛCDM

model).

When ωX = −1 the XCDM parametrization reduces to the consistent (and complete)

ΛCDM model. For any other value of ωX the XCDM parametrization cannot consistently

describe spatial inhomogeneities without further assumptions and extension [see, e.g., 43,

44]. Models in which ω(z) varies in time, ωCDM models, are also unable to consistently

describe spatial inhomogeneities without further assumptions and extension.

1 Structure formation in the ΛCDM model is governed by the “standard” CDM structure formation
model, which might be in some observational difficulty [see, e.g., 41, 42].
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A physically and observationally viable alternative to the ΛCDM model, that consistently

describes a slowly decreasing in time dark energy density, is the φCDM model [7, 45]. This

model, in which a dark energy scalar field, φ, slowly rolls down its potential, resulting in a

slowly decreasing dark energy density, alleviates some of the conceptual problems, mentioned

above, associated with the ΛCDM model. The slowly rolling scalar field, at a given instant

of time, can be approximated by a dark energy fluid with an appropriately negative equation

of state parameter.

More specifically, a φCDM model with an inverse-power-law scalar field potential energy

density V (φ) ∝ φ−α, α > 0, is a prototypical example that has been extensively studied.

This model has a non-linear attractor or “tracker” scalar field solution that forces the ini-

tially sub-dominant dark energy density to come to dominate over the matter energy density,

thus dominating the energy budget of the current Universe, and so resulting in the current

accelerated cosmological expansion. In addition to therefore partially alleviating the “coin-

cidence” problem of the ΛCDM model, the φCDM model generates the current tiny dark

energy scale of order an meV, measured by the SNeIa, through decrease, via cosmological

expansion over the long age of the Universe, of a much larger energy scale.

The α parameter controls the steepness of the scalar field potential, with larger values

resulting in a stronger time dependence of the approximate equation of state parameter

and α = 0 corresponds to the ΛCDM model limit. α has been constrained using currently

available data [see e.g., 46–49, and references therein]. The strongest current limits are that

α has to be less than ∼ 0.7 at 2σ confidence [50].

In the φCDM model, or in the XCDM or ωCDM parameterizations, the background

evolution of the (spatially homogeneous) Universe differs from that in the ΛCDM case.

This affects both the distance-redshift relation as well as the growth rate of large-scale

structure. With precise measurements of distance and growth rate over a range of redshifts

it will be possible to discriminate between cosmological models.2

2 There are many other models under current discussion, besides the ΛCDM and φCDM models and
XCDM and ωCDM parameterizations we consider here for illustrative purposes. For a sample of the available
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The BAO signature in the observed large-scale structure of the Universe allows for the

measurements of radial and angular distances as functions of redshift [see, e.g., 20, 23, 59, 60].

In addition, the redshift-space distortion signal allows for inferences about the strength of

gravitational interactions on very large scales [see, e.g., 61–66]. Currently available data sets

have been used to measure distances and growth history up to a redshift z ∼ 0.8 and the next

generation of planned space-based galaxy redshift surveys of the whole extragalactic sky are

expected to extend these measurements to a redshift z ∼ 2. Possible candidates for such

surveys include the Euclid satellite mission that has been approved by the European Space

Agency [67] and the WFIRST satellite that was ranked high by the recent Decadal Survey

[68]. These surveys have been shown to have the potential to measure angular distances,

Hubble parameter H(z), and growth rate as functions of redshift to a few percent precision

over a wide range of redshifts [69–72].3

As mentioned above, an alternative potential explanation of the observed accelerated

expansion of the Universe is to replace general relativity by a modified theory of gravity.

For example, in the f(R)-gravity models the Einstein-Hilbert gravitational action is modified

to

S =
1

16πG

∫
d4x
√
−gf(R), (2.3)

where the function f(R) of the Ricci curvature R can in general be of any form. In the

special case when f(R) = R one recovers the Einstein-Hilbert action which yields the

Einstein equations of general relativity, Eq. (1.2). For every dark energy model it is possible

to find a function f(R) that will result in exactly the same expansion history [see, e.g.

74–76] thus potentially eliminating the need for dark energy. However, nothing prevents

the coexistence of modified gravity and dark energy, with both contributing to powering

the current accelerated cosmological expansion. It is of significant importance to be able to

determine which scenario best describes what is taking place in our Universe.

options see, e.g., [51], [52], [53], [54], [55], [56], [57], and [58].
3 For constraints on cosmological parameters from data from space missions proposed earlier, see [73]

and references therein.
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This chapter is based on [77]. We investigate how well anticipated data from the galaxy

surveys mentioned above can constrain the time dependence of the dark energy. We will use

the Fisher matrix formalism to obtain predictions for the φCDM model and compare these

with those made using the (model-dependent) XCDM and ωCDM parameterizations of dark

energy. We will mostly assume that gravity is well described by general relativity, but will

also look at some simple modified gravity cases. We find that the anticipated constraints

on the parameter α of the φCDM model are almost an order of magnitude better than the

ones that are currently available.

Compared to the recent analysis of [70], here we use an updated characterization of

planned next-generation space-based galaxy surveys, so our forecasts are a little more real-

istic. We also consider an additional dark energy parametrization, XCDM, a special case of

ωCDM that was considered by [70], as well as the φCDM model, forecasting for which has

not previously been done.

The rest of the chapter is organized as follows. In Sec. 2.2 we briefly describe the

observables and their relationship to basic cosmological parameters. In Sec. 2.3 we describe

the models of dark energy that we study. Section 2.4 outlines the method we use for

predicting parameter constraints, with some details given in the Appendix A. We present

our results in Sec. 2.5 and provide conclusions in Chapter 5.

2.2 Measured power spectrum of galaxies

The large-scale structure of the Universe, which most likely originated as quantum-mechanical

fluctuations of the scalar field that drove an early epoch of inflation [see, e.g., 78], became

(electromagnetically) observable at z ∼ 103 after the recombination epoch. Dark energy

did not play a significant role at this early recombination epoch because of its low mass-

density relative to the densities of ordinary and dark matter as well as that of radiation

(neutrinos and photons). At z ∼ 5 galaxy clusters began to form. Initially, in regions where
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the matter density was a bit higher than the average, space expanded a bit slower than

average. Eventually the dark and ordinary matter reached a minimum density and the re-

gions contracted. If an over-dense region was sufficiently large its baryonic matter collapsed

into its dark-matter halo. The baryonic matter continued to contract even more due to its

ability to lose thermal energy through the emission of electromagnetic radiation. This can

not happen with dark matter since it does not emit significant electromagnetic radiation

nor does it interact significantly (non-gravitationally) with baryonic matter. As a result the

dark matter remained in the form of a spherical halo around the rest of the baryonic part

of a galaxy. At z ∼ 2 the rich clusters of galaxies were formed by gravity, which gathered

near-by galaxies together. Also by this time the dark energy’s energy density had become

relatively large enough to affect the growth of large-scale structure.

Different cosmological models with different sets of parameters can result in the same

expansion history and so it impossible to distinguish between such models by using only

expansion history measurements. This is one place where measurements of the growth

history of the large-scale structure of the Universe plays an important role. It is not possible

to fix free parameters of two different cosmological models to give exactly the same expansion

and growth histories simultaneously. It is therefore vital to observe both histories in order

to obtain better constraints on parameters of a cosmological model.

In a cosmological model described by the FLRW metric, and to lowest order in dark

matter over-density perturbations, the power-spectrum of observed galaxies is given by [79]

Pg(k, µ) = Pm(k)(bσ8 + fσ8µ
2)2. (2.4)

Here subscript g denotes galaxies, Pm is the underlying matter power spectrum, b is the

bias of galaxies, f is the growth rate, µ is the cosine of the angle between wave-vector k

and the line-of-sight direction, and σ8 is the overall normalization of the power spectrum

(σ8 is the rms energy density perturbation smoothed over spheres of radius 8h−1 Mpc,

where h = H0/(100kms−1Mpc−1) and H0 is the Hubble constant). Since, for a measured
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power spectrum of galaxies on a single redshift slice, the bias and growth rate are perfectly

degenerate with the overall amplitude, in the equations below we will refer to bσ8 and fσ8

simply as b and f .

The angular dependence of the power spectrum in Eq. (2.4) can be used to infer the

growth rate factor f(z) which is defined as the logarithmic derivative of the linear growth

factor

f(z) =
d lnG

d ln a
, (2.5)

where a is the cosmological scale factor, and the linear growth factor G(t) = δ(t)/δ(tin)

shows by how much the perturbations have grown since some initial time tin.4

The numerical value of the f(z) function depends both on the theory of gravity and

on the expansion rate of the Universe. Since the growth rate depends very sensitively on

the total amount of non-relativistic matter, it is often parametrized as [see, e.g., 80, and

references therein]

f(z) ≈ Ωγ
m(z), (2.6)

where

Ωm(z) =
Ωm(1 + z)3

E2(z)
, (2.7)

and

E(z) = H(z)/H0 =
√

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩDE(z). (2.8)

Here H(z) is the Hubble parameter and H0 is its value at the present epoch (the Hubble

constant), Ωm is the value of the energy density parameter of non-relativistic matter at the

present epoch (z = 0), Ωk that of spatial curvature, and ΩDE(z) is the energy density pa-

rameter which describes the evolution of the dark energy density and is different in different

dark energy models.

