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ABSTRACT 
 

 

Traditionally, major-league scouts have evaluated young “position players,” those who 

are not pitchers, using the “Five Tools”: hitting for average, hitting for power, running, 

throwing, and fielding.  However, “sabermetricians,” those who study the science of 

baseball, e.g. Bill James, have been trying to evaluate position players using quantifiable 

measures of performance.  In this study, a factor analysis was used to determine 

underlying characteristics of minor-league hitters.  The underlying factors were 

determined to be slugging ability, lead-off hitting ability, “patience” at the plate, and 

pure-hitting ability.  Additionally, an ordinal response was created from the number of at-

bats and on-base plus slugging percentage in the majors during the 2002-05 seasons.  The 

underlying characteristics along with other variables such as a player’s age, position, and 

level in the minors are used in a cumulative logit logistic regression model to predict a 

player’s probability of notable success in the majors.  The model is built upon data from 

the 2002 minor-league season and data from the 2002, 2003, 2004, and 2005 major-

league seasons. 
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I. Introduction 
 

...By the time Billy [Beane] was fourteen, he was six inches taller 
than his father and doing things that his father’s books failed to 
describe. As a freshman in high school he was brought up by his 
coach, over the angry objections of the older players, to pitch the 
last varsity game of the season. He threw a shutout with ten 
strikeouts, and went two for four at the plate. As a fifteen-year-old 
sophomore, he hit over .500 in one of the toughest high school 
baseball leagues in the country. By his junior year he was six foot 
four, 180 pounds and still growing, and his high school diamond 
was infested with major league scouts, who watched him hit over 
.500 again. In the first big game after Billy had come to the scouts’ 
attention, Billy pitched a two-hitter, stole four bases, and hit three 
triples... 
 
...He encouraged strong feelings in the older men who were paid to 
imagine what kind of pro ballplayer a young man might become. 
The boy had a body you could dream on. Ramrod-straight and lean 
but not so lean you couldn’t imagine him filling out. And that face! 
Beneath an unruly mop of dark brown hair the boy had the sharp 
features the scouts loved. Some of the scouts still believed they 
could tell by the structure of a young man’s face not only his 
character but his future in pro ball. They had a phrase they used: 
“the Good Face.” Billy had the Good Face... 
 
...They all missed the clues. They didn’t notice, for instance, that 
Billy’s batting average collapsed from over .500 in his junior year 
to just over .300 in his senior year. It was hard to say why. Maybe 
it was the pressure of the scouts. Maybe it was that the other teams 
found different ways to pitch to him, and Billy failed to adapt. Or 
maybe it was plain bad luck. The point is: no one even noticed the 
drop-off. ‘I never looked at a single statistic of Billy’s,’ admits one 
of the scouts. ‘It wouldn’t have crossed my mind. Billy was a five-
tool guy. He had it all.’ Roger Jongewaard, the Mets’ head scout, 
says, ‘You have to understand: we don’t just look at performance. 
We were looking at talent.’ But in Billy’s case, talent was a mask. 
Things went so well for him so often that no one ever needed to 
worry about how he behaved when they didn’t go well. Blalock 
[his coach] worried, though. Blalock lived with it. The moment 
Billy failed, he went looking for something to break. One time after 
Billy struck out, he whacked his aluminum bat against a wall with 
such violence that he bent it at a right angle. The next time he 
came to the plate he was still so furious with himself that he 
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insisted on hitting with the crooked bat. Another time he threw 
such a tantrum that Blalock tossed him off the team. ‘You have 
some guys that when they strike out and come back to the bench all 
the other guys move down to the other end of the bench,’ says 
Blalock. ‘That was Billy.’ 
 
...Billy could run and Billy could throw and Billy could catch and 
Billy even had the presence of mind in the field. Billy was quick-
witted and charming and perceptive about other people, if not 
about himself. He had a bravado, increasingly false, that no one in 
a fifty-mile radius was ever going to see through. He looked more 
like a superstar than any actual superstar. He was a natural leader 
of young men. Billy’s weakness was simple: he couldn’t hit... 
 
...In his last three and a half years of pro ball Billy watched a lot 
more baseball than he played, and demonstrated an odd knack for 
being near the center of other people’s action. ‘The Forrest Gump 
of baseball,’ he later called himself. He was on the bench when the 
Twins won the 1987 World Series and also when the A’s won the 
1989 World Series. He was forever finding himself next to people 
who were about to become stars. He’d played outfield with Lenny 
Dykstra and Darryl Strawberry. He’d subbed for Mark McGwire 
and Jose Canseco. He’d lockered beside Rickey Henderson. In his 
slivers of five years in the big leagues he played for four famous 
managers: Sparky Andersen, Tom Kelly, Davey Johnson, and Tony 
La Russa. But by the end of 1989 his career stat line (301 at bats, 
.219 batting average, .246 on-base percentage, .296 slugging 
percentage, and 11 walks against 80 strikeouts) told an eloquent 
tale of suffering. You didn’t need to know Billy Beane at all – you 
only needed to read his stats – to sense that he left every on-deck 
circle in trouble. That he had developed neither discipline nor 
composure. That he had never learned to lay off a bad pitch. That 
he was easily fooled. That, fooled so often, he came to expect that 
he would be fooled. That he hit with fear. That his fear 
masqueraded as aggression. That the aggression enabled him to 
exit the batter’s box as quickly as possible. One season in the big 
leagues he came to the plate seventy-nine times and failed to draw 
a single walk. Not many players do that...(Lewis, 2003) 
 

 

The above passage is an excerpt from the book, Moneyball: The Art of Winning an 

Unfair Game.  This book wonderfully illustrates the why and how of a new approach 

taken by some to evaluate baseball players.  Traditionally, major-league scouts have 
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evaluated young “position players,” those who are not pitchers, using the “Five Tools”: 

hitting for average, hitting for power, running, throwing, and fielding. They evaluated the 

players while watching them in person, during either games or try-outs.  However, there 

are many stories like the one of Billy Beane, and there is a problem with this.  Beane was 

signed by the Mets in 1980 for $125,000; Luis Montanez, who some scouts compared to 

Shawon Dunston, received $2.75 million from the Chicago Cubs as their number one 

draft pick in 2000 according to baseballprospectus.com, and he has yet to play a game in 

a Cubs uniform.  Professional baseball is a very expensive industry.  Teams cannot afford 

to make too many mistakes.  They need an efficient, trustworthy method for evaluating 

young players. 

 

Statisticians try to encourage researchers to make data-based decisions.  It should be 

considered that position players can be evaluated using quantifiable measures of 

performance.  Some “sabermetricians,” those who study the science of baseball, have 

been trying to do that or at least something similar for many years.  (Sabermetrics is a 

term originating from the organization SABR, or the Society for American Baseball 

Research.)  Bill James, often known as the father of sabermetrics, has, for example, 

created a statistic called runs-created.  Runs-created is used to predict the number of runs 

a team will score based on offensive statistics like hits, walks, and total bases.  It is also 

often used to estimate how many runs an individual player can “create” for his team.  

Other sabermetric measures of offensive production such as on-base percentage plus 

slugging percentage (OPS) have already become commonly used by players, managers, 

and media.    
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I hypothesize that the offensive performance of prospective minor-league position players 

can be evaluated by a statistical model in such a way as to predict their performance in 

the major leagues.  In order to assess this hypothesis, I will attempt to build a statistical 

model, using offensive statistics such as hits, homeruns, walks, and strikeouts that both 

accurately and precisely predicts offensive production in the major-leagues. 

 

An overview of the approach to be taken follows: 

1. Gather data on prospective minor-league position players’ performance 
2. Observe their major-league performance, if any 
3. Model some measure(s) of their major-league performance against 

measures of their minor-league performance 
4. Make conclusions about significant predictors and final model  
5. Discuss ideals and reality regarding collected data and scope of 

inference 
 

II. Data Collection 

II.1 Brief Discussion of the Minor Leagues 
 

In order from least to most advanced, the minor leagues consist of the rookie, advanced 

rookie, short-season A, A, A+, AA, and AAA leagues. The teams in these leagues are 

independently owned and operated, but they are directly affiliated with a major-league 

organization.  There are also independent leagues, but they have no affiliation with the 

Major League Baseball.  Mike Blake discusses each of these leagues in his book, The 

Minor Leagues (Blake, 1991).  Further discussion of the minor leagues can be found on 
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the Wikipedia website.1  The purpose of these leagues is to develop young players so that 

one day they may be ready to be called up by a major-league affiliate.   

The rookie, advanced rookie, and short-season A leagues are all short-season leagues 

taking place from June through September. They consist mostly of players recently 

drafted out of high school and some out of college.  These players are young enough that 

they may never have lived away from home or made decisions without the influence of 

their parents.  A large portion of these young players are still honing their basic life skills, 

as well as their baseball skills.  Their future success may not yet be predictable with any 

desired level of accuracy. 

 

The single-A and double-A leagues are the levels at which most serious player evaluation 

takes place.  The single-A league consists of players moving up from the short-season 

leagues, some high first-round draftees (particularly those with college experience), and 

possibly very successful players from foreign rookie leagues.  For many of these players, 

this is a second or third promotion in the minors.  They are commonly trying to work on 

control as pitchers and consistency as hitters.  The double-A league is often the level 

from which players are called up to the majors.  This is a level where a few small 

remaining player faults are being corrected, and the level of competition is quite good.   

 

Lastly, there is the triple-A league.  This league has a very interesting mix of players.  

Some are major-league players getting in some practice while rehabilitating an injury 

(technically, these players may be found at any long-season league).  Some are major-

league-caliber players getting one last evaluation before being called up.  And, some are 
                                                 
1 Wikipedia’s URL is http://en.wikipedia.org/wiki/Minor_league_baseball. 
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players at or near major-league quality, for whom the major-league team doesn’t have an 

available roster spot.  It may be that an all-star or very good player already plays their 

position, or the minor-league player’s defense is not good enough to fill an open position, 

or a combination of both.  (Only 25 players may be a part of the major-league club until 

September 1st when this is expanded to 40.)  It is not uncommon for poor-fielding 

sluggers to get “stuck” at the triple-A level for the remainder of their careers, thus 

becoming what some call a “quadruple-A player.”  This issue will become relevant later 

when a minor-league prospect is defined. 

