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Abstract 

Emergency cooling systems are applied to any application where the loss of cooling 

results in damage to the product, loss of data, or equipment failure. Facilities using chilled water 

for cooling that experience an electrical power outage, even a small one, would cause the chiller 

to shut down for 20 minutes or more. If emergency cooling is not available, temperatures would 

continue to increase to dangerous levels, potentially damaging the facility. Examples of facilities 

that could be protected by having emergency cooling systems are data centers, hospitals, banks, 

control rooms, laboratories, clean rooms, and emergency shelters among others. 

This project addresses the current lack of information and methods needed to correctly 

design emergency cooling systems. Three application uses were investigated for the possible 

benefits of having emergency cooling systems. The software TRNSYS was used to simulate five 

typical emergency cooling systems for each of the three applications. The characteristics and 

differences of the systems developed from the simulations were then analyzed and documented. 

The five systems simulated include a pressurized chilled water tank (parallel), 

atmospheric chilled water tank (parallel and series), low temperature chilled water tank 

(parallel), and ice storage tank (series). Simulations showed that low temperature chilled water 

tanks were less stratified than regular chilled water tanks by approximately 10%. Simulations  

also showed that the differences between atmospheric and pressurized tanks were negligible. 

Each tank discharged energy in the same manner and managed to replenish itself in the same 

amount of time. Examination of the different system configurations showed that tanks in series 

with the thermal load have issues with recharging due to its inability to isolate itself from the 

thermal load. It was also observed that while low temperature chilled water and ice storage tanks 

had the potential of reducing the storage tank volume, the amount of time ragged cooling will 

last is decreased by at least a factor of two. 

The examination of the five systems produced the desired design methodologies needed 

to address the lack of information on emergency cooling systems. With the reported information 

designers can effectively engineer systems to meet their needs. 
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CHAPTER 1 - Introduction 

Emergency cooling systems have taken on a more pertinent role in industry over the past 

decade. Several companies now rely on computer equipment to store large quantities of data that 

require tightly controlled environments. Ambient temperatures in data centers must be controlled 

to within specifications so that important information is not lost. The cost associated with such a 

loss in data is many times too much for a company to recover from.  

A loss of power, even one of short duration, would cause a disruption in the cooling 

system. An interruption in cooling could lead directly to a substantial increase in ambient 

temperatures within a data center. The failure of equipment due to high temperatures would soon 

follow. An emergency cooling system would be able to provide the necessary cooling until the 

main chiller can be restarted or the data center is shut down. 

Currently emergency cooling is usually provided by vapor compression refrigeration 

systems. This type of system has a major weakness in that electrically driven compressors must 

be operated which can be very problematic during a power loss. A backup power supply could 

be provided but the compressors consume a large amount of energy. A backup supply would 

have to be increased to an ungainly size and would be very expensive. 

A fast growing method for emergency cooling is thermal energy storage (TES) tanks. 

Several companies have begun to store energy in a medium (water, ice, air, etc.) until needed. 

The main advantage to this method is that the power requirement is rather small during 

emergency conditions. The backup power supply is significantly reduced in size when compared 

to vapor compression refrigeration systems. TES tanks also offer flexible operating 

characteristics as both the temperature and delivery flow rate may be changed easily.  The study 

of thermal energy storage tanks during emergency conditions is the main focus of this thesis. 

The importance of having a TES tank was shown when Intel (2006) experienced a power 

outage. A 48,000 gallon TES tank storing chilled water was used to provide cooling to 20,000 

servers at a major regional data center. After the power disruption occurred, the emergency 

cooling system immediately started pulling water from the TES tank. The emergency cooling 

system continued to remove heat from the servers over the next 15 minutes. The main chiller 

system was restarted by this time and able to retake the thermal load. This was a great example 

of an emergency cooling system protecting servers from damage and loss of data. The potential 



 

 2

cost of losing the data center to high temperatures far exceeded the price of installing an 

emergency cooling system using a TES tank (Intel 2007). 

ASHRAE’s HVAC Handbook (2007) does not provide engineers with the proper amount 

of information needed to correctly design emergency cooling systems. The goal of ASHRAE in 

assigning this project was to bridge the current gap in information. The methods and design 

methodology for emergency cooling created will be used to help designers in the field. 

The objective of this research was to develop practical design criteria for the design of 

emergency cooling systems. TES systems would then provide a cost effective way to supply 

emergency cooling. As a result of this research, emergency cooling systems will be designed 

better and operate more efficiently.  

The first task was to research applications where emergency cooling is needed. From the 

research, three applications were selected (data centers, clean rooms, laboratories). A profile of 

the thermal load produced over a normal 24 hour day was built for each application and used for 

testing in the simulations. The three applications selected should be noticeably different to ensure 

the results are accurate over a wide assortment of applications. 

Several styles of cooling were researched to locate the best available type in providing 

emergency cooling. New and established technologies were investigated on the potential use for 

emergency cooling. The approaches that were the most reliable, cost effective and practical for 

emergency cooling were chosen for further testing (Chilled Water, Ice). All other technologies 

either could not handle the large thermal loads or were not yet fully developed to be considered. 

Research was then conducted into the different emergency cooling systems. Five diverse 

cooling systems that utilize a TES tank were then designed to simulate real life examples. In the 

five systems modeled, two of them use atmospheric chilled water tanks while a third makes use 

of a pressurized chilled water tank. The relationship between atmospheric and pressurized tanks 

when discharging was a closely monitored design methodology. The other two systems use a 

high energy density medium in a low temperature chilled water tank and an ice storage tank. The 

difference in how energy discharges from high energy density tanks and chilled water tanks was 

also closely followed. The five systems were either modeled in a parallel or series configuration.  

The five emergency cooling systems were then modeled in a computer program 

(TRNSYS) to conduct simulations. The simulations were conducted using the three cooling load 

profiles over a normal 24 hour time period. Thirty minutes was picked for the amount of time 
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emergency cooling must be provided by the TES tank because the main chiller should be 

restored to full operating capacity at the end of a half in hour. In the event power is still off after 

30 minutes and the main chiller can not be restarted, the residual heat produced by the equipment 

should have dissipated enough to no longer be a threat. 

Each of five emergency cooling systems was simulated over three different thermal loads 

(1, 5, 15 MW), chiller set point temperatures (40, 45, 50°F), and temperature differences between 

the supply and return lines (∆ 10, 15, 20°F). Each simulation was conducted three times using a 

different cooling load profile from the applications.  

The results from the simulations were compiled and analyzed to come up with important 

design criteria that could be used in the industry. The effects the configuration of the system, 

changing system parameters, and types of TES tank had on the results were documented. These 

results formed the beginning of the design criteria. 

The design criteria could only be formed after careful examination of all of the results. 

The goal is to hopefully develop enough design criteria to aid any engineer in 

designing/examining TES systems.  

Research Plan 

The following outline was used to fulfill the objectives of this thesis: 

I. Identify Emergency Cooling Applications. 

a. Research cooling applications and design characteristics. 

b. Determine three emergency cooling applications including data centers for further 
study. 

II. Identify available types of emergency cooling when power supply is disrupted. 

a. Compare and evaluate potential methods. 

b. Select most practical methods for emergency cooling. 

III. Design emergency cooling systems based on methods selected. 

IV. Develop design guidelines for each method when applied to emergency cooling. 

a. Simulate the five selected systems over a wide range of system parameters. 

b. Develop design methodology for emergency cooling using thermal energy storage 
for the three cooling load applications. 
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CHAPTER 2 - Emergency Cooling Applications and Types 

This chapter deals with the emergency cooling applications and the types of cooling used 

for emergency cooling systems. For accurate results, comparable to real life situations, the 

thermal load can not be set at a constant value. The thermal load must be modeled after practical 

applications that have the need for emergency cooling. The variations in thermal loads of 

practical applications will provide the accuracy wanted.  

There are currently several different types of systems that could be used to provide 

emergency cooling. Fully developed technologies along with new methods were considered and 

examined in full detail. The benefits and shortcomings of each type are listed farther below in the 

chapter.  

Emergency Cooling Applications 

Several applications that could potentially use emergency cooling were researched and 

studied. Hospitals, clean rooms, control rooms, emergency shelters, banks, data centers and 

others were analyzed and the three most pertinent applications were selected for a more detailed 

study. The three applications selected are data centers, clean rooms, and laboratories. The 

temperature guidelines and cooling load profiles were very different for each application. These 

differences will provide a wide array of results. 

The other main characteristic studied in each application was the differences in thermal 

load during normal and emergency conditions. Some applications only need to provide cooling 

to critical areas when power is lost, so a drop in the thermal load may occur. If the cooling 

profile changes during emergency conditions for the application then it is explicitly stated. It will 

also be stated if there is no change in the profile during emergency conditions. 

Graphs of the three cooling load profiles are shown below in each section. The 30 minute 

loss of cooling is assumed to take place at hour eight. So the emergency cooling system can be 

sized correctly, the maximum thermal load for each profile is assumed to happen at the same 

time. If the thermal load drops during emergency conditions for the application then another 

graph is given showing the change. 
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High Density Server Cabinet Data Centers 

A data center is a facility used to house computer systems and associated components. 

The thermal load for data centers have progressively risen over the past couple years as shown 

by Figure 2-1. Today’s businesses have become increasingly reliant on the health of their data 

centers. Modern data centers produce a very concentrated thermal load that requires a large 

cooling system to keep ambient temperatures from reaching high levels. A power outage, even 

one of short duration, could cause ambient temperatures to spiral out of control in a small 

amount of time. Temperature sensitive equipment could quickly be destroyed and valuable 

digital information lost. After a power outage that causes damage to a data center, only 10 

percent businesses are still operating after two years and 50 percent never fully recover, 

according to a recent study (Opengate Data Systems 2009). An emergency cooling system that is 

correctly designed and operated ensures against loss of data. 

 
Figure 2-1 Heat Density Trend Projections (ASHRAE Datacom 2009) 

Data centers are classified into different environmental classes. The main difference in 

the classes is how strict the environment is controlled. The strictest controlled class (Class 1) was 

chosen for this application because the tightly controlled environment (dew point, temperature, 

relative humidity) will be the hardest to maintain. Class one data centers typically support 

mission critical operations; enterprise servers, and storage products. The recommended 

temperature can be set with the class type chosen. The recommended temperature range for the 
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class one data center is 18°C (64.4°F) to 27°C (80.6°F). The temperature range can be expanded 

to 15°C (59°F) through 32°C (89.6°F) if the allowable range is used. Data processing equipment 

cannot tolerate a large change in temperature so the ambient temperature must stay within ±2°C 

(±3.6°F) of the set point (ASHRAE Datacom 2009). 

 The effectiveness at which equipment racks are cooled is measured (cooling index) by 

ASHRAE. This study is on the overall system response so the equipment racks are assumed to be 

operating at 100% effectiveness for this report (ASHRAE Datacom 2009). Through research, an 

example of a hypothetical cooling load profile for data centers is shown below. The profile was 

based off a data center in Austin, TX using a thermal load of one megawatt as the maximum. 

