SIMULATION OF A SELECTIVE
ROLLBACK AND RECOVERY METHODOLOGY

by
Kirk Allen Norsworthy

B. S., University of Kansas, Lawrence, Kansas, 1975

A MASTER’S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

Document

LD

AGLE

. RY

1475

NG
00, 2

TABLES

FIGURES

APPENDIX

TABLE OF CONTENTS

Introduction « ¢ &+ « « ¢ o o o o o o »

Background Literature. . : « « o s &« =
Eliminating or Allowing System Deadlock
Deadlock Prevention. . « ¢« « ¢« o« & « &
Deadlock Detection « « « o ¢ =« & =« o o
System Rollback and Recovery Methods .
System Granule Locking . « « « « .« . .

A Selective Rollback
and Recovery Algorithm . . . « . . .
mllback - - - - L L] - - L] - - - - - L]

Selective Rollback
and Recovery Simulatien.

Results and Analysis .« « + « « ¢ o « &

Evaluation and Conclusions . « . . .
Future Investigation . . ¢+ « ¢ + o &

References and Biliography

Journal File Entry Formate o « « o o =
Simulation Statistics Recorded
Shemer and Collmeyer

Deadlock Simulation Results.
Simulation Results « .« . ¢ & ¢ « « o
Number of Data Commands Rolled Back. .
Acceses to Journal File and Potential

Shared Data List During Rollback . .

Simulation Common Shared Data. . « « =
Simulation Bi=task Data. « « + ¢ o « =«
Simulaticon No Shared Data: « « « « « =«
Simulation 708 Update:. « + « « + o « o
Simulation 508 Update. « « « « « « &+ =
Simulation 30% Update. . « « « « « =« =

Simulation Program Listing

[

WO oW W

-

28

i3

38

54
56

58

26
34

39
41
50

52

43
44

45
46

47
48

60

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ii
ACKNOWLEDGEMENTS

Special thanks to Dr. Fred Maryanski, Dr. Beth Unger,
and Dr. Dave Gustafson for all their help and guidance with
this project. Also, I wish to thank Dave Schmidt, Rcbert
Young, and Jim Ratliff for answers to numerous gqueries.

This work was sponsored in part by the U.S. Army Research
Office Grant No. DAAG 29-78=0018.

1l.¢C INTRODUCTION

In the past few years, information management systems
have rapidly established themselves as the best form of
computer-based information storage for both business and
government. The advantages are numerous, but principally
they allow for multiple applications +to share data without
the need for redundancy. Information management systems
offer the best possible utilization of system resources when
understood and used correctly. Accompanying the growth of
information management systems has been a parallel growth in
computer networks. Together, information management systems
and computer networks, have brought about a possibility of
sharing resources among different computing installations.
Eventually, the integration of computing resources may
extend to the interconnecting of dissimilar computer
architectures into distributed data sharing.

Before distributed data base processing can be fully
achieved, several areas of technological intergration must
be solved. These areas include data and language
translation facilities, multiple data base synchronization,
deadlock, and concurrent data base access. It is these
areas and more specifically data base deadlock, which
provide the motivation for this research. This paper
addresses the deadlock problem by simulating a proposed

rollback and recovery algorithm that could be coupled with a

deadlock detection scheme. From this model, statistics on

CPU overhead, data base accesses, and the number of data
base operations rolled back during the recovery.,

were recorded. The statistics form a basis for the
projection of the efficiency of the rollback and recovery
algorithm.

This paper begins by surveying the existing Iliterature
pertaining to the areas of rocllback and recovery. Special
mention is made of those studies which pertain to recovery
procedures in a distributed data processing environment.
Also, examples of the current commonly used deadlock
detection and prevention algorithms are examinéd. A high
level description of the Selective Rollback and Recovery
algorithm and its operation during rollback is the basis for
the second chapter. A description of the selective
rollback and recovery simulation and its parameters is
followed next with a discussion o©of the results that were
recorded for the different 3job environments. Lastly, a
summary of the experiment and its impact on the area of

distributed processing is evaluated.

2.0 BACKGROUND LITERATURE

Over the years, a great amount of research has been
done in the area of integrity of information managemnt
systems. Most work in this area has been devoted to the
study of deadlock. A deadlock situation cccurs when all of

the following conditions are satisfied:

(A) A resource is granted exclusively to one process.

(B) Resources are not released in case of an

incremental request.

{C) Resocurces can not be pre-empted temporarily from a

process and granted tc another process.

(D) Processes are permitted to wait for the release of

resources. [1]

The resolution of deadlock situations has been the
concern of software operating systems writers for some time.
Their approaches for handling deadlock have focused on three
basic strategies; eliminating or allowing deadlock,

preventing deadlock, and detecting deadlock.

2.1 Eliminating or Allowing System Deadlock

It is not always necessary to employ an explicit

mechanism or procedure for avoiding deadlock in a multi-user

environment. A system can be specified as a multi-user
on-line read only environment. Any requests for updates to
the system are written to a tape from which a batch update
is made at a convenient time. By not allowing users the
option of updating on-line, the problem of deadlock is
eliminated through system design.

In some data processing environments, the information
management systems have a low volume of shared data usage.
Most processes in these systems access their own set of
files repeatedly, thus reducing the potential for deadlock
dramatically. In this type of environment, the problem of
deadlock is handled by simply ignoring the problem.
Deadlock discovery in this system is made by a user who
waits an extraodinarily long time for a system response or
an operator who may notice two or more tasks waiting to be
executed after the system has been cleared of waiting Jjobs.
Allowing or designing away deadliock has the advantage of the
lowest possible overhead and simplest implementation. This
approach does have the disadvantage of being increasingly
less effective as the trend toward shared data and need for

accurate on=line information grows.

2.2 Deadlock Prevention

Deadlock prevention is another way of handling the
problem of deadlock. Prevention of deadlock is wusually
handled thru a method of prier rescurce declaration or a
group set method. The prior declaration of reguired
resources is considered the simplest of the two methods.

Prior declaration of resources in a distributed data
base network requires that all requested files for each new
process be declared and sent to a monitor node. The monitor
node uses a fixed path of examination for determining if a
deadlock situation exists after granting the requesting
process the files it needs. The fixed path of examination
is determined by assigning each node in the computer network
a unigue number. The list of file{(s) requested by the new
process are passed sequentially around the examination path
to each node. Each node in its turn considers the request
independently of the other requested files and reports to
the monitor node whether the request can be accepted without
resulting in a deadlock.

Each node’s examination is further improved by
determining the routing of the fixed path of examination
based upon the current file utilization {(the usage rate and
the length of each file transaction for the process at each
node). The higher the node’s wutilization and file storage
capability, the lower its fixed path of examination number.

In a centralized data base system, the requests for

files is checked for deadlock prior to allowing the process
access to any files. A process is delayed until all of its
requested file(s) can be granted. A distributed data base
system first examines the requested files to determine if
all the files are local files (located at the network node
where the request is initiated). If the requesting process
asks for all 1local files, then the system checks for
deadlock in the same way as a centralized data base. If
some of the files are located at other network nodes, then
the request is routed arocund the network and the process
waits until an affirmative response is sent from all nodes.

The preallocation method of deadlock prevention is
attractive for its ease of implementation and low overhead.
Inter-computer communication is usually the most expensive
portion of any deadlock prevention scheme for a distributed
network. The preallocation methed is able to keep the
inter-computer communication at a minimum because it only
occurs when remote files are requested. The major drawback
hampering the effectiveness of this method 4is that the
declaring of files prior to task initiation can result in an
extensive delay. If a task accessing a remote file is
blocked, system performance could be seriously hurt by
forcing the task to have access to all the files it will
require. [2]

A second form of deadlock prevention is the process set
method. This method grants a process’ s request immediatley

unless doing so will result in deadlock. The system

~J

collects the file(s) reguested and initiates the process.
The process is allowed to proceed until it requests a file
(exclusive access). The access request results in a system
check for a potential deadlock situation with other
processes. If no potential deadlock situation exists the
process continues .

Deadlock checks are made through the maintenance of
process sets. A process set is a 1list for each active
process indicating +the active processes sharing resources
with it. A new process set is formed whenever a new process
is initiated. All +the current process sets that have
file{s) requested by the new process are combined with the
new process to form a new process set, If the new process
requests files that are not included in any of the active
process sets, then the new process forms a process set by
itself. |

The advantage of using process sets is that after
allocation of a process to a set, ¢the progress of the
process is independent of all processes in the other process
sets. The process set results in better system utilization
through increased multiprocessing. Also, system performance
is enhanced because a process does not require all the files
it will access prior to execution and because the
computation required to determine deadlock is reduced with
process sets.

In a distributive environment a process set may include

processes and files from several network nodes and be

located at remote network nodes. The system transmits a
request for file(s) to the network node containing the
process set pertaining to the request. File access is
granted in the same fashion for a distributed network as a

centralized system. [3 1

2.3 Deadlock Detection

Deadlock detection allows user freedom in requesting
files. Deadlock detection 1is accomplished via a similar
method to that wused in deadlock prevention. The system
maintains two lists, a list of active processes and a list
of files requested by the active process. Each list is
dynamic and has a pointer associated with each element of
the list. When a process requests a file, the system sets a
pointer from the file to the requesting process”s pointer
address, if the request can be granted. When a request
cannot be granted, the system sets a pointer associated with
the requesting process to the requested file’s pointer
address.

Deadlock is detected by traversing the file and the
process lists until either an open process pointer is found
or return to the requesting process is made. When return to
the requesting process occurs, a deadlock situation exists.

At detection of a deadlock, the system returns a process to

its initial state and restores +the files controlled by the
terminated process.

The deadlock detection mechanism wuses a monitor node
for implementation in a distributed network. The monitor
node updates the process lists, file 1lists, and accepts
information on each process and file. In some cases,
further efficiency is realized by separate monitor nodes for
the process list and the file list. [4 |

Advantages of using a deadlock detection mechanism
include its ease of implementation and no requirement of
prior declaration of required files. Also, the overhead is
approximately the same as deadlock prevention when the need
for a rollback and recovery method is considered. A
deadlock detection mechanism works well for computer
environments where deadlock is rare. The detecting of
deadlock encourages system thruput by allowing processes to
proceed without waiting. The overriding disadvantage of a
deadlock detection system is the uncertainty of a system’'s
rollback algorithm to insure integrity of the data.
Rollback systems used today are also costly in system
down=time, which in a multi-user on-line environment can
result in user idleness and dissatisfaction. Deadlock
detection systems may become more popular if the confidence

in rollback can be improved.

10

2.4 System Rollback and Recovery Methods

If data integrity is +o be fully protected, then a
system restart and recovery methodology must be implemented.
Restart and recovery in almost all systems begins with a
system dump, copying all of the data base on to secondary
storage backup (usually magnetic tape or disk). System
dumps are usually made at the beginning of each processing
day, but may occur less often 4if the size of the data base
makes a dump prohibitive. System dumps are sometimes made
during the daily processing on a predetermined basis. These
dumps are called system checkpoints and are usually done on
a fixed interval schedule or when the data base reaches a
point of system inactivity.

Ancther system mechanism wused in mest rollback and
recovery methods is a journal file {sometimes called an
audit trail or log file). The journal file is a
chronological 1list of data base activity automatically
written to secondary storage (usually blocked and written to
tape). When modifications of the data base are made, a
corresponding journal file entry is made that comprises a
user's identification, the nature of his data Dbase
modification, description for identifying the file update
and the file image. The file images can be beforeimages {a
copy of the modified files prior to a data base alteration),

afterimages (a copy of the modified files after a data base

alteration) or both.

11

Rollback of the data base medifications must be
possible for both a deadlock prevention and deadlock
detection scheme. The need for rollback and its associated

recovery is necessary for several hardware and software

problems:

(A) When an operator initiates a rollback of the
system because of a system timer interrupt or a
probable software loop error.

({B) When the hardware fails for some reason.

{C) Or when the processes reach a state of
deadlock and the data base needs to be returned

to a point where processing can begin.

The general strategy for recovery from data
contamination (ie. tainted or invalid information) is
dependent upon the type of system failure. System failures
have been classified in a number of ways. The most commonly

used terms are hard and soft crashes. [5 |

Hard crashes are damages to the data base that result
in physical conditions that leave it unreadable. Crashes on
a disk storage and hardware failures are forms of hard
crash. Software too, can be responsible for hard crashes.
The general rule t¢ follow in handling hard crashes is to
restore the data base with the most recent system dump and

then follow it with one of the following two methods:

12

{A) Ask system users to reenter all data and commands
from the point of the system dump.

(B) Reconstruct the data base by copying after image
journal file entries to execute the process
again. Repetitive output messages are

suppressed during the recovery.

Soft crashes in the system result from semantic and
structural problems. A structural problem is one that
results in 4inaccurate structure of the data. A possible
structural problem is the incomplete 1linking of lists. A
semantic problem is a sequence of data base commands that do
not finish their intended operation successfully. Semantic
failures leave a semantic inconsistency in the data base. A
semantic problem could be a discrepancy between the value
within the NO_RECORDS field in a file and the actual number
of existing records.

Soft crashes are usually correctable through automatic
system recovery techniques. The two most often used methods

of recovering from soft crashes are:

(A) A copy of the last system checkpoint is wused
in conjunction with +the beforeimages stored on the
journal file. The beforeimages are copied into the
data base until the last completed process is finished.
At this point, users resume execution from this point

by making any neccessary inputs.

