
CANONICAL VARIATES AND CORRELATIONS

by

CHI-YUNG CHIANG

B. A. National Taiwan University, 19^8

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OP SCIENCE

Department of Statistics

KAxNSAS STATE UNIVERSITY

f/Ianhattan, Kansas

1965

Approved by

ni
^/IvIajoi/iProfessor

2U1LUU^



M
j^dS TABLE OF CONTENTS

INTRODUCTION 1

DERIVATION AND COMPUTATIONAL PROCEDURE Ij.

(a) DERIVATION k

( b) COMPUTATIONAL PROCEDURE l5

SAMPLING DISTRIBUTION l8

TESTING SIGNIFICANCE 20

EXAMPLE 22

ACKNCA-LEDGEMENT 29

REFERENCES 30



INTRODUCTION

The search for statistical relationships of one sort or

another is a basic objective of scientific work. The method of

simple correlation deals with pairs of quantitative variables

such as the relationship between heights and the weights of

human beings or the relationship between price of one commodity

and the volume of its sales. Here only two variables are in-

volved. Sometimes more than two variables will enter the pro-

blem. For example, one may be interested in the relation be-

tween college students' grade average and (1) their intelli-

gence quotients and (2) the number of hours each studies per

week. We may look at the relationship from two different

standpoints. First, we may study the relation of a dependent

variable and a whole group of independent variables. This is

the method of multiple correlation. Thus, a multiple regression

equation may be used to estimate or predict the value of the

dependent variable on the basis of the several combined inde-

pendent variables. Secondly, when several different variables

are taken into a problem, we may also study the "net" relation-

ship. Since two variables may correlate or fail to correlate

largely because of the Influence of some other factor upon them

rather than their inherent relationship, this influence must be

eliminated. The correlation independent of the other factors

thus found is called a partial correlation.

Simple correlation represents the relationship between two

variables ignoring the influence of other variables. Multiple



correlation concerns the relationsJaip between one dependent va-

riable y and a set of Independent variables ix-^, x^, ... , \^ *

Partial correlation represents the relationship between variables

x^ and X, eliminating the influence of the other variables by

holding other variables as constant.

Concepts of correlation and regression may be applied not

only to ordinary one-dimensional variates but also to variates

of two or more dimensions. The study of individual differences

in mental and physical traits calls for a detailed study of the

relations between sets of correlated variates. For example the

scores on a niimber of mental tests may be compared with physical

measurements on the same persons. The questions then arise of

determining the number and nature of the independent relations

of mind and body shown to exist by these data and of extracting,

from the multiplicity of correlations in the system, suitable

characterizations of these independent relations. In economics

one may desire to find demand and supply functions. Since the

consumDtions of one commodity may be related as much to the

prices of other commodities, it therefore seems appropriate that

studies of demand and supply should be made by groups rather

than by single commodities.

To find the relationship between sets of variables, the me-

thod of canonical correlations was first introduced into statis-

tics by Hotelling (1936). Considerable additions have been ir^ade

by various later writers particularly Bartlett (19i;7) who found

the general canonical correlation distribution. Hsu (1941)

found its limiting distribution.



The problem concerns relations between two sets of variates

that are invariant under all Internal linear transformations of

each set separately. If one undertakes to find a linear function

of the variates in each set which yields the highest possible

correlation between the tv/o, a set of linear equations in the

coefficients and an interesting determinantal equation are ob-

tained. These, at the same time, determine other linear functions

in pairs. One member of a pair in each set will have zero corre-

lations between all functions belonging to different pairs, but

within the pairs, correlations are equal to roots of the deter-

minantal equation, called canonical correlations. The linear

functions, thus determined, are called the canonical variates

and include the best prediction of one set in terms of the other.

Since Hotelling's paper makes use of rather complicated ma-

thematics and does not spell out in detail the methods of numeri-

cal computation, few practical statisticans seeui to know of the

paper. It is the purpose of this report to illustrate the mathe-

matical derivation of canonical variates and canonical correla-

tions, computational procedures, the sampling distribution of

canonical correlations and tests of various hypotheses.



