
Generation of Efficient Compilers

by Application of

Single- Threading, Control Binding and Lambda-Lifting Techniques

by

Kok Hui Chong

B.A., Coe College, Cedar Rapids, IA, 1987

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved By:

Dr. David A. Schmidt

Acknowledgements

I would like to express my gratitute and appreciation to Professor David A. Schmidt

for his guidance, assistance, and advice.

I wish to thank Professor Elizabeth A. Unger and Professor Massaki Mizuno for being

on my examination committee and teaching me interesting courses during my stay at

the Kansas State University.

Finally, I would like to thank my wife Bee Choo and my parents for their patience

and encouragement during my graduate study.

11

2kbi

CM^'

m

u

/^iiii. Table of Contents

V^ AllEDfl 31S0fc0

Table of Contents

Chapter 1 : Introduction
1

Chapter 2 : Typed Lambda Calculus and Rewriting Rule Schemes 4

2.1 Typed Lambda Calculus 4

2.2 Rewriting Rule Schemes 5

2.2.1 Definition

2.2.2 The Rewriting Rule Schemes 6

2.3 Rewriting Strategies 7

2.3.1 Call-by-value 7

2.3.2 Call-by-name g

Chapter 3 : Single-Threading, Control Binding and Lambda-Lifting 9

3.1 Single-Threading 9

3.2 Control Binding 14

3.3 Lambda- Lifting ig

Chapter 4 : Implementatio of Compiler Generator System (Phase I) 21

4.1 Organization of Compiler Generator System 22

4.2 Scanner, Parser and Type-Checker 23

4.2.1 Scanner 23

4.2.2 Parser and Type Checker 24

4.3 Single-Threading 25

4.4 Control Binding 25

4.5 Lambda-Lifting 27

4.6 Eta-Reduction 29

4.7 Pretty Printer 29
Chapter 5 : Implementation of Compiler Generator System (Phase II) 31

5.1 Augmented System 31

5.2 Run-Time Rules and Compiled-Time Rules 32
5.3 Scanner, Parser and Type Checker 33

5.4 Experimental Portion 34
5.4.1 Single-Threading 35
5.4.2 Extended Control Binding 35
5.4.3 Lambda-Lifting 39

5.5 Eta-Reduction og

111

Chapter 6 : Results 40

6.1 Single-Threading, Lambda-Lifting and Control Binding 40

6.2 Control Binding, Single-Threading and Lambda-Lifting 40

6.3 Control Binding, Lambda-Lifting and Single-Threading 41

6.4 Lambda-Lifting, Single-Threading and Control Binding 41

6.5 Lambda-Lifting, Control Binding and Single-Threading 42

6.6 Summary 42

Chapter 7 : Evaluators 45

7.1 Compiled-Time Evaluator 45

7.2 Run-Time Evaluator 47

Chapter 8 : Conclusions 49

References 51

Appendix A : Source Files 53

IV

Chapter 1

Introduction

As the practical value of denotational semantics becomes better understood, it has

become obvious that the implementation of a language can be guided by its semantic

definition [5]. In other words, it is feasible to derive a compiler from the semantics of a

language. If one makes a comparison between a conventional handwritten compiler

and a compiler generated from a semantic definition, one finds that it is easier to pro-

duce an error-free compiler using the semantic definition, although it first requires

writing the semantic definition of the language. A drawback with the early work in

this area is that the derived compilers ran slower than the handwritten ones. This is

because the existing compiler generating systems that process lambda-calculus-style

denotational semantics [8] are hindered by the slow processors that generate inefficient

target code.

One possible way around this problem is to develop new machine architectures that

are better suited to the implementation of functional languages. However, the dark

side of following this approach is that it is not economically feasible; the existing

machines use Von Neumann architecture must be wastefully discarded and replaced

with the new ones. Fortunately, software solutions come to the rescue. Clues

presented by the domains and valuation functions in the semantic definitions open

new avenues for researchers to transform a denotational definition of a programming

1

language into an easily implementable form to generate more efficient compilers [4]. As

the search for solutions continues in this direction, several promising techniques have

been formulated to improve the efficiency of the generated target language. Among

these techniques, we considered single-threading, control binding and lambda-lifting

[4,6,7,8]. Although these techniques seem to improve the efficiency of the generated

target language, no efforts have been conducted to tie together these techniques to

maximize their effectiveness.

The motivation of this research is to fill in the gap. Since the order in which these

techniques are employed affects their performances, we need a system which enables

us to intermix them in various orders and capture their best ordering. Following this

idea, we designed and implemented these techniques in separate modules and tested

them with individual lambda calculus expressions. After these independent modules

have been successfully built, their interfaces were properly defined so that they can be

glued together in any order and executed. The order which we eventually pick will be

the order which yields the smallest and best result. As the next step of the research,

the augmented system is applied to a set-of-equations semantic definition. The out-

put from the augmented system together with a compile-time evaluator form a com-

piler. With these efforts, we hope we can open a new dimension of automatically gen-

erated compilers that look like and are run as efficiently as hand-written ones.

The compiler generator system is primary used to generate efficient compilers from

imperative language definitions. This is due to the fact that the techniques which are

incorporated in the system are useful for processing semantics of imperative languages

that use storage. Besides that, the system can also be applied to some kinds of func-

tional programs where parameters are passed in a sequential fashion.

There are two obvious limitations to the system. First, it requires language definitions

which use eager evaluation. Second, it cannot handle conversion of functional program

parameters to variables in many cases.

Contents of Thesis

In the next chapter we give a review of the typed lambda calculus and rewriting rule

schemes. The concepts of Single-Threading, Control Binding and Lambda-Lifting are

presented in Chapter 3. Chapter 4 and 5 discuss work that was done in the research.

These chapters show the structure of the system and how the individual components

were implemented. Results are given in Chapter 6. Chapter 7 talks about the

compile-time and run-time evaluators. Finally, Chapter 8 contains conclusions. The

source code for the compiler generator system is contained in appendix A.

Chapter 2

Typed Lambda Calculus and Rewriting Rule Schemes

2.1. Typed Lambda Calculus.

In the denotational semantics framework, the denotation of a program is usually a

mathematical value, such as a number of a function [5]. Denotations are expressed in

a simple language called the lambda calculus. The lambda calculus has only a few

syntactic constructs and a simple semantics. Despite it simplicity, it is sufficient to

express the meaning of most all programming languages (e.g. PASCAL, LISP,

SMALLTALK). Since our compiler generator system processes semantics definitions

encoded in the lambda calculus, understanding the system will require some

knowledge of the lambda calculus. FIGURE 2-1 shows the concrete syntax of the

typed lambda calculus. The domain (type) calculus includes first order domains (e.g.,

nat, bool, iden, store, cmd, expr and numeral), and function space domains (e.g., (nat-

>nat), ((iden->store)->nat)). Our choices of constants is arbitrary. Constants can be

built-in functions (e.g., update, access and plus), natural numbers (e.g., zero, one and

two) or booleans (e.g., true and false).