4 Here we have expanded the energy density ρ(t,x) in terms of a small spatially inhomogeneous fractional
perturbation δ(t,x) about a spatially-homogeneous background ρb(t): ρ(t,x) = ρb(t)[1 + δ(t,x)].
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The growth index, γ, depends on both a model of dark energy as well as a theory of

gravity. When general relativity is assumed and the equation of state of dark energy is taken

to be of the general form in Eq. (2.2) then [see, e.g., 80, and references therein]

γ ≈ 0.55 + 0.05[1 + ω(z = 1)] (2.9)

to a few percent accuracy. In the ΛCDM cosmological model γ ≈ 0.55. An observed

significant deviation from this value of γ will present a serious challenge for the standard

cosmological model.

The power spectrum is measured under the assumption of a fiducial cosmological model.

If the angular and radial distances in the fiducial model differ from those in the real cos-

mology, the power spectrum will acquire an additional angular dependence via the Alcock-

Paczyński (AP) [81] effect, as discussed in [70],

Pg(k, µ) =
1

f‖f
2
⊥
Pm

(
k

f⊥F

√
F 2 + µ2 (1− F 2)

)
×
{
b+

µ2f

F 2 + µ2(1− F 2)

}2

, (2.10)

where

f‖(z) = Rr(z)/R̂r(z), (2.11)

f⊥(z) = DA(z)/D̂A(z), (2.12)

F = f‖/f⊥. (2.13)

Here Rr = dr/dz is the derivative of the radial distance, DA is the angular diameter distance

(both defined below), a hat indicates a quantity evaluated in the fiducial cosmological model,

and a quantity without a hat is evaluated using the alternative cosmological model. The

AP effect is an additional source of anisotropy in the measured power spectrum and allows

for the derivation of stronger constraints on cosmological parameters.
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2.3 Cosmological models

In an FLRW model with only non-relativistic matter and dark energy the distances DA(z)

and Rr(z) are

DA(z) =
1

h
√

Ωk(1 + z)
sinh

(√
Ωk

∫ z

0

dz′

E(z′)

)
, (2.14)

Rr(z) =
1

h(1 + z)E(z)
. (2.15)

Here E(z) is defined in Eq. (2.8). The functional form of E(z) depends on the model of

dark energy.

2.3.1 ΛCDM, XCDM and ωCDM parameterizations

Here we describe the relevant features of the ΛCDM model and the dark energy parameter-

izations we consider.

If the dark energy is taken to be a fluid its equation of state can be written as p = ω(z)ρ.

For the ΛCDM model the equation of state parameter ω(z) = −1 and the dark energy

density is time independent.

In the XCDM parametrization ω(z) = ωX(< −1/3) is allowed to take any time-independent

value, resulting in a time-dependent dark energy density.

In the ωCDM parametrization the time dependence of ω(z) is parametrized by intro-

ducing an additional parameter ωa through [82, 83]

w(z) = w0 + wa
z

1 + z
. (2.16)

The XCDM parametrization is the limit of the ωCDM parametrization with ωa = 0. In the

ωCDM parametrization the function ΩDE(z) that describes the time evolution of the dark
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energy density is

ΩDE(z) = (1− Ωm − Ωk)(1 + z)3(1+w0+wa) exp

(
−3wa

z

1 + z

)
, (2.17)

and the corresponding expression for the XCDM case can be derived by setting ωa = 0 here.

2.3.2 φCDM model

In the φCDM model the energy density of the background, spatially homogeneous, scalar

field φ can be found by solving the set of simultaneous ordinary differential equations of

motion,

φ̈+ 3
ȧ

a
φ̇+ V ′(φ) = 0, (2.18)

(
ȧ

a

)2

=
8πG

3
(ρ+ ρφ)− k

a2
, (2.19)

ρφ =
1

16πG

(
1

2
φ̇2 + V (φ)

)
. (2.20)

Here an over-dot denotes a derivative with respect to time, a prime denotes one with respect

to φ, V (φ) is the potential energy density of the scalar field, ρφ is the energy density of the

scalar field, and ρ that of the other constituents of the Universe.

Following [7] we consider a scalar field with inverse-power-law potential energy density

V (φ) =
κ

2G
φ−α. (2.21)

Here α is a positive parameter of the model to be determined experimentally and κ is a

positive constant. This choice of potential has the interesting property that the scalar field

solution is an attractor with an energy density that slowly comes to dominate over the

energy density of the non-relativistic matter (in the matter dominated epoch) and causes
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the cosmological expansion to accelerate. The function ΩDE(z) in the case of φCDM is

ΩDE(z) =
1

12

(
φ̇2 +

κ

G
φ−α

)
. (2.22)

2.4 Fisher matrix formalism

The precision of the galaxy power spectrum measured in redshift bins depends on the

cosmological model, the volume of the survey, and the distribution of galaxies within the

observed volume. See Appendix A for a summary of how to estimate the precision of

measurements from survey parameters.

We assume that the power spectrum P (ki)
meas has been measured in N wave-number

ki bins (i = 1 . . . N) and each measurement has a Gaussian uncertainty σi. From these

measurements a likelihood function

L ∝ exp

(
−1

2
χ2

)
(2.23)

can be constructed where

χ2 =
N∑
i=1

(Pmeas
i − Pi(p))2

σ2
i

. (2.24)

Here p are the set of cosmological parameters on which the power spectrum depends.

The likelihood function in Eq. (2.23) can be transformed into the likelihood of theoretical

parameters p by Taylor expanding it around the maximum and keeping terms of only second

order in δp as χ2(δp) = Fjkδp
jδpk, where Fjk is the Fisher matrix5 of the parameter set p

given by second derivatives of the likelihood function through

Fjk = −
〈
∂2 lnL
∂pj∂pk

〉
. (2.25)

5 For a review of the Fisher matrix formalism as applied to cosmological forecasting, see [84].

34



The Fisher matrix predictions are exact in the limit where initial measurements as well as

derived parameters are realizations of a Gaussian random variable. This would be the case

if the Pmeas
i were perfectly Gaussian and the Pi(p) were linear functions of p, which would

make the second order Taylor expansion of the likelihood around its best fit value exact. In

reality, because of initial non-Gaussian contributions and nonlinear effects, the predictions of

Fisher matrix analysis will be different (more optimistic) from what is achievable in practice.

These differences are larger for strongly non-linear models and for the phase spaces in which

the likelihood is non-negligible at some physical boundary (α = 0 in case of φCDM). A

more realistic approach, that requires significantly more computational time and power, is

to generate a large amount of mock data and perform a full Monte-Carlo Markov Chain

(MCMC) analysis [see, e.g., 85, 86, where the authors find significant differences compared

to the results of the Fisher matrix analysis].

We assume that the full-sky space-based survey will observe Hα-emitter galaxies over

15000 deg2 of the sky. For the density and bias of observed galaxies we use predictions from

[87] and [88] respectively. We further assume that about half of the galaxies will be detected

with a reliable redshift. These numbers roughly mirror what proposed space missions, such

as the ESA Euclid satellite and the NASA WFIRST mission, are anticipated to achieve. For

the fiducial cosmology we use a spatially-flat ΛCDM model with Ωm = 0.25, the baryonic

matter density parameter Ωb = 0.05, σ8 = 0.8, and the primordial density perturbation

power spectral index ns = 1.0, for convenience we summarize all the parameters of the

fiducial model in Table 1.

We further assume that the shape of the power spectrum is known perfectly (for exam-

ple from the results of the Planck satellite) and ignore derivatives of the real-space power

spectrum with respect to cosmological parameters.

We predict the precision of the measured galaxy power spectrum and then transform

it into correlated error bars on the derived cosmological parameters. At first we make

predictions for the basic quantities b and f in the XCDM and ωCDM parameterizations
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and in the φCDM model. Then it allows us to predict constraints on deviations from

general relativity and see how these results change with changing assumptions about dark

energy. Finally, we forecast constraints on the basic cosmological parameters of dark energy

models.

For the XCDM parametrization these basic cosmological parameters are

pXCDM = (f, b, h,Ωm,Ωk, wX). The ωCDM parametrization has one extra parameter de-

scribing the time evolution of the dark energy equation of state parameter, pωCDM =

(f, b, h,Ωm,Ωk, w0, wa). For the φCDM model the time dependence of the dark energy

density depends only on one parameter α so we have pφCDM = (f, b, h,Ωm,Ωk, α). In or-

der to derive constraints on the parameters of the considered cosmological models while

altering assumptions about the correctness of general relativity, we transform Fisher ma-

trices of each model from the parameter set described above to the following parameter

set (that now includes γ that parametrizes the growth rate) pmodel = (γ,model), where

by model we mean all the parameters of a particular model, for example, for ωCDM

model = pωCDM = (f, b, h,Ωm,Ωk, w0, wa).

2.5 Results

2.5.1 Constraints on growth rate

Figure 3.1 shows predictions for the measurement of growth rate assuming different dark

energy models. We find that in the most general case, when no assumption is made about

the nature of dark energy, the growth rate can be constrained to a precision of better then

2% over a wide range of redshifts. This is in good agreement with previous similar studies

[see, e.g., Fig. 1 of 70]. When we specify a dark energy model the constraints on growth rate

improve by about a factor of two. There is very little difference between the results derived

for different dark energy models: the precision is almost insensitive to the assumed model.

Also, one can notice that the curves for the XCDM parametrization and for the φCDM
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model are almost identical. The likely explanation of this effect is that for a fixed redshift

bin the φCDM model is well described by the XCDM parametrization with the value of the

parameter ωX = pφ/ρφ, where the values of the scalar field pressure pφ and energy density

ρφ are evaluated at that redshift bin.

The measurements of growth rate can be remapped into constraints on parameters de-

scribing the deviation from general relativity. Figure 3.2 shows correlated constraints be-

tween the current re-normalized Hubble constant h and the γ parameter that describes the

growth of structure. The φCDM model constraints on both h and γ are tighter than those

for the XCDM or ωCDM parameterizations. As expected, the most restrictive ΛCDM model

results in the tightest constraints. In Table 2.2 we show the deviations of the parameter γ

from its fiducial value for various dark energy models.