DERIVATION AND COMPUTATIONAL PROCEDURE

(a) Derivation

The theory of canonical variates and canonical correlation

was developed by Hotelling (1935, 1936). T. W. Anderson (I962),

using matrix algebra, gave more modern expression of its derivation

in detail.

Suppose the random vector X of p components,

X' = ( x^ x^... X x^^^ ... X p ) Pi+P2= P

has E(X) = 0, with variance covariance matrix

2 = ( a^j ),

.where o,. = Var(x.) and o. ^.
= Cov(x^,x.).

Partition X into tv/o subvectors of p, and Pp (assume

p - p ) components respectively. The variance covariance matrix

is partitioned similarly into p and p rows and columns as

follows

X' =
( X^^) X^2) ), (1)

and

^^iT :") <^'

Consider an arbitrary linear combination

U = o('X^^^

and

V = r'x^^^

The linear function that will maximize the correlation betv/een

U and V is wanted. Since the correlation of a multiple of U

and a multiple of V is the same as the correlation of U and V,



an arbitrary normal! zatian of .> and V can be made. Therefore

oi and Y can be chosen such that U and' V have unit variance.

Since E(X) = 0, therefore E(U) = E(V) =

Var(U) = E(U2) = E(o^'X^l^X^l^o() = <^'2 .^

and similarily

Var(V) = V'222^ •

No generality is lost in requiring:

Var(U) = 1 (3)

Var(V) =1 (i^)

since a correlation is scale free.

Now the correlation between U and V is rewritten as

p (U,V) = E(UV) = E(o<'X^^^X^2^ V) = o^'2^2^ (5)

Thus the algebraic problem is to find oi and jr to maximize

(5) subject to (3) and (if). Using Lagrange's method, let

^ = "^'^12^' - (V2)(o<'23^3<x-l) - (/^/2)(v' 222^-1) (6)

where \ and u are Largange multipliers.

Normal equations are obtained by partial differentiation

with respect to « and r .

hz"^
-

^^ii^^
= (7)

2{2°< - ^222^ = (8)

Their solution is expedited by multiplication of (7) on the

left side by V and (8) on the left side by y' yielding

a'2^2r " '^^'\i^ = (9)

r'^2f^ ' M'*''^22^ " ° ^^°^

Since, o('\f^ = ^'^22^ " "' '



Thus (7) and (8) can be written as

-^^li"
- hz' = °

Z2i« - X222^ =

(11)

(12)

or

-\2
11 '12

(13),/)= (°)

In order that there be a nontrivlal solution, the determinant

must be zero

-\2
11 ^12

2oT -\2.

0. (11+)

'21 -'^^22

It can be shown that the determinant on the left is a polynomial

of degree p. It therefore has p roots say,

^1^ ^2^ ^3^ ... ^ Xp

and V = VX^^^ when oc and r satisfy (13) for some value of \.

Thus the maximum correlation will be \ = \^ .

Let a solution to (13) be

(X = ex.
(1) r = Y (1)

and let

U^ = 0^(1) .X^l)
,

^ >p(l),^(2)

then U, and V, are normalized linear combinations of X^-"-'

and X^2) respectively, with maxiraiom correlation.

Now, consider a second linear combination of X^^' say,

U =«'X^-'-^ .and a second linear combination of X^^^ , V = r'X^^\

such that, of all linear combinations uncorrelated with U-, and

V-^ these have maximum correlation. This procedure is continued.



at the r^^ step there are

u = 0^(1) -xd), V^ = v(i)'x(2)

U = «(2).X(1), V^ = r(2).x(2)

U = 0((^)'X(1), V = y(^)'X^2)
r r

linear combinations with corresponding correlations

•. X(l) = Xi, \(2), ;,(3), ... , x(^), r^ pi.

Now, suppose we wish to evaluate U , , ^r+l* ^^®^ ^^® must

find a linear combination of X^-^-^ U =0\'xd^ and a linear

combination of X^^)^ y = T'X^^) v/hich is uncorrelated with all

previous r sets of U and V but has. maximum correlation. ( ex and

If now denote vectors distinct from the previous oS^' , V^t
i = 1, 2, ... , r ).