 

So, a general profile of the players in the minor leagues is 

• Short-season league players are very young and their skills very raw, 
and thus, the leagues are “speculative” and filled with players of 
unknown potential 

• Single-A players are potentially good players working on control as 
pitchers and consistency as hitters 

• Double-A players are very good players often called directly up to the 
majors 

• Triple-A players are very good players at or near major-league quality, 
for whom often there is not an open roster spot, or the defense required 
to play their position is lacking; some are major-leaguers rehabilitating 
an injury 

 
So, many players in the single-A, double-A, and triple-A leagues have at least some 

potential to become major-leaguers.  And therefore, these leagues are the focus of the 

data collection. 

 

II.2 Data Sources 
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The following sources were scoured for player-performance statistics from the single-A, 

double-A, and triple-A leagues during the 1994-98 seasons.  (Collecting data from this 

time period would give the prospects more than ample opportunity to progress and play 

in the majors, if they were ever going to do so.)   

• John Sickels, noted prospect analyst and author of The Baseball 
Prospect Book 

• www.minorleaguebaseball.com 
• www.baseballamerica.com 
• www.usatoday.com 
• sportsillustrated.cnn.com 
• www.thebaseballcube.com 
• www.baseball1.com 
• www.baseball-reference.com 
• www.baseball-links.com – This site contained many links, into which I    

checked. 
• individual team websites such as the Durham Bulls, Wichita Wranglers, 

and Fort Myers Miracle 
• groups.yahoo.com/group/baseball-databank 

 

The last source in the above list is a large webgroup (over 700 members) of 

sabermetricians, both amateur and professional, and simply fans of baseball statistics.   

 

No response was received from John Sickels.  Minorleaguebaseball.com, Baseball 

America, USA Today, Sports Illustrated, and the individual teams had statistics for the 

current season, 2005.  Baseball1 and Baseball-Reference had major-league statistics only.  

The baseball-databank webgroup was also in search of a source of minor league statistics.  

The following message was received from someone at The Baseball Cube: 

 
“Basically, I have statistics during this time period [1994-98] for 
players who have major league experience and minor leaguers who 
were active in 2002 or later. I have 6582 records for batting 
statistics and 6690 records for pitching statistics.” - Anonymous 
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This data would not have been ideal because these data contain only those minor-leaguers 

from 1994-98 who made it to the majors.  They represent a biased sample of minor-

leaguers.  Those players who washed out between 1994 and 2002 would not have been 

included.  There would have been no data with which to distinguish those who achieved 

future success from those who didn’t.    

 

In the end, a workable-but-not-ideal data set was obtained: complete offensive minor-

league statistics were found for the 2002 season from the baseball-databank webgroup, as 

well as major-league offensive statistics from the 2002, 2003, 2004, and 2005 seasons.  

This one-year minor-league sample limits the ability to obtain precise predictions in the 

case of some players.  A player may have one really good or really bad season in the 

minors due to little more than chance or injury.  It is not possible to take an average over 

multiple minor-league seasons in order to reduce these effects.  Also, because the sample 

is from only three years ago, many of the players have not yet had adequate time to reach 

their full potential, and hence it is unknown whether such players might still become 

productive major-leaguers or even all-stars.  This forces a change in the research question 

I will pursue.  It is now, “What offensive statistics are indicators of major-league success 

in the next three seasons?”   If primary interests are short-term, then this question is 

relevant.  Or if one can assume that indicators of long-term success are no different from 

those of short-term success, then the original hypothesis can still be tested.  There is no 

way to check this, however. 
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II.3 Defining a Prospect 
 

 One last step must be taken in order to create a working dataset.  A minor-league 

prospect must be defined.  Not all minor league players are prospects on the way up.  

There are the quadruple-A players as discussed in Section II.1, as well as those players 

performing rehabilitation stints.  Researchers have shown that the production of baseball 

players tends to peak around 28 years of age (Krohn, 1983).  Because of this, “prospects” 

are players who have advanced through the minor leagues at a reasonable rate and may 

therefore spend the years surrounding their peak level in the major leagues.  The 

following age restrictions on “prospects” have been imposed: 

• A prospect in A must be no older than 22. 
• A prospect in A+ must be no older than 23. 
• A prospect in AA must be no older than 24. 
• A prospect in AAA must be no older than 25. 

 

If a prospect advances one level each year, the minimum rate a true prospect should 

advance, this will place him in the majors at least two years before the average age at 

which players reach their peak performance.  A looser age restriction was considered, but 

this included several players who were explicitly classified as too old for the competition 

at that level by a popular minor-league player evaluator (Sickels, 2003). 

 

Lastly, some players meet the age requirements for a “prospect” but already have 

substantial major-league experience.  Sickels (2003) no longer considers these players 

“prospects.”  His rule is that if a player has played in at least 50 major-league games by 

the end of a season, that player is no longer a “minor-league prospect.”  The rule adopted 
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for the present study is players who have played in at least 50 major-league games prior 

to a particular minor-league season are no longer “minor-league prospects.” 

 

III. Analysis Methods and Definitions 

III.1 Overview of Approach 
 

The following steps are taken to predict major-league performance from minor-league 

data: 

 

1. Define a measurement of major-league “success” or “performance” 

2. Use a factor analysis on numerous minor-league hitting statistics to 
identify independent, underlying factors common to all offensive 
categories 

 
3. Build logistic regression model providing an adequate fit to the data, 

and rank players based on predicted probability of success 
 
 

III.2 Determine Measurement of Major-League Success 
 

In order to determine key indicators of success in the major leagues, a measurement of 

success is needed.  This measurement should take into account both production and 

longevity.  (The word ‘longevity’ is used loosely in this case because there is a 3-year 

limit on the length of time a player can have played by the end of the 2005 season.)  On-

base percentage plus slugging is a currently accepted standard for measuring productivity 

because it measures both primary components of hitting: a player’s ability to get on base 

and his ability to drive other players around the bases with extra-base hits.  (This hitting 
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statistic is defined in the Glossary.)  At-bats are a standard measure of longevity.  Figure 

1 shows how these two statistics are used to define our discrete response for success.  If a 

player has not gotten a major-league at-bat, then his response for the variable, Major 

League Baseball (MLB) success, is a zero.  As a player’s production increases over an 

increased number of at-bats, the value of this response also increases until reaching a 

maximum response of four.   

 

The idea behind the discrete variable, MLB success, came from an unknown author, who 

wrote an article on the website, www.birdsinthebelfry.com, comparing the rates of 

success of baseball amateur draftees drafted out of high school vs. college.  The author 

used the following subjective responses to evaluate the players:  

0 -  Player never reached the major leagues 
1 -  Player had a “cup of coffee” in the majors 
2 -  Player was a major league “journeyman”  
3 -  Player was a starting position player  
4 -  Player was a star at the major league level 

 

The quantitative responses for MLB success were an attempt to imitate these categorical 

rankings based on our limited observation period.   
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Values for the Response Variable “MLB Success” 

2221

3321

4321

2221
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100 200 300

.700

.850

 

Figure 1 
 

 

Recall that the prospects being researched have had only three seasons since the 2002 

minor-league season, in which to observe major-league performance.  The cutoffs 

defining longevity have been defined accordingly using my best judgment.  The cutoffs 

defining level of production can also be reasoned using the following anecdotal evidence.  

Consider the Milwaukee Brewers for example.  All nine of their starting position players 

posted an OPS of at least .700 during the 2005 season.  One starter, Geoff Jenkins, posted 

an OPS of .888, which is at an “all-star level.”  He was not an all-star in 2005, as fellow 

teammate Carlos Lee was, but Jenkins was an all-star in 2003 when his OPS was .913.  

Consider the 2005 World Series Champ, the Chicago White Sox, as another example.  

Again, eight of the nine starting position players posted an OPS of at least .700.  (Scott 

Podsednik’s OPS was .699.)  Paul Konerko, whose OPS was .911, was an all-star.  

Ironically, Podsednik was also an all-star because his on-base percentage was good, he 

stole 44 bases while only being caught 9 times prior to the all-star break (the next best in 
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the AL was 27), and he plays good defense in left field.  I am speculating that the 

findings will be similar with most major-league teams.  Thus, these discrete rankings of 

major-league success are reasonable. 

 

III.3 Preliminary Analyses of Success Rate of Prospects 
 

It would be beneficial to determine the chance that a prospect gets at least a taste of the 

majors in the next three seasons, as well as to determine whether or not this probability 

changes significantly given certain factors.  The probability of a prospect getting at least 

a taste of the majors in the next three seasons can be estimated by the sample proportion 

of players who have at least one at-bat in the majors out of all prospects in 2002.  (Pinch-

runners who appear in major-league games but have no at-bats are excluded, but the 

number of pinch-runners is thought to be small enough so as to affect the estimation only 

slightly.)  Among the factors that may be associated with whether or not a player plays in 

the majors in the next three seasons are the player’s position and the highest minor-league 

level played in 2002. 

 

Bill James (James, 1985) discusses what he calls the “defensive spectrum.”  This 

spectrum places the defensive position most easily played at the left end and the most 

difficult at the right end, as shown below. 

 

1B  LF  RF  3B  CF  2B  SS 
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The catcher, being so different from all the other positions, is not included in the 

spectrum.  However, in the data set to be analyzed, the center, left, and right field 

positions are named more generally as outfield.  So, the defensive spectrum used in this 

research is as shown below. 

 

1B  OF  3B  2B  SS 

 

In this light, position (excluding catcher) can be perceived as an ordinal variable.  The 

levels of MLB success are also ordinal.  Correlation between these two ordinal 

categorical variables can be examined.  As the level of defensive difficulty increases, do 

responses on the level of MLB success tend to increase, or stay about the same?   

The anticipated direction of the relationship is not clear, nor is it clear that it must be 

monotone.  It may be that shortstops have a higher rate of MLB success because their 

position is so difficult to play.  They may get called up to the majors even if their hitting 

abilities are not strong.  It may also be that first-basemen have a higher rate of MLB 

success because they tend to be good hitters, and their position is not as demanding.  In 

this case, it would be useful to treat position (including catchers) as a nominal variable, 

and examine whether or not the row-mean scores for success differ between positions. 

 

The other possible factor that will be considered, minor-league level played at in 2002, 

can also be perceived as an ordinal variable.  Thus, the correlation between it and level of 

MLB success can also be examined.  It would be expected that players who play at a high 
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level in 2002 should have a relatively higher probability of at least making it to the 

majors.   

 

These analyses are marginal analyses not accounting for the possible confounding effects 

of performance in the minors.  But, they may lead to indications of potential predictors in 

the final modeling of major-league success. 

