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Abstract 

 Exercise-induced pulmonary hemorrhage (EIPH) or epistaxis has been 

recognized in racehorses since the 16th century.  Since this time, great strides have been 

made in terms of identifying the lungs as the source of the hemorrhage via the endoscope, 

utilization of bronchoalveolar lavage to quantify the hemorrhage, and the discovery of 

successful treatments such as furosemide and the nasal strip that ameliorate, but do not 

abolish EIPH.  It has been determined that, in addition to extremely high pulmonary 

arterial pressures and the negative intrapleural pressures being the major physiologic 

forces causing pulmonary capillary stress failure, other factors have the potential for 

influencing the severity of EIPH including locomotory impact trauma, inflammatory 

airway disease (IAD), upper airway obstruction, coagulation anomalies, and high blood 

viscosity.  It has been hypothesized that EIPH is detrimental to performance and this was 

recently confirmed by Hinchcliff et al. in 2004. 

EIPH is a complex multi-factorial condition with much still unknown about the 

etiology, best method for diagnosis, and most effective form of treatment.  Chapter one of 

this dissertation determined the effectiveness of a novel treatment, concentrated equine 

serum, in ameliorating EIPH via reduction of IAD.  Chapter two refuted the hypothesis 

that herbal formulations commonly used in the field with anecdotal success would 

decrease EIPH by correcting coagulation deficits during exercise, as scientific efficacy 

was not evident, at least at the dose and duration used in our investigation.  Chapter three 

addressed the dogma that EIPH only occurs during maximal intensity exercise, and in 

 



demonstrating significant EIPH during sub-maximal exercise, emphasized the role that 

the airways play in contributing to the initiation and severity of EIPH.  Chapter four 

examined the occurrence and severity of EIPH in the horse’s canine counterpart, the 

racing Greyhound.  The demonstrated presence of mild EIPH in the Greyhound, a 

physiologically similar yet different athlete in comparison to the horse sheds new light on 

the etiology of this condition in both species.   

The results of these investigations have advanced the frontiers of our knowledge 

concerning EIPH.  Specifically, they have generated novel information on the 

mechanistic bases of EIPH and have provided evidence supporting additional treatment 

options for reducing the severity of EIPH in horses. 
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demonstrating significant EIPH during sub-maximal exercise, emphasized the role that 

the airways play in contributing to the initiation and severity of EIPH.  Chapter four 

examined the occurrence and severity of EIPH in the horse’s canine counterpart, the 

racing Greyhound.  The demonstrated presence of mild EIPH in the Greyhound, a 

physiologically similar yet different athlete in comparison to the horse sheds new light on 

the etiology of this condition in both species.   

The results of these investigations have advanced the frontiers of our knowledge 

concerning EIPH.  Specifically, they have generated novel information on the 

mechanistic bases of EIPH and have provided evidence supporting additional treatment 
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CHAPTER 1 - THE EFFECTIVENESS OF IMMUNOTHERAPY 

IN TREATING EXERCISE-INDUCED PULMONARY 

HEMORRHAGE 

ABSTRACT 
Inflammatory airway disease has been linked to exercise-induced pulmonary 

haemorrhage (EIPH), and consequently, we hypothesized that immunomodulation induced by 

concentrated equine serum (CES) treatment would reduce EIPH as determined by the number of 

red blood cells (RBCs) per mL of bronchoalveolar lavage (BAL) fluid.  Separate groups of 

Thoroughbred horses were treated with either CES (n=6) or placebo (PL; 0.9% saline; n=4).   All 

horses completed pre- and post-treatment (2 and 4 weeks after initiating treatment) maximal 

exercise tests on a 10% inclined treadmill (1 m/s/min increments to fatigue) over a 10 week 

period (2-3 weeks between tests), with BAL performed 30 minutes post-exercise in each case.  

Treatment ensued 10 days following the pre-treatment exercise test, with horses receiving a 

series of 5 CES or PL injections 24 hours apart (20 mL intratracheal and 10 mL intravenously), 

with subsequent weekly injections for 5 weeks thereafter.  Treatment with neither CES nor PL 

altered any of the cardiorespiratory or metabolic variables measured during maximal exercise.  

No statistically significant changes were evident in EIPH or white blood cells in the PL group.  

However, after treatment with CES, both EIPH (pre-treatment:  61 ± 24 x 106; 4-week post-

treatment run:  29 ± 11 x 106 RBCs/mL BAL fluid; P < 0.05) and white blood cells (WBCs; pre-

treatment:  419 ± 99 x 103; 4-week post-treatment run:  288 ± 60 x 103 WBCs/mL BALF; P < 

0.05) were reduced significantly by the 4 week post-treatment run.  The 109 ± 75% (-26 to 

466%) increase in the WBC/RBC ratio (WBCs per unit of haemorrhage; 4 of 6 horses) post-CES 

treatment may be a consequence of immune system stimulation.  In conclusion, as EIPH was 

decreased significantly with the CES administration, therapeutic intervention involving the 

immune system may represent a viable approach to reducing the severity of EIPH. 
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Introduction 
Exercise-induced pulmonary haemorrhage (EIPH) and inflammatory airway disease 

(IAD) constitute a significant proportion of the pulmonary disease encountered in racehorses, 

and this category of disorder is second only to musculoskeletal disease as a cause of poor 

performance and premature career termination1-4.  It is important to note that epidemiologic5 and 

post-mortem studies have identified an association between EIPH and IAD6-8.  In addition, the 

development of performance decrements consequent to EIPH and associated IAD9-14 often 

necessitate additional veterinary care, extended breaks from training, and/or permanent racetrack 

banishment in cases where horses continue to exhibit EIPH despite treatment11,15.  Therefore, the 

pathophysiological and financial ramifications of recurrent EIPH mandate the development of a 

treatment that will significantly attenuate or eliminate this condition.  The existing therapies 

available for EIPH (i.e. frusemide and the equine nasal strip) 16-20 are successful in reducing, but 

not completely abolishing EIPH, even when used concurrently.  However, as EIPH has a 

complex and multifactorial etiology, it is not surprising that the current uni-directional approach 

to treatment (i.e. decreasing capillary transmural pressure) does not completely abolish EIPH.  

Hence, alternative strategies may provide additive or synergistic reductions in EIPH.   

Preliminary data published by Ragland et al.21 and Hamm et al.22 suggests that the 

product being tested in the current study; concentrated equine serum (CES), and a similar 

product called caprine serum fraction (CSF), have the potential for reducing inflammation 

associated with lower airway disease (i.e. IAD and  EIPH) via immunomodulation.  In addition, 

empirical evidence gathered from field trials on the racetrack (Sera, Inc., Shawnee Mission 

Kansas, unpublished findings) also supports a role for CES in reducing IAD and EIPH.  

Furthermore, immunomodulation via intravenous immunoglobulin (using doses approximately 

two orders of magnitude higher than used in the current study) has been successfully used to treat 

asthma and systemic inflammatory conditions in man23-27.  However, no studies have been 

conducted to specifically examine the effectiveness of CES as a treatment for EIPH in a 

scientifically controlled fashion. 

The purpose of the present study was to determine whether CES could attenuate the 

extent of EIPH.  We hypothesized that:  1) CES would reduce EIPH (as quantified by the number 

of red blood cells (RBCs)/mL bronchoalveolar lavage (BAL) fluid), 2) global pulmonary 

inflammation would be decreased (decreased total white blood cells (WBCs)/mL BAL fluid), 
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and 3) that RBC and WBC counts would not be altered after the horses were identically treated 

with saline as a placebo. 

Materials and Methods 

Animals 

Ten Thoroughbred horses (4 to 12 years old; 470 to 620 kg) with a history of EIPH and 

vaccinated against Eastern and Western Equine Encephalomyelitis, tetanus, equine influenza, 

West Nile virus, Equine Herpes virus I, and rabies were used in these investigations.  Six horses 

were included in the treatment group and a placebo (0.9% saline) was administered to 4 

additional horses in an identical manner.  The horses were trained on a high speed treadmill 

(SATO Inc., Uppsala, Sweden) 3 days/week, and had food, but not water withheld for at least 2 

hours before experimentation.  All procedures were approved by the Kansas State University 

Animal Care and Use Committee. 

Animal Preparation 

The horses were instrumented with two aseptically placed 7-F jugular introducer 

catheters and one 18-gauge 2" Abbocath (Abbott Laboratories, North Chicago, Illinois, USA) 

catheter placed in a previously elevated left carotid artery.  The arterial catheter was utilized for 

the collection of arterial blood gas and plasma lactate samples.  To monitor pulmonary arterial 

pressure (Ppa), a 7-F microtipped pressure transducer (Millar Instruments, Inc., 6001 Gulf 

Freeway, Houston, Texas, USA) was placed through one of the introducer catheters into the 

pulmonary artery, approximately 8 cm past the pulmonic valve. The location of the pressure 

transducer was verified by cardiac waveform evaluation using a computer based data acquisition 

system (DATAQ, Akron, Ohio, USA).  The Millar pressure transducer was calibrated prior to 

and immediately following each experimental run (range 0-200 mmHg) with a Mercury 

manometer.  No drift was detected in the transducer across any runs.   A thermistor catheter 

(Columbus Instruments, Columbus, Ohio, USA) was advanced through the other introducer 

catheter into the pulmonary artery to measure pulmonary arterial temperature, allowing for 

temperature correction of blood gases and pH28.  The thermistor was calibrated using a 

Physitemp thermocouple thermometer (Clifton, New Jersey, USA).  A Fourier analysis of the 

pulmonary arterial pressure waveform was performed and the numerical value of the first peak 
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(~ 2 Hz) was multiplied by 60 cycles/second to obtain the respiratory rate29 since this peak has 

been shown to correspond to the fundamental frequency for this variable.  Heart rate was 

determined with a heart rate monitor (Polar®, Mill Valley, CA, USA). 

Administration of CES or Placebo 

The intravenous form of Seramune® Equine IgG (CES, Sera, Inc., Shawnee Mission, 

Kansas, USA) or placebo (PL; 0.9% saline) was used for the experiment.  Concentrated equine 

serum (CES) is a biological aggregate composed of serum collected from multiple draft horse 

donors and contains high levels of immunoglobulins (IgG (8,000-11,000 mg/dL), IgA (700-

2,500 mg/dL) and IgM (200-600 mg/dL)) and other serum proteins (i.e. iron binding proteins and 

complement).  The dose used in this study was empirical and based on field studies completed at 

various racetracks across the country over a 5 year period where a reduction in EIPH was 

observed (Sera, Inc., Shawnee Mission, KS, unpublished observations).  The PL was 

administered in a fashion identical to that employed for CES.   

Before the intratracheal (IT) injection, the proximal one third of the trachea was clipped 

and surgically prepped, the tracheal rings were palpated, and an 18G 1.5 inch needle was inserted 

via sterile technique to approximately two thirds of its length in between 2 tracheal rings.  The 

hub of the needle was firmly held in place to prevent exit from the trachea and 20 mL of CES or 

PL were administered following aspiration to insure proper location in the trachea.  After 

administration, the horse’s head was held up for approximately 10 minutes post-injection as to 

allow gravity dependent flow of CES or PL into the lungs.  Ten mL of CES or PL were then 

administered slowly via a standard intravenous (IV) injection.  The procedure was repeated every 

24 hours for 5 days with weekly injections (both the IV and IT) given for 5 weeks thereafter .  

On the week of an exercise test, the CES or PL were administered 24 hours before exercise.  No 

adverse effects were noted in any of the experimental animals.   

Experimental Protocol 

A timeline of the experimental protocol is provided in Figure 1.  The horses were trained 

on a moderate-to-heavy intensity exercise regimen prior to and throughout the study (< 10 m/s 

on flat; < 7 m/s on inclined treadmill).  On experimental days, subsequent to collection of resting 

cardiorespiratory measurements and blood samples, each horse performed a maximal exercise 

test.   This test consisted of horses trotting for 800 m at 3 m/s (warm-up) followed by a 1 
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m/s/min incremental ramp, on a 10% incline, beginning at 4 m/s and continuing to the point of 

fatigue as judged by the inability of the horse to keep up with the treadmill despite humane 

encouragement.  Horses were then allowed to trot for 800 m at 3 m/s (cool down).  Pulmonary 

gas exchange was measured with a bias-flow system as described previously by Langsetmo et 

al.30 and cardiorespiratory measurements (i.e. oxygen uptake (VO2), carbon dioxide elimination 

(VCO2), heart rate, and Ppa) were made continuously throughout the exercise test.  Arterial 

blood samples were collected during the last 10 seconds at each speed, and time-to-fatigue was 

determined for each run.  Approximately thirty minutes after the run BAL was performed to 

quantify EIPH16, 18, 31. 

Figure  1.1 Time line of experimental protocol. 

27 3428 35Day  0
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BAL

7 14
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BAL:  bronchoalveolar lavage; CES:  concentrated equine serum; PL:  placebo (0.9% saline)  Both CES 
and PL were administered at a dose of 20 mL intratracheally and 10 mL intravenously at each time point.  

Bronchoalveolar Lavage 

The horses were sedated with detomidine hydrochloride (Dormosedan®, Pfizer Animal 

Health, Exton, Pennsylvania, USA;10-20 µg/kg IV) and butorphanol tartrate (Torbugesic®, Fort 

Dodge Animal Health, Fort Dodge, Iowa, USA; 20-50 µg/kg IV) to facilitate BAL18, 31.  A BAL 
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tube (3 m long, 10 mm in diameter; Bivona Medical Technology, Gary, Indiana, USA) was 

introduced into the right naris through the ventral meatus and into the lung until wedged in a 

subsegmental bronchus of the dorsal caudal portion of the lung32.  The cuff was inflated to 

ensure lavage of the distal airway as well as maximize recovery of the lavage fluid.  A total of 

300 mL (in 50 mL aliquots) of 0.9% physiologic saline was infused.  After a couple of breaths to 

allow mixing, the fluid was aspirated with gentle suction and placed on ice.  The BAL fluid was 

centrifuged (Table Top Centrifuge, Beckman TJ-6, Beckman Instruments, Inc., Palo Alto, 

California, USA), the supernatant decanted, and the pellet resuspended in 0.9% saline33.   The 

amount of saline used for resuspension ranged from 10-200 mL (depending on the severity of 

EIPH) and was chosen in order to avoid errors in cell counting due to widely differing RBC 

concentrations (i.e. haematocrit was standardized between runs and conditions).  Red blood cells 

(RBCs) and total nucleated cells (TNCs) were counted using a haemocytometer (Fisher 

Scientific, 2000 Park Lane Drive, Pittsburgh, Pennsylvania, USA; Microscope, Nikon, Inc., 

Instrument Group, Garden City, New York, USA).  Data are presented as RBCs and TNCs  

(WBCs) per milliliter of recovered BAL fluid minus tube dead space (17 mL).  Differential 

WBC counts (Shandon Cytospin 3, Shandon, Inc., Pittsburgh, Pennsylvania, USA) were 

performed on the WBCs after staining with Hema 3 quick stain (Protocol® Fisher Scientific, 

Middletown, VA, USA) which stains cells similarly to the Wright-Giemsa stain. 

Blood Analysis 

Following anaerobic withdrawal, (into plastic, heparinized syringes) blood samples were 

placed immediately on ice.  Within 1-2 hours of the experiment arterial blood gases, pH, and 

plasma lactate were analyzed (Blood Gas Analyzer - Nova Stat M, Nova Biomedical, Waltham, 

Massachusetts).     

Statistical Methods 

All data are presented as mean ± standard error (SE).  Data was evaluated using one-way 

analysis of variance (ANOVA) with repeated measures.  Where an a priori directional 

hypothesis was to be tested, a one-tailed test was utilized.  The degree of relationship between 

certain pre-determined variables was determined via a Pearson Product-Moment correlation 

analysis.  Significance for all variables was accepted at p < 0.05.    
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Results 
No differences were noted for any variable between the pre-treatment and 2-week post-

treatment run (11 days after initiation of CES treatment).  Therefore, for clarity of presentation 

the BAL results focus on differences between the pre-and 4-week post-treatment means and 

between the CES and PL groups at these time points.  However, for completeness, all BAL fluid 

data (RBC and WBC counts) are included in Tables 1 and 2. 