The condition that U be uncorrelated with U^ is

E(UU^) = E( oCX^^^X^^^'a^^^ ) = o^'Z^^l*^^^^ = ^^^

if \^^^
i= 0,

Therefore

a '2^2^^^^ = 0.

This implies that

E(UVi) = (l6)

If \d^ = 0, 2i2^^^^ = and (l6) also holds.

Similarily the condition that V be uncorrelated with V, is
1

E(W^) = r'222^^^^ =

and this also implies that E(VU.) = 0.
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Now maximize E(U ^..V .) , choosing o( and T to satisfy (3),
r+i r+1

(1+), (15) and (17) for i = 1, 2, . . . , r. Consider

4^r+l =
<^'2i2<'

- (V2)(a'2iiC^ - 1) - (H/2)(r222^ ^^

+ 2 ^j.ad..a^^^ + 2 0.r'2ppV^^^ (19)
1=1 1 -^^ 1=1 ^ ^-^

where \, jL* , v-^, ... , v^, 0-^, ... , G^, are Lagrange multipliers.

Partial differentiation with respect to « and Y, gives
r / . V

2, ^r - A2, ,o< + 2 V.2, ^^^^^ = (20)
12* 11 r^ i 11

r

^21^ - fhz'' "
ifi ®i'

-(i)
2 0.2^^r^^ = (21)

22

Multiplication of (20) on the left by oc^J^'and (21) on the left

by Y gives

( 1 )
»

( 1 ) ' ^ ( i ) ' ( i

)

ar-^' z^^r - \oC^^ 1^^ + 2 v^cx:-^'
^ii^

= o,

that is

v^o((j)'2^^«(J) = (22)

Since a^
^"^

'z ovf -^^ = 1

then ^
T
~ 0«

J

Sirailarily 9^ = 0.

Thus equation (20), (21) are simply (11) and (12). Therefore

take the largest \^ , say X^^'^-^' , such that there is a solution

to (13) satisfying (3), (if), (15) and (1?) for i = 1, . . . , r.

Let this solution be o^^^'*"^^ y^^"*'^) and let

The procedure is continued step by step as long as successive so-

lutions can be found which satisfy the conditions, namely, (13) for



some \^, (3), (i^), (l5) and (I?).

It can be shown that the number of steps for which this can

be done Is equal to the number of components in X^ , that is p,.

The conditions on the X's, o<'s and V s can be summarized as

follows:

. ^^Plh,Define A = ( a^^) «^^^.

and

/ X(2)

A =

r^'pih.

(3)
(23)

Then A A = I.

(Pl)'

11

ri h2^i- ^'

^' ^12 f^l
= A ,

Let r2 = ( r^Pl^^^ y(Pi+2)
^^^

y^Pi+I*2^ ')

be a P2X(P2-Pi) matrix satisfying

{2k)

(25)

(26)

(27)

(28)

and let p = ( T^ T^ ) .

Since f-^ is a p^p-,^ matrix and r2 is a P2x(P2-Pi) matrix,

therefore p is a square matrix of size p„)^p The result

and
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implies p' Sop r* = I, that is, r is nonsingulcr.

Now, consider the determinant

A'

-\ I

A

= (-\)

A

-\ I

P2-P1

-\ I
11 ^12

^21 "^ ^22

-\ I

A

f"l ^2

-\ I A

A -\ I

D -p
(-\)'2 1

)
-\I

I

|-\I - A(-\I)-^A
I

(-X)^2-Pl|,2i .^2
I

o.

= (-X)^2-Pl ;,1 (^2 . ^(i)2
3^

i=l

The above polynomial is

-\ 2
11 ^12

-\ 2.

(29)

(30)

except for a constant factor. Thus the roots of (li|) are roots

of
(-\)^2-Pl ll (^2 . ^(i)2

) = (31)
i=l

where

X = + X(i) for i = 1, 2, ... , p^

and ( P2-P3_) of the \ are zero.

Thus

( \> ... , ^ ) = (
^^^^ ... ,

^^P'^ 0, ... , 0, -x(i^), ... -{'\



It can be shown that the set

is the set

11

Thus \^^^ = \, for i = 1, 2, ... * Pj .

Let

U =

/"l N

u

= A'X^l^ (32)

r(l) = = rix(2).