 

III.4 Exploration of Trends across Levels of MLB Success 
 

An exploratory step in the analysis is to identify which offensive variables exhibit trends 

across increasing levels of MLB success.  The offensive variables that are considered 

follow (all statistics are defined in the glossary): 

• Singles 
• Doubles 
• Triples 
• Homeruns 
• Homeruns per At-bat 
• Strikeouts 
• Walks 
• Strikeout-to-walk ratio 
• On-base percentage (OBP) 
• Isolated power (Isopower) 
• On-base percentage plus slugging percentage (OPS) 
• Runs created 

 
An analysis of variance F-test is performed in order to determine for which offensive 

variables the mean responses differ significantly for at least one level of MLB success.  

In addition, a series of contrasts tests whether or not significant patterns exist for any 
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offensive variables across levels of MLB success.  The contrasts and their respective 

contrast coefficients follow: 

 

Contrast Description Coefficients 
Linear Test for linearly increasing 

or decreasing trend 
 

-2  -1  0   1   2 

Quadratic Test for increasing and later  
decreasing pattern or vice versa 
 

-2   1  2   1  -2  

0 vs. 1-4 Test if group 0 mean is different  
from the mean of groups 1-4 
 

-4   1  1   1   1 

Linear across 1-4 Test for linearly increasing or 
decreasing trend across groups 1-4
 

 0  -3  -1  1   3 

 

 

III.5 Factor Analysis 

III.5.1 The Objectives 
 

In a study with many variables being measured on each player, it is easy to believe that 

these variables are related to one another in many different ways.  A factor analysis (FA) 

is therefore a reasonable next step in the analysis.  An objective of a FA according to 

Johnson (1998) is to use a set of variables to derive a new set of uncorrelated variables, 

called underlying factors, with the hope that these new variables will be few in number 

and give a better understanding of the data being analyzed.  These new variables can then 

be used in future analyses of the data.  In order for the underlying factors to give a better 

understanding of the data, reasonable interpretations of them must exist.  A solid 
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understanding of baseball ought to give these interpretations.  But, most importantly, the 

new variables will be independent of one another.  Hence, they may be used together in a 

regression model, for example, and their effects on responses can be interpreted more 

cleanly. 

 

III.5.2 The Model and Assumptions 
 

Johnson (1998) discusses all that follows.  Consider a p-variate response vector x from a 

population that has mean μ and variance-covariance matrix Σ.  In this research, the 

response vector consists of the hitting statistics of interest listed in section III.3.  The 

general FA model assumes there are m underlying factors (m < p) denoted by ƒ1, ƒ2, ..., 

ƒm such that 

 

pjfffx jmjmjjjj ,,2,1for    2211 KK =+++++= ηλλλμ  (3.5.1)
 

In the preceding model, we assume that 

1 the ƒk’s are independently and identically distributed with mean 0 and 
variance 1 for k = 1, 2, ..., m; 

2 the ηj’s are independently distributed with mean 0 and variance ψj for j 
= 1, 2, ..., p; and 

3 ƒk and ηj have independent distributions for all combinations of k and j, 
k = 1, 2, ..., m and j = 1,2, ..., p. 

 
The variables ƒ1, ƒ2, ..., ƒm are the newly created underlying factors called common 

factors because they are common to all p original hitting statistics.  The unknown 

parameters η1, η2, ..., ηp are called specific factors because they describe the residual 

effect due to the jth hitting statistic. Lastly, ψj is called the specific variance of the jth 
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response variable because it describes the player-to-player variation specific to the jth 

hitting statistic.  So, the response to the jth hitting statistic can be thought of as a function 

of its overall mean μ, the m underlying factors common to all p hitting statistics, and 

some residual error due to player-to-player differences.  The multipliers, the λjk’s, are 

called factor loadings of the jth hitting statistic on the kth factor.  These factor loadings 

measure the contribution of the kth common factor to the jth hitting statistic.  

 

III.5.3 Factor Analysis Equations 
 

It must be determined if f, Λ, and η exist such that x = Λf + η, which is Equation (3.5.1) 

in matrix form where μ is equal to zero.  (The reason for μ being set to zero will be made 

clear later in this section.)  First, it can be noted that x = Λf + η implies that 

 

Σ = Cov(x) 
 = Cov(Λf + η) 
 = Λ·Cov(f)· Λ´ + Ψ 
 = ΛIΛ´ + Ψ 
 = ΛΛ´ + Ψ         

 
 

So, it is easier to instead try to find Λ and Ψ so that 

 

Σ = ΛΛ´ + Ψ         (3.5.2)
 
 

The relationships described in Eq. (3.5.2) are called the factor analysis equations.  Rather 

than analyze Σ directly, most factor analysis procedures are applied to standardized 
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versions of X, say Z, and its respective correlation matrix P.  (This is the reason for μ 

being set to zero.)  This then means that Λ is the matrix of correlations between the zj’s 

(standardized hitting statistics) and the fk’s.  

 

The factor loading matrix Λ is not unique.  By multiplying by an orthogonal matrix T 

(called a rotation), Λ* = TΛ is also a loading matrix.  Different rotations may yield 

solutions that are more easily interpreted than others.  For more details, see Johnson 

(1998).  Finally, note that the variance of xj can be partitioned according to the amount 

explained by each factor, and the proportion of the variance of xj that is explained by the 

common factors is called the communality of the jth hitting statistic.  The communality of 

the jth hitting statistic is . ∑ =

m

k jk1
2λ

 

III.5.4 Solving the Factor Analysis Equations 
 

Prior to trying to solve the FA equations, an estimate of the number of underlying factors 

m is needed.  A good place to start is with a scree plot.  This is a plot of the eigenvalues 

associated with principal components, which are new uncorrelated variables that account 

for as much of the variability in the data as possible, against their rank in descending 

order.  Eigenvalues that are greater than one represent principal components that explain 

more variability than any of the original standardized variables.  The number of 

eigenvalues that are greater than one, then, gives a good initial estimate of the number of 

underlying factors driving the values of the variables being measured.  Johnson (1998) 

provides some rules to determine if more or fewer factors are needed. 
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1 Do not include trivial factors, i.e. factors that have one and only one of 
the original variables loading on them. 

 
2 Many computing programs will produce matrices of differences 

between the observed correlations between variables and those that are 
reproduced by the FA solution.  If these differences are quite small, you 
might be able to reduce the number of factors.  If they are quite large 
(many greater than .25 and some greater than .40, perhaps), then the 
number of factors might need to be increased.  (SAS’s Proc Factor 
produces such matrices.) 

 

 

There are a number of different methods available in SAS’s Proc Factor that can be used 

to solve the FA equations.  If the data are multivariate normal, we use the maximum 

likelihood method because it is generally known to be good in this situation.  If the data 

are not multivariate normal, then we use the principal factoring method without iteration.  

Both methods require prior estimates of the communalities for each response variable.  

We use the squared multiple correlation of a variable with all the remaining variables as 

prior communality estimates, which is also available in Proc Factor. 

 

Once a set of factors has been derived, a recommended next step is to rotate the factors 

by multiplying by an orthogonal matrix.  There are many procedures for doing this.  Most 

try to make as many factor loadings as possible near zero and maximize as many of the 

remaining as possible.  We use the Varimax method proposed by Kaiser (1958) and 

recommended by Johnson (1998).   

 

Lastly, because the newly-derived factors are to be used in subsequent analyses, a score 

must be assigned for each of the new variables for each hitter in the data set.  A method 
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implemented by SAS’s Proc Factor to do this is Thompson’s method or the regression 

method.  Thompson noted that for normally distributed data the joint distribution of z 

(standardized x) and f is 
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This implies that the conditional expectation of f given that z = z* is 

 

[ ] *-1'* zPzz|fE Λ==  

 

Therefore, Thompson’s method estimates the vector of factor scores for the rth individual 

as .  Thompson’s method is implemented by SAS’s Proc Factor. r
-1'

r zRˆf Λ=

 

If the assumption of normality does not hold for the data, Bartlett’s method or the 

weighted least-squares method can be used.  However, this method is not implemented 

by SAS’s Proc Factor.  Therefore, the method for computing factor scores implemented 

in the case of non-normality in this research is an ad-hoc mentioned by Johnson (1998).  

This method computes the factor scores by taking a linear combination of the 

standardized responses most highly correlated with the respective factors.  One downfall 

with this method is, however, that the factors might be moderately correlated with one 

another.  This could lead to multi-collinearity in any response modeling.  
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III.6 Logistic Regression for Ordinal Data 

III.6.1 The Objectives 
 

Once a set of independent underlying factors has been determined from FA, these factors 

may be used in a regression model.  The response that we are trying to predict is the 

MLB success defined in Section III.2.  Therefore, methods for modeling an ordinal 

discrete response can be used.  The goal, ultimately, is to model the probability of 

performing at or above each given level within the next three years.  These probabilities 

may be used for ranking the players given the values of their factor scores determined 

from the FA.   

 

III.6.2 The Model and Notation 
 

Consider first the binary logistic regression model, as discussed by Agresti (1996).  

Suppose that a generic response variable Y can take on two values, a 1 for a “success” 

and a 0 for a “failure.”  The binary logistic regression model is often expressed as a linear 

form of the logit (log-odds) of the probability of response 1 at given values of the 

predictors, denoted by π(x) = P(Y = 1| x), as shown below: 

 

logit[P(Y = 1| x)] = log ⎥
⎦

⎤
⎢
⎣

⎡
− )(1

)(
x

x
π

π = α + βx (3.5.1)

 
 
where α and β are unknown parameters. 
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The quantity 
)(1

)(
x

x
π

π
−

 is called the odds of success.  It can be shown that holding all 

other factors constant, as xk increases by one unit, the odds of success increase by .   keβ

Equation (3.5.1) yields the success probability  

 

( )
( )βx

βx(x)
++

+
=

α
απ

exp1
exp  (3.5.2)

 
 

We can next extend the relationships in Eqs. (3.5.1) and (3.5.2) to accommodate an 

ordinal response.  This can be done several ways, each of which imposes different 

assumptions and structures on the model.  In this research, it is done by considering the 

cumulative probabilities, as also discussed by Agresti (1996).  First, recall that response 

variable of interest, MLB success, takes on the ordered values 0, 1, 2, 3, and 4.  The 

cumulative probabilities are then as follows, 

( ) 3,,0       ,0 KK =++=≤ jjYP jππ  

 

The cumulative logit logistic regression model is then 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤
≤

=≤
)(-1

)(log])(logit[
jYP

jYPjYP = αj + βx, j = 0,..., 3 (3.5.3)

 

Probabilities for specific categories can be calculated as differences of the cumulative 

probabilities.  For example, 
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P(Y = 4) = 1 – P(Y ≤ 3) = 
( )
( )βx

βx
++

+
−

3

3

exp1
exp

1
α

α
 

 

SAS’s Proc Logistic computes any cumulative or individual probability that is desired. 