2.5.2 Constraints on dark energy model parameters

We use measurements of growth and distance to constrain parameters of the dark energy

models.

Figure 3.3 shows constraints on parameters of the ωCDM parameterization [these should

be compared to Figs. 4a and 5a of 70] . When no assumptions are made about the nature

of gravity the constraints on ω0 and ωa are very weak and degenerate. When we assume

general relativity the constraints tighten significantly, resulting in ∼ 10% accuracy in the

measurement of ω0 and ∼ 25% accuracy in the measurement of ωa.

The upper panel of Fig. 3.4 shows constraints on the parameters ωX and Ωm of the XCDM

parametrization. Similar to the previous case, the constraints tighten significantly when we

assume general relativity as the model of gravity. About a 2% measurement of ωX and a 5%

measurement of Ωm are possible in this case. The lower panel of Fig. 3.4 show the related

constraints on Ωk and Ωm for the XCDM parametrization. The constraints are similar

to, but somewhat tighter than, those for the ωCDM parametrization. This is because the

XCDM parametrization has one less parameter than the ωCDM parametrization. Spatial
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curvature can be constrained to about 15% precision in this case.

Figures 2.5 and 2.6 show constraints on parameters of the φCDM model. In the most

general case, when no assumption is made about the nature of gravity, the constraints

are weak and the parameters α and Ωm are strongly correlated, with larger values of α

requiring larger values of Ωm. When general relativity is assumed, the constraints become

much stronger and parameter α can be constrained to be less than 0.1 at the 1-σ confidence

level. This is significantly better than any constraint available at the moment.

Figure 2.7 shows constraints on the parameters of the ΛCDM model. From the clustering

data alone the spatial curvature can be constrained with almost 1% precision, largely because

this model has the least number of free parameters.

The exact numerical values for the forecast error bars and likelihood contours should be

taken with caution and not be interpreted as predictions for the performance of any specific

survey (such as Euclid or WFIRST). Our main objective in this work was first to investigate

how the modified gravity constraints change with different models of dark energy and second

to demonstrate the improvement in φCDM model constraints achievable with future galaxy

surveys. Because of this we were able to simplify our method by adopting a Fisher matrix

formalism instead of a full MCMC approach and also use a simplified description of the

survey baseline. For more realistic predictions of Euclid performance, see, e.g., [67, 70, 71].
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Table 2.1: Values of the parameters of the fiducial ΛCDM model and the survey.
Ωm Ωb Ωk h σ8 ns Efficiency Redshift span Covered sky area in deg2

0.25 0.05 0.0 0.7 0.8 1.0 0.45 0.55 ≤ z ≤ 2.05 15000

Table 2.2: Predicted deviations of parameter γ from its fiducial value, at one standard
deviation confidence level, for different assumptions about dark energy.

DE model Fiducial γ deviation
ωCDM 0.55 0.035
φCDM 0.55 0.023
XCDM 0.55 0.035
ΛCDM 0.55 0.016
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Figure 2.1: Predicted relative error on the measurements of growth rate as a function of
redshift z in redshift bins of ∆z = 0.1 for different models of dark energy. The upper solid
black line shows predictions for the case when no assumption is made about the nature of
dark energy.
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Figure 2.2: Predicted one standard deviation confidence level contour constraints on the
current renormalized Hubble constant h and the parameter γ that describes deviations from
general relativity for different dark energy models.
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Figure 2.3: Upper panel shows one standard deviation confidence level contours constraints
on parameters ωa and ω0 of the ωCDM parametrization, while lower panel shows these for
parameters Ωk and Ωm.
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Figure 2.4: One standard deviation confidence level contour constraints on parameters of
the XCDM parametrization.
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Figure 2.5: One standard deviation confidence level contour constraints on parameters α
and Ωm of the φCDM model. Lower panel shows a magnification of the tightest two contours
in the lower left corner of the upper panel.
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Figure 2.6: One standard deviation confidence level contour constraints on parameters Ωk

and Ωm of the φCDM model. The lower panel shows a magnification of the two tightest
contours in the center of the upper panel.
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Figure 2.7: One standard deviation confidence level contour constraints on parameters Ωk

and Ωm of the ΛCDM model.
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Chapter 3

Nonflat time-variable dark energy

cosmology

3.1 Introduction

When measurements of the cosmic microwave background (CMB) anisotropy are examined

in the context of the current standard model of cosmology, the ΛCDM model1, they indi-

cate that the cosmological spatial hypersurfaces are close to flat, see [1, 92, 93]. On the

other hand, under the assumption of flat spatial geometry the data favor time-independent

dark energy (DE). However, it has been known for a while now that if a spatially curved

time-variable DE model is used to analyze the CMB anisotropy measurements there is a

degeneracy between spatial curvature and the parameter that governs the DE time variabil-

ity, and this results in significantly weaker constraints on both parameters compared to the

cases when only either non-zero spatial curvature or DE time variability is assumed, early

1In this model [6], the current cosmological energy budget is dominated by a cosmological constant Λ,
with non-relativistic cold dark matter (CDM) being the next largest contributor. For some time now most
observations have been reasonably consistent with the predictions of the spatially-flat ΛCDM model; For
early indications, see e.g., [35, 47, 89, 90]. Note that there are tentative observational indications that the
standard CDM structure formation model, assumed in the ΛCDM cosmological model, might need to be
improved upon [91].
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work includes [94–107].

Most of these analyses are based on the XCDM parametrization or generalizations

thereof. In the XCDM parametrization time-evolving DE is taken to be an X-fluid with

equation of state pX = wXρX where ρX and pX are the X fluid energy density and pressure

and the equation of state parameter wX < −1/3 is a constant. This is an incomplete model

of time-variable DE since, unless extended, it cannot consistently describe the evolution of

spatial inhomogeneities [43] and [44].

The ΦCDM model [7, 45] is the simplest consistent model of time-variable DE. In this

model a scalar field Φ with potential energy density V (Φ) is the DE; V (Φ) ∝ Φ−α, where

constant α > 0, is a widely used example2. The original ΦCDM model assumed flat spatial

sections. In this paper we develop the curved space extension of the ΦCDM model. Related

models have been previously considered, see Ref. [94–96, 109–111]. However, as far as we are

aware, we are the first to establish that the scalar field solution in the curvature-dominated

epoch is a time-dependent fixed point or attractor, and that in the curvature-dominated

epoch the scalar field energy density grows relative to that of space curvature, generalizing

the results of [7, 45] to curved space.

This chapter is based on [112]. In the next section we describe the curved-space ΦCDM

model we study. In this section and in the Appendix B we show that this model has a

time-dependent fixed point scalar field solution in the curvature-dominated epoch. In Sec.

3.3 we compute some observable cosmological-test predictions for this model as a function of

the three cosmological parameters of the model. Then we discuss these results by comparing

those for flat and nonflat geometries as well as for open and closed geometries. In Chapter

5 we provide conclusions.

2See Ref. [108] for more general examples.
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3.2 The Model

The original ΦCDM model of [7] was designed to describe the late-time consequences of an

inflationary scalar field Φ model in which the scalar field potential energy density V (Φ) has

an inverse power-law tail at large Φ. This form of V (Φ) was chosen because it provides a

self-consistent phenomenological description of DE whose density decreases as the Universe

expands, but decreases less rapidly than the nonrelativistic (cold dark and baryonic) matter

density in a spatially flat universe. This eventually results in the expansion reaching a

point at which the densities of nonrelativistic matter and DE have the same value and

the decelerating cosmological expansion of the matter-dominated epoch switches to the

accelerating expansion of the DE-dominated epoch that is currently observed [113–115].

In spacetime coordinates xµ (µ = 0, 1, 2, 3), with units chosen so that ~ = c = 1, the

late-time action of the model we consider is

S =

∫
d4x
√
−g
[
m 2
p

16π

(
−R +

1

2
gµν∂µΦ∂νΦ

− κ

2
m 2
p Φ−α

)
+ L

]
. (3.1)

Here the Planck mass mp = G−1/2 where G is the gravitational constant and L is the

Lagrangian density of ordinary matter. The constants κ and α are positive real numbers

and we adopt

κ =
8

3

(
α + 4

α + 2

)[
2

3
α(α + 2)

]α/2
. (3.2)

With this choice for κ, our results in the limit of zero space curvature reduce to those of

Ref. [7].

Applying the variational principle with respect to the metric to the action (3.1) gives
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the Einstein equations,

Rµν −
1

2
Rgµν =

8π

m 2
p

(Tµν +Qµν) . (3.3)

Here Rµν and R are the Ricci tensor and scalar and Tµν is the stress-energy tensor of ordinary

matter while Qµν is the stress-energy tensor of the Φ field and has the form

Qµν =
m 2
p

32π

[
2∂µΦ∂νΦ−

(
gζξ∂ζΦ∂ξΦ− κΦ−α

)
gµν
]
.

(3.4)

Assuming the cosmological principle of large-scale spatial homogeneity, the Friedmann

metrics in coordinates (t, r, θ, ϕ) are

ds2 = dt2 − a2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
. (3.5)

Here a is the scale factor and k is the curvature parameter that takes values −1, 0, 1 for

open, flat, and closed spatial geometry. References [7, 45] consider only the k = 0 case.

The equation of motion for the scale factor a can be obtained by substituting the metric

of Eq. (3.5) into the Einstein equations (3.3). The equation of motion for the scalar field

Φ can be derived by either applying the variational principle with respect to the Φ field to

the scalar field part of the action (3.1), or from the continuity conditions on the scalar field

stress-energy tensor Qµν given in Eq. (3.4), and then using the metrics of Eq. (3.5).