(2) =

V

2

(33)

(34)

The components of U are one set of canonical varlates and

the components of V = /^n / are the other set,
^ vv2; '
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( U'
,(1)

v(i)v(i)'

v(2)y(1)'

Y

U V

(2)

(2) \

v(l)v(2)'

V(2)v(2) . /

= E

A'x(1)x(1)'a A'x(l)x(2)'q A'x(l)x(2)'r^
>^

p.x(2)x(l) .A r'x(2)x(2) '

p_^
nx^l)x^2) -p^

p.x(2)x(i)'A r^^x^^h^^'i'r^ r^x^2)x(2)'p^ y

I

A

A

I

\

I >.

(3^)

.-'. The previous discussion can be summarized in the following

statements:
X (1)

(2)

(1) has p, componentsDefinition: Let X =/ , ^, ] where X

and X has p (=p-p -p ) components. The r"''^ pair of

canonical variates are the pair of linear combinations

U^ = 0^^^'X^^^ and V^ = T^^^'X^^^ , each of unit variance

and uncorrelated with the (r-1) pair of canonical variates

and having maximum correlation. The correlation is the r

canonical correlation.

Theorem: Let X = / X^"^^

(2)

be a random vector with covarlance

ma trix 2 then the r'^^ canonical correlation between X '
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and X^^^ is the rth largest root of (lij.). The

coefficients of o^r)ix(l) and y^^) 'X(2) define the

rth pair of canonical variates satisfy (13) for

\ = \j. and (3) and ik) .

A single matrix equation for oi and T can be derived.

,-1
'22'If (11) is multiplied by \ and (12) by Zip, it becomes

-X^Z^^oC + Xl^^r =

z'-^z o( - \2"-'-2 r =
22 21 22 22

or

X2^2^ = X^2^^^ (36)

2'^^z^^ = \r (37)

Thus

or

^2^22^21"^ = ^hf <38)

( 2^2^22^21 - ^^^11 ' " = ° '^'5'

The quantities Xf, ... , \,^ satisfy
^

.
^1

I 2^^2-1221 - ^^2^1 I = (i^O)

and cS^\ cx^2)^ ^^^ ^
Q^(p^) satisfy (38) for

2 2 2 2
\ =

^T > ^p» ... »
'^ respectively.

X <:. p..

Similary, if (11) is multiplied by 2^^ and (12) by X, it becomes

-xzlli^f . zllz^^r =

XZ^-^c^ - \^222^ =

or X^ = 2~]^2-|_2^
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Thus

hi^'Ahi'' ' "'^-z <w

or

' ^21^1^2 - '%2 "' = ° <^2'

2 2 2The equantities \^, X^f ••• > \ satisfy

' ^21^11^12 ^^^22
'

" ° ^^^^

and ,^(1), y(2), ... , y(P2) satisfy (1;1) for

2 _ 2 2 2
^ - ^^, ^.2> . . . , ^

2
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(b) Computational procedure

Prom the previous discussion, equation (38), (39) or (^0)

usually will be used in computation. The computational procedure

in terms of the population quantities is as follows:

(1) Obtain 2^^ and 222-

(2) Obtain B = 222 22-^ .

(3) Obtain R = 2^2 ^ •

(ij.) Obtain 2^^ R = E .

(5) Obtain largest characteristic root of E.

(6) Form Q = E - vl

( subtract v from each diagonal element).

(7) Solve Qo^ =0, preferably by eliminating the last row

of Q and putting the last column with opposite sign

to right hand side. This sets o( = 1 .

(8) Solve V = ( 222 221 ) • a .

If p^ is sufficiently small, the determinant Q can be

expanded into a polynomial in v and solved for v. Then use (I|.0)

to find the vectors a.

If p^ is too large, the direct method is hard to evaluate.

An iterative method can be used. S. N. Roy and J. Roy (1958)

suggested a very convenient iterative procedure for finding the

characteristic roots of E of size p XP as follows:

Let Yq be an arbitrary row vector with p-,_ elements, not

all zero, compute recursively the vector Zq, Y-,, Zn, Yp,

as follows:



i6

h= ^0 / " ^0 1!