Based on the concrete syntax above, we give three samples of typed lambda calculus

expressions:

(a). ((times
((plus one) two

)) four
)

E : Expression

D : Domain
T : First-order-domain

i : identifier

c : constant

D :: = T
|

(Dl-> D2)
E :: = i

|
c

|
lam i : T . E mal

|
(El E2

)

FIGURE 2-1

(b). lam i : iden . lam s : store .
((access i) s) mal mal

(c). lam f : (nat -> nat) . (f two) mal.

(For practical reasons, all function applications in the typed lambda calculus are writ-

ten in prefix form.) A lambda expression is itself a kind of "program" that can be

"computed" by rewriting it into a normal form. The rewriting is called a reduction,

and the rewriting is done by rewriting rule schemes.

2.2. Rewriting Rule Schemes.

A rewriting rule is a form L => R. An expression E is rewritten by the rule when a

subexpression of E matches L. The matched subexpression in E is replaced by R.

Before we give examples, we need some definitions.

2.2.1. Definition.

(i) A lambda abstraction is an expression of the form lam i:T.E mal. Expression

(b) in section 1.1 is an example.

(ii) A lambda expression is closed if every identifier T within it appears within a

lambda abstraction lam i.E mal. Expression (b) is closed because the only

identifiers in it are s and i, and they reside within the abstraction (lam i. lam

s. B). An expression that is not closed is open. As we will see in section 2.3,

implementing an open expression is a nuisance and we normally try to avoid

it.

(iii) An innermost lambda abstraction is a lambda abstraction which contains no

other proper lambda abstractions. The lambda abstraction (lam s .

((access

i) s) mal) in expression (b) in section 1.1. is an example.

(iv) A redex is an expression whose structure matches the left hand side of a

rewriting rule [5].

(iv) A normal form is an expression which contains no redexes [5].

2.2.2. The rewriting rule schemes.

(i) Eta rule. The Eta rule eliminates redundant lambda abstraction.

Definition: (lam x.E x) => E if x is not free in E.

(ii) Alpha rule. The alpha rule is a name changing rule. It enables us to change

the name of the formal parameter of a lambda abstraction, as long as it is

done consistently. Let E[e/x] represent the expression constructed by substi-

tuting all free occurrences of x in E by e.

Definition: (lam x.E) => (lam y.E[y/x]) if y is not free in E.

(iii) Beta rule. The beta rule enables us to apply a lambda abstraction to an argu-

ment by making a new instance of the body of the abstraction and substitut-

ing the argument for free occurrences of the formal parameter.

Definition: (lam x.E) e => E[e/xJ.

(iv) Delta rule. The delta rule is a form of rewrite rule for built-in functions. The

functionality of this rule is very similar to that of the beta rule.

Definition: f el ... en => [en/xnj ... [el/xl] E

where f is defined as f xl ... xn => E.

From the implementation point of view, the 'execution' of a lambda calculus expres-

sion is by rewriting. A reduction proceeds by repeatedly selecting a redex and rewrit-

ing it [4]. Following the convention, we use the symbol '=>' to denote that one-step

reduction has been performed. In the expression (a) above, there is one redex, namely

((plus one) two) as it matches the left hand side of the delta-rule plus a b => a+b

If the delta rule is applied, the expression is reduced to

=>
((times three) four).

Notice that the action created a new redex which can further be reduced by the

delta-rule times a b => a*b to a normal form

=> twelve.

2.3. Rewriting Strategies.

There are different strategies for rewriting an expression. Two of the strategies we

consider here are call-by-value and call-by-name. The rewriting strategy that we use

is call-by-value.

2.3.1. Call-by-value.

In call-by-value, arguments to the beta and alpha rules are evaluated at the point of

call. For this reason, it is sometimes called an eager rewriting strategy. The evaluated

arguments are used to initialize the formal parameters of the rules. Since the

evaluated arguments are usually smaller, using this rewriting strategy can minimize

run-time memory usage. For example:

(lam x. plus x x) (plus 3 4)
=> (lam x. plus x x) 7

=> plus 7 7

=> 14.

2.3.2. Call-by-name.

In call-by-name, arguments to the beta and alpha rules are not evaluated at the point

of call. Consequently, it is sometimes called a lazy rewriting strategy. Each

occurrence of the formal parameter is replaced textually by the unevaluated actual

parameter. Since some arguments are not used in the body of an abstraction, using

this rewriting strategy can save effort of evaluating unused arguments. For example:

(lam x. if true (time 2 3) x) (fac 100)
=> if true (times 2 3) (fac 100)
=> times 2 3

=> 6.

We have just finished a tutorial session about the typed lambda calculus and the

rewiring rule schemes. Our next step is to denote the meaning of a typical imperative

language using the typed lambda calculus. This also leads us to the discussion of the

partial evaluation techniques.

Chapter 3

Single-Threading, Control Binding and Lambda-Lifting

Since the concepts of Single-Threading, Control Binding and Lambda- Lifting form the

main ingredients for our research, we devote this chapter to do a cursory inspection of

these topics.

3.1. Single- Threading.

As presented in detail in Schmidt [5,6,8], single-threading is the sequential processing

property of a programming language's semantic definition. A semantic definition is

said to be single-threaded if its store argument can be replaced by access rights to a

single global variable while preserving the operational properties of the semantic

definition. We believe that by exploiting this property in the definition, better and

more efficient implementation can be generated from it. Statically checkable, syntac-

tic criteria [8] for verifying that an expression is single-threaded in its use of a store

argument are summarized in the following paragraphs.

Definition.

An expression is:

(i) trivial if it is an identifier.

(ii) active if it is not properly contained in an abstraction.

The Syntactic Criteria.

In this section, the letter S denotes a store-typed domain while the letters D, Dl and

D2 denote any domains, for example, store, nat, boot and etc. We write e:D to state

that expression e belongs to domain D.

An expression 2? is single-threaded in its domain 5 if:

(i) £is i.-D or c:D.

(ii) Eis (lam i:Dl. El):Dl->D2, El is single-threaded, and

if Dl = S, then all active S-typed identifiers in El are i:S;

if Dl <> 5, then El has no active S-typed expressions.