Most data centers only run at 70-80% of the maximum thermal load (Fournier 2008). 

Thermal Load for Data Centers
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Figure 2-2 Cooling Load Profile for Data Centers 

The thermal load was almost entirely flat for the 24 hour time period. The variation in the 

thermal load is less than 5% and only changes slightly in relation to the exterior environment. 

Based on research, there would be no drop in thermal load during a power outage (ASHRAE 

Datacom 2009). The profile would remain constant whether operating during normal or 

emergency conditions. 
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Manufacturing Clean Rooms 

The call for more clean rooms is rising as technology advances and the need for clean 

work environments increases. Clean space environments are mainly used in manufacturing, 

packaging, and research for the following industries: biotechnology, microelectronics, aerospace, 

and miscellaneous applications (food processing, manufacture of artificial limbs, automotive 

paint booths, etc.). The environment needs to be strictly controlled for many of these industries 

or the products within the clean room could fail to meet the standards. A considerable amount of 

revenue could be lost if this happens. 

The ambient temperature required is different for each of the manufacturing industries. 

Aerospace clean rooms require a temperature in the range of 22.8 ± 2.8°C (73± 5°F). A lower 

temperature may be used in the winter with a higher one in the summer. The microelectronics 

industry requires an ambient temperature to be at a constant 22.2 ± 0.28°C (72± 0.5°F). The 

biotechnology industry limits pharmaceutical products to a temperature range between 15°C 

(59°F) and 30°C (86°F) using the United States Pharmacopoeia guidelines (ASHRAE HVAC 

Applications 2007). 

The process equipment and fans are the major internal thermal load components in clean 

room facilities. Almost all clean rooms are found entirely within conditioned space, so typical 

heat sources of infiltration, fenestration, and heat conductance from adjoining spaces are 

normally 2 to 3% of the total load (ASHRAE HVAC Applications 2007). The thermal load is 

assumed to be at a fairly fixed rate for the 24 hours since the majority of thermal energy is 

coming from the process equipment and fans. There would be a small amount of variation in the 

thermal load for the time period due to human occupancy throughout the day. There would be no 

reduction in cooling needs during emergency conditions because the majority of the thermal load 

comes from the equipment.  

The biotechnology industry temperature guidelines were picked arbitrarily for this report. 

The recommended temperature range for this industry is 15°C (59°F) to 30°C (86°F). Most 

pharmaceutical products also do not tolerate a large change in temperature so the ambient 

temperature must stay within ±1°C (±1.8°F) of the set point (ASHRAE HVAC Applications 

2007). The cooling load profile in Figure 2-3 was modeled from a pharmaceutical clean room for 

one megawatt. 
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Figure 2-3 Cooling Load Profile for Clean Rooms 

The above graph shows there is little change in the profile during the time period. The 

thermal load varies by less than 10% overall. The thermal load would be at its maximum during 

the middle of the day when occupancy is the highest. The load would decrease slightly as the 

room shuts down for the night. The profile would remain constant during normal and emergency 

conditions. 

Laboratory and Research Facilities 

Modern laboratories require regulated temperature, static pressure, humidity, and air 

cleanliness. Laboratories can be divided into four major categories: biological, chemical, animal, 

and physical. Each category requires its own set of environmental parameters (ASHRAE HVAC 

Applications 2007). A temperature increase due to a loss in power could cost millions of dollars 

in lost research. An example of this is shown in the next paragraph. 

Seattle‘s Fred Hutchinson Cancer Research Center lost one of its three cooling systems to 

its freezer farm in 2008. The research center deals with the treatment of cancer, HIV/AIDS, and 

other life threatening diseases. The temperature in the freezer farm immediately began to rise and 

millions of dollars worth of research was put at risk. A chiller was rented from a nearby company 
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and was installed in time before the freezer farm temperatures reached critical. The rented chiller 

lasted until main cooling could be restored (Engineered System 2008). Emergency cooling in this 

situation would have been very useful. 

The temperature guideline for animal laboratories was picked arbitrarily to be used in this 

report. The temperature range for laboratories is from 17.8°C (64°F) to 29.5°C (85.1°F). Very 

strict control is required with a temperature of ±1.1°C (±2°F) of the set point. The cost to 

maintain a facility within such a strict requirement is extremely high and can be lessened by 

designing the building for selected species and their specific requirements. The cooling load 

profile for laboratories was created using ASHRAE’s Laboratory Modeling Guide (ASHRAE 

HVAC Applications 2007) and a facility in Duluth, MN called Great Research Laboratory as a 

reference (Byrne 1999). 

Thermal Load For Laboratory
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Figure 2-4 Cooling Load Profile for Laboratories 

The above graph shows the large amount of variation in the thermal load over the time 

period. The thermal load reached its maximum during the middle of the day when laboratory 

occupancy is the fullest and the majority of equipment is running. The thermal load rapidly 

decreases as the facility shuts down for the night.  
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In emergency situations, only critical areas would receive the initial emergency cooling. 

This would initially result in about a 20% reduction in the thermal load during emergency 

conditions. Temperatures in other areas would begin to rise and reach a critical level. At this 

point, a portion of the emergency cooling would have to be diverted to the other areas. The 

longer emergency conditions last, the larger the thermal load becomes. The reaction of the 

cooling load profile during emergency conditions is shown in Figure 2-5. It shows that at hour 

eight when emergency conditions start how the thermal load decreases by about 20% and slowly 

rises during the ½ hour. The thermal load then rises to normal after the emergency situation is 

over (Byrne 1999). 
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Figure 2-5 Emergency Load Profile for Laboratories 

Emergency Cooling Types 

Multiple types of systems were examined for emergency cooling. The types that were 

considered are listed below. Several of the types have been used for many years while others are 

just getting started and may not be fully developed yet. The type of cooling must be able to 

handle a wide range of thermal loads and be cost effective to install. The reliability and 

feasibility of the type to provide emergency cooling must also be very high.  
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Compressed Air 

Compressed air stored in standard cylinders maintained at full capacity by an onsite 

compressor was considered. A company (Active Power) has recently been making huge strides 

in this area. This option has several drawbacks though. A high cost per unit storage and the 

amount of cooling storage is limited to 100 kW (Active Power 2008). This option was not 

seriously considered because of these drawbacks.  

Chilled Water 

Chilled water stored in thermal energy storage (TES) tanks is widely used in companies 

today because of the low cost and high availability. The size of the tank can vary greatly 

depending on the amount of cooling needed and the difference between the chilled water supply 

and return temperatures. A temperature difference of 5.56°C (10°F) between the supply and 

return lines is consider normal. A temperature difference as high as 11.11°C (20°F) can be used 

but is considered very aggressive. Almost all chilled water storage tanks are stratified at a 

temperature of 4.45 to 7.22°C (40 to 45°F). Typically chilled water storage is the most 

economical when the storage is more than 7000 kWh (2000 ton-hrs) (Dorgan & Elleson 1993). 

Chilled water temperatures below 4.45ºC (40ºF) are referred to as low temperature 

chilled water. The lower limit on regular chilled water temperature, which is approximately 

4.1ºC (39.4°F), is dictated by the temperature at which the maximum density of pure water 

occurs. A special additive of consisting of sodium nitrate and sodium nitrite must be added to the 

chilled water to maintain stratification effects due to density issues (Andrepont 1999). 

Ice 

Ice storage is also a commonly used emergency cooling system due to its high energy 

density storage capacity. The latent heat of fusion from ice to water is 334.4 kJ/kg (143.5 Btu/lb). 

There are several different methods for ice creation within storage tanks but this paper only 

covered the two most common processes. The two processes studied were internal and external 

ice melt on coil systems (Moran & Shapiro 2004). The two figures below show how each system 

works. 

Ice storage tanks that are external melt are non-pressurized and have exit temperatures of 

1.1-2.2°C (34-36°F) when discharging. Internal melt systems use a coolant loop to charge and 
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discharge the heat transfer fluid. The discharge temperature is usually between 2.2-3.3°C (36-

38°F) (Dorgan & Elleson 1993). The cost of ice storage is also relatively low.  

 
Figure 2-6 External Ice Melt 

 
Figure 2-7 Internal Ice Melt 

Eutectics 

Eutectics are a mixture of inorganic salts, water, and nucleating agents used to stabilize 

the melting point of the fluid medium. Plastic storage containers (Figure 2-8) are stacked on top 

of each other where the inorganic salt material is encapsulated. Inorganic salts have a freezing 

point of 8.2°C (47°F). The tank discharge temperature range is from 8.9-10°C (48-50°F) which 
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is above normal for HVAC applications. Eutectics can also be corrosive and are mostly used in 

heat storage applications (Dorgan & Elleson 1993). 

 
Figure 2-8 Eutectic Salt Storage Containers 

Selected Emergency Cooling Systems 

Using the information above, chilled water and ice storage were selected to be used for 

thermal storage for the systems designed in chapter three. These two systems cost the least and 

are the most commonly used systems based on the research above and industrial contacts. 

Several examples of these systems are found in companies today. The other two systems 

(Eutectics & compressed air) were either not cost effective or not practical for large thermal 

loads. 
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CHAPTER 3 - Emergency Cooling Water Systems 

The five emergency cooling systems designed for further study are explained in great 

detail in this chapter. Several systems are found in industry with similar setups, as the examples 

below show. Simulations will then be conducted using these five systems and the three cooling 

applications discussed in chapter two.  

The configuration, tank type, and setup of each system were carefully chosen and 

designed so a comparison could easily be made between the systems. The differences in the 

systems were closely monitored during simulations to locate effects they may have. How each 

system operates during normal, emergency, and recharging operations is explained in detail 

below.  

Parallel Pressurized Chilled Water Tank 

The first system uses a pressurized chilled water storage tank in parallel with the thermal 

load. Pressurized tanks are not cost effective or practical for large systems so this system was 

only tested over the low thermal loads. 

The system shown in Figure 3-1 uses a primary and secondary loop to control the flow to 

the thermal load. The main advantage of having the TES tank in parallel is that the tank can be 

isolated from the thermal load and replenished easily.  

 
Figure 3-1 Parallel Pressurized Chilled Water Tank 

Normal Operation: The TES tank is fully charged while V-1 is open. The chiller operates at 

capacity that may or may not meet the thermal load. The secondary pump provides flow that 
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gives the desired temperature change across the thermal load. The primary pump operates at a 

constant flow. 

Emergency Cooling: The valve V-1 is closed during an emergency cooling situation. The 

secondary pump provides sufficient flow to meet the temperature difference across the thermal 

load by drawing chilled water from the TES tank. The secondary pump is powered by a backup 

power system. The primary pump would remain off until the chiller is restarted. 

Recharge TES: When the chiller capacity exceeds the thermal load, the excess chilled water will 

flow into the TES tank. When total volume flowed equals the tank volume, the TES has been 

recharged.  The time to recharge will be a function of the excess chiller capacity and TES 

volume. 

Parallel Atmospheric Chilled Water Tank 

The second system uses an atmospheric chilled water storage tank in parallel with the 

thermal load. Atmospheric tanks are the most widely seen TES tank in the industry (compared to 

pressurized tanks). The setup shown in Figure 3-2 is commonly seen in the field today with the 

TES tank in parallel with the thermal load. 