13

{B) The data base is backed up to a point prior
to the insertion of the system error by inserting the
be foreimages into the data base in reverse
chronological order. After the error condition is
corrected the processes are allowed to continue their

execution while suppressing any duplicate messages.

2.5 System Granule Locking

Computer systems are usually considered to be static in
regards to their actions on data in the data base. However,
this is not the case if we consider system actions as
interrelated transactions. Consistency is assumed to be
constant throughout the processing when it actually contains
a period of inconsistency. The use of electronic funds
transfer in the banking industry has this problem when
updating accounts. An inconsistency exists Dbecause as an
account is debited, there is a period where the second
account has not as yet been credited. The actions of
processing data of the data base from a consistent state
into a new consistent state are called transactions.
Transactions that are run in a concurrent enviromnment face
the simultaneous execution and interleaving of data base
requests from several transactions.

To preserve a consistency in the data base during
concurrent operation, the data base uses a granule locking

protocol. A granule, is a physical data base size that is

14

normally system dependent. The problem of temporary
inconsistency in the data base is inherent in distributed
systems. However, the problem does not neccessarily mean
that the inconsistency should cause a serious problem.

One method for aveoiding inconsistency in the system is
to run transactions serially and avoid any problems from
transactions running in parallel. The. loss inr system
performance from blocking concurrent operations makes this
solution unacceptable. Another method is to divide the data
base into logical subsets ({partitions) and allow the
transactions to proceed only if it accesses a subset that is
not currently being used by a transaction. Transactions
that use the same subsets are scheduled serially to avoid
problems. The problem with +this method is <that it is
difficult to examine a transaction and decide which data
base subsets it will use.

The best method of insuring data consistency is to lock
all granules that a transaction accesses. This locking
works well for a centralized data base system, but suffers
numerous problems in a distributed data base environment.
Many times in a data base it is desirable to lock all
entities with a given value (ie. "key addressing”, lock all
the employees with a DEPT_NUM EQUAL 10). If we consider the
relational data model, we would be locking all the tuples
{records) that contain a match in one of their fields with

the value of the key. Tuple 1locking can be very costly in

terms of system overhead and results in large portions of

15

the data base being locked. An alternative method, is teo
lock a tuples relation (row) or domain (column) whenever a
match is found. This method results in many data base locks
and can limit system concurrency.

A proposal was made by Gray, Lorie, and Putlelu, of
IBM, [6 | to find an efficient method for the

locking of granules. They suggest that the locking take
place at several 1levels of granularity (different logical
sizes of locking) in a hierarchical fashion. A hierarchy
would resemble a tree structure where the node representing
the "root” has branches in ever smaller detail descending
from it. A lockiné protocol for the data base will include
a provision for the creation and destruction of sets, files,
and other portions of the data base. Implementation of this
proposed system is called an index interval lock. Instead of
locking an entire record, the locking is done if possible on
key values. By locking on key values, the system is in a
sense locking at the field level of a record since the index
of the key can point to all records that contain the key
value as a field.

To implement this system, the data base is brocken intoe
several areas. Each area contains a set of relations, their
indicies and tuples, along with a catalog of the area. Each
tuple has a unique tuple identifier {key) which is used for
direct addressing of the tuple. Each tuple identifier maps
to a set of field values. In this way, the tuple

identifiers can directly access the tuples and the indicies

16

can give fast associative access to field values and their
corresponding tuples.

Colliat and Bachman [7] of Honeywell describe a
system for distributed data base management that insures
data integrity. A process’'s request is divided into
execution at the node of the request (local node) and
distant nodes. After completion of access at the local
node, a local journal file entry is made with a mark called
"commit-pending”. At this point, the distant node \is
notified of the successful locai node completion. The
distant node follows the same procedure and marks its local
journal file in the same fashion. When the 1local node
recieves confirmation that the distant node has completed it
records a journal entry mark, “"completely committed". The
distant node responds =similarly by recording in its local
journal the same entry. In this method for two nodes,
rollback takes place if one of the nodes sends a message
requesting rollback and that node has not recorded a
“completely committed" mark.

For the Colliat and Bachman methed to work for a
network greater than two nodes, a hierarchical precedence
relationship between the nodes must be established. A node
only records a “commit=-pending” mark after recieving
acknowledgement from its descendent nodes. It must then
request "completely committed* acknowledgement from its
parent node if there exists c¢ne. After a node recieves

acknowledgement from its parent node, the node completes its

11

work and records a "completely-committed" mark followed by
acknowledgement to its descendents. A process is rolled
back only when a request is made by a parent node and never
after recording a "completely-committed"” mark.

The above method is based upon a considerable amount of
message protocol. This protoceol is costly and must
guarantee that a message path represents a valid
hierarchical relationship. Similarly, each naode must never
have more than one parent node and there must never be any
hieararchical loops established. A hierarchical loop would
be where a root node is dependent upon a descendent node.

The authors of this methed acknowledge that they do not
know of any existing algorithm that can guarantee against a
loop in the hierarchy relationship.

A propocsal for quicker recovery is the idea of a
differential file. A differential file system as proposed by
Severance and Lohman would the maintence of large data
bases. Similar to an errata 1list that is maintained for a
book, the idea is to collect changes to the data base over a
period of time and then apply them at one time tc reduce the
overhead involved. It is less expensive to keep a
differential file as an errata list than to directly access
and update the data base after each modification
transaction. Other savings are realized from reduced system
complexity, maintence overhead, and storage costs. The
differential file collects all pending changes to the data

base and is searched as a first step by any data base

ig

request. Use of the differential 1list, means an increased
cost in access time, but this may be cffset by reduced
update time. The differential file is incorporated into the
data base when it reaches a sufficiently large size to make
the update cost effective.

Severance and Lohman [8] report a number of benefits

to be derived from a differential file structure:

(A) Reduced Data Base Dumping Casts; In almost any
data base, a recovery from a hard crash
requires that a dump be copied into the data
base and journal file afterimages be rerun. In
a very large data base, this "quick recovery"
could easily take hours. However, a
differential file and its associated entries
could be rewritten to the data base in just a
few minutes.

{B) Facilitates Incremental Dumping; Dumping very
large data bases at one time can be
prohibitive. An alternative is to dump
physical sections of the data base at different
intervals. This is easily done by simply
searching the differential file for the data
within the section and copying it onto the
backup storaje.

{C) Realtime Dumping and Reorganization with

Concurrency; By dumping only a differential

19

file, concurrent users can be blocked for a
very short time or by building a seperate
differential file during update, concurrent use
can continue unhampered. Reorganization of
files can be done with a differential file that
is copied after reorganization is complete.

(D) Quicker Recovery From Hard and Soft Crashes: A
differential file can be used as an on-line
journal file for rapid recovery and rollback.

{E) Reduces Serious Data Loss; Because dumps and
changes are made in a small area of secondary

storage, several possible advantages arise:

(1) Critical area data can be allocated to a more
reliable system device than the main file.

12) Exposure to the critical area is minimized.

{3) Critical areas may be duplicated with little

system overhead.

{({F) Memo Concept:; Used in banking, the concept of a
memo uses a scratch copy of the data base
throughout the day. Updates are applied to the
scratch copy and kept in a differential file.
At the end of the day, the differential file
updates that are correct are copied into the

data base.

(G) Software Development; In software development

20

where it is infeasible to make a duplicate data
base copY . differential files can be
particularly useful and effective.

{H) Simpler Scftware: Since the main data base is
only read, data base accesses can be
considerably easier with concurrent update and
deadlock problems avoided. The data base is
stored more efficiently because no free space
for growth must be allocated. Predictions are
that the cost of read/write memory will
continue to escalate but, the cost of read only
memory will continue to fall. This indicates
that systems based on a read-only main memory
will become increasingly attractive.

Several data base simulation studies have been made to

examine problems of deadlock, rollback, and recovery.

J. E. Shemer and A. J. Collmeyer [9], simulated the
deadlock problem based on a granule locking protocol at the
record level. They ran the simulation for 190,000
transactions and measured the frequency of system deadlocks.
The simulation used a varied number of users and a data base
size of 100 and 200 records. The simulated transactions
were divided into readers (no modification to the data base)
and writers (modification of the data base) and were applied
to the data base in a random fashion in -different
percentages. Users would perform a series of consecutive

transactions on the data base for each access.

2k

Simulation results showed that for twenty users in a
100 record data base with seventy percent write
transactions, the system overhead is still acceptable. As

the data base size increases the proportion of deadlocks in

the system decreases.

A data base concurrency simulation was conducted by

Munz and Krenz [10], to answer the following questions:

{A) How fregquent are deadlocks in certain
environments?

(B) How does the concurrency relate tc the locking of
granules?

(C) What types of deadlock criteria are wuseful in
rollback?

{D) What is the optimum number of system checkpoints?

When a task siezes a data set exclusively it must
release it before it can sieze another. When a data base is
divided into an increasing number of data sets, the waiting
time of the processes goes down in an exponential fashion.
The simulation showed that the usual method of handling a

deadlock (rollback the process causing the deadlock) was not

the best. The following were the best methods for rolling

back a computer system experiencing occasional deadlock:

{1) Rollback the ¢task which has made the smallest

number of exclusive reguests.

22

{2) Rollback the least expensive task.
{3) Rollback the task which has the fewest number of

granules.

In cases where the data base system experiences frequent
deadlocks, rolling back the task which will lose the least
amount of CPU is the best method. The

simulation shows that freéuent checkpointing was little
better than rolling the errant task back with no system
checkpoints at all.

A paper by Ries and Stonebraker [11] looked into what
size of granule locks should be used on the data base. The
tradeoff in locking a data base is that 1locking large
granules inhibits concurrency., but minimizes locking
overhead. Locking many small data base granules enccurages
concurrency but, at an added system overhead. Findings by
Ries and Stonebraker indicate that a small number of
granules are sufficient to allow enough concurrency for
efficient system thruput. The c¢ost overhead in locking a
large number of granules far outweighs the savings from
additional concurrency. Ries and Stonebraker go on to
mention that the model is designed to faver small numbers of
granules. For almest all cases simulated, ten granules on
the data base are apparently sufficient.

Predicate locking, the locking of a logical subset of
the data base, is more costly than granule locking.

However, results from the simulation indicate that with only

23

a few granules in the data base the added system cost can be
economically absorbed by using predicate 1locks, the system
needs to only maintain a few locks.

A paper by Maryanski and Fisher [12] makes use of a
rollback and recovery algorithm that guarantees total data
integrity. The algorithm is designed to rollback all
possibly contaminated data through a series of dynamically
maintained lists. The rollback and recovery algorithm is
explained in the next chapter and a simulation using this

algorithm is reported in a later chapter.

24

3.0 Selective Rellback and Recovery Algorithm

The approach to solving distributed data base problems
are being judged by their cost competetiveness to
centralized data processing. Before any real acceptance can
be achieved, the performance problems of reliable rollback
and recovery must be overcome.r If this and other problems
can be solved many of the benefits associated with
distributed processing can be realized. An algorithm
outlined by Maryanski and Fisher [13] addresses the
problem of rollback and recovery in a distributed
environment.

A performance advantage of +this algorithm over other
proposals is that commands used in recovery are the inverse
of the data manipulatioﬁ commands which made the
modification. The inverse of any data manipulation command
used in a data base operation, is applicable for any data
base system. Inverse data base opérations are usually in the
data base language, providing efficient storage of the
rollback algorithm and the associated information.

The algorithm is based on a group of lists that are
maintained by the system. The interaction of a task with
any other tasks is reflected in a dynamic list for each task
called a potential shared data 1list. The potential shared
data list is generated when the sub=schema for a task is
constructed. Each task intersects its sub-schema with the

sub=-schema for all currently active sub=schemas. The result

25

is a global list containing the names of the tasks and their
granules that had intersections with the task’s subschema.
The potential shared data lists are maintained by sending a
message to all active computer tasks whenever a task enters
or leaves the computer system.

A system journal file is kept of the data base accesses
and the information neccessary to effect selective rollback
and recovery. The form of a journal file entry is displayed
in Table 3.1. The journal file records the beforeimages of
the data base modifications prior to the modification. The

journal file requires the following fields for each entry:

TABLE 3.1

Journal File Entry Format

JOURNAL TYPE

*

TIME STAMP

TASK NAME

*

TASK GRANULE

*

SET MEMBERSHIP

*

DATABASE COMMAND

POINTER LINK

27

{A) A flag field 4indicating the nature of the journal
entry (was the entry a rollback entry or a data
base command) .

(B) A time stamp field 4indicating the relative system
clock time or the chronoclogical order in which
the data base transaction took place.

{C) A name field of the task involved in the data base
operation.

(D) A field indicating the granule of the task that is
involved in the data base operation.

(E) A field indicating the set membership modification
introduced by the data base operation.

(F} The data base manipulation command.

{(G) A field with a pointer to the area of memory where
the before image of the data base is stored.

(H) Pointers that link the journal entries together into
a list.

A list is maintained for each CODASYL type of set in
the system. The set 1lists contain the task and record
entries for the records connected into the set. When a data
manipulation command connects, orders, or disconnects a
record from a set, the corresponding set 1list 1is

interrogated and updated.