The complete system of equations of motion is

Φ̈ + 3
ȧ

a
Φ̇− κα

2
m 2
p Φ−(α+1) = 0, (3.6)(

ȧ

a

)2

=
8π

3m 2
p

(ρ+ ρΦ)− k

a2
,

ρΦ =
m 2
p

32π

(
Φ̇2 + κm 2

p Φ−α
)
.
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Here an overdot denotes a derivative with respect to time, and ρ is the energy density of

ordinary matter while ρΦ is that of the dark energy scalar field Φ. It is also useful to

introduce the density of spatial curvature,

ρk = −
3m 2

p

8π

k

a2
. (3.7)

In this convention the spatially open model has ρk > 0.

DE cannot have a significant effect at early times, so we assume ρΦ � ρ at a(t) � a0,

where a0 is the current value of the scale factor. Neither can space curvature play a significant

role in the early nonrelativistic matter-dominated epoch, so ρk � ρ for a(t) � a0. Under

these assumptions the Einstein–de Sitter model provides an accurate description of the

nonrelativistic matter-dominated epoch and so can be used to derive initial conditions for

the scalar field Φ identical to these in the original flat-space case of Ref. [7]. Of course, since

the solution is a time-dependent fixed point or attractor, as shown here and in Refs. [7, 45],

it is not sensitive to the precise initial conditions adopted: a large range of initial conditions

results in the same scalar field fixed point or attractor solution.

3.2.1 Solution for the curvature-dominated epoch

In order to find whether the system (3.6) has an attractor solution in a certain epoch (i.e.

matter dominated, radiation dominated or curvature dominated) we use a perturbation

theory approach in which we treat the energy density of the scalar field Φ as a perturbation.

Therefore, we neglect all terms in the right-hand side of the second equation of the system

(3.6) (i.e. the Friedmann equation) except the energy density which dominates at the epoch

of interest. When the energy budget of the Universe is dominated by radiation, ordinary

matter or curvature, the solution of the Friedmann equation for the scale factor a varies as

a power of time, a ∝ tn (which in general is not true in a quintessence-dominated epoch),

where the index n is determined for each epoch (as discussed in more detail later in this
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section). By substituting this power-law solution for the scale factor a ∝ tn into the system

(3.6), the equation of motion for the scalar field is

Φ̈ +
3n

t
Φ̇− κα

2
m 2
p Φ−(α+1) = 0. (3.8)

Equation (3.8) has a special power-law solution

Φe(t) = At2/(α+2) (3.9)

where the label e denotes that this is an unperturbed, exact, spatially homogeneous solution.

The value of the constant A is

A =

(
καm 2

p (α + 2)2

4[3n(α + 2)− α]

)1/(α+2)

. (3.10)

We now show that, for the range of α and n values that we are interested in, the special

solution (3.9) is an inwardly spiraling attractor in the phase space of solutions to (3.8). This

means, for example, that in a curvature-dominated epoch (which has n = 1), the scalar field

will approach the special solution (3.9) for a wide range of initial conditions. In order to

show this we follow the methods of Sec. V of Ref. [45], and make the change of variables

(Φ, t) 7→ (u, τ) where

Φ(t) = Φe(t)u(t), t = eτ . (3.11)

Substituting (3.11) into (3.8) and using (3.9) for Φe(t) we derive the equation for perturba-

tion u(t) of the scalar field Φ(t),

u′′ −
(

1− 3n− 4

α + 2

)
u′ +

(
6n(α + 2)− 2α

(α + 2)2

)(
u− u−(α+1)

)
= 0. (3.12)

Here primes denote derivatives with respect to τ . Finally we switch to the phase space of
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solutions of the system (3.8) by rewriting (3.12) as the system

u′ = p,

p′ =

(
1− 3n− 4

α + 2

)
p−

(
6n(α + 2)− 2α

(α + 2)2

)(
u− u−(α+1)

)
. (3.13)

The critical point (u0, p0) = (1, 0) corresponds to the special solution (3.9). Although there

exist, in general, other critical points at p = 0, these involve complex roots of unity for u,

which are not physically relevant in this case.

Taking the linearization of (3.13) about the critical point, one obtains the eigenvalues

λ1,2 = f(α, n)± i
√
g(α, n) (3.14)

where

f(α, n) =
α− 2− 3n(α + 2)

2(α + 2)
, (3.15)

g(α, n) =
6n(α + 2)(5α + 6)− 9n2(α + 2)2 − (3α + 2)2

4(2 + α)2
.

For f(α, n) < 0 and g(α, n) > 0, the eigenvalues λ1 and λ2 show that the critical point is

an inwardly spiraling attractor in the phase space. The cases n = 1/2 (radiation-dominated

epoch) and n = 2/3 (matter-dominated epoch) were previously studied in Ref. [45]. Note

that for the case n = 1 (curvature-dominated epoch) our critical point is an inwardly

spiraling attractor if α > −2 + 2/
√

3 or if α < −4. In the ΦCDM model we are specifically

interested in the range α > 0. So the critical point is an attractor for all α values of interest.

The above analysis ignores spatial inhomogeneities in the gravitational field. In the

Appendix we show that the time-dependent fixed point solution found above remains stable

in the presence of gravitational field inhomogeneities.

We can use our results to show how this model partially resolves the “coincidence” puzzle.
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From the last equation of the system (3.6) it follows that in the curvature-dominated epoch

ρΦ(t) ∝ t−2α/(α+2), (3.16)

while ρk(t) ∝ 1/t2 and ρm(t) ∝ 1/t3. The exponent in Eq. (3.16) varies from −2 to 0 as α

varies from ∞ to 0, thus for α <∞ ρΦ(t) decays at a slower rate than ρk in the curvature-

dominated epoch and eventually comes to dominate. This is consistent with the results of

similar analyses in the radiation-dominated and matter-dominated epochs given in Ref. [45].

3.3 Some observational predictions

To gain some insight into the effects space curvature has on the ΦCDM model, we compute

predictions for some cosmological tests in this section. To make these predictions we first

numerically integrate the equations of motion (3.6) with initial condition of the form (3.9)

taken in the matter-dominated epoch, where n = 2/3 with the usual expression for the

scale factor in the matter-dominated epoch, see Ref. [7]. Instead of ρ, ρΦ and ρk we use

dimensionless density parameters such as

Ωm =
8πρ

3m 2
p H2

=
ρ

ρ+ ρk + ρΦ

, (3.17)

where H = ȧ/a is the Hubble parameter. We present the predictions as isocontours in the

space of model parameters (Ωm0,α) for a number of different values of the spatial curvature

density parameter Ωk0. (Here the subscript 0 refers to the value at the current epoch. For

the open model Ωk0 > 0.) For our illustrative purposes here we consider the same four

cosmological tests studied in Ref. [7]. For a discussion of these and other cosmological tests

see Ref. [41]. While it is of great interest to determine constrains on the three cosmological

parameters of the model — Ωm0, Ωk0, and α — using various cosmological observables, in this

paper we restrict ourselves to some qualitative remarks; a detailed quantitative comparison
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between the predictions of the model and observations is given in Ref. [116], where it is

found that observational data less tightly constrains space curvature in a dynamical dark

energy matter of the type we study here.

3.3.1 The time parameter H0t0

The dimensionless time parameter is

H0t0 = H0

∫ a0

0

da

ȧ(t)
, (3.18)

where t0 is the age of the Universe and H0 and a0 are the present values of the Hubble param-

eter and scale factor. Figure 3.1 shows contours of constant H0t0 as a function of Ωm0 and α

for a series of fixed values of Ωk0. A recent summary estimate of H0 = 68±2.8 km s−1Mpc−1

[117] and the Planck (with WMAP polarization) estimate of t0 = 13.824± 0.041
0.055 Gyr [1, 92, 93]

gives, for the 2σ range, 0.88 ≤ H0t0 ≤ 1.04, where we have added the 1σ errors in quadra-

ture and doubled to get the 2σ range. From Fig. 3.1 we see that Ωm0 = 0.27 and α = 3 is

reasonably consistent with these constraints for a range of Ωk0.

In the limit α → 0 this model reduces to the constant Λ one (but not necessarily with

zero space curvature), while the limit α → ∞ corresponds to the open, closed, or flat

(Einstein–de Sitter) model with Λ = 0, depending on the value of space curvature. At fixed

Ωm0 (and Ωk0), or in the flat-space case [7], the effect of increasing α is to reduce the value

of H0t0, making the Universe younger at fixed H0, since α = 0 corresponds to a constant Λ

and so the oldest Universe for given Ωm0 and Ωk0. However, nonzero space curvature brings

interesting new effects. At α = 0 the ΦCDM model reduces to the ΛCDM one and here

it is well known that to hold H0t0 constant in the open case as Ωm0 is reduced and Ωk0 is

increased requires a decrease in ΩΛ (to compensate for the increase of t0 at constant H0 as

Ωm0 is reduced and Ωk0 is increased). The converse is true in the closed case. Studying the

α = 0 intercepts of the H0t0 isocontours in both panels of Fig. 3.1 confirms these arguments.
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Figure 3.1: Contours of fixed time parameter H0t0, as a function of the present value of
the nonrelativistic matter density parameter Ωm0 and scalar field potential power-law index
α, at various values of the current value of the space-curvature density parameter Ωk0 (as
listed in the inset legend boxes). The upper panel shows a larger part of (Ωm0, α) space for
a larger range of Ωk0 values [for H0t0 = 0.7, 0.75, 0.8, 0.85, 0.95, 1.05 and 1.15, from right to
left], while the lower panel focuses on a smaller range of the three parameters [for H0t0 from
0.8 to 1.15 in steps of 0.05, from right to left].
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That is, for a fixed value of H0t0 at smaller α (i.e. α . 4) the contours corresponding to

open geometry shift to the left of the flat geometry, i.e., to lower Ωm0, while the contours

corresponding to closed geometry shift to the right of the flat case.

