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Abstract

Cyber-Physical Systems (CPSs) represent the next-generation systems characterized by

strong coupling of computing, sensing, communication, and control technologies. They

have the potential to transform our world with more intelligent and efficient systems, such

as Smart Home, Intelligent Transportation System, Energy-Aware Building, Smart Power

Grid, and Surgical Robot. A CPS is composed of a computational and a physical subsystem.

The computational subsystem monitors, coordinates and controls operations of the physical

subsystem to create desired physical effects, while the physical subsystem performs physical

operations and gives feedback to the computational subsystem.

This dissertation contributes to the research of CPSs by proposing a new transaction

model for Environmental Resource Dependent Cyber-Physical Systems (ERDCPSs). The

physical operations of such type of CPSs rely on environmental resources, and they are

commonly seen in areas such as transportation and manufacturing. For example, an au-

tonomous car views road segments as resources to make movements and a warehouse robot

views storage spaces as resources to fetch and place goods. The operating environment of

such CPSs, CPS Network, contains multiple CPS entities that share common environmental

resources and interact with each other through usages of these resources.

We model physical operations of an ERDCPS as a set of transactions of different types

that achieve different goals, and each transaction consists of a sequence of actions. A

transaction or an action may require environmental resources for its operations, and the

usage of an environmental resource is precise in both time and space. Moreover, a successful

execution of a transaction or an action requires exclusive access to certain resources.

Transactions from different CPS entities of a CPS Network constitute a schedule. Since

environmental resources are shared, transactions in the schedule may have conflicts in using



these resources. A schedule must remain consistent to avoid unexpected consequences caused

by resource usage conflicts between transactions. A two-phase commit algorithm is proposed

to process transactions. In the pre-commit phase, a transaction is scheduled by reserving

usage times of required resources, and potential conflicts are detected and resolved using

different strategies, such as Win-Lose, Win-Win, and Transaction Preemption. Two general

algorithms are presented to process transactions in the pre-commit phase for both centralized

and distributed resource management environments. In the commit phase, a transaction is

executed using reserved resources. An exception occurs when the real-time resource usage

is different from what has been predicted. By doing internal and external check before a

scheduled transaction is executed, exceptions can be detected and handled properly.

A simulation platform (CPSNET) is developed to simulate the transaction model. The

simulation platform simulates a CPS Network, where different CPS entities coordinate re-

source usages of their transactions through a Communication Network. Depending on the

resource management environment, a Resource Server may exist in the CPS Network to

manage resource usages of all CPS entities. The simulation platform is highly configurable

and configuration of the simulation environment, CPS entities and two-phase commit al-

gorithm are supported. Moreover, various statistical information and operation logs are

provided to monitor and evaluate the platform itself and the transaction model. Seven

groups of simulation experiments are carried out to verify the simulation platform and the

transaction model. Simulation results show that the platform is capable of simulating a large

load of CPS entities and transactions, and entities and components perform their functions

correctly with respect to the processing of transactions. The two-phase commit algorithm

is evaluated, and the results show that, compared with traditional cases where no conflict

resolving is applied or a conflicting transaction is directly aborted, the proposed conflict

resolving strategies improve the schedule productivity by allowing more transactions to be

executed and the scheduling throughput by maintaining a higher concurrency level.



A TRANSACTION MODEL FOR ENVIRONMENTAL

RESOURCE DEPENDENT CYBER-PHYSICAL SYSTEMS

by

Huang Zhu

B.S., Nanjing University of Posts and Telecommunications, China,

2008

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2014

Approved by:

Major Professor
Gurdip Singh



Copyright

Huang Zhu

2014



Abstract

Cyber-Physical Systems (CPSs) represent the next-generation systems characterized by

strong coupling of computing, sensing, communication, and control technologies. They

have the potential to transform our world with more intelligent and efficient systems, such

as Smart Home, Intelligent Transportation System, Energy-Aware Building, Smart Power

Grid, and Surgical Robot. A CPS is composed of a computational and a physical subsystem.

The computational subsystem monitors, coordinates and controls operations of the physical

subsystem to create desired physical effects, while the physical subsystem performs physical

operations and gives feedback to the computational subsystem.

This dissertation contributes to the research of CPSs by proposing a new transaction

model for Environmental Resource Dependent Cyber-Physical Systems (ERDCPSs). The

physical operations of such type of CPSs rely on environmental resources, and they are

commonly seen in areas such as transportation and manufacturing. For example, an au-

tonomous car views road segments as resources to make movements and a warehouse robot

views storage spaces as resources to fetch and place goods. The operating environment of

such CPSs, CPS Network, contains multiple CPS entities that share common environmental

resources and interact with each other through usages of these resources.

We model physical operations of an ERDCPS as a set of transactions of different types

that achieve different goals, and each transaction consists of a sequence of actions. A

transaction or an action may require environmental resources for its operations, and the

usage of an environmental resource is precise in both time and space. Moreover, a successful

execution of a transaction or an action requires exclusive access to certain resources.

Transactions from different CPS entities of a CPS Network constitute a schedule. Since

environmental resources are shared, transactions in the schedule may have conflicts in using



these resources. A schedule must remain consistent to avoid unexpected consequences caused

by resource usage conflicts between transactions. A two-phase commit algorithm is proposed

to process transactions. In the pre-commit phase, a transaction is scheduled by reserving

usage times of required resources, and potential conflicts are detected and resolved using

different strategies, such as Win-Lose, Win-Win, and Transaction Preemption. Two general

algorithms are presented to process transactions in the pre-commit phase for both centralized

and distributed resource management environments. In the commit phase, a transaction is

executed using reserved resources. An exception occurs when the real-time resource usage

is different from what has been predicted. By doing internal and external check before a

scheduled transaction is executed, exceptions can be detected and handled properly.

A simulation platform (CPSNET) is developed to simulate the transaction model. The

simulation platform simulates a CPS Network, where different CPS entities coordinate re-

source usages of their transactions through a Communication Network. Depending on the

resource management environment, a Resource Server may exist in the CPS Network to

manage resource usages of all CPS entities. The simulation platform is highly configurable

and configuration of the simulation environment, CPS entities and two-phase commit al-

gorithm are supported. Moreover, various statistical information and operation logs are

provided to monitor and evaluate the platform itself and the transaction model. Seven

groups of simulation experiments are carried out to verify the simulation platform and the

transaction model. Simulation results show that the platform is capable of simulating a large

load of CPS entities and transactions, and entities and components perform their functions

correctly with respect to the processing of transactions. The two-phase commit algorithm

is evaluated, and the results show that, compared with traditional cases where no conflict

resolving is applied or a conflicting transaction is directly aborted, the proposed conflict

resolving strategies improve the schedule productivity by allowing more transactions to be

executed and the scheduling throughput by maintaining a higher concurrency level.
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Chapter 1

Introduction

1.1 Cyber-Physical System

The concept of Cyber-Physical Systems (CPSs) has been proposed to develop next-generation

systems characterized by a strong integration of the computing, sensing, communication,

and control technologies [1, 2, 10]. A CPS is composed of a computational and a physical

subsystem. The computational subsystem consists of software components, and the physical

subsystem is composed of various physical devices. The computational subsystem monitors,

coordinates and controls operations of the physical subsystem to create desired physical

effects, while the physical subsystem performs physical operations and gives feedback to en-

able the computational subsystem to perform computations to find solutions for emerging

problems.

The tight integration of the physical and computational subsystems creates new engi-

neering systems with more intelligence, adaptability, reliability, precision, and robustness.

CPSs are destined to transform our world with more intelligent and efficient systems, such

as Smart Home, Intelligent Transportation System, Energy-Aware Building, Smart Power

Grid, and Surgical Robot. Beneath the promising future as we can envision of CPSs, how-

ever, the development of CPSs relies on great improvements of today’s technologies in many

areas. Figure 1.1 [3] states what supporting technologies are required and what challenges

are confronted.
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Figure 1.1: Cyber-Physical System: A Concept Map
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There has been a number of recent efforts to examine current technologies for CPSs and

to identify potential challenges and research needs [4–8]. Much work have also been done

in specific domains to recognize impeding difficulties such as industrial control [11], medical

systems [12–14], transportation [15–18], power grid [19, 20], and environment monitoring

[21]. Especially, Proceedings of The IEEE held a special issue on CPSs [9] to discuss ongoing

research towards CPSs in different areas such as group control and management [22, 23] and

control system modeling and integration [36, 37].

1.2 ERDCPS

Our research concentrates on a particular type of CPSs, Environmental Resource Dependent

Cyber-Physical System (ERDCPS), which are commonly seen in areas such as transporta-

tion and manufacturing such as autonomous cars, warehouse robots and assembling robots..

Physical operations of an ERDCPS rely on environmental resources. For example, an au-

tonomous car views road segments as resources to make movements, a warehouse robot

views storage spaces as resources to fetch and place goods, and an assembly line robot

views materials or parts as resources to produce goods. Environmental resources indicates

external resources that are beyond the control of any ERDCPS. The operating environment

of an ERDCPS usually includes other peer ERDCPSs, and all ERDCPSs share the same

environmental resources for their physical operations. These ERDCPSs together consti-

tute a network, named CPS Network, and they interact with each other through usages of

environment resources, as shown in Figure 1.2.

The usage of an environmental resource by a physical operation of an ERDCPS is precise

in both time and space. It not only specifies which resource is needed, but also indicates the

time period during which the resource is used. When a resource is being used, it can be used

in a shared or exclusive manner. In this dissertation, we are only dealing with cases where

resource usage is exclusive. Since environmental resources are shared in a CPS Network, if

operations from more than one ERDCPS access a particular resource at the same time, a
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Figure 1.2: A CPS Network

conflict occurs. Conflicts can have bad consequences, e.g., a resource usage conflict between

two cars can cause a collision. To prevent undesired consequence, an ERDCPS should be

able to detect and resolve potential resource usage conflicts. If there exists a separate entity

in the network that works as a resource manager, then each ERDCPS communicates with

it to check resource usage conflicts. In the absence of such a resource manager entity, every

ERDCPS then coordinates with each other to use resources without causing conflicts. Once

potential conflicts are detected, they should be resolved.

Existing models for CPSs, such as event-based, service-based and event-based models,

have limitations in capturing the characteristics of ERDCPSs. For example, the environmental-

resource-dependent feature of a physical operation of an ERDCPS is absent in all existing

models we have examined, and the operating environments of CPSs defined in existing

models do not contain other peer CPSs that compete for usages of environmental resources.

Given the deficiency of existing models, we propose a new transaction model for ERDCPSs.

While the concept of transaction is mostly used in systems such as banking and databases to

indicate a all-or-none atomic operation, our definition of transaction here is more structure-

oriented. We consider a transaction as a collection unit of physical operations that achieve

a certain goal and the atomicity constraint is not necessarily followed.
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1.3 Our Approach

In this dissertation, we present a transaction model for ERDCPSs. The operating envi-

ronment of such CPSs, CPS Network, contains multiple CPS entities that share common

environmental resources and interact with each other through usages of these resources. We

model physical operations of an ERDCPS as a set of transactions of different types that

perform different tasks. Each transaction consists of a sequence of actions of different types

with each performing a sub-task. A transaction or an action may require environmental

resources for its physical operations, and a successful execution of a transaction or an ac-

tion requires exclusive access to certain resources when they being used. Transactions from

different CPS entities of a CPS Network constitute a schedule. A schedule must remain

consistent to avoid unexpected consequences caused by resource usage conflicts between

transactions.

We propose a two-phase commit algorithm to process transactions from each CPS entity.

In the pre-commit phase, a transaction is scheduled by reserving its pre-Write set, which

indicates the predicted usage times of required resources. A potential conflict occurs when

the pre-Write sets of two transactions overlap. Depending on the state of a transaction,

different conflict types are defined and several strategies are introduced to resolve them,

such as Win-Lose, Win-Win, and Transaction Preemption. Two general algorithms are

presented to process transactions in the pre-commit phase in the centralized and distributed

resource management environments respectively. In the commit phase, a transaction is

executed using reserved resources. An exception occurs when the real-time resource usage

is different from what has been predicted. By doing internal and external check before

a scheduled transaction is executed, internal and external exceptions can be detected and

handled properly.

To simulate the transaction model, a simulation platform (CPSNET) is developed. The

simulation platform simulates a CPS Network, where different CPS entities coordinate re-

source usages of their transactions through a Communication Network. Depending on the
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resource management environment, a Resource Server may exist in the CPS Network to

manage resource usages of all CPS entities. The simulation platform is highly configurable

and configuration of the simulation environment, CPS entities and two-phase commit al-

gorithm are supported. Various statistical information and operation logs are provided to

monitor and evaluate the simulation platform itself and the transaction model. algorithm

performance. Seven groups of simulation experiments are carried out to verify the simula-

tion platform and the transaction model using CPSNET. Simulation results show that the

platform is able to simulate a large load of CPS entities and transactions, and each entity

and component perform their functions correctly with respect to the processing of transac-

tions. Moreover, the two-phase commit algorithm is evaluated, and the results show that,

compared with traditional cases where no conflict resolving is applied or direct abortion of

a conflicting transaction is used, the proposed conflict resolving strategies improve sched-

ule productivity by allowing more transactions to be executed and schedule throughput by

maintaining a higher transaction concurrency level.

1.4 Contributions

The contributions of this dissertation include:

1. We explicitly define ERDCPS, a particular application type of CPSs, whose physical

operations rely on environment resources to create desirable physical effects. We also

define its operating environment, CPS Network, which contains multiple ERDCPSs

that share the same environment resources and interact with each other through usages

of these resources.

2. We propose a transaction model to model the physical operations of an ERDCPS.

Two levels of abstractions are defined to model the physical operations: action and

transaction. A transaction is composed of a sequence of actions. We also define the

resource-dependent feature of an action and a transaction.
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3. We design a two-phase commit algorithm to process transactions in order to detect

and resolve potential conflicts. In the pre-commit phase, a transaction is scheduled

and potential transaction conflicts are detected and resolved. In the commit phase,

potential exceptions are detected and handled before a transaction is executed.

4. We propose several conflict resolving and exception handling strategies to avoid trans-

action conflicts. Conflict resolving is applied in the pre-commit phase, and strategies

include Win-Lose, Win-Win, Enhanced Win-Win, and Transaction Preemption. Ex-

ception handling strategies are used in the commit phase, and they include internal

and external detection and handling of potential exceptions.

5. We present two general algorithms that work in the centralized and distributed re-

source management environments respectively. In the centralized environment, a Re-

source Server exists and all CPS entities communicate with the server to reserve re-

quired resources. In the distributed environment, CPS entities coordinate their re-

source usages without a central Resource Server. Each CPS entity is both a resource

client and server. When it reserves resources for its transactions, it is a resource client.

When it handles reservation requests from other CPS entities, it is a resource server.

6. We implement a highly configurable simulation platform for the transaction model:

CPSNET. The platform simulates a CPS Network consisting of CPS entities, a Re-

source Server, and a Communication Network. In a simulation, each entity operates

independently and communicates with others using messages. In each CPS entity,

the two-phase commit algorithm is used to process transactions. Two levels of config-

uration (simulation environment and CPS) are supported by CPSNET, which allow

simulations under different settings such as different conflict resolving strategies. Vari-

ous statistical information and operation logs are provided and they make the analysis

of simulation results much convenient. The modularized design of CPSNET makes it

easy to be ported to other applications.
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7. Several groups of simulations are performed using the CPSNET platform. Experiment

results show that the simulation platform carries out a simulation successfully, each

entity does its job as expected, and all components of a CPS entity fulfill their func-

tions correctly with respect to the two-phase commit transaction processing algorithm.

The results also show that the proposed conflict resolving strategies improve schedule

throughput and productivity.

1.5 Organization

The rest of the dissertation is organized as follows:

• Chapter 2 defines the problem of our research, and identifies our research objectives

and challenges.

• Chapter 3 gives a brief overview of related work and discusses why existing models

are not directly used in our research.

• Chapter 4 proposes a new transaction model for an ERDCPS and explicitly defines

the concepts of CPS, CPS Network, Action, Transaction, Schedule, etc.

• Chapter 5 presents a two-phase commit transaction processing algorithm. It shows

how a transaction is scheduled and executed, and how potential transaction conflicts

and exceptions are detected and resolved. Besides, two general algorithms working in

the centralized and distributed resource management environment are proposed.

• Chapter 6 introduces how the CPSNET simulation platform is implemented.

• Chapter 7 discusses our simulation experiments and analyzes the simulation results

with respect to the simulation platform and the transaction model.

• Chapter 8 concludes this dissertation and discusses the future work.
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Chapter 2

Problem Definition

This dissertation focuses on Environmental Resource Dependent Cyber-Physical System

(ERDCPS). This type of CPSs are commonly seen in areas such as transportation and

manufacturing, where physical operations rely on environmental resources. For example, an

autonomous car views road segments as resources to make movements, a warehouse robot

views storage spaces as resources to fetch and place goods, and an assembly line robot views

materials or parts as resources to produce goods.

An application example of ERDCPS is an autonomous car. An autonomous car operates

on its own and has the capabilities to navigate itself in a group of autonomous cars on a road.

It is composed of two subsystems: physical and computational. The physical subsystem is

composed of communication devices (e.g., DSRC radio [56]), sensors that read speed and

acceleration, detect positions and calculate inter-vehicle distance, actuators that turn on/off

signals and trigger operation of mechanical systems, and a mechanical system that carries out

physical operations such as turning and moving. The main task of the physical subsystem

is to perform physical operations and to create the desired physical effects, i.e., movements

on a road. The computational subsystem controls operations of the physical subsystem. It

calculates proper speed or acceleration for the physical system to apply, gives corresponding

instructions to the physical subsystem to execute, and monitors operations carried out by the

physical subsystem. Physical operations (or movements) of a car includes operations such as

turning right or left, increasing or decreasing speed, and moving forward or backward. These
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physical operations all rely on road segments, the environmental resources, to complete their

movements. The operating environment of a car contains other cars that share the same

road to make movements. If two or more cars use the same road segment at the same time,

a resource usage conflict occurs and a car collision will be caused. Thus, the execution of

a physical operation of a car requires exclusive access to the road segment when it is being

used. To guarantee the safety of each car, all cars moving on the road must coordinate with

each other to avoid resource usage conflicts.

2.1 Problem Definition

Because of the specialization of an ERDCPS, its physical operations usually follow certain

patterns. For example, a car’s physical operations are limited to certain moving patterns,

such as turning, accelerating, decelerating, and moving at a constant speed. Moreover,

physical operations are constrained by the capabilities of the physical subsystem, e.g., a

car’s speed cannot exceed the maximum speed that the mechanical system can achieve.

They also have to follow rules of the operating environment, e.g., a car is supposed to move

on a road, and cannot change to its right lane if it is already on the right-most lane of a

road.

Physical operations performed by an ERDCPS form a process which has a specific goal

to achieve, such as a car moving from point A to point B on a road R. The process can be

further divided into a sequence of sub-processes, each achieving a sub-goal. For example,

a car’s moving process from A to B is composed of sub-processes such as accelerating,

decelerating, constant speed moving, changing lanes, and making turns. Each sub-process

can be further divided into smaller units, e.g., making a right turn is composed of the

following operations: turning on indicator, turning wheels clockwise to make the turn,

turning wheels anti-clockwise to readjust direction, and finally turning off indicator.

The operating environment of an ERDCPS usually includes other peer ERDCPSs, and

they share the same environmental resources. These ERDCPSs together constitute a net-
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work and interact with each other through usages of environment resources (Figure 1.2), e.g.,

a group of autonomous cars using the same road for their movements, a group of warehouse

robots the same storage spaces to store goods, and manufacturing robots of an assembly

line assemble products using the same set of materials or parts.

The usage of an environmental resource by a physical operation of an ERDCPS is sen-

sitive in both time and space. It specifies not only which resource is needed, but also which

time period the resource is used. Moreover, when a resource is being used, exclusive access

is required. Since all ERDCPSs in a network share environmental resources, if operations

from more than one ERDCPS access a particular resource at the same time, a conflict oc-

curs. Conflicts always cause bad consequences, e.g., a resource usage conflict between two

cars indicates a collision. To prevent undesired consequence, an ERDCPS should be able

to detect and resolve potential resource usage conflicts. This requires physical operations of

an ERDCPS to be checked for conflicts before it is executed.

In a CPS Network, there may exists a central Resource Server who manages resource

usages of all CPSs in the network. If such a server exists, then a CPS coordinates resource

usages of its transactions with the server, and the server is responsible for detecting potential

resource usage conflicts and telling the corresponding CPS whether its transaction will cause

conflicts. If no such server exists, every CPS then has to coordinate its resource usages with

all other CPSs in the network. In this case, a CPS is both a resource client and server. When

it reserves resources for its transactions, it is a resource client. When it handles reservation

requests from other CPS entities, it is a resource server. When a central server exists, we call

the operation environment as a centralized resource management environment. Otherwise,

it is a distributed resource management environment.

2.2 Research Objectives and Challenges

Our research objective is to build a model for ERDCPSs which captures characteristics of

an ERDCPS and its operating environment discussed in the previous section. It includes
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the following tasks.

1. Model the operating environment of an ERDCPS. The operating environment involves

multiple ERDCPSs that share the same environmental resources. The challenges are:

• Define roles of different entities in the environment, e.g., ERDCPSs, environmen-

tal resources, and possible resource servers that manage environmental resources.

• Define interactions between entities in the operating environment, e.g., how re-

sources are managed by resource servers and used by an ERDCPS, how the usages

of resources by an ERDCPS affect others.

• The representation of entities, especially environmental resources. Since all ERD-

CPSs in the operating environment share the same resources, a common repre-

sentation of these resources is required.

2. Build an architecture for an ERDCPS. The architecture includes the computational

and the physical subsystems. Not only should their compositions be investigated, but

also interactions between them. Questions such as how operations of both the compu-

tational and the physical subsystems are defined, how the computational subsystem

views the physical subsystem and vice versa, and how the control-feedback loop work,

have to be answered.

3. Model operations of an ERDCPS. Operations of an ERDCPS are goal-driven, following

certain patterns, and environmental-resource-dependent. The following questions have

to be answered by our model:

• The connection between goals and operations. How a goal is represented and

transformed into a sequence of operations that accomplish the goal?

• How an operation is defined and what properties does an operation have?
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• What patterns or rules does an operation have? What effects do they have

on an operation? How patterns or rules of an operation are embedded into its

definition?

• The relation between an operation and environmental resources. How resources

are used by an operation? What requirements on resources does an operation

have?

• What is the operation context for an operation? How it affects an operation and

further the physical effects that an operation creates?

4. Design operation processing algorithms. When a goal is selected for an ERDCPS, cor-

responding operations are scheduled to be executed to fulfil the goal. The processing

of operations involves the computational and the physical subsystem. Questions such

as how an operation is scheduled and executed and what roles the computational and

the physical subsystems play in this process need to be answered.

5. Develop coordination protocols for different ERDCPSs within the operating environ-

ment. Since different ERDCPSs share common resources, protocols are needed to

coordinate their operations and resource usages. Coordination protocols should con-

sider the following aspects:

• How resource usage conflicts are detected and resolved.

• What coordination is required for an ERDCPS both internally and externally.

Internal coordination indicates detecting and resolving conflicts when scheduling

or executing each operation in an ERDCPS, while external coordination indicates

cooperation between different ERDCPSs to avoid and resolve conflicts.

• What actions to take when conflicts occur in order to reduce the impact of con-

sequences.
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6. Evaluate and verify the model and protocols through simulations. The following as-

pects should be considered:

• Which simulation platform to used. Does it meet the requirements of our mod-

els? The selection should match characteristics of an ERDCPS and its operating

environment.

• What properties of a model or a protocol to be examined and what performance

is desired should be specified.

• Evaluation criteria must be developed to measure performance.

• Given the simulation results, what can be done to improve the model.
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Chapter 3

Related Work

3.1 Introduction

Research on modeling CPS has primarily focused in three directions: architecture, opera-

tion, and engineering. An architectural model defines how different components of a CPS

are composed or integrated. These components, Cyber and Physical, may be heterogeneous

and sometimes cross-domain. An operational model defines operation patterns of a CPS,

including both internal and external operations. Internal operations indicate interactions

between different components of a CPS, while external operations indicate interactions be-

tween a CPS and its operating environment. Engineering models focus on the control and

dynamics of a CPS. They study the stochastic nature of communication systems, discrete

dynamics of computing systems, and continuous dynamics of control systems [10].

Our research focus on modeling the architecture and operation of CPSs. In this chapter,

we examine existing architectural and operational CPS models and related works.

We first give an overview of existing event-based, service-based and agent-based CPS

models, and discuss the reason that we don’t select them to model ERDCPSs. Then we

investigate related works in resource sharing, and discuss their difference from environmental

resource sharing in ERDCPSs. After that we describe why the transaction-based model is

selected for ERDCPSs, and describe its difference from database transaction models.
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3.2 Event-Based Models

Event-based models [24–28] treat a CPS as an event-driven system, where events act as

triggers. An event is a condition of interest. When an event is detected, corresponding

handling operations are executed to react to the situation indicated by the perceived event.

Event-based models capture interactions between a CPS and its operating environment.

3.2.1 Overview of Event-Based Models

The notion of event can be defined for different purposes [24]. For example, an event may

indicate sending or receiving a message in an actor model of computation, an action shared

by two processes in a process algebra model of computation, or an occurrence in time

and space in the world of linguistics. The middleware introduced in [28] considers a CPS

comprised of physical systems generating aperiodic and periodic events that are processed

on distributed computing platforms subject to end-to-end deadlines. The processing of a

sequence of events forms a task, which are further divided into a chain of subtasks located on

different processors. The middleware manages tasks through a set of components performing

different services such as admission controller, idle resetter, load balancer, and task effector.

Similar event-based architectural and operational models of CPSs are presented in [25–

27]. In such models, an event is a condition of interest and an action is a predefined

operation following the detection of an event. Each event has attributes related to the

occurrence of the condition, such as temporal and spatial properties. An occurrence of

an event is detected by an observer which collects and processes data to check whether

conditions are met. While the work in [25] focuses more on the definition of different types

of events such as Physical Event, Physical Observation, Sensor Event, Cyber-Physical Event,

and Cyber Event in the hierarchical event model, the models proposed in[26, 27] emphasize

on how events are composed. For example, a concept-lattice-based composition method is

proposed for composing CPS events from low-level physical events in [26], and an Adaptive

Discrete Event (ADE) model is proposed in [27] that incorporates a Discrete Event Calculus
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(DEC), rather than first order logic, to overcome inconsistencies in composition rules when

composing events. Based on DEC, a set of reasoning rules is defined to build relationship

between different events, which are then used to deduce output events. A common Smart

Home example (automatic lighting) is used in [26, 27] to demonstrate the models.

3.2.2 Discussion

Events represent observations of the operating environment and interactions between dif-

ferent components of a CPS [24]. Event models are suitable for reactive or passive systems.

However, they are insufficient for ERDCPSs for the following reasons:

• CPSs represented by event models in [25–27] are reactive systems, e.g, Smart Home.

These systems have a main difference from ERDCPSs with respect to how an operation

is triggered. Event models represent passive or reactive systems, where an operation is

triggered when an event is detected, and, when no event occurs, the system stands by.

ERDCPSs are systems that actively perform operations to fulfill a certain goal, and

operations that lead to the goal are automatically triggered and executed. Thus, events

and event-driven operations are not suitable for modeling operations of ERDCPSs.