 

Table  1.1  Pre- and post-saline treatment comparisons for cardiorespiratory and metabolic 
variables during maximal exercise and bronchoalveolar lavage variables post-exercise. 

Variable pre-PL      

treatment 

2-week post-PL  

     treatment 

4-week post-PL 

     treatment 

VO2max (L/min)     72.9 ± 2.0 75.4 ± 2.6 76.5 ± 2.3 

VCO2max (L/min)     82.8 ± 3.3 86.5 ± 1.3 85.9 ± 2.2 

PaO2 (mmHg)     63.4 ± 1.3 65.0 ± 3.0 60.9 ± 1.5 

PaCO2 (mmHg)     61.7 ± 3.9 62.0 ± 4.2 62.0 ± 2.6 

HRmax (beats/min)      218 ± 2 219 ± 5 214 ± 4 

RRmax (breaths/min)      115 ± 3 115 ± 2 115 ± 2 

[La-] (mM)     21.9 ± 3.3 29.6 ± 1.7 26.5 ± 4.6 

Ppa (mmHg)     87.3 ± 7.3 91.4 ± 3.1 89.2 ± 3.9 

pH     7.22 ± .02 7.21 ± .02 7.18 ± .02 

Hematocrit        59 ± 1 61 ± 1 61 ± 1 

Time-to-Fatigue (s)      656 ± 21 673 ± 21 658 ± 20 

Avg WBCs/mL BALF 301.00 ± 73.63 x 103 305.00 ± 37.81 x 103 219.97 ± 37.51 x 103

Avg RBCs/mL BALF     4.63 ± 2.29 x 106 9.08 ± .87 x 106 13.04 ± 3.74 x 106 

Values are mean ± SE.  Oxygen uptake at STPD: VO2; carbon dioxide elimination at STPD: VCO2; partial 
pressure of oxygen in the arterial blood: PaO2; partial pressure of carbon dioxide in the arterial blood: 
PaCO2; heart rate: HR; respiratory rate: RR; plasma lactate concentration: [La-]; mean peak pulmonary 
arterial pressure: Ppa; average number of white blood cells per mL bronchoalveolar lavage fluid: Avg 
WBCs/mL BALF; average number of red blood cells per mL bronchoalveolar lavage fluid; Avg RBCs/mL 
BALF.  No significant differences were found between the pre-treatment and either of the post-treatment 
runs for any of these variables.  
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Table  1.2  Pre- and post-CES treatment comparisons for cardiorespiratory and metabolic 
variables during maximal exercise and bronchoalveolar lavage variables post-exercise. 
Variable pre-CES treatment 2-week post-CES treatment 4-week post-CES treatment
VO2max (L/min)                   73.7 ± 1.9                      67.7 ± 5.6             71.9 ± 3.1 
VCO2max (L/min)                   81.0 ± 2.4                      76.5 ± 6.1             81.0 ± 3.7 
PaO2 (mmHg)                   64.9 ± 2.7                      64.1 ± 2.0             62.4 ± 1.7 
PaCO2 (mmHg)                   64.2 ± 4.1                      63.8 ± 3.7             67.5 ± 4.0 
HRmax (beats/min)                    219 ± 4                       224 ± 8              216 ± 4 
RRmax (breaths/min)                    121 ± 2                       120 ± 2              121 ± 2 
[La-] (mM)                   25.3 ± 3.2                      28.8 ± 3.2             32.6 ± 1.7 
Ppa (mmHg)                   96.1 ± 6.2                      95.7 ± 6.9             97.0 ± 4.6 
pH                   7.18 ± .04                      7.21 ± .03             7.19 ± .04 
Hematocrit                      63 ± 1                         63 ± 1                63 ± 1 
Time-to-Fatigue (s)                    711 ± 14                       678 ± 9              681 ± 13 
Avg WBCs/mL BALF                412.00 ± 1.02 x 103                  359.67 ± .95 x 103         287.67 ± .61 x 103

Avg RBCs/mL BALF                61.08 ± 24.66 x 106                  144.00 ± 103.37 x 106           29.05 ± 11.58 x 106 
Values are mean ± SE. Concentrated equine serum: CES; oxygen uptake at STPD: VO2; carbon dioxide 
elimination at STPD: VCO2; partial pressure of oxygen in the arterial blood: PaO2; partial pressure of 
carbon dioxide in the arterial blood: PaCO2; heart rate: HR; respiratory rate: RR; plasma lactate 
concentration: [La-]; mean peak pulmonary arterial pressure: Ppa; average number of white blood cells 
per mL bronchoalveolar lavage fluid: Avg WBCs/mL BALF; average number of red blood cells per mL 
bronchoalveolar lavage fluid; Avg RBCs/mL BALF.  *Mean is significantly different from pre-CES group.  

Indices of Maximal Effort   

Tables 1.1 and 1.2 show the average data for cardiorespiratory and metabolic variables 

measured during maximal exercise for both the PL and CES treatment experiments, respectively.  

No significant differences were noted for any of these variables between pre- and either of the 

post-treatment exercise runs.  

BAL Fluid Evaluation Pre- and Post-Treatment   

The percentage of BAL fluid recovered for the pre-treatment as well as the 2 and 4-week 

post-treatment runs was (55.6± 5.5, 50.9 ± 5.7, and 69.7 ± 7.2%; p > 0.05) for the PL group, and 

(62.1 ± 3.8, 55.2 ± 7.0, and 56.1 ± 5.8%; p > 0.05) for the CES treated horses, respectively.  The 

number of RBCs/mL of BAL fluid decreased 46 ± 12% (p < 0.05) between the pre-treatment and 

the 4-week post-CES treatment run (pre-treatment run: 61 ± 25 x 106; 4-week post-treatment run: 

29 ± 12 x 106 RBCs/mL, p < 0.05), whereas the number of RBCs/mL BAL fluid did not change 

over the same time period in the PL group (pre-treatment run: 5 ± 1 x 106; 4-week post-treatment 

run: 13 ± 4 x 106 RBCs/mL BALF, p > 0.05).  In fact, the percent change in RBCs/mL BAL 

fluid tended to increase from control levels, (albeit not significant statistically due to high 

variability; p=0.14) by the 4-week post-treatment run in horses treated with saline (PL) whilst 

 8



this variable evidenced a significant decrease (46 ± 12%) in horses treated with CES (Figure 

1.2).   

Overall, WBCs declined 21 ± 11% (pre-treatment run: 412 ± 102 x 103; 4-week post-

treatment run: 288 ± 61 x 103 WBCs/mL BALF; p < 0.05) by the 4-week post-treatment run in 

the CES treated horses (Figure 1.3).  The WBC counts from the PL group were not significantly 

different between pre- and either of the post-treatment runs (pre-treatment run: 301 ± 74 x 103; 4-

week post-treatment run: 220 ± 38 x 103 WBCs/mL BAL fluid, p > 0.05).  In addition, no 

significant differences were detected in the differential counts (Figure 1.4) for either pre- or post-

run lavages of the PL or CES treated horses.  The baseline and one week post-run lavages served 

the purpose of illustrating that RBC and WBC counts had returned to baseline by 1 week post-

maximal exercise, eliminating any question of residually elevated RBC levels that may confound 

the bleeding in subsequent runs for horses given either PL or CES.  No significant differences 

from baseline were detected in the total WBC count (data not shown), RBC count (data not 

shown), or WBC differential counts (Figure 1.4) for any of the non-exercising (1 week post-run) 

lavage periods.   

 9



Figure  1.2 Relative changes in exercise-induced pulmonary hemorrhage (EIPH; RBC 
counts) at 4 weeks following initiation of concentrated equine serum (CES; n=6) treatment. 
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Individual horse data are presented as a percent decrease in EIPH following maximal exercise after 4 
weeks of treatment with CES, where pre-CES treatment levels are set to 0.  Individual horses are 
represented by different symbols and the mean (± SE) percent decrease in EIPH of all horses is 
displayed as a large open circle.  *Mean is significantly different from pre-treatment run, p < 0.05.   

  

 10



Figure  1.3 Relative change in inflammation (WBC counts) at 4 weeks following initiation of 
concentrated equine serum (CES; n=6) treatment. 
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Relative change in Inflammation (WBC counts) at 4 weeks following initiation of concentrated equine 
serum (CES; n=6) treatment.  Individual horse data are presented as a percent decrease in inflammation 
following maximal exercise after 4 weeks of treatment with CES, where pre-CES treatment levels are set 
to 0.  Individual horses are represented by different symbols and the mean (± SE) percent decrease in 
inflammation of all horses is displayed as a large open circle.  *Mean is significantly different from pre-
treatment run, p < 0.05.Level. 
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Figure  1.4 Differential white blood cell (WBC) counts for placebo and concentrated equine 
serum (CES) treated horses. 
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Panels A and B represent the percentage and number/mL of each cell type evaluated in the WBC 
differentials (300 cell count) of the placebo (PL; saline) treated horses (n=4), respectively.  Panels C and 
D represent the percentage and number/mL of each cell type evaluated in the WBC differentials (300 cell 
count) of the Concentrated Equine Serum (CES) treated horses (n=6), respectively.  The x-axes 
represents the different time periods evaluated during the study, including resting levels (baseline), 3 
exercise periods (runs 1, 2, 3), and one-week post-run periods (1WPR 1, 2, 3).  No differences were 
observed in the differential WBC counts for any of the time periods under either PL or CES  

Discussion 
The novel finding of the current study is that immunotherapy with CES significantly 

reduced EIPH and associated inflammation following maximal exercise in Thoroughbred horses.  

Specifically, by the end of the 4 week treatment period, CES resulted in a 46% reduction in the 

immediate post-exercise BAL RBC count, while concurrently demonstrating a 21% decrease in 

the WBC count.  In comparison, no significant changes in EIPH or WBC counts were observed 

in PL horses over the same time period.  The CES-induced mitigation of EIPH in the absence of 

pulmonary arterial and presumably capillary transmural pressure reduction16-18, 29, indicates that 

EIPH severity can be modulated independently of changes in vascular pressures (Figure 1.5).   It 
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is worth noting that the differences observed in this study may not have been detectable without 

the use of BAL, since rigorous quantification of haemorrhage is not possible with endoscopy.  

The technique of BAL has proven to be a reproducible and sensitive method for evaluating 

treatment effectiveness and degree of EIPH.  For example, under controlled laboratory 

conditions (in which horses ran identical protocols with no treatment), we have demonstrated 

that the recovery of BAL fluid and the number of RBCs per milliliter of lavage fluid is highly 

reproducible between runs (i.e. coefficient of variation = ~ 5%)18.  The finding that CES can 

cause a reduction in EIPH and inflammation suggests that immunomodulation may provide an 

effective therapeutic tool for reducing EIPH. 

Figure  1.5 Exercise-induced pulmonary hemorrhage (EIPH) versus mean peak pulmonary 
artery pressure (Ppa). 
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Diamonds represent the Ppa and associated EIPH of horses during the pre-concentrated equine serum 
(CES) treatment run and the squares represent the Ppa and associated EIPH of the horses during the 4 
week post-CES treatment run, with the arrows connecting the 2 respective values for each individual 
horse.  The log scale is used simply as an expedient to better visualize the data.  The coefficient of 
determination for the relationship between the severity of haemorrhage (logRBCs/mL BALF) versus Ppa 
(linear scale; r2 = .14, P > 0.05) indicates that associated decreases in EIPH and pulmonary arterial 
pressure were not observed as a result of CES treatment (i.e. some horses exhibited decreased 
logRBCs/mL BALF at the same or higher Ppa), and therefore, some variable other than Ppa is accounting 
for the severity of haemorrhage observed in these horses. 
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CES Versus Traditional Prophylactic Therapies for EIPH 

Currently, frusemide and the equine nasal strip are the only scientifically established 

treatments for EIPH16-20.  When administered 4 hours prior to maximal exercise (at a dose of 1 

mg/kg), frusemide has been shown repeatedly to be effective in reducing pulmonary 

haemorrhage.  This occurs via a significant reduction in the pulmonary vascular pressures during 

near maximal and maximal exercise17-19, thus implicating pulmonary arterial pressure as a 

principal causative mechanism for EIPH34, 35.    On the other hand, the equine nasal strip 

ameliorates EIPH16-20 by maintaining nasal patency, and thereby reducing airway resistance36 and 

presumably capillary transmural pressure.  The only contradictory evidence suggesting that 

either of these treatments (i.e. frusemide and the nasal strip) do not invoke a significant reduction 

in EIPH is that of Goetz et al.37 and Birks et al.38.  However, no rigorous attempt was made to 

quantify EIPH in either of these studies (i.e. endoscopy was performed).   In contrast to 

mitigating EIPH via a direct reduction in capillary transmural pressure (as is the case with 

frusemide and the equine nasal strip), the results of the current study suggest that CES may act 

indirectly to reduce the deleterious effects of blood in the airways by an (as yet) undetermined 

time-dependent mechanism.  This was substantiated in the current study by the fact that EIPH 

was significantly reduced after treatment with CES in the face of unaltered pulmonary arterial 

pressures and oxygen uptake measurements (Table 1.2).  One major difference between 

treatments which acutely impact transmural pressures (i.e. equine nasal strip (instantly) and 

frusemide (hours)) and CES (4 weeks) is the time necessary to observe the reduction in EIPH.   

Targeting IAD with CES 

The idea that EIPH and IAD were interrelated was first published by O’Callaghan et al.6, 

7 and later by McKane and Slocombe8, 34, 39, who provided indirect evidence that the 

extravasation of blood into the airways may be at least partially responsible for the IAD observed 

on post-mortem examination in EIPH affected areas.  These findings are in agreement with the 

recent epidemiologic studies of Newton and Wood5, which identified a link between IAD and 

EIPH.  The horses in the present investigation all exhibited evidence of IAD:  specifically, higher 

than normal TNCs (> 200 cells/µL), mild neutrophilic inflammation (5-20% neutrophils), and 

lymphocytosis in BAL fluid40 which may in turn exacerbate future EIPH episodes.  Objective 

measurements demonstrated reduced inflammation following CES treatment as evidenced by 
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decreased WBC counts (21%) in BAL fluid by 4 weeks post-treatment in the current study.   

Furthermore, our findings substantiate the subjective reductions in both inflammation (decreased 

airway mucus) and EIPH (endoscopic grading) observed following field use of CES in 187 

horses at three racetracks (Fonner Park, NE; Prescott, AZ; and Marshall, VA) during the years 

1995-99 (Sera, Inc., Shawnee Mission Kansas, unpublished observations).  Moreover, 

unpublished data from our laboratory (n=4) suggests at least an equivalent reduction in EIPH 

with CES (68%) versus frusemide (58%), the nasal strip (42%), or the concurrent use of the nasal 

strip and frusemide (46%) in the same maximally exercising horses.  These data strongly suggest 

the possibility that mitigation of IAD may address an important component of EIPH that is at 

least equivalent to the reduction of intravascular (frusemide) 18, 19 and extravascular (equine nasal 

strip) 16-20 pressures.  In light of the present findings, it is possible that CES might benefit the 

long term pulmonary health of racehorses since the consequences of a prolonged inflammatory 

reaction to the blood in the alveoli and the subsequent fibrosis could decrease pulmonary 

compliance and increase shear forces within the alveoli of the lungs9, 10, 12, 39.  These mechanical 

alterations are likely to progressively weaken the blood-gas barrier, and predispose a larger 

population of the capillaries to stress failure with each succeeding EIPH episode,9, 10 an effect 

that may be magnified by insufficient healing time between insults39. 

Potential Mechanistic Bases for the Reduction of EIPH with CES 

The exact mechanism through which CES therapy reduces EIPH remains speculative, 

however, the present results are consistent with a time-dependent phenomenon related to the 

reduction of inflammation through immunomodulation.  The delayed nature of this response was 

evident when the pre- and post-treatment runs were considered.  Specifically, EIPH increased 

from pre-treatment to the 2-week post-treatment run, before significantly decreasing by the 4-

week post-treatment run in CES-treated horses.   In the PL group of horses, a much different 

pattern was observed, whereby, a trend for increasing EIPH was noted by the 4-week post-

treatment run.  Though not statistically significant (p=0.14), the pattern of bleeding observed 

with the PL group is in agreement with the current belief that sequentially repeated maximal 

exercise bouts will result in increased severity of hemorrhage38, 41.  This intuitively makes sense, 

especially if the factors (i.e. capillary transmural pressures, IAD) involved in initiating and 

perpetuating EIPH are not addressed by some form of intervention (i.e. frusemide, equine nasal 
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strip, or CES), regardless of whether the effects of treatment are immediate or require time to 

become evident.   