A primary and secondary loop is utilized to control the flow to the thermal load just like 

the system above with the pressurized TES tank. The only difference between the first system 

and this one is that this TES tank is atmospheric and the previous one is pressurized. A 

comparison between pressurized and atmospheric TES tanks using results from these two 

systems can be made. 
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Figure 3-2 Parallel Atmospheric Chilled Water Tank 

Normal Operation: The TES tank is fully charged while V-1 is open. The chiller operates at 

capacity that may or may not meet the thermal load. The secondary pump provides flow that 

gives the desired temperature change across the thermal load. The primary pump operates at a 

constant flow. 

Emergency Cooling: Valve V-1 is closed during an emergency cooling situation with the 

primary pump and chiller shut off. The secondary pump provides sufficient flow to meet the 

temperature difference across the thermal load by drawing chilled water from the TES tank. The 

secondary pump is powered by a backup power system.  

Recharge TES: When the chiller capacity exceeds the thermal load, the excess chilled water will 

flow into the TES tank. When total volume flowed equals the tank volume, the TES has been 

recharged.  The time to recharge will be a function of the excess chiller capacity and TES 

volume. 
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Series Atmospheric Chilled Water Tank 

The third system contains an atmospheric chilled tank in series with the thermal load. The 

chilled water tank in series was not a very common setup seen in industry today. The differences 

in the design methodologies of parallel and series configuration will provide a great deal of 

insight to designers. 

The system in Figure 3-3 uses one variable speed pump to control the flow to the thermal 

load and no bypass line is present. The primary pump (VFD) in this configuration can not drop 

below the minimum flow requirements for the chiller. One main disadvantage of this setup is that 

the TES tank, chiller, and thermal load can not be isolated from each other. This will lead to 

problems with recharging the TES tank which will be demonstrated in chapter four. 

 
Figure 3-3 Series Atmospheric Chilled Water Tank 

Normal Operation: The primary pump regulates the flow to maintain the desired change in 

temperature across the thermal load. The primary pump reduces flow to sustain the desired 

change in temperature as the load decreases. V-1 is allowing all of the flow to bypass the TES 

tank during normal operation.  

Emergency Cooling: The primary pump operates at a flow such that the desired change in 

temperature is maintained at the load and V-1 is diverting all flow through the TES tank. Chilled 

water flows from the atmospheric TES tank to the thermal load. The chiller is powered down 

during this operation. 
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Recharge TES: When the chiller is operating at a capacity greater than the thermal load, V-1 

modulates the flow to partially allow the tank to recharge. Once the entire flow equals the tank 

volume then it is considered fully charge. 

Parallel Low Temperature Chilled Water Tank 

Several systems currently employ a TES tank of low temperature chilled water (<40°F) 

used for emergency conditions with regular chilled water (>40°F) utilized for normal conditions. 

The main advantages of such systems are that the TES tank is considerably smaller and an 

alternative cooling source is attached to the tank. The system in Figure 3-4 utilizes a low 

temperature chilled water tank in parallel configuration. An additive has been added to the tank 

to ensure the proper stratification levels occur. 

If the additive was not added to the low temperature chilled water tank, the water with the 

highest density would fall to the bottom of the tank. While discharging, the incoming hot water 

would mix with the stored chilled water. When the mixed water reached the temperature of 

highest density (39.4°F), it would fall to the bottom of the tank. The chilled water exiting the 

tank would then be at 4.1°C (39.4°F). The modulating valve in the low temperature chilled water 

system (V-2 in Figure 3-4) would be able to account for this and allow for more flow through the 

TES tank in emergency conditions. 

A primary and secondary loop is used to control the flow just like in the previous parallel 

configurations. The refrigeration unit attached to this system will be able to cool the water in the 

TES tank regardless of the main chiller. The differences in design methodology between regular 

and low temperature chilled water TES systems learned here will provide engineers with the 

information necessary to make the correct decisions.  
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Figure 3-4 Parallel Low Temperature Chilled Water Tank 

Normal Operation: During this operation V-1 remains open to allow for chilled water to reach 

the thermal load. The chiller operates at full capacity while the primary pump operates at a 

constant flow and the secondary pump (VFD) provides the appropriate amount to flow to 

maintain the desired temperature difference across the thermal load. As the load reduces, excess 

flow from the chiller goes through V-2 returning to the chiller return line.  

Emergency Cooling: For this operation V-1 will remain closed and the primary pump is shut off. 

The secondary pump provides sufficient flow to maintain the temperature difference across the 

thermal load. The chilled water will be drawn from the TES tank by modulating V-2. 

Recharge TES: Normal operation will apply for main chiller system in that V-2 allows the excess 

chilled water to bypass the TES tank. The refrigeration unit would operate to lower the TES 

temperature to 1.7°C (35°F). The refrigeration unit contains a DX HX to lower the TES 

temperature. The time to recharge is a function of the excess chiller capacity, refrigeration 

capacity, and TES volume. 

Series Ice Storage Tank 

The final storage system in Figure 3-5 uses the high energy density of an ice storage tank 

in series. Several different ice storage tanks are found in the field today. The main advantages to 

ice storage are the smaller size of the tank and the alternative cooling source attached to the 
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system. The alternative cooling source (Glycol Refrigeration Unit) allows for the ice storage tank 

to be recharged at all times. External ice melt coils were chosen instead of internal ice melt coils 

system. Research found that internal ice systems were unable to discharge the energy held in the 

ice fast enough for emergency cooling. External ice melt coils did not have this problem due to 

the water coming into direct contact with the ice on the coil. 

The flow to the thermal load is controlled by a variable speed pump just like in the 

previous series configuration. The primary pump (VFD) in this configuration can not drop below 

the minimum flow requirements for the chiller. A glycol refrigeration unit is attached to the ice 

builder tank to replenish the ice tank. The disparity between ice storage and chilled water TES 

systems will be useful in helping designers choose between the systems. 

 
Figure 3-5 Series Ice Storage Tank 

Normal Operation: During this mode of operation the ice builder tank is fully charged while, V-1 

diverts the flow to bypass the ice tank. The primary VFD pump provides the flow to meet the 

desired temperature difference across the thermal load. As the load decreases, the secondary 

pump reduces flow to match the change in temperatures across the thermal load. 
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Emergency Cooling: For this mode of operation, V-1 modulates the flow so a portion enters the 

ice tank while the rest bypasses the ice tank. The primary pump provides flow to the load using 

backup power, to maintain the desired temperature difference across the thermal load. The chiller 

remains off in this mode of operation. 

Recharge TES: The ice tank will recharge using the glycol refrigeration unit. The recharge time 

is dependent upon the size of the glycol refrigeration unit and storage tank effectiveness. 
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CHAPTER 4 - Testing and Data Collection 

The five different storage systems described in chapter three were simulated at three 

different thermal loads (1, 5, & 15MW) at a chiller set point temperature of 7.22°C (45°F) and at 

three different temperature differences (∆ 10, 15, & 20°F) across the cooling coils. Then without 

changing any of the component sizes the systems were ran at chiller set point temperatures of 

4.45°C (40°F) and 10°C (50°F) to see if this had any effect. The only exception was the system 

that used a pressurized chilled water tank was simulated at only one and five megawatts. A 

thermal load of fifteen megawatts was too large to realistically simulate a pressurized tank. The 

matrix bellows shows how many different simulations were done for one of the storage systems.  

 
Figure 4-1 Simulations 

TRNSYS Simulation Program 

The simulations for this thesis were carried out by a Fortran based program called 

Transient System Simulation program (TRNSYS). TRNSYS is a total and extensible simulation 

environment used for the transient simulation of energy systems. It is used by researchers and 

engineers throughout industry to authenticate energy concepts. Some of the many applications 

studied with TRNSYS are solar systems, low energy buildings, HVAC systems, renewable 

energy system, and cogeneration.  

One of main features of TRNSYS is its ability to quickly and easily alter component 

models (chillers, pumps, etc.) within the program. An existing model can simply be changed to 

fit the user’s specific needs. In addition, other applications (e.g. Microsoft Excel, Matlab, etc.) 

can be connected to TRNSYS for pre-processing and post-processing of the simulation. 

Figure 4-2 is a simplified system shown in TRNSYS Simulation Studio that will be used 

to better explain how the program operates and conducts simulations. It is not representative of 

any storage system. The core of TRNSYS is in its ability to link the inputs and outputs of 

different components together in the Simulation Studio thus creating a system. The Simulation 
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Studio is the main visual interface where systems can be created by putting components into the 

workspace, connecting them together, and setting the parameters for the system. 

 
Figure 4-2 TRNSYS Simulation Studio 

Each component is described by a mathematical model in the TRNSYS simulation engine 

and has a set of matching Proforma’s in the Simulation. The proforma is basically a black-box 

description of the component: inputs, outputs, and parameters. Figure 4-3 shows an example of a 

proforma opened up for a pipe. Every component contains its own special proforma that is 

connected to its mathematical model. The links between the components (black lines with 

arrows) can be opened up and a window appears where the outputs (flow rate, temperature, etc.) 

of one component can be graphically linked into the inputs of the next desired component. 
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Figure 4-3 Proforma for a Pipe component 

The simulation engine in TRNSYS is programmed in Fortran. The engine will read all of 

the information from the Simulation Studio (components, parameters, etc.) and take the Fortran 

based mathematical model of each component to run a simulation. The simulation is divided up 

into equal time steps. At the end of each time step, the engine will take the outputs from the 

components and pass them onto the inputs of next link components. The process is then repeated 

again and again. The user sets how big the time step will be for the simulation. This is a major 

decision. If the time step is too small, the engine may not have enough time to perform necessary 

calculations thus causing the simulation to move sluggishly. If the time step is too big, the 

simulation will not accurately represent real life systems because information is not moving 

between components fast enough. After careful consideration and some experimentation, the 

time step was set to 15 seconds for all simulations. This gave the engine enough time to make the 

necessary calculations but was fast enough to accurately model real systems.  

At the start of a simulation, the engine will first pull all of the component proformas from 

Simulation Studio and put the values into the mathematical model. The mathematical model will 

then process the values from the components to produce the outputs using the equations present. 

Many of components contain simple equations which directly produce an output from the input 
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but several of components require iterative solutions. The TES tank for example contains a 

differential equation that must be processed and several iterations have to be done before an 

output can be produced. At the end of the time step, the outputs from one component are passed 

along to the inputs of the next linked component. For example, the TES tank outlet mass flow 

rate is passed into the pump inlet mass flow rate. This process is repeated again and again until 

the end of the simulation. 

If the values for a component do not converge before the end of the time step, then 

TRNSYS will produce an error and stop the simulation. This usually means that a component 

was setup wrong and needs to be fixed before proceeding. This sort of error stops users from 

designing systems that are unreasonable. 

For all of the simulations, data was taken at every time step and recorded in a excel file 

for further examination. A quick analysis of the data could then be conducted and the pertinent 

graphs created.  