• Another important feature of ERDCPSs missing in event models is environmental-

resource-dependent operations. Operations defined in current existing event models

are computing operations that process events and physical operations that react to

events. These operations do not depend on environment (or external) resources.

• The operating environment of CPSs represented by event models includes only a single

CPS. Cooperation and coordination with other CPSs is missing when designing and

modeling such a CPS. However, the operating environment of an ERDCPS involves

other peer ERDCPSs, which determines interactions between different ERDCPSs is

an important feature that should be considered when modeling ERDCPSs.
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3.3 Service-Based Models

Service-Based models [29–31] consider a CPS as an integration of components providing

different services. Each service achieves a certain goal and operates under a certain context.

An execution model of a CPS is comprised of different services that are tuned specifically for

a certain operating context. To build a CPS operating in a particular environment, service

specification and composition rules are required.

3.3.1 Overview

A context-sensitive and resource-explicit service model for CPSs is proposed in [29]. A CPS

in such a model is comprised of various cyber and physical resources that are networked

together. Each resource provides one or more services to achieve the desired goals under

certain context and constraints. A context can be temporal, spatial or environmental.

Service provision constraints specify limitations on how a service is provided. When a goal

is set up for a CPS, service composition is performed. The composition process selects

services to achieve the goal and specifies their operating contexts. PE-oriented (Physical

Entity) service model [30] group physical entities with similar characteristics in a class

hierarchy. Each physical entity inherits properties and services of its parent entity in the

upper level. A PE-SOA (Service-Oriented Architecture) model is developed for PE and

service specifications. A two-level composition approach is proposed to compose services.

In the abstract level, a skeleton plan is obtained by composing services provided by physical

entities that satisfies service provision constraints. In the physical level, the skeleton plan

is refined to satisfy service context requirements.

One important part missing in [29, 30] is how to determine what services are required in

order to achieve a task. Task workflow pattern, specification, and logic model are introduced

in the service composition framework proposed in [31]. Workflow pattern is a sequence of

PE states which are achieved in order to fulfill a task. Task specification describes a task

in terms of PE states and specifies information such as names, inputs, participants, and
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goals. Logic model establishes connections among tasks, PEs and services. The service

composition process consists of two steps. First, given a task, a possible workflow pattern

is selected. Then, the workflow pattern is instantiated by identifying a sequence of services

that can connect the initial and goal state of the task. The searching for proper services is

performed by AI planning.

3.3.2 Discussion

Service-based models focus on SOA design of CPSs based to enable a CPS adapt to different

operating environments. One important feature of existing models is dynamic composition

of services. The formal specifications of services enable autonomous composition when given

a goal and a pool of services.

However, CPSs based on existing service models are loosely coupled in order to support

dynamic composition that adapts to different operating environments. In this case, service

models are similar to event-based models because they both represent passive or reactive

systems, which is different from ERDCPSs. Moreover, the operating environment of a CPS

defined by existing service models do not contains other peer CPSs that compete with each

other for using resources.

Operations defined in these models are services to be provided, and resources defined in

these models are computational and physical components of a CPS that provide services.

However, as discussed before, operations of ERDCPSs depend on environment resources,

which are external to any ERDCPS. Moreover, the connection between a service and physical

operations are not clearly defined in existing models, and the service composition process

concentrates on internal integration of a CPS, rather than interacting with the external

environment.
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3.4 Agent-Based Models

Agent-based CPS models [24, 33–35] consider a CPS or a component of a CPS as an agent in

a distributed system. Agents interact and coordinate with each other to achieve a common

goal. Each agent observes the operating environment and states of other agents, collects

and interprets data, and makes decisions for next operations.

3.4.1 Overview

Two agent models are reviewed for modeling CPSs in [24]: autonomous agent and inter-

active agent. An autonomous agent consists of a knowledge base, a reasoner, a monitor,

a learner, and a hardware abstraction layer. It interacts with the environment by sensing

and affecting. An interactive agent (proposed in [33]) is formalized as an actor-like object

which communicates by messages, interacts with the environment through interface points,

and coordinates with other agents through policies. The distributed control of multiple

CPSs is studied in [35], where each CPS is considered as an agent in a distributed system.

The system model proposes a resilient control design for the multi-agent CPSs. A system

framework that describes the interactions between Cyber and Physical components within

a CPS, as well as the inter-dependency among multiple CPSs, are presented.

An agent model supports real-time decision in an information-rich environment, e.g.,

an intelligent Water Distribution Network (WDN) [34]. In such model, each agent repre-

sents an independent software component that manages physical resources within its local

scope. An agent perceives the operating environment and collects data through sensors

on a time- or event-triggered basis, and performs data integrity check and semantic inter-

pretation. Semantic interpretation decides how collected data is semantically related to an

agent through different semantic services. Management of physical commodities are decided

through decision support algorithm based on data streams.
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3.4.2 Discussion

Existing agent models view a CPS either as an agent being part of a larger system, or as

a system consisting of different agents. Each agent operates independently, and interact

with other agents and the operating environment. An agent can be considered as a single

reactive system, and all agents together fulfill a common task or provide a service.

However, existing agent models focus more on internal operations such as data pro-

cessing and interpreting, interactions between the cyber and physical subsystems, and the

distributed control of different agents. Physical operations performed by a CPS are not

clearly defined. Although interactions between agents are mentioned, they are confined to

information sharing or control-feedback loop, which are different from interactions between

ERDCPSs that compete for usage rights of environmental resources. Moreover, many fea-

tures of ERDCPSs are absent in agent models, e.g., goal-driven and environmental-resource-

dependent operations.

3.5 Resource Sharing

3.5.1 Real-Time Systems

Resource allocation or scheduling problem has been widely studied in Real-time Systems

where computing resources, I/O devices, and communication channels are shared by dif-

ferent processes [48, 51, 52], and in database systems where data objects are shared by

different applications [42–47]. The emergence of grid and cloud computing technologies also

demands resource scheduling support to allocate computing resources or services to different

applications or users [49, 50]. Many scheduling algorithms have been proposed to support

different scenarios, such as fixed and dynamic priority scheduling where a process is given a

priority to determine its precedence in competition for resources, soft real-time scheduling

where tasks have no hard deadlines and job loss is permissible, and feedback scheduling

where scheduling algorithms are adjusted dynamically depending on resource applicant’s

feedback.
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Although resource scheduling algorithms are applied in different areas, they work simi-

larly. Resources indicate either concrete or abstract objects that are used by different types

of applicants such as processes, applications, and users. When the operation of an resource

applicant requires one or more shared resources, the applicant first makes requests to a

resource manager, and the resource manager decides whether to grant access rights of re-

quested resources to the applicant and how long those requested resources can be used based

on scheduling algorithms. Scheduling algorithms consider different properties of the appli-

cant, such as priority, execution time length and deadline. They also consider the overall

resource usage status of existing applicants. Based on the strategies applied by scheduling

algorithms, resource requests are granted or rejected. If resources are granted, the schedul-

ing process puts the applicant in a waiting queue to wait for its turn to use the resource. If

resources are not available, the applicant is either blocked or aborted.

The resource sharing problem in ERDCPSs is similar to above traditional systems. For

example, operations of an applicant (or ERDCPS) depends on external resources, and dif-

ferent applicants (or ERDCPSs) compete for requested resources. However, there exist some

important differences.

• First, environmental resources in ERDCPSs are not scheduled or allocated purposely

by any server (if there is any). More concern is placed on preventing resource usage

conflicts, rather than maintaining a balanced usage load of a resource or ensuring

fairness between applicants. Moreover, the resource scheduling process is transpar-

ent to the resource applicants in traditional real-time systems because of the central

resource manager. However, a central resource manager may not exist in a CPS net-

work, in which case, all ERDCPSs in the network have to coordinate with each other

for resource usages to avoid conflicts.

• Second, in traditional systems, an applicant sends a request for resources, but it is

the resource manager who decides when the resource can be used by an applicant.

Although the applicant can specify how long it wishes to use the resource, it can’t
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decide the precise usage time of each resource. However, in ERDCPSs, the usage of

an environmental resource by a physical operation is precise in both time and space. It

specifies not only the resource that is needed, but also the time period during which the

resource is used. For example, an increasing speed operation of a car in a particular

position uses a set of road segments that can be calculated precisely (Figure 4.3)

given the car’s current state, and the usage of these resources is specific in time and

space. When an ERDCPS requests a resource for its operation, it specifies both the

resource and the usage time. So not only the availability of the resource, but also the

availability of the specified usage times are checked. Compared to resource applicants

in traditional systems, an ERDCPS has a higher level of autonomy over the resources.

• Third, in most cases, when an applicant can’t get requested resources, it is blocked,

and waits for its turn to use the resources. For example, an application can wait for

its turn to use I/O devices to read from or write to files. However, this is not possible

for physical operations of an ERDCPS. Because physical operations are real-time and

an ERDCPS keeps doing physical operations to maintain its state in a CPS Network.

If no physical operations are executed, an ERDCPS will be placed in a inconsistent

state which causes bad consequences such as car collisions.

3.5.2 Traffic Management Systems

Resource sharing that is sensitive in time and space has been studied in traffic management

systems [53, 54, 57]. A hierarchical decentralized planning framework is studied in [54]. In

this framework, the flight path is represented by a graph, and different flight share the same

space for their movements. In the hierarchical decision-making structure, different decision

makers in the middle level file the path planning of their airplanes (in the bottom level) to

FAA (Federal Aviation Administration) on the top level, where the plane paths are finally

decided. The intersection management system proposed in [53] considers a road intersection

as a set of grids that are used by a vehicle to finish a turning or moving operation.
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Although resource sharing in these systems is similar to that of ERDCPSs with respect

to the sensitivity of time and space, there are some differences. First, similar to traditional

real-time systems, a central site is used to save the resource usage information for conflict

detection and resource allocation. But in ERDCPSs, we may not have such a central site

and more focus is placed on avoiding conflicts. Second, the resource sharing algorithm

discussed is domain-restricted and can be used only in some particular applications such as

intersection and air traffic management. We are seeking to build a general model for all

ERDCPSs that can be applied to different application areas. Last, the connection between

resources and operations is not clearly defined, which is one of the goals we should achieve

when building a model for ERDCPSs.

3.6 Candidate: Transaction Model

Transactions are used to model operations of a database system (DBS) [38–40]. A trans-

action consists of read and write operations from clients to access data objects (which are

considered as resources). The state of a data object is represented by its value. A read op-

eration does not change the state of a data object, but a write operation does. To prevent

data inconsistency, such as lost update and inconsistent retrieval ([41]) caused by concurrent

access to data objects from different clients, concurrency control algorithms are required to

process transactions. Different concurrency control strategies ([42–47]) have been developed

such as two-phase locking, timestamp ordering, optimistic nonlocking, and nested transac-

tions.

Similarities between a DBS and an ERDCPS have motivated us to consider using trans-

actions to model ERDCPS.

• Resource-dependent operations. Read and write operations of a client relies on data

objects they access, as operations of an ERDCPS rely on environmental resources.

• Exclusive access. When changing the state of an data object (write operation), exclu-

sive access to the data object is required. A physical operation of an ERDCPS that

24



creates physical effects to the physical world requires exclusive access to environmental

resources when it is being performed.

• External resources. From the perspective of a client, data objects are external re-

sources and beyond its control, as environmental resources are external to an ERD-

CPS. Management of data objects will be similar to management of environmental

resources if a central resource manager exists in a CPS Network.

• Multiple users. There exist multiple clients that share the same database, as multiple

ERDCPSs share the same set of environment sources. For this reason, concurrency

control protocols are required to coordinate different clients’ operations to avoid con-

flicts, which are also required for different ERDCPSs.

These similarities enable adoption of transaction models and algorithms of a DBS in

modeling ERDCPSs. However, there are some significant differences between a DBS and

an ERDCPS that determine that transaction models of a DBS can’t be directly used for an

ERDCPS.

• Sensitivity in time and space. Operations of a DBS are insensitive to time and space.

Read and write operations of clients don’t specify when and which copy of an data

object is accessed. These are decided by the server. Resource access is controlled by

the server, which introduces a layer of uncertainty and makes usage of resources by

clients unpredictable. However, operations of an ERDCPS themselves precisely define

the time and location of a resource access.

• Paramertized operations. Operations of an ERDCPS are more complex than those

of a traditional DBS, which are either read or write. For example, a car can turn

right or left, move forward and backward. Each type of operation has some attributes

that determine specific behavior of an operation, e.g., turning operation has angle and

time as attributes (presented later in model demonstration). But for a traditional

DBS, references and values of data objects are what are needed for read and write
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operations. Moreover, the complexity in operations of an ERDCPS results in more

complex composition of a transaction.

• Resource flexibility. In a DBS, when read and write operations refer to a data object,

only that data object can guarantee correct computation of a client and the server

cannot provide another data object as a substitute to the client. However, in an

ERDCPS, the same operation (with different start states) can be performed with

different sets of environmental resources. For example, road segments required by a

turn right operation varies with the starting position of a car. A turn right operation

at point A and point B requires different resources. Thus, when the required resources

can’t be obtained by an ERDCPS operation, alternative resources can be considered

if the start state can be adjusted.

• Atomicity. Because of real-time property of an ERDCPS, when some physical opera-

tion fails, the effect of its partial execution cannot be undone and the resulting state

cannot be rolled back to its starting state. The next operation has to operate based on

the context created by the previous operation, partially or completely executed. When

a DBS operation fails, however, effects caused by the partially executed operation can

be reversed or compensated to restore involved data objects back to their start states

in order to prevent inconsistency. The next operation is guaranteed to start with a

consistent start state.

• Resource Management. A DBS achieves a good control of concurrent data access

operations because of the management layer, and the coordination of resource usages

is transparent to the clients. However, the operation environment of an ERDCPS is

distributed in nature, and there may not exist such a central entity to manage access

to environmental resources. Thus, an ERDCPS needs to work with other ERDCPSs

to coordinate usages of environmental resources to prevent inconsistency and avoid

conflicts.
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3.6.1 Summary

Figure 3.1 lists features of the operating environment, system interaction, and operations of

each type of existing model and ERDCPSs.
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Chapter 4

A Transaction Model for CPS

4.1 Introduction

From Chapter 2 and 3, we know that existing models are not able to capture the charac-

teristics of an ERDCPS and its operating environment. In this chapter, we propose a new

transaction model for an ERDCPS. We first give a sample transaction of an autonomous car,

which is presented in Chapter 2 as an ERDCPS example. Then we propose the definitions

of a Cyber-Physical System and its operating environment CPS Network with respect to

ERDCPSs. After that, we define the concepts of an action and a transaction that provide

different levels of abstractions for physical operations. The resource-dependent feature of a

physical operation is defined in action and transaction. At last, we define the schedule of

a CPS Network, which consists of transactions from all CPS entities, and the compatibility

between two transactions with respect to resource usages.

4.2 A Sample Transaction

Before presenting our model, we give a sample transaction of the autonomous car example

mentioned in Chapter 2. Figure 4.1 shows an instance of transaction ChangeToRightLane

of an autonomous car. We’ll use this transaction example to present definitions of our

transaction model. The default process of ChangeToRightLane is:

1. Turn on indicator signaling that a right turn is going to occur;
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2. Turn the wheel to right (clockwise) with 30 degree and keep that angle for 2 seconds

to let the car move into the right lane;

3. Turn the wheel to left (anti-clockwise) with 30 degree and keep that angle for 1 second

to adjust the car’s moving direction to straight ahead;

4. Turn off the indicator.

Figure 4.1: An Instance of Transaction ChangeToRightLane

All steps (except IncreaseSpeed(10 m/s, 3s)) are inherent actions of ChangeToRight-

Lane. IncreaseSpeed is a temporary action interpolated to adjust the start system state

(the need for this is defined later).

4.3 CPS and CPS Network

Definition 4.3.1 (Cyber-Physical System). A Cyber-Physical System (CPS) consists of a

physical (PhyS) and a computational (ComS) subsystem, as shown in Figure 4.2. PhyS

is composed of physical components such as communication devices, sensors, actuators,

and mechanical systems. ComS is composed of software components such as Goal Man-

ager (GM), Transaction Manager (TM), and Resource Manager (RM) performing different

functions.

ComS works as a planner and PhyS works as an executor. They are highly coupled in

the following ways:
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• ComS does computations to find solutions for problems confronting PhyS, and in-

structs PhyS to perform proper physical operations;

• PhyS follows instructions from ComS, performs expected operations, and gives feed-

back to ComS to enable status tracking and operation planning.

Figure 4.2: Cyber-Physical System

Definition 4.3.2 (Environmental Resources). Environmental resources represent objects

in the operating environment that a CPS relies on to perform physical operations, such as

road segments required by a car to make movements. Environmental resources are external

to and beyond the control of a CPS. We use ER to represent the set of environmental

resources.

In our car example, a grid map is used to represent a road. A road is divided into a

two-dimensional map of grids with each grid representing a fixed length road segment in one
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lane of the road. A grid is identified by its column and row indices (x and y) in the map

where x indicates the lane in which the road segment lies and y indicates the road segment

within lane x. Thus, ER is a set of grids.

ER = {(r, x, y) |(r, x, y) represents road segment y of lane x in road r.}

Definition 4.3.3 (CPS Network). A CPS Network (Figure 1.2) is a collection of CPSs that

are interconnected through a network (wired or wireless) and interact with each other by

sharing environmental resources. Each CPS is called a CPS Entity.

Definition 4.3.4 (System State). Each CPS entity has a system state indicating its status

in a CPS Network at a particular time. For example, a car’s system state at time t is defined

below.

CarStatet = (speed, acceleration, road, lane, position)

Here,

• t indicates the time when a system state is sampled.

• road, lane, and position give a car’s location in a grid map at time t.

CPS entities in a CPS Network share the same set of environmental resources. Interac-

tions among these entities occur due to competition for usage times of shared resources in

order to perform physical operations. Physical operations of a CPS entity require exclusive

access to certain resources during its usage time. If different CPS entities access the same

resource at the same time, a resource usage conflict occurs.

The state of a CPS Network CNStatet indicates the usage status of environmental

resources by all CPS entities at a particular time t.

CNStatet = {(Res,E) | Res ⊆ ER, E is a CPS entity}

The pair (Res,E) indicates that a CPS entity E is using resources indicated by a set Res

at time t.
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Definition 4.3.5 (State Consistency of CPS Network). A CPS Network is in a consistent

state at a given time iff (if and only if) usages of environmental resources by all CPS entities

have no conflicts at that time. Thus, CNStatet is consistent iff

∀(Resi, Ei), (Resj, Ej) ∈ CNStatet (i 6= j), Resi
⋂

Resj = ∅

4.4 Actions

Definition 4.4.1 (Action). An action is composed of a sequence of control commands

from device drivers (Figure 4.2) and provides an abstraction of physical operations per-

formed by PhyS to create physical effects, such as giving signals through actuators (e.g.,

TurnOnIndicator(“right”)), and manipulating mechanical system to do movements (e.g.,

IncreaseSpeed(10, 3) and TurnRight(30)). Actions are part of the interface between ComS

and PhyS that enables ComS to control PhyS, and further to interact with environmental

resources and other CPS entities in a CPS Network.

Depending on the physical effects an action can create, actions are categorized into

different types, such as TurnRight, TurnLeft, and IncreaseSpeed. Each type of action repre-

sents a particular pattern of physical operations performed by a CPS. An action type is

represented as:

ActionType = (Par,Pre,Post).

Here, Par is a set of attributes that determine specific physical behavior of the action, and

Pre and Post are sets of preconditions and postconditions respectively.

For example, Par of TurnRight action is {turningAngle}, and Par of IncreaseSpeed

action is {targetSpeed, timeDuration}.

By giving values to attributes in Par, an action instance is created, and the process

is called action instantiation. We use the following form to represent an action instance

(assume that it has n attributes):

Action (value1, value2, . . . , valuen)
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Here, valuei is the value for attributei. For example, TurnRight(30) is an instance of action

type TurnRight, and IncreaseSpeed(10, 3) instance of type IncreaseSpeed.

The execution of an action is carried out in a system state of a CPS. Specifically, system

states right before and after executing an action are called start and end system state of

the action, represented by Ss and Se respectively. Consider a CPS as a state machine, an

action causes state transition from Ss to Se:

Ss −→a Se, (a is an action),

Pre and Post specify conditions that must be satisfied by Ss and Se respectively. Assume

that action IncreaseSpeed(target, duration) is being executed: starts at time ts and ends at

time te. The state corresponding to ts and te are Ss and Se, both of type CarState. Each

car has a maximum speed (MaxSpd) and a maximum acceleration (MaxAcc) that it can

achieve. Pre of IncreaseSpeed will be:

{ (Ss.speed < target ≤MaxSpd), (
target− Ss.speed

duration
≤MaxAcc) }.

The first condition indicates that the target speed should be larger than the current speed

and not exceeding the maximum speed, and the second indicates that the required acceler-

ation not exceeding the maximum acceleration. Post of IncreaseSpeed will be:

{ (Se.speed == target), (te − ts ≤ duration) }.

The first condition says after execution of the action, the speed will reach the target speed,

and the second means the time taken to increase the speed is not more than the time allowed.

Under a given start system state, the execution of an action by PhyS may require

environmental resources in order to perform its physical operations. For example, road

segments that a car has moved on when doing actions IncreaseSpeed(10,3) or TurnRight(30)

are environmental resources it needs for both actions. Figure 4.3 shows resource usages of

Car I in a two-lane road. The shaded part in Lane l1 indicates road segments required by

an IncreaseSpeed action and the shaded part in Lane l2 by a TurnRight action. However,
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not all actions require environmental resources for execution. For example, we assume the

execution of action TurnOnIndicator starts and finishes instantly, and thus no environmental

resources are required.

Figure 4.3: Usage of Environmental Resources by Actions

Definition 4.4.2 (Action Resource Usage Set). The resource usage set of an action a,

represented by UResra,Ss , indicates usages of environmental resources when executing an

action a in state Ss. Each element in UResra,Ss is a pair containing a resource res and a

time period [ts, te) during which res is used by a.

UResra,Ss = {(res, [ts, te)) | res ∈ ER, ts < te}.

UResra,Ss can be calculated given attribute values of a and Ss. For example, assume

that a grid map is used to represent a road. Assume that Car I (Figure 4.3) starts ex-

ecuting action IncreaseSpeed(target, duration) at time t1 under a start system state Ss1:

(v1, a1, r1, l1, p1). Then UResr of IncreaseSpeed(target, duration) is given below:

{((r1, l1, p1 + 1), [t1, t1 + 1)),

((r1, l1, p1 + 2), [t1 + 1, t1 + 2)),

. . . ,

((r1, l1, p1 + d(v1t + at2/2)/le), [t1 + (t− 1), t1 + t))}.

Here,
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• l is the fixed length of a road segment.

• t equals duration and is the time taken to increase the speed.

• a is the minimum acceleration required during the increasing process: (target −

v1)/duration.

• (r1, l1, p1 + i) (1 ≤ i ≤ d(v1t + at2/2)/le) represents grid i relative to the car’s initial

location (r1, l1, p1) (grid 0).

• [t1 + (j − 1), t1 + j) (1 ≤ j ≤ duration) is the usage time period (1 second) of the

resource (r1, l1, p1 + d(v1j + aj2/2)/le).

When execution of IncreaseSpeed(target, duration) is completed, the end system state

Se (at time t1 + t) would be:

(target, a1, r1, l1, p1 + d(v1t + at2/2)/le).

From the above example, we can see how action attribute values (target and duration)

and start state (Ss) determine the physical effect of an action, i.e., resource usage UResra,Ss

and end system state Se. One the one hand, for an action a which has fixed attribute values

(target and duration in the example), UResra,Ss and Se is decided by start system state

Ss. Different start states give different resource usage sets and end system states. On the

other hand, given the same start state Ss, different actions of the same type, which have

different attribute values, have different resource usage sets and end system states. As we

would discuss later, these two properties enable dynamic adjustment of a transaction to

change its resource usages and avoid transaction conflicts.

In the resource set example above, environmental resources are represented in an absolute

way, e.g., (r1, l1, p1), or grid 0 of lane l1 on road r1. There is another way to represent

environmental resources: relative. In the relative approach, resources are specified relative to

a start state Ss. For example, grid i relative to Ss is given by (Ss.road, Ss.lane, Ss.position+
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i∗ l). The relative approach allows a more flexible specification of resource usage, e.g., Car I

can require resources such as “10 meters ahead of Car II ” for its TurnRight action. However,

no matter which way of resource representation is used, CPS entities in a CPS Network must

share the same notion of environmental resources in order to understand each other when

negotiating about resource usages.

4.5 Transactions

Definition 4.5.1 (Transaction). A transaction represents a sequence of actions a1, a2, a3, . . . , an

(n > 0), which together fulfill a certain task such as changing a lane, constant-speed mov-

ing, accelerating, and decelerating. For instance, in Figure 4.1, the sequence of transac-

tion ChangeToRightLane includes actions: IncreaseSpeed(10,3), TurnOnIndicator(“right”),

TurnRight(30), TurnLeft(30), and TurnOffIndicator(“right”).

A transaction provides a higher level abstraction of physical operations than an action

(Figure 4.2). It groups different actions into an execution sequence and represents the

process carried out by a CPS in order to complete a certain task. A transaction is the unit

of operation managed by ComS to control operations of PhyS. A goal to be achieved by a

CPS is decomposed into a sequence of tasks with each one achieved by a transaction.

Similar to actions, transactions also have different types. For example, transaction types

of an autonomous car when moving on a highway include: ChangeToLeftLane, Change-

ToRightLane, Accelerate, Decelerate, MakeRightTurn, MakeLeftTurn, ConstantSpeedMove,

etc. Each type of transaction defines a default composition of actions of different types. A

transaction type is represented as follows:

TransactionType = (Act,Pre,Post).

Here,

• Act is an ordered sequence of action types. When a transaction is executed, actions

are executed sequentially according to the predefined order.
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• Pre and Post are sets of preconditions and postconditions that specify conditions

that must be satisfied on entry to or exit from execution of a transaction.

By instantiating each action type in Act, a transaction type is instantiated and a cor-

responding transaction instance is created. For example, the transaction in Figure 4.1 is an

instance of transaction type ChangeToRightLane. Actions instantiated from action types

predefined in the action sequence are called inherent actions of the transaction, e.g., ac-

tions except IncreaseSpeed(10,3) in Figure 4.1. Otherwise, they are temporary actions,

e.g., IncreaseSpeed(10,3) in Figure 4.1. Temporary actions are added into the predefined

sequence of actions to adjust the transaction. We use the following form to represent a

transaction instance:

Transaction (action1, action2, . . . , actionn),

where actioni is an action instance instantiated from its corresponding action type.

Similar to actions, we use Ss and Se to represent system states right before and after

executing a transaction. A transaction T causes state transition from Ss to Se:

Ss −→T Se

Preconditions specify requirements on Ss in order to execute a transaction, e.g., a

ChangeToRightLane transaction requires that a car is currently not in the rightmost lane of

the road. Postconditions describe what Se will be after the successful execution of a trans-

action, e.g., when a ChangeToRightLane transaction is completed, we have Se.lane ==

Ss.lane + 1.

Definition 4.5.2 (Transaction Resource Usage Set). UResrT,Ss indicates usages of envi-

ronmental resources when executing a transaction T with a start system state Ss. It is a

combination of resource usage sets of its actions.

UResrT,Ss =
n⋃

i=1

UResrai,Ssi
.