 

III.6.3 Assessing the Model Fit 
 

The cumulative logit model in (3.5.3) is a parallel-lines regression model also known as 

the proportional odds model and is the model fit by SAS’s Proc Logistic.  (Note that an 

intercept is not fit for the last response category because P(Y ≤ 4) must be one.)  It 

assumes common slopes across cumulative logits.  This assumption must be checked, and 

it must be determined which predictors provide significant information about the 

response, if there are any interactions between predictors present, and if there are any 

dispersion problems. 

Hosmer and Lemeshow (2000) discuss the following steps for assessing the fit of a 

proportional odds model:   

 

1. The first step in checking model fit is to remove / add any predictor variables that are 

found to be insignificant / significant.  SAS’s Proc Logistic can perform any standard 

variable selection method.  A forward selection method is used in this research. 

 

2. The second step is to determine if any predictors from step 1 have a significant non-

linear relationship with the logit of the cumulative probabilities.  This can be done by 
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trying transformations such as squares or logs of the predictors.  These 

transformations are tried with J-1 separate binary regressions of y ≤ j versus y > j.   

 

3. The third step is to check for any significant interactions.  An interaction would 

indicate that the effect that one predictor has on the response changes across levels of 

another predictor.  This can be done by adding cross-products of the predictors to the 

model. 

 

4. The fourth step is to validate the assumption of proportional odds.  SAS’s Proc 

Logistic produces a score test for the proportional odds assumption.  If the test is 

found to be non-significant, this is often considered as sufficient evidence that the 

proportional odds assumption is appropriate.  If the test is found to be significant, the 

fix that will be considered is to fit either a non-proportional odds model or a partial 

proportional odds model.   

 

The non-proportional and partial proportional odds models loosen the constraints of 

the proportional odds model by no longer assuming that all predictors have common 

coefficients across the response logits.  If there is evidence that all predictors have 

coefficients that significantly differ across response logits, then the non-proportional 

odds model is used.  If at least one but not all predictors have coefficients that 

significantly differ across response logits, then the partial proportional odds model is 

chosen.  Stokes, Davis, and Koch (2000) discuss fitting these models using SAS’s 

Proc Genmod. 
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5. The fifth step is to assess the deviance about the model.  If the deviance statistic is 

large compared to its degrees of freedom, then that suggests poor model fit or over-

dispersion is a problem.  What is large?  The deviance statistic should follow 

approximately a chi-square distribution with N – (p + 1) degrees of freedom, where N 

is the sample size times the number of cumulative logits minus one and p is the 

number of predictors.  The standard error is df2 .  So, a possible interpretation is 

that if the deviance statistic is more than two standard errors larger than expected, that 

suggests there may be a problem. If it’s more than three standard errors, there is likely 

a problem.  (This asymptotic approximation isn’t technically valid unless x is discrete 

with a fixed, finite number of categories.  Thus, this “rule” is not to be followed too 

strictly.) 

 

Over-dispersion may be explained by players being related with respect to something 

left unmeasured (for example playing for the same team).  This violates the 

assumption of independence among players’ responses.  In this case, no remedy is 

possible based on the data available.  Other explanations may be misspecification of 

the link function or players poorly fit by the model.  In this research, the probit and 

complimentary log-log links are used as alternatives if a poor fit is observed.  Also, 

diagnostics are done to identify any players poorly fit by the model.  These players 

are removed from the analysis and duly noted. 
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IV. Results 

IV.1 Success Rate of Prospects 
 

How likely is it that a minor-league prospect is able to get at least a taste of the majors 

within three years?  Table 1 displays the rate of prospects from 2002 achieving each of 

the levels of major-league success by the 2005 season.  Recall that the levels of major-

league success try to mimic the following to the extent of the limited observation time: 

 

0 -  Player has not yet reached the major leagues 
1 -  Player has had a “cup of coffee” in the majors 
2 -  Player is a major league “journeyman”  
3 -  Player is a starting position player  
4 -  Player is a star at the major league level 

 
 

Less than one-third (28.69%) of 2002 prospects were able to get at least one at-bat in the 

majors by the 2005 season.  Less than 1% played like all-stars in the majors by that time. 

 
Table 1: Rate of Success of 2002 Prospects 

MLB Success Frequency Percent

0 701 71.31
1 104 10.58
2 90 9.16
3 82 8.34
4 6 0.61

 

 

How is that success rate affected by the player’s position or by the highest level of the 

minors the player played at in 2002?  A player’s position does not have a significant 
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relationship with their level of major-league success at the .05 level.  Table 2 gives the 

summary statistics for the tests of association between position and major-league success.  

The row-mean-scores-differ test statistic tests whether or not at least one position is 

significantly more or less likely to succeed in the majors.  (This test is marginally 

significant.  It does appear that shortstops have a slightly better chance of getting to the 

majors.)  The non-zero correlation test statistic tests whether or not with increasing 

difficulty in position played, success in the major leagues becomes more or less likely.  

This test is not significant.  

 

Table 2: Summary Statistics for Tests of Association between Position and MLB Success 
Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.6839 0.4082
2 Row Mean Scores Differ 5 10.3934 0.0648

 

 

Table 3 gives the summary statistic for the test of association between the highest level of 

the minors at which a player played and their level of major-league success.  This test 

along with Table 4 indicates that players in lower levels of the minors are not as likely to 

achieve major-league success in only three years thereafter. 

 

Table 3: Summary Statistic for Test of Association between Highest Level of Minors Played and 
MLB Success 

Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 107.0268 <.0001
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Table 4: Cross-Tabulation of Major-League Success and Highest Level Played in 2002 
MLB 

Success Level 

Frequency 
Col Pct A A+ AA AAA Majors Total

0 214 
88.43 

230 
82.44 

168 
69.42 

89 
66.92 

0 
0.00 

701

1 12 
4.96 

19 
6.81 

31 
12.81 

22 
16.54 

20 
22.99 

104

2 7 
2.89 

16 
5.73 

22 
9.09 

9 
6.77 

36 
41.38 

90

3 7 
2.89 

13 
4.66 

19 
7.85 

13 
9.77 

30 
34.48 

82

4 2 
0.83 

1 
0.36 

2 
0.83 

0 
0.00 

1 
1.15 

6

Total 242 279 242 133 87 983
 

 

IV.2 Identification of Trends across Levels of MLB Success 
 

Several hitting statistics also have a marginal relationship with major-league success.  

(All hitting statistics are defined in the Glossary.)  Table 5 gives the observed 

significance level to different contrasts for all hitting statistics under investigation.  (In 

the case of a linear contrast, a ‘+’ indicates that the trend is increasing while a ‘-‘indicates 

that the trend is decreasing.)  Not all four contrasts are orthogonal.  Often the linear 

contrast is significant because the mean response from the lowest major-league success 

category is so much different from the mean response for the other categories.  Hence, 

the contrast for a linear trend across the last four major-league success categories is also 

tested.   

 

 29



The only real surprise may be the significant quadratic trend in the number of times 

caught stealing.  I speculate this to be a result of players with a low level of major-league 

success don’t attempt many base-steals while those players with a high level of major-

league success are good base runners and don’t often get caught.  Those players in the 

middle success categories attempt more base-steals and also get caught more often.  (It 

may also be simply a Type I error.)  Otherwise, those players never making it to the 

majors have significantly different mean responses from players getting at least a taste of 

the majors for nearly every offensive statistic (only caught stealing is not statistically 

significant).  Often those mean responses continue to increase or decrease across 

increasing levels of major-league success. 

 

Table 5: Observed Significance Levels of Four Contrasts across Increasing Levels of Major-League 
Success 

Contrast 

 Linear Quadratic 0 vs. 1-4 Linear 
Across 1-4 

Runs <.0001(+) 0.5653 <.0001 0.0482(+) 
RBI’s <.0001(+) 0.1867 <.0001 0.0002(+) 
Singles 0.0131(+) 0.2385 <.0001 0.5046 
Doubles 0.0002(+) 0.3227 <.0001 0.1133 
Triples 0.1969 0.2561 <.0001 0.9363 
Homeruns <.0001(+) 0.5081 <.0001 0.0019(+) 
Homeruns per At-Bat <.0001(+) 0.4235 <.0001 0.0037(+) 
Strike-outs 0.0435(+) 0.2908 0.0004 0.1838 
Walks <.0001(+) 0.1403 <.0001 0.0034(+) 
Strikeout-to-walk ratio 0.0559(-) 0.9782 0.0014 0.1850 
Stolen Bases 0.4558 0.3512 0.0008 0.7905 
Caught Stealing 0.2411 0.0272 0.1651 0.0399(-) 
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Contrast 

Linear Linear Quadratic 0 vs. 1-4  Across 1-4 

Batting Avg <.0001(+) 0.3213 <.0001 0.0319(+) 
On-base Pct <.0001(+) 0.6364 <.0001 0.0013(+) 
Isolated Power <.0001(+) 0.8310 <.0001 0.0044(+) 

 

 

Figures 2 and 3 demonstrate two examples of hitting statistics that have a relationship 

with major-league success, strikeout-to-walk ratio and on-base percentage.  (Figures for 

the remaining hitting statistics can be found in Appendix A.)  The plots display 95% 

confidence intervals for the mean response at each level of major-league success.  The 

striking width of the intervals at the maximum success level is because only six players 

achieved that level of major-league success. 
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Strikeout-to-Walk Ratio 

 

Figure 2 
 

On-Base Percentage 

 

Figure 3 
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IV.3 Factor Analysis 
 

After looking at trends in offensive minor-league statistics across increasing levels of 

major-league success, it appears that many of these offensive statistics are related to 

major-league success.  However, modeling is easier if a smaller number of independent, 

underlying factors can be found.  So, the next step is to perform a factor analysis. 

 

The eigenvalues given in Table 6, which are associated with principal components, 

suggest that there are four underlying factors.     