28

3.1 Rollback

The secondary rollback list, rollback file, task list
and update lists are all part of the rollback procedure.
When an application task in the system terminates
abnormally, its effect if any must be removed from the data
base to insure data integrity. In an on-line computer
system it is possible that data written by the terminating
application task may have been read and used by other tasks
sharing the data. If the tasks unknowingly use the bad data
to make modifications, it is possible that a series of bad
reads and writes can occur in the data base. To offset this
result a rollback of data base modifications is necessary to
restore the data base to a state of data integrity. To
preserve the data the selective rollback and recovery system
rolls back only tasks which could have had interaction with
the terminated task. This method is an effort at confining
the rollback to only those tasks which have used erroneous
data. Unlike the method of 1rolling back the entire data
base, the data base is not blocked to users who are not
involved in the rollback.

Selective rollback is initiated when an applicatien has
terminated abnormally or a deadlock situation is found to
exist. The host processor or front-end processcor sends an
inter=-computer communication message to all backend
processors notifying them that a task has terminated

improperly. The host processor provides the backend

29

processors the errant task”s name, its potential shared data

list (usually kept dynamically in the system library), a

list of parameters open for update, and the time of the task

initiation. The rollback procedure follows the following
steps:

l. The initiation time of a task is derived by reading the
journal file backwards to the 1location of the last
RESTART entry for the terminated task. A RESTART entry
identifies a stable peint at which a task can be
restarted {(such as a system checkpeoint). If no RESTART
entries appear for a task after initiation, the task
will be rolled back to initiation. All backend
processors refuse any data manipulation requests that
access areas of the data base not listed in the update
parameters. The next operation is the initializing of
the task list to null. The task list is used to record
the names of all tasks rolled back so that multiple
rollback of the same task is avoided.

2. From the point of the last terminated task’s RESTART
entry, the journal file is read forward until the point
of system termination. The following operations are
performed:

{A) The secondary rollback flag is initialized and the
update list is initialized.

(B) If the journal entry is an update for the task being
rolled back (the terminated task the first time),

called the primary rollback task, an entry is made

(C)

(D)

(E)

(F)

(G)

30

in the update 1list consisting of the record whose
contents or set occurrence has been modified. The
secondary rollback flag is set and the journal entry
is copied into the rollback file.

If a journal entry for the primary réllback task
alters a granule occurrence previously inserted into
the update list, the journal entry is ignored. This
action insures that each updated granule is rolled
back to its earliest correct value in the rollback
procedure.

If a journal entry for a task other than the primary
rollback task occurs and that granule exists in the
potential shared data list of ¢the primary rollback
task, and the task references a record or set
occurence for which an update 1list entry exists,
then the task must be rolled back. To insure
against the task operating with incorrect data, the
task”’s name and the time of the entry are written in
the secondary rollback 1list.

All entries encountered in the Jjournal file that
already have entries in the secondary rollback 1list
are skipped.

All commands of +the primary rollback task that do
not update the data base are skipped.

All commands of a task other than the primary
rollback task that do not have entries in the

potential shared data list of <the primary reollback

31

task are skipped.
(H) Any task already occurring in the task 1l1list is
skipped .
When the journal file has been processed to the point of
termination, the rollback file entries are processed.
Effects of the rollback file entries is nullified by
using inverse commands. As an example, a STORE command
is nulliified by a ERASE command.
When all rocllback file entries have been processed, a
task on the secondary rollback 1list is declared the
primary rollback task. The task is removed from the
secondary rollback list and the journal file searched
for the first RESTART command prior to the time the
incorrect operation was logged in the secondary rollback
list. A message is sent from the host processor to the
backend processors indicating the task now being rolled
back and its parameters.
Rollback of the tasks proceeds until no more tasks exist
in the secondary rollback list. Rellback in a
distributed data base can proceed in a concurrent
fashion, but the algorithm does not allow for duplicate
data base copies.

A note should be made about the data base
administrator’s role in this recovery method. Because
of the potential for a great deal of rollback to cccur
in a highly integrated data Dbase, operating on the

contents of all data items in a record can be costly.

32

It is the role of +the data base administrator to
identify only those data items that are critical to the
data base. These critical data items should be the
entries that are intersected between tasks and included
in the potential shared data lists.

Two methods suggested for identifying critical data

-

items are:

{A) The maintenence of a data dictionary of
non=critical data items or critical data items
for each task.

(B) A mark field on each data 4item with a flag set

indicating if the data item is critical.

33

4.0 Selective Rollback and Recovery Simulation

The selective rollback and recovery algorithm was
simulated through the implementation of a CODASYL type data
base. The data base system was written in PL/l and designed
to accept CODASYL type input commands. The data base

management commands take the form:

COMMAND TASK_ID RECORD_ID.

or

COMMAND TASK_ID RECORD_ID = [SET OR VALUE].

The input command used is dependent upon the CODASYL
operation.

The simulation parses the input command and calls the
appropriate command subroutine. This subroutine calls a
subroutine which logs the input command in the journal file
and then performs the required data base operation. As the
model completes a command , statistics are recorded on the
cumulative number of accesses to the data base files and a
system time stamp is recorded. The system time stamp is a
recording of the computer system’s 24 hour internal clack.
The statistics recorded during the simulation are summarized

in Table 4.1.

34

4.1
Simulation Statistics Recorded

PSDB Potential shared data list access during data base
commands.

PSRB Potential shared data list access during data base
rollback.

LDB Journal file access during data base commands.

LRB Journal file access during data base rollback.

SDB Set list access during data base commands.

SRB Set list access during data base rollback.

RDB The number of data base records accessed during
data base commands. *

RRB The number of data base commands rolled back during
rollback.

STDB The number of commands that result in the storing
of information by the journal file.

STRB The number of accesses to information stored by the
journal file during the rollback.

SRRB Secondary rollback list accesses.

RFRB The number of retrievals of the primary rollback
file.

URB The number of retrievals of the update list.

TL The number of accesses to the task list.

bl The retrievals of a 1list involves bringing a list

intc memory and operating upon it.

35

The first operation in the simulation is the
initialization of the data base. The data base is
built around a PL/1 4implementation of based
variaples. Each based variable structure
represents a single task and includes the

following:

{(A) The task name.

(B) The records associated with the task.

(C) The task’s potential shared data 1list (task and
record) .

{D) A count of the number of potential shared data

list entries for the task.

After the data base is initialized, the potential
shared data list for each task 1is established by
intersecting the subschemas of all the tasks and recording
the matches. At the same time, all lists used in rollback
and data base operations are established. When a rollback
command is encountered, the previcusly described selective
rollback and recovery algorithm is initiated.

The simulation processed 100 CODASYL type commands in
percentages of 30, 50, and 70 percent writers. For
consecutive executions of the simulation, the job stream was
modified by randomizing the order of the six consecutive
transactions executed by a task. The job stream was further

randomized by <¢hanging the order in which the tasks

36

executed. Data sharing in the data base was simulated for

three seperate cases:

(A) No Shared Data = The tasks have no data in common
(each task’s potential shared data list is empty).

(B) Bi-task Data = A task shares fifty percent of its
data with one other task and shares no data with
all other tasks.

{C) Common Shared Data = All tasks share one half of
their data in common with all other tasks (each
task”s potential shared data 1list contains one

half of the records of all the other tasks).

For each of the three cases of data sharing, a data base of
200 total records was simulated with the following
combination of parameters:
Users ... Each case was run with 8 tasks / 25 records.,
12 tasks / 17 records, and 16 tasks / 13 records.
Writers ... Data base modification commands were 390,
50, and 70 percent of the input command stream.
Rollbacks ... Statistics were recorded for simulations

of two, one, and no rollbacks.

System time stamp recordings were taken for the
potential shared data 1ist creation, data base command
stream execution, and total rollback execution time. The

amount of time required +to process the data base commmand

37

stream was used as a comparison against the total rollback
execution time. The simulations for each job configuration
(a minimum of three for each) compared the rollback time
against the job command time to calculate a percentage
rollback time to execution time. These percentages were
averaged and multiplied by a deadlock factor derived from a
simulation by Shemer and Collmeyer. The deadlock factors of
the study are in Table 5.1. The simulation figures measure
the predicted frequency of deadlocks encountered for a
shared data base of 200 records under different job stream

mixes.

38

5.0 Results and Analysis

The simulation was run on the ITEL AS 5 system under
the various parameter settings. The CPU figures for the
program execution varied from a low of 5.62 seconds for 8
tasks in a thirty percent writers environment with no
rollback, to that of 18.44 seconds for a simulation of 16
tasks in a seventy percent writers environment with two
rollbacks. The average rollback time as a percentage of the

command stream execution time for all similar simulations,

AVG_RBT = (([JsSE(l) / RET(l)] + .. + [JSE(N) /

RET(N)]|) / N)

AVG_RBT The average time the rollback tock with respect
to the job stream execution time for the
simulation.

JSE The execution time required to process the data
base commands.

RET The rellback execution time for the simulation.

N The number of simulations.

was averaged and weighted by a deadlock factor from the

Shemer and Collmeyer simulation shown in table 5.1.

39

TABLE 5.1

Shemer and Collmeyer Deadlock Simulation Results

TASKS
& WRITE 16 12 8
70 0.4 1.37 1.90
50 0.12 0.31 0.70
30 0.02 0.08 0.10

*** NUMBER OF DEADLOCKS PER 100 ACCESES ***

40

Each individual rollback to job stream percentage was
weighted by a deadlock factor and was used to obtain a set
of confidence intervals for the mean statistics. The
confidence intervals were calculated from the following

formula:

HI_PARM = MEAN + [1.96 * STDEV | /7 { SQRT [NUMBER OF

VALUES] 1]
LO_PARM = MEAN - [1.96 * STDEV] / [SQRT [NUMBER OF

VALUES] |

*** STDEV is the standard deviation calculation.
1.96 is the constant for calculating a 95% confidence

interval, based upon the student T distributicn.

The results of the simulation are displayed in Table

5.2 and in a graphical representation in Figures 5.1 =-

3 WRITE

70
70
70
50
50
50
30
30
30

70
70
70
50
50
50
30
30
30

70
70
70
50
50
50
30
30
30

¢ CPU Overhead for Rollback Due to Deadleck

TASKS

12
16

b B
16

12
16

12
16

12
16

12
16

12
16

12
16

12
16

TABLE 5.2

Simulation Results

MEAN
Common Shared Data

0.5412
2.4888
3.7504
0.1483
0.3975
0.4025
0.0099
0.0284
0.0358

Bi-task Data

0.1304
0.3662
0.4219
0.0253
0.4930
0.0539
0.0018
0.0099
0.0059

No Shared Data

0.0582
0.2195
0.2846
0.0172
0.0274
0.0342
0.0010
0.0056
0.0032

LOW

0.5000
1.9388
2.5598
0.1409
0.3527
0.3735
0.0094
0.0246
0.0173

0.1186
0.3339
0.2724
0.0227
0.0374
0.0306
0.0016
0.0072
0.0048

0.0173
0.2036
0.2447
0.0121
0.0262
0.0209
0.0006
0.0038
0.0029

0.5824
3.0388

4.94190
0.1556

0.4423
0.4315
0.0104
0.0322
0.0543

0.1422
0.3983

0.5714
0.0278
0.0623
0.0772
0.0020
0.0126
0.007¢

0.0543
0.2216

0.3246
0.0223

0.0286
0.0475

0.0014
0.0074

0.0035

41

42

The simulation for common shared data has the highest
system overhead for the simulation run. The seventy
percent update as indicated in Figure 5.1 still projects
a reasonable figure of less than four percent system
overhead. The comparison of Figures 5.1 through 5.3
indicates that the amount of CPU increases at an
approximate factor of ten from thirty percent update to
fifty percent and another factor of ten from fifty.
percent update to seventy percent.

The results of Figures 5.4 through 5.6 indicate a
trend of similar overhead statistics for all three
percentage updates. The overhead for the Bi-task and No
Shared data is very similar with the curves following
each other closely. Another intresting trend is that the
overhead CPU figures are about the same for the cases of
12 and 16 |users. The discrepancy between the Common
Shared data and the other two types in each percent
update indicates =strongly that the greater the task
integration the higher the CPU overhead. The calculated
confidence intervals for all the Figures (5.1 = 5.6) are
small enough at the 95% 1level to indicate a strong

relationship among the figures.

10.0

.05

.01

.005

.001

EEE

Ll

|

mEE

|

FIGURE 5.1

Simulation Results for Common Shared Data

70% 50% 30%

43

10.0

.05

.01

.005

.001

R

|

L LLitd

FIGURE 5.2

Simulation Results for Bi-task Data

70% 50% 30%

44

10.0

.05

« 01

.005

.001

Lt

FIGURE 5.3

Simulation Results for No Shared Data

Ll iiiitl

L1l
(

:

70% 50% 30%

45

10.0

.05

.01

.005

.001

FIGURE 5.4

Simulation Results for 70% Update

L 1 P11l I

Liiiiid

]

R
% s — pr—

COMMON BI-TASK NO SHARED

46

.05

.01

. 005

.001

Li1dill

I‘““ll

FIGURE

5.5

Simulation Results for 50% Update

COMMON

|

¥

BI-TASK

NO SHARED

47

FIGURE 5.6

10.0 Simulation Resulits for 30% Update

1

LU ILIL

.05

Ll
> |

.01

N

.005

.001

COMMON BI-TASK NO SHARED

49

The simulation resulits indicate that as the amount
of data sharing between tasks increases, the percentage
of system CPU overhead to support the selective rollback
and recovery aigorithm increases. The greatest amount of
data sharing, the common shared data case, results in the
highest percentage of system CPU overhead but, doces not
exceed four percent of the CPU overhead. System overhead
is higher at higher 1levels of data sharing because the
number of deadlock occurrences increases with data
sharing. Also, the increased data sharing results in
more system locks on granules during the execution of the
data base commands.