Y^=. ZqE Z^= Y^/|| Y^

^2 = ZiS Z^ = Y^/
It

Y^

^i+r ^i^ ^i+i = ^i+1 / Y
i+1

where !l Y. li
= (Y^Yj)^/^ .

It can be shown that the sequence of vectors Z. v/ill

converge to a characteristic vector of E corresponding to the

largest characteristic root of E and the root corresponding

to Z can be computed from

\ = Z E Z'.

It is customary and convenient to start with the vector

Y = ( S S .. S )12
p-L

where S is the sum of the elements in the i column of the

matrix E. If a second characteristic root and / or vector Is

required, one first computes the residual matrix

E^' = E - \ Z' Z

and makes use of the fact that any characteristic root (or vector)

of E" is also a characteristic root (or vector) of E.

The rapidity of convergence of the iterative procedure can

be increased by first raising the matrix S to some convenient

power, say e"^, and making use of the fact that if \ \ ... ,

\^ are the characteristic roots of E, then those of E™ are

^^» "^of ••• >
'^'' It is convenient to take m of the form m=2.
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and compute E, E^, E^, E^, ... , etc. by successive squaring of

matrices.

The procedure is continued to find as many characteristic

roots and its corresponding vectors as desired.

Cooley and Lohnes (I962) gives two computer programs, one

for computing the largest canonical correlation, the other for

computing all.
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SAMPLING DISTRIEUTION

The problem of determining the sampling distribution of the

canonical correlation coefficient under general conditions is

very complicated. However, under certain conditions the problem

was solved approximately simultaneously by Fisher (1939), Gir-

shick (1939), Hsu (1939), Mood (19^1) (Hood's results were not

published until twelve years after they were obtained) and Hoy

(1939), using different methods.

For samples from a normal population and the canonical cor-

relation in the population assumed zero, Hotelling (I936) obtained

the joint distribution of the sample canonical correlations for

the special case in which there are only two variables in each

set. The distribution of the canonical correlation r-^ and r^ is

of the form:

, ^., ^M 2. 2x,T 2v(n-5)/2,, 2,(n-5)/2 , ,

(n-2) (n-3) (r^-r2)(l-r-j_) '
^'^ (l-r^) ' dr^dr2

where n is one less than the number in'tha sample for each variate.

Later, Grishick (1939) extended to the case in which there

are two variables in one set and any number of variables in the

other. The form is

At about the same time that Girshick published his paper,

Fisher (1939) and Hsu (1939) gave the joint distribution of the

canonical correlations for the most general case. The results

due to Hsu can be summarized in the following statement:
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Let ( x^, x^, ... , Xp ) and ( x^^^, y^^^2' '" ' ^p+q ^

be two mutually independent sets of variables of which the first

set is normally distributed. Let 9-i, Qp, ... be the squares of

the canonical correlations between the two sets, arranged in the

decending order of magnitude. Then the joint distribution of

the 9. is given by

K- S (9,-9.) S Q (q-P-l)/2 S (i.e.)(n-p-q-2)/2 g ^q^^ .^ ^^^^
i j ^ -J i=l ^ i=l ^ • 1=1 ^

where

K =: (n)P/2 rr
,

i-

1=1 r^(n-q-i)r-|(p-i+l)r^q-i+l) '

if q<p, the distribution is represented by the above formula

with the letters p and q interchanged.
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TESTING SIGIJIPICAIJCE

The joint distribution of canonical correlation, given by

Hsu, for any value of p and q makes further possible tests

available. The percentage points of the distribution of the

largest characteristic root have been computed and charts for

it were prepared by Heck (see Roy, S. N. end Roy, J. (1958)

appendix), which can be sued to test the significance of the

largest canonical correlation. For large n, Bartlett (19l|.l)

has outlined procedures for testing the significance of cano-

nical correlation. He defines

P
A = TT (l-\.) p ^ q

i=l

and the Chi-square approximation for the distribution of /\

provides a test for the null hypotheses that the p variates

are unrelated to the q variates, that is

\^ = -(n-(p+q+l)/2) log A

with pxq degrees of freedom.