(iii) £is (El E2):D2, El and E2 are single-threaded, and

if D2 = S, then if both El and E2 contain one or more active S-typed

expressions, then all of the active S-typed expressions in E must be

occurrences of the same identifier i:S;

if D2 <> S, then all occurrences of active S-typed expressions in E must be

occurrences of the same identifier i:S.

In order to understand the above criteria better, it is best to study some examples.

(a) (lam si. lam s2. si)

This expression fails to satisfy condition (ii). The problem arises when an

expression outside the lambda abstraction lam s2. si updates the s-typed

identifier 'si'. The s-typed identifier 'si' in the abstraction will not be able to

see the change and thus generates unexpected results when it is used.

(b) (lam i. access i sO)

This expression fails to satisfy condition (ii). The reason is similar to the one

10

mentioned in (a).

(c) (update [[A]] (access [[A]] sO) (update [[A]] zero sO))

This expression fails to satisfy condition (iii). The active s-typed subexpres-

sions, namely sO and (update [[A]] zero sO) clash if the expression is evaluated

from right to left. After the subexpression (update [[A]] zero sO) is evaluated,

a new s-typed value is created, say si. The presence of 'sO' in (access [[A]] sO)

violates the sequential processing property of the expression.

(d) access [[A]] (update [[A]] zero sO)

This expression does not satisfy condition (iii) although the expression stan-

dalone is single-threaded. This is because the expression can appear within a

larger expression and cause a problem, for example, the expression (update

[[A]] (access [[A]] (update [[A]] one sO)) sO). The subexpression (update [[A]]

one sO) creates a local s-typed value which will disappear right after the

operator 'access' has used it.

(e) lam i . lam n . lam s . (((update i) n) s) mal mal mal

This expression is single-threaded because it satisfies all three conditions.

(f) (update [[B]] two (update [[A]] one sO))

This expression is single-threaded because it satisfies all three conditions.

Single-Threaded Language Definition. The abstract syntax of a simple while-loop

language is given in FIGURE 3-1. To study the meaning of the while-loop language,

we map its syntactic structures to its mathematical entities through a denotational

semantics for the language. These entities are defined by the semantic algebras shown

in FIGURE 3-2. In FIGURE 3-3, the semantic algebras are used to give meaning to

the syntax via valuation functions.

11

It is important to be able to recognize that the definition of FIGURE 3-3 is indeed a

definition of a sequential, imperative language because the semantic store argument is

treated in a sequential fashion when passed as a parameter. That is. any program is

translated by the definition into a single-threaded lambda expression. To make the

point clearer, let us study the result of translating program P[[A:=0: B:=A+1.]] using

the definition in FIGURE 3-3.

P[[A:=0; B

= C[[A:=0; B

= lam s. C[[B

= lam s. C[[B

=A+1.]]

=A+1]]

=A+1]] (C[[A:=0]]s)

=A-fT]] (lam s. update [[A]] (lam s. zero)s s) s

= lam s. (lam s. update [[B]] (lam s. access [[A]] s) s plus (lam s. one) s s) (lam s

.update [[A]] (lam s. zero)s s) s

The resultant expression is single-threaded because it satisfies the criteria above. This

suggests that the individual instances of the store argument can be replaced by access

rights to a single global variable. A semantic definition whose store argument can be

replaced by access rights to a single global variable while preserving operational pro-

perties is said to be single-threaded (in its store). The criteria defined by Schmidt [8]

are sufficient conditions for the single-threading property to hold for a denotation of a

program.

After we have detected that a semantic definition is single-threaded in its store argu-

ment, we can transform the semantic definition into one which uses a global store

variable. The technique denned in [7] goes as follows:

(i) For the Store algebra, replace domain s:Store=D by the variable declaration

var s:Store=D and transform:

destruction operations c:Al*,...,*An*Store->E, EoStore, defined as (c

al,...,an,s)=e to c:A 1 *,...,*An*Unit->E, defined as (c al an,())~el. Any

occurrences of s in e are replaced by ().

12

Abstract syntax:

P: Program
C: Command
E: Expression

B: Boolean-expr

I: Identifier

N: Numeral

= C.

= CI; C2| I:=E| if B then Cl else C2| while B do C
= El+E2| I| N

FIGURE 3-1

Semantic algebras:

I. Truth values

Domain t: Tr = B
Operations

true: Tr
false: Tr
not: Tr -> Tr

H. Natural numbers
Domain n: Nat = N
Operations

zero, one, ...:Nat

plus: Nat * Nat -> Nat
equals: Nat * Nat -> Tr

HI. Store

Domain s: Store = Identifier -> Nat
Operations

newstore: Store

newstore = lam i. zero

access: Identifiers Store -> Nat
access i s = s(i)

update: Identifier -> Nat -> Store -> Store
update i n s = lam j. j equalid i -> n Q s(j)

FIGURE 3-2

13

P: Program -> Store -> Store

P[[C.]] = C[[C]]

C: Command -> Store -> Store

C[[C1; C2]] = lam s. C[[C2]](C[[Cl]]s)

C[[I:=E]] = lam s. update [[I]] (E[[E]]s) s

C[[if B then Cl else C2]] = lam s. B[[B]]s ->
C[[Cl]]s D C[[C2]]s

C[[while B do C]] wh
where wh = lam s. B[[B]]s -> wh(C[[C]]s) s

E: Expression -> Store -> Nat
E[[E1+E2]] = lam s. E[[El]]s plus E[[E2]]s

E[[I]] = lam s. access [[I]] s

E[[N]] = lam s. N[[N]]

B: Boolean-expr -> Store -> Tr (omitted)

N: Numeral -> Nat (omitted)

FIGURE 3-3

construction operations c:Al*,...*An*Store->Store, defined as (c

al,...,an,s)=e to c:Al*,...,*An*Unit->Unit, defined as (c al,...,an,())=(s:=e).

The result is the value ().

(ii) Replace all occurrences of Store-typed identifiers s that appear in the seman-

tic equations and operations by ().

The transformed language of FIGURE 3-3 is represented in FIGURE 3-4.

The store argument is no longer copied into an expression during reductions. Instead,

()-values are used. We assume that the ()-values are the control markers, that is,

they give permission to subexpressions to evaluate.