The immunomodulation hypothesis is based on research by Ragland et al. (CES 

administration)21 and Hamm et al. (caprine serum fraction administration)22 demonstrating that a 

reduction in pulmonary inflammation and a more rapid recovery of horses from suppurative 

lower airway disease occurred as a result of “non-specific” stimulation of the immune system.  In 

agreement with these two studies, the current study demonstrated a reduction in WBCs and a 

concurrent and marked increase (109 ± 75%) in the WBC/RBC ratio as a result of CES 

treatment.  In contrast, horses treated with PL demonstrated a decreased WBC/RBC ratio (66 ± 

9%).  In addition, the correlation between the WBC/RBC ratio and the level of haemorrhage 

found pre-treatment (r2 = 0.71, P<0.05) disappeared post-treatment (r2 = 0.34, P>0.05) in the 

horses treated with CES.  These findings suggest that the additional recruitment of WBCs into 

the lung post-CES treatment may expedite clearance of blood from the lungs.  This further 

supports the premise that immune modulation in response to CES treatment may be responsible 

for the observed reduction in EIPH, in a fashion independent of changes in vascular transmural 

pressures.     

It has been shown that alveolar macrophage function (phagocytosis and oxidative burst) 

becomes suppressed for 2-3 days when challenged by alveolar haemorrhage8, 39, 42-48 as a 

consequence of the limited ability of alveolar macrophages to effectively metabolize/detoxify the 

iron in RBCs49, 50.  Concentrated equine serum contains high levels of immunoglobulins (Sera, 

Inc., Shawnee Mission, Kansas) and complement51, 52 compared with normal horse serum (IgG 

(8,000-11,000 vs. 1000-1500 mg/dL), IgA (700-2,500 vs. 60-350 mg/dL) and IgM (200-600 vs. 

100-200 mg/dL)51, 52.  Increased levels of these components and other mediators in the CES may 

act directly (result of intratracheal administration) or indirectly (intravenous administration) to 

enhance WBC recruitment to the lung and expedite the clearance of RBCs in the interim between 

exercise bouts.  This may occur through enhancement of phagocytic ability (complement and 

immunoglobulin mediated opsonization)51-54 and oxidative burst activity (metabolize/detoxify 

the iron overload more efficiently)45, 49, 50, 55 of alveolar macrophages.  The combination of a 

more rapid and enhanced functional response of the phagocytes towards clearing the 

haemorrhage would markedly reduce the vicious and self-perpetuating inflammatory cycle 

incited by the prolonged presence of blood in the lung8.  If this is indeed true, the degree of 

 16



subsequent tissue injury and associated fibrosis, as well as prolonged inflammation may in turn 

be reduced as a result of CES treatment.  Even though immunomodulation takes time to become 

manifest, our results together with those discussed above, suggest that CES is a powerful tool 

that can be used to reduce the severity of EIPH through immune system stimulation.  

Future Studies with CES 

Future investigations are needed to elucidate the mechanisms of action of CES, to 

optimize the route of administration and dose, and to determine whether additive or synergistic 

benefits may be gained by the concurrent use of CES with frusemide and/or the nasal strip.  The 

mechanism of action is still unclear and may in fact be dose dependent23-27.  In vitro CES 

treatment of alveolar macrophages obtained from BAL samples of resting and exercising horses 

suggests that CES may enhance phagocytosis and oxidative burst function (unpublished data; 

Epp, Wilkerson, Myers, Erickson).  However, in vivo studies are needed to confirm that these 

effects are observed in horses treated systemically with CES.   

Conclusions 
After 4 weeks of treatment, CES reduced the EIPH response to maximal exercise by ~ 

50%.  Quantitatively, this reduction is equivalent to that demonstrated by frusemide and the nasal 

strip after the same exercise challenge.  As changes in pulmonary arterial pressure and 

pulmonary gas exchange were not detected after treatment, CES presumably operates via a 

mechanism that is not dependent upon a reduction in either intra- or extravascular pulmonary 

pressures.  Consequently, we speculate that CES reduces EIPH through an immune-mediated 

mechanism and that this may improve the lung tissue healing, maintain lung function, and 

increase athletic career longevity.  
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CHAPTER 2 - THE EFFECT OF HERBAL SUPPLEMENTATION 

ON THE SEVERITY OF EXERCISE-INDUCED PULMONARY 

HEMORRHAGE 

ABSTRACT 
Exercise-induced pulmonary haemorrhage (EIPH) is a serious condition that affects the 

health and possibly the performance of all racehorses.  However, only two treatments, frusemide 

and the Flair™ equine nasal strip, both of which reduce capillary transmural pressure, have been 

successful in reducing EIPH.  Alternatively, transient impairment of platelet function and 

coagulation during exercise have been considered as additional contributors to EIPH.  

Consequently, herbal formulations designed to enhance platelet function, and hence coagulation, 

are hypothesized to reduce EIPH.  To investigate the validity of this hypothesis, five 

Thoroughbred horses completed 3 maximal incremental exercise tests on a 10% inclined 

treadmill in a randomized crossover design experiment.  Treatments included twice daily oral 

administration (for 3 days) of a placebo (PL; cornstarch) and 2 herbal formulas, Yunnan Paiyao 

(YP) or Single Immortal (SI).  Blood samples for coagulation profiles, complete blood counts, 

and chemistry profiles were collected before each exercise test.  During each test, pulmonary 

arterial pressure, oxygen uptake, arterial blood gases, plasma lactate, and time-to-fatigue were 

measured.  Severity of EIPH was quantified via bronchoalveolar lavage (BAL) 30-60 minutes 

post-exercise. These herbal formulations were not effective in decreasing EIPH (PL, 27.1 + 11.6 

x 106; YP, 33.2 + 23.4 x 106; SI, 35.3 ± 15.4 x 106 RBCs/mL BAL fluid, P > 0.05) or in 

changing any of the other measured variables with the exception of time-to-fatigue, which was 

slightly but significantly prolonged by Single Immortal when compared to the placebo and 

Yunnan Paiyao (PL, 670 ± 9.6; YP, 665 ± 5.5; SI, 685 ± 7.9 sec, P <0.05).  Thus, these results do 

not support the use of these herbal formulations in the prevention of EIPH.  
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Introduction 
Exercise-induced pulmonary haemorrhage (EIPH) is a ubiquitous phenomenon in equine 

athletes exercising at or near maximal effort1, 2.  Since the condition was first documented in 16th 

century racehorses3, research efforts have focused on mitigation of the haemorrhage.  The 

development of effective treatments that will prevent and/or diminish the severity of EIPH has 

become paramount in importance due to the potentially serious consequences of recurrent 

pulmonary haemorrhage on the health and welfare of performance horses.  These negative 

consequences and cumulative effects of EIPH include inflammation, scarring4-7, and (possibly) 

decreased performance8-10.  However, only 2 treatments to date have demonstrated scientific 

efficacy in the amelioration of EIPH.  Frusemide, which significantly lowers pulmonary arterial 

pressure11, a primary factor in the initiation of EIPH12, reduces EIPH by 50-90% in strenuously 

exercising horses13-15.  Unfortunately, the use of frusemide is problematic, in part, because its 

effects are variable, but also due to it’s ability to enhance performance16, 17.  Furosemide has also 

been considered to mask the detection of illegal drugs16, 17, however, given the state-of-the-art 

detection methods available this is probably not a valid concern today.  The Flair™ equine nasal 

strip decreases EIPH by 30-50%13-15, 18, 19  as a result of maintaining nasal patency and reducing 

upper airway resistance during inspiration20, thereby reducing the work of breathing, and 

ultimately, lowering the capillary transmural pressure.  Unfortunately, neither of these treatments 

alone or in combination has been able to completely eliminate EIPH15, and both are banned from 

use in many racing jurisdictions. 

Early studies21-26 investigating a proposed relationship between a coagulation anomaly in 

exercising horses and the potentiation of EIPH suggested that horses may have decreased 

clotting ability during exercise, thus increasing the amount of haemorrhage observed consequent 

to an impaired ability to rapidly plug the breaks that occur in the blood gas barrier during 

strenuous exercise.  In light of this data, these herbal formulations have been anecdotally 

reported to be helpful in addressing this problem and are in widespread use on the race track.  

However, controversy arises since the only proof of benefit to this point has been clinical 

impressions of efficacy, and no scientific evidence exists to support the use of herbal 

formulations for the prevention or reduction of EIPH.  In fact, the most current literature refutes 

the validity of inferences made from the earlier studies (suggesting that platelet function defects 

may be present in exercising horses) as a result of the discovery that the anticoagulant used may 
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in and of itself inhibited platelet function27, 28.  Therefore, it seems unlikely that the severity of 

EIPH would be reduced by shortened coagulation and enhanced platelet function.   

The purpose of this investigation was to determine the effectiveness of two herbal 

formulations (i.e. Yunnan  Paiyao and Single Immortal) on coagulation and EIPH in the horse.  

The individual ingredients in these formulations have been shown to enhance coagulation by 

decreasing the bleeding time in other species (i.e. rats and rabbits)37-39, and Single Immortal has 

anecdotally been reported to be effective in reducing EIPH in horses29.  We hypothesized that 

EIPH would not be reduced following maximal exercise when evaluated by bronchoalveolar 

lavage (BAL), whether or not coagulation variables or bleeding times were shortened as a result 

of treatment with the herbal formulations.   

Materials and Methods 

Animals 

Five Thoroughbred horses, aged 5-14 years and weighing 470-600 kg with a documented 

history of EIPH, were used in this study.  The animals were housed on a dry lot with loafing 

sheds and free access to water and salt.  They were fed alfalfa and free-choice grass hay, as well 

as concentrate (Strategy, Purina Mills Inc., St. Louis, MO, USA) twice daily.  They were 

dewormed at three month intervals, rotating ivermectin with oxibendazole, and vaccinated 

against Eastern and Western Encephalomyelitis, tetanus, equine influenza, West Nile virus, 

rabies, and Equine Herpes virus I.  The horses were trained on a high-speed treadmill (SATO 

Inc., Uppsala, Sweden) three days/week and had food, but not water withdrawn for at least two 

hours before experimentation.  All procedures were approved by the Kansas State University 

Animal Care and Use Committee.  

Treatments 

Treatment order was randomized in a crossover design.  The investigators were blinded 

to which treatment the experimental subjects had received.  Cornstarch (5 tablespoons) was 

administered as the placebo by mouth twice daily for three days prior to the exercise test, as well 

as the morning of the maximal exercise test.  A patented Chinese herbal formula called Yunnan 

Paiyao (Mayway Corporation, Oakland, CA, USA) and another herbal formulation called Single 

Immortal (Jing-Tang Herbal Company, Reddick, FLA, USA) were tested.  The doses utilized 
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were those either recommended by the manufacturer (Single Immortal) or considered effective 

from widespread administration on the racetrack (Yunnan Paiyao).   Two full weeks were 

allowed for washout time between treatments.  Yunnan Paiyao was administered to the horses at 

a dose of 4 g of powder by mouth twice daily for three days before the trial, and on the morning 

of the maximal exercise test.  Single Immortal was administered for 3 days before exercise 

testing at a dose of 50 g of powder by mouth twice daily, including the morning of the maximal 

exercise test29.  Blood samples were obtained by jugular venipuncture for complete blood counts 

(CBC), chemistry profiles (CP) coagulation assays (prothrombin time and partial thromboplastin 

time) and platelet counts immediately before all maximal exercise tests.  Control blood samples 

(from normal, healthy horses not on the experiment) were also submitted with the experimental 

coagulation assay samples. 

Animal Preparation 

Prior to the exercise test, each horse had two 7-F introducer catheters placed in the right 

jugular vein and one 18-Guage, 2" catheter (Safelet, NIPRO Medical Corporation, Miami, FL, 

USA) placed in either a previously elevated left carotid artery or the transverse facial artery (1 

horse).  These procedures were performed under local anesthesia (2% lidocaine) using aseptic 

techniques.  A carotid arterial cannula (polyethylene; 1.6 mm inner diameter and 3.2 mm outer 

diameter) was connected to the arterial catheter to facilitate withdrawal of arterial blood.  A 7-F 

microtipped Millar (Millar Instruments, Inc., Houston, TX, USA) pressure transducer was placed 

into the pulmonary artery through one of the 7-F introducer catheters, approximately 8 cm past 

the pulmonic valve to monitor pulmonary arterial pressure.  A Fourier analysis of the pulmonary 

arterial pressure waveform was performed and the numerical value of the first peak (~ 2 Hz) was 

multiplied by 60 cycles/second to obtain the respiratory rate30 since this peak has been shown to 

correspond to the fundamental frequency for this variable.  The location of the pressure 

transducer and the thermistor was verified by cardiac wave form evaluation via a data analysis 

system (DATAQ, Akron, OH, USA) and viewed on a monitor.  The Millar pressure transducer 

was calibrated prior to and immediately following each experimental run in 50 mmHg 

increments (range 0-200 mmHg) with a Mercury manometer.  A thermistor (Columbus 

Instruments, Columbus, OH, USA) was advanced through the other 7-F introducer catheter into 

the right pulmonary artery to measure pulmonary arterial temperature, allowing for temperature 
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correction of blood gases and pH31.  The thermistor was calibrated using a Physiotemp (BAT-10, 

Physitemp, Clifton, NJ, USA) thermocouple thermometer.  Oxygen consumption was measured 

with an bias flow system as previously described by Kindig et al. 32.  Heart rate was determined 

with a heart rate (Polar®, Mill Valley, CA, USA) monitor. 

Maximal Exercise Test 

Each horse completed one maximal exercise test on the inclined treadmill (10% incline) 

after each of the following conditions:  placebo, Yunnan Paiyao, and Single Immortal.  After 

resting measurements were made with the horses standing quietly on the treadmill, each horse 

was warmed up at 3 m/s for two minutes.  The horses then performed an incremental exercise 

test (speed increasing by 1 m/s per minute) beginning at 4 m/s to volitional fatigue (maximal 

oxygen uptake; VO2max), then recovered at a trot (3 m/s for four minutes).  Cardiorespiratory 

measurements [heart rate, pulmonary arterial pressure, oxygen uptake (VO2), and carbon dioxide 

production (VCO2) ] were collected continuously throughout exercise and cool-down, and 

arterial blood samples were collected during the last 10 seconds at each speed, as well as during 

recovery at two and four minutes post-maximal exercise.  Thirty to 60 minutes after the exercise 

test, BAL was performed to quantitate EIPH as described below2, 15.   

Blood Analysis 

Following anaerobic withdrawal, (into plastic, heparinized syringes) blood samples were 

placed immediately on ice.  Within one-two hours of the experiment, arterial blood gases were 

quantified by means of blood gas analysis (Nova Stat M, Nova Biomedical, Waltham, MA, 

USA) and corrected to the horse’s pulmonary arterial blood temperature31.  The blood gas 

analyzer was calibrated before running the samples according to manufacturer’s standards. 