 

Table 6: Eigenvalues from a Principal Components Analysis of the Offensive Statistics 
 Eigenvalue Difference Proportion Cumulative 

1 6.78731488 3.75251692 0.4525 0.4525 
2 3.03479796 1.48785035 0.2023 0.6548 
3 1.54694762 0.53961227 0.1031 0.7579 
4 1.00733535 0.20041495 0.0672 0.8251 
5 0.80692039 0.21690135 0.0538 0.8789 
6 0.59001905 0.20925515 0.0393 0.9182 
7 0.38076390 0.12892652 0.0254 0.9436 
8 0.25183737 0.02811748 0.0168 0.9604 
9 0.22371989 0.07491444 0.0149 0.9753 

10 0.14880545 0.04247357 0.0099 0.9852 
11 0.10633187 0.05439282 0.0071 0.9923 
12 0.05193906 0.01084627 0.0035 0.9958 
13 0.04109279 0.02552523 0.0027 0.9985 
14 0.01556756 0.00896067 0.0010 0.9996 
15 0.00660688  0.0004 1.0000 
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After extracting four underlying factors from the fifteen original variables, the residual 

off-diagonal correlations from the estimated correlation matrix are checked.  None are 

greater than 0.25, and the root mean square off-diagonal residual is 0.049.  These facts 

indicate that no more than four factors are needed, and it also suggests that three factors 

could be tried.  However, the four factors extracted have clearly reasonable 

interpretations and are decided to be necessary and sufficient. 

 

The factor analysis equations are solved using a maximum likelihood method assuming 

four underlying factors.  The factors are then rotated using the varimax method in order 

to be interpreted.  The rotated factor pattern is presented in Table 7.  The offensive 

statistics strongly correlated with each respective factor are bolded.  The variables 

strongly correlated with Factor 1 are characteristics of players with slugging abilities, 

where homeruns and isolated power really drive the factor.  The variables strongly 

correlated with Factor 2 are characteristics of players with lead-off skills, where singles, 

runs, and stolen bases really drive the factor.  The variables strongly correlated with 

Factor 3 are characteristics of hitters with “patience” at the plate, where on-base 

percentage, walks, and strikeout-to-walk ratio really drive the factor.  Lastly, the 

variables strongly correlated with Factor 4 are characteristics of pure hitters, where 

batting average really drives the factor. 
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Table 7: Correlations between Offensive Statistics and Respective Underlying Factors after Rotation 
Using Varimax Method 

Rotated Factor Pattern 

 Factor1 Factor2 Factor3 Factor4 

Runs 0.49913 0.72833 0.31792 0.20200 
RBI’s 0.76729 0.39355 0.17794 0.22384 
Singles 0.20727 0.78561 0.22498 0.35518 
Doubles 0.63267 0.42819 0.14319 0.31459 
Triples 0.15241 0.64310 -0.04255 0.17510 
Homeruns 0.95376 0.05974 0.08769 0.08240 
Homeruns 
per At-Bat 0.90664 -0.24413 0.03008 0.06664 

Strike-outs 0.62056 0.50414 0.05038 -0.26281 
Walks 0.37240 0.46494 0.74438 -0.10329 
Strikeout-to-
walk ratio 0.07000 -0.06907 -0.76743 -0.15713 

Stolen Bases -0.14133 0.75894 0.17187 0.01649 
Caught 
Stealing -0.15988 0.74316 0.14986 0.01742 

Batting Avg 0.25126 0.26888 0.20724 0.88097 
On-base Pct 0.25811 0.18933 0.69713 0.58047 
Isolated 
Power 0.90621 -0.11583 0.00314 0.22413 

     

 

In order to create responses for these new variables for current players and those in the 

future, scoring coefficients for each of the offensive statistics will be needed.  Recall that 

these can be computed using Thompson’s method, if the data are normally distributed.  

However, the normality assumption does not hold for the data.  Thus, the ad-hoc method 

mentioned as an alternative to Thompson’s is implemented.  Table 8 presents the linear 

combinations of standardized responses used to compute the factor scores for each 
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player.  Responses for the original variables and newly computed factor scores for a 

subset of players are given in Appendix B. 

 

Table 8: Linear Combinations of Standardized Responses for Obtaining Factor Scores for Current 
and Future Players 

Factor Linear Combination of Standardized Responses 

Factor 1 
 

(ZHR  +  ZHR/AB  +  ZIsoPower) / 3 
 

Factor 2 
 

(Z1B  +  Z3B + ZRun  +  ZSB  +  ZCS) / 5 
 

Factor 3 
 

(ZBB  -  ZSO/BB  +  ZOBP) / 3 
 

Factor 4 
 

ZBA 
 

 

 

IV.4 Logistic Regression Modeling of Ordinal Data 
 

The four underlying factors previously computed are not highly correlated with one 

another and now may be used in a logistic regression model, treating the level of success 

in the major leagues as an ordinal response.  In addition, three more predictors will be 

considered.  Very talented players may move up the levels of the minor leagues faster 

than other players.  For this reason, some players may be very young with respect to the 

other players at their level.  A “bonus” should be given to these players to compensate for 

any negative effect on their performance due to playing against much older competition.  

Thus, a discrete variable called Over-His-Head, or OHH, is used, where this variable is 

the positive difference between the player’s age and the maximum prospect age at their 
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respective level of the minors.  Another predictor is the player’s position played in the 

minors.  The last additional factor is the highest level played by a player in the minors in 

2002.  Therefore, the predictors being investigated follow. 

 

• X1: Position played (Catcher, Shortstop, First-base, Second-base, Third-
base, and Outfield) 

• X2: OHH (0, 1, ..., 6), discrete quantitative 
• X3: Highest level played in minors in 2002 (A, A+, AA, AAA, and 

Majors), nominal 
• X4: Factor 1, continuous  
• X5: Factor 2, continuous  
• X6: Factor 3, continuous  
• X7: Factor 4, continuous 
• All interactions between significant main factors 

 
 

 

The response variable is Y: MLB Success (0, 1, 2, ‘3 or greater’).  The last two categories 

of the response variable are pooled together because only six players fit into the last 

category.  Stokes, Davis, and Koch (2000) note that if a non-proportional or partial 

proportional odds model must be fit, all response categories in a cross-tabulation of 

variables should have a minimum count of five.  Collapsing the final two response 

categories succeeds in meeting this requirement. 

 

The first step in building a logistic regression model is to select statistically significant 

predictors and interactions.  A forward selection of significant predictors is performed 

with alpha-to-enter equal to 0.05.  Table 9 gives a summary of the predictors and 

interactions significant in explaining the variation in the level of major-league success 

attained, or those added to the final model.  Table 10 then gives the Type III analysis of 
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the effects in the final model.  The player’s position is the only main effect not found to 

be a significant predictor.   

 

Table 9: Predictors and Interactions Added to the Final Logistic Regression Model 
Summary of Forward Selection 

Step 
Effect 
Entered DF Number

In 
Score 

Chi-Square Pr > ChiSq 

1 Level 4 1 282.1446 <.0001 
2 Factor4 1 2 102.6879 <.0001 
3 Factor1 1 3 35.6837 <.0001 
4 OHH 1 4 34.4677 <.0001 
5 Factor2 1 5 17.4357 <.0001 
6 Factor2*Level 4 6 18.4808 0.0010 
7 OHH*Factor4 1 7 8.1363 0.0043 
8 Factor4*Level 4 8 12.2907 0.0153 
9 Factor3 1 9 3.9805 0.0460 

10 Factor1*Factor3 1 10 4.4558 0.0348 
 
 
 

Table 10: Type III Analysis of Predictors and Interactions Selected for Final Logistic Regression 
Model 

Effect DF Wald 
Chi-Square Pr > ChiSq 

OHH 1 34.4031 <.0001 
Level 4 132.1940 <.0001 
Factor1 1 17.9661 <.0001 
Factor2 1 10.4271 0.0012 
Factor3 1 2.0093 0.1563 
Factor4 1 28.7973 <.0001 
OHH*Factor4 1 7.0122 0.0081 
Factor2*Level 4 11.8115 0.0188 
Factor4*Level 4 10.9543 0.0271 
Factor1*Factor3 1 4.2845 0.0385 
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The next step is to check whether or not the assumption of proportional odds is met.  The 

assumption of proportional odds means that the coefficients on the significant predictors 

and interactions do not change significantly from one cumulative response logit to 

another.  Table 11 gives the results to the score test of proportional odds.  This test is 

significant at the 0.05 level, and thus, a non-proportional or partial proportional odds 

model must be fit. 

 

Table 11: Score Test for the Proportional Odds Assumption 
Chi-Square DF Pr > ChiSq

76.0793 38 0.0002 
 

In fitting a non-proportional odds model, three binary logits are created for each 

observation, and two new variables called MLB Success B and Logtype are created as 

shown below in the SAS Data step.  They compare response level 3 versus levels 2, 1, 

and 0; levels 3 and 2 versus 1 and 0; and levels 3, 2, and 1 versus level 0.     

 
data scores1b; set scores1; 
 do; if mlb_success=3 then mlb_successb=1; 
 else mlb_successb=0; logtype=3; output; end; 
 do; if mlb_success=3 or mlb_success=2 then mlb_successb=1; 
 else mlb_successb=0; logtype=2; output; end; 

do; if mlb_success=3 or mlb_success=2 or mlb_success=1 then 
mlb_successb=1; 

 else mlb_successb=0; logtype=1; output; end; 
run; 

 

Cross-products between logtype and the other predictors in the model are added to allow 

for different regression coefficients across cumulative response logits.  A repeated 

statement is also added where a subject is a player, and an independent working 

correlation matrix is specified.  Thus, the GENMOD procedure statements follow. 
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proc genmod data= scores1b descending; 
 class last first logtype level; 

model mlb_successb= logtype ohh level factor1 factor2   
factor3 factor4  
ohh*factor4 factor2*level factor4*level factor1*factor3  
logtype*ohh logtype*level logtype*factor1 logtype*factor2 
logtype*factor3 logtype*factor4 logtype*ohh*factor4 
logtype*factor2*level logtype*factor4*level 
logtype*factor1*factor3 

     / dist= bin link= logit type3; 
 repeated subject= last*first / type= ind; 
run; 

 

If the cross-product terms that include logtype are found to be statistically insignificant, 

then the proportional odds assumption holds at least approximately for that particular 

predictor and a partial proportional odds model is formed.  A backward selection method 

is used to determine the predictors for which the proportional odds assumption did not 

hold.  Table 12 summarizes the factors for which the proportional odds assumption holds 

at the .05 level.  The assumption holds for some variables, and hence, a partial 

proportional odds model is shown to be adequate.  The parameter estimates from the final 

partial proportional odds model are given in Appendix D. 