3.2. Control Binding.

If we translate the program P[[A:=0; B:=A+1.]] using the definition in FIGURE 3-4,

we get:

14

Store module
var s: Store = New + Upd

where New = Upd =
{ () }

Operations

newstore: Unit

newstore = (s:= inNew())

access: Identifier*Unit -> Nat
(access i ()) = eval i s

update: Identifier*Nat*Unit -> Unit
(update i n ()) = (s:=inUpd(i, n, s))

Valuation functions:

P: Program -> Unit -> Unit

P[[C.]]= C[[C]]

C: Command -> Unit -> Unit
C[[C1; C2]] = lam ().C[[C2]](C[[C1]]())

C[[if B then Cl else C2]] =
lam (). B[[B]]() -> C[[C1]]()

[] C[[C2]]()

C[[while B do C]] = lam (). wh()
where wh=lam (). B[[B]]() -> wh(C[[C]]Q) [1 ()

C[[I:=E]] = lam (). update [[I]] (E[[E]]()) ()

E: Expression -> Unit -> Nat
E[[E1+E2]] = lam (). E[[E1]]() plus E[[E2]]()

E[[I]] = lam Q.access [[I]] ()

E[[N]] = lam (). N[[N]]

FIGURE 3-4

= lam (). (lam (). update [[B]] (lam (). access [[A]] ()) () plus (lam (). one) () ())
(lam () .update [[A]] (lam (). zero)() ()) ()

Notice that the definition in FIGURE 3-4 produces program denotations that contain

a large number of combinations of the form (lam().M)() (expressions that manipulate

the global variable). These combinations can be optimized out of the denotation

before run-time. That is, we want to remove occurrences of lam () and () from the

definition. The program will be translated to lambda expression without all the (lam

15

(). E)() forms. The technique of Control Binding defined in [7] is used to serve this

purpose. The technique used on a language definition goes as follows:

For a valuation function A such that each equation for A has the form A[[Ai]] =

lam ().Ei, replace all occurrences of

lam ().Ei with Ei.

A[[AJJ() in Ei with A[[AJJ.

A[[A]] not in combination with () by (lam ().A[[A]J).

FIGURE 3-5 gives the definition of FIGURE 3-4 after control binding. (Note: Control

binding is also performed on the Store algebra.) Notice that almost all of the lam ()

and () values have disappeared.

P[[C.]] = C[[C]]

C[[C1; C2]] = C[[C1]];C[[C2]]

C[[I:=E]] = update [[I]] E[[E]]

C[[if B then CI else C2]] = B[[B]] -> C[[C1]1 H C[[C2]1
C[[while B do C]] = wh
where wh = B[[B]] -> C[[C]];wh

[] ()
C[[skip]] =

()

E[[E1+E2]] = E[[E1]] plus E[[E2]1

E[[I]] = access [[I]]

E[[N]] = N[[N]]

(the expression El; E2 abbreviates (lam ().E2)E1
)

FIGURE 3-5

The resultant language definition in FIGURE 3-5 is very useful because it can be used

to derive a code generator. As one will see, the task can be easily accomplished. Fig-

ure 3-6 illustrates how we can apply the semantic notation in Figure 3-5 to translate a

program to its denotation.

16

P[[A:=0; B:=A+1.]]
= C[[A:=0; B:=A+1]]
= C[[A:=0]]; C[[B:=A+1]]
= update [[A]] E[[0]]; C[[B:=A+1]]
= update [[A]] N[[0]]; update [[B]] E[[A]] plus N[[l]]

= update [[A]] zero; update [[B]] access [[A] plus one

FIGURE 3-6

The result in Figure 3-6 is almost machine code. Without much effort, we can

transform the resultant expression in Figure 3-6 into its postfix form and obtain:

zero

[[A]]

update

[[A]]

access

one

plus

[[B]]

update

Notice that there is a striking resemblance between the postfix expression defined

above and the hypothetical stack machine code given below:

pushconst zero

pushid [[A]]

do update

pushid [[A]]

do access

pushconst one
do plus

pushid [[B]]

do update

Notice that the stack code does not carry any store arguments but lets the "do

access" and "do update" manipulate the store instead. (The store is a fixed machine

component.) In reality, this is exactly what a conventional stack code which runs on a

Von Neumann architecture would do.

17

As mentioned above, the conversion of a lambda calculus expression from one form

into another is the fundamental operation of our implementation. Obviously, the

efficiency of this implementation cannot be ignored. In fact, this important aspect has

been taken very seriously and a technique called lambda-lifting has been designed to

serve the purpose.

3.3. Lambda-Lifting.

Lamb da-lifting transforms a program into an equivalent form that uses supercombma-

tors [6].

A supercombinator is a closed lambda-abstraction such that all lambda-abstractions

within it are also closed. For example,

(lam x : nat. plus ((lam y : nat. y) 1) x)

is a supercombinator, but

(lam x : nat. plus y x)

is not because y is free in the expression. In the implementation, handling free vari-

ables is a nuisance because a symbol table must be maintained to remember the

values of the free variables. Furthermore, each such expression must have its own

symbol table. The process of transforming the supercombinators into names and

easy-to-implement rewrite rules to supercombinators are called lambda lifting. For

example, the supercombinator above can be named $0, and the rules:

$1 y => y

$0 x => plus ($1 1) x

are generated.

The algorithm from [4] which does the conversion is summarized below:

While there are more lambda abstractions do

18

BEGIN

1) Choose any lambda abstraction which has no inner lambda abstractions in

its body.

2) Take out all its free variables as extra parameters.

3) Give an arbitrary name to the lambda abstraction. Following the conven-

tion, we use $0, $1, $2 and so on as names for supercombinators.

4) Replace the occurrence of the lambda abstraction by name applied to the free

variables.

5) Compile the lambda abstraction and associate the name with the compiled

code.

END

Using this algorithm (Chapter 4 puts this algorithm to work), we can convert the

semantic equations for C and E in Figure 3-3 so that the right hand side of the equa-

tions consist only of supercombinators and their arguments. See figure 3-7. The

rewriting rules for the supercombinators is given in Figure 3-8.

P[[C.]] = C[[C]]

C[[C1; C2]] = $0 C[[C1]] C[[C2]1

C[[I:=E]] = $1 [[I]] E[[E]]

C[[if B then CI else C2]] = $2 B[[B]] C[[Clj] C[[C2l]
C[[while B do C]] = fix ($3 B[[B]] C[[C]])

where fix g = g (fix g)

E[[E1+E2]] = $4 E[[E1]] E[[E2]]

E[[E1-E2]] = $5 E[[E1]] E[[E2]1

E[[I]] = $6 [[I]]

E[[N]] = $7 N[[N]]

FIGURE 3-7

19

$1 i e s => Supd i (e s) s

$6 i s => (i»i)

Supd i n s j
= > j equalid i->n <})

$0 cl c2 s ==> c2 (cl s)

$2 b cl c2 s => (b s) -> (cl s)
[] (

c2 s)

S3 b c f s =>(bs)->f(<:s)Qs
$4 el e2 s ==> (el s) plus (e2s)

$5 el e2 s ==> (el s) minus (e2 s)

$7 n s = n

FIGURE 3-8

In FIGURE 3-8, the frequent occurrences of the store argument (s) make the imple-

mentation of the lambda-lifted definition more inefficient than we like. For example, if

the program C[[A:=0; B:=A+1]] is translated using the definition in FIGURE 3-7 and

FIGURE 3-8, the resultant expression looks as follow:

P[[A:=0; B:=A+1.]]