The figures show a +trend toward higher system
overhead as the percentage of the command job stream
writers (modifications) increases. These figures foliow
those of Shemer and Collmeyer and seem reascnable since a
roliback task having modified the data base percipitates
the future roliback of other tasks. The number of actual
task operations rolled back are summarized in Table 5.3.
The number of task operations rolled back is small until
the data sharing becomes highly integrated {common shared

data).

50

TABLE 5.3

Number of Data Commands.Rolled Back

TASKS
3 WRITE 8 12 16
Common Shared Data
30 11.3 11.3 17.0
50 11.7 27.7 30.7
70*1 22.3 2T%7 34.7
70%*2 49.7 53.7 67.7
Bi=-task Shared Data
30 1-7 4.7 2.7
50 2.3 4.7 9.7
70%*1 3.3 8.7 12.7
70%2 7.7 10.7 16.7
No Shared Data
30 1.3 G 1| 1.3
50 1.3 2.7 3.3
70*1 2.0 5.7 5.7
T0%*2 5.0 7.0 11.0

*N Indicates the Number of Rollbacks.

NOTE: Statistics are not weighted for expected roilback.

51

As mentioned, from Figures 5.4 = 5.6 there is a
leveling of overhead factors, the 12 user configurations
and the 16 wuser configurations require about the same
amount of overhead. This leveling is a result of 16
tasks having fewer records but, more tasks potentially
invgived in rollback than the 12 user configurations.

Table 5.4 summarizes the number of accesses to the
journal file and the potential shared data list during
rollback. From these figures, the number of accesses
increases rapidly with the increase in data sharing,
suggesting consideration should be given to the form of
storage used with these. One possible sclution is to
keep the journali file, potential shared data list, or
both in main memory at all times. Another possibility is
to keep the journal file and potential shared data list
gn external storage until rollback is initiated and then
keep them in main storage until rolilback is completed.
The journal file is not normally kept in main storage
because it is not required except in the case of a hard
System crash. Updates to the journal file are kept in a
buffer until the data base is inactive and a checkpoint

can be estabiished. For most recovery methods the update

buffers are applied against the data base to

TABLE 5.4

Accesses to Journal File
and
Potential Shared Data List
During Rollback

52

16 12 8
No Shared Data
30 7.0 = 32.7 13.7 - 27.3 9.7 = 24.3
50 8-3 - 21-7 13.7 - 58.3 24-3 -— 87-3
70*1 10.3 - 43.0 22.3 - 99,7 29.3 = 116.90
70*2 136.7 = 428.3 150.0 = 572.7 le6.0 - 701.3
Bi=task Data
30 500 - 17-0 9-0 - 15.0 5-0 - 16-3
50 15.0 - 51.0 9.0 - 42-0 5-0 - 1700
70*1 15.0 - 50.0 13.0 = 49.3 7.0 - 19.3
70%2 26.0 - 101.7 20.0 - 86.3 16.0 = 79.0
Common Shared Data
30 3.3 = 82.7 37.0 = 63.7 49,0 = 118.7
50 35.7 = 64.7 75.7 = 308.3 77.0 = 336.3
70*1 60.7 - 129.7 79.0 = 339.7 83.0 = 3590.7
70%*2 136.7 = 428.3 150.0 = 572.7 166.0 - 701.3

*n Indicates Number of Rollbacks.

53

Another reason for keeping only a limited amount of

the journal file in memory is that in case of system crash

the journal file could be damaged. Also, the journal file,
as is seen from this simulation, requires a considerable

amount of information and would be better kept in a mass

storage device.

54

Evaluation and Conclusions

The simulation study of the performance of the

selective Roilback and Recovery Algorithm indicates the

feasibility of that methodology for the recovery of

distributed data bases. The security offered by the
selective rollback and recovery algorithm contributes to
the likelihood that distributed data base management
systems couid with future additions be a commercially
acceptable product. The =selective rolliback and recovery
algorithm overall CPU system cost is especially exciting in
iight of several factors:
=== The need for distributed data base management
systems exists now.
=== A data base management system must maintain some
form of rollback and recovery mechanism no

matter what type of deadliock approach is used.

=== The selective rolilback and recovery algorithm
requires less than four percent system CPU
overhead in the worst case measured.

--= For a typical data processing environment where
data sharing is limited, the system CPU
overhead is less than one percent.

~=~ The selective rollback and recovery algorithm uses
existing system commands meaning that it wiil
require little data base modification and space

to run.

55

With the demand for increased sharing of data among users

and the advent of on-line computing services, the neccessity

of a working distributed data base system is a must.

56

6.1 Future Investigation

The research investigated has indicated the potentiail
for a efficient mechanism for ensuring data integrity. One
possibility is to couplie the selective rollback and recovery
algorithm with a differential file system. This combination
should show a considerable performance advantage in rollback
and recovery over the wusual methods of checkpoints and
before or afterimages. The marrying of a differential file
structure with a selective rollback and recovery system
offers the best of both and should mean an improved m=thod
of system recovery applicabile to various computing
environments. Parsing the differential filie structure
during rollback, is especially well suited to the design of
the selective roilback algorithm.

A second suggestion for further work would be the
extension of the work by Shemer and Coliimeyer. The
simulation indicates statistics for wup to 20 system users,
further investigation would wvalidate their statistics and
possibly test the effect of even a greater number of users.
Shemer and Collmeyer investigated a locking for three or six
transactions at every task regquest, investigation of this
parameter seems realistic.

Lastiy, investigation of this work should continue.
Replication of this work is a good idea for firm statistical
assumption. Also, it seems natural that the actual porting

of this methodoiogy into a real data base management system

57

would provide many useful performance statistics. Finalily.

the testing of this methodology in a distributed environment

would be a ma jor accompiishment.

10.

11.

12.

13.

58

REFERENCES

Munz, R., and Krenz, G., “Concurrency in Database
Systems = A Simulation Study", ACM Sigmod , (1977): 1l1l1.

Chu, W. W., and Ohimacher, G., "Avoiding Deadlock in
Disrtibuted Data Bases", ACM National Sympesium, Vol.l
{November 1974): 156=157.

Chu, pp. 157=159.
Chu, pp. 159.

Deppe, Mark E., "Recovery and Restart in a Distributed
Environment", Hewlett Packard, Santa Clara, CA, ({(June
1978) 1-10.

Gray; J. Nll Lorier R. A-; and Putola; G. Ro:
"Granuiarity of Locks in a Shared Data Base", Proc.

First Conference on Very Large Data Bases, (September
1975) 428,430-435.

Colliat, G., and Bachman, C., "Commitment in a
Distributed Database", Proc. Fourth Conference on Very
Large Data Bases, (September 1978) 3-9,12-1l6.

Severance, Dennis G., and Lohman, Guy M., “"Differential
Files: Their Application to the Maintenence of Large
Database Systems”, ACM Transactions on Databse Systems,
Vol. 1, No. 3 (September 1976): 263,266.

Shemer, J. E., and Colimeyer, A. J., "Database Sharing:
A Study of Interference, Roadblock and Deadlock", ACM
SIGFIDET, (1972): 147-156.

Munz, pp. lll-=11l12.

Ries, Daniel R., and Stonebraker, Michael, "Effects of
Locking Granularity in a Database Management System”,
ACM Transactions gn Database Systems, Vol. 2, No. 3,
(September 1976) 233=240.

Maryanski, Fred J., and Fisher, Paul S., "Rollback and
Recovery in Distributed Data Base Management Systems”,
Proc. ACM Annual Conference on Very Large Data Bases,
{October 1977) pp. 33=38.

Maryanski, pp. 35-=38.

5%

BIBLIOGRAPHY

Chu, W. W., and Ohlimacher, G. "Avoiding Deadlock in
Distributed Data Bases". ACM Natiponal Symposium , Vol. 1
{November 1974): 158=160.

Coliiat, G., and Bachman, C. "Commitment in a Distributed
Database”. Proc. Fourth Conference en Very Large
Databases, (September 1978}): 2-=19.

Deppe, Mark E., "Recovery and Restart in a Distributed
Environment”, Hewlett Packard, Santa Clara, CA, {June
1978).

Gray, J. N., lLorie, R. A., and Putzola, G. R. "Granularity
of Locks in a Shared Data Base". Proc. First Conference on
Very Large Data Bases, {September 1975): 428-451.

Maryanski, Fred J., and Fisher, Paul S. "Rollback and

Recovery in Distributed Data Base Management Systems".
Proc. ACM Annual Conference, {(October 1977): 33-38.

Munz, R., and Krenz, G. "Concurrency in Database Systems -
A Simulation Study". ACM Sigmod , (1977): 1lll=-120.

Ries, Daniel R., and Stonebraker, Michael "Effects of
Locking Granularity in a Database Management System". ACM

Transactions on Database Systems, Vol. 2, No. 3,

-

(September 1977): 233=246.

Severance, Dennis G.,and Lechman, Guy M. "Differential
Files: Their Application to the Maintenance of Large
Databases". ACM Transactions on Database Systems , Vol. 1,
No. 3 (September 1976): 256-267.

Shemer, J. E., and Collmeyer, A. J. "Database Sharing: A
Study of Interference, Roadbiock and Deadlock”. ACM
SIGFIDET (1972): 147-=163.

60

APPENDIX

Simulation Program Listing

PROGS: PROCEDURE OPTIONS (MAIN) :

/i*t*i*tti*******1**i***ttﬁitt*ti**titt*ti**ii*tiiit*ti**i/

DATA BASE TASK .. NAME, RECORDS, AND P.S5.D.L.

/*i**it*tt'***#*ii*t*it**i*tttiiiit**titii**t**ititi**i*ii/

DCL 1 PROCESS BASED (@PR),
2 NAME CHAR(1l).,
2 REC({13),
3 DATA BIN FIXED(1l5),
2 SDLT{120) CHAR(l),
2 SDLR(120) BIN FIXED(15),
2 NSDL BIN FIXED({l5),

@PNTR(16) STATIC EXTERNAL POINTER,

/**i***fi******ﬁ'l‘ﬂ*t*"*f"'l’*‘li***'Iﬂ‘*t'f*""!"ﬂ"l’"'*/

SYSTEM JOURNAL FILE

/ﬁ*‘ﬁ*i*‘t**tti***t****t*i******ii*i‘******ii*it*ti****i/

1 LOG BASED {@LOG),

LFLAG BIN FIXED(l5).,
LTIME BIN FIXED (15),
LTASK CHARACTER{l),
LSET FIXED DEC(l).
LREC BIN FIXED (1l5),
@ROLL POINTER,

@BACK POINTER,

@FWD POINTER,

LDML CHARACTER(10),

S ST SR ST GRS SR S N

{@HEAD, @TAIL)POINTER STATIC EXTERNAL,

/tt*tti*ft*******f!***i******t*.iiitttttt#ﬁ****t*t*t****/

STORAGE FOR BEFOREIMAGES USED IN ROLLEBACK

/t**ﬂ*****t*titt*******tii*tt-t*i‘i**t*tt********t*ii***/

1 STAK BASED{(@STAK),

DATA BIN FIXED({l5).,
S1FIDT CHAR(1l)},
S1FIDR BIN FIXED{l5).
S1BIDT CHAR{l).,
1BIDR BIN FIXED{1l5).,

NN NN

61

S2FIDT CHAR(1l),
S2FIDR BIN FIXED(15),
S2BIDT CHAR(l),
S2BIDR BIN FIXED (15),

[(SR S S0 S

{@PRED, 8SUCC, @CURR)STATIC EXTERNAL POINTER,

/itt**iit****-i*iiiii*ii**ii**it'tttt*iiff**iii*i**itt*t*/

ROLLBACK FILE DECLARATION

/***i**it*t**ti*t*f**i****tt*ti*t‘i*ti*t*t*'it*ii*ttiti*f,

1 RFILE BASED (@RFILE),
RFTIME BIN FIXED(15),
RFDML CHARACTER(10),
RFREC BIN FIXED(15),
@RFWD POINTER,

@RFBK POINTER,

PN

{@TRF , @HRF) POINTER STATIC EXTERNAL,

/*tt******h*******ﬂi****t****tit***‘**i****ti*i*********i/

SECONDARY ROLLBACK LIST DECLARATION

/*i*tt*i*tt*ti****ii*itt*i*ii*‘***ﬁ*t*****tiit***tt**iti*/

1 SRL BASED (@SRL),

TASK CHARACTER({l),

STIME BIN FIXED{l5),

@SRLBK POINTER,

REC BIN FIXED(15),

@SRLFWD POINTER,
(@SRLH,@SRLT)POINTER STATIC EXTERNAL,

Moo

/iittiititt*i**-tt*'ii*it**ttt*Iitttt*it**'titt*i**iti.*i/

SET LISTS .. USED FOR CONNECTS AND DISCONNECTS

/**tti***tiftit*‘***t****ii*********t*i‘****ii*i******!*t/

1l SET1 BASED (@SET1),
2 S1TASK CHAR(l),
2 S1REC BIN FIXED({1l5),
2 S1LFWD POINTER,
2 S1BK POINTER,

1 SET2 BASED(@SET2),
2 S2TASK CHAR(1l).
2 S2REC BIN FIXED(l5),
2 S2FWD POINTER,
2 S2BK POINTER,

(6S1T,@S1H,@S2T,8S2H) POINTER STATIC EXTERNAL,

62

/ﬁ******t*it***i*i*******************ﬂ****i****t*tit*"i/

DECLARATIONS FOR OTHER VARIABLES USED

/t***i**ttt****iiii***ii***t***i*ﬁ'*i****i**Ii*tii*tt***,

DCL (TLIST(16),CHNG,TSK) CHARACTER(l):;