 

Table 12: Summary of Factors for which the Proportional Odds Assumption Holds at the .05 Level 

Effect 
Assumption 

Holds? 

OHH Yes 
Level Yes 
Factor1 No 
Factor2 No 
Factor3 No 
Factor4 Yes 
OHH*Factor4 Yes 
Factor2*Level Yes 
Factor4*Level No 
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Assumption 
Effect Holds? 

Factor1*Factor3 Yes 
 

 

Before we move on to the next step, it is important to understand the interactions between 

any two factors.  Figures 4-12 illustrate the significant interactions through two-

dimensional plots of the cumulative logits (response level 3 versus level 2, 1, and 0).  In 

the case of the Factor 4-by-Level interaction, three plots are displayed, one for each of 

the cumulative logits, in order to display how this interactions change across cumulative 

logits.  All predictors not involved in the interaction are set at their mean value except for 

highest level played in the minors set at double-A.  (The corresponding plots of the 

probability curves rather than the cumulative logits are given in Appendix C.) 

 

 The effect of factor 4 (pure-hitting ability) on the chances of performing well in the 

majors (either success level 3 or 4) becomes larger as players get older with respect to 

others in their league, as illustrated in Figure 4. 
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Figure 4 

 

The effects of factor 1 (ability to slug) and factor 2 (lead-off hitting skills) on the chances 

of getting at least a taste of the majors are larger than the effects on achieving higher 

levels of success in the majors, as illustrated in Figures 5 and 6.  This pattern is reversed 

for the effect of factor 3 (“patience” at the plate), as illustrated in Figure 7. 
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Figure 5 
 

 

 

Figure 6 
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Figure 7 
 

 

The effect of factor 2 (leadoff hitting skills) on the chances of performing well in the 

majors (either success level 3 or 4) is very mixed for players in varying levels of the 

minor leagues, as illustrated in Figure 8.  The effect of factor 4 (pure-hitting ability) on 

the chances of getting at least a taste of the majors is positive for players in all levels of 

the minor leagues, as illustrated in Figure 11.  However, its effect on the players who 

made it to the majors in 2002 reaching higher levels of success becomes more negative, 

as illustrated in Figures 9 and 10.  
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Figure 8 
 

 

 

Figure 9 
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Figure 10 
 

 

 

Figure 11 

 46



The effect of factor 4 (pure-hitting ability) increases as factor 1 (ability to slug) increases, 

as illustrated in Figures 12.   

 

 
Figure 12 

 

 

The final step in making sure the model provides a proper fit is to check the deviance 

about the model.  A deviance statistic that is too large suggests over-dispersion problems 

or other lack-of-fit problems.  Table 13 gives the deviance statistic and the associated 

degrees of freedom.  The expected value of the statistic is the number of degrees of 

freedom, 2919.  The standard error is the square root of two times the degrees of 

freedom, or 76.41.  The observed deviance is 1705.86, well below the expected value. 
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Table 13: Deviance Statistic for Assessing Goodness of Fit 
Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 2919 1754.7090 0.6011 
 

 

IV.5 Final Prospect Rankings 
 

With the final logistic regression model found to be an appropriate model, the probability 

of reaching at least major-league success level three is computed.  Then the players are 

then ranked from the highest probability of success to the lowest.  Table 14 displays the 

Top 50 minor league hitters of 2002 based on these rankings along with their respective 

ranking (or rating if not ranked) by Sickels (2003) and their observed level of Major 

League success.  (Sickels rates prospects on a scale ranging from “A” to “C-.”  His Top 

50 players typically include all those rated A, A-, B+, and many rated B.)  Only three of 

the Top 50 have not yet played in the majors, Jason Stokes being the most highly ranked.  

Stokes has had up-and-down seasons subsequent to 2002 mainly due to poor plate 

discipline that was not observed in 2002 and some injuries.  Many players ranked in the 

Top 50 by our model were not in Sickels’ book.  (Most of these players had 50+ games in 

the majors in 2002.  We applied the 50+ game rule only to seasons prior to 2002.)  At the 

bottom of Table 14 are the remaining players who have achieved the highest level of 

success in the majors thus far, level 4, and their rankings.   
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Table 14: Top 50 Minor League Hitters in 2002 According to Logistic Regression Modeling of MLB 
Success along with John Sickel’s Rankings (or Ratings if not Ranked) (Sickels, 2003) 
Sickel’s 
Rank My Rank Last First P(Success) MLB 

Success 

B 1 Cust Jack 0.93108 2 

7 2 Choi Hee Seop 0.90506 3 

10 3 Hafner Travis 0.83581 4 

C+ 4 Pena Wily Mo 0.82044 3 

8 5 Hairston Scott 0.79678 3 

B- 6 Munson Eric 0.77927 3 

B 7 Hawpe Brad 0.77014 3 

3 8 Martinez Victor 0.75210 3 

C 9 Hart Jason 0.75086 1 

C 10 Langerhans Ryan 0.74085 3 

11 11 Stokes Jason 0.73841 0 

C 12 Duncan Jeff 0.73586 2 

NA 13 Phelps Josh 0.72519 3 

48 14 Borchard Joe 0.71974 2 

B+ 15 Werth Jayson 0.70878 3 

B- 16 Shelton Chris 0.70550 3 

1 17 Teixeira Mark 0.70318 4 

C 18 Henson Drew 0.67427 1 

C 19 Quinlan Robb 0.66658 3 

42 20 Restovich Michael 0.65228 3 

NA 21 Crede Joe 0.64730 3 

C+ 22 Chen Chin-Feng 0.64564 1 

B 23 Cash Kevin 0.64526 2 

NA 24 Brito Juan 0.63283 2 

NA 25 Pena Carlos 0.62278 3 

B- 26 Ludwick Ryan 0.62235 3 

C 27 Davis J.J. 0.62209 2 

32 28 Harris Brendan 0.61418 1 

NA 29 Burroughs Sean 0.60818 2 
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Sickel’s MLB My Rank Last First P(Success) Rank Success 

C+ 30 Berroa Angel 0.60685 3 

NA 31 Rivera Mike 0.60125 2 

C+ 32 Broussard Ben 0.58743 3 

C+ 33 Infante Omar 0.57282 2 

NA 34 Blalock Hank 0.56537 3 

45 35 Tracy Chad 0.55898 3 

C 36 Hall Bill 0.55853 3 

B- 37 Gomes Jonny 0.55552 3 

4 38 Phillips Brandon 0.55544 2 

5 39 Cuddyer Michael 0.55230 3 

25 40 Baldelli Rocco 0.55211 3 

NA 41 Ross Dave 0.54508 2 

B 42 Stanley Henri 0.52699 0 

NA 43 Lunsford Trey 0.51438 1 

NA 44 Lopez Felipe 0.50795 3 

36 45 Linden Todd 0.50436 2 

B 46 Dubois Jason 0.50108 3 

18 47 Overbay Lyle 0.49728 3 

NA 48 Sandberg Jared 0.48413 3 

C 49 Rich Dominic 0.48373 0 

C 50 Torcato Tony 0.46599 1 

 

B- 141 Bay Jason 0.19638 4 

9 239 Cabrera Miguel 0.09187 4 

26 305 Wright David 0.05819 4 

C+ 357 Howard Ryan 0.04126 4 
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V. Conclusion 
 

Favorable results have come about as a result of using statistical models to evaluate 

young minor-league position players.  The average response from a number of different 

hitting categories was noted to be significantly different between minor-leaguers making 

to the majors and those not making it.  In addition, often the average response continued 

to increase for players showing increased levels of success in the majors.  Next, four 

underlying factors common to all hitting statistics were identified, and these underlying 

factors were shown to be statistically significant predictors of major-league success.  

Also found to be significant predictors were the highest level in the minors played in 

2002 and a variable measuring a player’s age relative to his level.  Finally, a partial 

proportional odds logistic regression model showing adequate fit was built in such a way 

as to predict major-league success and rank players accordingly. 

 

However, there are limitations to my conclusions due to the data collected.  First, the 

model shows only the degree of success that can be achieved in the succeeding three 

years.  Second, it would have been ideal to consider multiple minor-league seasons.  

Multiple seasons of data are important because players exhibit variability in performance 

from year to year, (Jason Stokes is a prime example), and because statistics measuring 

performance can vary even if the player’s true performance level doesn’t.  James, Albert, 

and Stern discuss this issue (1993).  Players are often assessed by the batting average, 

which is just the proportion of at-bats with a hit.  A player’s true batting average can 

then, for example, be thought of as a probability, being estimated by their proportion of 

successes each season.  There is great variation in estimates of a proportion. Consider a 
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true .270-hitter. There is approximately a 9-10% chance that he can hit .300 or higher 

over the course of a minor league season just by luck, assuming 400 at-bats.  For these 

reasons, it would be good to obtain data for at least 2 minor-league seasons per player.  

Third, it would have been optimal to have obtained data from an earlier point in time.  

Players from an earlier time-frame should have had ample opportunity to make their way 

up the levels of the minor leagues and into the majors, if they were ever going to do so.  

In addition, this would have allowed for more time for the players to truly distinguish 

themselves in the majors.  It would be easier to discern which players really play at an 

“all-star” level from those who are simply good players who start and those who are 

marginal major-leaguers who can play when the team needs them. 

 

Fourth, in addition to the variables observed, it would have also been ideal to have 

information about the players’ home ballparks and leagues.  There is plenty of evidence 

discussed by various sabermetricians such as John Sickels and Bill James indicating that 

some ballparks are hitters’ parks and some are pitchers’ parks.  To slug .500 in one 

ballpark may be average at best, and it may be eye-popping in another ballpark.   

 

Lastly, even if the ideal data were collected, the reality is that there will still be error in 

predicted outcomes.  There are still variables explaining a player’s level of success in the 

majors, if any, that we have not, and perhaps cannot, measure.  Such variables are injury, 

personal relationships and conflicts, and the loss of confidence.  But, the risk of drafting, 

trading for, or moving up players who don’t pan out can be minimized by identifying and 

using measurable explanatory variables. 
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VI. Future Research 
 

There are many more routes one could take in order to evaluate and rank minor league 

hitters.  A few in particular pique my interest for future research. 