A screenshot of the five systems from chapter three created in the TRNSYS Simulation 

Studio can be seen in Appendix A. The level of complexity taken into account by the program is 

immense. For example, the outside environmental conditions had to be specified for components 

to be correctly simulated. TRNSYS allowed us to change the outside environmental conditions 

as the day progressed. Outside air temperatures, dew point, and pressure could all change within 

the 24 hour time period (A normal spring day was used for our simulations). This was just one of 

the many extra things that TRNSYS did to more accurately model a system.      

The following sections deal with how the different components were modeled in 

TRNSYS. Only the main components that deal with the thermal energy transfer will be discussed 

(chiller, cooling coils, TES tank, etc.). Several additional components (Tee, Valves, etc.) were 

needed to correctly model the systems but are not talked about due to their simple nature. These 

components are used to divert flow and make use of basic mass balance equations. The relevant 

equations that the mathematical model of the component utilizes are shown and discussed. 

Chiller 

The chiller in the simulations was modeled after a vapor compression water cooled 

centrifugal chiller. This device cools a fluid stream on the evaporator side while rejecting heat to 

another fluid stream on the condenser side. This component model relies on a catalog data 
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lookup method to correctly model the chiller. The user must provide performance data for the 

chiller to lookup, the rated capacity, and the rated COP. For the simulations, performance data 

was collected from a chiller produced by the TRANE company along with the rated capacity and 

COP.  

The chilled load must first be calculated, 

)( ,, setchwinchwchwchwLoad TTCpmQ −×=
••

 

The load met (Qmet ) by the chiller is automatically limited by the capacity of the machine 

specified in the parameters. The part load ratio is therefore, 
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The Fraction of Full Load Power (FFLP) can now be looked up in the catalog data by the 

program and used the chiller’s power draw calculation. The COP is specified by the user in the 

parameters. 
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The amount of heat energy rejected to the cooling tower fluid stream is therefore, 
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The outlet chilled water temperature and cooling tower water temperature can now be 

calculated. 
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Pipe 

This component models the thermal behavior of fluid flow in a circular pipe. The pipe 

will have no effect on the flow rate. The only thing really of interest is how much thermal energy 

is lost to the environment from the pipe. The user must provide the pipe’s diameter, length, and 
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thermal conductivity along with the insulation thickness and thermal conductivity. The method 

the mathematical model used for calculations is shown below. 

The user was asked to supply the physical parameters of the pipe in proforma. These will 

be used to calculate the energy loss. The first equation that is needed to be calculated is the 

overall loss coefficient per unit area for the pipe, 
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The total energy loss rate to the environment is then and the final outlet temperature of the water, 
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TES Tank for Chilled Water 

The TES tank used for chilled water in the simulations was a fluid-filled, constant 

volume cylindrical tank with a vertical configuration like in Figure 4-4. The tank is divided into 

90 (n = 90) temperature nodes to model stratification. Research found that the TES tank will be 

approximately 90% stratified with the thermocline layer occupying 10% of the tank volume 

when discharging. Through experimentation and a few calculations, it was found that the TES 

tank with 90 nodes would correctly model this. The first node is considered at the top and node 

90 at the bottom of the tank. Each constant volume node is assumed to interact thermally with 

the surrounding nodes by either fluid conduction or fluid movement. The user must provide the 

tank volume, height, and loss coefficients. 
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Figure 4-4 TES Tank 

This storage tank model interacts thermally with the environment through the heat losses 

from the top, bottom, and side areas of the storage tank. The equations for the heat transfer from 

the top, bottom and side for tank node n are: 

)()( ,1, topenvntoptoploss TTUAQ −= =
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The tank calculations break down into one differential equation, 

TankTankoutTankinTank CQQdtdT /)(/ ,, −=  

Where Qin,Tank and Qout,Tank are functions of the ambient temperature, the inlet fluid 

conditions, and flow rates.  

TES tank for Ice Storage 

The ice storage tank used by TRNSYS was an external ice-on-coil tank. The storage tank 

is modeled as a heat exchanger where the charge/discharge rate is a function of whether or not 

the system is charging or discharging and the log mean temperature difference between the brine 

and the storage freezing temperature (Tfr).  The user must specify the storage capacity of the 
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tank, and the energy capacity of the tank. The equations used by the mathematical model are 

shown below (Potter & King 1998). 

The overall loss coefficient must first be calculated whether the tank is discharging or 

charging. The Li are the coefficients of fifth order polynomial fit and are list in Table 4-1. The 

coefficient y is the fraction of ice discharged or charged depending on the current operation of 

the component.  
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Table 4-1 Ice Storage Coefficients 
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 For charging, y is the fraction of storage charged and 
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For ice-on-coil external storage, melting occurs on the outer surface of the ice on the coils 

during discharging. For that reason, convection at the ice/water interface is the only resistance to 

heat transfer. The heat transfer equation becomes: 

icelmiceice TUAQ ,)( ∆=
•

 

Cooling Coils 

This component models the performance of a dehumidifying cooling coil using the 

effectiveness model outlines by Braun (Braun 2002). The geometry of the cooling coil and air 
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duct must be specified by the user. A coil selection program produced by the company  

MultTherm (MultiTherm 2010) was used to select the correct cooling coil for our heat transfer 

needs. The geometry of the cooling coil produced by this program was used in the proforma of 

the cooling coil in TRNSYS. 

The Braun method has shown the air-side heat transfer effectiveness can be determined 

by using the relationships for sensible heat exchangers. This component models the performance 

of cooling coils utilizing this effectiveness model for counterflow geometries. In order to 

calculate heat transfer coefficients between the air stream and coil, fin efficiencies are required 

(Braun 2002). 

The components mathematical model followed the Braun method in making the initial 

calculations necessary to get to the coil performance equations. 

The three heat transfer rates are calculated from energy balances on the water and air 

streams. The total energy transferred across the coil is, 

)( ,, iwowwwCoil TTCpmQ −×=
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with the heat transfer caused by the condensing the moisture in the air is calculated as 

fgoaiaalat hmQ )( ,, ωω −=
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The heat of vaporization for water (hfg) is assumed to be held constant at standard conditions. 

The sensible heat transfer is then simply, 
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Pumps 

A program by Bell & Gossett (Bell & Gossett 2009) was used to select the pumps for the 

systems. The specifications for the pumps were then taken from the information the company 

made available. The method used here to calculate the heat transfer to the fluid from the pump is 

the same for constant and variable speed pumps. The user must specify the rated flow capacity, 

overall pump efficiency, and the pressure drop the pump must overcome.  

This pump, along with almost all pumps in TRNSYS, takes the mass flow rate as an input 

but ignores the value except to perform mass balance checks. The outlet flow rate is based on the 

rated flow rate parameter and the current value of its control signal input. The equations the 

mathematical model uses to calculate the outlet water temperature are shown below. 
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The ideal work done in pumping the fluid is: 
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The inefficiency of the pumping process is taken into account in the work done at the pump’s 

shaft. 
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The energy transferred from the pump motor to the fluid stream is calculated by: 
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The temperature exiting the pump can now be calculated. 
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Controller 

The controller used to control the flow was a PI controller. The PI controller calculates 

the control signal (c) required to maintain the controlled variable (y) at the setpoint (ySet). The 

tracking error is proportional to the control signal, as well as to the integral of that tracking error. 

It is based on state-of-the-art discrete algorithms for PI controllers and implements anti windup 

for the integrator. The user must specify the set point temperature (yset), gain constant, and 

integral time. 

The algorithm used by this controller was presented by (A ̊strøm and Hagglund 1995). 
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The two terms in the equation can easily be identified as the P-term (proportional to the error), 

and the I-term (proportional to the integral of the error). This equation is sometimes referred to a 

series PI algorithm. 

 For cooling applications, the control signal must increase when the tracking error 

(setpoint-controlled temperature) decreases. Effectively more cooling should be provided when 
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the temperature is above the setpoint. A negative gain constant is then required and integral time 

should be set to a low value to provide a fast response. 

System Criteria 

The controller in the system was set to maintain an inlet air temperature to the thermal 

load at 24°C (75.2°F) if possible by controlling the flow rate of the chilled water to the cooling 

coil. The temperature criteria for each load profile are listed in the Table 4-1. Under normal 

conditions the inlet air temperature to the thermal load must stay within the stability range. 

However during emergency conditions the inlet air temperature can exceed the stability range 

limits but must still be under the upper limit of the allowable range though. 

Table 4-2 Temperature Criteria 

 
The sizing of all the components in the system is discussed in Appendix B but TES tanks 

will be explained to some extent here. Research found that chilled water stratified TES tanks are 

90% stratified along with 1%-2% thermal losses due to environmental conditions (Dorgan & 

Elleson 1993). Almost all TES tanks are stratified and not well-mixed so all simulations were for 

stratified tanks. The TES tanks also changed in size for the different temperature differences 

across the cooling coils (thermal load) because of the amount of chilled water needed is slightly 

smaller for the higher temperature differences. The low temperature chilled water storage tanks 

were also considerably smaller than the TES tanks for regular chilled water systems. 

Example Simulation 

The substantial amount of simulations completed for the five systems from chapter three 

obviously does not allow for each result to be shown here. The data collected was compressed 

into several smaller files and analyzed. The results from the examination of the data are 

explained in chapter five. An example of one of the systems simulated is shown below at certain 

parameters. A walk through will be performed so the simulation may be better understood.  

The example simulation shown is for the series atmospheric chilled water tank system at 

a thermal load of five megawatts. The chiller set point temperature was set at 7.22°C (45°F) with 
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a temperature difference across the cooling coils of 5.56°C (10°F). With these conditions set, the 

components could then be sized according to Appendix B. The cooling load profile used in this 

example was for clean rooms. 

 As stated above, the inlet air temperature to the thermal load was maintained at a 

temperature of 24°C (75.2°F). This was done by controlling the chilled water flow rate to the 

cooling coil. The tank was sized to provide enough cooling to hold the ambient air temperature at 

24°C (75.2°F) for 30 minutes. The tank holds 431.6 m3 (114,000 gallons). The clean rooms load 

profile has the highest thermal load of all three cooling load profiles and will use all of thermal 

energy available in the TES tank. The other two profiles (Data centers & Laboratories) would 

leave a portion of the thermal energy in the tank. 

Emergency cooling was needed at the eighth hour for thirty minutes before the chiller 

would be operating at full capacity again. The figure below shows the inlet air temperature to the 

thermal load and the temperatures of the chilled water in the TES tank at different locations. As 

seen below the inlet air temperature was held at 24°C (75.2°F) while the chilled water 

temperatures in the TES tank rose during emergency conditions but eventually recharged. A 

closer look will be taken at the chilled water temperatures farther below. This was considered a 

successful simulation as the inlet air temperature held steady during emergency conditions and 

the tank eventually recharged.  
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Series Atmospheric CHW Temperatures
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Figure 4-5 Series Atmospheric CHW Tank - Temperatures 

Figure 4-6 shows the chilled water temperatures at different locations in TES tank during 

emergency conditions. This is a much closer view of the TES temperatures during discharge. 