Bronchoalveolar Lavage (BAL) 

The horses were sedated using detomidine hydrochloride (Dormosedan®, Pfizer Animal 

Health, Exton, PA, USA; 5-10 µg/kg IV) and butorphanol tartrate (Torbugesic®, Fort Dodge 

Animal Health, Fort Dodge, IA, USA; 5-10 µg/kg IV) to facilitate BAL and to quantify the 

severity of EIPH 30-60 minutes post-exercise2, 15.  A Bivona tube (Bivona Medical Technology, 

Gary IN, USA; 3 m long, 10 mm in diameter) with an inflatable cuff was introduced into the 

right naris through the ventral meatus, and into the lung until wedged in a subsegmental 
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bronchus of the dorsal caudal portion of the lung33.  The Bivona tube with a cuff created a seal 

within the airway, which ensured lavage of the distal airway and maximized recovery of lavage 

fluid.  A total of 300 mL (in 50 mL aliquots) of 0.9% physiologic saline was infused.  After 

approximately two breaths, the fluid (a percentage of the entire 300 mL) was aspirated with 

gentle suction.  Fluid recovery averaged approximately 60% of instilled volume; no significant 

differences in recovery existed between trials.  The BAL fluid was centrifuged (Beckman TJ-6, 

Beckman Instruments, Inc., Palo Alto, CA, USA), the supernatant decanted, and the pellet was 

resuspended in 0.9% saline34.  Centrifugation, washing, and resuspending BAL fluid prior to cell 

counts results in no significant difference in total cell counts34 and was utilized for the following 

reasons:  1)  to reduce mucus and debris that interfere with counting, and 2) to achieve a similar 

final RBC concentration across runs and horses to avoid errors in counting due to widely 

differing RBC concentrations.  The amount of saline used for resuspension ranged from 10-200 

mL depending on the severity of EIPH to maintain a relatively similar RBC-to-saline solution 

ratio (i.e. lavage fluid haematocrit).  Red blood cells (RBCs) and total nucleated cells (TNCs) 

were counted using a haemocytometer (Fisher Scientific No. 02-671-5, Pittsburg, PA, USA) and 

a microscope (Nikon Instrument Group, Inc., Garden City, NY, USA).  Data are presented as 

RBCs and TNCs per milliliter of recovered BAL fluid minus tube dead space (17 mL).  We 

consider this technique to be valid and reliable for evaluating treatment effectiveness since our 

laboratory has demonstrated that under controlled laboratory conditions in which horses run 

identical protocols, the recovery of BAL fluid and the number of RBCs per milliliter of lavage 

fluid is highly reproducible between runs (i.e. coefficient of variation = ~ 5%)13.  Resting/control 

BAL samples were taken from the horses under light-moderate training with no strenuous high 

intensity exercise performed within 10 days, and were evaluated for the RBCs and TNCs at the 

initiation of the study.   

Statistical Analysis 

A one-way ANOVA for repeated measures was utilized to determine if differences 

existed between treatment variables measured across experimental conditions, with the exception 

of platelet numbers and VO2max.  These latter variables were normally distributed (Kolmogovov 

Smirov Test for normality), but did not have equal variances, and were therefore analyzed with 

one-way repeated measures ANOVA on ranks.  If significance was revealed with ANOVA, a 
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Student-Newman Keuls post-hoc test was used to determine where the differences were located.  

Pre and post-test variables (i.e. cutaneous bleeding times) were examined using a paired t-test.  

Statistical significance was accepted at the P<0.05 level.  

Results 
Neither RBCs/ml BAL fluid (Figure 2.1) nor WBCs/ml BAL fluid (Figure 2.2) were 

altered after treatment with Yunnan Paiyao or Single Immortal.  However, treatment with Single 

Immortal increased the time-to-fatigue by a small but significant amount over both Yunnan 

Paiyao and placebo exercise tests (PL, 670 ± 10 s; YP, 665 ± 6 s; SI, 685 ± 8 s, P <0.05; Table 

1).  None of the other variables measured at maximal exercise (Table 2.1), including 

cardiorespiratory variables (heart rate, pulmonary arterial pressure, VO2, and VCO2, arterial 

blood gases, plasma lactate, acid-base variables, or hematological variables) were altered with 

treatment.  Of the original five horses, one was dropped from the VO2 and VCO2 analysis 

because of technical difficulties during data collection.  Coagulation variables including platelet 

numbers, fibrinogen, partial thromboplastin time and prothrombin time were not altered as a 

result of treatment with the herbal formulations (Table 2.2).    
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Figure  2.1 Exercise-induced pulmonary haemorrhage (EIPH) following maximal exercise 
and after treatment with either placebo or herbal formulations. 
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Severity of exercise-induced pulmonary haemorrhage following maximal exercise (n=5) as determined 
from the concentration of red blood cells (RBCs) in lung lavage fluid after treatment with placebo, Yunnan 
Paiyao, and Single Immortal.  There were no significant differences between conditions (P>0.05). 
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Figure  2.2 Inflammatory response in bronchoalveolar lavage (BAL) fluid following 
maximal exercise and treatment with either placebo or herbal formulations.  
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White blood cells (WBCs) in lung lavage fluid following maximal exercise (n=5) after treatment with 
placebo, Yunnan Paiyao and Single Immortal.  There were no significant differences between conditions 
(P>0.05). 

 

Table  2.1  Time-to-fatigue, cardiorespiratory variables, arterial blood gas, and acid-base 
data at maximal exercise. 

Variable Control Yunnan Paiyao Single Immortal 

Total Time-to-Fatigue (seconds)              670 ± 10             665 ± 6            685 ± 8*

Hematocrit (%)                63 ± 1               64 ± 1              63 ± 1 
PaO2  (mmHg)             61.8 ± 1.6            63.2 ± 1.5           64.4 ± 3.1 
PaCO2 (mmHg)             61.2 ± 2.8            62.0 ± 2.8           64.3 ± 2.3 
pH               7.2 ± 030            7.18 ± 030             7.2 ± 020 
Mean Peak Ppa (mmHg)             93.2 ± 5.9            94.0 ± 5.9           92.3 ± 5.2 
VO2max (L/min)             75.8 ± 1.5            76.2 ± 3.5         74.15 ± 2.0 
VCO2max (L/min)             80.7 ± 4.6            85.3 ± 3.4           77.9 ± 5.2 
Heart Rate (beats/min)              212 ± 4             215 ± 5            213 ± 4 
Respiratory Rate (breaths/min)              117 ± 4             117 ± 3            117 ± 3 
Plasma Lactate peak;mmol/L)             26.6 ± 2.4            23.3 ± 2           24.3 ± 2.4 
Values are means ± SE; * Significantly different from control and Yunnan Paiyao (P < 0.05).  Partial 
pressure of oxygen (PaO2); partial pressure of carbon dioxide (PaCO2); pulmonary arterial pressure 
(Ppa); maximal oxygen uptake at STPD (VO2max); maximal carbon dioxide production at STPD 
(VCO2max).  
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Table  2.2  Coagulation Variables 
Variable Control Yunnan Paiyao Single Immortal Statistical 

Significance 

Platelets (x 103/µl)     146,400 ± 11,587     146,750 ± 9035    136,600 ± 9415 NSD 
Fibrinogen (mg/dl)                        220 ± 20             180 ± 20           240 ± 40 NSD 
Partial Thromboplastin Time 
(sec) 

        39.08 ± 1.99         37.84 ± 2.17        37.62 ± 2.12 NSD 

Partial Thromboplastin Time 
Control (sec) 

        36.06 ± 0.99         36.56 ± 1.23        35.28 ± 1.10 NSD 

Prothrombin Time (sec)  
 
Prothrombin Time Control (sec) 

          9.26 ± 0.21 
 
          9.18 ± 0.16 

          9.16 ± 0.16 
 
          9.22 ± 0.25 

         9.40 ± 0.26 
 
         9.28 ± 0.21 

NSD 
 

NSD 
Values are means ± SE; No significant differences (NSD) found in any variable except a possible trend for 
shortened bleeding times. 

Discussion 
This is the first study to investigate the impact of herbal formulations upon the severity of 

EIPH.  These compounds (i.e. Yunnan Paiyao and Single Immortal) did not reduce the severity 

of EIPH in maximally exercising horses.  Specifically, the RBC counts in the bronchoalveolar 

lavage fluid of horses treated with the herbal formulations did not differ significantly from that 

of horses treated with a placebo.  There was, however, a small but statistically significant 

increase in the time-to-fatigue after herbal treatment with Single Immortal that may suggest the 

presence of some performance enhancing properties that are unrelated to the severity of EIPH 

per se. 

Rationale for using herbal formulations to treat EIPH 

Prolonged blood coagulation during exercise has been cited as a possible contributing 

factor to EIPH21-24, 26.  Thus, increased clotting times following exercise-induced injury to the 

blood-gas barrier could theoretically exacerbate the severity of EIPH as a consequence of 

delayed sealing of damaged microvessels, thereby allowing an increased volume of blood to be 

extravasated.  Indeed, exercise has been shown to diminish the ability of equine platelets to 

respond to platelet aggregating factors (i.e. adenosine diphosphate, collagen, and platelet 

activating factor) in both “EIPH-positive” and “EIPH-negative” horses21-24.  Moreover, Bayly et 

al. 23 have shown that furosemide reduces the exercise-induced inhibition in platelet-induced 

aggregation to adenosine diphosphate, which was hypothesized to contribute to frusemide’s 

ability to decrease EIPH.   
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Based on the theory that a haemostatic defect would exacerbate EIPH, herbal 

formulations that are purported to enhance coagulation have been considered as potential 

treatments for EIPH.  The main herbal ingredient of Yunnan Paiyao is Notoginseng, which 

reduces bleeding time37-39, thrombin time39, clotting time37, 38, and coagulation times40, as well as 

initiating platelet release35, 36 and decreasing fibrinogenemia41.  The main herbal ingredients of 

Single Immortal are Notoginseng and Bletillae.  Bletillae is effective as a vascular embolizing 

agent42 (promotion of thrombin formation) as well as in decreasing bleeding time and thrombin 

time39.  The rationale from a conventional “Western” medicine perspective that herbal 

formulations may be effective for treating EIPH is built on the premise that platelet function may 

be enhanced, since ingredients in these formulations have been shown to shorten bleeding time37-

39.   

Possible explanations for the ineffectiveness of herbal formulations 

The inability of herbal formulations to reduce EIPH in the present study may indicate that 

either impaired haemostasis is not a primary factor in the etiology of EIPH or that these 

formulations were not effective in addressing the specific coagulation problem.  It should also be 

realized that diagnoses made by Traditional Chinese Medicine differ from “Western” medicine.  

Traditional Chinese Medicine depends on a holistic system of relationships between externally 

observed symptoms and internal organs to ultimately determine a pattern of illness versus 

addressing individual symptoms and diseases separately (i.e. EIPH). Therefore, a veterinarian 

utilizing the Traditional Chinese methods may assign different diagnoses to each individual 

horse in this population, and choose slightly different formulations to suit the individual 

evaluation of each animal.  However, veterinarians trained in conventional “Western” medicine 

would diagnose all horses as having EIPH and treat them the same (as was done in the current 

study) with one of the herbal formulations empirically indicated for the reduction of pulmonary 

haemorrhage without taking into consideration the individual patterns of illness expressed by 

each horse43.   

Again, the contention that coagulation is compromised in horses with EIPH should be 

considered cautiously since horses in the coagulation studies21-25 were designated as “bleeders” 

based upon a history of epistaxis with or without endoscopic evaluation.  It has been shown by 

McKane et al. 1 and Meyer et al. 2 using BAL, that all strenuously exercised horses bleed to some 
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degree.  In accordance with this, the statistical analysis of most data in the current literature has 

shown no difference in coagulation profiles between “bleeders” and “non-bleeders.”  With 

regard to demonstrating conclusively that impaired coagulability exists in exercising horses, 

major confounding variables include the timing of blood sample collection44 (before, during, or 

after exercise, since alterations in coagulation are only evident transiently during exercise), the 

alteration of coagulation parameters as a result of increased fitness and exercise intensity (which 

tends to augment fibrinolysis44 and decrease platelet function23), and the fact that  in vitro 

processing of samples can artificially alter measurements of coagulation variables themselves45 

(i.e. partial thromboplastin time, prothrombin time, and platelet function).   

Furthermore, Kociba et al.46, in direct contrast to previous studies (that demonstrated a 

more pronounced decrease in the response of equine platelets from horses during exercise and 

those known to be “bleeders”21, 24 to aggregating agents such as adenosine diphosphate22-24, 26, 

collagen26, and platelet activating factor26), found no association between exercise status and 

decreased platelet aggregation by adenosine diphosphate, or any alteration in coagulation 

variables including prothrombin time, partial thromboplastin time, and bleeding time.  Instead, 

increases in platelet and fibrinogen concentrations and increased platelet retention with maximal 

exercise were observed in all horses.   Moreover, there was no difference between frusemide and 

placebo with respect to augmenting any of the haemostatic values (prothrombin time, partial 

thromboplastin time, bleeding time, platelet and fibrinogen concentration, and platelet retention).  

In addition, recent data published by Kingston et al. 27, 45 demonstrated enhanced platelet 

aggregation in response to supramaximal exercise.  Discrepancies between the results of the 

coagulation studies in exercising horses may be partially explained by the noteworthy finding in 

the Kingston et al. 27, 28 studies, that sodium citrate is not the anticoagulant of choice for 

evaluating the effects of exercise on equine platelet function since it clearly inhibits platelet 

aggregation.  Therefore, it would be reasonable to consider the possibility that studies using 

sodium citrate as the anticoagulant may have falsely implicated diminished platelet function in 

exercising horses in the etiology of EIPH.  This may also explain why herbal formulations 

designed to address this proposed coagulation problem failed to mitigate the haemorrhage. 

Although no alterations have been demonstrated in prothrombin and partial 

thromboplastin times following exercise with either “bleeders” or “non-bleeders”22-24, 26, 44,  

shortened whole blood clotting times and a trend for shortened prothrombin time and thrombin 
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time23, 44 have been shown.  This is also in agreement with the data of Kingston et al. 27, 45 which 

suggests that horse blood becomes transiently hypercoagulable during exercise.  However, an 

increased fibrinolysis that is transient with exercise44 has been observed and may attenuate or 

counterbalance the effects of this hypercoagulability.   

The data collected from resting horses in our study demonstrated that coagulability 

variables including, platelet number, prothrombin time, and partial thromboplastin time were not 

altered with the herbal formulations, so they would not be expected to be further altered with 

exercise.  Inferences concerning the effects of herbal treatments on cutaneous template bleeding 

times (which is dependent on the number and functional ability of circulating platelets 

responding to vascular injury)47 would be speculative, since only a limited number of horses 

were evaluated using the standardized technique of Kopp et al.48 (TS Epp, P McDonough, DJ 

Padilla, JH Cox, HH Erickson, and DC Poole unpublished data) 3 times before treatment (n=6; 

bleeding time 483 ± 31 seconds) and after administration of Single Immortal (n=2; bleeding time 

413.75 ± 21.75 seconds; 2 observations), Yunnan Paiyao (n=1; bleeding time 585.0 ± 0.0 

seconds; 1 observation), or cornstarch (n=3; bleeding time 615.0 ± 74.41 seconds; 3 

observations).  Bleeding times were only performed on a few horses since the primary objective 

of this study was to determine the efficacy of specific herbal formulations in reducing EIPH as 

evidenced by RBC counts in BAL fluid.  In addition, our data along with that from several 

studies using this technique have reported high variability and large standard errors between and 

within animals48 that make treatment effects if they exist, hard to detect47.   However, from a 

retrospective point of view, conclusive evidence for shortened bleeding times is of little 

importance mechanistically since the herbal formulations did not diminish the severity of EIPH.  

The overwhelming evidence from the current scientific literature suggests that a primary 

haemostatic deficiency is not present in the exercising horse27, 28, 45.  This is also supported by the 

data from the current study, especially since herbal formulations designed to shorten coagulation 

did not reduce EIPH.  Rather, the potential exists for an exercise-induced hypercoagulability 

with the formation of platelet-neutrophil aggregates45, 49, 50 (evaluated by spontaneous 

echocardiographic contrast)51 that may act to increase pulmonary arterial pressure by lodging in 

the microvasculature and consequently increasing EIPH.  In fact, the tendency for EIPH to be 

increased with herbal treatments in the current study (Figure 1) suggests that the blood-gas 

barrier ruptures are not sealed more effectively with the current treatment. 
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Further evidence to suggest that a haemostatic deficiency does not exist in exercising 

horses comes from the work of Elliot et al. 52, in which rapid reversibility of capillary breaks 

(within three minutes of decreasing capillary pressure, which is less than the clotting time for 

horses) was observed and inferences made from the morphologic data suggested this to be the 

result of mechanical phenomenon (release of tension) rather than biological repair by cells (i.e. 

platelets).  Subsequent data from West et al. 12 supported this work, since breaks in the blood-gas 

barrier of post-maximally exercised horses were difficult to find and were frequently associated 

with platelets and leukocytes plugging the breaks (implying no problem with coagulation).  It has 

been shown that once the threshold pressure required to cause stress failure of the capillaries53, 54 

is reached, the incidence and severity of capillary breaks does not change as a function of time, 

suggesting that the degree of haemorrhage is determined simply by the amount of time the 

“critical pressure” is exceeded52, 15 and not a delay in platelet plug formation.   