If I could obtain multiple seasons of minor-league data for each player, it would be 

interesting to do a time-series analysis.  The following questions could possibly be 

answered: 

 

• Do certain offensive statistics trend upward, downward, or vary 
randomly over the course of a minor-league career? 

 
• Do the trends or patterns of variation of certain offensive statistics differ 

significantly between players who eventually play in the majors and 
those who don’t? 

 
• Can a smoothing method be used to forecast major-league success? 

 

I would also be interested in trying to model a quantitative response such as runs-created 

in the majors or win-shares (James & Henzler, 2002) in the majors.  This would help take 

out the subjectivity in choosing categorical levels of major-league success. 

 

Lastly, I would also like to use the model built in this research to rank players from other 

minor-league seasons to check model adequacy. 
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Glossary 
 
At-bat (AB) - A batter has an at bat every time he faces a pitcher except under the 
following circumstances: he receives a walk, he is hit by a pitch, he hits a sacrifice fly or 
a sacrifice bunt, he is awarded first base due to interference or obstruction (usually by the 
catcher), the inning ends while he is still at bat, or he is replaced by another hitter while 
he is still at bat.  
 
Caught Stealing (CS) – When a player is tagged out by a baseman while attempting to 
steal a base 
 
Double (D) – A hit by which a player reaches second base 
 
Homerun (HR) – A hit by which a player rounds all three bases and scores 
 
Isolated Power (IsoPower) – The number of extra-base hits (those greater than a single) 
per at-bat; it is computed by the following formula: 
 

 

AB
HHRTDS −+++

=
432

bats-AtofNumber 
Hits - bases Total  

 
 
On-base percentage (OBP) – The percentage of time a player reaches any base; it is 
computed by the following formula: 
 

 

BBAB
BBH

+
+

=
 Walksplus bats-At ofNumber 

 Walksplus Hits  

 
 
On-base percentage plus slugging (OPS) – A statistic used to measure both a player’s 
ability to get on base and to drive  players around the bases with extra-base hits; it is 
computed by the following formula: 
 

 
Slugging  OBP +  
 

 
Runs created (RC) – A measure created by Bill James to measure a player’s total 
offensive production; it is generically the number of runs he creates for his team and is 
computed by the following formula: 
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( ) ( )
BBAB

SBHRTDSCSBBH
+

+++++−+ 55.432  

 
 
Single (S) – A hit by which a player reaches first base 
 
 
Slugging percentage (Slugging) - The total number of bases per at-bat; it is computed by 
the following formula: 
 

 

AB
HRTDS 432 

bats-AtofNumber 
 bases Total +++

=  

 
 
Stolen base (SB) - When a baserunner successfully advances to the next base while the 
pitcher is delivering the ball to home plate 
 
Strikeout – When a hitter receives three strikes during his time at bat 
 
Triple (T) – A hit by which a player reaches third base 
 
Walk (BB) – An advance to first base that is awarded to a batter who takes four pitches 
that are balls, also known as a base-on-balls 
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Appendix A 
 

 

Figure 13 
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Figure 14 
 
 

 

Figure 15 
 

 59



 

Figure 16 
 
 
 

 
 

Figure 17 
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Figure 18 
 
 
 

 

Figure 19 
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Figure 20 
 
 
 

 

Figure 21 
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Figure 22 
 
 

 

Figure 23 
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Figure 24 
 
 

 

Figure 25 
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Appendix B 
 

Obs Last First League Age Pos Level Runs RBIs S D T HR 

1 Abercrombie Reggie SOU 22 OF AA 81 56 100 23 13 10
2 Abram Matt MWL 22 OF A 23 32 39 9 0 6
3 Abreu Dennis SOU 24 2B AA 45 51 87 17 4 7
4 Abruzzo Jared CAL 20 C A+ 53 53 51 27 0 16
5 Acevas Jon SOU 24 C AAA 26 16 26 8 1 3
6 Acevedo Carlos FSL 21 OF A+ 8 6 19 6 0 0
7 Acevedo Inocencio FSL 23 3B A+ 28 13 36 5 1 2
8 Ackerman Scott FSL 23 C AAA 29 44 53 12 2 9
9 Acuna Ron FSL 21 OF AA 70 57 108 20 7 2

10 Adams Russ FSL 21 SS A+ 23 12 27 4 2 1
11 Aguila Chris EAS 23 OF AA 62 46 88 28 4 6
12 Ahumada Alex EAS 23 SS AA 42 28 53 5 3 2
13 Alcala Juan CAL 24 C AA 9 7 19 1 0 1
14 Alexander Kevin SAL 21 2B A 59 28 75 24 0 4
15 Alfaro Jason TEX 24 3B AA 71 74 89 36 2 16
16 Alfonzo Eliezer SOU 23 C AA 30 47 51 17 1 9
17 Allegra Matt CAL 21 OF A+ 74 93 81 35 3 20
18 Allen Luke PCL 23 OF Majors 85 78 122 28 3 12
19 Alleva Joe MWL 22 C A 15 18 36 6 0 0
20 Almonte Erick INT 24 SS AAA 53 61 62 17 1 17
21 Alvarez Jimmy SOU 22 2B AA 83 69 95 32 3 8
22 Alvarez Tony EAS 24 OF Majors 79 59 108 37 1 15
23 Amador Chris SAL 19 2B A 60 26 72 5 4 3
24 Ambres Chip FSL 22 OF A+ 88 37 79 25 7 9
25 Ambrosini Dominick MWL 21 OF A 53 50 85 29 4 5
26 Amezaga Alfredo PCL 24 SS Majors 77 51 92 25 7 6
27 Anderson Keith SAL 23 C AA 20 20 29 12 0 3
28 Anderson Travis CAR 22 C A+ 19 12 25 4 0 3
29 Ansman Craig CAL 24 C AA 73 64 74 24 7 21
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Obs Last First League Age Pos Level Runs RBIs S D T HR 

30 Aquino Jackson MWL 20 SS A 33 25 52 12 1 1
31 Aracena Sandy FSL 21 C A+ 19 15 40 3 0 1
32 Arauja Ramon CAR 21 2B A+ 22 11 31 6 0 0
33 Arnerich Tony CAR 22 C A+ 33 46 71 12 0 2
34 Arroyo Will MWL 20 2B A 30 22 46 5 2 0
35 Arteaga Joshua MWL 22 3B A+ 24 16 38 10 2 1
36 Asadoorian Rick MWL 22 OF A 70 55 87 12 11 8
37 Asche Kirk TEX 24 OF AA 50 56 56 13 10 12
38 Aspito Jason CAR 23 OF A+ 40 36 58 14 2 6
39 Asprilla Avelino SAL 21 SS A+ 31 21 38 4 1 3
40 Athas Jamie CAL 22 SS A+ 65 40 94 15 7 1
41 Atkins Garrett SOU 22 3B AA 71 61 96 27 3 12
42 Avila Rob FSL 23 1B A+ 26 26 36 11 0 5
43 Ayala Eliott MWL 23 3B A+ 26 18 46 6 2 0
44 Ayala Odannys MWL 22 OF A 68 61 84 22 7 6
45 Aybar Willy FSL 19 3B A+ 56 65 49 18 2 11
46 Badeaux Brooks INT 25 2B AAA 45 29 67 14 2 2
47 Bailey Jeff EAS 23 1B AA 45 52 56 17 1 13
48 Bailie Stefan FSL 22 1B A+ 16 26 29 8 2 2
49 Baldelli Rocco INT 20 OF AAA 86 71 108 28 3 19
50 Ball Jarred MWL 19 OF A 48 23 58 13 4 2

 

Obs SO SB CS BB OBP Avg IsoPower SO/BB 

1 159 42 17 27 0.31059 0.27547 0.14906 5.8889
2 51 1 3 17 0.27413 0.22314 0.11157 3.0000
3 102 18 14 21 0.32151 0.28607 0.11443 4.8571
4 124 1 1 30 0.29880 0.24416 0.19481 4.1333
5 36 0 1 20 0.31351 0.23030 0.11515 1.8000
6 19 0 2 5 0.25000 0.21739 0.05217 3.8000
7 36 11 3 9 0.27320 0.23784 0.07027 4.0000
8 49 1 0 13 0.32014 0.28679 0.16226 3.7692
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Obs SO SB CS BB OBP Avg IsoPower SO/BB 

9 79 37 13 39 0.34783 0.29336 0.08565 2.0256
10 17 5 2 18 0.31515 0.23129 0.07483 0.9444
11 101 14 8 48 0.36478 0.29371 0.12587 2.1042
12 60 13 5 24 0.30851 0.24419 0.06589 2.5000
13 24 2 0 2 0.21495 0.20000 0.03810 12.0000
14 65 12 5 44 0.36567 0.28771 0.10056 1.4773
15 75 11 9 44 0.37475 0.31429 0.19341 1.7045
16 69 2 3 12 0.30100 0.27178 0.16028 5.7500
17 160 9 9 46 0.34259 0.28138 0.20445 3.4783
18 77 4 6 53 0.39350 0.32934 0.13972 1.4528
19 24 0 0 20 0.29952 0.22460 0.03209 1.2000
20 119 12 3 43 0.31042 0.23775 0.17157 2.7674
21 121 20 11 77 0.37456 0.27767 0.12475 1.5714
22 71 29 18 26 0.35084 0.31755 0.16568 2.7308
23 142 56 15 38 0.26754 0.20096 0.05263 3.7368
24 98 23 8 57 0.31272 0.23576 0.12967 1.7193
25 113 7 5 30 0.32484 0.27891 0.11791 3.7667
26 100 23 14 45 0.31083 0.25097 0.11004 2.2222
27 37 0 1 14 0.33526 0.27673 0.13208 2.6429
28 26 0 4 14 0.34328 0.26667 0.10833 1.8571
29 119 3 3 39 0.35408 0.29508 0.23653 3.0513
30 70 12 10 28 0.27011 0.20625 0.05313 2.5000
31 50 2 0 20 0.26230 0.19643 0.02679 2.5000
32 34 7 3 6 0.24022 0.21387 0.03468 5.6667
33 53 2 2 20 0.31157 0.26814 0.05678 2.6500
34 38 11 10 47 0.37037 0.23767 0.04036 0.8085
35 34 1 4 15 0.27848 0.22973 0.07658 2.2667
36 96 14 8 43 0.32992 0.26517 0.13034 2.2326
37 132 9 6 38 0.31159 0.24202 0.18351 3.4737
38 83 2 5 26 0.30994 0.25316 0.11392 3.1923
39 49 7 2 13 0.29353 0.24468 0.07979 3.7692
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Obs SO SB CS BB OBP Avg IsoPower SO/BB 