This graph gives an idea of where the thermocline layer is in the tank. If the slope of each line is 

examined, it can be seen that the slope is decreasing ever slightly as the node location increases. 

This can be contributed to the thermocline layer increasing as it moves through the tank which 

would be expected. 
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Series Atmospheric CHW Tank - TES Temperatures
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Figure 4-6 Series Atmospheric CHW Tank – TES Tank Temperatures 

Figure 4-7 shows the flow rate for the system over the full simulation. It shows how the 

variable speed pump in the system reacts to the changes in thermal load by altering the flow to 

the cooling coils.  
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Series Atmospheric CHW Tanks - Flow Rates
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Figure 4-7 Series Atmospheric CHW Tanks - Flow Rates 

The above explanation showed what was looked for in an individual simulation. After all 

simulations have been run for a particular storage system and the results analyzed, trends start to 

appear. The tendencies of systems are then analyzed further and this forms the beginning of 

many of the design criteria. The design criteria of different systems are then compared to each 

other to locate the characteristics of each system type. 
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CHAPTER 5 - Design Analysis and Criteria 

This chapter deals with the results from the analysis of the multitude of simulations 

conducted. The tank energy ratio, stratification levels, recharging conditions, flow rates, ragged 

cooling conditions, temperature differences across the cooling coils, chiller set point 

temperatures, and tank sizes are all examined for regular chilled water tanks, low temperature 

chilled water tanks, and ice storage tanks. The differences between the systems can be seen 

further below. 

Many of design criteria listed below were only formed after combining the data from 

many different simulations. Some of the graphs below are a specific example of a certain 

simulation; these graphs are specifically stated if so, while other charts are a combination of all 

simulations for a certain storage system (ex. Energy ratio & tank size). The trends produced over 

many simulations are also acknowledged. 

Design Analysis 

This section deals with analysis of the results of the simulations conducted. The design 

criteria listed farther below are directly taken from this section. Graphs and tables are provided to 

support statements made. 

Energy Ratio 

This energy calculation is based on defining a lowest possible temperature (Tref) that 

could provide cooling and computing the cooling capacity (internal energy) in the tank according 

to 

 

   

 

where U is the stored cooling capacity, Mi is the mass associated with water increment i, cv is the 

constant volume heat capacity, Ti is the water temperature for water increment i, and Tref  is the 

minimum temperature that provides cooling.  

The energy ratio is the energy left in the tank over the maximum energy storage capacity 

in the tank. The energy storage in the tank refers to the tank’s cooling capacity. This is 

represented on the y-axis in the graphs below. The label on the x-axis depends on whether the 
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simulation is representing chilled water or ice storage. The x-axis for the chilled water graphs is 

the location of the thermocline in tank. The x-axis for ice storage graphs is the fraction of ice 

burned in the tank. This graph allows for the user to determine what fraction of cooling capacity 

(energy) is left in the tank. The charts also work for any thermal load, chiller set point 

temperature (40°F, 45°F, and 50°F), and all three cooling load profiles (Data Centers, Clean 

Rooms, and Laboratories). 

Chilled Water Tanks 

The graph in Figure 5-1 is the energy ratio versus the location of the thermocline in the 

TES tank for the three different temperature differences across the cooling coil for chilled water. 

The location of the thermocline is the beginning of the thermocline layer in the TES tank. It is 

defined as the percentage through the tank the thermocline layer is with 0.00 being at the top of 

the tank and 1.00 at the bottom of the tank. This chart was made from the simulations conducted 

of the three storage systems using chilled water. An equation fit was performed on each of the 

three data streams and the equations of the lines were displayed on the graph.  

Energy Ratio
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Figure 5-1 Energy Ratio for Chilled Water 
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The above graph is true for all chilled water TES tanks in series and parallel and whether 

the tank is atmospheric or pressurized. The discharging rate of energy from the tank is the same 

no matter what the system configuration is and the chiller set point temperatures also made no 

difference in terms of energy ratio tends. The temperature difference across the coil made very 

little difference in terms of the energy ratio. The change in the data from the temperature 

differences across the coil is less than two percent, so it can be concluded that this has very little 

effect on the energy ratio.  

The thermocline layer is at the bottom of the tank while the tank still holds 10% of its 

total energy as shown on the graph. This is due to the fact that the tank is 90% stratified. The 

final 10% is not at a constant temperature and has been partially mixed with the incoming hot 

water. This final portion of energy will only support ragged cooling for a certain amount of time. 

This is more thoroughly discussed farther below in the ragged cooling section.  

Low Temperature Chilled Water Tanks 

The chart below in Figure 5-2 is the energy ratio versus location of the thermocline for 

low temperature chilled water. This chart was prepared from the simulations conducted from the 

storage system using a low temperature chilled water tank. An equation fit was also performed 

on the three data streams as well. 
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Figure 5-2 Energy Ratio for Low Temperature Chilled Water 

This graph was very similar to regular chilled water but the data streams decay at 

different rates compared to regular chilled water as shown by the equations. The end point for 

the energy ratio is same for both graphs but the low temperature chilled water decay rate is 

slightly more linear when compared to regular chilled water. The change between the data 

streams for the different temperature differences across the coils is also negligible for low 

temperature chilled water. 

The thermocline layer is also at the bottom of tank while the tank still holds 10% of its 

total energy just like the chilled water graph. The final 10% of the energy will only support 

ragged cooling.  

Ice Storage Tanks 

Figure 5-3 shows the energy ratio versus the fraction of ice burned in the ice storage tank 

for the three temperature differences across the coil. The data from this graph was made from the 

simulations of storage systems using ice storage. A single equation  fit was performed on all 

three of the data streams and is shown on the graph. 
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Figure 5-3 Energy Ratio for Ice Storage Tanks 

Figure 5-3 shows that ice has the same declining energy rate no matter what the 

temperature difference across the coil or the chiller set point temperature is. It may be hard to see 

on this graph but the higher the chiller set point temperature the more ice that is melted. The 

temperature difference across the coil makes no difference in the amount of ice used.  

One main difference between ice storage and the chilled water storage is that there is no 

ragged cooling with any energy that is left in the tank. If all of the ice is used up in the tank, no 

additional thermal energy will be available and temperatures will immediately begin to rise at a 

substantial rate. This will be better discussed in the ragged cooling section. 

Tank Sizes 

Figures 5-4 through 5-6 were prepared for a designer that wished to determine the size of 

a TES tank based on the amount of time desired for emergency cooling for the three different 

temperature differences across the cooling coil. An equation fit was performed for each of the 

three data streams. These equations could be used by an engineer to easily size a system for any 

amount of time. The graphs for chilled water also account for the fact that the tank will be 90% 

stratified. The left and right y-axis represents the thermal load over the volume of the tank in 

metric and English units. An example of how to use the graphs is shown below. 
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Tank Size (Regular Chilled Water)
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Figure 5-4 Tank Size – Regular Chilled Water 

Tank Size (Low Temperature Chilled Water)
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Figure 5-5 Tank Size - Low Temperature Chilled Water 
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The graph in Figure 5-6 accounts for the fact that ice storage will have two separate 

storage units of the same size. As this storage component of the system will sit idle for extended 

periods, thermal losses (typically <= 1% / day) will require periodic recharging of the ice storage 

tank. This will take place after 15% to 25% of the thermal storage has been lost depending on 

system requirements. A redundant storage tank is included in the system to accommodate for 

this. One ice tank will always be at full capacity each day.  The other unit will typically be used 

to augment the cooling system during the day, and then be rebuilt to full capacity overnight. The 

units are used in an alternate, lead/lag pattern each day. 
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Figure 5-6 Tank Size - Ice Storage 

The above graphs can work one of two ways. A designer must either know the amount of 

time emergency cooling needs to last or the size of the TES tank. For the example calculation, it 

is assumed the TES tank must cool a thermal load of five megawatts for 30 minutes. 

Example: 

Known: Thermal Load = 5 MW Cooling Time = 30 minutes   
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Using the amount of time cooling needs to last in emergency conditions (30 minutes), the 

thermal load over the volume of the tank can be found in Figures 5-4 through 5-6. 

Regular CHW: 1.82 kWLoad/(kW-hr)  Low Temp. CHW: 1.67 kWLoad/(kW-hr) 

Ice: 1 kWLoad/(kW-hr) 

 With the thermal load that is needed to be cooled known, the size of the TES tank can be 

determined. 

Regular Chilled Water: 

)(82.150005 TankTESofSize
hrkW

kW
kWMW

−
==   à   Size of TES Tank = 2747.3 kW-hr 

Low Temperature Chilled Water: 

)(67.150005 TankTESofSize
hrkW

kW
kWMW

−
==     à    Size of TES Tank = 2994 kW-hr 

Ice Storage: 

)(150005 TankTESofSize
hrkW

kW
kWMW

−
==    à    Size of TES Tank = 5000 kW-hr 

The calculations can also be reversed if the size of the TES tank is known and the amount 

of time emergency cooling will last wishes to be found.  

Example: 

Known: Thermal Load = 5 MW Size of Tank = 4000 kW-hr   

The thermal load over the size needs to be calculated first, 

hrkW
kW

hrkW

kW

−
=

−
25.1

4000

5000
 

Using the Figures 5-4 through 5-6, the amount of time emergency cooling will last for 

each type of cooling can be found. 

Regular Chilled Water: 44 minutes 

Low Temperature Chilled Water: 40 minutes 

Ice Storage: 24 minutes 
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Energy Losses 

The energy losses of TES tanks are an important feature to study and even necessary to 

know when initially sizing. Ideally during discharging, chilled water tanks would be perfectly 

stratified and energy losses negligible within the tank. Analysis of the simulations showed that 

the energy losses for each type of TES tank were different and must be accounted for when 

sizing the tanks. The three figures below show how each type of TES tank differs from an ideal 

discharge. 

The energy ratio is the energy left in the tank over the maximum energy storage capacity 

in the tank. This is represented on the y-axis in the graphs below. The label on the x-axis is the 

mass ratio. The mass ratio is the mass of thermal energy of the fluid left in the tank over the 

maximum amount of mass the tank can contain. Each of the graphs contains a black linear line 

that represents how energy would ideally discharge from the tank. The charts also work for any 

thermal load (1 MW, 5MW, and 15MW), chiller set point temperature (40°F, 45°F, and 50°F), 

and all three cooling load profiles (Data Centers, Clean Rooms, and Laboratories). 

Regular Chilled Water Tanks 

The graph in Figure 5-7 represents a regular chilled water tank. This graph holds true no 

matter what the system configuration is, parameters are, or whether the TES tank is atmospheric 

or pressurized. Energy discharges from the tank very close to the ideal rate but not exactly. This 

can be contributed to the fact that the tank is not perfectly stratified and the thermal losses to the 

environment.  
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Energy vs. Mass (Regular Chilled Water)
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Figure 5-7 Energy vs. Mass (Regular Chilled Water) 

The tank still holds approximately 10% of its initial mass at the end of discharging. This 

is due to the fact that tank is 90% stratified. The final 10% of the mass is not at a constant 

temperature and has been partially mixed with the incoming hot water. This final portion will 

only support ragged cooling for a certain amount of time.  