Here, ai (1 ≤ i ≤ n) indicates the ith action of T and Ssi is its start system state.
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Given Ss and the profile (parameters, pre and post conditions) of each action of T , a

sequential deduction can be made to obtain the start (Ssi) and end (Sei) system state of

each action ai (1 ≤ i ≤ n). The process is shown below:

Ss ⇒ Ss1 −→a1 Se1 ⇒ Ss2 −→a2 Se2 ⇒ Ss3 −→

. . . −→ Se(n−1) ⇒ Ssn −→an Sen ⇒ Se

Since actions of a transaction are executed sequentially, we have:

• Ss will be the start system state of a1, Ss1,

• The end system state Sen of an will be Se,

• The end system state of an action will become the start state of next action in the

sequence, e.g., Ss2=Se1.

To make changes to UResrT,Ss , we can simply change resource usage sets of its actions

UResrai,Ssi
by adjusting their attributes values and start system states. The above process

indicates Ssi (1 ≤ i ≤ n) are determined by Ss and the sequence of actions. By adjusting Ss

and the action sequence, we can change Ssi and UResrai,Ssi
, and further change UResrT,Ss .

This provide us two ways to adjust transaction resource usage set dynamically: action ad-

justment and sequence adjustment. Action adjustment focuses on changing action attribute

values and start system state, while sequence adjustment focus on changing the sequence of

actions of a transaction. Details will be covered later when we present transaction processing

algorithms.

4.6 Schedules

We have so far only considered operations (actions and transactions) of a single CPS. In a

CPS, a transaction is the management unit applied by ComS to control operations of PhyS.

When ComS schedules a transaction, it is sent to PhyS for execution. At any time, PhyS
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can only execute one transaction. Thus, transactions of a CPS are executed sequentially by

its physical subsystem.

In a CPS Network, there are multiple CPSs operating at the same time and operations

of one CPS may interfere with another when they share environmental resources. Transac-

tions scheduled for execution by different CPSs constitute a schedule and they are executed

separately and concurrently by different CPSs. Physical operations of a CPS entity require

exclusive access to certain resources during its usage time. For example, if two cars use the

same road segment at the same time, a collision occurs.

Definition 4.6.1 (Compatible Transactions). Two transactions are compatible if they have

no conflicts. A conflict occurs between two transactions, Ti and Tj, when they use the

same environmental resource at the same time, i.e.,

∃(resi, [tsi, tei)) ∈ UResrTi,Ssi
(tsi < tei),∃(resj, [tsj, tej)) ∈ UResrTj ,Ssj

(tsj < tej),

resi == resj and (tsi ≤ tsj < tei or tsi ≤ tej < tei).

We use notation
⋂

overlap to represent the operation of finding overlaps between resource

usage time periods of two transactions for the same resource. So, Ti and Tj are compatible

iff

UResrTi,Ssi

⋂
overlap

UResrTj ,Ssj
= ∅.

Since the resource usage set of a transaction is a combination of usage sets of its actions,

the equation above is equivalent to

∀ak ∈ ActTi
, ∀al ∈ ActTj

,UResrak,Ssk

⋂
overlap

UResral,Ssl
= ∅.

If no conflicts are found between Ti and Tj, concurrent execution of them is allowed.

Otherwise, measures are needed to resolve conflicts before they can be executed.

Definition 4.6.2 (Schedule). A schedule H is an execution sequence of actions from a set of

transactions TS: {T1, T2, T3, . . . , Tn} (n > 0) that belong to CPS entities in a CPS Network.

It has following properties:
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• Transactions from the same CPS entity are executed serially and transactions from

different CPS entities are executed concurrently.

• Transactions in TS share the same set of environmental resources to perform their

operations and conflicts may occur.

If all transactions in TS come from the same CPS entity, then the schedule preserves

consistency of a CPS Network because all transactions are executed serially and use environ-

mental resources at different times. A schedule with transactions coming from different CPS

entities, however, may not preserve consistency because concurrent execution of transactions

may have conflicts.

Definition 4.6.3 (Consistent Schedule). A schedule is consistent iff

∀Ti, Tj ∈ TS (i 6= j),UResrTi,Ssi

⋂
overlap

UResrTj ,Ssj
= ∅.

The formula states that if transactions in a schedule are compatible with each other, then

the schedule is consistent. A consistent schedule preserves consistency of a CPS Network.

4.7 Summary

In this chapter, we propose our transaction model for ERDCPSs. In this model, the operat-

ing environment of a CPS is represented by a CPS Network, where Environmental Resources,

CPS entities, and a Communication Network are grouped together. The environmental re-

sources are shared by CPS entities to perform their physical operations.

Physical operations of a CPS entity are abstracted into two levels: action and transaction.

An action represents a sequence of control commands upon the physical subsystem, such

as TurnRight and IncreaseSpeed actions for an autonomous car. A transaction represents a

sequence of actions. For example, a ChangeToRightLane transaction consists of four actions:

TurnOnIndicator, TurnRight, TurnLeft, and TurnOffIndicator.
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Transactions of all CPS entities in a CPS Network constitutes a schedule. Since envi-

ronmental resources are shared, resource usage conflicts may exist between transactions of

different CPS entities. Two transactions are compatible with each other if they don’t have

conflicting resource usages. To make a schedule consistent on using environment resources,

all its transactions must be compatible with each other.

We only present the definitions of the transaction model in this chapter. The transaction

processing algorithm will be presented in Chapter 5, where we show how to maintain a

consistent schedule in a CPS Network. The implementations of the model and algorithms

will be presented in Chapter 6.
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Chapter 5

Transaction Processing

5.1 Introduction

We present the definition part of the transaction model in the previous chapter, and, in

this chapter, we continue with the algorithm part: transaction processing. To guarantee the

successful execution of a transaction of a CPS entity, the transaction processing procedure

should avoid resource usage conflicts between transactions. Each CPS entity in the network

must do its job to detect and resolve conflicts in order to maintain a consistent schedule of

transactions.

We first give an overview of the two-phase commit transaction processing algorithm.

The two-phase commit algorithm utilizes the fact that physical operations of an ERDCPS

follow certain patterns or rules, which makes resource usages of a transaction predictable

given its start system state. A transaction pre-Write set represents the predicted resource

usages of a transaction and is used to detect potential transaction conflicts.

In the pre-commit phase, a transaction is scheduled by reserving the pre-Write set. The

scheduling process detects and resolves potential transaction conflicts. Several strategies,

e.g., Win-Lose, Win-Win, and Transaction Preemption, are proposed to resolve different

types of conflicts. Dynamic transaction adjustment is introduced to show how a transaction

can be adjusted in order to resolve potential conflicts. Two general transaction processing

algorithms are presented for the centralized and distributed resource management environ-
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ments respectively.

In commit phase, a transaction is executed by the physical subsystem and the usage

of a resource is supposed to follow what has been predicted in the pre-commit phase. An

exception occurs when unexpected resource usage happens. An exception is caused either

internally or externally. We define internal and external exceptions, and discuss how both

types of exceptions are handled in the commit phase.

5.2 Two-Phase Commit Transaction Processing

Conflicts between transactions prevent their successful execution. Rather than detecting

conflicts when executing a transaction in real-time, an alternative strategy is to check po-

tential conflicts when scheduling a transaction. Potential conflicts between two transactions

can be identified if we know their potential resource usages. From previous sections, we

know that resource usages of a transaction depend on the start execution time and start

system state, which are the end execution time and end system state of the most recent

executed transaction from the same CPS entity.

5.2.1 Transaction pre-Write Set

A transaction pre-Write set, preUResrT,Ss
, is a predicted resource usage set of a transaction

T under start system state Ss. The only difference between preUResrT,Ss
and UResrT,Ss

is that resource usages of the former are predicted, while those of the latter actually occur

when executing T . Thus, UResrT,Ss is the Write set of T .

Similar concepts can be applied to an action, so preUResra,Ss
and UResra,Ss are the

pre-Write and Write sets of an action a with respect to a start system state Ss.

Assume that T contains a sequence of actions: a1, a2, . . . , an (1 ≤ i ≤ n), then

preUResrT,Ss
=

⋃
preUResrai,Ssi

, ai ∈ ActT .

For any two transactions Ti and Tj, if we have their pre-Write sets (preUResrTi,Ssi
and

preUResrTj ,Ssj
), then we are able to detect potential conflicts by checking whether they
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are compatible using their pre-Write sets. If

preUResrTi,Ssi

⋂
overlap

preUResrTj ,Ssj
= ∅,

then no potential conflicts exist between them.

5.2.2 Two-Phase Commit

Two-phase commit transaction processing mechanism is based on the concept of transaction

pre-Write set. When a transaction is triggered, we can get its expected start execution time

and expected start system state from the previous scheduled transaction, and calculate its

pre-Write set.

The pre-commit phase indicates scheduling a transaction. The main task of the pre-

commit phase is to check whether potential conflicts exist between T and transactions from

other CPS entities, and reserve environmental resources for execution of T . The resource

required and their usage times by T are indicated by preUResrT,Ss
. The scheduling process

includes the following steps:

1. Get necessary information of T , which includes expected start and end execution times,

expected start and end system states (Ss and Se), and pre-Write set (preUResrT,Ss
).

2. Send a reservation request to the resource server or other CPS entities in a CPS

Network to reserve preUResrT,Ss
. Each recipient of the request checks whether

preUResrT,Ss
will cause conflicts with their transactions and sends corresponding

responses back.

3. Collect responses and resolve potential conflicts if any.

4. Confirm the reservation if successful; Otherwise, abort T .

When a successful reservation is made, preUResrT,Ss
is reserved, and no other trans-

actions are supposed to use reserved resources at time periods reserved by T . In this case,
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T is said to be pre-committed. If reservation doesn’t succeed, T can not be executed

without causing conflicts and thus it is aborted. ComS has to seek alternative transactions

to replace T that will not cause conflicts with other transactions.

The commit phase indicates executing a transaction. The execution of T is expected

to follow what is predicted, i.e., use only specified resources in reserved time periods. An

exception occurs when any difference from what is expected of resource usages is found.

Exceptions can cause transaction conflicts in realtime because either usage of unreserved

resources by a transaction. To prevent exceptions, the execution of T is monitored by ComS

and realtime resource usages are checked against predicted ones in preUResrT,Ss
. When

potential exceptions are found, they are handled immediately by ComS. If exceptions can’t

be handled in time and cause realtime conflicts, ComS takes actions to reduce undesired

effects.

The reservation of transaction pre-Write set can be considered as implicit locking. A

successful reservation in pre-commit phase indicates that certain access time periods of

specified resources are locked for a transaction, which prevents other transactions from using

these resources at reserved times. When commit phase finishes, these locks are released

automatically because reserved access times has passed and corresponding locks vanishes

with the passing time. To make two-phase commit mechanism work, all CPS entities in a

CPS Network should follow the same protocol to process transactions.

5.2.3 Transaction State Machine

Given the two-phase commit processing mechanism described above, a transaction can be in

six different states (Figure 5.1): Triggered, Scheduling, Aborted, PreCommitted, Executing,

and Committed (Completed or Incomplete).

1. When a transaction T is triggered, it enters Triggered state.

2. When T is being scheduled, it is in Scheduling state.
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3. There are three possible states reachable from Scheduling state. When scheduling is

successful, T becomes PreCommitted. When potential conflicts are found, T may

be adjusted to solve conflicts. This results in a self-transition of Scheduling state.

If scheduling is unsuccessful (conflicts can not be solved), T is aborted and enters

Aborted state.

4. When T is pre-committed, it is ready for execution. However, there are cases where

pre-committed T can be canceled, e.g., potential exceptions are found before it is

executed. These cases result in abortion of T . If no abortion occurs, T can be

executed. When the execution starts, T is in Executing state.

5. When the execution terminates, T is in Committed state and T can be either com-

pletely executed (sub-state Complete) or partially executed (sub-state Incomplete).

Figure 5.1: Transaction State Machine
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5.2.4 Action-Level Two-Phase Commit

Different from above transaction-level two-phase commit mechanism, an alternative is

action-level two-phase commit, where pre-Write sets are computed and reserved action

by action, rather than transaction by transaction. In action-level scenario, T is executed

without preUResrT,Ss
being reserved first. Whenever an action ai of T that requires

environmental resources is going to be executed, it is processed in a two-phase commit

manner. The process is similar to transaction-level two-phase commit:

1. First, get Ssi and compute preUResrai,Ssi
.

2. Then send out a request to reserve preUResrai,Ssi
. When requested resources are

reserved for ai, ai is pre-committed and is ready to be executed.

3. Finally, ai is sent to PhyS for execution in the commit phase, and when execution is

terminated, it is committed.

In action-level two-phase commit processing mechanism, execution of T is composed of a

sequence of two-phase commit processes of its actions.

Compared with transaction-level two-phase commit mechanism, action-level is more flex-

ible on resource usages, more adaptive to changing environment, and more reliable consid-

ering possible exceptions in commit phase. However, it involves more computation and

communication overheads because several rounds of resource reservations are required (one

round for each action), while transaction-level requires only one round for a whole trans-

action. Action-level two-phase commit is preferred for CPSs with changeable operating

environment and irregular operations, stringent requirements on absence of exceptions, or

preference of real-time reactions. Transaction-level is more suitable for CPSs that require

less running overheads and whose operations are more stable and predictable based on laws

of physics.

In this paper, we focus only on how to apply transaction-level two-phase commit to

process transactions.
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5.3 Pre-Commit Phase and Conflicts

When potential conflicts are found between pre-Write sets of different transactions, measures

should be taken to resolve these conflicts. In this section, we first consider how to resolve

conflicts between two transactions, and later we would discuss how to resolve conflicts among

multiple (more than two) transactions.

Assume that Ti is currently being scheduled (in Scheduling state) by CPS entity Ei, and

Tj is a transaction of another CPS entity Ej. Potential conflicts between two transactions

Ti and Tj are identified by comparing their pre-Write sets. If

preUResrTi,ssi

⋂
overlap

preUResrTj ,ssj
6= ∅,

then Ti and Tj have potential conflicts.

5.3.1 Conflict Types

Given states of two conflicting transactions, two conflict types are defined:

• PP Conflict. PP Conflict occurs between two transactions in their pre-commit

phases (in either Triggered or Scheduling state). Since conflicts are checked only when

one transaction sends out reservation requests (in Scheduling state), we consider only

one transaction in Scheduling state and another in Triggered or Scheduling state.

• PC Conflict. PC Conflict occurs between one transaction in the pre-commit phase

and another in the commit phase (in either PreCommitted or Executing state). For

the same reason as PP Conflict, we consider only one transaction in Scheduling state

and another in PreCommitted or Executing state.

• CC Conflict. CC Conflict occurs between two transactions in their commit phase

(Executing state). Such a conflict indicates a conflict in realtime is already occurring

and it is too late to take precautions to avoid them. Thus, we will ignore CC Conflict

when discussing conflict resolution strategies.
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5.3.2 Transaction Precedence

When potential conflicts are found between Ti and Tj, a weighing process is performed (by

either Ei or Ej) to determine their precedence based on three elements: transaction priority,

transaction execution time, and transaction state. After this, depending on conflicts types,

different strategies are used to resolve potential conflicts.

Transaction priority is computed given the context where a transaction is triggered

and what task a transaction is designed to complete. The context includes the start system

state and the trigger event. For example, transactions of cars in left lanes are usually given

higher priorities than those of cars in right lanes, and transactions triggered for handling

abnormal situations have higher priority than regular transactions. Specially, we assign

a particular class of priorities to transactions triggered for handling emergency situations.

Such transactions are given a priority equal to or higher than priPE.

Transaction execution time is the expected start and end execution time of the

transaction. Here, we assume that a synchronized clock is maintained in a CPS Network to

provide time-related services to CPS entities.

Transaction state indicates the state of a transaction in two-phase commit processing

(Figure 5.1). Since Ti is currently under scheduling, it is in Scheduling state. But Tj can be

in one of four possible states: Triggered, Scheduling, PreCommitted, and Executing. Thus,

two types of conflicts exist: PP Conflict and PC Conflict.

5.3.3 PP Conflict and Resolution Strategy

Assume that Ti is in Scheduling state and Tj is in Triggered or Scheduling state, then

conflicts between them are of type PC Conflict. Assume their priorities are priTi
and priTj

respectively, and their execution times are [tsTi
, teTi

) and [tsTj
, teTj

). The precedence

between Ti and Tj is decided as below (Figure 5.2).

• If Tj is in Triggered state, then Ti wins. This is because resource reservation for Tj

has not started.
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• If Tj is in Scheduling state, then

– If priTi
6= priTj

, then the one with the higher priority wins.

– If priTi
= priTj

, then we compare tsTi
and tsTj

, and the one with the earlier start

time wins. If start times are equal, then we use use teTi
and teTj

to decide.

– If both priority and execution time are the same, then we use other information

to decide the winner such as location (e.g., left-lane or front cars are preferred)

(NOT shown in Figure 5.2).

Figure 5.2: Weighing Process Between Ti and Tj

There are three strategies to resolve a potential PP Conflict: Win-Lose, Win-Win, and

Enhanced Win-Win.

In the Win-Lose strategy, the transaction with the higher precedence can reserve desired

access times for specified resources, but the other can’t and is aborted. Thus, only one of

the two conflicting transactions survives.

The Win-Win strategy tries to keep both transactions alive. Similar as the Win-Lose

strategy, the winning transaction can reserve its pre-Write set. However, for the losing one,
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it is adjusted rather than aborted. The transaction adjustment process (defined later) allows

ComS to adjust a conflicting transaction to produce a different pre-Write set that has no

conflicts with the other transaction. If such an adjustment works, the transaction conflicts

are resolved and both transactions (one as adjusted) get the requested resources reserved.

If not, then the losing transaction is aborted. Thus, Win-Win strategy saves at least one

out of two conflicting transactions.

The Enhanced Win-Win strategy improves Win-Win strategy by requiring both con-

flicting transactions, rather than only the losing one, to be adjusted until no conflict is

found between them. In practice, the Win-Win strategy is applied first. If it fails, then

we try Enhanced Win-Win. If Enhanced Win-Win doesn’t work either, then the winning

transaction is kept, and the losing one is aborted.

5.3.4 PC Conflict and Resolution Strategy

If Ti in Scheduling state and Tj is in PreCommitted or Executing state then the conflict

between them is of type PC Conflict. The precedence between Ti and Tj is determined as

follows (Figure 5.2).

• If priTi
> priTj

and priTi
≥ priPE, then Ti wins.

• Otherwise, Tj wins.

For a PC Conflict, a new conflict resolving strategy is introduced: transaction pre-

emption. In transaction preemption, the execution of one transaction is canceled to give

way to another transaction. The above weighing process indicates that for a transaction in

state PreCommitted or Executing, it will be preempted only when the conflicting transaction

has a higher priority and the priority reaches emergency level (priPE).

Such a strategy is based on the fact that it takes effort for a CPS entity to sched-

ule (or pre-commit) a transaction, e.g., negotiation with other CPS entities and possible

transaction adjustments. Moreover, the preempted transaction may already have partially
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executed. So, the preemption of a PreCommitted or Executing transaction is considered

only in safety-critical situations. priPE is the threshold of transaction priority to decide

whether transaction preemption can be applied.

Based on the weighing process, PC conflict is resolved in following way:

• If Ti loses in precedence weighing, then Ti is either aborted (Win-Lose) or adjusted

(Win-Win) to avoid conflicts.

• If Ti wins, then preUResrTi,Ssi
can be reserved, and transaction preemption is per-

formed on Tj:

– If Tj is in PreCommitted state, then it is aborted. Its resource reservation is

revoked and reserved resources are released. Tj’s state becomes Aborted.

– If Tj is in Executing state, then its execution is interrupted, and corresponding

resource reservation is revoked. Tj becomes Committed and Incomplete.

5.3.5 Dynamic Transaction Adjustment

Transaction adjustment was introduced earlier as a way to adjust a conflicting transaction.

Transaction adjustment replaces a conflicting transaction with an alternative one of the

same type, but with a different pre-Write set to achieve the same goal.

From our definitions of a resource usage set, we know that changing action attribute

values or start system state will change the resource usage set of an action. Two types of

adjustments can be applied to a transaction: action adjustment and sequence adjustment.

• Action adjustment adjust actions of a transaction by changing their attribute values.

It replaces existing actions with others of the same types but with different attribute

values.

• Sequence adjustment adjusts start system states of a transaction or its actions.

The adjustment is fulfilled by inserting temporary actions into the action sequence,
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e.g., IncreaseSpeed in Figure 4.1. Temporary actions will change system states of a

CPS and thus change the start system state of a transaction or an action.

5.3.6 Pre-Commit Phase: Conflicts in Multiple Transactions

In the previous sections, we discussed how to resolve conflicts between two transactions.

However, to reserve preUResrTi,Ssi
, a CPS entity Ei has to check conflicts with all other

CPS entities (rather than just Ej) in a CPS Network. It is very likely that Ti has potential

conflicts with more than one transaction from different CPS entities. In such a case, con-

flict resolution becomes more complicated because Ti has to consider and resolve potential

conflicts with multiple transactions at the same time.

For each transaction conflicting with Ti, a weighing process is performed to decide their

precedence. Then

• If Ti wins in all weighing processes (either PP or PC Conflict), then preUResrTi,Ssi

can be reserved. For each conflicting transaction Tj,

– if it has PP Conflict with Ti, then it is aborted or adjusted.

– if it has PC Conflict with Tj, then it is preempted and its resource reservation is

revoked.

• Otherwise, reservation can not be made, and Ti is aborted or adjusted.

5.4 Pre-Commit Phase: Transaction Processing Algo-

rithm

We have so far described how transaction conflicts between transactions are resolved in the

pre-commit phase. In this and next section, we give specific algorithms of how a transaction

is processed in the pre-commit phase and how conflict resolution strategies are applied.

We assume that the communication network in CPS Network is reliable and no message

error would occur. Depending on whether there is an environmental resource server in a
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CPS Network, there are two different transaction processing mechanisms: centralized and

distributed.

5.4.1 State of a Reservation

Resource reservation for a transaction starts when a CPS entity sends out a reservation

request. The reservation goes through different states in the reservation process (Figure 5.3).

Figure 5.3: State Machine of Resource Reservation

• A resource reservation becomes Pending after the CPS entity has sent out a corre-

sponding request (REQ), but before the request is granted by the resource server.

• If the corresponding request has been acknowledged (ACK) by the server, then a

pending reservation becomes PendingAck. When the client confirms the reservation

(CON), the reservation becomes Valid.

• If a reservation request is rejected by the server (REJ), then a pending reservation

becomes Failed.

• A valid reservation becomes Revoked if it is revoked (REV) by the server or withdrawn

by the CPS entity itself before it become Expired. A valid reservation expires when

the last usage time for one of those reserved resources expires.
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5.4.2 Resource Client and Server in Centralized Environment

In centralized transaction processing, resource usages of all CPS entities in a CPS Network

are managed by a dedicated resource server, and all CPS entities (Ei, 1 ≤ i ≤ n) in the

network are resource clients. All resource reservations are handled by the server, and the

server has the right to grant or reject reservation requests.

Each time a CPS entity Ei starts scheduling a transaction Ti some time before Ti’s ex-

pected start execution time, a resource reservation request REQi containing preUResrTi,Ssi

(Ssi is the expected start system state of Ti) is sent to the server.

Figure 5.4: Messages Between Client and Server

Resource Server

When the resource server receives an incoming request message REQi for Ti from Ei, it

performs following procedures to process the request.

1. Find transactions whose execution time period overlaps with Ti’s. Perform
⋂

overlap

operation to detect potential conflicts. There are three types of transactions:

• Transactions with Valid reservations: These transactions are either in PreCom-

mitted or Executing state, and PC Conflict applies.
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• Transactions with PendingAck reservations: These transactions are in Scheduling

state, and PP Conflict applies.

• Transaction with Pending reservations” These transactions are also in Scheduling

state and PP Conflict applies. However, for this type of transactions, the First-

Come-First-Server mechanism is taken, i.e., only transactions whose requests

arrive before REQi are checked.

2. If a conflict exits, then it performs a weighing process between Ti and each of the

conflicting transactions. The weighing process contains checking transaction priorities,

execution times, and conflict types, as described in previous section. When weighing

process is done, precedence between transactions is determined.

• If Ti’s reservation can be made (Ti wins all), and if the reservation requires

revoking some Valid or PendingAck reservations, a REV (Revoke) message is sent

to each corresponding CPS entity to revoke their reservations. When revoking is

done, send an ACK (Acknowledge) message to Ei indicating that preUResrTi,Ssi

can be reserved.

• Otherwise, send a REJ (Reject) message to Ei indicating unsuccessful reservation.

3. If no conflict has been found, send an ACK message to Ei indicating successful reser-

vation.

Resource Client

In each reservation process, after sending the request, a resource client waits for response

messages from the server.

• If an ACK message is received, then it sends a CON (Confirm) message back to confirm

the reservation (Client E1 in Figure 5.4). Ti now becomes PreCommitted and can be

scheduled to execute.
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• If a REJ message is received, then it aborts or adjusts Ti (Client E2 in Figure 5.4).

For each client that receives a REV message, its reservation is revoked by the server. In

this case, operations such as abortion or adjustment of corresponding transactions need to

be taken.

5.4.3 Resource Client and Server in Distributed Environment

Without a dedicated management entity, resource reservation for a transaction is then a

negotiation process with other CPS entities in a CPS Network. Only when all other CPS

entities confirm that they don’t have transactions in conflict with a transaction, it can be

scheduled. In this scenario, each CPS entity plays both resource server and client roles. For

the server role, a CPS entity receives resource reservation requests from other CPS entities

and check whether they can reserve specified resources. For the client role, when a CPS

entity is scheduling one of its transactions, a reservation request is to all other CPS entities.

Resource Server

When a CPS entity Es receives an incoming request message REQc from a CPS entity Ec

to reserve resources for its transaction Tc, it plays the server role and performs a sequence

of operations to decide whether preUResrTc,Ssc
can be reserved. The process is similar

to that of the centralized resource server, except that Es now checks its transactions only

against Tc. The process is shown in Figure 5.5.

Es first determines whether any of its transactions has overlapped execution time with

that of Tc. Let Tover be the set that contains all overlapped transactions of Es. Following

evaluation is performed.

1. If Tover is empty (Condition C1 in Figure 5.5), no conflicts would be found. Send an

ACK message to Ec to indicate that reservation can be made in Es.

2. Otherwise, for each transaction in Tover, compare its pre-Write set with that of Tc.

Assume that Tconf is a set of conflicting transactions against Tc. The evaluation
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Figure 5.5: Algorithm for Resource Server: Receiver of REQc

continues.

• If Tconf is empty (Condition C2 in Figure 5.5), no conflicts are found. Send an

ACK message back to Ec.

• Otherwise, for each Ts ∈ Tconf , perform weighing process and decide whether Tc

can win (Condition C3 in Figure 5.5).

– If Tc wins in all weighing processes against transactions in Tconf , an ACK

response is sent to Ec.

– If not, a REJ response is sent.

If Es sends a REJ message to Ec, the evaluation process for reservation of preUResrTc,Ssc

completes. If Es sends an ACK message to Ec previously, then Es waits for response from

Ec.

• If a CAN (Cancel) message is received from Ec, reservation of preUResrTc,Ssc
for Tc

fails.
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• If a CON (Confirm) message is received from Ec, reservation of preUResrTc,Ssc
is

made. Es keeps a local record of preUResrTc,Ssc
, and then following operations are

taken for each transaction Ts in Tconf .