At higher α the DE density deceases more rapidly with the expansion (unlike the α =

0 case where Λ remains constant), and the contours switch around. Here to hold H0t0

constant in the open case as Ωk0 is increased requires that Ωm0 increase and ΩΦ0 decrease

to compensate. In the closed case as Ωk0 is increased, Ωm0 must decrease and ΩΦ0 must also

decrease. Thus, as evident from Fig. 3.1, for a given H0t0 value there is a point in (Ωm0, α)

space at which contours corresponding to different space curvatures cross. The intersection

point moves to larger α as Ωm0 is decreased. This is because the Universe is older (at fixed

H0) at smaller Ωm0 so even DE with larger α now has more time to come to dominate the

energy budget (and so behave more like DE with a constant DE density).

3.3.2 The distance modulus difference ∆m(z)

We next consider the difference in bolometric distance moduli, at redshift z = 1.5, of the

ΦCDM model and the Einstein–de Sitter model. The coordinate distance r is

r =
1√
−Ωk0

sin

(√
−Ωk0

∫ t0

tem

dt

a(t)

)
. (3.19)

Here tem and t0 are the times when the signal was emitted and received. Thus the difference

in the distance moduli of the two models is

∆m(z) = 5 log10

(
r

rEdS

)
(3.20)

where rEdS is the coordinate distance in the Einstein–de Sitter model.

Figure 3.2 shows contours of constant ∆m(z = 1.5) as a function of Ωm0 and α for some

values of Ωk0. Comparing Figs. 3.1 and 3.2, we see that near α = 0, where the DE behaves
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Figure 3.2: Contours of fixed bolometric distance modulus relative to the Einstein–de Sitter
model, ∆m(z = 1.5), as a function of the matter density parameter Ωm0 and scalar field
potential power-law index α, and various values of the space curvature density parameter
Ωk0 (as listed in the inset legend boxes). The upper panel shows a larger part of (Ωm0, α)
space for a larger range of Ωk0 values [for ∆m(z = 1.5) = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.8
from right to left], while the lower panel focuses on a smaller range of the three parameters
[for ∆m(z = 1.5) from 0.3 to 0.8 in steps of 0.1, from right to left]. In the upper panel there
is no Ωk0 = 0.2 contour for ∆m(z = 1.5) = 0.1 since in this case the model is too open for
such a small distance modulus difference. 58



like constant Λ, ∆m(z = 1.5) is less sensitive to the value of Ωk0 than is H0t0. However at

larger α ∆m(z = 1.5) is more sensitive to spatial curvature than is H0t0. Clearly, extending

the ΦCDM model to include space curvature as a free parameter broadens the range of

allowed parameter values. As in the H0t0 case, for a given value of ∆m(z = 1.5) there is a

point in (Ωm0, α) space at which all contours intersect.

3.3.3 Number counts

The count per unit increment of redshift for conserved objects is3

dN

dz
∝ z2A(z), A(z) =

H 3
0 a

2
0 r

2

z2

a

ȧ
. (3.21)

Isocontours of fixed A(z = 0.7) are shown in Fig. 3.3. The general features are similar to

those shown in Figs. 3.1 and 3.2 for H0t0 and ∆m(z = 1.5).

3.3.4 The growth of structure

Finally, we consider the growth of large-scale structure of the Universe which started as

small primordial density inhomogeneities in the early Universe, see [78, 121], and references

therein. Within the framework of linear perturbation theory the scalar field stays homoge-

neous as we show in the Appendix B on the scales of matter perturbations and the density

contrast in ordinary matter, δ = δρ/ρ, satisfies

δ̈ + 2
ȧ

a
δ̇ − 4π

m 2
p

ρδ = 0. (3.22)

Following Ref. [7] the cosmological test parameter we consider is

∆(Ωm0,Ωk0, α) =
δ(t0)

(1 + zi)δ(ti)
(3.23)

3See Sec. IV.B.5 of Ref. [41] and Refs. [118–120] for discussions of this test.
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Figure 3.3: Contours of fixed A(z = 0.7) as a function of Ωm0 and α at various values
of Ωk0 (as listed in the inset legend boxes). The upper panel shows a larger part of the
parameter space for A(z = 0.7) = 0.25, 0.3, 0.35 and 0.45 from right to left. The lower panel
shows a smaller range of the three parameters for A(z = 0.7) = 0.3, 0.35, 0.4 and 0.45 from
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Figure 3.4: Contours of the factor by which the growth of ordinary matter perturbations
falls below that of the Einstein–de Sitter model, ∆(Ωm0,Ωk0, α), as a function of the matter
density parameter Ωm0 and scalar field potential power-law index α, and various values
of the space curvature density parameter Ωk0 (as listed in the inset legend boxes). The
upper panel shows a larger part of (Ωm0, α) space for a larger range of Ωk0 values [for
∆(Ωm0,Ωk0, α) = 0.3, 0.5, 0.7 and 0.9 from left to right], while the right panel focuses on a
smaller range of the three parameters [for ∆(Ωm0,Ωk0, α) from 0.2 to 0.8 in steps of 0.1,
from left to right]. In the lower panel there is no Ωk0 = 0.2 contour for ∆ = 0.9 since in
this case the model is too open to allow such a large growth factor.
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where t0 denotes the current epoch while ti is the time when the scale factor ai � a0,

well within the matter-dominated epoch when the Einstein–de Sitter model was a good

approximation. Thus the factor ∆ is the ratio by which the growth of linear fluctuations

in density have declined below that of the Einstein–de Sitter model prediction. We graph

contours of ∆ in Fig. 3.4.

There are two interesting facts about the ∆ contours shown in Fig. 3.4. First, the growth

rate is quite sensitive to the value of Ωk0, much more so than any of the other parameters

we have considered. (This is not unexpected, as it is well known in more conventional

models that the growth factor is much more sensitive to Ωm0 when Ωk0 is nonzero.) Second,

the curvature dependence of the isocontours is the opposite of that for the other three

parameters. So a joint analysis of growth factor and geometry measurements would seem

to be a very good way to constrain Ωk0.
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Chapter 4

Cosmological constraints from

large-scale structure growth rate

measurements

4.1 Introduction

The following chapter is based on [122]. We assume that GR provides an adequate model

for cosmological gravity and we test various models of dark energy (DE) as a possible

explanation of the observed accelerated cosmological expansion. In particular, we consider

three models of DE. The first one is the standard ΛCDM cosmology in which the energy

density of DE does not evolve in time and its equation of state (EoS) is pΛ = −ρΛ, where pΛ is

the pressure and ρΛ the energy density of DE. Space sections are not assumed to be flat in this

case and the cosmological parameters that characterize the model are p = (Ωm0,ΩΛ) where

Ωm0 is the current value of the nonrelativistic CDM and baryonic matter density parameter

and ΩΛ is that of Λ. The second model we consider is the simplest modification of ΛCDM

cosmology in which the energy density of DE is time dependent and its EoS is parametrized

as pX = wXρX , where wX is constant and < −1/3. The upper limit of −1/3 is a consequence
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of the requirement that DE provide positive acceleration. This spatially-flat XCDM model is

the simplest parametrization of dynamical DE, with parameters p = (Ωm0, wX). However, it

is incomplete as it cannot describe density inhomogenities [see, e.g., 44]. The last model we

study is the consistent quintessence model of DE in which DE is a scalar field. In particular

we consider the much studied spatially-flat φCDM model [7, 45] whose equations of motion

in units where ~ = c = 1 are

φ̈+ 3
ȧ

a
φ̇− κα

2
m 2
p φ
−(α+1) = 0, (4.1)(
ȧ

a

)2

=
8π

3m 2
p

(ρm + ρφ),

ρφ =
m 2
p

32π

(
φ̇2 + κm 2

p φ
−α
)
.

Here an over-dot denotes a derivative with respect to time, a is the scale factor, ρm is the

energy density of nonrelativistic (cold dark and baryonic) matter, ρφ is that of the dark

energy scalar field φ, mp = G−1/2 is the Planck mass where G is the gravitational constant,

and α > 0 is a free parameter of the potential energy density of φ and determines κ which

is [see 7, 45]

κ =
8

3

(
α + 4

α + 2

)[
2

3
α(α + 2)

]α/2
. (4.2)

In the limit α 7−→ 0 the φCDM model reproduces the spatially-flat ΛCDM cosmology while

in the limit α 7−→ ∞ it reduces to the Einstein–De Sitter model with no DE but only CDM

and baryonic matter. The value of α determines the rapidity of the time-evolution of the

DE density, with a larger α corresponding to more rapidly decreasing DE density. The

cosmological parameters of the φCDM model are p = (Ωm0, α).

Many different data sets have been used to derive constraints on the parameters of

the three models we consider here.1 In this paper we use growth-factor measurements to

1See, e.g., [123], [49], [115], [124], [125], [126], [127], and [128]; also see [129]. For constraints on these
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constrain cosmological parameters,2 under the assumption that GR is the correct model of

gravity. Growth factor data have previously been used to test GR. Here we find that if

we assume GR then growth-factor measurements provide tight constraints on cosmological

parameters.

This chapter is organized as follows. In the next section we discuss the data and the

analysis techniques that we use to derive cosmological parameter constraints. In Sec. 4.3,

we present and discuss our results. Chapter 5 contains our conclusions.

4.2 Data and analysis

We use three different types of data to constrain cosmological parameters: the growth rate

of large-scale structure (LSS) measurements; supernova type Ia (SNIa) distance-modulus

measurements as a function of redshift; and Hubble parameter measurements.