DCL ERROR_CODE CHARACTER({30) VAR;

pCL {X,Y,Z,1,J3,K,L,M,N,QT)BIN FIXED({15)INIT{1l):

DCL
{II,SRFLAG,TRTIME,FLAG,UPDATE(13), TL, EFLAG,NNSD,CNG)BIN
FIXED({15)INIT(0) ;

DCL {CNT,TTIME, RECR,00,PSDB,RDB,LDB,SDB,LRB, SRRB,PSRB) BIN
FIXED{1l5)INIT(0);

DCL (RFRB, URB, STDB,RRB,STRB,SRB)BIN FIXED (15) INIT(0) ;
DCL SET FIXED DEC(l):

DCL (COMMAND,CARD) CHARACTER(80) VAR;

DCL DML CHARACTER(10)VAR;

DCL {TASK,R) CHARACTER{5)VAR;

DCL {@PTR,@PTS,@ADJ)STATIC EXTERNAL POINTER:

DCL {@TRVS,@R,E@SRCH,@SRLL,@SCN) POINTER STATIC EXTERNAL;

/‘i*‘**i*i**'********'****tt**i***t*ittt*t*t*i*****it*tt/

INITIALIZATION OF VARIABLES AND POINTERS

{*i*ii***i*****"*tt**i**‘t***************QI't*****i****/

8S1lH = NULL:
@S1T = NULL:;
@S2H = NULL:
@s2T = NULL;
@HEAD = NULL;
@TAIL = NULL;
@SRLH = NULL:
@SRLT = NULL:

/*t*i**it*t*-iit**i**ititttiiit**i**tiii**tit**iiti**'iﬁ/

INITIALIZATION OF THE DATA BASE

/**ii**tt**ti*iitttttiit**tii*t*ii********tiﬁt*ttif**i*t,

NNSD 120;

NREC 13;

NTASK = 16;

DO I = 1 TO NTASK:
ALLOCATE PROCESS:
@PNTR(I} = @PR;
END;

W

PUT SKIP LIST(TIME);

DO I = 1 TO NTASK:
@PTR = @PNTR(I):

IF I = 1 THEN @PTR =-> NAME = “A7;
ELSE IF 1 = 2 THEN @PTR => NAME = "B’ ;
ELSE IF I = 3 THEN @PTR -> NAME = "C’;
ELSE IF I = 4 THEN @PTR => NAME = "D ;

ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
DO J
@PTR
@PTR
END;
@PTR
END;

DC I
@PTR
DO J
@GP TR
END:;

Do I
@PTR
po J
IF 1
€PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE
@PTR
ELSE

IF I 5 THEN @PTR => NAME =
IF I = 6 THEN @PTR -> NAME =
IF I = 7 THEN @PTR => NAME =
IF I = 8 THEN @PTR => NAME =
IF I = 9 THEN @PTR => NAME =
IF I = 10 THEN @PTR => NAME
IF I = 11 THEN EPTR => NAME
IF I = 12 THEN @PTR =-> NAME
IF I = 13 THEN @PTR => NAME
IF I = 14 THEN @PTR =-> NAME
IF I = 15 THEN @PTR =-> NAME
IF I = 16 THEN @PTR => NAME
= 1 TO NNSD:
=> SDLT(J) = -~ ~:
=> SDLR(J) = 0;
=> NSDL = 0
= TO NTASK:;
= @PNTR({I):
= 1 TO 7:
=> REC(J).DATA = J:
END;
= 1 TO NTASK;
= @PNTR(I);
= 8 TO NREC:;
= THEN
=> REC(J) .DATA = (10+J);
IF I = 2 THEN
=> REC(J) .DATA = (40+J);
IF I = 3 THEN
=> REC({J).DATA = (70+J) ;
IF I = 4 THEN
=> REC{J).DATA = (100+J):
IF I = 5 THEN
-> REC(J) .DATA = (130+J) ;
IF I = 6 THEN
-> REC(J) .DATA = (160+J) ;
IF I = 7 THEN
-> REC(J) .DATA = (190+J);
IF I = 8 THEN
=> REC(J) .DATA = (220+J):
IF I = 9 THEN
=> REC(J).DATA = (250+J):
IF I = 10 THEN
-> REC(J) .DATA = (280+J):
IF I = 11 THEN
=> REC{J) .DATA = (310+J):
IF I = 12 THEN
=> REC(J).DATA = (340+J);
IF I = 13 THEN

*tHIOMmMmMm

WOoOZERHRG

.

63

64

@PTR => REC{J).DATA = (370+J) ;
ELSE IF I = 14 THEN

@PTR => REC(J).DATA = (400+J):
ELSE IF I = 15 THEN

@PTR => REC(J) .DATA = (430+J);
ELSE IF I = 16 THEN

@PTR => REC{J).DATA = (460+J);
END;

END;

f****i*****'********t***i*i*ﬁﬁit‘f****fii*t*t*it****t*i*/

LISTING OF THE DATA BASE COMMANDS

/*i*t*t***ii.ii***it*!iititi*ttti‘tifit*ii*tttit*it*t**tl

DO I = 1 TO NTASK;
@PTR = @PNTR(I):
DO J = 1 TO NREC;

PUT SKIP LIST{(@PTR =-> NAME,J,@PTR => REC({J).DATA):;
END:
END;

/Qitﬁi*tﬂ**t***fi*i*t**ii*tt*******i*ii*i**i*iiitt****it*/

CALCULATION OF THE POTENTIAL SHARED DATA LIST

/***ii**tt'*i*itﬁii*iiii'itt*ttiti*t*tiitt*tttii*it**titi/

DO U =1 TO NTASK=-1;
@PTR = @PNTR{U) :

DO V = 1 TO NREC;

DO W = U+l TO NTASK:
@PTS = @PNTR({W):

DO X = 1 TO NREC;

IF (@PTR =-> REC(V).DATA = @PTS => REC({X) .DATA)
THEN CALL PDLIN;

END: END: END: END;

PUT SKIP LIST{TIME) ;

/t*t*,!t!!**tt***tt****iti*itt*it*iiii*tii**itii'*t****/

ECHO THE CONTENTS OF THE P.S.D.L FOR EACH TASK

/ii***i**i******i******i***t**ﬁ*ﬁ***********iiii*t*i*ii/

Do I 1 TO NTASK;

@PTR = @PNTR(I) ;

PUT SKIP(2)EDIT(" PSDL FOR “,@PTR =>
NAME) {X{10),A,X{(2),4):

DO J = 2 TO @PTR => NSDL;

PUT SKIP LIST{@PTR -> SDLT{J), @PTR => SDLR(J));
END:; END;

PUT SKIP LIST(TIME):;

65

/t 4 2 A B L AR AR RLELELAELESEELRLEELE L) ********t*tit***i**i*i*it/

MAIN PROGRAM LOOP .. INPUT A DATA BASE COMMAND,
DECODE COMMAND, CALL APPROPRIATE SUBROUTINE

/t**i**i* LA R L R LRI RIS RIRELIESIELELEZZELELESERLEL S t********/

PUT SKIP
LIST("PSDB’,PSDB, "RDB",RDB, "LDB",LDB, "SDB” ,SDB, “LRB”, LRB,
“SRRB”, SRRB, "PSRB”,PSRB, "RFRB”",RFRB, "URB”,URB, “STDB", STDB,
“RRB”,RRB,"STRB",STRB, "SRB", SRB) :
ON ENDFILE(SYSIN) QT = 2:
GET LIST{COMMAND) ;
INP: DO WHILE {QT=1l);
FLAG = 0;
TTIME = TTIME + 1l:
PUT SKIP(2) EDIT{ THE PROGRAM INPUT IS : * , COMMAND)
{COL (20) ,A,A) :
V = INDEX{COMMAND,) :
DML = SUBSTR{COMMAND,Ll,V=-1);
CARD = SUBSTR{COMMAND,V+1l) ;
VV = INDEX{(CARD,” 7):
TASK = SUBSTR{CARD,.L,VV=-1l);
IF DML ~= °“ORDER"~ THEN CALL RREC:
IF DML = “GET" THEN CALL PGET:
- ELSE IF DML "MODIFY®~ THEN CALL PMOD;
ELSE IF DML “RBACK”~ THEN CALL PROL:
ELSE IF DML "ERASE"~ THEN CALL PERA;
ELSE IF DML "STORE" THEN CALL PSTO:
ELSE 1IF DML "RESTART" THEN CALL PRES:;
ELSE IF DML "CONNECT ™ THEN CALL PCON;
ELSE XF DML "DISCONNECT " THEN CALL PDIS;
ELSE DO;
ERROR_CODE = °“INVALID COMMAND’ ;
CALL ERROR:
END ;
PUT SKIP LIST(TIME):
PUT SKIP
LIST{ PSDB",PSDB, "RDB",RDB, LDB”,LDB, SDB",SDB, LRB”, LRBE,
"SRRB",SRRB, "PSRB",PSRB, "RFRBR", RFRB, "URB”", URB, “STDB", STDB,
"RRB”,RRB,"STRB" ,STRB, SRB“,SRB, "TL" ,TL);
GET LIST(COMMAND) ;
END INP:

f'tt‘i**t'ilt*ttl‘ (222 EIRIELIEZEEIREI RS RELIEEZREERERLE S *ii'***/

*%** RREC SUBROUTINE ***
DETERMINES THE RECORD SPECIFIED IN THE INPUT
COMMAND TO THE DATA BASE

/******i“t*ittttittti*it*t*i*****i******‘i**l‘**fitittiii/

RREC: PROCEDURE;
EQ = INDEX (CARD,”
IF EQ > O THEN R
ELSE DO;

4}:
SUBSTR{CARD,VV+l, (EQ=VV=2));

66

DOT = INDEX(CARD, .");
R = SUBSTR{CARD,VV+l, (DOT-VV=-1)):

END;
RECR = BINARY (R) ;
END RREC;

/iiit*t*titt*i***tt*i************!!****************t****,

*** PDLIN SUBROUTINE | ***
INSERTION OF A POTENTIAL SHARED DATA LIST PAIR
IN THE TASKS POTENTIAL SHARED DATA LISTS

/i*tt**ttt*i***t-*i**t**i*ﬁ*t'******t**tt*iit"***t*'***/

PDLIN: PROCEDURE;

@PTR =-> NSDL = 1 + @PTR =-> NSDL:
Y = @PTR => NSDL:

@PTR => SDLT(Y) = @PTS => NAME;
@PTR => SDLR(Y) X:

@PTS ~> NSDL = 1 + @PTS => NSDL;
¥ = @PTS => NSDL;

@PTS -> SDLT({Y)
BPTS => SDLR(Y)
END PDLIN:

@PTR => NAME:;
V:

o

/ti**it**i**'itittt*ii*itti*ti****tii*ttttt*tt*i**it****/

*** PDIS SUBROUTINE ***
DISCONNECTS A TASK’ S RECORD FROM A SET

/****t********t******'*t*i****i'**t'!itiitti***t********f

PDIS: PROCEDURE;
PUT SKIP LIST(" ENTER PDIS**"):
IF FLAG = 0 THEN CALL FST;

IF FLAG = 0 THEN LDB = LDB + 1;
ELSE LRB = LRB + 1;

DO I = 1 TO NTASK:
@PTR = @PNTR(I):
DO J = 1 TO NREC:;

IF (TASK = @PTR -> NAME & RECR = J)
THEN GO TO FHND:

END: END:

ERROR_CODE = “TASK FOR DIS NF IN PROCESS™;

CALL ERROR:

FND: @ADJ = @SlH:

IF SET = 1 THEN DO:

DO WHILE(LI = 1):

IF{@ADJ => SET1.S1TASK = @PTR =-> NAME &
@ADJ => SET1.S1REC = J) THEN GO TO F1l;

ELSE IF @ADJ = @S1T THEN DO:

IF EFLAG = 1 THEN DO:

CALL PSTKl:

GO TO SS1;

END;

ELSE DO;

IF FLAG = 1 THEN RETURN:
ERROR_CODE = “PDIS 1 ERROR";
CALL ERROR;

END;

END:

ELSE @ADJ = @ADJ => SlFWD;
ENLC: END:

ELSE IF SET = 2 THEN DO:

PUT SKIP LIST(ENTER PD27);

@ADJ = @S2H:

DO WHILE(l = 1):

IF(@ADJ => SET2.S2TASK = @PTR => NAME &
@ADJ -> SET2.S2REC = J) THEN GO TO Fl:

ELSE IF @ADJ = @S2T THEN DO:

IF EFLAG = 1 THEN DO;

CALL PSTK2;

GO TO SS2:

END;

ELSE DO;

IF FLAG = 1 THEN RETURN;

ERROR_CODE = “PDIS 2 ERROR";

CALL ERROR:

END;

END;

ELSE @ADJ = @ADJ => S2FWD;
END: END;

Fl: @CURR = PADJ:

IF EFLAG = 0 THEN ALLOCATE STAK;
IF SET = 1 THEN DO;

IF FLAG = 0 THEN DO;

STDB = STDB + 1:

@ADJ = @CURR => SET1.S1lFWD:

IF @ADJ == NULL THEN DO:
STAK.S1FIDT = @ADJ => SETl.S1TASK;
STAK.SLFIDR @ADJ => SET1.SlREC;
END;

ELSE DO;:
STAK.S1FIDT
STAK.S1FIDR
END ;

@ADJ = @CURR =-> SET1l.S1BK:

IF @ADJ ~= NULL THEN DO;
STAK.S1BIDT = @ADJ => SET1.S1TASK:
STAK.S1BIDR = @ADJ =-> SETl.SLREC;
END:

ELSE DO;: ;
STAK.SIBIDT
STAK. S1BIDR
END ;

END;

IF @CURR => SETL.S1BK ~“= NULL THEN €@PRED = @CURR
SETl.S1BK:

no

- -
-
¢

0:

[}

- -

0;

67

ELSE @PRED = NULL;

IF @CURR => SET1.S1FWD “= NULL THEN @SUCC = @CURR =>
SET1.S1FWD;)

ELSE @SUCC = NULL;

IF (@PRED ~= NULL & @SUCC ~= NULL) THEN DO:

@PRED =-> SET1.S1lFWD = @SUCC:;

@3UCC =-> SET1.S1BK = @PRED;

END ;

ELSE IF (€PRED = NULL & @SUCC ~= NULL) THEN DO:
@SUCC => SET1.S1BK = NULL:

@S1H = @succC:

END ;

ELSE IF {@SUCC = NULL & @PRED “= NULL) THEN DO:
€@PRED => SET1.S1lFWD = NULL;

@S1T = EPRED;

END;

ELSE DO;

@S1H = NULL;

@S1T = NULL:;

END; END:

ELSE IF SET = 2 THEN DO;

IF FLAG = 0 THEN DO;

STDB = STDB + 1;

@ADJ = @CURR => SET2.S2FWD;

IF @ADJ ~= NULL THEN DO:

STAK.S2FIDT = @ADJ => SETZ2.S2TASK:

STAK.S2FIDR = @ADJ =-> SETZ2.S2REC;

END;

ELSE DO; ;
STAK.SZ2FIDT
STAK.S2FIDR
END;

@ADJ = @CURR =-> SET2.82BK;

IF @ADJ == NULL THEN DO:
STAK.S2BIDT = @ADJ =-> SETZ.S2TASK;
STAK.S2BIDR = @ADJ => SET2.S2REC;
END;

ELSE DO:;:
STAK.S2BIDT
STAK.S2BIDR =
END;

END ;

IF @CURR =» SET2.S82BK ~= NULL THEN @PRED = @CURR =>
SET2.S2EK:

ELSE @PRED = NULL;

IF ECURR -> SET2.S2FWD ~= NULL THEN @SUCC = @CURR =>
SET2.S2FWD;

ELSE @sUcC = NULL;

IF (@PRED ~= NULL & @SUCC == NULL) THEN DO:

@PRED => SET2.S2FWD = @SUCC;

@sUCC =-> SET2.S2BK = @PRED:;

END ;

ELSE IF {(@PRED = NULL & @sUCC ~= NULL } THEN DO;

- -
-
]

0:;

e

|
o
e

69

@SUCC => SET2.S2BK = NULL:

@S2H = @SUCC;

END;

ELSE IF (@SUCC = NULL & @PRED ~= NULL) THEN DO:
@PRED =>» SET2.S2FWD = NULL;

@S2T = @PRED;:

END;

ELSE DO;

8S2H = NULL;

8s2T = NULL;

END; END;

§81: CALL STTl;

§s82: CALL STTZ2; .
IF FLAG = 0 THEN DO;

LDE = LDB + 1:;

RDB = RDB + 1:

I =1;

@PTR = @PNTR(I) ;

DO WHILE (@PTR =-> NAME “= TASK):

I =1I +1;
@PTR = @PNTR(I):
END ;

@STAK =-> STAK.DATA = @PTR => REC(RECR).DATA;
IF EFLAG = (¢ THEN DO:

@LOG => @ROLL = ADDR({STAK) ;

END ;

END;

END PDIS:

/***i****i*itttititti*i***********it*i***t**iitiiiii**i*/

*** FST SUBROUTINE ***
DETERMINES THE SET NUMBER SPECIFIED IN THE INPUT

/*ﬁ****it*iil*ttf**i*********i*‘ii*itttti*ttt**t********/

FST: PROCEDURE;

IF EFLAG = (0 THEN DO:

CALL LOGG:;

DOT = INDEX(CARD, .”);

CHNG = SUBSTR(CARD,EQ+2,DOT-1):

SET = BINARY (CHNG) ;

@LOG => LSET = SET;

PUT SKIP({2)LIST(" THE SET IS °,SET);
END ;

END FST:

70

/*i*‘i* dedr Wk R W Wk W Wk drk ko Wk W ttti’*ti'***t****t*********itt/

*%** DPCON SUBROUTINE ***
THIS PROCEDURE CONNECTS A RECORD TO A SET

/***i**i*ii**'i'**t**i*t***‘**t*********i**ﬁ***t******t****/

PCON: PROCEDURE;
PUT SKIP LIST(" ENTER PCON**") :
IF FLAG = 0 THEN SDB = SDB + 1;
ELSE SRB = SRB + 1;
IF FLAG = 0 THEN CALL FST:
IF SET = 1 THEN DO;
CALL STTL:
ALLOCATE SETl:
IF @S1H = NULL THEN ©S1lH = @SETl;
ELSE @S1T => S1FWD = @SETL;
S1BK = @SlT:
@S1T = @SET1;
SLFWD = NULL;
@SETL => SIREC = RECR;
@SET1 -> S1lTASK = TASK:

PUT SKIP LIST{ CON=S=1 “,B8SETI -> S1REC, @SET1 =->
S1TASK) ;

END;

ELSE IF SET = 2 THEN DO;

CALL STT2;

ALLOCATE SET2;

IF 8S2H = NULL THEN @S2H = @SET2;

ELSE €S2T => S2FWD = @SETZ;

S2BK = @S2T;

@S2T = ESET2;

S2FWD = NULL;

@SET2 => S2TASK = TASK;

@SETZ2 => S2REC = RECR;

PUT SKIP LIST({ CON=-S=2 “,@SET2 => S2REC, @SET2 =>
S2TASK) ;

END ;

IF FLAG = 0 THEN DO;

STDB = STDB + 1;
ALLOCATE STAK:

1F SET = 1 THEN DO:
@ADJ = @SETL:

IF 3ADJ => S1FWD
4STAK =-> S1FIDT 3
@STAK => S1lFIDR
END;

ELSE DO:

@ADJ = @ADJ=-> SlFWD:

@STAK => S1FIDT @ADJ => S1TASK:
8STAK =-> S1lFIDR @ADJ => S1REC;
END ;) -

@ADJ = @SET1;

1F 8ADJ=-> S1BK NULL THEN DO;
@STAK =-> S1BIDT © T

=z
a
£

THEN DO;

nn

@STAK =->» S1BIDR = 0;

END ;

ELSE DO;

@ADJ = @ADJ=> S1BK:

@STAK =-> S1BIDT @ADJ => S1TASK:
@STAK =-> S1BIDR E@ADJ => S1REC;
END:

CALL STT1l:

END;

ELSE IF SET = 2 THEN DO;

@ADJ = @SETZ2;

IF @ADJ => S2FWD = NULL THEN DO;
@STAK =-> S2FIDT = °~ 7

@STAK => S2FIDR = 0;

END;

ELSE DO;

@ADJ = @ADJ=> S2FWD:

@STAK => S2FIDT = €@ADJ =-> S2TASK:
@STAK => S2FIDR @ADJ => S2REC;
END;

@ADJ = @SETZ;
IF @eADJ-> §S2BK
@STAK -> S2BIDT

NULL THEN DO;

@STAK => S2BIDR 0;
END;
ELSE DO;

@ADJ = @ADJ=-> S2BK;

@STAK => S2BIDT = @ADJ =-> S2TASK:
@STAK =-> S2BIDR = @ADJ =-> S2REC;
END :;

END ;

I =2
@PTR = @PNTR({I};

DO WHILE (@PTR => NAME “~= TASK) ;
I = I +1:

@PTR = @PNTR({I):

END;

@STAK => STAK.DATA = @PTR => REC(RECR).DATA;

@LOG ~> @ROLL = ADDR(STAK) ;
RDB = RDB + 1:

LDB LDB + 1;
CALL STTZ;
END:

END PCON:

71

72

/ii***t*i*****t*i***'**i*t**ii***ti"t*iiti*t't*'*ttt't*/

*** ERROR SUBROUTINE ***
ROUTINE TO PRINT ERROR MESSAGES AND STOP PROGRAM

/i*‘ii**l‘t*i**i****iit**iit*it*ttttittiitt**i***t**ii**t*/

ERROR: PROCEDURE:;

PUT SKIP LIST{ERROR_CODE):
STOP:

END ERROR;

/itt*iliﬂi**ﬁ*i*ﬁ***i***i*****i**t*it*tiiii**t*t***tii*ﬂ/

*** LOGG SUBROUTINE ***
ROUTINE TO LOG ALL INCOMING DATA BASE COMMANDS
AND DATA BASE ROLLBACK ACTIONS

/tt*iift********i**'*ﬁ**ii*t*tiiti*i*i*t*******ﬁ**'****t/

LOGG: PROCEDURE:;

IF FLAG = 0 THEN LDB = LDB + 1:

ELSE LRB = LRB + 1;

IF FLAG = 1 THEN PUT SKIP LIST(~ ROLLBACK LOG ENTRY’) :
ELSE PUT SKIP EDIT{ LOG ENTRY) (COL(25),A);
PUT SKIP EDIT(TASK, RECR) {COL(35),A,F(5));
PUT SKIP EDIT(DML) {COL(35),A);

ALLOCATE LOG:

IF @HEAD = NULL THEN @HEAD = @LOG:;

ELSE @TAIL =-> @FWD = @LOG;

@LOG => @BACK = @TAIL;

€TAIL = RLOG:

@LOG => @FWD = NULL;

8LOG => LTIME = TTIME:;

@LOG => LTASK = TASK:

@LOG => LREC = RECR:

@LOG => LDML = DML;

€LOG => LFLAG = FLAG:

PUT SKIP LIST{RLOG => LTIME):

PUT SKIP LIST({@LOG => LTASK):

PUT SKIP LIST{(@LOG => LREC):

PUT SKIP LIST{@LOG => LDML):;

END LOGG:;

/***it*i'i******i*t*it**i**ﬁi**!**tit*it*ﬂ*tt**!t'*i***ﬂ{

%* PSTK1 SUBROUTINE *
ERASE A MEMBERSHIP IN SET 1

/***ti*itt*i*ﬁ****i*t******t****‘***it*itﬁ*!**'*tit*tt**{

PSTK1l: PROCEDURE;
STAK.S1FIDT c T

[

.
»

STAK.S1FIDR = 0;
STAK.S1BIDT = ~ 7
STAK.S1BIDR = 0;

END PSTKl:

73

/iiitiit**iitt*i* (A A RS R R RELEREELE D, *i*i‘*******'**ﬁtt‘tt/

*** PSTK2 SUBROUTINE ***
ERASE A MEMBERSHIP IN SET 2

/*******ﬁ** AR LRI Ll ELIELREELIELELEL LIRS R ESELELELELELES) tit/

PSTK2: PROCEDURE:
STAK.S2F IDT * Ty

STAK.S2FIDR = 0;
STAK.S2BIDT = ~ °;
STAK.S2BIDR = 0;

END PSTK2;

/ti*ttiii'i*tﬂi*ﬂ**'* 'l'ﬂ't**‘-‘***t***iii**t***tii***iitt*i*/

*** PSRCH SUBROUTINE ***
SEARCH ROUTINE USED IN ROLLBACK TO LOCATE THE
ENTRY OF THE RECORD TO BE MODIFIED IN THE JOUNAL
FILE .. A BEFORE IMAGE IS OFTEN NEEDED AND THE
LINKING TO IT 1S DONE HERE

/ﬁi****iit*****tii*#*t**ii'**Qi*'********"***It!t*tit**t*/‘

PSRCH: PROCEDURE;

PUT SKIP LIST(" ENTER PSRCH") ;

LRB = LRB + 1;

DO WHILE(@SRCH => LOG.LTIME ~= @TRVS =-> RFTIME):
IF {(@SRCH => LOG.LTIME = TRTIME) THEN DO;
ERROR_CODE = "INCORRECT RFILE TIME":

CALL ERROR;

END;

@SRCH = @SRCH =-> LOG.@BACK;

END:

@R = @SRCH =-> LOG.@ROLL:

PUT SKIP LIST{(" LEAVE PSRCH"):;

END PSRCH;