1. If Ts has PP Conflict with Tc, it is either aborted or adjusted.

2. If Ts has PC Conflict with Tc, it is preempted and its resource reservation is

revoked by sending a REV message to all other CPS entities.

Resource Client

Figure 5.6 shows the process followed by CPS entity Ec to reserve resources for its transaction

Tc. The role Ec plays here is client, and other CPS entities are servers. Different from

centralized resource client, Ec now needs to consider responses from all other CPS entities).

The scheduling (or reservation) process performs two levels of conflict checking: internal

and external check. Internal conflict check is performed locally in Ec to see whether

conflicts exist between Tc and existing resource reservations recorded locally by Ec (when

Ec plays the server role). External conflict check is performed in other CPS entities who

play the server role after a source reservation request is sent out from Tc.

In internal conflict check, existing reservations from other CPS entities are in one of

Pending, PendingAck and Valid states. Only those that have overlapped execution time

with [tsTc , teTc) are examined (indicated by VTover). The process is similar to what a

centralized resource server does and we won’t give details here.

• If conflicts (PP or PC Conflict) exist, and Tc wins in all weighing processes (Condition

C1 and C2 in Figure 5.6), continues to external check.

• Otherwise, reservation for Tc would not succeed even if a request is sent. So there is

no need to send out a reservation request, and Tc is either adjusted or aborted.

If no conflicts are found in internal check or Tc has the highest priority, external check

can be carried out and a reservation request message REQc is sent. Ec waits for responses
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Figure 5.6: Algorithm for Resource Client: Sender of REQc

from all other entities in the network. Conditions C4 and C5 in Figure 5.6 evaluate whether

a reservation can be made:

1. If no conflicts are found, the reservation can be made.

2. If conflicts are found, but Tc wins in all weighing processes (both PP and PC conflicts),

the reservation can be made.

3. If conflicts are found, but Tc doesn’t win in all weighing processes, the reservation

can’t be made.

In above, first two cases correspond to ACK messages from all other CPS entities. The

third corresponds to one or more REJ messages from other CPS entities.

If the reservation can be made, a CON message is sent to confirm the reservation of Tc

to all other CPS entities. This confirmation message would trigger a recipient entity who
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has sent a response back previously to abort or adjust transactions if it has transactions in

conflict with Tc.

If the reservation can’t be made, a CAN message is sent to withdraw the reservation for

Tc, and then Tc is either aborted or adjusted.

5.5 Commit Phase and Exceptions

When a transaction is scheduled, it becomes pre-committed and waits for its turn to be

executed by PhyS. As mentioned before, the execution process transforms each action of a

transaction into low-level control commands upon physical devices, which perform physical

operations and create desired physical effects. As for how control commands manipulate

physical devices, it is out of the scope of our research, and we assume that such manipulation

always works in expected ways. We will, however, focus on how execution is monitored.

The execution of a transaction (Ti) is supposed to follow what has been predicted, i.e.,

its Write set UResrTi,S′
si

should matches its pre-Write set preUResrTi,Ssi
. This requires

that the realtime start system state, S ′si, equals to the predicted start system state Ssi.

If the start system state changes, then realtime behavior would be different from what is

expected.

5.5.1 Exception

An exception occurs when realtime resource usage is different from the predicted. Two

types of exceptions can happen when executing a transaction Ti.

Internal Exception

An exception occurs when any environmental resource is not used as predicted by Ti. Assume

that execution of Ti uses resource res′ in time period [t′s, t
′
e). We have (res′, [t′s, t

′
e)) ∈

UResrTi,S′
si

. If (res′, [t′s, t
′
e)) /∈ preUResrTi,Ssi

, then an exception occurs. It has two cases:

1. ∀(res, [ts, te)) ∈ preUResrTi,Ssi
, res 6= res′.
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2. ∀(res, [ts, te)) ∈ preUResrTi,Ssi
, [ts, te) 6= [t′s, t

′
e) for any res = res′ .

The first case indicates using unspecified resources and the second indicates using specified

resources in unreserved time periods. Both cases cause discrepancy between pre-Write and

Write sets.

External Exception

An exception can also occur when there existing another transaction Tj from another CPS

entity Ej uses resources in time periods reserved by Ti (assume that Ti will be executed as

predicted), i.e.,

preUResrTi,Ssi

⋂
overlap

UResrTj ,Ssj
6= ∅.

Although Ei has already made a reservation for Ti and other CPS entities are not allowed

to use the same resources in time periods reserved by Ti, the case above can still occur if

Ej malfunctions.

5.5.2 Exception Detection and Handling

To detect potential exceptions, execution of Ti is monitored. The main approach is to do

a resource availability check before executing Ti. The checking process is carried out some

time before the start execution time of Ti, so that enough time is left for exception handling

in case of potential exceptions. The checking process includes internal check and external

check. Internal check detects potential internal exceptions, while external check detects

potential external exceptions.

Internal Check makes sure the realtime start system state (S ′si) of Ti will be the same

as the predicted one (Ssi). However, since internal check is performed (a little time) before

the execution of Ti, the realtime state here is not actually “realtime”, but a more accurate

and reliable prediction of the start system state than Ssi. If S ′si is different from Ssi, potential

exception exists.

The approach to handle potential internal exception includes two steps.
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• The first step is to adjust Ti to see whether the adjusted transaction can be executed

using preUResrTi,Ssi
under the new start system state S ′si without causing conflicts.

• If the first step doesn’t work, then reserve new resources so that these newly reserved

resources, together with resources in preUResrTi,Ssi
(still a Valid reservation), can

meet resource requirements when executing Ti under start state S ′si. When reserving

new resources for Ti, its transaction priority is promoted to give it a better chance to

reserve requested resources.

If above two steps are not working, execution of Ti is canceled and Ti becomes Committed

and Incomplete.

External Check detects makes sure usage time periods for specified resources reserved

by Ti is not used by other transactions. To identify potential conflicting usages, a checking

message is sent to the resource server to secure reservation of Ti.

For potential external exception, considering that it is caused by several kinds of events,

such as malfunction of scheduling algorithm, communication malfunction, or involvement in

emergency situations of another CPS entity, the handling approach first figures out the cause

and takes corresponding measures afterwards. Assume that the conflicting transaction that

causes the external exceptions is Tj of CPS entity Ej. The procedure is described below.

• If priTj
≥ priPE and priTj

> priTi
, then Tj is triggered to handle emergency situations.

Transaction preemption is applied. Ti is preempted by Tj.

• Otherwise, a negotiation message is sent to notify Ej that an exception is caused by

Tj and Tj should be canceled. a timer is set.

– If no response is received before the timer expires, Ej is assume to malfunction.

Further negotiation with Ej will not help. Ti is preempted by Tj.

– If a positive response indicating cancellation of Tj is received within the timer,

Ti is kept and execution continues.
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– If a negative response is received within the timer, Ti is preempted by Tj.

When Ti is preempted, Execution of Ti is canceled, and reservation of preUResrTi,Ssi
is

revoked. Ti becomes Committed and Incomplete.

5.5.3 Runtime Exception

Potential internal and external exceptions are detected and handled some time before ex-

ecution of a transaction starts. However, if an exception still occurs when executing a

transaction, then bad consequences may be caused. This type of exception happens in

realtime, and is detected only after it occurs. We call it Runtime Exception.

The effect of a runtime exception depends on whether conflicting usage of the same re-

sources exist. If conflicting usages exist, a runtime exception causes undesired consequences,

such as collision of cars, and it is too late to avoid them. However, actions can be taken

to prevent chain effects such as emergency warning message propagation [57]. If no con-

flicting usages exist, measures should be taken to prevent potential transaction conflicts for

remaining transactions waiting to be executed.

5.6 Summary

We have presented the two-phase commit transaction processing algorithm in this chapter.

In the pre-commit phase, a transaction is scheduled by reserving required resources in

the resource server. In a centralized resource management environment, the resource server

is a central entity that manages all resource usages, and, in a distributed environment, the

resource server indicates all other CPS entities in the CPS Network. The CPS entity sending

out the reservation request is the client. If potential conflicts are detected, they are resolved

by the CPS entity to prevent real-time transaction conflicts. Two types of conflicts may

occur in the pre-commit phase: PP and PC Conflict. Three resolving strategies are proposed

to resolve PP Conflict: Win-Lose, Win-Win, and Enhanced Win-Win. For PC Conflict, an

additional strategy is used: Transaction Preemption. Two transaction processing algorithms
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for the centralized and distributed environment are proposed. In each algorithm, we show

how transaction scheduling is carried out for both the resource client and server.

While it is desirable that the commit phase is performed as what has been predicted

in the pre-commit phase, exceptions still happen. An exception is caused either internally

or externally. To prevent real-time transaction conflicts, exception detection and handling

are required. The detection process consists of an internal check and an external check,

which detect internal and external exceptions respectively. When an internal exception

is detected, a transaction is either aborted or adjusted. When an external exception is

detected, a negotiation effort is first made to keep reserved resources, and, if it fails, the

transaction is aborted or adjusted.

In next chapter, we show how a simulation platform is implemented and how the two-

phase commit algorithm is used by different components of a CPS entity to process trans-

actions.
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Chapter 6

Simulation Platform Implementation:
CPSNET

6.1 Introduction

In this chapter, we show how the simulation platform (CPSNET) for our transaction model

is implemented using the Java programming language [58]. The implementation is based

on the definitions and algorithms of the transaction model proposed in Chapter 4 and 5

respectively.

The simulation platform simulates a CPS Network, where different CPS entities coordi-

nate resource usages of their transactions through a Communication Network. Depending

on the resource management mechanism, a Resource Server may exist in the CPS Network

to manage resource usages of all CPS entities. In a CPS entity, four main components are

implemented to simulate the computational subsystem ComS and the physical subsystem

PhyS: Transaction Generator, Transaction Scheduler, Transaction Executor, and Resource

Manager. These components play different roles in processing a transaction from trigger-

ing, scheduling, to executing a transaction. However, they are not independent, and one

component may rely on another to fulfill its function, such as that Transaction Scheduler

component relies on Resource Manager component to query resource usage information.

Besides, there are additional components which play specific roles with respect to process-

ing a transaction, such as Conflict Resolver component resolving transaction conflicts in
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the pre-commit phase and Exception Handler component handling exceptions when execut-

ing a transaction in the commit phase. Details of the design and implementation of these

components will be presented in this chapter.

Figure 6.1: CPSNET Simulation Platform

The simulation platform is divided into four levels (Figure 6.1).

1. The 1st level is CPSNetwork, which represents the operating environment of a Cyber-

Physical System (Section 4.3). CPSNetwork organizes different entities in the 2nd level

into an interconnected network and serves as the simulation entry point. It carries out

a time-based simulation and updates each CPS entity’s system state based on their

current transactions at fixed time interval.

2. The 2nd level contains different types of entities, i.e., a Network, an optional Resource-

Server, and a group of CyberPhysicalSystems. Network is the Communication Net-

work that supports communication among CPS entities. ResourceServer represents

the Resource Server in a CPS Network that manages resource usages. CyberPhysical-
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System represents a Cyber-Physical System that performs physical operations using

environmental resources to achieve a certain goal.

3. Entities in the 2nd level are composed of components in the 3rd level. For example, a

CyberPhysicalSystem consists of four main components: TransactionGenerator, Tran

sactionScheduler, TransactionExecutor, and ResourceManager. As mentioned above,

inter-dependency may exist between components, such as TransactionScheduler de-

pending on ResourceManager to perform resource reservations and ConflictResolver

to resolve transaction conflicts.

4. Classes in the 4th level provide data or operation abstractions that support entities

in the above three levels, such as Message, Resource, ResourceUsage, SystemState,

Action, and Transaction.

As the simulation entry point, when CPSNetwork is started, it performs a sequence of

procedures to initialize and start the simulation, as shown in Figure 6.2. It first reads in

configuration files, and configures the simulation environment. Then it initializes all entities

in the 2nd level, i.e., Network, ResourceServer, and CyberPhysicalSystems. When initializa-

tion is completed, the simulation is started by starting all entities. All these entities operate

independently, and interact with each other through messages. The simulation process is

controlled by a global clock that advances the time periodically. When the predefined sim-

ulation time is reached, the simulation is terminated. A set of statistical information is

collected by CPSNetwork. These information are from entities in the 2nd level, which in

turn obtain the information from their components in the 3rd level.

In the following sections, we present our design and implementation of the simulation

platform in a bottom-up manner. We first introduce the implementation of Resource and

ResourceUsage, then present the implementation of Action and Transaction. After that,

we show how different entities in the 2nd level and their components in the 3rd level are

implemented. At last, we give more details of CPSNetwork and show how the simulation
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Figure 6.2: Simulation Flow
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flow in Figure 6.2 is executed. We continue using the autonomous car example in the

implementation.

6.2 Resource and Resource Usage

We define three classes related to environmental resources: Resource, ResourceUsage, and

ResourceUsageOperations. Their relationship is shown in Figure 6.3.

Figure 6.3: Resource, ResourceUsage, and ResourceUsageOperations

6.2.1 Resource

The Resource class provides an abstraction of a single environmental resource. In the car

example, assuming that a road is represented by a grid map, a Resource object represents

a grid and contains three fields (Figure 6.3):

• roadID is the identification of a road.
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• laneID is the identification of a lane in a road.

• segmentID is the identification of a segment in a lane.

Besides implementing the Comparable interface, two Comparators are defined in the

Resource class to support two types of ordering: SEG LANE ROAD ORDER and ROA

D LANE SEG ORDER. In SEG LANE ROAD ORDER, Resource objects are first sorted

by segmentID, then by laneID, and lastly by roadID, while ROAD LANE SEG ORDER

applies an opposite order. SEG LANE ROAD ORDER is considered as the natural order

of Resource objects.

6.2.2 Resource Usage

ResourceUsage represents the usage of a resource. Each ResourceUsage object contains a

reference to a Resource object, and two additional fields indicating the time period when a

resource is being used: startT ime and endT ime. Here, we use (res, [startTime, endTime))

to represent a ResourceUsage object.

Several methods are provided in the ResourceUsage class. The following are examples

of these methods:

• overlapped: checks whether two resource usages are overlapping. For example, (res0,

[0, 5)) and (res0, [3, 8)) are overlapping, but (res0, [0, 5)) and (res0, [5, 8)) are not.

If two resource usages are of difference resources, they do not overlap, e.g., (res0, [0,

5)) and (res1, [3, 8)).

• consecutive: checks whether two resource usages are consecutive, e.g., (res0, [0, 5))

and (res0, [5, 8)) are consecutive, and (res0, [0, 5)) and (res0, [3, 8)) are consecutive.

• merge: merges two consecutive resource usages. (res0, [0, 5)) merged with (res0, [3,

8)) gives (res0, [0, 8)), and (res0, [0, 5)) merged with (res0, [5, 8)) gives (res0, [0,

8)). However, (res0, [0, 5)) merged with (res1, [3, 8)) gives null.
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• intersection: finds the intersected usage between two resource usages, e.g., the inter-

section of (res0, [0, 5)) and (res0, [3, 8)) is (res0, [3, 5)).

• difference: calculates the difference of one resource usage with respect to another. For

example, the difference of (res0, [0, 5)) from (res0, [2, 3)) is (res0, [0, 2)) and (res0,

[3, 5)), and (res0, [0, 5)) from (res1, [2, 3)) is (res0, [0, 5)).

• union: returns the union of two resource usages. For example, union of (res0, [0, 5))

and (res0, [5, 8)) gives {(res0, [0, 8))}, and union of (res0, [0, 5)) and (res1, [2,

3)) gives {(res0, [0, 5)), (res1, [2, 3))}. The difference between merge and union

is that if two resource usages are of different resources, or they are not consecutive

or overlapping, null is returned for method merge, whereas a set containing both

resource usages is returned for union.

Two Comparators are defined to support ordering by resource (RESOURCE ORDER

) and ordering by usage time (TIME ORDER), and ordering by usage time is the natural

order of ResourceUsage objects.

6.2.3 Resource Usage Operations

The ResourceUsageOperations class provides a set of static methods that operate on lists of

ResourceUsage objects.

• Method compress merges resource usages of the same resource that have consecutive

or overlapped execution time periods in a list.

• Method intersection returns intersected resource usages between two lists of resource

usages.

• Method difference returns different resource usages in the first list with respect to

those in the second list.

• Method union returns the union of resource usages in two lists.

73



ResourceUsage objects in lists returned by these methods are sorted by TIME ORDER.

6.3 Action and Transaction

Actions and transactions provide different levels of abstractions for physical operations of

a CPS entity. In the implementation, Action and Transaction are both defined as abstract

classes, from which concrete sub-classes are derived. Each sub-class defines a specific type

of action or transaction. Properties such as start and end system states, action sequence,

and resource usage set are defined as fields in Action and Transaction.

6.3.1 System State

As we have described in Chapter 4, a system state represents the status of a CPS entity in

a CPS Network. It serves as the operating context for actions and transactions. For the car

example, we define a SystemState class that contains speed, acceleration and location of a

car. The location is given by a Resource object, which corresponds to a specific grid in a

grid map.

6.3.2 Action

The abstract class Action defines common fields and methods shared by different types of

actions, and each type of action is defined by a class which inherits fields and methods from

Action. In our car example, seven sub-classes are defined, as shown in Figure 6.4:

Main fields defined in Action include:

• actionID is a unique id that identifies an action.

• actionType is the type of an action. Seven action types are defined for the car ex-

ample: ConstantSpeedAction, IncreaseSpeedAction, DecreaseSpeedAction, TurnLeftAc-

tion, TurnRightAction, TurnOnSignalAction, and TurnOffSingalAction.

• priority is the priority of an action, which is used in action-level two-phase commit

processing (Section 5.2.4). Four levels of priorities are defined: 1 ∼ 4. These levels
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Figure 6.4: Action

correspond to the purpose of an action. Level 4 indicates a normal action to be

scheduled for execution, level 3 is a conflict-resolving or cooperative action, level 2 is

an exception handling action, and level 1 is an emergency-handling action.

• startState and endState are the start and end system state of an action respectively.

They are of type SystemState.

• startT ime and endT ime are the start and end execution time of an action respectively.

Timing is supported by a simulated global clock (discussed later).

• writeSet is the resource usage set of an action. It has type List¡ResourceUsage¿.

The writeSet may represent the pre-Write or Write set depending on the transaction

processing phase the action is undergoing. If it is transaction scheduling, then writeSet

indicates pre-Write set; if it is transaction executing, then writeSet indicates Write

set.

• Comparators are different comparator classes supporting ordering actions by actionID,

actionType, priority, and the execution time (startT ime and endT ime).
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The main methods defined in Action include:

• Constructors provide several ways to initializing an action.

• Getter and setter methods allows getting and setting field values.

• WriteSet operation methods that operate on writeSet: intersection, difference, and

union. These operations are based on methods defined in classes ActionOperations

and ResourceUsageOperations.

• Abstract method updateF ields() is a method called by constructors to help initialize

an action instance. This method is action-type specific and it allows different types

of actions to perform their own initialization beyond those constructors defined in

Action, such as computing the resource usage set.

• Abstract method computeResourceUsages takes startState, startT ime, and currT ime

as parameters, and computes the resource usage set of an action. It returns a list of

ResourceUsage objects.

• Abstract method getCurrState(currT ime) calculates the current system state given

the current time. The calculation is based on startState, startT ime, and currT ime.

This method returns a SystemState object representing the status of a CPS entity at

time currT ime.

• Abstract method adjustedResourceUsage(startState,startTime,endTime,otherPars) re-

turns the resource usage set of an action if it is adjusted through its attributes. How-

ever, it makes no change to the action. This method will be used by a transaction

when it is doing action adjustment in order to get a prediction of resource usages by

an action.

Each sub-class of Action inherits fields and methods from Action. However, they may

define additional ones. For example, IncreaseSpeedAction and DecreaseSpeedAction have a
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property targetSpeed, and TurnLeftAction and TurnRightAction have a property turningAngle.

As for methods, all sub-classes must implement action-type-specific abstract methods, i.e.,

computeResourceUsages, updateFields, getCurrState, and adjustedResourceUsage.

6.3.3 Transaction

The implementation mechanism for transactions is similar to that for actions. An abstract

class Transaction is defined, and several sub-classes are defined to represent different types

of transactions (Figure 6.5).

Figure 6.5: Transaction

Similar fields are defined for Transaction, such as tranID, tranType, priority, startState,

and startT ime. Specially, the same levels of priority are defined and it is used in transaction-

level two-phase commit processing. Level 4 indicates a normal transaction to be scheduled

for execution, level 3 is a conflict-resolving or cooperative transaction, level 2 is an exception

handling transaction, and level 1 is an emergency-handling transaction.

Besides, an actionSequence field is defined to represent the sequence of actions in a
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transaction, and the writeSet field indicates the resource usage set of a transaction, which

is a union of resource usage sets of its actions.

As for methods, several abstract methods are defined. These methods are transaction-

type-specific and thus require each sub-class of Transaction to implement them.

• updateF ields() initializes transaction fields such as writeSet and actionSequence,

which are not initialized by constructors defined in Transaction.

• setupActions(startState,startTime,endTime,actionPars) initializes actions in actionSq

uence.

• computeResourceUsage(list:List¡Action¿) computes writeSet given a list of actions.

• getCurrState(currT ime) calculates the current system state given the current time.

The calculation is actually carried out in an action whose execution time period

currT ime is within.

• adjustAction(index, action, actionPars) performs action adjustment to a transaction

(Section 5.3.5). The action at index in the actionSequence is replaced with the given

action initialized with actionPars. This method makes actual changes to the under-

lying transaction.

• actionAdjustedSequence(index, action, actionPars) performs action adjustment to a

transaction and returns the action sequence after adjustment. The difference from

adjustAction is that this method doesn’t change the underlying transaction, but re-

turns a new sequence of actions.

• actionAdjustedTransaction(index, action, actionPars) performs action adjustment to

a transaction and returns a new transaction. This method also doesn’t change the un-

derlying transaction.

• adjustSequence(mode, index, action, actionPars) performs sequence adjustment to a

transaction (Section 5.3.5). There are three different modes. If mode is -1, it prepends
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the given action to the action sequence; if mode is 1, action is appended to the action

sequence; if mode is 0, action is inserted at index in the action sequence. actionPars

are parameters used to initialize action. This method makes actual changes to the

underlying transaction.

• sequenceAdjustedSequence(mode, index, action, actionPars) performs sequence ad-

justment to a transaction and return the action sequence after adjustment. This

method doesn’t change the underlying transaction, but returns a new sequence of

actions.

• sequenceAdjustedTransaction(mode, index, action, actionPars) performs sequence ad-

justment to a transaction and returns a new transaction. This method doesn’t change

the underlying transaction.

6.4 Cyber-Physical System

Our implementation of a Cyber-Physical System focuses on the transaction processing fea-

tures. We define four main components: Transaction Generator, Transaction Scheduler,

Transaction Executor, and Resource Manager (Figure 6.6).

Figure 6.6: Architecture of Cyber-Physical System

The class CyberPhysicalSystem represents a Cyber-Physical System or a CPS entity,
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and it organizes different components into an independent system that operates on its

own. The design of CyberPhysicalSystem is highly modularized and allows replacing a

component with another as long as they provide the same interface. The main fields defined

in CyberPhysicalSystem include:

• cpsID and comID are the CPS and component identification of a CPS entity. cpsID

identifies a CPS entity in a CPS Network, and comID identifies the CPS entity as a

parent component compared with sub-components such as Transaction Scheduler and

Executor.

• startState and endState are the initial and goal system states of a CPS entity respec-

tively.

• startT ime and endT ime are the start and end execution times of a CPS entity re-

spectively.

• scheduleQueue, executeQueue, abortQueue, finishQueue and failQueue are queues

of transactions used for different purposes.

• tranGenerator is the Transaction Generator component that generates new transac-

tions.

• tranScheduler is the Transaction Scheduler component that schedules transactions in

the pre-commit phase.

• tranExecutor is the Transaction Executor component that executes transactions in

the commit phase.

• resrManager is the Resource Manager component that manages resource reservations

of the host CPS entity.

• inQueue is a message queue used by the Communication Network to deliver messages

targeting this CPS entity.
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• distMap is a map from component identities (comID) to incoming message queues of

components. This mapping is used by InternalMessageDistributor to deliver messages

to different components.

• distributor is an InternalMessageDistributor that takes care of internal message dis-

tribution.

• Network is the Communication Network.

• PPStrategy indicates the strategy used to resolve PP Conflict (will be covered when

discussing Transaction Scheduler).

• PCStrategy indicates the strategy used to resolve PC Conflict (will be covered when

discussing Resource Server).

• simulationMode is the simulation mode applied by CPSNetwork. Two simulation

modes are supported corresponding to how environmental resources are managed:

centralized or distributed.

• running is the status flag indicating whether a CPS entity is running.

• currentSystemState is the current status of a CPS entity.

• currentTransaction is the current transaction that is being executed.

Besides constructors, getter and setter methods, CyberPhysicalSystem defines methods

to control the running of a CPS entity and to collect statistical information related to

transaction processing algorithms.

The control methods include start, update, and stop.

• In the start method, components of a CPS entity are started if they run as separate

threads. The initialization of components takes place in the constructor.
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• The update method takes the current time as the parameter and updates the status of

a CPS entity. This methods triggers operations of Transaction Generator, Scheduler

and Executor components, which cooperate to process transactions.

• The stop method terminates the operations of components. This method is called

when the simulation is completed.

Statistics methods collect information such as how many transactions are generated,

scheduled, and executed, how many transaction are adjusted, and how many successful

adjustments happen. We will discuss these statistical information in next chapter when we

show and analyze simulation results.

6.4.1 Transaction Processing Flow

The transaction processing flow of a CPS entity is shown in Figure 6.7. The figure shows

how different components interact with each other to process transactions. Since we have

already discussed transaction processing in Chapter 5, we will not go over all those details

here.

6.4.2 Transaction Generator

The function of the Transaction Generator is to create new transactions that will be sched-

uled and executed by Transaction Scheduler and Executor respectively. The implementation

of class TransactionGenerator is shown in Figure 6.8.

There are three modes the generator follows to create a new transaction.

The first is automatic mode, where the generator automatically picks the most suitable

transaction to achieve the goal state (i.e., goalState in Figure 6.8). The selection of a

transaction is based on a score that is calculated based on the similarity between the end

system state of a transaction and the goalState. Higher the score, better is the chance a

transaction has to reach the goal. Hence, the transaction with the highest score is selected.
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Figure 6.7: Transaction Processing Flow

Figure 6.8: Transaction Generator
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The corresponding method for this mode is: generateTransactionDefault(startState,goalSta

te,startTime,endTime):void.

The second is scenario mode, where a sequence of transactions is specified in a scenario

file for the generator to create. Each scenario in the file specifies the type, the execution time

duration, and action parameters of a transaction. For example, “AccelerateTransaction,

5000, 5.0” indicates creating an AccelerateTransaction with a target speed 5.0 meters per

second, and the execution time lasts for 5000 milliseconds. The method for this mode is g

enerateTransactionScenario(startState,startTime):void, and the scenario file is read when

the Transaction Generator is initialized.

The third mode is passive mode. In the passive mode, a new transaction is generated

upon requests. For example, Transaction Scheduler may need to create new transactions

to resolve transaction conflicts, and Transaction Executor may create new transactions

to handle exceptions. The request is made through method generateTransaction(type,st

artState,startTime,endTime,pars):void. Here, type indicates the type of transaction to be

generated, and pars is an object array that contains parameters to initialize the transaction.