4.2.1 Growth rate of LSS

In linear perturbation theory the nonrelativistic (cold dark and baryonic) matter density

perturbation δm = δρm/ρm obeys

δ̈m + 2
ȧ

a
δ̇m −

4π

m 2
p

ρmδm = 0, (4.3)

where the scale factor a, with current value a0, is related to redshift z through 1 + z = a0/a.

The analytic growing solution of (4.3) is

δm(t) ∝ D(z) =
5Ωm0E(z)

2

∫ ∞
z

1 + z′

E3(z′)
dz′, (4.4)

and related models from near-future data see [77], [130], [131], and references therein.
2For related work with growth factor data, see [132].
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z A(z) σ Reference

0.067 0.4230 0.0550 1
0.150 0.3900 0.0800 2
0.170 0.5100 0.0600 3
0.220 0.4200 0.0700 4
0.250 0.3512 0.0583 5
0.350 0.4400 0.0500 3
0.370 0.4602 0.0378 5
0.410 0.4500 0.0400 4
0.550 0.5000 0.0700 6
0.570 0.4150 0.0340 7
0.600 0.4300 0.0400 4
0.770 0.4900 0.1800 8
0.780 0.3800 0.0400 4
0.800 0.4700 0.0800 9

Table 4.1: Growth parameter measurements and 1σ uncertainties. Reference number shown
in the last column: 1. [133], 2. [134], 3. [135], 4. [64], 5. [65], 6. [136], 7. [66], 8. [63], 9.
[137].

where E(z) = H(z)/H0 and H(z) is the Hubble parameter whose current value is the Hubble

constant H0. D(z) is normalized such that D(z = 0) = 1. Note, that the analytic solution

(4.4) is valid only for, in general spatially non-flat, ΛCDM cosmology. In cosmological

models where dark energy density is allowed to evolve in time, Eq. (4.3) has to be solved

numerically, which we do, in order to compute growth factor D(z) for XCDM and φCDM

cosmological models.

The observable we use in our analysis is constructed from the linear theory, redshift-

dependent rms mass fluctuations in 8h−1 Mpc spheres (where h is H0 in units of 100 km s−1

Mpc −1), σ8(z) = σ0
8D(z), where σ0

8 is the current value of σ8(z). We shall also need f(z),

the logarithmic derivative of the matter density perturbation D(z) with respect to the scale

factor a, f(z) = d lnD/d ln a. Using (4.4) we find an analytic expression for f(z) that we

use to compute growth factor in the ΛCDM cosmological model

f(z) =
äa

ȧ2
− 1 +

5Ωm0

2

(1 + z)2

E2(z)D(z)
. (4.5)
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For XCDM and φCDM cosmological models we compute f(z) numerically. The observable

we use is the growth parameter Aobs(z) = f(z)σ8(z) that also accounts for the Alcock-

Paczynski effect in redshift-space distortions. The model prediction at redshift z isAth(z, σ0
8,p) =

f(z,p)σ8(z, σ0
8,p) where p is the vector of cosmological parameters.

We use a χ2 analysis to derive constraints on cosmological parameters from growth factor

data. χ2 depends on the cosmological parameters p and σ0
8,

χ2
G(σ0

8,p) =
N∑
i=1

[Ath(zi, σ
0
8,p)− Aobs(zi)]

2

σ2
i

. (4.6)

Here N is the number of data points and σi is the 1σ uncertainty on measurement Aobs(zi) at

redshift zi, see Table 4.1.3 For our purposes, σ0
8 is a nuisance parameter that we marginalize

over. To do so we assume a Gaussian prior for σ0
8 determined from cluster observations by

[138], for spatially-flat ΛCDM, with mean σ0
8(Ωm0) = 0.813(Ωm0/0.25)−0.47 and 1σ uncer-

tainty σ
σ0
8
(Ωm0) = (σ2

σ0
8
+b2)1/2(Ωm0/0.25)−0.47, where the statistical uncertainty σσ0

8
= 0.012

and the systematic uncertainty b = 0.02 are added in quadrature. [138] note that this rela-

tion is also adequate in the non-flat ΛCDM model and for alternative background cosmolo-

gies.4 Then the posterior probability density function that depends only on the cosmological

parameters p is given by

LG(p) =
1

σ
σ0
8
(Ωm0)

√
2π

∞∫
0

exp

−χ
2
G(σ0

8,p)

2
−

[
σ0

8 − σ0
8(Ωm0)

]2

2σ2

σ0
8

(Ωm0)

 dσ0
8. (4.7)

Finally, we compute the marginalized χ2
G(p) = −2 ln(LG(p)), and minimize this with respect

to parameters p to find the best-fit parameter values p0. We also compute 1σ, 2σ, and 3σ

3For the redshift z = 0.57 bin we use the value for model 2 from Table 1 of [66] and an average of the
upper and lower 1σ uncertainties given for that model.

4In this preliminary analysis we use this approximate, empirical expression for illustrative purposes.
However, σ0

8 does (weakly) depend on the full set of cosmological parameters p in its own way for every cos-
mological model, so our analyses are approximate. Given that our results, described below, are encouraging,
a more careful analysis that accounts for this effect is warranted and will be discussed elsewhere.
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cosmological parameter confidence contours bounded by χ2
G(p) = χ2

G(p0) + 2.3, χ2
G(p) =

χ2
G(p0) + 6.17, and χ2

G(p) = χ2
G(p0) + 11.8, respectively.

4.2.2 SNIa distance modulus

The largest set of data we use are the 580 Type Ia supernova distance modulus µobs(z)

measurements from the [12] Union 2.1 compilation (covering the redshift range of 0.015 ≤

z ≤ 1.414). The predicted distance-modulus is

µth(z) = 5 log10[3000y(z)(1 + z)] + 25− 5 log10(h), (4.8)

where y(z) is the dimensionless coordinate distance

y(z) =
1√
−Ωk

sin

√−Ωk

z∫
0

dz′

E(z′)

 , (4.9)

and Ωk is the spatial curvature density parameter. Since the SNIa distance modulus mea-

surements µobs are correlated we use χ2 defined through the inverse covariance matrix

χ2
SN(h,p) = ∆µT C−1 ∆µ. Here the vector of differences ∆µi = µth(zi, H0,p) − µobs(zi),

and C−1 is the inverse of the 580 by 580 Union 2.1 compilation covariance matrix.

4.2.3 Hubble parameter

We use 20 Hubble parameter measurements Hobs(z) and 1σ uncertainties covering redshift

range 0.09 ≤ z ≤ 2.3 [113, 139–141], as listed in Table 1 of [114]. We only include inde-

pendent measurements of the Hubble parameter, i.e., we exclude Hobs(z) points that are

possibly correlated with growth factor measurements in Table 4.1 above.

Theoretical expressions for the Hubble parameter follow directly from the Friedmann
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equation in each model. In the case of the ΛCDM model,

H2
th(z,p) = H2

0

[
Ωm0(1 + z)3 + (1− Ωm0 − ΩΛ)(1 + z)2 + ΩΛ

]
, (4.10)

while for the spatially-flat XCDM parameterization,

H2
th(z,p) = H2

0

[
Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+wX)

]
, (4.11)

and for the spatially-flat φCDM model,

H2
th(z,p) = H2

0 Ωm0(1 + z)3 +
1

12

(
φ̇2 + κm 2

p φ
−α
)
. (4.12)

We use the same technique to constrain cosmological parameters from H(z) measure-

ments as we used in Sec. 4.2.1 for the growth factor data analysis. First, we define χ2
H(H0,p)

in accordance with Eq. (4.6) where instead of the growth factor A(z) we insert the Hubble

parameter H(z).

4.2.4 Computation of joint χ2(p)

We perform two joint analyses, one for the combination of SNIa and H(z) data, the other

for all three data sets. For the SNIa+H(z) analysis we multiply likelihood functions from

the SNIa data and the H(z) data and then marginalize this over the nuisance parameter

H0 with a Gaussian prior with mean value H0 = 68.0 km s−1 Mpc −1 and 1σ uncertainty

σH0 = 2.8 km s−1 Mpc −1 ([117], also see [142], [143], [144]) to finally determine the joint

χ2
SNIa+H(p) function, which depends only on cosmological parameters p. This is then used

to find the best-fit values of p0 and corresponding cosmological parameter constraints. The

second joint analysis, of the SNIa+H(z) data with the growth factor data, is based on

adding their χ2-functions, χ2
Jnt(p) = χ2

SNIa+H(p) + χ2
G(p).
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4.3 Results and discussion

We derived cosmological parameter constraints from combination of SNIa+H(z) data sets

as well as from a joint analysis of all three data sets.5 Our results, presented in the form

of isocontours in cosmological parameter space, are shown in Figs. 4.1, 4.2, and 4.3 for the

ΛCDM, XCDM and φCDM models, respectively.

In the ΛCDM model the growth factor data favor higher best-fit value of a negative

spatial curvature parameter Ωk0 = 1− Ωm0 − ΩΛ (which corresponds to a closed, spherical

spatial geometry) along with a higher best-fit value of Ωm0 compared to what other cosmo-

logical tests favor, such as SNIa, Hubble parameter measurements, BAO and CMB (see for

example [123]-[129] and references therein). In the case of the XCDM parameterization the

growth factor data favor a steeper time dependence of dark energy density and also a higher

value of ordinary matter energy density parameter (i.e. equation of state parameter wX has

a lower best-fit value and Ωm0 has a higher best-fit value) in comparison with constraints

derived from the above-mentioned data sets. However, for the φCDM model one observes

consistent results for the best-fit values of cosmological parameters (Ωm0, α) with those

previously obtained using the data sets mentioned above.