Possible explanation for increased time-to-fatigue by Single Immortal 

Time to fatigue was significantly increased when Single Immortal was administered to 

the horses versus Yunnan Paiyao or the placebo.  It therefore appears that Single Immortal may 

have some ergogenic properties that are unrelated to the severity of EIPH.  In a recent study, the 

treatment of horses with Echinacea55 was found to have potential ergogenic effects as a 

haematinic agent, due to the increased size and concentration of RBCs in the peripheral 

circulation and the associated increased concentration of haemoglobin that may enhance oxygen 

transport and thus performance.  However, similar effects were not observed in this study.  

Huang56 reported that endurance was prolonged in animals treated with Ginseng root, and it may 

be that Single Immortal contains a larger proportion of the plant (whole herb versus the active 

ingredient affecting hemostasis) than Yunnan Paiyao.  It is also possible that an ingredient in 

Single Immortal may have effects that are currently undetermined. 

Conclusions 
In conclusion, the herbal formulations Yunnan Paiyao and Single Immortal when used at 

the dosage and for the duration evaluated herein, were not effective in reducing EIPH severity in 

maximally exercising horses.  The results of our experiment can be interpreted in at least two 

different ways.  Specifically:  1)  Haemostatic impairment (i.e. platelet function defect) does not 

contribute significantly to EIPH severity, or alternatively 2)  The herbal treatment did not 
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successfully address the coagulability anomaly that is actually present.  The potential 

performance enhancing capability of Single Immortal is worthy of further study in order to 

determine 1) if a longer time-to-fatigue may have offset any EIPH benefit derived from herbal 

treatment, and 2) the mechanism for this phenomenon.  The findings of the present investigation 

should not be interpreted beyond the immediate context of the results obtained after treatment 

with Yunnan Paiyao and Single Immortal at this particular dose and duration.  There also 

remains the possibility that other herbal formulations may be successful in reducing EIPH.  
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CHAPTER 3 - EXERCISE-INDUCED PULMONARY 

HEMORRHAGE DURING SUB-MAXIMAL EXERCISE 

ABSTRACT 
Reasons for performing the study:  Maximally exercising horses achieve mean 

pulmonary artery pressures (Ppamean) that exceed the minimum threshold (75 mmHg) estimated 

for pulmonary capillary rupture and exercise-induced pulmonary hemorrhage (EIPH).  EIPH is 

not expected to occur during moderate sub-maximal exercise (i.e. 40-60% VO2max) since 

Ppamean remains well below this threshold.  Hypothesis:  We tested the hypothesis that 

prolonged sub-maximal exercise (trotting) would precipitate locomotory respiratory uncoupling 

and cause EIPH.  We expected EIPH to be present as a result of the most negative intrapleural 

pressures (as estimated by the minimum esophageal pressure (Pesmin)) occurring simultaneously 

with the most positive Ppa (Ppapeak) to produce estimated maximal pulmonary artery transmural 

pressures (PATMPmax) that surpass the EIPH threshold.  Methods:  Five Thoroughbred horses 

trotted to fatigue (~25 min) at 5 m/s on a 10% incline.    Ventilation (VE), Pes, and Ppa were 

measured at 5 minute intervals, and bronchoalveolar lavage (BAL) red blood cells (RBCs) were 

quantified 45 minutes post-exercise.  Results:  BAL revealed an increased number of RBCs/mL 

BALF (EIPH; rest:  2.0 ± 1 x 105, exercise:  17 ± 10 x 105 RBCs/mL BALF; p < 0.05).  This 

occurred despite the highest Ppamean reaching only 55 ± 3 mmHg, whilst VE (1197.5 ± 77.0 

L/min), tidal volume (12.7 ± 0.5 L), and Pesmin (-31 ± 6 cmH2O) approached 70-80% of the 

values achieved at maximal running speeds (10% incline: 12-13 m/s) by these same horses.  The 

resulting PATMPmax reached 110 ± 11 mmHg, well above the level considered causative of 

EIPH.    Conclusions:  The finding of significant EIPH during sub-maximal exercise broadens 

the spectrum of performance horses susceptible to EIPH and supports studies which suggest that 

extravascular factors are of primary importance in the etiology of EIPH.  Potential Relevance: 

Consideration of strategies such as the equine nasal strip for reducing negative extravascular 

pressures is warranted even for exercise at moderate intensities. 
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Introduction 
Exercise-induced pulmonary hemorrhage (EIPH) consequent to pulmonary capillary 

stress failure (West et al. 1993) occurs in almost all horses during short bouts of maximal 

intensity exercise (e.g. horse races; McKane et al. 1993, Meyer et al. 1998, Langsetmo et al. 

2000).  The major factor implicated in EIPH has been the prodigiously high pulmonary artery 

pressures (Ppa’s), especially since diuretic treatment (i.e. furosemide) lowers both mean Ppa 

(Ppamean) and EIPH (Kindig et al. 2001a; Geor et al. 2001; McDonough et al. 2004).  However, 

pulmonary artery transmural pressures (PATMP’s; i.e. intravascular – extravascular forces) may 

be of greater importance than Ppamean alone since extremely negative alveolar and intrapleural  

(i.e. extravascular) pressures summate with the highly positive intravascular pressures to provide 

large distending forces across the delicate blood-gas barrier.  In fact, there is strong evidence that 

PATMP’s greater than 75-100 mmHg precipitate pulmonary capillary stress failure and EIPH 

(Birks et al. 1997; Langsetmo et al. 2000).  Therefore, conditions such as laryngeal hemiplegia 

that obstruct the airway and increase the negativity of extravascular pressures (Jackson et al. 

1997; Ducharme et al. 1999) exacerbate EIPH (Cook et al. 1988) whereas reducing nasal 

passage collapse and therefore upper airway resistance by means of the nasal strip (Holcombe et 

al. 2002) reduces EIPH (Poole et al. 2000; Geor et al. 2001; Kindig et al. 2001a; McDonough et 

al. 2004, Valdez et al. 2004).   

Given that horses performing sub-maximal (moderate) exercise bouts maintain Ppamean (< 

60 mmHg; Hopkins et al. 1998) well below the threshold mentioned above, the tacit assumption 

has been that such exercise bouts do not cause horses to suffer from EIPH.  However, this 

assumption only takes into consideration the Ppamean and ignores the effects of the extravascular 

pressures on the PATMP.  Consequently, almost all EIPH investigations in equids have focused 

upon maximal or near-maximal exercise.  The one exception to this notion is the post-mortem 

study of Oikawa (1999) which suggested that EIPH may occur in horses exercised at sub-

maximal speeds.   

The current investigation utilized a sub-maximal exercise intensity protocol (brisk trot at 

5 m/s on inclined treadmill until gait and head carriage were indicative of fatigue) known to 

generate high levels of ventilation (Bayly et al. 1995; Hopkins et al. 1998) and potentially high 

PATMP’s whilst eliminating suprathreshold Ppamean (by keeping Ppamean < 60 mmHg) to test the 

hypothesis that such exercise could induce EIPH (as assessed by number of red blood cells 
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(RBCs) in the bronchoalveolar lavage (BAL) fluid).  The presence of EIPH following moderate 

exercise as demonstrated herein may influence the design of training regimes, the frequency with 

which horses compete, and prophylactic measures taken when exercising horses. 

Methods 

Animals 

Five fit Thoroughbred geldings with a history of EIPH, but otherwise certified as healthy 

by the attending veterinarian were utilized for this study; they ranged in age from 4-10 years and 

weighed 450-600 kg.  The horses had been acquired from the racetrack 2-7 years prior to the 

study and were confirmed bleeders of varying degrees.  The horses were housed in dry lots with 

shelters, fed concentrate (Strategy)1 in addition to brome and alfalfa hay twice daily, and had free 

access to water and salt blocks.  All horses were rotationally dewormed and vaccinated against 

rabies, Eastern/Western Encephalomyelitis, tetanus, Rhinopneumonitis, equine influenza, and 

West Nile virus.  Each horse was conditioned to run on a high speed treadmill (Sato)2 3 times a 

week.  Workouts were endurance and interval based protocols beginning several months prior to 

the experiment and involved extended periods of trotting and slow cantering on both the flat and 

inclined treadmill.  All procedures used in this investigation were approved by the Kansas State 

University Institutional Animal Care and Use Committee. 

Animal preparation, measurements, and calculations 

Two 7-F introducer catheters were aseptically inserted into the right jugular vein in order 

to utilize a microtipped pressure transducer (Model SPC-471A)3 and a thermistor catheter  

(Model 08407 Thermal Dilution Catheter)4 to monitor Ppa and core body temperature, 

respectively.  Pulmonary artery mean pressure (Ppamean) as well as the highest Ppa (Ppapeak) were 

analyzed.  Arterial blood samples were obtained from an aseptically placed 18 G catheter into 

either a previously elevated carotid artery or the transverse facial artery.  Placement and 

calibration methods have been described previously (Meyer et al. 1998; Kindig et al. 2001a, b, 

2003; McDonough et al. 2004).  An air-filled esophageal balloon catheter connected to a 

differential pressure transducer (Model MC1-3-871)5 was placed at the mid-thoracic level at the 

base of the heart to obtain an indirect estimate of intrapleural pressure (esophageal pressure 

(Pes); Art et al. 1988) in the same horizontal plane as the dorsal portion of the lung (Langsetmo 
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et al. 2000; Kindig et al. 2003), which is the predominant site of EIPH.  The Pes waveforms 

were subsequently analyzed to resolve the highest positive Pes (Pespeak), the most negative Pes 

(Pesmin), and the magnitude of positive to negative change in Pes (Pespeak – Pesmin; Pesswing) 

during breathing.  The maximal estimated value for pulmonary artery transmural pressure 

(PATMPmax) was calculated by subtracting the Pesmin from the Ppapeak after converting Pesmin 

from cmH2O to mmHg.  Horses were also instrumented with a heart rate monitor (Polar®)5 for 

determination of heart rate (HR) during exercise. 

Ventilation, pulmonary gas exchange, and blood gases 

Ventilation and inspiratory airflow were measured on a breath-by-breath basis using 

ultrasonic phase-shift flowmeters (Model FR-41eq)7  and expired O2 and CO2 concentrations for 

gas exchange were determined using a mass spectrometer (Perkin-Elmer Medical Gas Analyzer 

Model 1100)8, as described previously (McDonough et al. 2002a, b).  All systems were 

interfaced with a computer-based data acquisition system (Po-Ne-Mah Data Acquisition 

System)9 and standard equations were used for calculation of minute ventilation (VE) and gas 

exchange variables including oxygen uptake (VO2), carbon dioxide production (VCO2), and 

ventilatory equivalent for CO2 (VE/VCO2), (Kindig et al. 2001a; McDonough et al. 2002a, b; 

Padilla et al. 2004, McDonough et al. 2004). Anaerobically collected arterial blood samples were 

analyzed (Nova Stat Profile)10 for blood gases including partial pressure of arterial oxygen (PaO2) 

and carbon dioxide (PaCO2), pH (corrected to core body temperature; Fedde 1991), plasma 

lactate [La-], and hematocrit (Hct).  

Experimental protocol 

Maximal HR (HRmax; highest HR achieved during exercise bout) and maximal VO2 

(VO2max; highest VO2 achieved during a maximal incremental exercise bout) was available for all 

horses from prior maximal exercise test runs.  Each of the five horses completed a sub-maximal 

exercise test on a 10% incline consisting of a 4 minute warm-up at 3 m/s followed by an increase 

in speed to 5 m/s (~60% of VO2max and ~ 75% of HRmax; unpublished data McDonough and Epp) 

until the horses reached 42˚C core body temperature or fatigued (24.7 ± 1.6 minutes).   Since 

horses performing this type of exercise do not tend to drop to the back of the treadmill when 

fatigued, the point of fatigue was judged as when the horses changed to a shuffling gait, eyes 

became dull, and/or ears began to droop.  To offset potential dehydration, 5 L of lactated Ringers 
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solution was administered intravenously during recovery, while the horses were cooling down at 

a trot on the treadmill.  Ventilatory (inspiratory flow, VE, VT (tidal volume), and bf (breathing 

frequency)), cardiorespiratory (VO2, VCO2, and HR), core body temperature, and pressures (Ppa 

and Pes) variables were collected continuously throughout the test and averaged every five 

minutes, while blood samples (blood gases, lactate) were collected every 5 minutes during the 

exercise bout. 

Brochoalveolar lavage 

The technique of BAL was chosen over endoscopy to evaluate the quantity of EIPH due 

to the increased sensitivity of the technique in detecting significant, but modest amounts of 

hemorrhage.  We have also demonstrated that the soft and flexible lavage tube does not damage 

the airway epithelium and cause bleeding (Meyer et al. 1998).  The pre-exercise baseline BAL 

samples were taken from the horses rested for at least 10 days before the initiation of the study.  

The presence of RBCs in the BAL as a result of exercise is not detectable after 7-10 days post-

exercise (Meyer et al. 1998).  A minimum of 7 days was allowed to elapse from the baseline 

BAL to the BAL obtained 45 minutes after the exercise test since this has been shown by (Clark 

et al. 1995) to allow baseline cellular populations to re-establish between lavages.  For all 

lavages, the horses were sedated using detomidine hydrochloride (Dormosedan®; 5-10 µg/kg 

IV)11 and butorphanol tartrate (Torbugesic®; 5-10 µg/kg IV)12 to facilitate BAL (Meyer et al. 

1998; Kindig et al. 2001a).  A BAL tube (Bivona VBAL30)13 with an inflatable cuff was 

introduced into the right naris through the ventral meatus, and into the lung until wedged in a 

sub-segmental bronchus of the dorsal caudal portion of the lung (McKane and Rose 1993).  The 

Bivona tube with a cuff created a seal within the airway, which ensured lavage of the distal 

airway and maximized recovery of lavage fluid.  A total of 300 mL (in 50 mL aliquots) of 0.9% 

physiologic saline was infused.  After approximately two breaths, the fluid (a percentage of the 

entire 300 mL) was aspirated with gentle suction.  The BAL fluid was centrifuged (Beckman TJ-

6)14, the supernatant decanted, and the pellet was resuspended in 0.9% saline (Lapointe et al. 

1994).  The amount of saline used for resuspension ranged from 10-25 mL depending on the 

severity of EIPH.  The goal was to maintain a relatively similar RBC-to-saline solution ratio (i.e. 

lavage fluid hematocrit) to decrease any variability inherent in the counting procedure.  Red 

blood cells (RBCs) were counted (Meyer et al. 1998; Kindig et al. 2001a, McDonough et al. 
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2004) using a hemocytometer (Fisher No. 02-671-5)15 and a microscope (Nikon)16.  EIPH data 

are presented as RBCs per milliliter of recovered BAL fluid minus tube dead space (17 mL).   

Statistical Analysis 

A one-way analysis of variance with repeated measures was used to determine whether 

differences existed between the different time periods of the sub-maximal exercise bout (i.e. 5, 

10, 15, 20, and 25 minutes or end-exercise) for cardiorespiratory and metabolic variables.  When 

significance was revealed, the point of significance was identified using a Student-Newman-

Kuels or Least Squares post-hoc test.  EIPH, represented by RBCs/mL BAL fluid was analyzed 

using a student’s paired t-test.  Pearson Product Moment Correlations were used to determine 

relationships between variables.  Statistical significance was accepted at p ≤ 0.05 level.  The 

Sigma Stat 3.017 statistical package was used to analyze the data. 

Results  

Exercise-induced pulmonary hemorrhage 

The exercise challenge resulted in an increased EIPH (17 ± 10 x 105 RBCs per mL BAL 

fluid) over baseline (2 ± 1 x 105 RBCs per mL BAL fluid) values (Fig 3.1).  The BAL recovery 

volume averaged 55.5 ± 3.1 and 53.5 ± 7.2% for baseline and exercise testing, respectively.  A 

non-significant association was observed between PATMPmax versus EIPH (r = 0.84; p = 0.07). 
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Figure  3.1 Exercise-induced pulmonary hemorrhage (EIPH) following sub-maximal 
exercise bout. 
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This bar chart demonstrates the increase (number of horses = 5) in exercise-induced pulmonary 
hemorrhage (EIPH) following sub-maximal exercise as determined from average number of red blood 
cells (RBCs) in lavage fluid.  Data are presented as mean ± SE.  *Post-Exercise RBCs/mL > Baseline 
(Rest) RBCs/mL; (p < 0.05).  Inset illustrates individual horse results.   