Once a transaction is generated, it is placed into scheduleQueue for further processing.

6.4.3 Transaction Scheduler

The Transaction Scheduler schedules transactions in scheduleQueue that have been gener-

ated by Transaction Generator. Once a transaction is scheduled, it is placed in executeQueue

waiting for Transaction Executor to execute it. Otherwise, it is put in abortQueue, which

means the transaction is aborted. The class diagram is shown in Figure 6.9. Since the

scheduling process is different for different resource management mechanisms, Transaction

Scheduler is defined as an abstract class, and two sub-classes inherit it: CentralizedTransa

ctionScheduler and DistributedTransactionScheduler.

Both CentralizedTransactionScheduler and DistributedTransactionScheduler are imple-

mented as threads, and they keep checking whether new transactions are placed in scheduleQueue.
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Figure 6.9: Transaction Scheduler

If transactions exist in scheduleQueue, a transaction is retrieved and scheduled. Since we

have discussed the scheduling process carried out by a scheduler as a client role in both

centralized and distributed resource management environments in Section 5.4, we will skip

the discussion of the scheduling process here.

In the scheduling process, the scheduler makes resource reservations for transactions

through the Resource Manager component (class ResourceManager). Resource Manager

component works as the portal for resource usage negotiation. We will cover more about

Resource Manager later.

When transaction conflicts are detected, they need to be resolved. PPStrategy (Fig-

ure 6.9) indicates the strategy used by Transaction Scheduler to resolve PP Conflict (Sec-

tion 5.3.1). However, PC Conflict is detected and resolved by the Resource Server because

only the Resource Server can decide whether to allow transaction preemption and when

to revoke existing resource reservations. There are three levels of strategies defined for

PPStrategy: 0, 1, and 2. Level 0 means the strategy is not set and a conflicting transac-

tion is aborted in default, level 1 indicates Win-Lose strategy, and level 2 indicates Win-Win

strategy.
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When potential transaction conflicts are found, if Win-Win strategy is specified for re-

solving PP Conflict, Transaction Scheduler refers to Conflict Resolver component (class

ConflictResolver) to figure out how to adjust the transaction in order to avoid potential

conflicts. The Conflict Resolver analyzes existing transaction conflicts, evaluates character-

istics of different transactions, and comes up with adjustment solutions to resolve conflicts

for each type of transactions. In the current implementation, a transaction can be adjusted

at most twice. After that, an alternative transaction is created to replace the current one

since the potential conflicts can’t be resolved by previous two adjustments. The Conflict

Resolver component also takes care of creating alternative transactions.

TransactionScheduler keeps a set of counters that measure the performance of the

scheduling algorithm regarding its capability to resolve potential conflicts.

• scheduledTranCount counts how many transactions have been successfully scheduled.

• conflictedOriginalTranCount counts how many original transactions have had po-

tential conflicts with others. An original transaction is a transaction that has not been

adjusted.

• notAdjustedTranCount counts how many conflicting transactions were not adjusted

(when using Win-Lose strategy).

• adjustSucceedTranCount and adjustFailTranCount count how many conflicting

transactions that were adjusted succeeded in avoiding potential conflicts, and how

many failed.

• adjustOnceSucceedCount and adjustOnceFailCount count how many conflicting trans-

actions that were adjusted only once succeeded in avoiding potential conflicts, and how

many failed.

• adjustTwiceSucceedCount and adjustTwiceFailCount count how many conflicting

transactions that were adjusted twice succeeded in avoiding potential conflicts, and
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how many failed.

• alterSucceedTranCount and alterFailTranCount count how many alternative trans-

actions that were created to replace conflicting transactions succeeded in resolving

conflicts, and how many failed.

6.4.4 Transaction Executor

The Transaction Executor (Class TransactionExecutor in Figure 6.10) executes transactions

in executeQueue that are scheduled by Transaction Scheduler. The executor simulates

operations of the physical subsystem by updating the status of a CPS entity given the

transaction currently being executed and the current system time. When exceptions occur,

Exception Handler (Class ExceptionHandler) handles them in order to maintain a consistent

CPS Network, such as aborting or adjusting the current transaction. When a transaction is

successfully executed, it is placed in finishQueue; otherwise it is is placed in failQueue.

Figure 6.10: Transaction Executor

However, our simulation concentrates on resolving conflicts in the pre-commit phase, and

we assume that the execution of a scheduled transaction always succeeds without exceptions.

Thus, the integration of Transaction Executor and Exception Handler are neglected in the

current simulations, and what Transaction Executor does is to update the system state of

a CPS entity at fixed time interval (method update(currTime):void).
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6.4.5 Resource Manager

Figure 6.11: Resource Manager

Resource Manager (Class ResourceManager in Figure 6.11) acts as an agent for a CPS

entity to coordinate resource usages with other CPS entities. It tracks resource reservation

states of transactions and keeps a local record of existing reservations (localRecord).

If there is a central Resource Server (centralized environment), Resource Manager works

as a resource client and speaks with the server directly. If there is no central server, then

Resource Manager plays both resource client and server roles.

• When reserving resources, it works as a client and communicates with Resource Man-

agers of other CPS entities.

• When handling resource reservation requests from other CPS entities, it works as a

server and checks potential transaction conflicts for incoming reservation requests.

Class ResourceManager is defined as an abstract class. Two sub-classes, CentralizedR

esourceManager and DistributedResourceManager, inherit ResourceManager and work in

centralized and distributed resource management environment respectively. The implemen-

tation for CentralizedResourceManager is straightforward and it includes the following basic

functions:

• Forward resource-related messages from other components to the CPS Network. Some

pre-processing jobs are performed before sending those messages out, such as adding,

updating, and removing local records.
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• Keep track of reservation states of the host’s transactions. Possible reservation state

includes Pending, PendingACK, Succeed, Failed, Revoked, and Expired (will be covered

later when discussing Resource Server).

• Support internal and external checking in the commit phase to detect potential ex-

ceptions.

The implementation for DistributedResourceManager is more complex since it is a com-

bination of resource client and server roles. From functionality viewpoint, it is the same

as the union of CentralizedResourceManager and ResourceServer, and we will discuss this

along with ResourceServer later.

6.5 Resource Server

The implementation of the Resource Server (Class ResourceServer) is shown in Figure 6.12.

It is used only in the centralized resource management environment. The Resource Server for

the distributed environment is implemented by DistributedResourceManager. Here, we go

through only the implementation of ResourceServer, and the same implementation strategy

is applicable to DistributedResourceManager.

6.5.1 Tasks of a Resource Server

In the centralized environment, all CPS entities negotiate with Resource Server to reserve

resources for their transactions. Resource Server has three main tasks.

The first task is to maintain a record of all resource reservations. Each reservation is

represented by a Reservation object (Figure 6.13) and represents a resource reservation of

a transaction. ResourceServer uses three data structures to keep reservations in different

states: pendingWithoutACK, pendingWithACK, and reservations. Possible reservation

states include:

• Pending: a new reservation that hasn’t been processed yet. This type of reservations

are stored in pendingWithoutACK.
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Figure 6.12: Resource Server

• PendingACK: a reservation that has been processed, and an acknowledgement has

been sent by the server, but a final confirmation from the client is not received yet.

This type of reservations are stored in pendingWithACK.

• Succeed: when a PendingACK reservation is confirmed by the client, the reservation

becomes Succeed and is stored in reservations.

• Failed: when a Pending reservation can’t be made by the server due to transaction

conflicts, it becomes Failed.

• Revoked: a Succeed reservation that has been revoked by the server (due to transac-

tion preemption).

• Expired: a Succeed reservation that has expired.

• Query: a query reservation, which actually doesn’t reserve resources, but query re-

source usage status.
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Figure 6.13: Reservation and Reservation State

The second task is to process resource reservation requests. We have discussed how

a Resource Server processes an incoming reservation request in Section 5.4, so we won’t

go through each step here. In the implementation, reservation requests are processed

by ReservationWorker, and each reservation request is handled by a separate thread.

When a new reservation request comes in, a Reservation object is created and saved in

pendingWithoutACK. Then a new ReservationWorker thread is initialized to handle the

request, and operations are invoked to check potential resource conflicts against reservations

stored in pendingWithACK and reservations.

• If no conflicts are found, then the reservation can be made and an acknowledgement

is sent to the client and the reservation is moved to pendingWithACK. When a

confirmation is received from the client, the reservation becomes Succeed and is moved

to reservations.

• If conflicts are found or if no confirmation is received after the acknowledgement, then

a rejection message is sent and the reservation becomes Failed and is removed from

pendingWithoutACK.

When PC Conflict is found, PCStrategy is applied to resolve the conflict. There are

three levels defined. Level 0 means an unset strategy and no transaction preemption will
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be allowed, level 1 means transaction preemption is allowed on reservations with Pending

state, and level 2 means transaction preemption is allowed on reservations that are in one

of Pending, Succeed, and PendingACK states.

The third task is to process resource usage queries. Query requests check potential

transaction conflicts by providing the pre-Write set of a transaction. Each time a query

request is received, a QueryWorker thread is created to process the request. QueryWorker

checks potential transaction conflicts between the given transaction and those recorded in

pendingWithACK and reservations. Checking results are sent back to the client.

6.5.2 Message

The communication between the Resource Server and clients is carried out through messages.

Types of messages exchanged between the Resource Server and clients include:

• REQ: “Request of New Reservation” sent from client to server.

• ACK: “Acknowledge Pending Reservation” sent from server to client.

• REJ : “Reject Pending Reservation” sent from server to client.

• CAN : “Cancel Pending Reservation” sent from client to server.

• CON : “Confirm Pending Reservation” sent from client to server.

• REV : “Revoke Valid Reservation” sent from server to client.

• CHK: “Check for Resource Usage Conflicts” sent from client to server.

• RES: “Response to CHK Message” sent from server to client.

The implementation of message classes is shown in Figure 6.14, which includes four

classes: Message, MessageType, MessageHeader, and MessageBody.
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Figure 6.14: Message

6.5.3 Reservation State Machine

The relationship between messages and reservation states is shown by the Reservation State

Machine in Figure 6.15

Figure 6.15: Reservation State Machine
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6.6 Communication Network

The Communication Network delivers a message from its sender to its recipient. However,

the delivery process is not our concern in the simulation, and we don’t need a full-scaled net-

work with different protocols and various features. Thus, we use a straightforward approach

to simulate the Communication Network, as shown in Figure 6.16, and the distribution flow

of a message is illustrated in Figure 6.17.

Figure 6.16: Communication Network

There are two levels of message transmission implemented: external and internal.

In external message transmission, each CPS entity (including Resource Server, if any)

sends a message by calling the sendMessage method of Network, and then the message

is placed in the incoming message queue inQueue of Network. Thread NetworkMessage

Collector processes incoming messages in inQueue by simulating delays, errors, etc., and

then moves them to outQueue. Thread NetworkMessageDistributor takes message from

outQueue and puts them in inQueues of their target CPS entities.

In internal message transmission, when a message arrives at the inQueue of a CPS

entity, it is handled by InternalMessageDistributor, who delivers the message to its target
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component.

Figure 6.17: External and Internal Message Transmission

To make both external and internal message transmission work, each CPS entity must

register their cpsIDs and inQueues in Network, and each component must register their

comIDs and inQueues in their parent CyberPhysicalSystem. The mapping from cpsID or

comID to inQueue is recorded in a map (distMap in both Network and CyberPhysical-

System). Besides, each message should specify its source and destination CPS entity and

component (src, dst, srcComponent, and dstComponent in Figure 6.14).

Two types of delivery are supported: uni-cast, and broadcast. Uni-cast is one-to-one

message delivery, and broadcast is one-to-all. For broadcast, the dst and dstComponent

will be BROADCAST defined in class CPSNETConfiguration.
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6.7 CPS Network

Having discussed components in the lower three levels of Figure 6.1, we now present the

top level: CPSNetwork. Class CPSNetwork organizes entities in the 2nd level together

into a simulation platform and serves as the simulation entry point. It takes in different

configuration files, initializes environment variables, creates different entities, and runs a

time-based simulation to update status of all CPS entities in the network. The architecture

and implementation of CPSNetwork are shown in Figure 6.18, and the simulation flow

followed by CPSNetwork is illustrated by Figure 6.2.

Figure 6.18: CPSNetwork

6.7.1 Configuration

Two levels of configuration are provided by CPSNetwork.

The first level is configuration of the CPS Network. In this level, simulation-related

properties are initialized, such as number of CPS entities, time and length unit, global

clock, simulation duration, simulation mode (centralized or distributed), and logging and

result directories. The configuration file for this level is specified by envConfigF ile. The

file is processed by method processENVConfigFile, and related properties are kept in class

CPSNETConfiguration.
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The second level is configuration of entities in the network. These entities include envi-

ronmental resource, Resource Server, and CPS entities. In this level, entity-related proper-

ties are initialized.

• For environmental resource, properties such as number of lanes in the simulated road

and the length and width of a road segment are specified in CPSNETConfiguration.

• For Resource Server, server identity, broadcast address, and conflict resolving strategy

for PC Conflict are specified in CPSNETConfiguration.

• For CPS entity, start and end system states, and scenario files are specified in file

cpsConfigF ile, which is processed by method processCPSConfigFile of CPSNetwork.

Other properties such as PP Conflict resolving strategy, the maximum speed and

acceleration of a car, and the waiting time for message response are defined in CPSC

onfiguration.

We will show how the configuration is performed and the contents of the configuration

files in the next chapter when we go through the simulation experiments.

6.7.2 Time-Based Simulation

As the simulation entry point (Figure 6.2), when started, CPSNetwork first reads and

processes the configuration files, then configures the simulation environment. After that,

the Communication Network (Class Network), the Resource Server (Class ResourceServer,

if centralized simulation mode is specified), and all CPS entities (Class CyberPhysicalSyste

ms) are initialized. After initialization is done, all entities are started by calling their start

methods. Since they are threads, they run independently, and the interactions among them

are through sending and receiving messages.

The simulation of CPS entities is time-based. To fulfill this, a global clock is simulated

to provide time service. The time interval for updating statuses of CPS entities and the

simulation time duration guide the simulation process, and both are specified in CPSNETCo
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nfiguration. In every time interval, the update method of each CPS entity is called to update

its status. This method would trigger operations of Transaction Generator, Scheduler, and

Executor, which further trigger operations of other components of a CPS entity, e.g., Conflict

Resolver. If transaction generation follows the scenario mode, when the last transaction is

executed by a CPS entity, its operation is terminated. Otherwise, in the automatic mode,

transactions are generated automatically, and operations of each CPS entity go on as long

as the simulation duration is not ended. In either case, the simulation duration should be

given a value that is larger than the end execution time of the last transaction among all

CPS entities.

When simulation time duration is reached, the simulation is terminated by terminating

the Resource Server, CPS entities, and Communication Network entities in order by calling

their stop methods. Then statistical information are collected from all these entities through

their statistical methods.

6.7.3 Statistical Information

CPSNetwork collects statistical information from all entities in the 2nd level, which in turn

get the information from components in the 3rd level, as illustrated in Figure 6.19.

Besides these statistical information, operation logs are kept for each thread component

and entity. Through these logs, the behavior and performance of each component or entity

can be observed.

In next chapter, more details will be covered about statistical information and operation

logs. We will discuss how to use them to evaluate the simulation platform and the transaction

model.

6.8 Summary

In this chapter, we discuss how the simulation platform CPSNET is designed and imple-

mented in four levels (Figure 6.1). The CPSNetwork class works as the simulation entry
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Figure 6.19: Statistical Information of CPSNetwork

point and it organizes different entities in the second level together. The second level is

composed of entities with different functions, such as the Resource Server (Class Resource-

Server), the Communication Network (Class Network), and CPS entities (Class CyberPhy

sicalSystem). These entities are composed of components in the third level, and the parent

entity’s functionality is fulfilled by these components. In the bottom level, basic classes are

defined to provide different abstractions for resources, messages, actions, and transactions.

We show the design and implementation of different classes in different levels of the

platform, and discuss their functions and operation flows. Especially, we show how a trans-

action is processed in each CPS entity and the functions of different components with re-

spect to transaction processing (Figure 6.7), how internal and external message distribution

is performed (Figure 6.17), and how a simulation is carried out by the CPSNetwork class

(Figure 6.2). In the next chapter, we will present simulation experiments and results using

the simulation platform to evaluate our transaction model. .
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Chapter 7

Simulation and Results

7.1 Introduction

In the previous chapter, we presented the CPSNET simulation platform. Specifically, we

show the design and implementation of different types of entities (CyberPhysicalSystem,

Network, and ResourceServer) in a CPS Network (CPSNetwork), and their functions and

roles in the processing of transactions. We also describe how a simulation is carried out in

a CPSNetwork (Figure 6.2). In this chapter, we show how to use the simulation platform

to simulate and verify the transaction model. The verification includes two aspects: the

simulation platform itself and the transaction model.

To verify the simulation platform, we show that every entity in a CPS Network and

every component in a CPS entity work as expected, and the transaction processing flow in

Figure 6.7 is followed by every corresponding entity and component. We prepare one group

of test for this verification (Group 0). It consists of only one CPS entity which executes

26 transactions sequentially. The set of transactions that the CPS entity has to execute

are specified in a scenario file. By examining the statistical information obtained through

CPSNetwork and CyberPhysicalSystem, and the operation logs of different components and

entities, our tests for Group 0 shows that:

• Component TransactionGenerator generates transactions specified in the scenario file

correctly.
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• Component TransactionScheduler schedules transactions that are generated by Tran

sactionGenerator correctly, and the transaction scheduling flow is followed.

• Component TransactionExecutor executes transactions that are scheduled by Transa

ctionScheduler as expected.

• Component ResourceManager handles resource-related messages and maintains re-

source reservations as expected.

• ResourceServer processes resource reservation requests as expected.

• Network delivers messages correctly, i.e., all messages are successfully sent and re-

ceived.

• CPSNetwork carries out a simulation as expected, and the simulation always finishes

without errors.

To verify the transaction model, we prepare five groups of tests to show that our two-

phase commit transaction processing algorithm helps reduce resource usage conflicts between

transactions. In each group, two CPS entities with one or two transactions are simulated

to show how a certain type of transaction is adjusted when it is in conflict with some other

transaction. To create the desired transaction conflicts, we pre-define the start system state

and the start execution time of each CPS entity. We evaluate different conflict resolving

strategies and compare their results to cases where no conflict resolving is applied or a

direct abortion is used for a conflicting transaction. These strategies include: Win-Lose,

Win-Win, and Transaction Preemption strategies. The conflicts we focus are PP and PC

Conflict (Section 5.3.1). Simulation results show that our conflict resolving strategies are

able to resolve conflicts for different types of transactions.

Finally, we perform a comprehensive simulation study (Group 6) with different numbers

of CPS entities and transactions. In this group, we first simulate 10 CPS entities concur-

rently with a total of 188 transactions (each CPS entity has 12 to 26 transactions). Then
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we analyze the simulation result, and evaluate the performance using statistical information

collected from the simulation. At last, we test the scalability of the simulation platform

by increasing the number of CPS entities and transactions separately and check the perfor-

mance of the simulation platform. This group not only proves our conclusions in previous six

groups, but also shows that the simulation platform and the two-phase commit algorithm

can support a large load of CPS entities and transactions. The simulation result shows

that the application of the two-phase commit algorithm and the conflict resolving strategies

improves the productivity and throughput of a schedule (defined later) compared with cases

when no conflict resolving is used or direct abortion of a conflicting transaction is applied. It

also shows that the Win-Win strategy has a better performance than the Win-Lose strategy

in resolving transaction conflicts and maintaining transaction concurrency.

In the following sections, we first describe assumptions we make when simulating the

transaction model, and configuration files used in the simulation. Then we define several

criteria that evaluate performance of the two-phase commit algorithm and the test cases to

be used in each simulation. After that, we go through each simulation group and analyze

the simulation result.

7.2 Assumptions and Configurations

In all of the simulation groups, we assume that a centralized ResourceServer exists, i.e.,

centralized resource management environment is applied. While the distributed environ-

ment is also supported, the centralized environment is enough for us to test and verify our

transaction model. Thus the distributed environment is ignored in the current simulation.

Besides, we continue using the autonomous car example for our simulation.

In order to create different situations for transaction processing, we use the scenario

mode setting in TransactionGenerator to generate a list of transactions for each CPS entity

according to the scenario file. This setting helps us to monitor the processing of each

transaction, and enables us to verify that each component does its job as expected and
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(a) CPSNET ENV CONFIG.config

(b) CPSNET CPS CONFIG.config

Figure 7.1: Examples of Configuration Files

transaction conflicts are detected and resolved correctly.

In the two-phase commit transaction processing algorithm, we focus more on the pre-

commit phase, and assume that the commit phase always gets carried out as expected

(without exceptions). Thus, in each group of simulation, as long as a transaction is sched-

uled, it is always executed.

For each simulation, there are three types of configuration files used:

1. Simulation environment configuration file: CPSNET ENV CONFIG.config. This file

specifies the following configurations (Figure 7.1a):

• Directories to save simulation results and operation logs: LOG DIR and RES DIR.

• Number of lanes in the simulated road. We assume that the road has 5 lanes.

The width of a lane and the length of a road segment (or grid) are fixed and

specified in class CPSNETConfiguration.

• Simulation group and case names.
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• Conflict resolving flag: CONFLICT RESOLVING. This flag affects the opera-

tion of the ResourceServer. If it is set to 0, the ResourceServer sends an ACK

message to any resource reservation request. However, it still performs conflict

detection and counts the number of conflicting reservations. If it is set to 1, the

ResourceServer sends an ACK message only when a reservation can be made.

This flag is used to enable counting the number of conflicting reservations.

• PP and PC conflict resolving strategies: PP CONFLICT STRATEGY and PC

CONFLICT STRATEGY. Each have three levels: 0-2, as we have described in

Section 6.4.3 and Section 6.5.1. PP CONFLICT STRATEGY determines the

strategy applied by the TransactionScheduler component to resolve PP Conflict,

while PC CONFLICT STRATEGY decides the strategy applied by the Resource-

Server to determine how transaction preemption should be carried out to resolve

PC Conflict. Both strategies are applicable only when conflict resolving is enabled

(CONFLICT RESOLVING).

• Simulation time: SIMULATION TIME DURATION. This variable determines

the time duration for the simulation. Since the platform has its own global clock

to serve the time, this variable doesn’t indicate the real-world time length, but

number of ticks for the global clock to run.

2. CPS entity configuration file: CPSNET CPS CONFIG.config (Figure 7.1b). This file

specifies CPS entities to be simulated in each group: their identities, start and end

system states, operation times, and scenario files used to generate transactions.

3. Scenarios files. For each CPS entity specified in CPSNET CPS CONFIG.config, there

should be a corresponding scenario file. Each scenario file specifies a list of transactions

to be generated by the TransactionGenerator component, e.g., Figure 7.3a.
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7.3 Performance Evaluation Criteria

To measure the performance of transaction processing and conflict resolving algorithms

proposed in Chapter 5, we develop several criteria to evaluate those algorithms. As we

know, transactions from CPS entities in a CPS Network form a schedule. These evaluation

criteria use the schedule as a basis to quantize the algorithm performance.

Assume that we have a schedule H consisting of transactions from n CPS entities in a

CPS Network, and [ts, te) (ts < te) is the time period from when the first transaction is trig-

gered to when the execution of the last transaction is finished. During this period, tri count

is the number of transactions triggered, sch count (sch count ≤ tri count) is the number

of transactions scheduled (pre-committed), and exe count (exe count ≤ sch count) is the

number of transactions executed (committed). When scheduling transactions, conf count is

the number of transactions found conflicting with some other transaction. When executing

transactions, excp count is the number of transactions detected to have potential excep-

tions. Out of exe count transactions that have been executed, comp count are completed

and others are incomplete.

Schedule Throughput. This category includes three criteria: throughput of triggered

transactions (ToTT), throughput of pre-committed transactions (ToPT), and throughput of

committed transactions (ToCT). They define the number of transactions that are triggered,

pre-committed, and committed per time unit respectively.

ToTT : tri count/(te − ts)

ToPT : sch count/(te − ts)

ToCT : exe count/(te − ts)

Throughput reveals the performance of an algorithm in maintaining transaction con-

currency. Higher level of concurrency achieved results in more transactions triggered, pre-

committed, and committed concurrently, and shorter time (te − ts) required to execute H;

as a result, higher throughput can be obtained.
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Test Cases CONFLICT RESOLVING PP CONFLICT STRATEGY PC CONFLICT STRATEGY
Case 0 0 0 0
Case 1 1 0 0
Case 2 1 1 0
Case 3 1 1 1
Case 4 1 1 2
Case 5 1 2 0
Case 6 1 2 1
Case 7 1 2 2

Table 7.1: Simulation Test Cases

Schedule Productivity. It has three criteria: productivity of scheduling (PoS), pro-

ductivity of executing (PoE), and productivity of transaction processing (PoTP). Produc-

tivity of scheduling is the ratio of pre-committed transactions to triggered transactions and

it measures the performance of the scheduling algorithm (or TransactionScheduler). Pro-

ductivity of executing is the ratio of committed transactions to pre-committed transactions

and it measures the performance of the transaction execution algorithm (or Transaction

Executor). Productivity of transaction processing is the ratio of executed transactions to

triggered transactions and it measures the overall performance of transaction processing

algorithm (including scheduling and executing).

PoS : sch count/tri count

PoE : exe count/sch count

PoTP : exe count/tri count.

Productivity reveals the performance of an algorithm in resolving conflicts and excep-

tions. In case of potential transaction conflicts or exceptions, the better performance a

handling (conflict resolving and exception handling) algorithm can achieve, the more trans-

actions can be scheduled or executed, and the higher productivity ratio can be attained.

7.4 Simulation Cases

In each simulation group, we run eight test cases, as shown in Table 7.1.
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• Case 0. Conflict resolving is turned off (CONFLICT RESOLVING=0). This causes

the ResourceServer to send an ACK message for all resource reservation requests.

Since a REJ message from the server triggers conflict resolving, in this case, no conflict

resolving will be applied by a CPS entity. However, even though the server sends

ACK messages back every time, it still checks whether a reservation causes conflicts

with previous reservations. Case 0 is used to show how many conflict reservations

transactions will cause if they are scheduled.

• Case 1. Conflict resolving is turned on, but PP and PC strategies are not set. In

this case, ResourceServer processes reservation requests normally and no transaction

preemption is allowed (PC CONFLICT STRATEGY=0), and TransactionScheduler

directly aborts a transaction if its resource reservation is rejected (PP CONFLICT

STRATEGY=0). Case 1 is used to show the algorithm performance if direct abortion

is applied to a conflicting transaction.

• Case 2. Conflict resolving is turned on, PP strategy is set to Win-Lose (PP CONFLIC

T STRATEGY=1), and PC strategy is not set. ResourceServer processes reservation

requests normally without considering transaction preemption, while TransactionSche

duler applies Win-Lose resolving strategy to a conflicting transaction: the transaction

is aborted, but an alternative transaction will be created to replace it.

• Case 3. The same as Case 2 except that, with PC CONFLICT STRATEGY=1, Re-

sourceServer now allows transaction preemption only on reservations with Pending

state (Section 6.5.1).

• Case 4. The same as Case 3 except that ResourceServer allows transaction preemption

on reservations with Pending, Succeed, or PendingACK states (PC CONFLICT S

TRATEGY=2).