Low Temperature Chilled Water Tanks 

Figure 5-8 shows the energy losses for a low temperature chilled water tank. Energy 

discharges from low temperature chilled water tanks very differently from regular chilled water. 

Ideally the tank would hold 10% of its mass at the end of discharging due to the 90% 

stratification in the tank. The same stratification effects were applied to low temperature chilled 

water tank as to regular chilled water tanks. However due to the lower temperature of the chilled 

water in the tank, there was additional mixing between the incoming hot water and the chilled 

water. This led to an additional part of the mass ratio to be in the thermocline layer. This is why 

the data for low temperature chilled water tanks diverges so far from the ideal line. 
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Energy vs. Mass (Low Temperature Chilled Water)
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Figure 5-8 Energy vs. Mass (Low Temperature Chilled Water) 

Ice Storage Tanks 

Figure 5-9 symbolizes energy losses for ice storage tanks. Energy discharges from the 

tank ideally for ice. This is due to ice not having the stratification effects that plagued chilled 

water. 
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Energy vs. Mass (Ice Storage)
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Figure 5-9 Energy vs. Mass (Ice Storage) 

Stratification Levels 

This part of the report deals with the stratification level throughout the tank dependent on 

time. It gives a good representation of where the thermocline layer is in the tank during 

discharging conditions and how the thermocline layer changes as it moves down the tank. The 

location of different nodes throughout the TES tank is explained above in chapter four. 

The left y-axis in the graphs below is the storage per node in ton-hrs/node and the right y-

axis is the average tank temperature for a stratified TES tank. While the graphs below are for a 

particular thermal load and temperature difference across the coil, the trends are the same for the 

different thermal loads, temperature differences across the coil, and chiller set point 

temperatures.  

Figure 5-10 represents the stratification levels for the parallel atmospheric chilled water 

tank system at five megawatts and a temperature difference of 15°F, while Figure 5-11 is for the 

series atmospheric chilled water tank system at one megawatt and a temperature difference of 

10°F. The scales between the graphs may be different but the trends are basically identical. As 
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the tank begins discharging during emergency conditions, node one immediately decreases as the 

thermocline layer works its way down the tank. The preceding nodes also decrease when the 

thermocline moves down the tank as time increases.  

One particular feature of note is how the thermocline layer changes as the tank 

discharges. Looking closely at the graphs it can be seen that as time increases, the nodes 

discharge the amount of energy at a slower rate. The tank was sized to be 90% stratified but this 

is not achieved immediately during discharging conditions. The thermocline layer increases in 

size as time increases which can be seen by the slower rate at which energy discharges from the 

nodes. The location of the nodes in the TES tank were described in Figure 4-4 on page 28. 

Strafication Levels

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

8.00 8.10 8.20 8.30 8.40 8.50

Time

S
to

ra
g

e 
P

er
 N

o
d

e 
(T

o
n

-h
rs

/n
o

d
e)

40

45

50

55

60

65

A
ve

ra
g

e 
T

an
k 

T
em

p
. (

F
) Node1

Node15

Node30

Node45

Node60

Node75

Node90

Average Tank Temp.

 
Figure 5-10 Stratification for Parallel Atmospheric CHW Tank at 5 MW and ∆ of 15°F 
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Figure 5-11 Stratification Levels for Series Atmospheric CHW Tank at 1 MW and ∆ of 10°F 

System Parameters 

As discussed in chapter seven, the chilled water set point temperatures were changed 

from 7.22°C (45°F) to 4.45°C (40°F) and 10°C (50°F) without changing any of the component 

sizes. Then each chiller set point temperature simulation was simulated at three different 

temperature differences (∆ 10, 15, & 20°F) across the cooling coils. The effects of these changes 

on the systems are shown in this section. Five tables are at the end of this section showing a 

summary for each system of the average inlet air temperature to the thermal load and whether not 

the system recharges for all the simulations. The reactions for changing the system parameters 

were the same for all three thermal loads (1, 5, & 15MW). 

Chiller Set Point Temperatures 

Changing the chiller set point temperature from the original temperature of 7.22°C (45°F) 

had major effects on the systems. This is shown in Figure 5-12 in the flow rates at different 

chiller set point temperatures (40°F, 45°F, & 50°F). These flow rates represent a thermal load of 
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one megawatt and a temperature difference of 5.56°C (10°F) across the cooling coil. The trends 

are the same for all thermal loads and temperature differences across the cooling coil.  

Increasing the chiller set point temperature to 10°C (50°F) caused insufficient heat 

transfer in the cooling coils in many applications. A larger flow rate was required to meet the 

thermal demands as is seen by the graph below in which the flow rate for the chiller set point 

temperature of 10°C (50°F) is much higher than the temperature of 7.22°C (45°F). Decreasing 

the chiller set point temperature to 4.45°C (40°F) led to a smaller flow rate because the cooling 

coils are designed to utilize an incoming chilled water temperature of 7.22°C (45°F). The blips 

that occur at hour ten in Figure 5-12 are due to the tank recharging at this point and the extra 

flow being used for this. 

Parallel Atmospheric CHW Tank - Flow Rates (Data Centers)
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Figure 5-12 Parallel Atmospheric Chilled Water Tank - Flow Rates (∆10F-Data Centers) 

For the data centers cooling load profile, the thermal load was not high enough to cause 

the flow to be at its maximum as the clean rooms and labs load profiles would. The flow rates for 

the clean rooms profile are shown in Figure 5-13. Having a chiller set point temperature of 10°C 

(50°F) caused the flow rate to be maximized for the whole time and caused the inlet air 

temperature to the thermal load to rise above the original 24°C (75.2°F). This is shown in the 
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Figure 5-14 with inlet air temperatures to the thermal load. The inlet air temperatures to the 

thermal load is raised above the 24°C (75.2°F) for the clean room and laboratory load profiles 

because of the high thermal loads. This led to multiple problems in which the systems were not 

able to recharge or hold the air temperature stability. The blip that occurs on the chilled water 

line of 40°F (red line) at hour ten is because of the extra flow being pulled to recharge the TES 

tank. 

Parallel Atmospheric CHW Tank - Clean Rooms
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Figure 5-13 Parallel Atmospheric Chilled Water Tank - Flow Rates (∆10F-Clean Rooms) 
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Parallel Atmospheric CHW Tank - Inlet Air Temperatures
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Figure 5-14 Parallel Atmospheric Chilled Water Tank – Inlet Air Temp. (∆10F-Clean Rooms) 

With the chiller set point temperature at 10°C (50°F), the systems that rely on the main 

chiller to recharge the TES tank either take longer to replenish the thermal energy in the tank or 

do not recharge at all (clean rooms profile). The systems also had issues with maintaining the air 

temperature stability at the higher set point temperature. The laboratory profile even failed all 

together for all simulations at a set point temperature of 10°C (50°F). 

At a chiller set point temperature of 4.45°C (40°F), the system was able to meet all of the 

design conditions but did not operate in the way expected. A lower chiller set point temperature 

caused additional heat transfer in the cooling coils which led to less flow rate needed by thermal 

load. The spikes in the flow rates at a chiller set point temperature of 4.45°C (40°F) are caused 

by the additional flow that is available to recharge the system.  

The results from changing the chiller set point temperature are the same for all thermal 

loads and all temperature differences across the thermal load. All systems also displayed the 

same trends when changing set point temperatures. 
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Temperature Differences across the Cooling Coils 

Increasing the temperature across the cooling coils from the original difference of 5.56°C 

(10°F) to 8.33°C (15°F) and 11.11°C (20°F) has a minor effect on the systems. Generally the 

temperature difference between the supply and return lines had no real effects on the systems 

except for the recharging time of tank. This can be seen in Figure 5-15 as the overall tank 

temperature does not completely reach the original starting point within the twenty-four hour 

simulation for the higher temperature differences. The tank will eventually recharge if given 

enough additional time (4 to 8 hours). The temperature of the chilled water within the TES tank 

rises at hour eight when emergency conditions happen. The system tries to recharge the TES tank 

by returning the tank temperatures to the original starting point. Simulations that will eventually 

recharge but not within the twenty-four hour time period will be represented by a “Yes+” on the 

tables below. In storage systems that use alternative cooling (Low Temp. CHW & Ice), this was 

not an issue due to these systems having other cooling options than the main chiller. All other 

storage systems display the same trend in having slower recharging times as the temperature 

difference across the cooling coil increases. 
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Figure 5-15 Series Atmospheric Chilled Water Tank – Tank Temperatures (Clean Rooms) 
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Summary Tables 

This section shows a summary of the simulations for the storage systems. It shows 

whether or not the simulation was able to hold the design criteria during the normal operating 

conditions and states whether or not the TES tank recharges. The values that did not meet the 

preset standards are in bold. 

Table 5-1 Parallel Pressurized Chilled Water Tank 
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Table 5-2 Parallel Atmospheric Chilled Water Tank 
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Table 5-3 Series Atmospheric Chilled Water Tank 
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Table 5-4 Parallel Low Temperature Chilled Water Tank 
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Table 5-5 Series Ice Storage Tank 

 

Storage Tank Recharging  

This section deals with how each system recharges the TES tank. The system with a 

chilled water TES tank in series has problems with recharging because the tank can not be 

isolated from the thermal load. This means that the hot water stored in the TES tank after 

emergency conditions must also pass through the thermal load before reaching the chiller. This 

causes recharging times of the TES tanks in series to increase. The TES tanks in parallel can 
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recharge without passing the hot water in the tank through the thermal load. This means the TES 

tanks in parallel can recharge much faster.  

A TES tank with alternative cooling (Ice & Low Temperature CHW) is not affected by 

the system’s configuration in recharging. This is a major advantage to having a tank with 

alternative cooling that does not have to be recharged by the main chiller. 

Ragged Cooling Conditions 

A significant amount of additional simulations were also carried out to observe the 

amount of time the system can last past the original 30 minutes before reaching the upper limits 

of the recommended temperature ranges. The upper temperature limit for each cooling load 

profile was discussed in chapter two. The ragged cooling effects as the air inlet temperature 

approaches the upper limit of each system type are discussed below. 

Figure 5-16 shows what ragged cooling looks like for the system with a parallel 

atmospheric chilled water tank using the laboratory load profile. The inlet air temperature was 

allowed to rise to the upper limit of 29.5°C (86.1°F) while the temperatures in the TES tank also 

rose. The TES tank also became less stratified during ragged cooling. 

 
Figure 5-16 Ragged Cooling 



 

 61

Figures 5-17 through 5-19 show the amount of time the ragged cooling will last for the 

three different storage types. The amount of extra time is dependent upon the temperature 

difference across the cooling coils and the cooling load profile used. Ice and low temperature 

chilled water both have a high energy density and thus a smaller tank. While this may work for 

the original 30 minutes of cooling needed, the amount of time ragged cooling last is greatly 

reduced. After the tank has been emptied of the original high energy density fluid in it, the 

smaller tank temperatures increase more rapidly compared to regular chilled water. A regular 

chilled water tank size will be quite large and more able to support ragged cooling longer.  