Minute ventilation, tidal volume, and breathing frequency 

The ventilatory variables including VE, VT, and bf are illustrated in Figure 3.2.  From 5 

minutes to end-exercise at 5 m/s there was an increase in VE from 1048.9 ± 88.1 L/min to a final 

value of 1197.5 ± 77.0 L/min.  No differences were noted for in bf or VT, (Fig 2) whilst VE/VCO2 

increased (Table 3.1) from 5 minutes to end-exercise.  Inspiratory flow increased over the last 15 

minutes of the exercise bout (Table 3.1). 
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Figure  3.2 Ventilatory variables during sub-maximal exercise bout. 
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Minute ventilation (VE; solid diamonds), tidal volume (VT; solid squares) and breathing frequency (bf; solid 
triangles) plotted as a function of exercise time in minutes.  Sub-maximal exercise was performed at 5 
m/s.  Number of horses = 5. *Mean VE at 25 minutes is greater than that at 5 minutes, p < 0.05. 

 

Table  3.1  Cardiorespiratory and metabolic variables during sub-maximal exercise. 
Variable 5 minutes 10 minutes 15 minutes 20 minutes 25 minutes 

VO2 (L/min) 49.6 ± 2.9 51.2 ± 3.5 51.1 ± 4.9 48.5 ± 4.6  45.4 ± 2.2 
VCO2 (L/min) 47.2 ± 3.2 50.8 ± 2.4 44.7 ± 3.6 40.8 ± 4.0b 39.9 ± .3b 
VE/VCO2 22.2 ± 1.3 22.0 ± .5 26.9 ± 1.4 29.8 ± 2.7a,b 30.0 ± 1.7a,b 
Inspiratory 
Flow (L/s) 

34.0 ± 2.6 35.8 ± 1.6 39.8 ± 2.4a,b 40.2 ± 1.0a,b,c 41.2 ± 1.6a,b,c 

PaO2 (mmHg) 80 ± 5 86 ± 2a 89 ± 2a,b 92 ± 3a,b,c 97 ± 2a,b,c,d 
PaCO2 (mmHg) 45.4 ± 1.3 47.6 ± 1.8 46.9 ± 2.4 46.6 ± 2.5 45.6 ± 2.9 
Ppapeak (mmHg) 82 ± 6 85 ± 6 85 ± 6 87 ± 7 85 ± 2 
Pesswing 
(cmH2O) 

56.2 ± 4.3 58.7 ± 3.2 60.2 ± 5.7 64.5 ± 11.9 60.6 ± 12.3 

Pesmin (cmH2O) -23.7 ± 2.7 -28.1 ± 1.9 -29.1 ± 3.0 -31.3 ± 6.4 -29.3 ± 5.0 
HR (bpm) 161 ± 3 161 ± 3 161 ± 4 166 ± 5 167 ± 7 
Plasma [La-] 
(mmol/L) 

2.2 ± .4 1.6 ± .3 2.0 ± .5 3.3 ± 1.1 5.4 ± 1.8a,b,c 

Hct (%) 55.8 ± 1.4 54.2 ± 1.7 53.4 ± 1.7 53.8 ± 1.3 55.6 ± 2.2 
CBT (˚C) 38.2 ± .4 39.3 ± .4a 39.9 ± .4a,b 40.8 ±.4a,b,c 41.4 ± .5a,b,c,d 
pH 7.47 ± .01 7.45 ± .01 7.46 ± .01 7.46 ± .02 7.46 ± .02 
The data for 5 horses are included in the table.  Values are 5 minutes averages over the 25 minutes 
exercise period at 5 m/s and are presented as mean ± SE.  VO2: oxygen uptake, STPD; VCO2: carbon 
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dioxide elimination, STPD; VE/VCO2: ventilatory equivalent for CO2; PaO2: temperature corrected partial 
pressure of oxygen in the arterial blood; PaCO2: temperature corrected partial pressure of carbon dioxide 
in the arterial blood; Ppapeak highest pulmonary arterial pressure; Pes: esophageal pressure; Pesmin:  most 
negative Pes; Pesswing (maximum change in esophageal pressure) = Pespeak (most positive Pes) – Pesmin 
); [La-]: plasma lactate concentration; HR: heart rate; Hct: hematocrit; and CBT: core body temperature. 
Significant differences are indicated by superscripts: a=different from 5 minutes, b=different from 10 
minutes, c=different from 15 minutes, and d=different from 20 minutes.  Values with the same superscript 
were not different from each other.  

Pulmonary artery and maximum pulmonary artery transmural pressure 

The average Ppamean for the 25 minute duration at 5 m/s was 54 ± 1 mmHg (Fig 3.3), and 

both Ppamean and Ppapeak were stable throughout exercise.  The average PATMPmax (Ppapeak – 

Pesmin) was 106 ± 8 mmHg for the same time period (Fig 3.3).  

Figure  3.3 Pulmonary artery (Ppa) and pulmonary artery transmural (PATMPmax) 
pressures during sub-maximal exercise. 
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The maximum pulmonary artery transmural pressure (PATMPmax = Ppapeak (highest Ppa) – Pesmin (lowest 
esophageal pressure (Pes)); solid squares) and mean pulmonary artery pressure (Ppamean; solid 
diamonds) at each time point during sub-maximal exercise.  Number of horses = 5.  Exercise was 
performed at 5 m/s.   
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Cardiorespiratory, metabolic, and hematological variables 

VO2, PaCO2, Pesmin, Pesswing, pH, HR, and Hct, remained relatively constant throughout 

the 25 minute duration of the 5 m/s exercise test (Table 3.1).  PaO2 and core body temperature 

progressively increased throughout the exercise bout.  The peak VCO2 at 10 minutes (5 m/s; 50.8 

L/min) was greater than that measured at end-exercise (39.9 L/min; Table 3.1).  Plasma lactate 

significantly increased from 5 minutes to end-exercise (Table 3.1).   

Discussion 
Contrary to the widely held belief that EIPH can only be induced by maximal or near-

maximal exercise, this investigation demonstrates that a significant level of EIPH occurs during 

sub-maximal exercise in known bleeders.  This finding supports Oikawa’s (1999) post-mortem 

observations that a group of 1-2 year old Thoroughbred horses exercised at speeds not exceeding 

8.5 m/s, displayed EIPH lesions in the dorsocaudal lung region.   

Contribution of pulmonary artery pressure to EIPH 

The most widely accepted mechanism for acute mechanical failure of the blood-gas 

barrier is the achievement of extraordinarily high Ppamean in maximally exercising horses 

(Erickson et al. 1990, 1992; West et al. 1993).  However, when considering the contribution of 

the Ppa by itself in the sub-maximally exercised horses used in the current investigation, Ppamean 

only reached 55 mmHg, which is far below the Ppamean commonly measured at maximal exercise 

( 90 - 120 mmHg; Erickson et al. 1990; Kindig et al. 2001a, b).  Pressures above 90 mmHg are 

high enough without taking the extravascular forces into account to cause rupture of the 

pulmonary capillaries and thus EIPH according to the hypothesized PATMP threshold (Birks et 

al. 1997; 75-100 mmHg; Langsetmo et al. 2000; ~ 90 mmHg).  It is pertinent, however, that the 

significant EIPH evidenced herein was well below that typically observed in these same horses at 

maximal exercise (EIPH = 4-64 x 106 RBCs/ml BAL fluid; Kindig et al. 2001a, b, 2003; 

Hildreth et al. 2003; McDonough et al. 2004; Epp et al. 2005).  One potential reason for this 

lower EIPH follows from the Elliot et al. (1992) study which suggested that once the critical 

pressure has been reached (presumably either by elevation of intravascular or by a combination 

of intravascular and extravascular pressures), the severity of the hemorrhage will be dependant 

upon the amount of time the pressures are sustained, since breaches seal rapidly once pressures 

are lowered.  In other words, EIPH of mild-to-moderate severity may be observed during 
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moderate intensity sub-maximal exercise because tears in the blood-gas barrier that occur as a 

result of isolated instances of high PATMP are rapidly sealed as the mean intravascular pressure 

is far below that necessary to cause continued extravasation.  In fact, EIPH may occur along a 

continuum as exercise intensity increases, as the Ppamean will be elevated above the critical 

pressure for progressively longer periods of time as treadmill speed is increased (i.e. Poole et al. 

2000 [12 m/s; 18 x 106 RBCs/mL BAL fluid], Kindig et al. 2001a [14 m /s; 55 x 106 RBCs/mL 

BAL fluid], McDonough et al. 2004 [15-16 m/s; 64 x 106 RBCs/mL BAL fluid]).   

Contribution of the airways to EIPH 

Trotting (sub-maximal exercise), as opposed to galloping (maximal exercise), does not 

evoke 1:1 locomotory-respiratory coupling (Attenburrow and Goss 1982; Hornicke et al. 1983; 

Bramble and Carrier 1983; Bayly et al. 1995; Hopkins et al. 1998) and allows for variable 

breathing strategies, primarily associated with changes in the ratio of inspiratory to expiratory 

time (Bayly et al. 1995; Hopkins et al. 1998).  This alteration in inspiratory timing allows for 

horses to take larger breaths which in turn causes the Pesmin to become even more negative and 

this behavior may be repeated over a longer time period during prolonged exercise at sub-

maximal intensities.  These larger and longer breaths ultimately result in an increased incidence 

of pressure waveform (i.e. Ppapeak and inspiratory Pesmin) superimposition or summation (Fig 

3.4).  This occurrence is in contrast to maximal exercise when uncoupling rarely (if ever) occurs 

(Erickson et al. 1990; Langsetmo et al. 2000), and may be critical in achieving the high 

PATMPmax found herein.  Moreover, the VE (Fig 3.2) required for sub-maximal exercise is 

increased out of proportion to the metabolic rate (increased VE/VCO2), especially at end-exercise 

(Table 3.1).  The resulting elevation of VE in these moderately-exercised horses was such that the 

inspiratory effort (Hopkins et al. 1998) and associated Pesmin (Table 3.1) were sufficient when 

combined with the intravascular pressures (especially when in-phase with  Ppapeak; PATMPmax 

versus EIPH, r=.84 (p=0.07); Fig 3.3) to exceed the PATMP threshold, initiating rupture of the 

pulmonary capillaries.  In other words, sub-maximal exercise levels increased the opportunity for 

extravascular (i.e. VT, VE, and Pesmin) rather than intravascular (Ppa) pressures to cause EIPH.   
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Figure  3.4 Cardiorespiratory data tracings from a representative horse during sub-
maximal exercise bout. 
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Tracings from representative horse including inspired/expired O2%, inspired/expired CO2%, inspiratory 
flow (right and left nostrils; L/min), pulmonary arterial pressure (Ppa; mmHg), and esophageal pressure 
(Pes; cmH2O).  Arrows represent points on tracing where peak or near peak Ppa’s (Ppapeak) occur 
concurrently with highly negative inspiratory Pes (minimum Pes; Pesmin) when horses are not coupled in a 
1:1 locomotory respiratory coupling and taking occasional larger breaths.  Note: Absolute superimposition 
of peak Ppa and end inspiratory Pes leads to maximum pulmonary arterial transmural pressures 
(PATMPmax), as PATMPmax = Ppapeak – Pesmin.  Circle helps visualize maximization of PATMP’s on either 
side of an outstandingly large breath. 

 

Further support for an extravascular mediator of EIPH in the present investigation relates 

to the relatively large VT values achieved during sub-maximal exercise (i.e. greater than would 

be observed at the same speed during an incremental exercise test; McDonough et al. 2002b).  Fu 

et al. (1992) demonstrated a greater incidence of capillary rupture at higher versus lower lung 

volumes in rabbit lungs.  That publication considered that the greater alveolar and intrapleural 

pressures associated with large lung volumes caused increased stretching and therefore fragility 

of the capillaries which ultimately resulted in increased capillary rupture.  Furthermore, Kindig 

et al. (2003) showed that during maximal exercise on an inclined treadmill the increased VT was 

associated with greater EIPH, even in the presence of slightly lower Ppamean.  The horses in the 
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current study evidenced VT’s similar to those measured at maximal exercise by Kindig et al. 

(2003) whilst demonstrating much lower Ppamean, and attenuated EIPH.  Therefore, the present 

novel finding that sub-maximal exercise induces EIPH, combined with the nasal strip and upper 

airway obstruction studies, supports the hypothesis that extravascular factors are important in 

initiating and modulating EIPH. 

Diagnosis of EIPH with bronchoalveolar lavage (BAL) 

Sweeney and Soma (1983) as well as Hopkins et al. (1998) found no evidence that 

bleeding occurs in competitive endurance horses or horses exercised at sub-maximal levels and 

this may be due to less sensitive diagnostic methods being employed: epistaxis and endoscopy 

versus bronchoalveolar lavage.  The small but significant level of bleeding observed in the 

current study did not cause epistaxis and would most likely have been undetectable by 

bronchoscopy alone (Meyer et al. 1998; Langsetmo et al. 2000), thus requiring the sensitivity of 

the BAL technique for diagnosis (Kindig et al. 2001a).  Notwithstanding the inability to assess 

global lung blood volumes, BAL allows reproducible sampling (Kindig et al. 2001a) from the 

dorsocaudal lung region (McKane et al. 1993) which is the predominant location of EIPH.     

Future studies 

The knowledge that bleeding occurs during sub-maximal exercise is important and 

relevant to equine health because even small amounts of blood may, over time, result in a 

chronic inflammatory response, consequent scarring (McKane and Slocombe 2002; Robinson 

and Derksen 1980), and associated sequelae (bronchiolitis and fibrosis; O’Callaghan et al. 

1987a, b).  Therefore, future studies investigating non-pharmacological alternatives such as the 

nasal strip to mitigate EIPH during sub-maximal training may prove to be beneficial to the 

overall pulmonary health of the equine athlete. 

In summary, significant levels of EIPH occurred during prolonged sub-maximal exercise 

in a population of horses with a history of EIPH, despite only modest increases in pulmonary 

intravascular pressures.  This knowledge identifies EIPH as a potential problem in horses 

performing at lower intensities (i.e. endurance horses) and may alter perceptions regarding the 

need for prophylactic measures and alterations in training regimes in these horses. 
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CHAPTER 4 - THE OCCURRENCE AND SEVERITY OF 

EXERCISE-INDUCED PULMONARY HEMORRHAGE IN 

RACING GREYHOUNDS 

Abstract 
Exercise-induced pulmonary hemorrhage (EIPH) has been recognized as a major health 

concern in performance horses, but the incidence and severity of this condition in racing 

Greyhounds has received little attention.  Equids and Greyhounds share many physiological 

characteristics related to their prodigious athletic ability.  However, there are structural and 

functional differences that may protect the racing Greyhound from the extreme EIPH 

experienced by horses.  Thus, we hypothesized that EIPH would be present, but the severity 

reduced in racing dogs as compared to horses.  To test this hypothesis, we had Greyhound dogs 

(n=6) run a simulated 5/16 mile race on two occasions.  Bronchoalveolar lavage (BAL) was 

performed at weekly intervals throughout the investigation to examine the number of red blood 

cells (RBCs), white blood cells (WBCs)/differentials, and hemosiderophages in the lungs of 

Greyhounds before, immediately after, and for 4 weeks following the 5/16 mile race.  Maximal 

heart rate for the Greyhounds during the race was 230 ± 1 bpm and 10 minute post-exercise 

venous lactate was 18.6 ± 0.4 mmol/L.  No epistaxis or pink froth was observed at the nose or 

mouth of any of the dogs.  The RBCs in the lavage fluid demonstrated a significant increase 

immediately post-exercise (Baseline = 109.6 ± 11.7 x 103 RBCs/mL BAL fluid; Run = 292.3 ± 

69.9 x 103 RBCs/mL BAL fluid), returning to baseline by 1 week post-exercise (149.2 ± 46.2 x 

103 RBCs/mL BAL fluid).  Percent hemosiderophages were not different for any of the 

measurement periods.  The number of WBCs/mL BAL fluid decreased from baseline and run 

values at 2, 3, and 4 weeks post-exercise.   Along with the decreased WBC counts during the 

weeks post-exercise, alveolar neutrophil numbers were decreased from baseline and run values 

for 4 weeks post-exercise.  Despite the reduced number of WBCs, macrophage percentages were 

increased from baseline and run 1 by one week post-exercise and remained elevated for 2 weeks 

before returning to baseline.  These results (i.e. increased RBC numbers and non-elevated WBC 

counts) demonstrate that these Greyhounds did not experience EIPH nor inflammatory airway 
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disease to the same degree described in horses, and therefore this condition may not be as 

detrimental to racing canines as to horses. 