• Case 5. The same as Case 2 except that PP strategy is set to Win-Win (PP CON

FLICT STRATEGY=2). With Win-Win strategy, a conflicting transaction is first
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adjusted (dynamic transaction adjustment in Section 5.3.5). If the adjustment suc-

ceeds, the adjusted transaction replaces the conflicting one; otherwise, an alternative

transaction is created and the conflicting transaction is aborted.

• Case 6. The same as Case 3 except that PP strategy is set to Win-Win.

• Case 7. The same as Case 4 except that PP strategy is set to Win-Win.

For PC Conflict resolving strategy (specifically, transaction preemption), as discussed

in Section 5.3.4, it is applied only when a transaction has a higher priority than another

transaction, and its priority reaches the emergency level (priPE). In our implementation,

priPE is set to 1. Thus, PC strategy is considered only when when a transaction’s priority

reaches 1 (refer to Section 6.3.3 for transaction priority settings). A transaction generated

from the scenario file is granted with a priority of 4 . When it is adjusted, the adjusted

transaction is granted with a priority of 3, and an exception-handling transaction has a

priority of 2. However, in all simulation groups, we do not simulate emergency-handling

transactions, and so no transaction preemption is applied. Thus, you are expected to see

no difference caused by the transaction preemption strategy in all simulation results when

only PC CONFLICT STRATEGY changes.

7.5 Group 0: Verifying The Simulation Platform

Group 0 is designed to evaluate the simulation platform. In this group, only one CPS entity

is configured in the CPS Network, and 26 transactions are specified in its scenario file.

As shown in Figure 7.2, the CPS entity (a car) starts with system state (2.0, 0.0,

ROAD 1, 1, 0) (i.e., speed, acceleration, road, lane, and segment), and moves from lane 1

to 5 (four ChangToRightLaneTransactions), and then from lane 5 to 1 (four ChangeToLeftL

aneTransctions). Between each pair of changing lane transactions, it performs ConstantSpe

edTransaction, AccelerateTransaction, and DecelerateTransaction randomly (Figure 7.3a).
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Figure 7.2: Simulation Group 0

Eight test cases all give the same simulation result as shown in Figure 7.3b. Two sample

result files from CPSNetwork and CyberPhysicalSystem are available in Appendix A and B.

The simulation result shows that:

• 26 transactions are generated (GeneratedTranCount in Figure 7.3b) by TransactionG

enerator component.

• 26 transactions are scheduled (ScheduledTranCount) without any potential conflict by

TransactionScheduler component.

• 26 transactions are executed completely by TransactionExecutor component (Execut-

edTranCount and CompletedTranCount).

• 78 messages are sent through the network (Number of Messages).

Since there is only one CPS entity in the CPS Network, we expect that all its transactions

are successfully scheduled and executed no matter whether conflict resolving function is

enabled and which strategy we choose to resolve PP and PC conflict. The simulation results

meet our expectation. Combined with the operation logs (Figure 7.4) of each component in
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(a) Scenario File (b) Simulation Results

Figure 7.3: Simulation Scenario and Result of Group 0
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CyberPhysicalSystem, we conclude that these components operate as what they are designed

for and carry out the transaction processing flow correctly.

Figure 7.4: Operation Log of TransactionScheduler

To successfully reserve resources for each transaction, three messages are sent: a REQ

message from client to server, an ACK message from server to client, and a CON message

from client to server. From the result, we know that 78 messages are sent through the com-

munication network, which is exactly 3 * 26. Checking the operation logs of Network and

its sub-components (NetworkMessageCollector and NetworkMessageDistributor), we know

that they work correctly regarding message delivery. Besides, the number of messages also

proves that TransactionScheduler, and ResourceServer and its ReservationWorker work as

expected with respect to sending requests and responses.

The total simulation time (not shown in Figure 7.3b) taken is 74,344 ticks (of the simu-

lated global clock), and it is reasonable to observe that it is larger than the total execution

time of those 26 transactions (Figure 7.3a), which is 61,000 ticks. Considering time costs

for CPSNetwork to initialize and start a simulation, for each component of a CPS entity to

process transactions, and for statistical information to be collected, the simulation time is

in our expected range.
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7.6 Group 1-5: Verifying The Conflict Resolving Al-

gorithms

In this section, we present five simulation groups to show how conflict resolving algorithms

are used to resolve PP and PC conflict in the pre-commit phase.

In the pre-commit phase, potential transaction conflicts are detected by Transaction

Scheduler and resolved by ConflictResolver. When a REJ message is received from the

ResourceServer for the resource reservation of a transaction, TransactionScheduler knows

that the transaction is in potential conflicts with others, and the conflicting resource usages

are returned in the message body. Then, depending on whether conflict resolving function

is enabled, the type of a conflict and a transaction, and which strategy is selected to resolve

the conflict, TransactionScheduler calls the corresponding method of ConflictResolver to

resolve conflicts. In the current implementation, ConflictResolver provides two types of

methods (Figure 7.5):

• Methods that create alternative transactions. These methods start with “alter”.

• Methods that perform transaction adjustment. These methods start with “adjust”.

In each of these five groups, two CPS entities are simulated.

• Entity 1 is the reference entity, and Entity 2 is the entity we are testing.

• Entity 1 has only one ConstantSpeedTransaction to execute in all groups. However,

Entity 2 executes one or two transactions, one of which is different in each group.

Transactions of Entity 2 are designed in this way in order to test how conflicts are

resolved for different types of transactions.

• Entity 1 has an earlier start time than Entity 2, and this makes sure that the transac-

tion of Entity 1 always gets required resources reserved before transactions of Entity

2.
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Figure 7.5: Conflict Resolver

• To ensure conflicts are indeed created for testing, besides the start time, start system

states of both Entity 1 and 2 are tuned purposely to create desired PP or PC conflict.

7.6.1 Group 1: ConstantSpeedTransaction

The scenario for Group 1 is shown in Figure 7.6a. Both entities execute a single ConstantS

peedTransaction, which is composed of a single ConstantSpeedAction.

The start system state of Entity 1 is (2.0, 0.0, ROAD 1, 3, 10), and that of Entity 2

is (4.0, 0.0, ROAD 1, 3, 0). So Entity 1 is ahead of Entity 2 by 10 meters in lane 3, but

Entity 2 has a higher speed. The startT ime of Entity 1 is set to 0, and the time for Entity

2 is 1000 (ticks). When the simulation starts, Entity 1 gets its reservation request for its

transaction granted first by the ResourceServer, and Entity 2’s transaction is in conflict with

Entity 1’s.

For Entity 1, based on our design, its transaction gets scheduled and executed success-

fully in all test cases. However, for Entity 2, different test cases may give different results

(Figure 7.6b).
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(a) Group 1 - Scenario (b) Group 1 - Result

Figure 7.6: Simulation Group 1

• In Case 0, when conflict resolving is disabled, ConflictReservationCount indicates that

there is one resource reservation (Entity 2’s) conflicting with the existing reservation

(Entity 1’s). If both entities execute their transactions, a real-time conflict will occur

and the execution of both transactions will fail.

• In Case 1, when a REJ message from ResourceServer is received, the conflicting trans-

action is directly aborted by Entity 2, which causes that no transaction is ever executed

by Entity 2.

• Case 2, 3, and 4 have the same simulation result because of the non-applicable PC

strategy (discussed in Section 7.4). In these cases, Win-Lose strategy is applied by

Entity 2. Thus, we see that the conflicting transaction is not adjusted, but one alter-

native transaction is created to replace it. The alternative transaction has no conflict

with Entity 1’s transaction (AlterSucceedTranCount=1), and gets scheduled and exe-

cuted successfully. The alterConstantSpeedTransaction method of ConflictResolver is

used to create the alternative transaction. In default, the alternative transaction for
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ConstantSpeedTransaction is ChangeToLeftLaneTransaction or ChangeToRightLane

Transaction.

• Case 5, 6, and 7 also have the same result. In these cases, Win-Win strategy is applied.

So the conflicting transaction of Entity 2 is adjusted first, and if the adjustment does

not resolve conflicts, an alternative transaction is created. The adjustConstantSpee

dTransaction method of ConflictResolver tries adjusting a conflicting transaction at

most two times. First, it inserts an IncreaseSpeedAction at the beginning of the action

sequence of the transaction. If it fails, a DecreaseSpeedAction is tried instead. Both

adjustments are sequence adjustment (Section 5.3.5). The simulation result shows

that the first adjustment doesn’t work (AdjustOnceFailCount=1), but the second does

(AdjustTwiceSucceedCount=1).

From the above analysis, we know that the application of Win-Lose and Win-Win strat-

egy resolves the potential transaction conflict and increases the number of transactions that

are executed. In Case 2-7, two transactions (from both Entity 1 and Entity 2) are executed

successfully, compared to 0 transaction being executed if no conflict resolving is applied

(Case 0). However, the number of messages transmitted in the network also increases be-

cause the more adjustments are performed, the more reservation requests are sent out. As

mentioned earlier, a successful reservation takes three messages. An unsuccessful reservation

also takes three messages: a REQ message from client to server, a REJ message from server

to client, and a CAN message from client to server.

7.6.2 Group 2: AccelerateTransaction

In this group, we show how a conflicting AccelerateTransaction is adjusted to resolve con-

flicts. An AccelerateTransaction is composed of a single IncreaseSpeedAction.

Figure 7.7 shows the simulation scenario and result of Group 2. Entity 1 is set up as a

reference just like Group 1, and Entity 2 has two transactions: AccelerateTransaction and

ConstantSpeedTransaction. The start system states of both Entity 1 and 2 (Figure 7.7a)
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(a) Group 2 - Scenario
(b) Group 2 - Result

Figure 7.7: Simulation Group 2

are specially tuned to make AccelerateTransaction in conflict with the ConstantSpeedTran

saction of Entity 1.

The simulation result is shown in Figure 7.7b.

• When conflict resolving is disabled, the ResourceServer finds one reservation (Case

0, ConflictReservationCount=1) in conflict with previous ones (AccelerateTransactio

n of Entity 2).

• When direct abortion of a conflicting transaction is applied (Case 1), the AccelerateT

ransaction is aborted, and only the ConstantSpeedTransaction transaction of Entity

2 gets executed finally.

• If Win-Lose strategy is used, the conflicting AccelerateTransaction is replaced with

an alternative ChangeToLeftLaneTransaction or ChangeToRightLaneTransaction. As

the result of Case 2, 3, and 4 shows, the alternative transaction resolves the conflict.

• If Win-Win strategy is used, the AccelerateTransaction is adjusted two times. How-
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ever, both adjustment fail to resolve the conflict (AdjustFailTranCount=2), and finally

the alternative transaction resolves the conflict and gets executed (AlterSucceedTran

Count=1).

The adjustment methods (adjustAccelerateTransaction) defined in ConflictResolver for

AccelerateTransaction performs action adjustment (Section 5.3.5) by changing either the

targetSpeed or endT ime of the IncreaseSpeedAction in the action sequence. In the first try,

targetSpeed is reduced by 1, or endT ime is decreased or increased by 1000 ticks, depending

on whether the adjustment will cause an invalid system state regarding the adjustment. In

the second try, targetSpeed is increased by 1. When two adjustment attempts fail to resolve

the conflict, an alternative transaction is created instead.

More adjustment tries cause more messages to be transmitted. In Case 4, 5, 6, six reser-

vations requests are sent to reserve resources for six transactions (the original 3 transactions

defined in the scenario file, plus two adjusted transaction, and one alternative transaction),

which creates a total of 18 messages.

7.6.3 Group 3: DecelerateTransaction

In this group, we show how to resolve the potential conflict of a DecelerateTransaction.

As the scenario in Figure 7.8a shows, Entity 2 is ahead of Entity 1 by 8 meters, and

it executes two transactions: DecelerateTransaction (consisting of a single DecreaseSpeed

Action) and ConstantSpeedTransaction. Although they have the same start speed, the D

ecelerateTransaction reduces the speed of Entity 2, and causes a conflict with Entity 1’s

transaction. Because the speed is reduced, ConstantSpeedTransaction is also in conflict

with Entity 1’s (Case 0, ConflictReservationCount=2). However, if DecelerateTransaction

is aborted (Case 1), the speed of Entity 2 stays the same as Entity 1’s, and the ConstantSpe

edTransaction of Entity 2 then will not conflict with Entity 1. If Win-Lose strategy is used

(Case 2, 3, and 4), DecelerateTransaction is replaced with an alternative ChangeToRightL

aneTransaction or ChangeToLeftLaneTransaction, which resolves the conflicts, and makes
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(a) Group 3 - Scenario
(b) Group 3 - Result

Figure 7.8: Simulation Group 3

the alternative transaction itself and the following ConstantSpeedTransaction conflict-free.

In Case 5, 6, and 7, the DecelerateTransaction is adjusted once and succeeds to avoid

conflict with Entity 1’s. What the original DecelerateTransaction does is to reduce the speed

of Entity 2 from 4.0 to 2.0. After the action adjustment, the targetSpeed is increased by 1,

i.e., the adjusted DecelerateTransaction now reduces the speed from 4.0 to 3.0. However,

the following ConstantSpeedTransaction is still in conflict with Entity 1’s, and a sequence

adjustment is performed to insert an IncreaseSpeedAction in the beginning of its action

sequence. This temporary action brings the speed back to 4.0, and makes the adjusted

transaction conflict-free. Thus, we see two adjusted transactions and both succeed to resolve

conflicts in Figure 7.8b (AdjustOnceSucceedCount=2). In these three cases, five transactions

(including the adjusted ones) go through the scheduling process, and result in a total of 15

messages in transmission.
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(a) Group 4 - Scenario
(b) Group 4 - Result

Figure 7.9: Simulation Group 4

7.6.4 Group 4: ChangeToLeftLaneTransaction

In this group, we show how a conflicting ChangeToLeftLaneTransaction is handled. A

ChangeToLeftLaneTransaction consists of three actions in sequence: ConstantSpeedActi

on, TurnLeftAction, and ConstantSpeedAction. The alternative transaction ConflictRes

olver defines for a ChangeToLeftLaneTransaction is a ConstantSpeedTransaction. When

it is being adjusted, an IncreaseSpeedAction is prepended to the action sequence in the

first adjustment attempt. In the second attempt, a DecreaseSpeedAction is used instead.

Figure 7.9 shows the simulation scenario and result.

In this given scenario, the third action of ChangeToLeftLaneTransaction is in conflict

with Entity 1’s ConstantSpeedTransaction after it changes to the 2nd lane. If conflict

resolving is disabled, we can see that the ResourceServer detects the conflict (ConflictRe

servationCount=1). If the conflicting ChangeToLeftLaneTransaction is aborted (Case 1),

Entity 2 executes the remaining ConstantSpeedTransaction, which has no conflict with

Entity 1’s (ExecutedTranCount=1). In Case 2, 3 and 4, Win-Lose strategy creates an
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(a) Group 5 - Scenario

(b) Group 5 - Result

Figure 7.10: Simulation Group 5

alternative ConstantSpeedTransaction to replace the conflicting ChangeToLeftLaneTransa

ction and the conflict is resolved successfully. When Win-Win strategy is used, however, it

succeeds to keep the ChangeToLeftLaneTransaction by prepending an IncreaseSpeedActio

n to its action sequence, which avoids the potential conflict: AdjustOnceTranCount=1 and

AdjustOnceSucceedCount=1. The number of messages grows linearly with the number of

transactions that send out reservation requests: 4 transactions and 12 messages.

7.6.5 Group 5: ChangeToRightLaneTransaction

In this group, we show how a conflicting ChangeToRightLaneTransaction is handled. Simi-

lar to ChangeToLeftLaneTransaction, ChangeToRightLaneTransaction also consists of three

actions in sequence: ConstantSpeedAction, TurnRightAction, and ConstantSpeedAction.

Besides, the same measures are taken for ConflictResolver to create an alternative transac-

tion and to adjust the transaction.

The simulation scenario and result is shown in Figure 7.10. Similar to Group 4, the third

action of the ChangeToRightLaneTransaction has a conflict with Entity 1’s ConstantSpeed
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Transaction, and both groups have the same simulation results except Case 5, 6, and 7.

In Case 5, 6, and 7, it takes two adjustment attempts for ConflictResolver to resolve the

potential conflict: AdjustOnceFailCount=1 and AdjustTwiceSucceedCount=1 . The first

attempt prepends an IncreaseSpeedAction (increasing speed by 1) to the action sequence,

but Entity 1’s still has a higher speed and will catch up with Entity 2 after it changes lane.

The second attempt prepends a DecreaseSpeedAction (decreasing speed by 1), which makes

Entity 1 move pass Entity 2 before Entity 2 changes lane, and the conflict is resolved. Since

one more attempt is tried to resolve conflicts, one more transaction is generated than Group

4 and this results in a total of 15 messages being transmitted.

7.6.6 Discussion

In the above five simulation groups, we show how potential conflicts of different types of

transactions are resolved using different conflict resolving strategies. Simulation results

show that, with conflict resolving enabled, the number of executed transactions is more

than that when conflict resolving is not applied. However, conflict resolving doesn’t come

without cost. For example, more time is required to carry the adjustment attempts, and

more messages are transmitted.

One thing to note is that algorithms we design in those methods of ConflictResolver

to create alternative transactions and to adjust conflicting transactions are not necessarily

the best solution. We design these algorithms by considering only general situations that

may cause conflicts in a type of transactions, and they can be improved in different ways.

For example, by analyzing the characteristics of the conflicting resource usages and locating

the conflicting action in the transaction, one can make scenario-specific adjustment (either

action or sequence) to the transaction and improve the probability of success of the first

adjustment attempt, which in turn can reduce the number of messages being transmitted and

save time for TransactionScheduler to schedule transactions. Moreover, machine learning

techniques [59] can be used to learn the patterns of different types of transaction conflicts
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and provide a better prediction on how to resolve conflicts.

7.7 Group 6: A Comprehensive Simulation

So far, we have gone through six simulation groups and shown the performance of the

simulation platform and the transaction model in different aspects. In this group, we perform

a comprehensive simulation that puts all aspects together. It includes 10 CPS entities,

and each entity executes 12 to 26 transactions (Figure 7.11). Together these 10 entities

forms a schedule with 188 transactions. By simulating the schedule, we can have a more

comprehensive view of the simulation platform and the transaction processing algorithms.

Moreover, we test the scalability of the simulation platform by increasing the number of CPS

entities and transactions separately and check the performance of the simulation platform.

Simulation results show that our simulation platform behaves as expected even with a

large load of CPS entities and transactions, and that our transaction processing algorithms

are able to improve the throughput and productivity of a schedule comparing with algo-

rithms when no conflict resolving is applied or direct abortion of a conflicting transaction is

used.

Figure 7.11: Group 6 - Scenario
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7.7.1 Simulation Scenario

The ten CPS entities execute different sequences of transactions that make them move on

the road in different patterns. Their configurations, including their start system states, are

listed in Figure 7.12. Their relative positions in the road is illustrated by Figure 7.11.

Figure 7.12: Group 6 - CPS Configuration

The scenario file of each CPS entity specifies a sequence of transactions to be generated,

scheduled, and executed. These transactions lead each CPS entity to a different moving

pattern on the road.

• CPS entity 1 starts at the 1st lane and keeps changing lanes from lane 1 to lane 5,

and then from lane 5 back to lane 1. Between two changing lane transactions, it

accelerates, decelerates, or moves at constant speed. 26 transactions are specified in

its scenario file. CPS entity 2 also executes 26 transactions. However, on the contrary,

it starts at lane 5 and changes lanes until lane 1, and then from lane 1 back to lane 5.

• CPS entity 3 starts at lane 2 and also keeps changing lanes. However, the lanes it

change to are restricted to lane 1, 2, and 3. CPS entity 4 starts at lane 4 and does

the opposite. It keeps changing lanes within lane 3, 4, and 5. Between changing lane

transactions, just like entity 1 and 2, Entity 3 and 4 randomly accelerate, decelerate,

or move at constant speed.
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• CPS entity 5 starts at lane 3 and its movement is similar to entity 1-4, but the lanes

are restricted to lane 2, 3, and 4.

• For CPS entities 6, 8, and 10, each executes 12 transactions, and their movements are

within a single lane without any changing lane transactions. They may accelerate,

decelerate, or move at constant speed.

• For CPS entities 7 and 9, they both executes 17 transactions, and their movements

are also restricted to a single lane.

Unlike Group 1-5, CPS entities in this group have the same start time 0. This means

there is no specific order to be followed when they schedule and execute their transactions.

Each CPS entity will compete with another for resource usages of their transactions, while

the ResourceServer processes the reservation requests in a FCFS (First Come, First Served)

order.

Although scenario files specify the sequence of transactions to be execute by a CPS

entity, as what we have seen in previous simulation groups, actual transactions scheduled

and executed by a CPS entity are subject to change if conflict resolving is applied, e.g., one

transaction is in conflict and is replaced by an alternative or an adjusted transaction.

7.7.2 Simulation Result

Figure 7.13 show a sample simulation result collected through the CPSNetwork, and an

average result of 10 simulation runs is shown in Figure 7.14.

In all test cases, we notice that the numbers of ScheduledTranCount, ExecutedTranC

ount, and CompleteTranCount are equal. This is because, in our current implementation,

we assume that the commit-phase always works as expected and a scheduled transaction

always gets executed successfully without exceptions. In the following discussion, we refer

to Figure 7.13 and Figure 7.14 at the same time.
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Figure 7.13: Group 6 - Simulation Result of CPS Network

Figure 7.14: Group 6 - Simulation Result of 10 Runs
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Case 0

When conflict resolving is not applied, among the 188 transactions, 25 transactions are

found to have conflicting resource usages with some transaction whose expected execution

time is before theirs (Case 0, ConflictReservationCount=25).

Since the ResourceServer only counts the number of conflicting reservations, the result

for ScheduledTranCount, ExecutedTranCount, and CompleteTranCount are not useful for

our analysis. Currently, we don’t have a way to measure how many transactions will be

scheduled and executed when no conflict resolving is used. In the real world, taking a running

car as an example, when transaction conflicts occur, it always indicates car collisions, and

the car is most likely not able to execute any more transactions. So we can expect that the

number of transactions failed to be executed is way more than the number of conflicting

reservations detected by the ResourceServer.

Another thing to note is, compared with other cases, ConflictReservationCount of Case

0 is stable and stays 25 in all our simulation runs. We will explain the reason later.

Case 1

In Case 1, when a conflicting transaction is directly aborted without alternative transactions,

18 transactions are aborted because of conflicting reservations, and 170 transactions are

executed. We can see that the number of aborted transactions is smaller than 25. This

is because, in any CPS entity, when one of its transaction is aborted, the next transaction

specified in the scenario file replaces the aborted one. This change affects the resource

usages of all following transactions since their start system states are changed, which further

changes the number of conflicting reservations detected in the ResourceServer.

However, in all our simulation runs, the number of ConflictReservationCount and aborted

transactions is not fixed and subject to randomness to some extent. It is caused by the ran-

domness of the scheduling process. Assume that two CPS entities (E1 and E2) have two

conflicting transactions (T1 and T2), and both transactions don’t have any conflict with

126



previous transactions that successfully make their reservations.The order that their reserva-

tion requests arrive at the ResourceServer affects the number of conflicting reservations for

transactions following them in the schedule. If T1’s request arrives first, T2 will be detected

by the server to have a conflict with T1, and will be aborted by E2 after receiving a REJ

message from the server. If T2’s request arrives first, then T1 will be aborted by E1. We

know that the abortion of a transaction will affect all following transactions of the same CPS

entity by changing their start system states. Thus, the two different orders actually create

two different schedules, which have different number of conflicting reservations. Similar

situations exist in other cases, as we will see later.

Case 2, 3, and 4

When Win-Lose strategy is applied to abort a conflicting transaction and replace it with an

alternative one in Case 2, 3, and 4, we see a rise in the number of scheduled and executed

transactions compared with Case 1. However, more conflict reservations are detected by

the ResourceServer, and more messages are sent and received. This is because, every time a

transaction is aborted, an alternative one is created and scheduled. Thus, the Transaction

Scheduler of a CPS entity tires to reserve resources for transactions more than the number

specified in the scenario file. With the increase of scheduling tries, more conflicts and

messages will be caused, and the simulation time taken for a simulation also rises. However,

despite of these rising costs, more transactions are successfully scheduled and executed than

Case 1.

Unlike what we have observed in Group 1-5, where these three cases always have the

same simulation result, the simulation results are different in Group 6. This is because,

in Group 1-5, we specify the start times of CPS entities in order to create the conflict

situations we need, and there is only two CPS entities and 2-3 transactions in each group.

But in Group 6, no specific order is specified between CPS entities. Due to the randomness

of the scheduling process, different cases and different simulation runs of a case produce

different schedules and results. However, the difference has nothing to do with PC conflict
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resolving strategy. As we mention in Section 7.4, no transaction preemption will be applied

by the ResourceServer will in all simulation groups.

Case 5, 6, and 7

When Win-Win strategy is applied to make adjustment to a conflicting transaction, we see

more number of transactions are scheduled and executed in Case 5-7 compared with Case

2-4. This is because Win-Win strategy (using transaction adjustment) has a better perfor-

mance in resolving transaction conflicts (discussed later). However, due to more scheduling

attempts for adjusted and alternative transactions, we see an increase in the number of

transmitted messages and conflict reservations compared with Case 2-4. Moreover, the

average time taken for a simulation increases compared with that of Case 2-4.

Similar to Case 2-4, due to the randomness of the scheduling process, randomness is also

observed in the simulation results of Case 5-7, either the results for Case 5, 6 and 7 are

different, or the results for different simulation runs of the same case are different.

7.7.3 Statistics

In Section 7.3, we propose several criteria to evaluate the performance of our transaction

processing and conflict resolving algorithms. These criteria focus on the throughput and

productivity of a schedule. For our simulation, they are calculated in following ways.

ToTT = GeneratedTranCount/(endT ime− startT ime)

ToPT = ScheduledTranCount/(endT ime− startT ime)

ToCT = ExecutedTranCount/(endT ime− startT ime)

PoS = ScheduledTranCount/GeneratedTranCount

PoE = ExecutedTranCount/ScheduledTranCount

PoTP = ExecutedTranCount/GeneratedTranCount

Besides above criteria, we also define the following criteria to evaluate the performance of

methods of ConflictResolver: Successful Once-Adjustment Rate (SOAR), Successful Twice-
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Adjustment Rate (STAR), Successful Adjustment Rate (SADR), Successful Alternative

Rate (SALR), Successful Resolving Rate (SRR), Adjustment or Alternative Rate (AoAR),

and Conflict Reservation Rate (CRR)

SOAR = AdjustOnceSucceedCount/AdjustOnceTranCount

STAR = AdjustTwiceSucceedCount/AdjustTwiceTranCount

SADR = AdjustSucceedTranCount/(AdjustOnceTranCount

+ AdjustTwiceTranCount)

SALR = AlterSucceedTranCount/AlternativeTranCount

SRR = (AdjustSucceedTranCount + AlterSucceedTranCount)/

(AdjustOnceTranCount + AdjustTwiceTranCount

+ AlternativeTranCount)

AoAR = (AdjustOnceTranCount + AdjustTwiceTranCount

+ AlternativeTranCount)/ConflictedOriginalTranCount

CRR = ConflictReservationCount/ConflictedOriginalTranCount

To obtain a more general and accurate estimation of above criteria, we run each test case

of Group 6 ten times and collect their average results, as shown in Figure 7.14. Compared

with previous simulation results, one more statistical information is collected: endTime.

endTime represents the number of ticks taken from the beginning of a simulation (0 tick)

to the end execution time of the last transaction in a schedule, and we consider it as the

execution time of a schedule. Besides, the last two columns shows the average values for

Case 2-4 and Case 5-7 respectively.