If the null hypotheses can be rejected, the contribution of

first root to A can be removed and the significance of the

(p-1) roots can be tested using

p-1
A' = TT (l-\i)

i=l

0(^ = -(n-(p+q+l)/2) log^ a'

with (p-l)(q-l) degrees of freedom. In general, with r roots

removed.



21

a' = ^Tf (l-\ )

.
i=l

and Chi-square is distributed with (p-r)(q-r) degrees of

freedom.
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JiXAI*iPLE

The following example illustrates how to find canonical

variates and canonical correlations using both the direct

method and iterative method:

Let

X-j^ = price of food index,

= price of other commodities indes,

= production durables index,

= production non-durables index,

= index agricultural production.

we wish to find the canonical correlation between production

indices and price indices. The correlation matrix is parti-

tioned as follows

^2

R =

Here

R
11

22

1 1.000

/ .914

.914 -.427 .430 .267

1.000 -.203 .584 .378

-.427 -.203 1.000 .496 .481

\ .430 .584 .496 1.000 .710

.267 .378 .481 .710 1.000

1.000 .914

].914 1.000
f

1.000 .496 .481

.496 1.000 .710

.481 .710 1.000

\
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R12

-.i|27 .1+30 .267

-.203 .584 .378

(I) Direct method:

(1) ?lnd 2"]^ and 1,22

R
-1
11

R
-1
2Z

1 6.0752

^-5.5527

-5.5527 \

6.0752 )
,

, 1.3879 -0.1|32i| -0.3606

-0.i|32i+ 2.1512 -I.319I1

^ -0.3606 -1.319i| 2.1102

(2) Find H = 222 22^.

B
-.87l;85

-.67057

(3) Obtain R =
2;l2

^

_ / .7393

~
V .6766

(I4.) Obtain E = 2-1 R

.75737

6766 \

6677 /

. 15006

.10036

/ .73l|i+ .1+029 \

V .oo5i(. .2995 ' •

(5) Find the largest characteristic root of E.

.73l^l| - V .if029

.0051+ .2995 - V



{.73hh - v)(.2995 - v) - (.oo5lf)(.i|029) = o

2k

V - 1.0339 V + .21778 =

V = .51695 ± V ((.51695)2 - .21778).

= .51695 1 .22239,

V2 = .29i;56 =
^l .

The canonical correlation is therefore

\3_ = .860

\^= .Sk2

(6) Form Q, = E - vl.

f
,13kk - .1393k

.,' - - ^

/ -.001^91^

.ii029

..2?95

,1^029

0051; '^981-.:>'}'

Sat ^ -, =
> ~

'
•* • > .

-»^

.

tne last col-uian and

-. 00494 o(^ = -.4029

°<i = 81.56

therefore

81.56

1.00

(8) Solve r = ( 2;i 2., ).o,'22 "21

">" ==-\l '^jrniiiy^xjy?;



2^

= B' -^

-.871^65 -.67057 \ / 81.56

.75737 .81^531^

.15006 .10033 I ^1.00

-72.023

62.616

12.339

Therefore the first pair of canonical variates is

U = o(' X^-"-^

= ( 81.56 1.00 ) f x-^ \

81.56 x^ + X2
,

V = y x^^^

= -72.023 x^ + 62.616 X, + 12.339 x^ .
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(II) Iterative method

Do step (1), (2), (3) and (!].) as before, but for step

(5), i. e. , to find the characteristic roots of E,

start with

Yq = ( .7398 .7024 ).

Then

II YqII = ( Yq Y^ )V2 = 1.1861,

Zq = Yq / ij YqII = ( .62372 .59219 ),

Y;L = Zq E = ( .i|6l26 .59219 )/ .731+1]. .i|029

\ .0054 .2995

= ( .I4.6126 .42866 ),

V.