/***t‘l‘"i*i wl kw wk ww *tiitt*t*****i****t*i‘i*it**i*‘*"i***/

*%** RMOD SUBROUTINE ***
ROLLBACK ROUTINE TO CHANGE A MODIFIED RECORD
BACK TO ITS BEFOREIMAGE

/***ﬂ**ﬁ**ti* ITETEIT R REIE IR RS RIS RS AR ERS RS RS S *t*/

RMOD: PROCEDURE ;

PUT SKIP LIST{(" ENTER RMOD") :
SRB = SRB + 1l:

CALL PSRCH:

RECR = @SRCH =-> LOG.LREC;

TASK = @SRCH =-> LOG.LTASK:;

I = 1z

@PTR = @PNTR{I1) ;

DO WHILE(EGPTR => NAME ~= TASK):

74

I = X wl;
@PTR = @PNTR{I):
END;

CNG = @R =-> STAK.DATA:

CALL PMOD;

PUT SKIP LIST(" LEAVE RMOD") :
END RMOD;

/**ti**t**i*'*t*tti*ﬁi****t'*i*t'itti***i***t***i*t*itit/

*** RCON SUBROUTINE ***
ROLLBACK ROUTINE TO RECONNECT A RECORD TO A SET
IT WAS DISCONNECTED FROM

/iiitiit*it*it*ti****i*titi**t*i*i***iiti**'*tﬂ**ii*****/

RCON: PROCEDURE:;

PUT SKIP LIST{" ENTER RCON") ;
RRB = RRB + 1;

CALL PSRCH:

SET = @SRCH =-> LOG.LSET;

CALL PCON:

I = 1;

@PTR = @PNTR(I):

DO WHILE{@PTR =-> NAME ~= TASK):

I =1 +1;
@PTR = @PNTR({I):
END:

@R => STAK.DATA = @PTR => REC(RECR).DATA;
PUT SKIP LIST(" LEAVE RCONT);
END RCON:;

/tittiii*iﬁ*****t***tit*tii*i*i*tt*******'t*****ttii*ii*/

*** RDIS SUBROUTINE ***
ROLLBACK ROUTINE TO DISCONNECT A RECORD FROM A
SET CONNECTION

/iiii*!t*i*ﬂﬂ*'***i****iit*i'ti*t*i*********t*ti*i****i*/

RDIS: PROCEDURE;

PUT SKIP LIST{" ENTER RDIS"):
RRB = RRB + 1:

CALL PSRCH;

SET = @SRCH => LOG.LSET;

CALL PDIS:

I = L

@PTR = @PNTR(I):

DO WHILE(@PTR -> NAME “= TASK):

I =1 +1;
@PTR = @PNTR{I);
END:

@R =-> STAK.DATA = @PTR =-> REC(RECR) .DATA:
PUT SKIP LIST{(" LEAVE RDIS"):
END RDIS:

ft**i*tii**ii***ii**‘*t*tt*iit**Iiiti**iii*ititt*tititti/

%x PERA SUBRQUTINE **=*
ROUTINE TO ERASE A RECORD FROM THE DATA BASE

/ii*t*ttttittt***tiii"**ti***i*t*tt*tit*i*'**ii‘t***i**/

PERA: PROCEDURE:;
PUT SKIP LIST(~ ENTER PERA***"}) .
EFLAG = 1:
I1F FLAG = 0 THEN DO:
STDB = STDB + 1;
RDB = RDB + 1:;
CALL LOGG:
@LOG=> LSET = 0;
ALLOCATE STAK:
I =1;
@PTR = @PNTR(I):
DO WHILE (@PTR => NAME ~= TASK):

I =1I +1;
@PTR = @PNTR(I):;
END ;

@STAK => STAK.DATA = @PTR -> REC(RECR).DATA;
@LOG -> @ROLL = ADDR{STAK):

END;

IF (RECR > NREC) THEN DO;

ERROR_CODE = “NO RECORD FOR ERASE":

CALL ERROR;

END;

SET = 1;
CALL PDIS;
SET = 2;
CALL PDIS;
1 =1;

@PTR = @PNTR(I):

DO WHILE{@PTR => NAME "= TASK):

I =1 +1;

@PTR = @PNTR({I):;

END;

@PTR => REC{RECR) .DATA = (;

EFLAG = 0;

PUT SKIP LIST(" LEAVE PERA***") ;
END PERA:;

/*i**ﬁ**i*ﬁi**'*i*ii*'****i*i*t*itti'**tiit*i'ii!*'ii*'*/

*** RERA SUBROUTINE ***
ROLLBACK ROUTINE TO ERASE A STORED RECORD

/**iti**i***tiiii*****i**t-i*fﬁt**i*i!tt*i**ittt'ﬂﬂ**i*tt/

RERA: PROCEDURE:
PUT SKIP LIST(" ENTER RERA*™**7);
CALL PSRCH;

76

RECR = @R => STAK.DATA:

STRB = STRB + 1;

CALL PERA;

PUT SKIP LIST{(" LEAVE RERA***"};:
END RERA;

/*t AR it R A R R ALELELEREEALELELESLE S]] t*tti*t*il’ttt'*i‘iii"**/

*** PGET SUBROUTINE ***
ROQUTINE TO READ THE CONTENTS OF A RECORD ..
NO MODIFICATION

/i**i‘*t"t*"'******fiii*i'*i’*i*‘l“*'it*ﬁi*t!*'*tﬂi*ﬂ‘*'*tﬂ/

PGET: PROCEDURE;

CALL LOGG;

8LOG =-> EROLL = NULL;

8LOG => LSET = 0:

RDB = RDB + 1;

I =1;

6PTR = @PNTR(I) ;

DO WHILE (@PTR => NAME ~= TASK):
I =1I +1;

@PTR = @PNTR{I):

END;

PUT SKIP LIST(@PTR =-> REC({RECR).DATA) ;
END PGET:

/*i t A B LN LN LELELE L) **ﬁlﬁ***t**i“'l"!"*t"!'*iit*ttﬂ't**t***t/

*** PRES SUBROUTINE ***
RESTART ROUTINE .. RECORDS A RESTART POINT

/*ttt**t*i*t***'*‘*ttttt* t-t*ii"'*#‘ﬂ****'ﬂt*"tti****ﬂ‘t*[

PRES: PROCEDURE:

CALL LOGG:

@LCG => @ROLL = NULL;
@LOG => LSET = 0;

END PRES;

/it*t'tt*********t***‘i#*ttii**tii*'**tt****iitii********/

*** PSTO SUBROUTINE ***
ROUTINE TO STORE A RECORD IN THE DATA BASE

/i’i’l‘*i‘****"ti*i*ii*ii*i**t***t***'it*****i******tiiiﬂ***,

PSTO: PROCEDURE:

1l = 1;

IF FLAG = 0 THEN RDB = RDB + 1:
ELSE RRB = RRB + 1;

1 =1;

@PTR = @PNTR{I):

DO WHILE {(@PTR => NAME ~= TASK):;
I =1 +1;

77

@PTR = @PNTR(I):

END :

DO WHILE(@PTR => REC(II).DATA “= 0 & II <= NREC);
II1 = II + 1;

END;

IF II » NREC THEN DO;
ERROR_CODE = °“NO RECORD FOR STORE”;
CALL ERROR:;

END:;

IF FLAG = 0 THEN DO;

RECR = II:

CALL LOGG:

SDB = SDB + 1;

ALLOCATE STAK:

@STAK =-> STAK.DATA = 1I;

@LOG => @ROLL = ADDR(STAK) :
€LOG =-> LSET = 0;

DOT = INDEX({CARD, " .");

CHNG = SUBSTR{CARD,EQ+2,D0T-1);
CNG = BINARY (CHNG) :

END;

RDB = RDB + 1:

@PTR => REC(II).DATA = CNG;
RECR = II;

PUT SKIP EDIT(RECORD STORED AT

*,TASK,II) (COL(35),A,A,F(5)):
END PSTO:

/i** (LR AL B AR LR AR IR ELRELELELELESLELELAELEELELSSSELES ﬂ***t/

+ PREV SUBROUTINE *
ROLLBACK COMMAND TO FIND THE LAST CHECKPOINT OR
START OF THE PRIMARY ROLLBACK TASK

/*t**i*******t*tt****i‘i‘ii******i**‘.***ttt******i*tt'***i/

PREV: PROCEDURE;
LRB = LRB + 1
@CURR = @TAIL;

11 = 1:

DO WHILE(II = 1) :

IF {@CURR => LOG.LDML = "“RESTART ") THEN DO;

IF {@CURR =-> LOG.LTASK = TASK) THEN II = 2; ’*
TASK*/

ELSE @CURR = @CURR => LOG.@BACK:

END;

ELSE IF @CURR => LOG.@BACK = NULL THEN DO:

ERROR_CODE = ° NO LOG ENTRY FOR P=RBACK TASK”:

CALL ERROR;

END:

ELSE @CURR = @CURR => LOG.@BACK;

END;

PUT SKIP LIST{ RESTARTED TASK IS : “,TASK, ~ AT THE

-

TIME P

78

@CURR =-> LOG.LTIME) ;
TRTIME = @CURR =-> LOG.LTIME:;
END PREV:

/it*ttit*tiii***i**iit*Iﬁ**i**i*i**it**!*********t*it***/

*®** PROL SUBROUTINE **¥
MAIN ROLLBACK PROCEDURE CALLS AND SECONDARY CALLS

/i*t*'***i***t*t*t**ii**i*****i****i*****t***ii***t*t***/

PROL: PROCEDURE:;
CALL LOGG;

CALL PREV:

CALL PLIN;

CALL PFOR;:

CALL PRBK:

CALL PSCN:

@SRLH = NULL:;
@SRLT = NULL:;
END PROL:;

/***'*i*i*i*i******i**itii********i*it*i*t****t*tti*it*i/

*** PLIN SUBROUTINE **~*
INITALIZE THE TASK LIST AND SET COUNTER “K~

/i'*ti'******t**‘********'******t*******i****t*i*i*t*t*i/

PLIN: PROCEDURE:;

TL = TL + 1;

DO II = 1 TO NTASK:
TLIST(II) = ° “; -
END ;

K= 1:

END PLIN;

!*i*i*itii*t*t*t*it****it***tt*tt*********t********i*ti*!

*** PLIS SUBROUTINE ***
UPDATE THE TASK LIST WITH THE NAME OF CORRECTED
{ROLLED BACK) TASK

/*i*i****t****'*ﬂ****tti***I***itiiii**ti*i********ttiti/

PLIS: PROCEDURE;
TL = TL + 1;
K=K+ L;
TLIST{K) = TASK;
END PLIS;

79

/*** t A R L E LSRR R LR LRI ELEELENSEL) ****t**ﬁ**it*i***t*t*t*ii**,

*** PFOR SUBROUTINE ***
THE FORWARD SEARCH OF THE JOURNAL FILE FOR ENTRYS
IN THE ROLLBACK FILE AND SECONDARY ROLLBACK LIST

f**iittt*ittt**it** **i"‘******i*t*t*t**‘i*iiii*t*l‘t-*t*i*/’

PFOR: PROCEDURE;

PUT SKIP LIST(ENTER PFOR 7):

SRFLAG = 1;

@TRF = NULL;

@HRF = NULL:

LRB = LRB + 1;

@CURR = @CURR => LOG.@FWD;

DO WHILE(@CURR =-> LOG.LTIME ~= TTIME):

IF ({@CURR => LOG.LDML ="MODIFY “] @CURR => LOG.LDML
= “STORE ‘

] @CURR => LOG.LDML = “CONNECT "] BCURR =>» LOG.LDML =

“DISCONNECT”

] @CURR => LOG.LDML = "ERASE “) & @CURR =->
IOG.LFLAG = () THEN
DO ;
IF (TASK = @CURR => LOG.LTASK) THEN DO: /* TASK*/
IXI = 13

URB = URB + 1;

DO WHILE{UPDATE({(II) = 0 & II <= NREC):

IF (UPDATE{II) = RCURR =-> LOG.LREC) THEN GO TO ZIP;
IT = I1 *+ 1

PL. SKIP LIsST{" LEAVE PFOR *2*7) ;

END;
UPDATE(11) = @CURR =-> LOG.LREC:
SRFLAG = 0;

PUT SKIP LIST{UPDATE({II1)):

ALLOCATE RFILE;

RFRB = RFRB + 1;

IF @HRF = NULL THEN @HRF = @RFILE:

ELSE €@TRF => @RFWD = @RFILE;

@RFBK = @TRF;

@TRF = @RFILE;

@RFWD = NULL;

PUT SKIP LIST ("ADDITION TO ROLL BACK FILE") ;
@RFILE => RFDML = @CURR => LDML;

@RFILE => RFREC = @CURR => LREC;

@RFILE => RFTIME = @CURR =-> LTIME;

PUT SKIP LIST{@RFILE =-> RFDML, @RFILE => RFREC, E@RFILE ->
RFTIME) :

PUT SKIP LIST{~ LEAVE PFOR *1*7);

END;

PUT SKIP LIST{" LEAVE PFOR ***"}) :
IF (SRFLAG = 0) THEN DO;

I = 1;

@PTR = @PNTR(I):

DO WHILE(@PTR => NAME “= TASK) :

I =1 +1;

8¢

@PTR = @PNTR(I):