The corresponding values of above evaluation criteria are listed in Table 7.2.

As mentioned in previous section, the result for ScheduledTranCount, ExecutedTranCo

unt, and CompleteTranCount of Case 0 are not useful for our analysis because we’re only

check the number of conflicting reservations, so above criteria are not applicable to Case 0.
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Criteria Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 2-4 5-7
ToTT - 2.5425 2.5183 2.5425 2.5368 2.4457 2.4642 2.4444 2.5325 2.4514
ToTT1 - 2.5425 2.7688 2.7697 2.7931 2.8333 2.94 2.9138 2.7772 2.8958
ToPT - 2.3004 1 2.3482 2.3815 2.3613 2.3845 2.3725 2.3612 2.3637 2.3727
ToCT - 2.3004 2.3482 2.3815 2.3613 2.3845 2.3725 2.3612 2.3637 2.3727
PoS - 0.9047 0.9324 0.9324 0.9309 0.9750 0.9628 0.9660 0.9333 0.9679
PoE - 1 1 1 1 1 1 1 1 1

PoTP - 0.9048 0.9324 0.9324 0.9309 0.9750 0.9628 0.9660 0.9333 0.9679
SOAR - - - - - 0.4938 0.4157 0.4570 - 0.4555
STAR - - - - - 0.3415 0.2212 0.2673 - 0.2766
SADR - - - - - 0.4426 0.3440 0.3902 - 0.3923
SALR - - 0.2299 0.2023 0.2211 0.1296 0.1358 0.1351 0.2178 0.1335
SRR - - 0.2299 0.2023 0.2211 0.3859 0.2975 0.3380 0.2178 0.3405

AoAR - - 1.0809 1.0980 1.0857 1.8395 2.0393 1.9409 1.0882 1.9399
CRR - - 1.9538 2.0523 2 2.2222 2.8820 2.5430 2.002 2.5491

Table 7.2: Statistics of Simulation Group 6

Also for Case 1, we’re not creating alternative transactions or adjusted transactions. Fields

that are not applicable are skipped in Table 7.2.

Throughput

In Case 1-7, ToTT (Throughput of Triggered Transactions ) is 2.53 (transactions per thou-

sand ticks) for Case 2-4, and 2.45 for Case 5-7. Although the number of transactions specified

in the scenario files is 188 in all cases, the execution time of the whole schedule for Case

5-7 (76.69 thousand ticks) is a little longer than Case 2-4 (74.23 thousand ticks) because

more conflict resolving operations are involved in Case 5-7, and we expect ToTT for Case

5-7 is smaller than Case 2-4. However, if we consider adjusted and alternative transactions

as part to triggered transactions (ToTT1), ToTT of Case 5-7 is around 2.89, which is higher

than 2.77 for Case 2-4.

ToPT (Throughput of Pre-committed Transactions) and ToCT (Throughput of Com-

mitted Transactions) are the same for all cases. This is because we assume that the commit

phase is always carried out without exceptions, and ScheduledTranCount and ExecutedTra

nCount have the same value in every case. For ToPT, and ToCT, we see that the average
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value of Case 5-7 (2.37 transactions per thousand ticks) is slightly higher than Case 2-4

(2.36). Although the average execution time for Case 5-7 is longer than Case 2-4, they have

more transactions being scheduled and executed than Case 2-4, which neutralizes the effect

caused by longer execution time and makes ToPT and ToCT of Case 5-7 higher than that

of Case 2-4.

From above three throughput values, we conclude that Win-Win strategy (Case 5-7)

supports better concurrency than Win-Lose strategy (Case 2-4), and it allows more transac-

tions to be scheduled and executed per time unit. However, both strategies perform better

than Case 1 when a conflicting transaction is aborted without replacements, and Case 0

when conflict resolving is disabled (refer to Case 0 in Section 7.7.2 for explanation).

Productivity

For PoS (Productivity of Scheduling), since more transactions are schedule in Case 5-7 than

Case 2-4, we expect that PoS for Case 5-7 is higher than Case 2-4, which means higher

percentage of triggered transactions will be scheduled in Case 5-7. The result proves our

expectation: Case 5-7 has 96.79% of 188 triggered transactions being scheduled, while Case

2-4 has only 93.33%.

PoE (Productivity of Executing) indicates the ratio of executed transactions out of

scheduled transactions. Since the commit phase always goes without exceptions, the ratio

stays 1 in all cases.

PoTP (Productivity of Transaction Processing) gives ratio of executed transactions to

triggered transactions, which gives the same value as PoS because the commit phase is

exception-free.

Productivity show the performance of an algorithm in resolving potential conflicts. From

above three productivity values, we know that Win-Win strategy performs better than

Win-Lose strategy in resolving potential conflicts, which meets our expectation. Still, both

strategies out-perform than Case 0 and Case 1.
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Algorithm Efficiency

SOAR and STAR show the success rate of the first and second adjustment attempts in

resolving transaction conflicts respectively, while SADR (a combination of SOAR and STAR)

shows the successful rate of transaction adjustment. These three criteria are only applicable

to Case 5-7. From Table 7.2, we see that SOAR (0.45) is higher than STAR (0.27). There are

two possible explanations for this. First, the algorithms used for the first adjustment attempt

perform better than those for the second attempt. Second, the second adjustment attempt

is a substitution for the failing first attempt, which means the second attempt is confronted

with a more complicated situation than the first adjustment attempt. Together, in all

adjustment attempts, about 39.22% of conflicting transactions are successfully resolved.

SALR shows the success rate of alternative transactions in resolving conflicts, and we

see that Case 2-4 has a higher SALR than Case 5-7. From Figure 7.14, we know that

the average number of alternative transactions for Case 5-7 (6.96) is much smaller than

that of Case 2-4 (18.16). This is because no transaction adjustment is applied in Case 2-4

and alternative transaction is the main strategy to resolve conflicts. In Case 5-7, alternative

transaction strategy is applied only when two adjustment attempts fail, which leaves a more

complicated situation when an alternative transaction is created in Case 5-7 than Case 2-4,

and we expect the harder will it be for an alternative transaction to resolve conflicts in Case

5-7.

SRR (Successful Resolving Rate) considers both adjusted and alternative transactions

for the success rate of conflict resolution. In Case 2-4, only alternative transaction is used,

and SRR is 21.78%. While in Case 5-7, a 34.05% is achieved. Thus we know, a combination

of adjusted and alternative transactions performs better in resolving conflicts than just the

alternative transaction strategy.

AoAR (Adjustment or Alternative Rate) shows how many adjusted or alternative trans-

actions are created to resolve a conflicting transaction. In Case 5-7, for every conflicting

transaction, an average of 1.94 adjusted or alternative transactions are created to resolve
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conflicts. For Case 2-4, the number is 1.08, which is smaller than Case 5-7. This meets

our expectation since in Case 5-7, more attempts are carried out to resolve conflicts, which

result in more adjusted or alternative transactions being created.

CRR (Conflict Reservation Rate) shows the ratio of the number conflicting reservations

detected by the ResourceServer to the number of original (non-adjusted and non-alternative)

conflicting transactions. One thing to note is that the conflicting reservations are not only

from the the original transactions, but also from adjusted or alternative transactions. In

Case 5-7, to resolve a conflict, an average of 2.54 conflicting reservations per original con-

flicting transaction will be caused when attempting to resolve conflicts using adjusted or

alternative transactions. In Case 2-4, the number is smaller, 2.00. The same reason as

AoAR applies here, i.e., more conflict resolving attempts are made in Case 5-7 than Case

2-4.

A good adjusted or alternative transaction generating method should give higher values

for SOAR, STAR, SALR, and SRR, and smaller values for AoAR and CRR. Since in our

current implementation, we only implement one ConflictResolver component, we don’t have

a reference to evaluate its method performance. However, as mentioned in Section 7.6.6, we

only consider general situations for transaction conflicts when implementing methods of Co

nflictResolver, and we expect that algorithms taking advantage of conflict usages analyzing

and machine learning have better performance than ours.

7.7.4 Scalability

To test the scalability of CPSNET, we design four scalability tests based on Group 6. In

all these tests, we focus only on Test Case 7, and Test Case 7 of Group 6 (Figure 7.14 and

Figure 7.2) is used as the base case, name Scale 0.

• In Scale 0, we simulate 10 CPS entities with 188 transactions, as shown in Figure 7.11.

• In Scale 1, we simulate 10 CPS entities with 390 transactions. These 10 ten entities

have the same start system states as those in Scale 0, and they repeat the operations
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of entities in Scale 0 two times.

• In Scale 2, we simulate 10 CPS entities with 780 transactions. These 10 entities also

have the same start system states as those in Scale 0, and they repeat twice the

operations of entities in Scale 1.

• In Scale 3, we simulate 20 entities with 376 transactions. The first 10 entities are the

same as those in Scale 0, and the other 10 entities are created by placing each of the

first 10 entities 20 meters ahead. Thus, CPS Entity 11 is 20 meters ahead of CPS

Entity 1 in the same lane, CPS Entity 12 is 20 meters ahead of CPS Entity 2 in the

same lane, and so on. Transactions of CPS Entities in each pair are the same except

the start system states.

• In Scale 4, we simulate 40 entities with 752 transactions. Similar strategies are used

to create CPS entities based on Scale 3.

Each test is run ten times and the average simulation result is collected. Based on the

results, the values for evaluation criteria is calculated. The simulation results and values of

evaluation criteria are shown in Table 7.3 and Table 7.4 respectively.

Scale in Number of Transactions

Scale 0, Scale 1 and Scale 2 have the same number of CPS entities, but the number of

transactions is doubled in each test. Since CPS entities in Scale 1 repeat operations of

CPS entities in Scale 0 twice and Scale 2 repeats those in Scale 1 twice, we expect that the

increase in the schedule execution time to be also linear, and the simulation result meets our

expectation (EndTime: 76.91, 154.70, and 313.44 thousand ticks). Although the number of

transactions is double, each test only has ten CPS entities and only ten transactions can be

executed concurrently at the same time (one for each CPS entity). The simulation result

meets our expectation that the number of conflicts will at most be doubled in each test

(ConflictedOriginalTranCount and ConflictReservationCount).
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Counters Scale 0 Scale 1 Scale 2 Scale 3 Scale 4
GeneratedTranCount 188 390 780 376 752

ConflictedOriginalTranCount 18.6 24.7 28.4 43.7 115.6
NotAdjustedTranCount 0 0 0 0 0
AdjustOnceTranCount 18.6 24.7 28.3 43.6 115.5
AdjustTwiceTranCount 10.1 14.7 16.9 25.6 71.2
AlternativeTranCount 7.4 9.7 11.7 18.7 50.7

AdjustSucceedTranCount 11.2 15 16.6 24.9 64.8
AdjustFailTranCount 17.5 24.4 28.6 44.3 121.9

AdjustOnceSucceedCount 8.5 10 11.4 18 44.3
AdjustOnceFailCount 10.1 14.7 16.9 25.7 71.2

AdjustTwiceSucceedCount 2.7 5 5.2 6.9 20.5
AdjustTwiceFailCount 7.4 9.7 11.7 18.7 50.7

AlterSucceedTranCount 1 1.2 2.5 3.8 9.2
AlterFailTranCount 6.4 8.5 9.2 14.9 41.5
ScheduledTranCount 181.6 381.5 770.8 361.1 710.5
ExecutedTranCount 181.6 381.5 770.8 361.1 710.5
CompleteTranCount 181.6 381.5 770.8 361.1 710.5

IncompleteTranCount 0 0 0 0 0
PreemptedTranCount 0 0 0 0 0

ConflictReservationCount 47.3 63.8 72 121.1 345.9
NumberOfMessages 672.3 1317.3 2510.7 1391.7 2968.2

EndTime (ticks) 76910 154704.5 313444.1 78144.6 78203.7

Table 7.3: Simulation Result of Scaling Experiments
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Criteria Scale 0 Scale 1 Scale 2 Scale 3 Scale 4
ToTT 2.4444 2.5209 2.4884 4.8116 9.6159
ToTT1 2.9138 2.8383 2.6700 5.9364 12.6516
ToPT 2.3612 2.4660 2.4591 4.6209 9.0852
ToCT 2.3612 2.4660 2.4591 4.6209 9.0852
PoS 0.9660 0.9782 0.9882 0.9604 0.9448
PoE 1 1 1 1 1

PoTP 0.9660 0.9782 0.9882 0.9604 0.9448
SOAR 0.4570 0.4049 0.4028 0.4128 0.3835
STAR 0.2673 0.3401 0.3077 0.2695 0.2879
SADR 0.3902 0.3807 0.3673 0.3598 0.3471
SALR 0.1351 0.1237 0.2137 0.2032 0.1815
SRR 0.3380 0.3299 0.3357 0.3265 0.3117

AoAR 1.9409 1.9879 2.0035 2.0114 2.0536
CRR 2.5430 2.5830 2.5352 2.7711 2.9922

Table 7.4: Statistics of Scaling Experiments

136



In Table 7.4, we see a stable performance of the transaction processing algorithm in

most criteria. For schedule throughput (ToTT, ToPT, and ToCT), although the number

of triggered, scheduled and executed transactions doubles in each test, the execution time

of the schedule also doubles and it counteracts the influence from the increasing number

of transactions. For schedule productivity (PoS, PoE and PoTP) and algorithm efficiency

criteria (SOAR, STAR, SADR, SALR, etc.), all three cases have similar values, which in-

dicates that the performance of the scheduling algorithm and conflict resolving algorithms

are stable and not affected by the increasing number of transactions.

In all three tests with 30 simulation runs, the CPSNET platform finishes all simulations

without errors, which proves that the platform is able to simulate a large load of transactions

and operates normally in a long simulation.

Scale in Number of Entities

In Scale 0, Scale 3 and Scale 4, both the number of CPS entities and transactions are

doubled in each test. The increasing density of cars causes more transaction conflicts, as

shown by ConflictedOriginalTranCount and ConflictReservationCount in Table 7.3. As a

result, more adjusted and alternative transactions are created to resolve conflicts. Since

the number of transactions executed by each CPS entity is not doubled, we doesn’t see an

obvious increase in the schedule execution time (EndTime: 76.91, 78.14, 78.20 thousand

ticks).

In all three tests, the number of CPS simulated entities is doubled in each test, which

results in a high level of transaction concurrency, i.e., more transactions are triggered,

scheduled and executed concurrently. This is revealed by increasing values for the schedule

throughput (ToTT, ToPT, ToCT). For example, the ToTT for Scale 0 is 2.44 transactions

per thousand ticks , the ToTT for Scale 3 is 4.81 transactions per thousand ticks, and the

ToTT for Scale 4 for 9.62 transactions per thousand ticks. If we consider adjusted and

alternative transactions (ToTT1), higher values are observed. Because of the increasing

number of transaction conflicts and CPS entity density, the schedule productivity decrease
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slightly, e.g., 96.60% of PoS for Scale 0, 96.04% of PoS for Scale 3, and 94.48% of PoS for

Scale 4. However, a large drop of the schedule productivity is not seen.

As for algorithm efficiency criteria (SOAR, STAR, SADR, SALR, etc.), we observe rel-

atively stable values in Table 7.4, similar to the case when only the number of transactions

is increased. Especially, for each original conflicting transaction, stability is observed in the

number of adjusted or alternative transactions (AoAR) that are created to resolve conflicts

and the number of conflicting reservations (CRR) that are caused. AoAR and CRR rises

slightly in Scale 3 and Scale 4 compared with Scale 0, even though the number of conflict-

ing transactions (ConflictedOriginalTranCount) and reservations (ConflictReservationCou

nt) are increased greatly.

The increasing scheduling throughput shows that the simulation platform and the schedul-

ing algorithm scale well in high transaction concurrency environment, and the stable algo-

rithm efficiency values prove that the scheduling and conflict resolving algorithms perform

well in an environment of a large load of CPS entities and transactions.

In a total of 20 simulation runs for Scale 3 and Scale 4, the CPSNET platform finishes

all simulations without any errors, and it shows that the platform is able to simulate a

large load of CPS entities and transactions. Moreover, it performs well as concurrency is

increased.

7.8 Summary

In this chapter, we presented how the simulation experiments were carried out using CP-

SNET. We described different simulation groups, analyzed the simulation results, and veri-

fied different aspects of the simulation platform and the transaction model.

Group 0 shows that our simulation platform carries out a simulation correctly: the

ResourceServer handles reservation requests as expected, the Network delivers messages

correctly, and the transaction processing (Figure 6.7) flow is followed by each component of

a CyberPhysicalSystem.
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Groups 1-5 shows how different conflict resolving strategies are applied for different

types of transactions. Verification results show that both Win-Lose (Case 2-4) and Win-

Win (Case 5-7) strategies are able to resolve a transaction conflict. Compared with no

conflict resolving (Case 0) and direct abortion strategy (Case 1), Win-Lose and Win-Win

strategies allow more transactions to be scheduled and executed.

Group 6 carries out a comprehensive test on both the simulation platform and the trans-

action processing algorithms. By running each test case ten times, we presented the average

simulation results of Group 6. We evaluate the performance of transaction processing and

conflict resolving algorithms using the criteria we have developed. The simulation result

proves that our conflicting resolving strategies (Win-Lose and Win-Win) not only allow

more transactions to be scheduled and executed successfully, but also maintain a better

transaction concurrency level than cases when no conflict resolving is used or direct abor-

tion is applied. As for Win-Lose and Win-Win strategy, Win-Win strategy has a better

performance in supporting concurrency and resolving conflicts. In the end, we test the scal-

ability of our simulation platform by increasing the number of CPS entities and transactions

to be simulated. Simulation results prove that our platform scales well with the number

of CPS entities and transactions, and the scheduling and conflict resolving algorithms give

stable performance in an environment of a large load of CPS entities and transactions.

In conclusion, we show that our simulation platform works as expected in carrying out

simulations of a CPS Network, which is a distributed system that includes different entities

and components communicating through messages, and that the simulation platform scales

well and supports simulating a large number of CPS entities and transactions. We also prove

that the two-phase commit transaction processing flow is followed by different components

of a CPS entity, and by different entities in a CPS Network. As for conflict resolving,

our solution (Win-Lose and Win-Win strategies) out-performs solutions where no conflict

resolving is applied or direct abortion of a conflicting transaction is used. Our solution

not only allows more transactions to be executed, but also maintains a higher transaction
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concurrency level.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Accompanying the promising future of Cyber-Physical Systems in transforming our world

with more intelligent and efficient systems, today’s technologies are confronted with great

challenges to integrate the computational and physical world into a single system. Great

endeavors have been made by researchers in different areas to examine current technologies,

identify potential challenges, and propose possible solutions for building CPSs that meet

different requirements.

In this dissertation, we focus on a particular type of CPSs, Environmental Resource De-

pendent Cyber-Physical System (ERDCPS). An ERDCPS relies on environmental resources

to perform its physical operations, and its operating environment includes other peer ERD-

CPSs. These ERDCPSs together constitute a CPS Network, within which each ERDCPS

competes with another for using environmental resources for their physical operations. The

usage of an environmental resource by a physical operation is precise in both time and

space. It specifies not only which resource is used, but also which time period the resource

is used. Since all ERDCPSs in a CPS Network share the same environmental resources, if

operations from more than one ERDCPS access a particular resource at the same time, a

conflict occurs.

We propose a transaction model for an ERDCPS. In this model, physical operations of
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an ERDCPS are defined in two abstraction levels: action and transaction. A transaction

achieves a goal and is composed of a sequence of actions. An action or a transaction

requires exclusive access to environmental resources for its operations. Two transactions

from different ERDCPSs have a conflict when they use the same resources at the same time.

We design a two-phase commit algorithm to process transactions in an ERDCPS. In the

pre-commit phase, a transaction is scheduled and potential transaction conflicts are detected

and resolved. In the commit phase, a pre-committed transaction is executed. We propose

several conflict resolving and exception handling strategies to avoid transaction conflicts

in both the pre-commit and commit phases. Two general algorithms that work in the

centralized and distributed resource management environments respectively are presented.

To simulate the transaction model, we develop a highly configurable and modularized

simulation platform: CPSNET. CPSNET supports configuration of the simulation environ-

ment, CPS entities and the two-phase commit algorithm. Various statistical information and

operation logs are provided to monitor and evaluate the platform itself and the transaction

model. CPSNET performs a time-based simulation and it simulates a CPS Network con-

sisting of CPS entities, an optional Resource Server, and a Communication Network. Each

of these entities operates independently and communicates with others using messages. In

each CPS entity, the two-phase commit algorithm is used to process transactions.

Several groups of simulations are run using the CPSNET platform to verify the platform

itself and the transaction model. Simulation results show that the simulation platform

always carries out a simulation successfully, and each entity does its job as expected. For

a CPS entity, all components fulfill their functions correctly with respect to the two-phase

commit transaction processing algorithm. Simulation results also show that the proposed

conflict resolving strategies improve schedule throughput and productivity compared with

cases where no conflict resolving strategy is used or a conflicting transaction is directly

aborted. Moreover, the platform is proved to scale well and support simulating a large load

of CPS entities and transactions.
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This dissertation contributes to the research of CPSs in several main aspects. First,

it explicitly defines ERDCPS, a particular application area of CPSs, and its operating

environment, CPS Network. Second, it proposes a new transaction model for CPS with

both definitions and algorithms. Third, a simulation platform, CPSNET, is developed to

simulate the transaction model.

8.2 Future Work

The research work presented in this dissertation has raised possibilities of future work in

many areas.

First, we plan to add more application examples, e.g., traffic management systems [53–

55], to demonstrate the model, and show how the transaction model can be applied to

different application areas of CPSs.

Second, the two-phase transaction processing algorithm can be enhanced in several as-

pects.

1. More complex conflict resolving and exception handling strategies can be designed

to improve the schedule throughput and productivity. We know from simulations

presented in Chapter 7 that reservation requests are served in FCFS (First come, first

served) manner, and randomness of the scheduling process causes different simulation

results in different runs of the same test case. Assuming that a transaction T1 from

CPS entity E1 has conflicts with a transaction T2 from CPS entity E2. Aborting

(or adjusting) T1 results in a different schedule from aborting (or adjusting) T2. We

can improve our algorithm by aborting or adjusting the transaction that creates a

schedule with higher throughput and productivity. To achieve this, batch processing

of reservation requests is needed. In a fixed time range, n pending reservations are

checked, and conflicting transactions that cause less chaining conflicts are selected to

be adjusted.

2. Transaction adjustment methods defined in the Conflict Resolver component consider
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only general conflict scenarios, which causes a relative low rate of successful adjust-

ments (Table 7.2). An improvement will be taking conflicting resource usages and

transaction types into account, and utilizing techniques such as machine learning [59]

to select an adjustment that has a higher probability to resolve potential conflicts.

3. In centralized resource management environment, the Resource Server can extend

its functionality from detecting potential conflicts to others such as ensuring resource

usage fairness among CPS entities, achieving a higher resource usage rate, and increas-

ing schedule throughput, which are implemented by resource scheduling algorithms in

traditional real-time systems [48].

Third, in simulations we have performed, the commit phase is neglected. In the future

development, the simulation of the commit phase will be added, and an exception generator

will be developed to create random exceptions in order to test the performance of the

exception handling algorithms. Moreover, emergency handling transactions will also be

generated to test the transaction preemption strategy.

Fourth, the simulations we have performed are in centralized mode. Simulation in dis-

tributed mode will be performed in the future to test the two-phase commit algorithm in

distributed resource management environment.

Last, several extensions can be added to the the CPSNET simulation platform.

1. For each type of component, add more instances that use different algorithms to fulfill

the required function. For example, we can enhance the scheduling algorithm of the

pre-commit phase by developing new instances of the Transaction Scheduler compo-

nent. Moreover, dependency injection techniques [60, 61] and service-oriented archi-

tecture [29, 30] can be introduced to enable dynamic selection of proper component

instance for a simulation.

2. Extend statistical methods to allow verification of customized properties. For exam-

ple, if we need to verify that a schedule of transaction does not have any conflicting
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transactions, we can develop assertion methods that check the conflicting transaction

count, and tell whether the specified property is maintained.

3. Develop a front-end GUI [62] for configuring the simulation platform and CPS entities,

and for showing statistical information collected in the simulation result.