Also, our results for the ΛCDM model differ from constraints obtained for this model

from other analyses of growth factor data (see [133], [66]). We suspect that the reason for

this and the reason that the constraining power of growth rate data has not previously been

recognized is because these data have almost always been used to constrain cosmological

parameters in the context of modified gravity models. These modified gravity models have

more free parameters than the models we have considered here, because we have assumed

that general relativity provides an adequate description of gravitation on cosmological scales.

The other striking feature of the growth rate data constraints is that for all three models

they align well with those of the SNIa+H(z) joint constraints.

5We have not used all the H(z) measurements in this paper, excluding points from Table 1 of [114] that
are possibly correlated with some of the growth rate data we use in this paper.
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Figure 4.1: 1, 2, and 3σ constraint contours for the ΛCDM model from: growth factor
measurements [blue dashed lines with blue filled circle at best-fit (Ωm, ΩΛ) = (0.41, 0.87) with
χ2

min/dof = 7.65/12]; SNIa+H(z) apparent magnitude data [red dot-dashed lines with red
filled circle at best-fit (Ωm, ΩΛ) = (0.23, 0.59) with χ2

min/dof = 562/598]; and a combination
of all data sets [black solid lines and black filled circle at best-fit (Ωm, ΩΛ) = (0.28, 0.69)
with χ2

min/dof = 571/612]. The dashed straight line corresponds to spatially-flat models, the
dotted line demarcates zero acceleration models, and the area in the upper left-hand corner
is the region for which there is no big bang.
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Figure 4.2: 1, 2, and 3σ constraint contours for the XCDM model from: growth factor
measurements [blue dashed lines with blue filled circle at best-fit (Ωm, wX) = (0.36, -1.34)
with χ2

min/dof = 7.70/12]; SNIa+H(z) apparent magnitude data [red dot-dashed lines with
red filled circle at best-fit (Ωm, wX) = (0.27, -0.90) with χ2

min/dof = 562/598]; and a com-
bination of all data sets [black solid lines and black filled circle at best-fit (Ωm, wX) = (0.28,
-0.94) with χ2

min/dof = 571/612]. The dashed straight line corresponds to spatially-flat
ΛCDM models and the dotted curved line demarcates zero acceleration models.
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Figure 4.3: 1, 2, and 3σ constraint contours for the φCDM model from: growth factor
measurements [blue dashed lines with blue filled circle at best-fit (Ωm, α) = (0.28, 0.052) with
χ2

min/dof = 8.62/12]; SNIa+H(z) apparent magnitude data [red dot-dashed lines with red
filled circle at best-fit (Ωm, α) = (0.26, 0.302) with χ2

min/dof = 562/598]; and a combination
of all data sets [black solid lines and black filled circle at best-fit (Ωm, α) = (0.27, 0.300)
with χ2

min/dof = 570/612]. The dotted curved line demarcates zero acceleration models and
the horizontal α = 0 axis corresponds to spatially-flat ΛCDM models.
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Chapter 5

Conclusion

Chapter 2 presents a forecast of the precision at which planned near-future space-based spec-

troscopic galaxy surveys should be able to constrain the time dependence of dark energy

density. For the first time, was used a consistent physical model of time-evolving dark en-

ergy, φCDM, in which a minimally-coupled scalar field slowly rolls down its self-interaction

potential energy density. It has been shown that if general relativity is assumed, the devia-

tion of the parameter α of the φCDM model can be constrained to better than 0.05; this is

almost an order of magnitude better than the best currently available result.

The constraints on basic cosmological parameters, such as the relative energy densities

of non-relativistic matter and spatial curvature, depend on the adopted dark energy model.

However, in the φCDM model the expected constraints are more restrictive than those

derived using the XCDM or wCDM parameterizations. This is due to the fact that the

φCDM model has fewer parameters. Also, the XCDM and wCDM parameterizations assign

equal weight to all possible values of w, while in the φCDM model there is an implicit

theoretical prior on which equation of state parameter values are more likely, based on how

easy it is to produce such a value within the model.

Since the observational consequences of dark energy and modified gravity are partially

degenerate, constraints on modified gravity parameters will depend on the assumptions
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made about dark energy. The constraints on γ are most restrictive in the ΛCDM model.

For the φCDM model the constraints on γ are about a third tighter than those for the

ωCDM and XCDM parameterizations.

These results are very encouraging: data from an experiment of the type we have modeled

will be able to provide very good, and probably revolutionary, constraints on the time

evolution of dark energy.

In Chapter 3 the original φCDM model was extended to nonflat geometries and it was

shown that in the curvature-dominated epoch the solution is also an attractor or time-

dependent fixed point (see Sec. 3.2.1 and the Appendix B). Predictions of the model for an

illustrative set of cosmological tests were computed and shown that the presence of space

curvature will broaden the allowed range of model parameters. Spatial curvature should be

considered as a free parameter when observational data are analyzed. The nonflat φCDM

model we have developed here is the only consistent nonflat time-variable DE model to date

and can be used as a fiducial model for such analyses.

The computations have shown that for a single cosmological test there is a degeneracy

point in parameter space for each fixed value of the cosmological observable of the test.

At this point one cannot differentiate between contours corresponding to different values

of spatial curvature. However, these points of degeneracy do not coincide in (Ωm0, α)

parameter space for the different cosmological tests. Hence it is important to use multiple

cosmological tests in order to determine spatial curvature from observations.

A joint analysis of geometry and growth factor measurements appears to be a fruitful

way to constrain space curvature. CMB anisotropy data will also likely provide useful

constraints on space curvature. This will first require accounting for spatial curvature effects

on the quantum-mechanical zero-point fluctuations generated during inflation, which will

affect the primordial density perturbations power spectrum [145–153]. While the curved-

space computation is more involved than the corresponding flat-space one, the resulting

constraints from CMB anisotropy data on space curvature in the presence of dynamical
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dark energy are likely to prove quite interesting.

In Chapter 4 three general-relativistic DE cosmological models were used to analyze the

largest collection of growth factor measurements to date. It was shown that growth factor

data constraints on cosmological parameters are quite restrictive, roughly close to those

from joint SNIa+H(z) and baryon acoustic oscillations (BAO) peak length-scale measure-

ments, and less restrictive than those from cosmic microwave background (CMB) anisotropy

observations.

These growth factor results must be viewed as tentative, given that this is an area of

research that is still under active development. It is important to continue to study possible

sources of systematic uncertainty – and given the differences we have found between growth

rate data constraints and these from SNIa and H(z) measurements, it is not unreasonable

to suspect that there might be an as yet hidden source of systematic uncertainty.

It is, however, clear that growth factor measurements will soon be able to provide cos-

mological constraints as restrictive and as reliable as those from CMB anisotropy, BAO,

H(z), and SNIa measurements.
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Appendix A

Appendix for Chapter 2

In this Appendix we summarize how to estimate the precision of measurements from the

survey parameters.

The Fisher matrix coefficients are given by

Fij =
1

2

∫ kmax

kmin

(
∂ lnP

∂pi

)(
∂ lnP

∂pj

)
Veff(k, µ)

d3k

(2π)3
, (A.1)

where the effective volume is

Veff = V0
nP (k, µ)

1 + nP (k, µ)
, (A.2)

and V0 is the total survey volume and n is the number density. Also, following [154], we

multiply the integrand in Eq. (A.1) by a Gaussian factor exp
(
−k2σz

dr(z)
dz

)
, where r(z) is

the co-moving distance, in order to account for the errors in distance induced by the errors

of redshift measurements, σz = 0.001. We model the theoretical power spectrum using

an analytic approximation of [155]. We integrate in k from kmin = 0 to kmax, where the

kmax values depend on redshift and are chosen in such a way that the small scales that are

dominated by non-linear effects are excluded. The range of scales that will be fitted to

the future surveys will depend on how well the theoretical templates are able to describe

small-scale clustering and is difficult to predict. The kmax values along with the expected
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bias and number density of galaxies are listed in Table A.1.

In order to derive the Fisher matrix of a specific cosmological model we have to go from

our initial parameter space to the parameter space of the cosmological model whose Fisher

matrix we want. The transformation formula for the Fisher matrix is given by [see, e.g., 84,

for a review]

F ′lm =
∂pi
∂p′l

∂pj
∂p′m

Fij, (A.3)

where the primes denote the “new” Fisher matrix and parameters.

We now list the derivatives of the transformation coefficients of the φCDM model in the

limit α −→ 0 and Ωk −→ 0 (which corresponds to the fiducial spatially-flat ΛCDM model).