IF I > NTASK THEN DO;
ERROR_CODE = “ERROR PFOR”;
CALL ERROR:

END;

END;

CALL PASK;

END;
END;
ELSE
2IP: @CURR = @CURR => LOG.@FWD;

END;

PUT SKIP LIST{~ LEAVE PFOR *3*7);
END PFOR;

-a

/********t‘tt‘**i****i*i*iii****iiit**ii*tii**t*tt*l‘***/

*** PSCN SUBROQUTINE ***
THIS ROUTINE TAKES THE TASKS PLACED ON THE
SECONDARY ROLLBACK LIST AND MAKES THEM A PRIMARY
ROLLBACK TASK TO COMPLETE THE ROLLBACK PROCEDURE

/****i*******tttit*tt’t***titit****itit*ii***'**if***t**f

PSCN: PROCEDURE:;

PUT SKIP LIST{ ENTER PSCN");
SRRB = SRRB + 1;

@SCN = @SRLH:

DO WHILE{CNT == 0):

RECR = @SCN => SRL. REC; /* RECORD */
TASK = @SCN => SRL.TASK:
CALL PREV;

CALL PFOR;

CALL PRBK:

@SCN = BSCN => @SRLFWD:

SRRB = SRRB + 1;

CNT = CNT - 1;

END;

END PSCN:

/ttt*itt‘tﬂ***t'i**i******ﬁﬂ***ii****it*ii*******titt**,

x PASK SUBROUTINE ***
ROUTINE TO CHECK A JOURNAL ENTRY OTHER THAN THE
PRIMARY ROLLBACK TASK FOR DETERMINING IF IT
SHOULD BE ADDED TO THE SECONDARY ROLLBACK LIST

/*****i*t*****i**'**t************‘*t*ii*tt*'**'**'**i**/

PASK: PROCEDURE;

PSRB = PSRB + 1;

PUT SKIP LIST(" ENTER PASK ***");

J = 1;

DO WHILE({ @PTR => NSDL >= J);

IF (@CURR => LOG.LTASK = @PTR =-> SDLTI(J) &

@CURR =-> I10G.LREC = @PTR =-> SDLR{J)) THEN DO;
PUT SKIP LIST{" ENTER PASK *1*7):
SRRB = SRRB + 1:
IF @SRLH = NULL THEN CALL PSRL;
ELSE DO;
@SRLL = @SRLH;
DO WHILE(@SRLL => SRL.@SRLFWD ~= NULL):
PUT SKIP LISsT(" LEAVE PASK *1*7};
IF {QCURR => LOG.LTASK = @SRLL => SRL.TASK) THEN RETURN:
@SRLL = @SRLL => SRL.@SRLFWD:;
END :
IF (@CURR =-> LOG.LTASK = @SRLL =-> SRL.TASK) THEN RETURN:
CALL PSRL;
END:;
END:;
J=J + 1:
END ;
PUT SKIP LIST(" LEAVE PASK ***°) .
END PASK:

/'***** LR L BRI E LB IR LSRRI AR LRl R RARRLlE LSS SESES S LSS *‘t'l/

*** PSRL SUBROUTINE ***
ROUTINE TO ADD JOURNAL ENTRY TO THE SECONDARY
ROLLBACK LIST

/iﬁii***'**"*****t*‘l’*t't*"i*********'*****‘tttit*****I‘*/

PSRL: PROCEDURE:

PUT SKIP LIST{" ENTER PSRL **+*7):

TL = TL + 1:

DO L =1 TO K:

IF TLIST(L) = @CURR => LOG.LTASK THEN RETURN:
END;

CALL PLIS;

ALLOCATE SRL;

IF @SRLH = NULL THEN @SRLH = @SRL;

ELSE @SRLT => @SRLFWD = @SRL;

@SRLBK = @SRLT;

@SRLT = @SRL:

@SRLFWD = NULL;

@SRL =-> SRL.TASK = @CURR =-> LOG.LTASK;

@SRL => SRL.REC = @CURR =-> LOG.LREC:

@SRL => SRL.,STIME = @CURR =~> LOG.LTIME;

PUT SKIP LIST(NEW SEC. ROLL BACK ALLOCATION “):
PUT SKIP LIST{@SRL => SRL.TASK, @SRL => SRL.STIME);
CNT = CNT + 1;

PUT SKIP LIST(" LEAVE PSRL ***°)

END PSRL;

82

/***********ﬂ*'**i*iii*t*i****'****fiif***ttt*!t**tt***/

*** PRBK SUBRQUTINE *=**
BEGINS THE ROLLBACK OF ENTRIES IN THE PRIMARY
ROLLBACK LIST

/*iiiii*'*if*i**tiit*i*********i****i"**i********i****/

PRBK: PROCEDURE:

PUT SKIP LIST(™ ENTER PRBK ***7):
RFRB = RFRB + 1;

@TRVS = @HRF:

DO WHILE(ETRVS => @RFWD ~= NULL)
RECR = @TRVS => RFREC;

DML = @TRVS => RFDML;

CALL RCOM;

@TRVS = @TRVS => @RFWD;

END ;

DML = @TRVS => RFDML:

RECR = @TRVS => RFREC;

CALL RCOM;

@TRF = NULL;

@HRF = NULL;

PUT SKIP LIST{" LEAVE PRBK ***7);
END PRBK:

/*ii**iiii*!tiitt"i*iﬁ****'****i****iit*i**!**ii*******/

*** RCOM SUBROUTINE ***
SENDS THE ROLLBACK CCMMANDS TO CORRECT ROUTINE

/t****"*i*t******t*ti*tt**i*iiti**ti************i******/

RCOM: PROCEDURE:
PUT SKIP LIST(" ENTER RCOM ***7).:

CALL STTl:

CALL STT2;

@SRCH = @TAIL:

IF (DML = “ERASE “) THEN CALL RSTO:

ELSE 1IF (DML “STORE) THEN CALL RERA;
ELSE IF (DML “MOD IFY “) THEN CALL RMOD;

‘CONNECT “) THEN CALL RDIS;
“DISCONNECT”) THEN CALL RCON;

ELSE IF (DML
ELSE IF (DML
CALL STTl:
CALL STT2Z2;
PUT SKIP LIST(~ LEAVE RCOM *1*°):
ERD RCOM;

o

f**i*f*i*i‘***t!***iit*******t*i**'***i*ii****ii***t****;

%¥ RSTO SUBROUTINE ***
ROLLBACK ROUTINE TO RESTORE ERASED RECORD

f*#*ﬂ*********i*****ifi***t****ﬁ****'**t*t!**itt***i*t*i/

RSTO: PROCEDURE:;
CALL PSRCH;

83

PUT SKIP LIST{(ENTER RSTQ *=**7);

CNG = @R => STAK.DATA:

CALL PSTO;

IF{{(éR => STAK.S1BIDT “= ~ “)](@R => STAK.SLFIDT “=
))THEN DC:

SET = 1:
CALL PCON;
END;

IF({@R => STAK.S2BIDT ~=
")) THEN DO;

“}] (@R => STAK.S2FIDT *~=

SET = 2:
CALL PCON:
END ;

STRB = STRB + 1:
PUT SKIP LIST(" LEAVE RCTO *1*7);
END RSTO;

/’** (2 2L B2 BT RIELIEIRLIELE S RIALELA RIS R LRI REEELE SN T t**ti**/

*** PMOD SUBROUTINE **=
ROUTINE TO MODIFY THE CONTENTS OF THE DATA BASE

/** i R LSS RLELIELIRLARELIERLIEIELELZRELELIERLELSELELESZS,; *"****I‘t*ii*t/

PMOD: PROCEDURE:

CALL LOGG:

@LOG => LSET = 0;

IF FLAG = 0 THEN DO;

DOT = INDEX{(CARD, .7):

CHNG = SUBSTR{CARD,EQ+2,DOT=1);
CNG = BINARY {CHNG):

STDB = STDB + 1;

ALLOCATE STAK:

I = 1;:

@PTR = @PNTR(I):;

DO WHILE(@PTR => NAME ~= TASK):

I =1I +1;
@PTR = @PNTR(I1);
END;

@STAK => STAK.DATA = @PTR =-> REC(RECR).DATA;
LDB = LDB + 1:;

@LOG => @ROLL = ADDR{STAK) ;

END ;

@PTR => REC({RECR) .DATA =
IF FLAG = 0 THEN RDB = RD
ELSE RRB = RRB + 1;

END PMOD:

CNG ;
B + 1:

84

/******i*******i**t*************t*******************ttt*[

*** LGR SUBROUTINE ***
ROUTINE TO LIST THE JOURNAL FILE CONTENTS

/****tt*'**t***t*****i*********************************i/

LGR: PROCEDURE;
PUT SKIP LIST(" THE LOG RECORD LIST) ;

@ADJ = @HEAD:

DO WHILE(@ADJ => LOG.@FWD ~= NULL):

PUT SKIP LIST(@ADJ =-> LOG.LTIME, @ADJ =-> LOG.LTASK,
@ADJ => LOG.LREC, @ADJ => LOG.LDML) ;

@ADJ = €ADJ => LOG.@FWD:

END;

PUT SKIP LIST(@ADJ =-> LOG.LTIME, @ADJ => LOG.LTASK,
@ADJ -> LOG.LREC, @ADJ => LOG.LDML):

END LGR:

/ttt***iﬁ*********t****fi***ﬁ'i*'i*I'*******************/

*** STT1 SUBROUTINE ***
LIST THE CONTENTS OF RECORDS IN SET 1

/****ﬁ********t*i*i***i****t*.****iitt*iit*tt'tttttttiit/

STTl: PROCEDURE;

PUT SKIP LIST {("SET 1 ... TASK & RECORD);

IF @8S1H ~= NULL THEN DO:

@ADJ = @SlH:

DO WHILE{@ADJ => SET1.SlFWD *~= NULL) ;

PUT SKIP({2)LIST{@ADJ => SETL1L.S1TASK, @ADJ => SETl.S1REC);
@ADJ = @ADJ => SET1.S1FWD;

END:;

PUT SKIP{2)LIST(@ADJ => SET1.S1TASK, @ADJ =-> SETl.SlREC):
END ;

PUT SKiIP LIST{(" END OF SET 1 LIST"):

END STT1;

/ii**i*ti**'i****t*i**tit****"***t'***'*'*ittttt!it*ti'/

w STT2 SUBROUTINE ***
LIST THE CONTENTS OF RECORDS IN SET 2

/t**t*iii**ii***ii*itii****i'**********tt*ii*i*ttt'tii**/

STTZ2: PROCEDURE:;

PUT SKIP LIST {("SET 2 ... TASK & RECORD) ;

1IF @82H ~= NULL THEN DO;:

@ADJ = @S2H;

DO WHILE(@ADJ => SET2.S2FWD *“= NULL) ;

PUT SKIP(2)LIST{@ADJ =-> SETZ.52TASK, GADJ —> SET2.S2REC):
@ADJ = @ADJ => SET2.S2FWD:

END;

PUT SKIP(2)LIST(@ADJ => SET2.S52TASK, @ADJ => SET2.S2REC):
END ;

85

PUT SKIP LIST{" END OF SET 2 LIST"):
END STTZ2:

/*i’***Ii***tt‘********i******!t*ii*******i******i**it**!

END OF PROGRAM

/***ti**#t!*tiit***t*************i*t****i*********tt**tﬁf

PUT SKIP LIST(NORMAL TERM");
END PROGS5;

//GO.SYSIN DD *
"RESTART A 2. -
"RESTART B 2.
“RESTART: C 2.
“GET J 5.°
“MODIFY J 6 = 4.7
“CONNECT A 2 = 2.°
“GET A 5.7

"GET A 1.7

‘GET A 13.°
"DISCONNECT A 2 = 2.
‘MODIFY A 12 = 9.7

“GET C 5.°

‘GET C 1. °

"GET C 13.°

"GET € 1.."

“GET C 11.°

"GET C 5.~
"MODIFY E 8 = 1.~
"GET E 5.°

"CONNECT E 7 = 2.7
"DISCONNECT E 7
"GET E 7.~

"GET E 13.°
"MODIFY F 8 = 5.°
"MODIFY F 11 = 6.°
"MODIFY F 8 = 1.°

2I'

"GET F 5.7
"GET F 1l.°
"GET F 13.°
"GET K 11l.°
"GET K 5.°
"GET K 7.~
GET K 4.°

“CONNECT K 7 = 2.
"DISCONNECT K 7 = 2.°
“RBACK G 0.7

SIMULATION OF A SELECTIVE
ROLLBACK AND RECOVERY METHODOLGY

by
Kirk A. Norswerthy

B. S., University of Kansas, Lawrence, Kansas, 1975

AN ABSTRACT OF A MASTER"S REPORT

submitted in partial fuiifiliment of the

reguirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1978

In order to check the effectiveness of a selective
roilback and recovery algorithm, a simulation of the.
algorithm was run under a Codasyl type data base. This
simulation was weighted against the performance figures from
a simulation on deadlocks in data base management systems
and calculations of the predicted CPU overhead we&e made.

This simulation showed that the selective roliback and
recovery aigorithm worked well in even the highest cases of
data integration. This simulation modeled the deadlock
problem in a multi-user envirponment to simulate the
performance of the algorithm coupled with a -deadiock
detection scheme. The motivation for this research is the
eventual integration of computing resources into distributed

data sharing.