4. Open source the simulation platform, and make it available to other researchers.
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Appendix A

Sample Simulation Result of
CyberPhysicalSystem

#### Simulation Report of CPS ENTITY 1
Group: GROUP 6, Case: CASE 8
Date of Simulation: Sun Jun 01 02:19:00 CDT 2014
#### GENREAL INFORMATION
CPS Entity ID: CPS ENTITY 1
Start State: {Speed: 2.0, Acceleration: 0.0, Location: <ROAD 1,1,0>}
End State: {Speed: 4.0, Acceleration: 0.0, Location: <ROAD 1,1,376>}
Execution Time: [0, 75152)
#### TRANSACTIONS
# Number of transactions in finishQueue is: 26
## Transactions in finishQueue: 26
Transaction: ConstantSpeedTransaction: [0, 2000), {ConstantSpeedAction: [0, 2000)}
Resource Usage:
<ROAD 1,1,0>: [0, 500)
<ROAD 1,1,1>: [500, 1000)
<ROAD 1,1,2>: [1000, 1500)
<ROAD 1,1,3>: [1500, 2000)
Transaction: AccelerateTransaction: [2000, 5000), {IncreaseSpeedAction: [2000, 5000), {targetSpeed: 4.0}}
Resource Usage:
<ROAD 1,1,4>: [2000, 2465)
<ROAD 1,1,5>: [2465, 2874)
<ROAD 1,1,6>: [2874, 3244)
<ROAD 1,1,7>: [3244, 3584)
<ROAD 1,1,8>: [3584, 3901)
<ROAD 1,1,9>: [3901, 4199)
<ROAD 1,1,10>: [4199, 4481)
<ROAD 1,1,11>: [4481, 4749)
<ROAD 1,1,12>: [4749, 5000)
Transaction: ChangeToRightLaneTransaction: [5000, 9001), {ConstantSpeedAction: [5000, 6000), TurnRightAction:

[6000, 8001), {angle: 30}, ConstantSpeedAction: [8001, 9001)}
Resource Usage:
<ROAD 1,1,13>: [5000, 5250)
<ROAD 1,1,14>: [5250, 5500)
<ROAD 1,1,15>: [5500, 5750)
<ROAD 1,1,16>: [5750, 6000)
<ROAD 1,1,17>: [6000, 6289)
<ROAD 1,1,18>: [6289, 6578)
<ROAD 1,1,19>: [6578, 6667)
<ROAD 1,1,20>: [6667, 6956)
<ROAD 1,2,20>: [6667, 6956)
<ROAD 1,1,21>: [6956, 7245)
<ROAD 1,2,21>: [6956, 7245)
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<ROAD 1,1,22>: [7245, 7334)
<ROAD 1,2,22>: [7245, 7334)
<ROAD 1,2,23>: [7334, 7623)
<ROAD 1,2,24>: [7623, 7912)
<ROAD 1,2,25>: [7912, 8001)
<ROAD 1,2,26>: [8001, 8251)
<ROAD 1,2,27>: [8251, 8501)
<ROAD 1,2,28>: [8501, 8751)
<ROAD 1,2,29>: [8751, 9001)
Transaction: AccelerateTransaction: [9001, 12001), {IncreaseSpeedAction: [9001, 12001), {targetSpeed: 6.0}}
Resource Usage:
<ROAD 1,2,30>: [9001, 9246)
<ROAD 1,2,31>: [9246, 9482)
<ROAD 1,2,32>: [9482, 9710)
<ROAD 1,2,33>: [9710, 9930)
<ROAD 1,2,34>: [9930, 10144)
<ROAD 1,2,35>: [10144, 10352)
<ROAD 1,2,36>: [10352, 10554)
<ROAD 1,2,37>: [10554, 10751)
<ROAD 1,2,38>: [10751, 10943)
<ROAD 1,2,39>: [10943, 11130)
<ROAD 1,2,40>: [11130, 11313)
<ROAD 1,2,41>: [11313, 11492)
<ROAD 1,2,42>: [11492, 11667)
<ROAD 1,2,43>: [11667, 11839)
<ROAD 1,2,44>: [11839, 12001)
Transaction: ConstantSpeedTransaction: [12001, 14001), {ConstantSpeedAction: [12001, 14001)}
Resource Usage:
<ROAD 1,2,45>: [12001, 12168)
<ROAD 1,2,46>: [12168, 12335)
<ROAD 1,2,47>: [12335, 12502)
<ROAD 1,2,48>: [12502, 12669)
<ROAD 1,2,49>: [12669, 12836)
<ROAD 1,2,50>: [12836, 13003)
<ROAD 1,2,51>: [13003, 13170)
<ROAD 1,2,52>: [13170, 13337)
<ROAD 1,2,53>: [13337, 13504)
<ROAD 1,2,54>: [13504, 13671)
<ROAD 1,2,55>: [13671, 13838)
<ROAD 1,2,56>: [13838, 14001)
Transaction: ChangeToRightLaneTransaction: [14001, 18144), {IncreaseSpeedAction: [14001, 15001), {targetSpeed: 7.0},

ConstantSpeedAction: [15001, 16001), TurnRightAction: [16001, 17144), {angle: 30}, ConstantSpeedAction: [17144, 18144)}
Resource Usage:
<ROAD 1,2,57>: [14001, 14166)
<ROAD 1,2,58>: [14166, 14327)
<ROAD 1,2,59>: [14327, 14484)
<ROAD 1,2,60>: [14484, 14637)
<ROAD 1,2,61>: [14637, 14787)
<ROAD 1,2,62>: [14787, 14933)
<ROAD 1,2,63>: [14933, 15001)
<ROAD 1,2,64>: [15001, 15144)
<ROAD 1,2,65>: [15144, 15287)
<ROAD 1,2,66>: [15287, 15430)
<ROAD 1,2,67>: [15430, 15573)
<ROAD 1,2,68>: [15573, 15716)
<ROAD 1,2,69>: [15716, 15859)
<ROAD 1,2,70>: [15859, 16001)
<ROAD 1,2,71>: [16001, 16166)
<ROAD 1,2,72>: [16166, 16331)
<ROAD 1,2,73>: [16331, 16382)
<ROAD 1,2,74>: [16382, 16547)
<ROAD 1,3,74>: [16382, 16547)
<ROAD 1,2,75>: [16547, 16712)
<ROAD 1,3,75>: [16547, 16712)
<ROAD 1,2,76>: [16712, 16763)
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<ROAD 1,3,76>: [16712, 16763)
<ROAD 1,3,77>: [16763, 16928)
<ROAD 1,3,78>: [16928, 17093)
<ROAD 1,3,79>: [17093, 17144)
<ROAD 1,3,80>: [17144, 17287)
<ROAD 1,3,81>: [17287, 17430)
<ROAD 1,3,82>: [17430, 17573)
<ROAD 1,3,83>: [17573, 17716)
<ROAD 1,3,84>: [17716, 17859)
<ROAD 1,3,85>: [17859, 18002)
<ROAD 1,3,86>: [18002, 18144)
Transaction: DecelerateTransaction: [18144, 21144), {DecreaseSpeedAction: [18144, 21144), {targetSpeed: 4.0}}
Resource Usage:
<ROAD 1,3,87>: [18144, 18289)
<ROAD 1,3,88>: [18289, 18437)
<ROAD 1,3,89>: [18437, 18588)
<ROAD 1,3,90>: [18588, 18743)
<ROAD 1,3,91>: [18743, 18902)
<ROAD 1,3,92>: [18902, 19065)
<ROAD 1,3,93>: [19065, 19232)
<ROAD 1,3,94>: [19232, 19404)
<ROAD 1,3,95>: [19404, 19581)
<ROAD 1,3,96>: [19581, 19764)
<ROAD 1,3,97>: [19764, 19954)
<ROAD 1,3,98>: [19954, 20151)
<ROAD 1,3,99>: [20151, 20356)
<ROAD 1,3,100>: [20356, 20570)
<ROAD 1,3,101>: [20570, 20794)
<ROAD 1,3,102>: [20794, 21030)
<ROAD 1,3,103>: [21030, 21144)
Transaction: ConstantSpeedTransaction: [21144, 23144), {ConstantSpeedAction: [21144, 23144)}
Resource Usage:
<ROAD 1,3,104>: [21144, 21394)
<ROAD 1,3,105>: [21394, 21644)
<ROAD 1,3,106>: [21644, 21894)
<ROAD 1,3,107>: [21894, 22144)
<ROAD 1,3,108>: [22144, 22394)
<ROAD 1,3,109>: [22394, 22644)
<ROAD 1,3,110>: [22644, 22894)
<ROAD 1,3,111>: [22894, 23144)
Transaction: ChangeToRightLaneTransaction: [23144, 27145), {ConstantSpeedAction: [23144, 24144), TurnRightAction:

[24144, 26145), {angle: 30}, ConstantSpeedAction: [26145, 27145)}
Resource Usage:
<ROAD 1,3,112>: [23144, 23394)
<ROAD 1,3,113>: [23394, 23644)
<ROAD 1,3,114>: [23644, 23894)
<ROAD 1,3,115>: [23894, 24144)
<ROAD 1,3,116>: [24144, 24433)
<ROAD 1,3,117>: [24433, 24722)
<ROAD 1,3,118>: [24722, 24811)
<ROAD 1,3,119>: [24811, 25100)
<ROAD 1,4,119>: [24811, 25100)
<ROAD 1,3,120>: [25100, 25389)
<ROAD 1,4,120>: [25100, 25389)
<ROAD 1,3,121>: [25389, 25478)
<ROAD 1,4,121>: [25389, 25478)
<ROAD 1,4,122>: [25478, 25767)
<ROAD 1,4,123>: [25767, 26056)
<ROAD 1,4,124>: [26056, 26145)
<ROAD 1,4,125>: [26145, 26395)
<ROAD 1,4,126>: [26395, 26645)
<ROAD 1,4,127>: [26645, 26895)
<ROAD 1,4,128>: [26895, 27145)
Transaction: AccelerateTransaction: [27145, 30145), {IncreaseSpeedAction: [27145, 30145), {targetSpeed: 6.0}}
Resource Usage:
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<ROAD 1,4,129>: [27145, 27390)
<ROAD 1,4,130>: [27390, 27626)
<ROAD 1,4,131>: [27626, 27854)
<ROAD 1,4,132>: [27854, 28074)
<ROAD 1,4,133>: [28074, 28288)
<ROAD 1,4,134>: [28288, 28496)
<ROAD 1,4,135>: [28496, 28698)
<ROAD 1,4,136>: [28698, 28895)
<ROAD 1,4,137>: [28895, 29087)
<ROAD 1,4,138>: [29087, 29274)
<ROAD 1,4,139>: [29274, 29457)
<ROAD 1,4,140>: [29457, 29636)
<ROAD 1,4,141>: [29636, 29811)
<ROAD 1,4,142>: [29811, 29983)
<ROAD 1,4,143>: [29983, 30145)
Transaction: ConstantSpeedTransaction: [30145, 32145), {ConstantSpeedAction: [30145, 32145)}
Resource Usage:
<ROAD 1,4,144>: [30145, 30312)
<ROAD 1,4,145>: [30312, 30479)
<ROAD 1,4,146>: [30479, 30646)
<ROAD 1,4,147>: [30646, 30813)
<ROAD 1,4,148>: [30813, 30980)
<ROAD 1,4,149>: [30980, 31147)
<ROAD 1,4,150>: [31147, 31314)
<ROAD 1,4,151>: [31314, 31481)
<ROAD 1,4,152>: [31481, 31648)
<ROAD 1,4,153>: [31648, 31815)
<ROAD 1,4,154>: [31815, 31982)
<ROAD 1,4,155>: [31982, 32145)
Transaction: ChangeToRightLaneTransaction: [32145, 35480), {ConstantSpeedAction: [32145, 33145), TurnRightAction:

[33145, 34480), {angle: 30}, ConstantSpeedAction: [34480, 35480)}
Resource Usage:
<ROAD 1,4,156>: [32145, 32312)
<ROAD 1,4,157>: [32312, 32479)
<ROAD 1,4,158>: [32479, 32646)
<ROAD 1,4,159>: [32646, 32813)
<ROAD 1,4,160>: [32813, 32980)
<ROAD 1,4,161>: [32980, 33145)
<ROAD 1,4,162>: [33145, 33338)
<ROAD 1,4,163>: [33338, 33531)
<ROAD 1,4,164>: [33531, 33590)
<ROAD 1,4,165>: [33590, 33783)
<ROAD 1,5,165>: [33590, 33783)
<ROAD 1,4,166>: [33783, 33976)
<ROAD 1,5,166>: [33783, 33976)
<ROAD 1,4,167>: [33976, 34035)
<ROAD 1,5,167>: [33976, 34035)
<ROAD 1,5,168>: [34035, 34228)
<ROAD 1,5,169>: [34228, 34421)
<ROAD 1,5,170>: [34421, 34480)
<ROAD 1,5,171>: [34480, 34647)
<ROAD 1,5,172>: [34647, 34814)
<ROAD 1,5,173>: [34814, 34981)
<ROAD 1,5,174>: [34981, 35148)
<ROAD 1,5,175>: [35148, 35315)
<ROAD 1,5,176>: [35315, 35480)
Transaction: DecelerateTransaction: [35480, 38480), {DecreaseSpeedAction: [35480, 38480), {targetSpeed: 4.0}}
Resource Usage:
<ROAD 1,5,177>: [35480, 35649)
<ROAD 1,5,178>: [35649, 35821)
<ROAD 1,5,179>: [35821, 35996)
<ROAD 1,5,180>: [35996, 36175)
<ROAD 1,5,181>: [36175, 36358)
<ROAD 1,5,182>: [36358, 36545)
<ROAD 1,5,183>: [36545, 36737)
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<ROAD 1,5,184>: [36737, 36934)
<ROAD 1,5,185>: [36934, 37136)
<ROAD 1,5,186>: [37136, 37344)
<ROAD 1,5,187>: [37344, 37558)
<ROAD 1,5,188>: [37558, 37778)
<ROAD 1,5,189>: [37778, 38006)
<ROAD 1,5,190>: [38006, 38242)
<ROAD 1,5,191>: [38242, 38480)
Transaction: ConstantSpeedTransaction: [38480, 40480), {ConstantSpeedAction: [38480, 40480)}
Resource Usage:
<ROAD 1,5,192>: [38480, 38730)
<ROAD 1,5,193>: [38730, 38980)
<ROAD 1,5,194>: [38980, 39230)
<ROAD 1,5,195>: [39230, 39480)
<ROAD 1,5,196>: [39480, 39730)
<ROAD 1,5,197>: [39730, 39980)
<ROAD 1,5,198>: [39980, 40230)
<ROAD 1,5,199>: [40230, 40480)
Transaction: ChangeToLeftLaneTransaction: [40480, 44481), {ConstantSpeedAction: [40480, 41480), TurnLeftAction:

[41480, 43481), {angle: 30}, ConstantSpeedAction: [43481, 44481)}
Resource Usage:
<ROAD 1,5,200>: [40480, 40730)
<ROAD 1,5,201>: [40730, 40980)
<ROAD 1,5,202>: [40980, 41230)
<ROAD 1,5,203>: [41230, 41480)
<ROAD 1,5,204>: [41480, 41769)
<ROAD 1,5,205>: [41769, 42058)
<ROAD 1,5,206>: [42058, 42147)
<ROAD 1,5,207>: [42147, 42436)
<ROAD 1,4,207>: [42147, 42436)
<ROAD 1,5,208>: [42436, 42725)
<ROAD 1,4,208>: [42436, 42725)
<ROAD 1,5,209>: [42725, 42814)
<ROAD 1,4,209>: [42725, 42814)
<ROAD 1,4,210>: [42814, 43103)
<ROAD 1,4,211>: [43103, 43392)
<ROAD 1,4,212>: [43392, 43481)
<ROAD 1,4,213>: [43481, 43731)
<ROAD 1,4,214>: [43731, 43981)
<ROAD 1,4,215>: [43981, 44231)
<ROAD 1,4,216>: [44231, 44481)
Transaction: AccelerateTransaction: [44481, 47481), {IncreaseSpeedAction: [44481, 47481), {targetSpeed: 6.0}}
Resource Usage:
<ROAD 1,4,217>: [44481, 44726)
<ROAD 1,4,218>: [44726, 44962)
<ROAD 1,4,219>: [44962, 45190)
<ROAD 1,4,220>: [45190, 45410)
<ROAD 1,4,221>: [45410, 45624)
<ROAD 1,4,222>: [45624, 45832)
<ROAD 1,4,223>: [45832, 46034)
<ROAD 1,4,224>: [46034, 46231)
<ROAD 1,4,225>: [46231, 46423)
<ROAD 1,4,226>: [46423, 46610)
<ROAD 1,4,227>: [46610, 46793)
<ROAD 1,4,228>: [46793, 46972)
<ROAD 1,4,229>: [46972, 47147)
<ROAD 1,4,230>: [47147, 47319)
<ROAD 1,4,231>: [47319, 47481)
Transaction: ConstantSpeedTransaction: [47481, 49481), {ConstantSpeedAction: [47481, 49481)}
Resource Usage:
<ROAD 1,4,232>: [47481, 47648)
<ROAD 1,4,233>: [47648, 47815)
<ROAD 1,4,234>: [47815, 47982)
<ROAD 1,4,235>: [47982, 48149)
<ROAD 1,4,236>: [48149, 48316)
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<ROAD 1,4,237>: [48316, 48483)
<ROAD 1,4,238>: [48483, 48650)
<ROAD 1,4,239>: [48650, 48817)
<ROAD 1,4,240>: [48817, 48984)
<ROAD 1,4,241>: [48984, 49151)
<ROAD 1,4,242>: [49151, 49318)
<ROAD 1,4,243>: [49318, 49481)
Transaction: ChangeToLeftLaneTransaction: [49481, 52816), {ConstantSpeedAction: [49481, 50481), TurnLeftAction:

[50481, 51816), {angle: 30}, ConstantSpeedAction: [51816, 52816)}
Resource Usage:
<ROAD 1,4,244>: [49481, 49648)
<ROAD 1,4,245>: [49648, 49815)
<ROAD 1,4,246>: [49815, 49982)
<ROAD 1,4,247>: [49982, 50149)
<ROAD 1,4,248>: [50149, 50316)
<ROAD 1,4,249>: [50316, 50481)
<ROAD 1,4,250>: [50481, 50674)
<ROAD 1,4,251>: [50674, 50867)
<ROAD 1,4,252>: [50867, 50926)
<ROAD 1,4,253>: [50926, 51119)
<ROAD 1,3,253>: [50926, 51119)
<ROAD 1,4,254>: [51119, 51312)
<ROAD 1,3,254>: [51119, 51312)
<ROAD 1,4,255>: [51312, 51371)
<ROAD 1,3,255>: [51312, 51371)
<ROAD 1,3,256>: [51371, 51564)
<ROAD 1,3,257>: [51564, 51757)
<ROAD 1,3,258>: [51757, 51816)
<ROAD 1,3,259>: [51816, 51983)
<ROAD 1,3,260>: [51983, 52150)
<ROAD 1,3,261>: [52150, 52317)
<ROAD 1,3,262>: [52317, 52484)
<ROAD 1,3,263>: [52484, 52651)
<ROAD 1,3,264>: [52651, 52816)
Transaction: DecelerateTransaction: [52816, 55816), {DecreaseSpeedAction: [52816, 55816), {targetSpeed: 4.0}}
Resource Usage:
<ROAD 1,3,265>: [52816, 52985)
<ROAD 1,3,266>: [52985, 53157)
<ROAD 1,3,267>: [53157, 53332)
<ROAD 1,3,268>: [53332, 53511)
<ROAD 1,3,269>: [53511, 53694)
<ROAD 1,3,270>: [53694, 53881)
<ROAD 1,3,271>: [53881, 54073)
<ROAD 1,3,272>: [54073, 54270)
<ROAD 1,3,273>: [54270, 54472)
<ROAD 1,3,274>: [54472, 54680)
<ROAD 1,3,275>: [54680, 54894)
<ROAD 1,3,276>: [54894, 55114)
<ROAD 1,3,277>: [55114, 55342)
<ROAD 1,3,278>: [55342, 55578)
<ROAD 1,3,279>: [55578, 55816)
Transaction: ConstantSpeedTransaction: [55816, 57816), {ConstantSpeedAction: [55816, 57816)}
Resource Usage:
<ROAD 1,3,280>: [55816, 56066)
<ROAD 1,3,281>: [56066, 56316)
<ROAD 1,3,282>: [56316, 56566)
<ROAD 1,3,283>: [56566, 56816)
<ROAD 1,3,284>: [56816, 57066)
<ROAD 1,3,285>: [57066, 57316)
<ROAD 1,3,286>: [57316, 57566)
<ROAD 1,3,287>: [57566, 57816)
Transaction: ChangeToLeftLaneTransaction: [57816, 61817), {ConstantSpeedAction: [57816, 58816), TurnLeftAction:

[58816, 60817), {angle: 30}, ConstantSpeedAction: [60817, 61817)}
Resource Usage:
<ROAD 1,3,288>: [57816, 58066)
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<ROAD 1,3,289>: [58066, 58316)
<ROAD 1,3,290>: [58316, 58566)
<ROAD 1,3,291>: [58566, 58816)
<ROAD 1,3,292>: [58816, 59105)
<ROAD 1,3,293>: [59105, 59394)
<ROAD 1,3,294>: [59394, 59483)
<ROAD 1,3,295>: [59483, 59772)
<ROAD 1,2,295>: [59483, 59772)
<ROAD 1,3,296>: [59772, 60061)
<ROAD 1,2,296>: [59772, 60061)
<ROAD 1,3,297>: [60061, 60150)
<ROAD 1,2,297>: [60061, 60150)
<ROAD 1,2,298>: [60150, 60439)
<ROAD 1,2,299>: [60439, 60728)
<ROAD 1,2,300>: [60728, 60817)
<ROAD 1,2,301>: [60817, 61067)
<ROAD 1,2,302>: [61067, 61317)
<ROAD 1,2,303>: [61317, 61567)
<ROAD 1,2,304>: [61567, 61817)
Transaction: AccelerateTransaction: [61817, 64817), {IncreaseSpeedAction: [61817, 64817), {targetSpeed: 6.0}}
Resource Usage:
<ROAD 1,2,305>: [61817, 62062)
<ROAD 1,2,306>: [62062, 62298)
<ROAD 1,2,307>: [62298, 62526)
<ROAD 1,2,308>: [62526, 62746)
<ROAD 1,2,309>: [62746, 62960)
<ROAD 1,2,310>: [62960, 63168)
<ROAD 1,2,311>: [63168, 63370)
<ROAD 1,2,312>: [63370, 63567)
<ROAD 1,2,313>: [63567, 63759)
<ROAD 1,2,314>: [63759, 63946)
<ROAD 1,2,315>: [63946, 64129)
<ROAD 1,2,316>: [64129, 64308)
<ROAD 1,2,317>: [64308, 64483)
<ROAD 1,2,318>: [64483, 64655)
<ROAD 1,2,319>: [64655, 64817)
Transaction: ConstantSpeedTransaction: [64817, 66817), {ConstantSpeedAction: [64817, 66817)}
Resource Usage:
<ROAD 1,2,320>: [64817, 64984)
<ROAD 1,2,321>: [64984, 65151)
<ROAD 1,2,322>: [65151, 65318)
<ROAD 1,2,323>: [65318, 65485)
<ROAD 1,2,324>: [65485, 65652)
<ROAD 1,2,325>: [65652, 65819)
<ROAD 1,2,326>: [65819, 65986)
<ROAD 1,2,327>: [65986, 66153)
<ROAD 1,2,328>: [66153, 66320)
<ROAD 1,2,329>: [66320, 66487)
<ROAD 1,2,330>: [66487, 66654)
<ROAD 1,2,331>: [66654, 66817)
Transaction: ChangeToLeftLaneTransaction: [66817, 70152), {ConstantSpeedAction: [66817, 67817), TurnLeftAction:

[67817, 69152), {angle: 30}, ConstantSpeedAction: [69152, 70152)}
Resource Usage:
<ROAD 1,2,332>: [66817, 66984)
<ROAD 1,2,333>: [66984, 67151)
<ROAD 1,2,334>: [67151, 67318)
<ROAD 1,2,335>: [67318, 67485)
<ROAD 1,2,336>: [67485, 67652)
<ROAD 1,2,337>: [67652, 67817)
<ROAD 1,2,338>: [67817, 68010)
<ROAD 1,2,339>: [68010, 68203)
<ROAD 1,2,340>: [68203, 68262)
<ROAD 1,2,341>: [68262, 68455)
<ROAD 1,1,341>: [68262, 68455)
<ROAD 1,2,342>: [68455, 68648)
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<ROAD 1,1,342>: [68455, 68648)
<ROAD 1,2,343>: [68648, 68707)
<ROAD 1,1,343>: [68648, 68707)
<ROAD 1,1,344>: [68707, 68900)
<ROAD 1,1,345>: [68900, 69093)
<ROAD 1,1,346>: [69093, 69152)
<ROAD 1,1,347>: [69152, 69319)
<ROAD 1,1,348>: [69319, 69486)
<ROAD 1,1,349>: [69486, 69653)
<ROAD 1,1,350>: [69653, 69820)
<ROAD 1,1,351>: [69820, 69987)
<ROAD 1,1,352>: [69987, 70152)
Transaction: DecelerateTransaction: [70152, 73152), {DecreaseSpeedAction: [70152, 73152), {targetSpeed: 4.0}}
Resource Usage:
<ROAD 1,1,353>: [70152, 70321)
<ROAD 1,1,354>: [70321, 70493)
<ROAD 1,1,355>: [70493, 70668)
<ROAD 1,1,356>: [70668, 70847)
<ROAD 1,1,357>: [70847, 71030)
<ROAD 1,1,358>: [71030, 71217)
<ROAD 1,1,359>: [71217, 71409)
<ROAD 1,1,360>: [71409, 71606)
<ROAD 1,1,361>: [71606, 71808)
<ROAD 1,1,362>: [71808, 72016)
<ROAD 1,1,363>: [72016, 72230)
<ROAD 1,1,364>: [72230, 72450)
<ROAD 1,1,365>: [72450, 72678)
<ROAD 1,1,366>: [72678, 72914)
<ROAD 1,1,367>: [72914, 73152)
Transaction: ConstantSpeedTransaction: [73152, 75152), {ConstantSpeedAction: [73152, 75152)}
Resource Usage:
<ROAD 1,1,368>: [73152, 73402)
<ROAD 1,1,369>: [73402, 73652)
<ROAD 1,1,370>: [73652, 73902)
<ROAD 1,1,371>: [73902, 74152)
<ROAD 1,1,372>: [74152, 74402)
<ROAD 1,1,373>: [74402, 74652)
<ROAD 1,1,374>: [74652, 74902)
<ROAD 1,1,375>: [74902, 75152)
## Transactions in failQueue: 0
# failQueue is empty.
## Transactions in abortQueue
# Number of transactions in abortQueue is: 1
Transaction: ChangeToRightLaneTransaction: [14001, 17336), {ConstantSpeedAction: [14001, 15001), TurnRightAction:

[15001, 16336), {angle: 30}, ConstantSpeedAction: [16336, 17336)}
Resource Usage:
<ROAD 1,2,57>: [14001, 14168)
<ROAD 1,2,58>: [14168, 14335)
<ROAD 1,2,59>: [14335, 14502)
<ROAD 1,2,60>: [14502, 14669)
<ROAD 1,2,61>: [14669, 14836)
<ROAD 1,2,62>: [14836, 15001)
<ROAD 1,2,63>: [15001, 15194)
<ROAD 1,2,64>: [15194, 15387)
<ROAD 1,2,65>: [15387, 15446)
<ROAD 1,2,66>: [15446, 15639)
<ROAD 1,3,66>: [15446, 15639)
<ROAD 1,2,67>: [15639, 15832)
<ROAD 1,3,67>: [15639, 15832)
<ROAD 1,2,68>: [15832, 15891)
<ROAD 1,3,68>: [15832, 15891)
<ROAD 1,3,69>: [15891, 16084)
<ROAD 1,3,70>: [16084, 16277)
<ROAD 1,3,71>: [16277, 16336)
<ROAD 1,3,72>: [16336, 16503)
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<ROAD 1,3,73>: [16503, 16670)
<ROAD 1,3,74>: [16670, 16837)
<ROAD 1,3,75>: [16837, 17004)
<ROAD 1,3,76>: [17004, 17171)
<ROAD 1,3,77>: [17171, 17336)
#### STATISTICS
GeneratedTranCount: 26
ConflictedOriginalTranCount: 1
NotAdjustedTranCount: 0
AdjustOnceTranCount: 1
AdjustTwiceTranCount: 0
AlternativeTranCount: 0
AdjustSucceedTranCount: 1
AdjustFailTranCount: 0
AdjustOnceSucceedCount: 1
AdjustOnceFailCount: 0
AdjustTwiceSucceedCount: 0
AdjustTwiceFailCount: 0
AlterSucceedTranCount: 0
AlterFailTranCount: 0
ScheduledTranCount: 26
ExecutedTranCount: 26
CompleteTranCount: 26
IncompleteTranCount: 0
PreemptedTranCount: 0
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Appendix B

Sample Simulation Result of
CPSNetwork

#### CPSNET Simulation Platform
Version: 1.0
Developed by:
Huang Zhu
PhD Candidate
Computing and Information Sciences
Kansas State University
#### Simulation Report of CPSNetwork
Group: GROUP 6, Case: CASE 8
Date of Simulation: Sun Jun 01 02:19:00 CDT 2014
ENV Configuration File: ./CPSNET ENV CONFIG.config
CPS Configuration File: ./CPSNET CPS CONFIG.config
#### GENREAL INFORMATION
Conflict Resolving: 1
PP Strategy: 2
PC Strategy: 2
Execution Time: [0, 100000)
End Time of the Last Transaction: [0, 76676)
#### STATISTICS
GeneratedTranCount=188
ConflictedOriginalTranCount=14
NotAdjustedTranCount=0
AdjustOnceTranCount=14
AdjustTwiceTranCount=8
AlternativeTranCount=7
AdjustSucceedTranCount=7
AdjustFailTranCount=15
AdjustOnceSucceedCount=6
AdjustOnceFailCount=8
AdjustTwiceSucceedCount=1
AdjustTwiceFailCount=7
AlterSucceedTranCount=3
AlterFailTranCount=4
ScheduledTranCount=184
ExecutedTranCount=184
CompleteTranCount=184
IncompleteTranCount=0
PreemptedTranCount=0
ConflictReservationCount=35
#### MESSAGES
Number of Messages=651
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