= C[[A:=0; B:=A+1]]

= $0 C[[A:=0]] C[[B:=A+1]]

= $0 $1 [[A]] E[[0]] $1 [[B]] $4 E[[A]] E[[l]]

= $0 $1 [[A]] $7 N[[0]] $1 [[B]] $4 $6 [[A]] $7 N[[l]]

= ($1 [[B]] $4 $6 [[A]] $7 N[[l]j) ($1 [[A]] $7 N[[0]] s)

= (Supd [[B]] ((S6 [[A]] s) plus ($7 N[[l]] s) s) (Supd [[A]] ($7 N[[0]] s) s)

= (Supd [[B]] (($6 [[A]] s) plus one) s) (Supd [[A]] zero s)

We have seen three optimization techniques, each does something different. We want

to put them together to see if we can get all their advantages in one system. But the

order in which they should be applied is not known. Consequently, our goal in the

Chapters that follow is to conquer this unknown.

20

Chapter 4

Implementation of Compiler Generator System

Phase I

The compiler generator system is implemented entirely in Standard ML, a language

developed at University of Edinburgh [3]. Standard ML is a functional and interactive

programming language. We used a version that runs on a VAX 11/780 operating

under Berkeley 4.3 UNIX and on a SUN 3/60 operating under SunOS 4.0.

This and the next chapter describe how the techniques described in Chapter 3 are

implemented. The order in which they are presented wiU correspond to the one

presented in Chapter 3. We also point out ways to handle problems that arouse dur-

ing the work of automating these techniques. The discussion will not go into details

about the source code.

21

4.1. Organization of Compiler Generator System.

Conceptually, the compiler generator system operates in phases. Each phase

transforms a source language definition from one form into another. The initial design

of the compiler generator system is sketched in FIGURE 4-1. Since the ordering of

single-threading, control binding and lambda-lifting has not been decided, double-

headed arrows are used. The order which we use for our discussion here is applying

single-threading first, control binding second and lambda-lifting last.

Typed

Lambda Calculus
Scanner

I
Parser

Type Checker

I
Single-Threaded

I
Control Binding

I
Lambda-Lifting

I
Eta Reduction

I
Pretty Printer

Lambda-Lifted- Expression and
Rule System

FIGURE 4-1

Notice that the input to this system is not a language definition as one might expect.

Instead, a typed lambda calculus expression is used. We do this for couple of reasons.

22

First, the system is easier to build and understand if it is to process a single typed

lambda calculus expression. Second, the existing system will be extended in Chapter 5

to process a set-of-equations semantic definition. For these reasons, we choose to use

the expression

lam i : iden . lam s : store .
((access i) s) mal mal

as our example input throughout this chapter.

4.2. Scanner, Parser and Type-Checker.

These three modules perform a service found in most all of compilers: they break up

the input into its constituent pieces and create a derivation tree from them. The

derivation tree has the typing information attached to each of its nodes. This version

of the derivation tree is sufficiently informative for the implementation of the rest of

the system.

4.2.1. Scanner.

The scanner module is the simplest one. It processes a string of characters one at a

time and produces a fist of strings as its output. An example should make the point

clear. If the input to this module is a string that looks as follows:

"lam i : iden . lam s : store .
((access i) s) mal mal "

then the output would look like:

["lam", "i",":". "iden". "."."lam","s", ,,

:","store",".","(","(","access M
,

"i
M
,")","s",")","mal".n,al"].

Although it seems hard to read, this list of strings is useful input for the parser.

23

4.2.2. Parser and Type Checker.

These two modules are implemented as one because it improves efficiency. While the

parser is building the tree, the type checker performs its task at the same time.

The parser is coded from the concrete syntax for the typed lambda calculus. The

parser reads a list of strings from the scanner and determines whether the input pro-

gram the list represents is syntactically well-formed. While the parser is doing its job,

the tree the parser builds is being type checked. Any ill-formed syntax or typing will

be reported. (No error recovery is included.) The parse tree output corresponding to

the input list seen above is depicted in FIGURE 4-2.

lam,

@, nat

store nat

const, ji >v

/ \ idenfyjden
len X .

store nat

idenfy, store

iden
access

FIGURE 4-2

24

The parse tree may be viewed as a graphical representation of the derivation [1].

Each interior node of the parse tree is labeled either by a 'lam' or '<§)' and each leaf of

the parse tree is labeled either by an 'idenfy' or 'const'. Following the convention, the

interior nodes are sometimes called nonterminals while the leaves are sometimes called

terminals. Unlike the regular terminals and nonterminals, they are tagged with typing

information. The typing information are represented by trees as well. All constants or

operators must have their types defined in a predefined environment if they are not

explicitly defined in the input expression. Hence, the type for 'access' will be

retrieved from the predefined environment when this module is involked.

4.3. Single- Threading.

We systematically automated the single-threading criteria and global variable

transformation technique presented in the previous chapter. The first stage verifies

that the lambda calculus expression is single-threaded and the second stage

transforms the single-threaded expression. The implementation of the first stage

progresses in a bottom-up fashion, that is, the leaves of the tree will first be verified

before their roots. For example, the identifiers V and 'i\ and the operator 'access' will

be the first to be verified. If there are no offending leaves, their roots will be verified

next. This similar process continues until the root of the whole tree is encountered

and verified. The tree in FIGURE 4-2 is indeed single-threaded in its 'store' argument.

The tree is unaltered after the first stage is completed. Following the transformation

technique in section 3.1, stage two transforms the single-threaded tree in one traver-

sal. FIGURE 4-3 shows the result.

4.4. Control Binding.

The technique of control binding we described earlier handles a-set-of equations

25

store nat

const

access

7^:
store nat

idenfy.iden

I

idenfy, store

I

()

FIGURE 4-3

semantic definition. To do control binding on a single lambda calculus expression,

some adjustments must be made. (Note: In Chapter 5, control binding on a language

definition will be presented.) The newly adjusted technique is as follow,

Step 1. Rewrite all occurrences of (lam (). E) () to E.

Step 2. If all uses of operator c in E has the form (c El,...En ()), rewrite each use

of c to (c El,..., En).

FIGURE 4-4 shows the resultant tree after the technique is enforced on the tree in

FIGURE 4-3. Notice that the corresponding type tags are altered accordingly.