Introduction 
Exercise-induced pulmonary hemorrhage (EIPH) has been reported to occur in nearly all 

horses1-4, as well as camels5, humans6, 7, and dogs8, 9 to some degree following strenuous 

exercise.  Although this condition has been well documented in the Thoroughbred horse since 

the 16th century10 and researched extensively, only two preliminary reports provide evidence that 

Greyhounds experience EIPH8, 9.   

In horses it has been determined that the etiology of EIPH is multifactorial, with high 

pulmonary artery pressures11, 12, large airway pressure swings3, 13-22, inflammatory airway 

disease1, 23-29, and ground impact forces30-32 thought to be the major contributing factors.  The 

exercise response of Greyhounds is physiologically similar to that of the horse in many ways.  

The Thoroughbred horse and racing Greyhound are both exceptional sprinters33-35 (~ 18 m/s)  

with massive cardiac outputs33-36 (0.6 L/kg/min, 1.0 L/kg/min), and exceptional elevations in 

packed cell volume (PCV; 70, 66 %)34, 35, 37, 38 during maximal exercise, respectively.  The 

pulmonary capillary transmural pressure required for rupture in the canine pulmonary capillary 

(66-70 mmHg)39, 40 is similar to the mean pulmonary artery pressure (Ppa) reported for the 

Greyhound during sub-maximal exercise at 11m/s (approximately 55 mmHg)41.  Thus, it is likely 

that the Greyhound approaches or exceeds this “threshold for capillary rupture” during maximal 

exertion.  One important difference between canine and equine athletes is that horses are obligate 

nasal breathers during exercise.  This, in combination with a very long trachea, causes the 

development of exceptionally negative extravascular pressures, which summate with the 

intravascular pressures to create very high transmural pressures in the horse.  As the Greyhound 

is not an obligate nasal breather (as is the horse) during exercise and has a much shorter trachea, 

these factors may act to limit the fall in alveolar pressure42-44 experienced during maximal effort 

ventilation and reduce the potential for severe EIPH in this species.   

While pulmonary capillary transmural pressures may be lower than that in the horse, the 

strength of the pulmonary capillary alveolar interface is lower in the dog compared with that in 

the horse40.  Specifically, subtracting esophageal pressure (Pes) from mean Ppa to estimate 

pulmonary artery transmural pressure, a value of greater than 65 mmHg (close to canine stress 
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failure threshold) is estimated during sub-maximal exercise.  Thus, it should not be surprising 

that preliminary data suggests that Greyhounds do experience EIPH during maximal sprint 

exercise8, 9.   

This investigation was designed to determine whether Greyhounds run over the standard 

5/16 mile course demonstrate significant EIPH, and if present, outline the timeline for resolution.  

Specifically, we tested the hypothesis that Greyhounds would exhibit significant EIPH and that 

the time course of recovery (i.e. disappearance of red blood cells (RBCs), elevation of WBCs, 

and hemosiderophage emergence, peak, and decline) would follow a similar pattern to that 

documented for the horse. 

Methods 

Animals 

Six healthy Greyhound dogs that had been raced on the track were acquired for the study.  

The group consisted of 4 intact females and 2 intact males ranging in age from 2-4 years and 

weighing 29.0 ± 1.2 kg.  They were housed in a temperature controlled building (70-74˚ F with 

30-70% humidity).  They had 3 square foot inside their pen with free access to a 792 square foot 

sand run.  Indoor conditions were on a 12:12 hour light:dark cycle. The dogs were fed Iams 

(Iams Mini Chunks®, Iams Company, Dayton, OH, USA) adult dog food (minimum of 26.0% 

crude protein, minimum of 15.0% crude fat, maximum of 5.0% crude fiber, and maximum of 

10.0% moisture) once daily in the morning and had free access to water.  The Greyhounds were 

current on vaccinations including Distemper Virus, Adenovirus, Parainfluenza Virus, Parvovirus, 

and Bordatella Bronchiseptica as well as being on monthly Heartguard Plus.  All procedures 

used were approved by the Kansas State University Animal Care and Use Committee. 

Animal Preparation 

The Greyhounds were fed 3 hours before estimated run time.  The dogs were transported 

in a climate-controlled dog trailer approximately 50 miles to a local training track.  The 

Greyhounds were outfitted with heart rate monitors (Polar®; Polar Horse Heart Monitors, Mill 

Valley, CA, USA) attached by a harness made of elastic and secured with racing slinkys in order 

to determine maximal heart rate during sprinting.  The heart rate monitors have data storage 

capacity and this data was downloaded to a personal computer for post-run analysis. 
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Exercise Protocol 

Greyhounds were divided into 2 heats with 3 dogs each heat and run on the track in a 

race-simulated timed run (5/16 mile distance) around a track, chasing a lure.  Within 10 minutes 

of completing the run a venous blood sample was obtained from the jugular vein with a 22 gauge 

one inch needle attached to a 3 cc heparinized syringe with a stopcock for post-exercise plasma 

lactate analysis.  Greyhounds were not formally exercised post-run, but did have access to their 

runs.  A second identical run (run 2) was performed two to three weeks after RBC and WBC 

counts had stabilized near baseline levels (~7 weeks post-run 1). 

Bronchoalveolar Lavage 

The initial baseline BAL was performed and cultures obtained after the dogs had not been 

formally exercised or raced for 1-2 weeks.  The initial post-run lavage was performed 

approximately 2 hours post-exercise under general anesthesia in order to quantify the number of 

RBCs in the lung, and therefore, the severity of EIPH.  Briefly, after intramuscular pre-

medication with atropine (0.025 mg/kg), morphine (0.25 mg/kg), and valium (0.2 mg/kg) had 

taken effect, the dogs were induced with intravenous propofol (6 mg/kg; PropoFlo™, Abbott 

Laboratories, North Chicago, IL, USA), intubated and placed on supplemental oxygen.  Dogs 

remained in sternal recumbency for the procedure.  They were maintained with an intravenous 

infusion of propofol (0.4 mg/kg/min) to facilitate BAL.  Heart rate, systemic arterial pressure, 

oxygen saturation, respiratory rate/character, mucus membrane color, and depth of anesthesia 

were monitored by a technician.  After the animals were stabilized under anesthesia, a flexible 

modified foal stomach tube45 (Argyle stomach tube, Sherwood Medical, Company, St. Louis, 

MO, USA) was wedged in a sub-segmental bronchus of the caudal dorsal lung lobe after 

insertion through the endotracheal tube.  Before insertion, the distal end was transected with a 

sterile blade above the most proximal fenestration (approximately 6 cm from the distal end).  A 

sterile, hand-held metal pencil sharpener was used to round the distal end of the tube and create a 

slight taper to enhance formation of a tight seal when the tube was wedged in a bronchus of the 

caudal lung lobe.  During insertion once resistance was felt, an attempt was made to gently 

withdraw and reposition the catheter, ensuring placement in the most distal airway possible.  A 

Christmas tree adapter was placed on the proximal end of the BAL catheter.  Following 

placement of the catheter, 50 mL aliquots of sterile, isotonic saline (0.9%), warmed to body 
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temperature, were slowly infused.  After a short delay (approximately 2 breaths), the fluid was 

aspirated with gentle suction while chest copage was performed bilaterally.  This procedure was 

repeated 3 times, equivalent to a dose of 5 mL/kg of instilled fluid/dog (approximately 125-150 

mL total per dog).  Supplemental oxygen was administered after the procedure until extubation 

and provided by mask thereafter until the dog recovered.  The dogs were monitored every 4-6 

hours after the procedure for signs of respiratory distress, pale mucus membranes, or prolonged 

capillary refill time, and twice daily for the next 48 hours for signs of respiratory distress, cough, 

lethargy, or loss of appetite. The BAL samples were placed on ice immediately after collection 

and remained chilled throughout analysis.  The BAL fluid was centrifuged (10 minutes at 600 x 

g; TJ-6 Table Top Centrifuge, Beckman Instruments, Incorporated, Palo Alta, CA, USA), after 

which the supernatant was removed via gentle suction and the pellet resuspended in sterile 0.9% 

saline.  RBCs and WBCs were then quantified manually with standard hemocytometer counts 

(Fisher Scientific, Pittsburgh, PA, USA; Nikon, Incorporated Instrument Group, Garden City, 

NY, USA), expressed as cells/mL BAL fluid, and differential slides were made (Cytospin 2, 

Shandon, Pittsburg, PA, USA) and evaluated.  Differential slides were stained with a dip quick 

stain (Hema-Stain, Fisher Scientific, Pittsburgh, PA, USA) that stains cells similar to the Wright-

Giemsa stain.  Cytospin slides were also stained with Perl’s Prussian Blue Stain as previously 

described by Meyer et al.2 and the percentage of hemosiderophages were determined from the 

entire slide which had a uniform concentration of 1 x 106 cells/slide. 

This lavage procedure was then performed at one week intervals following the race to 

determine the time course of recovery from EIPH.  There was a two week interval between the 

4th week post-run lavage and baseline 2.  The post-run 2 lavage was done one week after the 

second baseline in a similar manner to run 1.   

Blood Analysis 

Following venous blood withdrawal (jugular vein ~10 minutes post-race) into plastic, 

heparinized syringes, blood samples were placed immediately on ice.  Within two hours of the 

experiment, plasma lactate was quantified using a  Nova Stat M blood-gas analyzer (Nova 

Biomedical, Waltham, MA, USA).  This machine was calibrated according to the manufacturer’s 

standards immediately prior to running the samples. 
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Statistics 

Differences in measured variables were analyzed using a mixed effects model where time 

is a fixed effect and dog and dog*time are random effects.  The response equals overall effect + 

dog effect + time effect + dog*time interaction + error, where dog and dog* time are random 

effects. When significant differences were found, a Least-Square Means post-hoc test was used 

to determine where differences existed.  The Statistical Analysis System Program 9.1.2 statistical 

package (SAS Institute, Incorporated, Cary, NC, USA) was used to analyze the data.  

Significance was accepted at the p ≤ 0.05 level. 

Results 

Exercise-induced pulmonary hemorrhage 

The Greyhounds exhibited a significant increase in EIPH (p = 0.025; as defined by the 

number of RBCs in the BAL fluid) when determined after both run 1 (p = 0.036) and run 2 (p = 

0.016).  Baseline and post-run 1 values (mean ± SE) were 144.5 ± 21.9 x 103 RBCs/mL BAL 

fluid and 313.8 ± 70.5 x 103 RBCs/mL BAL fluid, respectively.  Baseline and post-run 2 values 

(mean ± SE) were 74.7 ± 13.1 x 103 RBCs/mL BAL fluid and 270.7 ± 120.1 x 103 RBCs/mL 

BAL fluid, respectively.  The mean levels of RBCs for the baselines and runs were consistent (no 

significant differences existed between baseline 1 and baseline 2 or run 1 and run 2), so these 2 

data points were averaged (Baseline = 109.6 ± 11.7 x 103 RBCs/mL BAL fluid; Run = 292.2 ± 

69.9 x 103 RBCs/mL BAL fluid) for ease of interpretation (Fig 4.1).  The number of RBCs/mL 

BAL fluid had returned to baseline by one week post-exercise (149,233 ± 46,239 RBCs/mL BAL 

fluid; Fig 4.1).  
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Figure  4.1 Exercise-induced pulmonary hemorrhage (EIPH) in racing Greyhounds as 
assessed by bronchoalveolar lavage (BAL). 
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Exercise-induced pulmonary hemorrhage (EIPH) in Greyhounds as assessed by bronchoalveolar lavage 
(BAL; n = 6) after a 5/16 mile race.  EIPH is expressed as the number of red blood cells (RBCs) per mL of 
BAL fluid.  Data are presented as mean ± SE of the average of the baselines (1 and 2) and runs (1 and 
2).  Time periods on the x axis are abbreviated as follows:  Baseline =  resting BAL; Run = 2  hour post-
run BAL; 1WPR = 1 week post-run BAL (resting); 2WPR = 2 weeks post-run BAL (resting); 3WPR = 3 
weeks post-run BAL (resting); 4WPR = 4 weeks post-run BAL (resting).  Lavages were performed 1 week 
apart.  *Indicates significant increase in EIPH (increased number of RBCs) from baseline and † indicates 
significant decrease in the number of RBCs/mL BAL fluid post-run. 

Additional Bronchoalveolar Lavage Fluid Analysis 

The percent BAL fluid recovery was consistent for all lavages (run and resting lavages) 

and ranged from 59-68% with an average of 63 ± 1%.  Cultures obtained from the first lavage 

were negative for any pathogens.  As there was no significant difference between the mean levels 

for the remaining lavage variables, the baseline and run lavages were averaged as for the RBC 

data.  An inflammatory response also was not evident (other than an occasional Curshman’s 

spiral) in the Greyhounds, as there was no change in the WBC numbers by one week post-

exercise followed by a decrease in the counts from 2-4 weeks post-run (Fig 4.2; Table 4.1).  

There was also no difference among hemosiderophage counts for any of these periods (Table 
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4.1).   However, despite the absence of an inflammatory response, there were significant 

differences in the differential counts.  Specifically, the number of neutrophils in the BAL fluid 

was decreased during the entire 4 weeks post-exercise (Table 4.1).  Conversely, the alveolar 

macrophage percentages (not numbers) increased one week post-run and remained significantly 

elevated for 2 weeks (occasionally containing vacuolation), returning to baseline levels at 4 

weeks post-run (Table 4.1). 

Figure  4.2 Pulmonary inflammatory response (WBC counts/mL BAL fluid) of Greyhounds 
measured 2 hours post-run and at weekly intervals thereafter. 