The y-axis Figures 5-17 through 5-19 gives the extra time (in minutes beyond the original 

30 minutes of cooling) before the inlet air temperature to the thermal load reaches the upper 

temperature limit. The x-axis is the temperature difference (10°F, 15°F, & 20°F) across the 

cooling coils of the chilled water.  
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Figure 5-17 Ragged Cooling Time - Regular Chilled Water 
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Ragged Cooling Time - Low Temperature Chilled Water
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Figure 5-18 Ragged Cooling Time - Low Temperature Chilled Water 

Ragged Cooling Time - Ice Storage
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Figure 5-19 Ragged Cooling Time - Ice Storage 
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Table 5-6 Ragged Cooling-Temperature Rise 

 
The table above gives the amount of time ragged cooling will last per degree the inlet air 

temperature rises. The table is divided into the three different storage types and each temperature 

difference has a different rate. A designer of a storage system could use this table to determine 

how long ragged cooling will last for his/her system. 

Design Criteria 

During the analysis of the simulation results of the five systems, features were discovered 

that are important to emergency cooling design. These features, called design criteria, are listed 

below. Many of them were developed by studying the differences between system 

configurations, tank types, and changing system parameters.  

• TES tanks are needed to provide the necessary cooling in the event of main chiller 

loss. 

This criterion was intuitive after conducting research and simulations. No method was 

found where in the event the main chiller losses power can the system effectively control the 

ambient air temperatures. Figure 5-20 shows that without a TES tank, how fast the ambient air 

temperature will rise during emergency conditions at hour eight. The ambient air temperature is 

over 38°C (100.4°F) in less than five minutes and reaches 60°C (140°F) within nine minutes. All 

equipment within room would be destroyed by the high temperatures at this point. 
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Figure 5-20 No Emergency Cooling 

• System parameters have a minor effect on how energy discharges from TES tanks. 

This is shown in the energy ratio graphs for the different tank types. Changing the chiller 

set point temperature had absolutely no effect on the way energy discharged from the tank. The 

energy ratio graphs were exactly the same when comparing the two. Increasing the temperature 

difference between the chilled water supply and return lines caused a small variation in the 

energy ratio of about three percent. Figure 5-21 shows how small the change was when the 

temperature difference was increased. 



 

 65

Energy Ratio
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Figure 5-21 Energy Ratio for Chilled Water 

• The longer emergency cooling lasts, the larger the thermocline layer becomes. 

With all of the TES tanks stratified, a thermocline layer forms in the TES tank during 

discharging. This layer will increase in size and take up a larger percentage of the tank as time 

progresses. This can be seen in Figure 5-22. This graph is the chilled water temperatures at 

different locations in a TES tank during emergency conditions. Looking closely at the slope of 

each line, it can be seen that the slope is decreasing ever slightly as the node location increases. 

This can be contributed to the thermocline layer taking longer to pass through each node because 

of its increase in size.  
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Parallel Atmospheric CHW Tank - TES Temperatures
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Figure 5-22 Parallel Atmospheric CHW Tank - TES Temperatures (CHW: 45°F ∆ 10°F) 

• Increasing the chiller set point temperature from original system settings, will require 

additional flow to cool the thermal load. 

Changing the chiller set point temperature without changing any additional components can 

have repercussions throughout the system. Increasing the chiller set point temperature to 10°C 

(50°F) causes insufficient heat transfer in the cooling coils. A larger flow rate was required to 

meet the thermal demands. Figure 5-23 is the flow rates for the laboratory cooling load profile at 

different chilled water set point temperatures. It shows how the flow rate for the chiller set point 

temperature of 10°C (50°F) is much higher than the flow rate for the temperature of 7.22°C 

(45°F) and even reaches the maximum amount of flow that can provided during hours zero to 

ten. 
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Flow Rates Based on CHW Temperatures
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Figure 5-23 Flow Rates based on different CHW Temperature (Labs) 

• Decreasing the chiller set point temperature from original system settings, will reduce 

the amount of flow needed to cool the thermal load. 

Changing the chiller set point temperature without changing any additional components can 

have a significant impact throughout the system. Decreasing the chiller set point temperature to 

4.45°C (40°F) led to a smaller flow rate because the cooling coils are designed to utilize an 

incoming chilled water temperature of 7.22°C (45°F). This can be seen above in Figure 5-23 

where the flow rate at 4.45°C (40°F) is the lowest. 

• Systems have a difficult time maintaining the ambient air (±) temperature at the 

preset conditions when the chiller set point temperature is increased from its original 

settings. 

This design criterion goes with the previous two in that with the flow rate being affected as much 

as it is, the ambient air temperatures will have also changed. Looking at Figure 5-23, it can been 

seen that the flow rate is at the maximum for a chilled water set point temperature of 10°C 

(50°F) for the first 10 hours of the simulation. With the flow rate so high, it is doubtful that the 

ambient air temperature is being maintained at the desired 24°C (75.2°F). This can be seen in 

Figure 5-24 as the inlet air temperature to the thermal load could not be maintained at 24°C 
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(75.2°F) when the flow rate was at the maximum. This led to large variations in the inlet air 

temperature, which cannot be tolerated by a laboratory. 

Ambient Air Temperature  (Labs)
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Figure 5-24 Ambient Air Temperatures for different Chiller Set Point Temperatures (Labs) 

• TES tanks in parallel configuration with no alternative cooling source can recharge 

faster than tanks in series configuration. 

Only one major difference was found between TES tanks in parallel and series 

configuration with no alternative cooling source. TES tanks in parallel can effectively be isolated 

from the thermal load when recharging while the series configuration can not do this. This means 

that when recharging, a TES tank in series must pass all of the hot water stored in the tank after 

emergency conditions through the cooling coils, effectively limiting the rate at which it can 

replenish itself. This is shown in Figure 5-25 with an example of the TES tank temperature of the 

two different chilled water system configurations. The system in parallel will recharge its tank 

about four hours faster than the tank in series. 
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Chilled Water Configuration
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Figure 5-25 Chilled Water Configuration (CHW: 45°F ∆10°F) 

• Raising the temperature difference across the cooling coils will increase the amount 

of time it takes to recharge the TES tanks. 

Increasing the temperature difference between the chilled water supply and return lines 

adds to the time it takes for the TES tanks to recharge. This is true regardless of the system 

configuration. Figure 5-26 is the TES tank temperatures at different temperature differences 

across the cooling coils. It gives an example of how the larger temperature differences take 

longer to recharge the TES tank after emergency conditions 
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Parallel TES Tank Temperature (Clean Room)
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Figure 5-26 Parallel TES Temperatures 

• The amount of time ragged cooling lasts depends on which application of emergency 

was used and the temperature difference across the cooling coil. 

Regular chilled water TES storage will provide the longest ragged cooling time when 

compared to the high energy density medium (e.g. Ice, Low Temp CHW). The large size of a 

regular chilled water tank makes it better able to handle ragged cooling after the original thermal 

energy has been discharged. The small size of high energy density tanks does not allow for much 

ragged cooling after the original energy is gone. This is shown in Figure 5-27 in the time ragged 

cooling will last using the clean room thermal load profile for the different system types. 
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Ragged Cooling Time
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Figure 5-27 Ragged Cooling (Clean Rooms) 

• The discharging and recharging characteristics are the same for atmospheric and 

pressurized TES tanks. 

Pressurized and atmospheric TES tanks have the same characteristics when discharging 

and recharging. There was absolutely no difference in how the tanks react. Both of the TES tanks 

fit onto the equation lines developed in Figure 5-1 when discharging. The time it takes to 

recharge the tank is also the same for the two different tanks types.  

• Low temperature chilled water tanks are less stratified than regular chilled water 

tanks. 

As the temperature of the TES tank approaches the freezing point of water, stratification 

of the tank reacts differently. An additive market by the Cool Solutions Company called ‘socool’ 

must be added to the water to stabilize the stratification within the tank. The thermocline layer 

will take up a larger percentage of tank’s volume and will have to be accounted for when sizing 

low temperature TES tanks. The graph below signifies the difference between regular chilled 

water and low temperature chilled water. The regular chilled water has close to 10% of its mass 

left in tank when only 10% of the tank’s energy is still left. This would be expected of a 90% 
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stratified TES tank. Low temperature chilled water tanks have over 20% of their mass still left 

when 90% of their energy has been expended. This is because the thermocline layer has taken up 

a larger percentage of the tank’s overall volume.  
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Figure 5-28 Mass vs. Energy (Chilled Water) 

• TES tanks with alternative cooling sources will recharge faster than tanks that rely on 

the main chiller to recharge. 

Systems (Ice, Low Temp CHW) that use an alternative cooling source, (e.g. additional 

chiller, ice builder, refrigeration unit) will replenish the thermal energy in the TES tank the 

fastest. Systems that rely on the main chiller to recharge the TES tank must wait until the thermal 

load of the application decreases enough to allow for substantial flow to be diverted to the TES 

tank. This usually does not happen until nightfall. This is shown in Figure 5-29. The systems that 

utilize an alternative cooling source were able to recharge two to six hours faster than those that 

did not. This graph used the clean room thermal cooling load profile which has the highest 

thermal load demand. If one of the other cooling load profiles (e.g. Data Centers) was used, this 

characteristic would not be as obvious due to the decrease in thermal load demand. Additional 

flow could be diverted from the thermal load thus leading to faster recharge times. One other 
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important point to note is that, systems with alternative cooling sources will always recharge the 

TES tank. 

Recharge Characteristics
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Figure 5-29 Recharge Characteristics-Clean Room (CHW: 45°F ∆10°F) 

Summary of Design Criteria 

• TES tanks are needed to provide the necessary cooling in the event of main chiller 

loss. 

• System parameters have a minor effect on how energy discharges from TES tanks. 

• The longer emergency cooling lasts, the larger the thermocline layer becomes. 

• Increasing the chiller set point temperature from original system settings, will require 

additional flow to cool the thermal load. 

• Decreasing the chiller set point temperature from original system settings, will reduce 

the amount of flow needed to cool the thermal load. 

• Systems have a difficult time maintaining the air stability (±) temperature when the 

chiller set point temperature is increased from original settings. 
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• TES tanks in parallel configuration with no alternative cooling source can recharge 

faster than tanks in series configuration. 

• Raising the temperature difference across the cooling coils will increase the amount 

of time it takes to recharge the TES tanks. 

• The amount of time ragged cooling lasts depends on which application of emergency 

is used and the temperature difference across the cooling coil. 

• Low temperature chilled water tanks are less stratified than regular chilled water 

tanks. 

• The discharging and recharging characteristics are the same for atmospheric and 

pressurized TES tanks.  

•  TES tanks with alternative cooling sources will recharge faster than tanks that rely on 

the main chiller to recharge. 
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CHAPTER 6 - Conclusions 

The research project my thesis was based on, achieved its finals aims in developing 

design methodologies for TES systems. Important thermal applications and the design of 

emergency cooling systems were analyzed in great detail. The design criteria obtained from the 

simulation results will provide a designer with additional information on how to best maximize 

the efficiency of their emergency cooling system. 