Z

Y, / li Y^

Y^ / i Y^

Y3 / ii Y3

= ( .73251

= ( .54163

= ( .73544

= ( .543766 .49241 ),

= ( .73662 .67630 ),

.68074 ),

.49901 ),

.67757 ),

Z3 s

Y], / i
Y^4 4

= ( .54463

= ( .73709

.49935 ),

.67579 ),

Z^ E

= ( .544968 .499373 ),

.67559 J,

.49939 ),

Y- / II

Y^
II

=
( .73727

=
( .54510

Y^/
||

Y^|l =
( .73735 .67551 ),

Z6 2 ' = ( .54516 • .49939 ),

Y7 / l|
Y^

II

= (..73737 .67547 ),
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Yq ,= z^ E = ( .5If5i7 .li9939 ),

Zg = Yg / li
Yq

II

= ( .73739 .675lf7 ),

Y(^ = Zg E = ( .>ii^l9 .I[99i^O ),

29= Yg /
II

Ygll = ( .73739 .675i|5 ).

Since Zg = Zq , Zq is the vector corresponding

to the largest characteristic root.

V = Z E Z'
max

= ( .73739 .675i|5 ) / .731^1+ .ii.029 \

I .0051^ .3995 /

[ . 6751+5 i

= .73939,

X, = .860.

To find the second characteristic root, compute the

residual matrix first:

E** = E - \ Z' Z

.73i|i4- .U029 \

(.73937)
.0051]. .2995 '

.73737 \ ( .73739 .6751+5 )

.675i|5 J

.73li.l| .^.029 \ / .I1O20 .3683

.005k .2995 / ^ .3683 .3373

.3321+ .031+6 \

-.3629 . -.0378 J
.
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Then, following the same procedure as before, let

then,

II Y,

20

= ( -.0305 -.0032 ),

Y Y' )^'^^ = ( . 00091^ J9i+ )^^^= .03067,

^.994^5 -.101^33 ),

-.29269
,

-.030ij.6 ),

-.991+63 -.10351 ),

-.29305 -.03050 ),

-.9914-63 -.10351 ),

Now, Z-, = Zp , the vector corresponding to the

second characteristic root is found.

Then,

V = Z E""' Z'

= ( -.29305 -.03050)/ .3324 .03ij.6\/ -.29305 X

^-.3629 -.0373 ^^ -.03050'

= .291^63.

Therefore

^2 = '^h2.

The result is the same as found by direct method.
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Procedures for finding the correlation between two scalar

variables, simple r, a scalar variable and an associated vector,

multiple R, a scalar and a second scalar, holding a vector fixed,

partial correlations, are discussed in standard texts. The pro-

cedure of canonical variables permits the definition of correla-

tion' between two vectors of arbitrary size, which is the most

general case.

The basic theory of canonical variates and canonical corre-

lation v/as set forth in 1936 by Kotelling. Considerable additions

have been made by various later writers.

Consider p variables, x^ where i= 1, 2, ... , p, each has

n observations, the variables are divided into two groups, p, of

them contained in one group, the remaining ^2 variables in the

other. The problem is to find two linear functions

U = •> X. + » X + ... + a X = ai X^^^11 2 2 13 p^

and

which have maximum correlation with each other, subject to the

constraints that

Var(u) = Var (V) = 1.

The canonical correlation coefficient between U and V

becomes

\ = ok' 2-^2 *^ •

To make It a maximum under the conditions that the variances are

unity, a system of linear equations is obtained and a determinantal

equation solved to determine the A-f^'s, which are the square of the



canonical correlation coefficients. The largest root of this

equation when inserted into the systeai of linear equations, deter-

mines the scalar vectors ex and r. Thus the canonical variates

U and V are obtained v/hile U is most successful in predicting

.V and V the best predictor of U ,

The sampling distribution of canonical correlations has been

found by various authors, under the hypotheses that their popu-

lation value is zero. Pisher and Hsu gave the joint distribution

of the canonical correlations for the most general case.

The percentage points of the distribution of the largest cha-

.

racteristic root have been computed and the charts for it prepared

by Heck. They can be used to test the significance of the largest

canonical correlation. For large n, Bartlett defined

A = IT ( 1 - \. )

1=1 ^

and the Chi-square approximation for the distribution of A pro-

vides a test for the null hypotheses that the p variates are

uncorrelated to the q variates.

The mathematical derivation and the computational procedures

for finding the canonical correlations in detail are presented

in this report. A numerical example, solved by using a direct

method and an iterative method. Illustrates how the canonical

variates and canonical correlations can be found.