(Although it seems wasteful to do that since the typing information is no longer

2G

needed, it maybe useful in the future expansion of this project.)

lam,

idenfy.iden

I

const,

I

access iden nat

FIGURE 4-4

4.5. Lambda-Lifting.

Up till now, the tree still has the 'lam' operators it started with. As we pointed out

earlier, the presence of the 'lam' is undesirable and we must make them disappear.

The presentation that follows describes the solution, lambda-lifting, one linearlized

trees. In section 4.7, we talk about the module which does linearization.

After the tree in FIGURE 4-2 is linearized, it looks as follows:

lam i. lam s. ((access i)s)

Although the type tags are not shown, they are still properly maintained in the imple-

mentation. Let us now put the lambda-lifting algorithm to work in a stepwise

27

fashion. For easy reference, all the steps are numbered so that they correspond to the

ones in the algorithm.

After the tree in FIGURE 4-4 is fed through the linearization module, it enters the

first iteration of the lambda-lifting loop. The following steps occur:

Step 1) choose lam s. ((access i)s)

Step 2) construct (lam i. lam s. ((access i)s))i

Step 3) let $0 represent lam i. lam s. ((access i)s)

Step 4) construct lam i. ($0 i)

Step 5) define (($0 i) s) = ((access i)s)

After the first iteration of the loop is completed, we have:

(($0 i) s) = ((access i)s)

lam i. ($0 i)

As there remains one more lambda abstraction, the second iteration the following:

Step 1) choose lam i. ($0 i)

Step 2) construct lam i .($0 i) (no change)

Step 3) let $1 represents lam i. ($0 i)

Step 4) construct $1

Step 5) define ($1 i) = ($0 i)

The lifting terminates and we end up with the following expression and rule system:

(($0 i) s) = ((access i)s)

($li) = ($0i)

SI

Clearly, the rule ($1 i) = ($0 i) is redundant. We can apply the eta-rule defined sec-

tion 2.2 to simplify it to

$1 = $0

28

Having done so, $1 itself is redundant, and $1 can be replaced wherever it occurs by

$0, giving:

((SO i) s) = ((access i)s)

$0.

We name (($0 i) s) = ((access i)s) as a rewriting rule and the standalone $0 as an

expression to be evaluated. As we will discover later, it is a little too general to call

this rule a rewriting rule. A more specific term is essential to distinguish it from yet

another set of rewriting rules. For this reason, we call this rule a compile-time rule.

On the other hand, the rule for the 'access' is called a run-time rule. A more com-

plete coverage of these rules can be found in Chapter 5.

4.6. Eta-Reduction.

Through the example given the previous section, we see the need to incorporate eta-

reduction in our compiler generator system. Eta-reduction was implemented as an

independent module. The input to this module is a list of rewriting rules. For

instance, if the list

[((($0 i) s),((access i)s)), (($1 i),($0 i))]

is fed through this module, the output would look as follows:

[((($0 i) s),((access i)s))].

The redundant rewriting rule which does nothing has been optimized out of the fist

by eta-reduction.

4.7. Pretty Printer

The pretty printer analyses the rewriting rules and prints them in such a way that

the structure of the rules become clearly visible. It is more of a debugging tool rather

29

than a necessary component to the system. The module processes the tree in FIG-

URE 4-2 and produces a linearized tree similar to the one presented in section 4.6.

Without this module, it will be hard to make the presentation in section 4.6. as clear

as is.

The discussion in the next chapter covers the process of augmenting the existing sys-

tem to one which processes a set-of-equations semantic definition. The order in which

the modules are presented is similar to the one you see in this chapter.

30

Chapter 5

Implementation of Compiler Generator System.

Phase II

The system as described so far processes only a single typed lambda calculus expres-

sion. In this chapter, attention will be focused on augmenting the existing modules so

that, together, they can process an arbitrary set-of-equations semantic definition.

Since an equation lhs = rhs can be viewed as a pair of expression, set-of-equations

semantic definition is just a list of pairs of lambda calculus expressions. One can sub-

sequently select a pair and break it into its two constituent parts (expressions) before

they are processed. As a result, the existing system processes equations as pairs of

lambda calculus expressions. Although there are some modification necessary, they

are minor.

5.1. Augmented System.

The design of the augmented system in FIGURE 5-1 looks similar to the one

presented in FIGURE 4-1. The key difference is this system takes the run-time and

compile-time rules as its input rather than a single typed lambda calculus expression.

Since the rules play a key role in helping us understanding the system, the discussion

in section 5.2 is devoted to them.

31

Run-Time Rules

Compile-Time Rules Scanner

Parser

Type Checker

Experimental Portion

Eta Reduction
New Run-Time Rules

New Compile-Time Rules

FIGURE 5-1

5.2. Run-Time Rules and Compile-Time Rules.

The run-time and compile-time rules are indistinguishable. However, their underlying

operational behaviors are quite distinct. In the denotational semantics framework, the

terms "semantic algebra" and "valuation functions" are used for the run-time and

compile-time rules respectively. As one might expect, these rules will look very similar

to the ones defined in FIGURE 4-2 and FIGURE 4-3, only this time they are defined

in an easily implementable form. The corresponding rules are defined in FIGURE 5-2

and FIGURE 5-3 respectively.

The basic idea of our implementation is to subsequently extract and process each

individual rule from a set of rules. Inside each module, these rules are subsequently

broken down into a left-hand and right-hand expressions. These expressions are then

processed in turn. Consequently, the modules are unware of the fact that they are

32

Run-Time Rules:

((plus m) n) = m+n
((times m) n) = m*n
(pred n) = n-1

(eqO n) = n=0
(((iftrue)f)g)=f
(((if false) f)g) = g
empty = s:=lam i . zero

((access i) s) = s(i)

(((update i) n) s) = s:=[i|->n]s

FIGURE 5-2

Compile-Time Rules:

($C ((; cl) c2)) = lam s . (($C c2) (($C cl) s))

(SC ((:= i) e)) = lam s . (((update i) (($E e) s)) s)

($C ((+ el) e2)) = lam s . ((plus (($E el) s))

(($E e2) s))

($E (# n)) = lam s . ($N n)

($E (@ i)) = lam s . ((access i) s)

($N 0) = zero

($N 1) = one
(SN 2) = two
($N 3) = three

($N 4) = four

($N 5) = five

FIGURE 5-3

processing a set of rules.

5.3. Scanner, Parser and Type Checker.

Although the ideas presented in section 4.2 can still be applied, some minor

modifications are required. It is best explained by an example. Consider the following

rule:

($E (@ i)) mal = lam s : store . ((access i) s) mal.