The simulation program (TRNSYS) utilized to generate the results needed for the design 

methodologies succeeded in accurately simulating the system. The only system in question was 

the TES tanks that use low temperature chilled water. The additional additives necessary in low 

temperature chilled water tanks to provide correct stratification required close scrutiny when 

simulating to make sure TRNSYS accounted for this. All simulations for low temperature chilled 

water tanks showed that TRNSYS was successful but further research could be conducted into 

this area. 

The research project was also very successful in identifying five emergency cooling 

systems that are commonly used by companies and providing useful information. While a 

designer’s current system maybe setup slightly different (valves, piping, etc.), this investigation 

showed that energy discharging from the tank is independent of the setup and configuration 

(parallel or series). However, the manner in which the tank will recharge after emergency 

conditions is very dependent on the setup and configuration.  

Several design criteria were developed from the simulation results for TES systems. The 

main points are: 

- TES tanks containing chilled water or ice are needed to provide the necessary cooling in 

the event of main chiller loss. No method was found where, in the event the main chiller loses 

power, the system can effectively control the air temperature supplied to the the thermal load. 

Air temperatures may soar to over 53.3°C (128°F) within six minutes at which point the 

equipment within the room would be destroyed. 

- System parameters have a minor effect on how energy discharges from TES tanks. 

Changing the chiller setpoint temperature or the temperature difference between the chilled water 

supply and return lines had little to no effect on how energy discharged from the TES tank.  
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- Chilled water TES tanks in parallel configuration with no alternative cooling source can 

recharge faster than TES tanks in series configuration. TES tanks in parallel can effectively be 

isolated from the thermal load when recharging while the series configuration cannot do this. A 

TES tank in series must pass all of the hot water stored in the tank after emergency conditions 

through the cooling coils before reaching the chiller when recharging. In effect, limiting the rate 

at which it can replenish the TES tank. 

- Raising the temperature difference between the chilled water supply and return line will 

increase the amount of time it takes to recharge the TES tanks. Increasing the temperature 

difference will decrease the pump size thus causing longer recharging times. 

- The amount of time ragged cooling will last depends on which application of emergency 

cooling is used and what type of medium is used for emergency cooling. Low temperature 

chilled water and ice storage use smaller high energy density tanks that do not allow for much 

ragged cooling after the original energy (cooling capacity) is gone. Regular chilled water uses 

large TES tanks that are more able to provide ragged cooling after the original energy is used up. 

- The discharging and recharging characteristics are the same for atmospheric and 

pressurized TES tanks. The results from the simulations showed no difference in the 

characteristics between atmospheric and pressurized TES tanks. 

Research conducted for this project also showed other uses for emergency cooling. 

Several applications were discovered where TES tanks were utilized for load shifting during 

peak hours. These TES tanks also double as emergency cooling when needed. While this was not 

studied in this project, additional research could be conducted into this area to further the 

information available on TES tanks. Also, high energy density methods (i.e. compressed air) 

may become a viable option to provide emergency cooling if the applications become modular 

where then thermal load for each module is relatively small. 
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Appendix A - TRNSYS Screenshots 

The screenshots from TRNSYS of the five systems designed from chapter three are 

shown here. The level of complexity taken into account for each system can be seen in the 

figures. 

TRNSYS Screenshot of Parallel Pressurized TES Tank 

The figure below is a screenshot of what a storage system that uses a pressurized TES 

tank in parallel looks like in TRNSYS at a thermal load of one megawatt with all of its 

components. 

 
Figure A-1 Parallel Pressurized TES Tank (1 MW) 
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TRNSYS Screenshot of Parallel Atmospheric TES Tank 

The figure below is a screenshot of a storage system that uses an atmospheric TES tank in 

parallel looks like in TRNSYS at a thermal load of one megawatt with all of its components. 

 
Figure A-2 Parallel Atmospheric Chilled Water Tank (1 MW) 
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TRNSYS Screenshot of Series Atmospheric TES Tank 

The figure below is a screenshot of what a storage system that uses an atmospheric TES 

tank in series looks like in TRNSYS at a thermal load of five megawatts with all of its 

components. 

 
Figure A-3 Series Atmospheric Chilled Water Tank (5 MW) 
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TRNSYS Screenshot of Parallel Low Temperature TES Tank 

The figure below is a screenshot of what a storage system that uses a low temperature 

TES tank in parallel looks like in TRNSYS at a thermal load of fifteen megawatts with all of its 

components. 

 
Figure A-4 Parallel Low Temperature Chilled Water Tank (15 MW) 
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TRNSYS Screenshot of Series Ice Storage TES Tank 

The figure below is a screenshot of what a storage system that uses an ice storage tank in 

series looks like in TRNSYS at a thermal load of five megawatts with all of its components. 

 
Figure A-5 Series Ice Storage Tank (5 MW) 
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Appendix B - Component Sizing  

The following section deals with the sizing of the components for the systems. So that the 

performance of different emergency cooling systems can be compared on a “level” field several 

system characteristics and operating parameters are assumed to be same for all systems.  

Consequently, performance results of the system simulations can then be directly compared to 

one another. Multiple thermal loads will be used in the simulations but the components were 

sized to cool a thermal load of 1 MW (3.413 MBtu/hr) in this section. For different thermal loads 

(ex. 10 MW or 15 MW) the equations and method of sizing the components will the same. The 

reference conditions are: 

• The TES tank must be able to provide at least 30 minutes of cooling without assistance 
from the chillers.  

• The TES tank must also recharge sometime during the simulation. 

Using these conditions, the sizes of certain components in the system are determined. 

Chiller 

The chiller was designed to meet a load of one megawatt. The chillers also have 

maximum load of 10% higher than what they were designed for redundancy. The chiller usually 

has a set point temperature between 4.45°C (40°F) to 12.78°C (55°F) for chilled water. Any set 

point temperature below 4.45°C (40°F) is considered low temperature chilled water while all 

temperatures above will be considered regular chilled water. The set point temperature had to be 

set low enough to provide adequate cooling but high enough above the freezing point to prevent 

freezing conditions. The temperature of the chilled water returning to the chiller is usually 

between 10°C (50°F) to 21.11°C (70°F). The difference between the supply and return 

temperatures of the chilled water is typically 5.56-6.67°C (10-12°F). Temperature differences as 

high as 11.11°C (20°F) can be done but this is considered very aggressive cooling. The cooling 

tower was then sized to meet chillers cooling needs. Chiller starting and stopping features were 

also modeled in the component. The table below summarizes the conditions for one megawatt. 
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Chiller Parameters 

Design Chiller Load 1 MW (3.413 MBtu/hr) 

Minimum Chiller Load 1000 W (3413 Btu/hr) 

Maximum Chiller Load 1.1 MW (3.753 MBtu/hr) 

Fluid Properties 

With the temperatures of the chilled water decided, the properties of the fluid could then 

be found in the tables located in various tables. 

 

Pumps 

There are two different types of pumps used for the simulations; constant speed pump 

and variable speed pump. The flow rate of the pumps first had to be calculated before any of 

them could be accurately sized. The heat transfer equation below was used to calculate the flow 

rate. 

TcmQ p∆=
.

 

Q = 1 MW (3.413 MBtu/hr) 

Cp = 4.20 kJ/kg-K (1.0 Btu/lb-F) 

The pump speed will mostly be determined by the difference in the supply and return 

temperatures. The difference in the supply and return temperatures will be between a standard 

temperature difference such as 5.56 to 6.67°C (10-12°F) and an aggressive temperature 

difference of 11.11°C (20°F).  

∆ T = 5.56 to 11.11°C (10 to 20°F) 

So, 

Mass flow rate = 42.9 to 21.4 kg/s (94.6 to 47.2 lb/s) 
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The pumps can now be selected depending on temperature difference. The variable speed 

pump and constant speed pump are the same size. The pumps were selected using a Bell & 

Gossett pump selection program.  

Pump Conditions 

Variable and Constant Speed Pumps 2.6 to 1.3 m3/min (680 to 340 GPM) 

TES Tank 

The TES tank has to be large enough to provide cooling for 30 minutes. This is about the 

amount of time needed to restart a chiller after a short power failure or shut down the facility. 

Depending on the application the time needed for cooling may change. Knowing the flow rate 

required to meet the thermal load, the amount of storage needed can be found. The size of the 

tank will then depend on the temperature difference in the supply and return temperatures of the 

chilled water. 

Amount required for 30 minutes, 

 

(2.6 to 1.3 m3/min)(30 min) = 78 to 39 m3 (20,400 to 10,200 gallons) 

 

The tank must be able to hold between 78 to 39 m3 (20,400 to 10,200 gallons) depending 

on the temperature difference. The TES tank is about 90% stratified so the tank must also be 

oversized by 10% to accommodate for this. The tank size must then 86.7 to 43.3 m3 (22,667 to 

11,333 gallons). The size must then be rounded up to a common tank size. The table below 

summarizes all of the conditions. The insulation used around the tank was set to allow a heat 

gain of two percent of the thermal energy stored in the tank over twenty-four hours. Low 

temperature chilled water and ice storage tanks were also sized accordingly. 

TES Tank Conditions 

Tank Capacity (Chilled Water) 87.1 to 45.5 m3 (23,000 to 12,000 gallons) 

Tank Capacity (Low Temp. Chilled Water) 54 to 37 m3 (14,300 to 9,800 gallons) 

Tank Capacity (Ice Storage) 5500 kg (12,125.4 lbs) 
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Pipes 

There are several different pipe sections in the simulations. All of the pipe sections are 

similar so the different simulations can be compared. Each pipe segment is 10 meters long. A 

stainless steel pipe was used with one inch calcium silicate insulation. 

Pipe Conditions 

Inside Diameter 0.2027 m (7.981 in)  

Outside Diameter 0.2032 m (8 in) 

Pipe Length 10 m (32.8 ft)  

Pipe Thermal Conductivity 16 W/m-K (8.1 Btu/(hr-ft-F)) 

Insulation Thickness 0.0254 m (1 in) 

Insulation Thermal Conductivity 0.045 W/m-K (0.32 Btu/hr-ft-F) 

Cooling Coils 

The cooling coils were sized to cool one megawatt. A MultiTherm program was used to 

choose a coil from the Diversified Heat Transfer Company. The size and setup were taken 

directly from an actual cooling coil advertised on the Diversified Heat Transfer website. 

The tubes are round seamless copper staggered in the direction of the airflow. The tubes 

have a 5/8” O.D. x 0.20” wall thickness. The tubes come with a 0.008” thick aluminum fins. 

Cooling Coil Conditions 

Outside Tube Diameter 0.15875 m (0.625 in)  

Inside Tube Diameter 0.1537 m (0.605 in) 

Tube Spacing 0.033 m (1.299 in) 

Center to Center Distance 0.0381 m (1.5 in) 

Number of Rows 2 

Tube Thermal Conductivity 400 W/m-K (231.1 Btu/hr-ft) 

Fin Thickness 0.000203 m (0.00799 in) 

Fin Spacing 0.002337 m (0.092 in) 

Fin Thermal Conductivity 250 W/m-K (144.5 Btu/hr-ft) 
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