W
B

C
s

(x
 1

03
) /

 m
L

B
A

L 
Fl

ui
d

Time Period

0

20

40

60

80

100

120

140

160

180

Baseline Run 1WPR 2WPR 3WPR 4WPR

**
*
†

†

 
White blood cells (WBCs) measured in the bronchoalveolar lavage (BAL) fluid 2 hours after Greyhounds 
ran a 5/16 mile race and at weekly intervals thereafter.  Inflammatory response is presented as the 
number of WBCs per mL of BAL fluid.  Data are presented as mean ± SE of the average of the baselines 
(1 and 2) and the runs (1 and 2).  Time periods on the x axis are abbreviated as stipulated in the legend 
for Fig 1.  Lavages were performed 1 week apart.  No significant differences occurred from baseline to 
the run.  *Indicates significant decrease in WBCs/mL BAL fluid post-run and † indicates significant 
decreases in the number of WBCs/mL BAL fluid from baseline. 
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Table  4.1  Bronchoalveolar Lavage (BAL) Data 
Variable Baseline Run 1WPR 2WPR 3WPR 4WPR 

Total WBCs/mL BALF  134,350 ± 14,947 140,767 ± 19,878   121,900 ± 32,068  84,433 ± 10,909†*  89,733 ± 14,507†*  75,183 ± 3,882†* 
% Return BALF        66.3 ± 3.5       60.7 ± 3.1         63.6 ± 4.4      59.5 ± 3.4      60.3 ± 6.0      66.7 ± 4.3 
Macrophages  
(cells/mL BALF) 

   93,129 ± 9,329 
      (70.7 ± 3.3) 

  95,642 ± 14,181 
     (68.6 ± 2.9) 

    95,484 ± 4,961 
       (78.3 ± 4.1)*† 

 64,591 ± 2,085 
    (76.5 ± 2.5)† 

 66,851 ± 3,096 
    (74.5 ± 3.5) 

4 9,997 ± 3,962 
    (66.5 ± 5.3) 

Neutrophils  
(cells/mL BALF) 

   16,964 ± 3,253 
      (12.6 ± 2.5) 

  16,360 ± 4,020 
     (11.3 ± 2.1) 

      7,314 ± 2,670*†

         (6.0 ± 2.2) 
   7,743 ± 1,469*† 
      (9.2 ± 1.7) 

   7,923 ± 1,256*† 
      (8.8 ± 1.4) 

   9,774 ± 2,992*† 
    (13.0 ± 4.0) 

Lymphocytes  
(cells/mL BALF) 

   19,850 ± 3,838 
      (14.3 ± 1.7) 

  26,628 ± 5,076 
     (18.7 ± 2.4) 

    18,687 ± 3,596 
       (15.3 ± 3.0) 

 11,821 ± 2,043 
    (14.0 ± 2.4) 

 14,806 ± 2,243 
    (16.5 ± 2.5) 

 13,781 ± 2,218 
    (18.3 ± 3.0) 

Eosinophils  
(cells/mL BALF) 

     4,406 ± 2,917 
        (2.4 ± 1.7) 

    2,251 ± 1,657 
       (1.6 ± 1.0) 

         610 ± 610 
           (.5 ±. 5) 

      279 ± 279 
        (.3 ± .3) 

      153 ± 153 
         (.2± .2) 

   1,631 ± 1,631 
      (2.2 ± 2.2) 

Mast Cells  
(cells/mL BALF) 

        214 ± 163 
        (0.2 ± 0.1) 

           0 ± 0 
       (0.0 ± 0.0) 

             0 ± 0 
            (0 ± 0) 

      144 ± 144 
       (. 2 ± .2) 

          0 ± 0 
         (0 ± 0) 

          0 ± 0 
         (0 ± 0) 

Hemosiderophages           41 ± 10.2       64.2 ± 38.1       108.0 ± 40.1      80.3 ± 35.9      21.2 ± 4.1      76.5 ± 37.7 

The data in the table represents bronchoalveolar lavage (BAL) variables for 6 Greyhounds that were 
lavaged 2 hours after a 5/16 mile race.  The differential counts are presented with the actual number of 
white blood cells (WBCs) by type (i.e. macrophage, neutrophils, lymphocytes, eosinophils, and mast cells) 
on the top and the differential percentage directly below it.  Hemosiderophage numbers represent the 
number on a slide with 1 x 106 WBCs per slide. Time periods across the top of the table are abbreviated 
as follows:  Baseline = resting BAL; Run = 2  hour Post-Run BAL; 1WPR = 1 week post-run BAL (resting); 
2WPR = 2 weeks post-run BAL (resting); 3WPR = 3 weeks post-run BAL (resting); 4WPR = 4 weeks 
post-run BAL (resting).  Lavages were performed 1 week apart from Baseline - 4WPR.  *Indicates 
significant difference (p < 0.05) from Baseline; †Indicates significant difference (p < 0.05) from Run. 

Cardiac and Metabolic Variables 

Maximal heart rates were 231 ± 2 bpm for run 1 and 229 ± 2 bpm for run 2 (p > 0.05) 

with the average being 230 ± 1 bpm.  Venous blood lactates were 19.2 ± 0.4 and 18.0 ± 0.5 

mmol/L (p > 0.05) for 10 minute post-exercise draws for run 1 and run 2, respectively, with the 

average being 18.6 ± 0.4 mmol/L.  Ten minute post-exercise rectal temperatures were 106.0 ± 

0.3˚ for run 1 and 104.5 ± 0.4˚ for run 2 (p > 0.05), with the average being 105.2 ± 0.3˚.  Run 

times for the 5/16 mile race were 32.1 ± 0.3 seconds and 32.6 ± 0.4 seconds for runs 1 and 2 (p > 

0.05), respectively, with the average time being 32.2 ± 0.1 seconds.   

Discussion 
The principal original findings of this investigation are that:  1) Greyhound dogs run 

under simulated race conditions at 5/16 mile experience EIPH that appears to be of a reduced 

magnitude compared with that described in horses.  2) Recovery from an EIPH episode in 

Greyhounds follows a similar pattern to horses when looking at RBCs, but does not result in 

prolonged elevation of hemosiderophages or an extended inflammatory response in the lung.   
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Comparison with the Current Literature 

A very limited amount of information exists concerning EIPH in racing Greyhounds (see 

preliminary reports)8, 9.  King8, 9 reported significant EIPH in Greyhounds racing 5/16 mile, 

ranging from 1-71million RBCs/mL BALF with an occasional dog displaying endoscopic 

evidence of EIPH.   The data from the current study are in agreement with the studies by King et 

al.8, 9 suggesting that Greyhounds do demonstrate pulmonary hemorrhage during exercise.  

However, the severity of bleeding detected in the current study was much lower than that found 

by King8, 9.  Between-study differences in the severity of bleeding may be due to methodological 

factors including time from run to lavage (20 minutes in King et al.8, 9 studies versus 2 hours in 

present study), induction of iatrogenic hemorrhage, lung differences (right versus left lung 

predominance in Greyhounds), and pre-selection of dogs for the study (certain populations of 

animals may be more prone to severe EIPH).   

The Greyhounds in the current study appeared to follow a similar time course for 

recovery from a bleeding episode as the horses displayed in the Meyer et al.2 study in that the 

RBCs/ml BALF detected 2 hours post-exercise returned to baseline by one week post-exercise. 

However the amount of hemorrhage detected is widely different with respect to values typically 

measured in the horse (EIPH = 4-64 x 106 RBCs/mL BAL fluid) 19, 22, 23, 45-48.   

Hemosiderophages were also examined in that study2 as an indicator of past pulmonary 

hemorrhage.  In horses, hemosiderophages are commonly around 7% at baseline and respond by 

significant increases (10-20%) one week post-exercise, remaining elevated for 3-4 weeks post-

exercise.  Hemosiderophages have been considered a good indicator of past pulmonary 

hemorrhage1, 2, 49, 50.  This equine profile is in contrast to extremely low, almost undetectable 

levels of hemosiderophages that we found in Greyhound dogs.  Due to extremely sparse numbers 

of hemosiderin-laden macrophages, it was impossible to obtain a percentage hemosiderophage 

count for the dog slides.  Therefore, the total number of hemosiderophages per million cells 

(entire slide) were counted to increase accuracy of comparison within dogs and among BAL 

periods.  The small amount of blood detected in our study did not induce an increase in 

hemosiderophages 1-3 weeks post-exercise as observed in the horse2.  The increases and 

decreases in the hemosiderophage counts for the Greyhounds were erratic with respect to pre- 

and post-run evaluations, and this profile may potentially be explained by mild iatrogenic 

bleeding initiated during the lavage procedure.  This data is in agreement with King et al.’s9 
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observation that 7/10 dogs showed evidence of hemosiderin deposits within alveolar 

macrophages indicating past hemorrhage.  

Inflammatory airway disease (IAD) in the horse is thought to contribute to the initiation 

and severity of EIPH as well as being a response to the condition1, 24-28.  Long standing 

inflammatory reaction to blood within the alveoli results in a self-perpetuating phenomenon of 

gradually worsening hemorrhage as horses continue to train and race24, 51.  However, in the 

racing Greyhound a much smaller amount of blood was detected in the lung after a race which 

may not be sufficient to overwhelm pulmonary defenses.  Moreover, these RBCs may be cleared 

rapidly enough to avoid any prolonged inflammatory response in the Greyhounds.  It is also 

possible that IAD itself may not induce the long-term pulmonary damage that exacerbates EIPH 

in the horse27, 29.    The present investigation did not find abnormally elevated WBC counts in the 

lavage fluid at baseline (in comparison to the literature)53-62 nor in response to exercise or the 

blood in the lungs at 2 hours post-exercise.  However, an unexpected decrease occurred in the 

WBC counts at weeks 2, 3, and 4 after exercise.  A decrease in the number of neutrophils was 

detected for four weeks post-exercise which follows the WBC counts and corroborates the 

absence of an inflammatory response to the mild hemorrhage.  It is possible that weekly use of 

propofol (an anesthetic drug with anti-inflammatory properties) could aid in masking a mild 

inflammatory response63, 64.  On the other hand, a significant rise in the percentage of 

macrophages (not actual numbers) from one to three weeks post-exercise occurred before 

returning to baseline by four weeks post-exercise.  One explanation for this occurrence may be 

that this response was adequate for clearing the small amount of blood present without requiring 

an increased number of macrophages or WBCs in the BAL fluid.  These results are also in 

agreement with EIPH studies of King et al.8, 9.  However, this is different from the horse in that 

WBC counts typically elevate after an episode of EIPH and either remain elevated or decrease 

slowly, depending on the independent contribution from inflammatory airway disease.  Again, 

the Greyhound dogs in the present investigation did not appear to have true inflammatory airway 

disease at any time (i.e. elevation in WBC counts with concurrent increase in macrophages, 

neutrophils, and/or lymphocytes).  Other conditions cause inflammation in the lower airways of 

dogs, but are totally unrelated to the current study and include “ski-asthma” in Alaskan sled 

dogs, allergic bronchitis, and eosinophilic airway disease52.  Much variation exists in the canine 

literature when looking at WBC counts and differentials from BAL fluid.   However, when 
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examining publications containing information on BAL’s done in healthy dogs, the WBC counts 

and differentials that we obtained from the dogs in the current study fall well within the 

published ranges53-62.   

Mechanisms of Exercise-induced Pulmonary Hemorrhage 

Exercise-induced pulmonary hemorrhage has been studied most extensively in the 

Thoroughbred horse.  Several mechanisms have been proposed to contribute to the 

pathophysiology of EIPH.  In order of potential importance as considered in the literature these 

include elevated pulmonary arterial pressures11, 12, airway contributions3, 13-22, inflammatory 

airway disease1, 23-29, blood viscosity65, and locomotory impact forces30-32. 

Greyhounds may be expected to demonstrate EIPH as they have a number of physiologic 

attributes in common with the horse.  Both species are exceptional sprinters33, 34, have large heart 

to body weight ratios66-69, large contractile spleens (high PCV)34, 37, 38, 65, high pulmonary 

vascular pressures12, 41 during exercise, and very high maximal oxygen consumptions33, 35, 36, 70, 71 

(R Pieschl and MR Fedde unpublished data).  In addition Greyhounds have a thinner blood-gas 

barrier than the horse that requires a smaller transmural pressure gradient to cause capillary 

rupture (Birks et al. 1997, dog 0.795 ± 0.084 µm; 66 mmHg; horse 0.930 ± 0.044µm; 70-100 

mmHg)3, 39, 40, 72.  Greyhounds have high cardiac outputs33, 34, 36 that play a large role (in 

combination with their highly elevated PCV) in generating both exceptional levels of oxygen 

uptake33, 36 and pulmonary arterial pressures during maximal exercise.  Based on Ppa pressures of 

Greyhounds measured during sub-maximal exercise (55 mmHg at 11m/s), peak exercising 

pressures at speeds approaching 20 m/s are expected to be much higher.   

Notwithstanding the above, these are features specific to the Greyhound that may protect 

this animal from the severe EIPH observed in the horse.  Specifically, the dog is not an obligate 

nasal breather and has a much shorter trachea than the horse (airway resistance is proportional to 

the length of the airway and inversely proportional to the radius to the 4th power), so the work of 

breathing and pleural pressure swings generated42 may not be as high as those seen in the horse.  

Saibene et al.43 found that dogs during exercise experienced a pronounced dilation of the 

respiratory tract which reduces airflow resistance.  The horse also has a much stiffer chest wall 

that limits the thoracic contribution to ventilation during exercise73.  By forcing a proportionally 

greater diaphragmatic contribution to ventilation, horses may be predisposed to more negative 
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intrapulmonary pressures and also shear forces that damage the dorsocaudal lung lobes.  The 

more compliant chest wall of the dog may well limit these effects if it permits lateral chest wall 

expansion during exercise.  Impact forces are thought to be a significant cause of EIPH in 

horses30-32.  However, these forces will be reduced in the dog in proportion to their body frames 

and weights, along with the consideration that they are not carrying a rider and saddle.  Lastly, 

the severity of EIPH may depend on the duration over which the threshold capillary transmural 

pressure is exceeded74.  Thus, the shorter distance (5/16 mile versus 1-1.5 miles) and reduced 

time (25-35 seconds for Greyhounds versus 1-2 minutes for horses) at which maximal effort is 

sustained by the Greyhound versus the horse may help constrain the magnitude of EIPH.  

However, racing Quarter Horses can demonstrate extreme EIPH in races of similar distance to 

Greyhounds.75 

Methodological Considerations 

Bronchoalveolar lavage has been implemented for a little over a decade in horses to 

evaluate the presence and degree of EIPH.  Despite inherent limitations, it has been considered to 

be the most accurate2, 49 and sensitive technique available to detect and quantify pulmonary 

hemorrhage.  The EIPH observed in the current study would not likely have been detectable or 

tractable over time with endoscopy1, 2, 49, 76.  However, King et al.8, 9 did visualize small amounts 

of bleeding in 2 dogs with endoscopy.  It has been repeatedly shown that a good correlation 

exists between BAL cytology and histopathology in horses with EIPH49, 76 .  It also has been 

shown in the horse that blind placement of the BAL tube typically results in wedging it in the 

dorsocaudal region77 of the lung (side predominance of tube undetermined) where the majority 

of EIPH occurs25, 26.  Unpublished radiographic data (TS Epp, AM Buchannan, L Gates, DC 

Poole, and HH Erickson) from our laboratory suggests a right caudal lung lobe predominance 

when a BAL tube is placed blindly (5 right versus 2 left).  This is in agreement with Hawkins et 

al.45, who radiographically demonstrated right caudal lung lobe predominance when a BAL tube 

was blindly placed (7 dogs right versus 2 dogs left).  Therefore, it may be of importance that 

King et al.8, 9 showed that the left lung may hemorrhage to a greater degree than the right which 

is in contrast to what has been observed in the horse2, 78.  It is also important to keep in mind that 

the Greyhounds utilized in this study were not selected based upon a prior history of severe 

EIPH, as is often the case in horse studies3, 19, 22, 23, 46-48. 
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Bronchoalveolar lavage (BAL) is becoming more popular as a diagnostic tool for 

pulmonary disorders in dogs.  However, BAL results can be difficult to interpret.  Disadvantages 

or problems potentially encountered in dogs (but not in horses) include the possibility that alveoli 

are non-uniform and intermittent collapse occurs, not allowing lavage fluid into the distal 

airways as well as an increased rate of mucociliary clearance in the dog versus the horse (3.3 

cm/min. versus 2 cm/min.)80-82.  In addition, there may be mild trauma to the airways obtained 

while trying to ensure wedging of the tube45, 57, 58 and there is the potential for airway collapse58 

distal to the catheter if too much suction is inadvertently applied, resulting in possible trauma and 

a smaller recovery volume.  Considerable variation and lack of standardization exists in the 

volume infused, technique employed (i.e. number of aliquots, interval between instillation and 

aspiration, lobes lavaged)61, 79, and the processing of fluid (i.e. centrifugation, washing, 

counting)53, 55, 57, 61.  The techniques utilized in this study were chosen after careful perusal of the 

available literature as well as some trial and error, and were found to combine the most 

consistent results with the least amount of iatrogenic trauma possible.  Finally, depending 

specifically on volume and number of aliquots, normal numbers and differential percentages of 

WBCs in the lavage fluid are less defined than those available for equids83.  Variations in the 

WBC counts as well as the differential cell counts55, 61 may possibly be due to lavaging of 

different levels (i.e. bronchial versus alveolar)62, different concentrations obtained45, 53, and the 

lung lavaged (i.e. left or right)8.   

Implications of EIPH in Greyhounds 

Data collected from Greyhounds in the current investigation suggest that these athletes 

display significant EIPH following maximal running, albeit at very low levels compared with 

equids.  If these Greyhounds are typical of the entire racing population, it does not appear that 

the consequences of that bleeding are as pernicious and clinically worrisome as is the case for the 

horse.  This conclusion is based on the fact that the levels of WBCs, hemosiderophages, and 

differential counts did not indicate a prolonged response to the blood (i.e. large inflammatory 

response and elevations in hemosiderophages over time) as is typically seen with the horse. 

Therefore, these dogs may not suffer the long term lung damage and performance deficits 

created by inflammation and fibrosis.  However, validation of this hypothesis will necessitate 

post-mortem pulmonary anatomical studies similar to those done in horses.  Such studies could 
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confirm or refute the notion that EIPH is not of major clinical significance in the Greyhound as it 

is in the horse.    
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