33

The operators '$E', W and 'access' are treated as built-in functions. Their

corresponding types are (expr -> store -> nat), (iden -> expr) and (iden -> store ->

nat). A predefined environment is used to record the definitions of these built-in

functions. However, the presence of the undefined identifier 'i' in the right-hand side

expression causes trouble. In order to successfully process the entire rule, the right-

hand expression must be informed of the type of the identifier 'i'. For this reason, we

installed a temporary environment in the type checker. The environment serves as a

communication channel between the left-hand and right-hand expressions. In this

case, the information it sends is the type for the identifier 'i'. After the entire rule

has been processed, the extra parameter V is removed because it is no longer needed.

Through this module and the pretty printer module, the linearized trees shown in

FIGURE 5-2 and FIGURE 5-3 are generated.

5.4. Experimental Portion.

Recall that the goal of our research is to study the interaction of single-threading,

lambda-lifting and control binding. Since we have three techniques to consider, we

have six models to study, each of which consists of a unique combination of the three

techniques. Since all models are executed in a similar manner, our plan is to study one

of them here in detail. In Chapter 6, we give a more comprehensive examination of

the results from the experiment. The model we present here is:

Single-Threading

V
Extended Control Binding

V
Lambda Lifting

34

5.4.1. Single-Threading.

We begin with detecting single-threadingness on the rules on FIGURE 5-2 and FIG-

URE 5-3. Not surprisingly, the single-threading module defined in section 4.3 can be

applied directly without any alteration. The detections of single-threadedness of the

left-hand and right-hand expressions can be performed independently. Any expression

that fails to satisfy the single-threading criteria will be reported to the user. If the

rules satisfy the conditions for single- threading, they are transformed to ones which

use the control markers. FIGURE 5-4 and FIGURE 5-5 show the resultant rules.

Notice that all occurrences of the single-threaded store arguments are replaced by the

()-values.

Run-Time Rules:

((plus m) n) = m+n
((times m) n) = m*n
(pred n) = n-1

(eqO n) = n=0
(((iftrue)f)g)=f
(((if false) f)g) = g
empty = s:=lam i . zero

((access i) ()) = s(i)

(((update i) n) ()) = s:=[i|->n]s

FIGURE 5-4

5.4.2. Extended Control Binding.

The single-threaded rules contain a large number of control markers. Naturally, our

goal in this section is to optimize them out of the rules. Based on our current imple-

mentation of control binding, applying the technique defined in section 3.2 directly

means a large portion of the code would have to be modified. In order to minimize the

changes required on the module, we simply extend the technique.

35

Compile-Time Rules:

($C ((; cl) c2)) = lam () . (($C c2) (($C cl) ()))

($C ((:= i) e)) = lam () . (((update i) (($E e) ())) ())
($C ((+ el) e2)) = lam () . ((plus (($E el) ()))

(($Ee2)()))
($E (# n)) = lam () . ($N n)

($E (© i)) = lam () . ((access i) ())
($N 0) = zero

($N 1) = one

($N 2) = two
($N 3) = three

($N 4) = four

(SN 5) = five

FIGURE 5-5

The extended control binding technique consist of two parts. The first part is

intended to rearrange the rules. They are rearranged so that the second part can

used them to exploit the maximum power of the new control binding technique. The

extended technique is summarized below:

Part I.

Every operator op whose rules have

op al...an => lam xl...lam xn. lam (). E

transform the rules to

op al...an, xl...xn () => E
Part II

For all rules of the form

op al...an, xl...xn () => E
from Part I,

1) transform the rules to

op al...an, xl...xn => E

2) for all occurrences of op in E do:

a) if the occurrence is applied to an argument (), eliminate
(J.

b) if the occurrence is not applied to an argument (), enclose it by the new

combinator %1, whose rewriting rule is:

36

%lf()=>f

If the rules in FIGURE 5-4 and FIGURE 5-5 are run through Part I of the module,

they are transformed into ones that look like in FIGURE 5-6 and FIGURE 5-7. Note

that all outermost lambda abstractions have disappeared.

Run-Time Rules:

((plus m) n) = m+n
((times m) n) = m*n
(pred n) = n-1

(eqO n) = n=0
(((iftrue)f)g) = f

(((if false) f)g) = g
empty = s:=lam i . zero

((access i) ()) = s(i)

(((update i) n) ()) = s:=[i|->n]s

FIGURE 5-6

Compile-Time Rules:

(($C ((; cl) c2) ()) = (($C c2) (($C cl) ()))
(($C ((:= i) e) ()) = (((update i) (($E e) ())) ())
($C ((+ el) e2) ()) = ((plus (($E el) ())) (($£ e2) ()))
(($E (# n) ()) = ($N n)

(($E (@ i) ()) = ((access i) ())
($N 0) = zero

($N 1) = one
($N 2) = two
($N 3) = three

($N 4) = four

($N 5) = five

FIGURE 5-7

Part II of the module is used to eliminate the frequent occurrences of the ()-val

The results are shown in FIGURE 5-8 and FIGURE 5-9.

Control binding on the expression

(($C c2) (($C cl) ()))

ue.

37

Run-Time Rules:

((plus m) n) = m+n
((times m) n) = m*n
(pred n) = n-1

(eqO n) = n=0
(((iftrue)f)g) = f

(((if false) f)g) = g
empty = s:=lam i . zero

(access i) = s(i)

((update i) n) = s:=[i|->n]s

((%1 c
) ()) => c

FIGURE 5-8

Compile-Time Rules:

($C ((; cl) c2)) = ((%1 ($C c2)) ($C cl))

($C((:=i)e)) = ((update i)(($Ee))
($C ((+ el) e2)) = ((plus ($E el)) ($E e2))
($E (# n)) = ($N n)

($E (@ i)) = (access i)

($N 0) = zero

($N 1) = one
($N 2) = two
($N 3) = three

($N 4) = four

($N 5) = five

FIGURE 5-9

is of special importance. Since the argument (($C cl) ()) to the leftmost $C is not a

()-value, we are forced to use rule 3 in part II. As a result, the SC is enclosed with a

new run-time combinator. The rule for the new combinator is grouped together with

the run-time rules. Note that not all ()-values have disappeared. The ()-value in ((%1

c) ()) => c is needed as it gives permission for c to gain control of the global store

variable. (We will have more to say about this in section 6.2.)

38

5.4.3. Lambda-Lifting.

Doing lambda-lifting on sets of rules is simple. Like the single-threading module, the

lambda-lifting module can be applied directly without any changes. Lambda-lifting

the left-hand and right-hand expressions are independent processes. Recall that doing

lambda-lifting eliminates lambda abstraction and generates new rules. The rule sys-

tems in FIGURE 5-8 and FIGURE 5-9 do not contain any lambda abstraction. No

new rules are created.