The transformation coefficients relating f‖(z) and the parameters (h,Ωm,Ωk, α) are

∂f‖(z)

∂h
= −1

h
, (A.4)

∂f‖(z)

∂Ωm

=
1

2E(z)2
[1− (1 + z)3], (A.5)

∂f‖(z)

∂Ωk

=
1

2E(z)2
[1− (1 + z)2], (A.6)

∂f‖(z)

∂α
= −(1− Ωm)

8E(z)2
. (A.7)

For the other transformation coefficients, it is convenient to introduce the integral

D(z) =

∫ z

0

dz′

E(z′)
. (A.8)

Then the transformation coefficients between f⊥(z) and the parameters (h,Ωm,Ωk, α) are

∂f⊥(z)

∂h
= −1

h
, (A.9)

∂f⊥(z)

∂Ωm

=
1

2D(z)

∫ z

0

dz′

E(z′)3
[1− (1 + z′)3], (A.10)
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∂f⊥(z)

∂Ωk

=
D(z)2

6
+

1

2D(z)

∫ z

0

dz′

E(z′)3
[1− (1 + z′)2], (A.11)

∂f⊥(z)

∂α
= −(1− Ωm)

8D(z)

∫ z

0

dz′

E(z′)3
. (A.12)

Finally, the transformation coefficients between the growth factor f(z) and the param-

eters (γ, h,Ωm,Ωk, α) are
∂f(z)

∂γ
=
f(z)

γ
ln f(z), (A.13)

∂f(z)

∂Ωm

=
γf(z)

ΩmE(z)2

{
E(z)2 − Ωm[(1 + z)3 − 1]

}
, (A.14)

∂f(z)

∂Ωk

= −γf(z)

E(z)2
[(1 + z)2 − 1], (A.15)

∂f(z)

∂α
= − γf(z)

4E(z)2
[1− Ωm]. (A.16)
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Table A.1: Values of the kmax, bias b(z) from [87], and the number densities n(z) taken
from [88].

z kmax b(z) n(z)
0.55 0.144 1.0423 3220
0.65 0.153 1.0668 3821
0.75 0.163 1.1084 4364
0.85 0.174 1.1145 4835
0.95 0.185 1.1107 5255
1.05 0.197 1.1652 5631
1.15 0.2 1.2262 5972
1.25 0.2 1.2769 6290
1.35 0.2 1.2960 6054
1.45 0.2 1.3159 4985
1.55 0.2 1.4416 4119
1.65 0.2 1.4915 3343
1.75 0.2 1.4873 2666
1.85 0.2 1.5332 2090
1.95 0.2 1.5705 1613
2.05 0.2 1.6277 1224
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Appendix B

Appendix for Chapter 3

In Sec. 3.2.1 we showed that the special time-dependent fixed point solution for the scalar

field in the curvature-dominated epoch is stable if we ignore spatial inhomogeneities in the

gravitational field. In this Appendix we show that gravitational spatial inhomogeneities do

not spoil this property of the solution, thus preserving the inclination of the scalar field DE

density to always want to try to dominate over the dominant energy density source [7, 45].

Inhomogeneities in the scalar field will induce inhomogeneities in the metric, and vice

versa. We show that, in the curvature-dominated epoch, any slight inhomogeneities will die

out. (This generalizes the flat-space results of Sec. IX of Ref. [45].)

We linearize the disturbances in the metric about a curved Friedmann background metric

in synchronous gauge. To this end, we write the line element as

ds2 = g̃µνdx
µdxν = (gµν + δgµν)dx

µdxν . (B.1)

We work in time-orthogonal coordinates (t, r, θ, ϕ) with gµν given in Eq. (3.5) and the
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perturbations

δgµν = a(t)2



0 0 0 0

0 f(r)hrr hrθ hrϕ

0 hrθ r2hθθ hθϕ

0 hrϕ hθϕ r2 sin2(θ)hϕϕ


,

(B.2)

where f(r) = 1/(1− kr2), |hij| � 1, and each hij is a function of t, r, θ, and ϕ.

The scalar field equation of motion in a space-time with cometric g̃µν reads

∇̃µ(g̃µν∂νΦ) + V ′(Φ) = 0. (B.3)

The perturbed scalar field is written

Φ(xµ) = Φ0(t) + φ(xµ) (B.4)

where φ is a small perturbation, |φ| � |Φ0|, and Φ0 is a solution to the scalar field equation

of motion in the unperturbed homogeneous Friedmann background,

Φ̈0 + 3
ȧ

a
Φ̇0 −

καm2
p

2
Φ
−(α+1)
0 = 0. (B.5)

Plugging (B.4) into (B.5) gives, to first order in φ,

φ̈+
3ȧ

a
φ̇− 1

a2
∇2φ+ V ′′(Φ0)φ− 1

2
ḣΦ̇0 = 0, (B.6)

where h = hrr + hθθ + hϕϕ = −gµνδgµν , and ∇2 is the Laplacian for the three-dimensional
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spacelike hypersurface of constant t in the unperturbed Friedman geometry,

∇2 =
1

r2

∂

∂r

(
(r2 − kr4)

∂

∂r

)
+ kr

∂

∂r
(B.7)

+
1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂ϕ2
.

When k = 0, ∇2 is the usual three-dimensional flat-space Laplacian in spherical coordinates.

The tt component of the stress-energy tensor Qµν for Φ = Φ0 + φ, to first order in φ, is

Qtt =
m2
p

32π

[
Φ̇2

0 + 2V (Φ0)
]

+
m2
p

16π

[
Φ̇0φ̇+ V ′(Φ0)φ

]
, (B.8)

and the trace Q = g̃µνQµν is, to first order,

Q =
m2
p

16π

[
4V (Φ0)− Φ̇2

0

]
+
m2
p

8π

[
2φV ′(Φ0)− Φ̇0φ̇

]
. (B.9)

As for the Ricci tensor Rµν , we will also only require the tt component. To first order it is

Rtt = −3ä

a
+

[
ȧ

a
ḣ+

1

2
ḧ

]
. (B.10)

By the Einstein field equations (3.3) we therefore get the first-order perturbation equation,

ḧ+
2ȧ

a
ḣ = 2Φ̇0φ̇− V ′(Φ0)φ. (B.11)

This corresponds to Eq. (3.14) of Ref. [147].

We now take a = a0t for the curvature-dominated epoch, where a0 is a constant of

integration and we consider times t > 0. Thus, the system we need to analyze is

φ̈+
3

t
φ̇− L2

a2
0t

2
φ+ V ′′(Φ0)φ =

1

2
ḣΦ̇0, (B.12)
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ḧ+
2

t
ḣ = 2Φ̇0φ̇− V ′(Φ0)φ. (B.13)

Here we have made a hyperspherical harmonic transformation, the variables φ and h are

now harmonic mode amplitudes, and L2 is the eigenvalue of the Laplacian operator (B.8)

(see Ref. [147] and Sec. II of Ref. [156]). One has L2 → −1 (respectively L2 → −∞) in the

limit of long wavelength (short wavelength) modes for the negative curvature case.

The field Φ0 is the special solution obtained in Sec. 3.2.1, Eq. (3.9). We here write it as

Φ0 = Atm, (B.14)

where

m =
2

α + 2
, (B.15)

and A is, by (3.10) with n = 1,

A =

(
καm2

p(α + 2)

8α + 24

)1/(α+2)

. (B.16)

Defining

B =
κα

2
m2
p, (B.17)

Eqs. (B.12) and (B.13) can be rewritten as

φ̈ +
3

t
φ̇+

J

t2
φ =

mA

2
ḣtm−1, (B.18)

ḧ +
2

t
ḣ = 2mAtm−1φ̇+BA−(α+1)tm−2φ, (B.19)
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where J = (α + 1)(m2 + 2m)− L2/a2
0. As mentioned previously, L2 → −1 in the case that

we are presently interested in (long-wavelength perturbations and negative curvature), so

the constant J is a positive real number > 3.

For the curvature-dominated case ρk ∝ t−2 and so

C2ρΦ

ρk
= t2m, (B.20)

where C is a constant of integration. Thus, Eqs. (B.18) and (B.19) can be written as

φ̈+
3

t
φ̇+

J

t2
φ =

mAC

2

ḣ

t

√
ρΦ

ρk
, (B.21)

ḧ+
2

t
ḣ =

2mBC

t

√
ρΦ

ρk
φ̇+

BA−(α+1)C

t2

√
ρΦ

ρk
φ.

(B.22)

Following Ref. [45] we solve these equations by using a linear perturbation technique. Since

we are in the curvature-dominated epoch and
√
ρΦ/ρk is small, we begin by searching for

approximate solutions to (B.21) and (B.22) where the source terms on the right-hand side are

neglected. That is, we first solve the homogeneous equations (to get zeroth order solutions

for φ and ḣ),

φ̈0 +
3

t
φ̇0 +

J

t2
φ0 = 0, (B.23)

ḧ0 +
2

t
ḣ0 = 0, (B.24)

where subscript 0 now denotes solutions in zeroth order of the perturbation approach. Once

we have these zeroth order solutions, we will plug them into the right-hand side of Eqs.
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(B.18) and (B.19) in order to obtain new differential equations which can then be used to

derive correction terms of order
√
ρΦ/ρk. If our solutions with order

√
ρΦ/ρk corrections are

still decaying then it means that the stability result is established at least in the first-order

perturbation analysis.

The zeroth order solution to (B.23) is

φ0(t) =
C1

t
cos
[√

J − 1 ln(t)
]

+
C2

t
sin
[√

J − 1 ln(t)
]
, (B.25)

where C1 and C2 are constants of integration, and the zeroth order solution to (B.24) is

h0(t) =
C3

t
+ C4, (B.26)

where C3 and C4 are constants of integration. Note that, up to oscillatory bounded functions

of time, φ0/Φ0 ∝ t−(α+4)/(α+2) ∈ (t−2, t−1), so we confirm the result of Sec. 3.2.1 that if we

ignore the effect of metric perturbations the time-dependent fixed-point solution is stable.

Writing φ = φ0 + φ1 and h = h0 + h1, and plugging (B.26) into Eq. (B.18), we get for

the first order φ1 equation

φ̈1 +
3

t
φ̇1 +

J

t2
φ1 =

mA

2
ḣ0t

m−1. (B.27)

(We shall not need the h1 differential equation.) Solving this differential equation for φ1 we

find

φ1(t) = − mAC3t
m−1

2(m2 − 1 + J)
. (B.28)

From this solution and that in (B.25), we find, up to oscillatory bounded functions of time,

φ1(t)/φ0(t) ∝
√
ρΦ/ρk, so in the curvature-dominated epoch, where ρΦ � ρk, the correction

to the scalar field solution from the metric inhomogeneity is small.
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