40 124 14 6 44 0.31569 0.25107 0.06867 2.8182
41 77 6 6 57 0.34392 0.27059 0.13529 1.3509
42 41 4 2 24 0.29008 0.21849 0.10924 1.7083
43 36 4 1 17 0.28629 0.23377 0.04329 2.1176
44 70 5 3 61 0.38961 0.29676 0.13466 1.1475
45 54 15 8 65 0.33181 0.21505 0.14785 0.8308
46 45 8 2 28 0.30707 0.25000 0.07059 1.6071
47 78 3 3 59 0.39674 0.28155 0.18770 1.3220
48 33 1 0 16 0.32571 0.25786 0.11321 2.0625
49 97 26 13 21 0.35872 0.33054 0.19038 4.6190
50 85 12 1 41 0.32597 0.23988 0.08411 2.0732

 

Obs HR/AB Factor 1 Factor 2 Factor 3 Factor 4 

1 0.018868 0.34920 2.48930 -0.79747 0.59464
2 0.024793 0.02771 -0.82562 -0.71442 -0.92839
3 0.017413 -0.06966 0.82013 -0.61190 0.90307
4 0.041558 1.49602 -0.54788 -0.48712 -0.31677
5 0.018182 -0.26877 -0.92365 -0.08385 -0.71994
6 0.000000 -1.25412 -1.17408 -1.30686 -1.09571
7 0.010811 -0.77867 -0.54990 -1.07532 -0.50064
8 0.033962 0.72674 -0.64347 -0.55675 0.92411
9 0.004283 -0.83245 1.72664 0.52132 1.11531

10 0.006803 -0.89797 -0.73562 0.06396 -0.69114
11 0.013986 -0.13193 0.65160 0.81959 1.12533
12 0.007752 -0.87717 -0.01877 -0.19079 -0.31589
13 0.009524 -1.06738 -1.21696 -3.30798 -1.60186
14 0.011173 -0.46793 0.05456 0.87714 0.95080
15 0.035165 1.33919 0.57937 0.90806 1.72426
16 0.031359 0.65393 -0.57745 -1.13545 0.48711
17 0.040486 1.75371 0.58840 0.31814 0.76649
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Obs HR/AB Factor 1 Factor 2 Factor 3 Factor 4 

18 0.023952 0.51855 0.77753 1.28790 2.16244
19 0.000000 -1.38120 -1.06983 -0.08136 -0.88594
20 0.041667 1.40689 -0.10842 0.13255 -0.50334
21 0.016097 0.02054 1.05629 1.56022 0.65850
22 0.029586 0.97929 1.42719 0.15806 1.81939
23 0.007177 -0.91899 1.55690 -0.51915 -1.57401
24 0.017682 0.14371 1.21054 0.62863 -0.56122
25 0.011338 -0.29895 0.29277 -0.19362 0.69475
26 0.011583 -0.28773 1.46859 0.28363 -0.11859
27 0.018868 -0.14582 -1.03277 -0.18376 0.63124
28 0.025000 -0.15410 -0.94108 0.04189 0.33838
29 0.049180 2.21327 0.46602 0.36790 1.16537
30 0.003125 -1.12040 -0.06148 -0.43881 -1.41997
31 0.004464 -1.25603 -0.96805 -0.65679 -1.70580
32 0.000000 -1.36477 -0.78922 -1.74560 -1.19811
33 0.006309 -0.96819 -0.52038 -0.27110 0.38122
34 0.000000 -1.32886 -0.07492 1.10823 -0.50558
35 0.004505 -0.94011 -0.62721 -0.56829 -0.73662
36 0.017978 0.09943 1.25343 0.40460 0.29478
37 0.031915 0.97988 0.58630 -0.09452 -0.37889
38 0.018987 -0.09178 -0.26958 -0.27989 -0.05458
39 0.015957 -0.54398 -0.62132 -0.78132 -0.30149
40 0.002146 -1.04472 0.86652 0.18577 -0.11546
41 0.023529 0.48077 0.48965 0.96594 0.45251
42 0.021008 -0.12998 -0.81144 -0.18722 -1.06381
43 0.000000 -1.31032 -0.62705 -0.43444 -0.61914
44 0.014963 -0.05373 0.53018 1.46842 1.21415
45 0.029570 0.64463 0.16907 1.12031 -1.16374
46 0.005882 -0.89073 -0.18170 0.05249 -0.14668
47 0.042071 1.29684 -0.38489 1.45550 0.77164
48 0.012579 -0.46612 -0.94235 -0.10966 0.08212
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Obs HR/AB Factor 1 Factor 2 Factor 3 Factor 4 

49 0.039749 1.59223 1.37378 -0.25008 2.19744
50 0.006231 -0.79712 -0.04173 0.36530 -0.44134
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Appendix C  
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Figure 32 
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Figure 34 
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Appendix D 
 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate Standard 
Error 

95% Confidence 
Limits Z Pr > |Z| 

Intercept   -1.0225 0.2504 -1.5134 -0.5316 -4.08 <.0001
Logtype 1  2.3652 0.2388 1.8972 2.8331 9.91 <.0001
Logtype 2  1.3781 0.2026 0.9810 1.7753 6.80 <.0001
Logtype 3  0.0000 0.0000 0.0000 0.0000 . .
OHH   0.4619 0.0748 0.3153 0.6084 6.18 <.0001
Level A  -4.1518 0.3341 -4.8066 -3.4970 -12.43 <.0001
Level A+  -3.7219 0.3203 -4.3496 -3.0942 -11.62 <.0001
Level AA  -3.1860 0.3102 -3.7939 -2.5781 -10.27 <.0001
Level AAA  -2.8467 0.3448 -3.5225 -2.1709 -8.26 <.0001
Level Majors  0.0000 0.0000 0.0000 0.0000 . .
Factor1   0.2825 0.1445 -0.0007 0.5657 1.96 0.0506
Factor2   -0.4499 0.2604 -0.9602 0.0604 -1.73 0.0840
Factor3   0.3790 0.2234 -0.0589 0.8168 1.70 0.0898
Factor4   0.0286 0.2390 -0.4398 0.4969 0.12 0.9048
OHH*Factor4   -0.1654 0.0641 -0.2911 -0.0397 -2.58 0.0099
Factor2*Level A  0.2224 0.3568 -0.4769 0.9216 0.62 0.5331
Factor2*Level A+  0.6961 0.3368 0.0361 1.3562 2.07 0.0387
Factor2*Level AA  0.4713 0.2852 -0.0876 1.0303 1.65 0.0984
Factor2*Level AAA  1.1540 0.4503 0.2714 2.0367 2.56 0.0104
Factor2*Level Majors  0.0000 0.0000 0.0000 0.0000 . .
Factor4*Level A  1.6835 0.4439 0.8134 2.5537 3.79 0.0001
Factor4*Level A+  1.3755 0.3904 0.6103 2.1407 3.52 0.0004
Factor4*Level AA  1.5235 0.3610 0.8159 2.2310 4.22 <.0001
Factor4*Level AAA  1.0452 0.4173 0.2272 1.8632 2.50 0.0123
Factor4*Level Majors  0.0000 0.0000 0.0000 0.0000 . .
Factor1*Factor3   0.2414 0.1040 0.0376 0.4451 2.32 0.0202

 76



Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Standard 95% Confidence Estimate Z Pr > |Z| Parameter  Error Limits 

Factor1*Logtype 1  0.2402 0.1382 -0.0306 0.5111 1.74 0.0822
Factor1*Logtype 2  -0.0329 0.1118 -0.2520 0.1861 -0.29 0.7684
Factor1*Logtype 3  0.0000 0.0000 0.0000 0.0000 . .
Factor2*Logtype 1  0.4956 0.1892 0.1248 0.8665 2.62 0.0088
Factor2*Logtype 2  0.1801 0.1653 -0.1438 0.5040 1.09 0.2757
Factor2*Logtype 3  0.0000 0.0000 0.0000 0.0000 . .
Factor3*Logtype 1  -0.2988 0.2197 -0.7293 0.1318 -1.36 0.1738
Factor3*Logtype 2  0.0654 0.1763 -0.2801 0.4108 0.37 0.7107
Factor3*Logtype 3  0.0000 0.0000 0.0000 0.0000 . .
Factor4*Logtype*Le
vel 

1 A -0.6156 0.3389 -1.2799 0.0487 -1.82 0.0693

Factor4*Logtype*Le
vel 

1 A+ -0.6624 0.3529 -1.3541 0.0294 -1.88 0.0605

Factor4*Logtype*Le
vel 

1 AA -0.7199 0.2843 -1.2772 -0.1626 -2.53 0.0113

Factor4*Logtype*Le
vel 

1 AAA -0.5157 0.3929 -1.2858 0.2544 -1.31 0.1893

Factor4*Logtype*Le
vel 

1 Majors 0.7042 0.3786 -0.0379 1.4463 1.86 0.0629

Factor4*Logtype*Le
vel 

2 A -0.2750 0.2651 -0.7946 0.2447 -1.04 0.2997

Factor4*Logtype*Le
vel 

2 A+ -0.2448 0.3134 -0.8591 0.3695 -0.78 0.4348

Factor4*Logtype*Le
vel 

2 AA -0.6557 0.2137 -1.0745 -0.2368 -3.07 0.0022

Factor4*Logtype*Le
vel 

2 AAA -0.5392 0.3051 -1.1373 0.0588 -1.77 0.0772

Factor4*Logtype*Le
vel 

2 Majors 0.1954 0.2460 -0.2867 0.6776 0.79 0.4269

Factor4*Logtype*Le
vel 

3 A 0.0000 0.0000 0.0000 0.0000 . .

Factor4*Logtype*Le
vel 

3 A+ 0.0000 0.0000 0.0000 0.0000 . .
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Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Standard 95% Confidence Estimate Z Pr > |Z| Parameter  Error Limits 

Factor4*Logtype*Le
vel 

3 AA 0.0000 0.0000 0.0000 0.0000 . .

Factor4*Logtype*Le
vel 

3 AAA 0.0000 0.0000 0.0000 0.0000 . .

Factor4*Logtype*Le
vel 

3 Majors 0.0000 0.0000 0.0000 0.0000 . .
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