5.5. Eta-Reduction.

For the same reason we saw in Chapter 3, the eta reduction module is also instaUed in

the augmented system. After the reduction is performed on the rules in FIGURE 5-8

and FIGURE 5-9, they remain unaltered because no redundant rules were found.

We have just completed a tour of the various phases of the compiler generator sys-

tem. The system is capable of doing partial evaluation on a set-of-equations semantic

definition. The resultant rule systems are smaller and run more efficiently. Neverthe-

less, to complete the process of generating a compiler, a compile-time evaluator must

be built. The evaluator is generic because it is capable of evaluating any given set of

rules written in the typed lambda calculus. One can execute the output from the

evaluator in various ways. Two of the possible ways are discussed in Chapter 7.

39

Chapter 6

Results

As mentioned in the previous chapter, there are six ways to order the single-

threading, control binding and lambda-lifting modules. In order to justify which ord-

ering works the best, each of the orderings were tested with the same set of test data.

The output from these tests are then compared. The best ordering will be the one

which yields the smallest result. In the previous chapter, we studied how one of these

tests was conducted. The remaining five tests can be carried out in the similar

manner. The results are posted in sections 6.1 through 6.5. Section 6.6 gives a sum-

mary.

6.1. Single- Threading, Lambda-Lifting and Control Binding.

By comparison, the results in FIGURE 6-1 and 6-2 seem much larger than the ones in

FIGURE 5-8 and 5-9. This is simply because some of the rules in FIGURE 6-2 possess

the Q-value. Moreover, new rules were created in FIGURE 6-2 through the process.

6.2. Control Binding, Single-Threading and Lambda-Lifting.

As shown in FIGURE 6-3 and FIGURE 6-4, the results contain a large number of ()-

values. The reason is simple: without the presence of the ()-value, it is useless to do

the control binding. Since the single-threading module generates the ()-value, it must

always be executed before the control binding module.

40

Run-Time Rules

((plus m) n) => m+n
((times m) n) => m*n
(eqO n) => n=0
(pred n) => n-1

(((iftrue)f)g)=>f
(((iftrue)f)g)=>g
empty => s:=lami.zero

(access i) => s(i)

((update i) n) => s:=[i|->njs

FIGURE 6-1

Compile-Time Rules
($C ((; cl) c2)) => (($0 c2) cl)

(($0 c2) cl) => (($C c2) (($C cl) ()))
($C ((:= i) e)) => (($1 i) «)

(($1 i) e) => ((update i) (($E e) ()))
(3E((+el)e2))=>(($2el)e2) '

ftIVi*
e^ =>

A(
o
plu

^
(($E el) ())) (($E^ o))

(SE(# n)) => ($3n)
($E(@i))=> ($4i)

($4 i) => (access i)

($3 0) => zero

($3 1) => one

($3 2) => two
(S3 3) => three

($3 4) => four

($3 5) => five

FIGURE 6-2

6.3. Control Binding, Lambda-Lifting and Single-Threading.

The results are same as the ones in section 6.2.

6.4. Lambda-Lifting, Single- Threading and Control Binding.

Although the results in FIGURE 6-5 and 6-6 are closest to the ones in FIGURE 5-8

and 5-9, they are not smaller, however. This is simply because the resultant rules con-

41

Run-Time Rules

((plus m) n) => m+n
((times m) n) => m*n
(eqO n) => n=0
(pred n) => n-1

(((iftrue)f)g)=>f
(((if true) f) g) => g
empty => s:=lami.zero

((access i) ()) => s(i)

(((update i) n) ()) => s:=[i|->n]s

FIGURE 6-3

Compile-Time Rules

(($C ((; cl) c2)) ()) => (($C c2) (($C cl) ()))
(($C ((:= i) e)) ()) => (((update i) (($E e) ())) ())

f U ftm" 0),S
>

(

^

(plus (($E el) ())) ((SE e2
> 0))

(($E (# n)) ()) => ($Nn)
(($E (@ i)) ()) => ((access i) ())
(SN 0) => zero

($N 1) => one
($N 2) => two
($N 3) => three

($N 4) => four

($N 5) => five

FIGURE 6-4

tain a few more rules for new combinators.

6.5. Lambda-Lifting, Control Binding and Single-Threading.

By comparison, the results in FIGURE 6-7 and 6-8 appear to be the biggest. Ordering

the modules in this manner clearly produced the worst results.

6.6. Summary.

After briefly examining the results from all six test cases, we learned a few important

things. First, the single-threading module must come before the control binding

42

Run-Time Rules

((plus m) n) => m+n
((times m) n) => m*n
(eqO n) => n=0
(pred n) => n-1

(((if true) f) g) => f

(((iffalse)f)g)=>g
empty => s:=lami.zero

(access i) => s(i)

((update i) n) => s:=[i|->n]s

((%1 c) ()) => c

FIGURE 6-5

Compile-Time Rules

($C ((; cl) c2)) => (($0 c2) cl)

(($0 c2) cl) => ((%1 ($C c2)) ($C cl))

($C ((:= i) e)) => (($1 i) e)

(($1 i) e) => ((update i) ($E e))

($E ((+ el) e2)) => (($2 el) e2)

(($2 el) e2) => ((plus ($E el)) ($E e2))

($E(#n))=>($3n)
($E (@ i)) => ($4 i)

($4 i) => (access i)

($3 0) => zero

($3 1) => one
($3 2) => two

($3 3) => three

($3 4) => four

($3 5) => five

FIGURE 6-6

module. This is because the success of the control binding module is totally dependent

upon the ()-values produced by the single-threading module. Second, the control

binding module should come before the lambda-lifting module. The reason is that the

control binding module eliminates aU outermost lambda abstractions in the right-hand

expression of the rules without introducing any new combinators. But, lambda-lifting

eliminates abstractions by introducing new combinators. Based on these factors, we

43

Run-Time Rules

((plus m) n) => m+n
((times m) n) => m*n
(eqO n) => n=0
(pred n) => n-1

(((iftrue)f)g)=>f
(((if false) f)g)=>g
empty => s:=lami.zero

((access i) ()) => s(i)

(((update i) n) ()) => s:=[i|->n]s

FIGURE 6-7

Compile-Time Rules

($C ((; cl) c2)) => (($0 c2) cl)

((($0 c2) cl) ()) => (($C c2) (($C cl) ()))
($C ((:= i) e)) => (($1 i) e)

((($1 i) e) ()) => (((update i) (($E e) ())) ())
($E ((+ el) e2)) => (($2 el) e2)

ii^e? 0) => «Plus «*E el) ())) ((SE e2) ()))
(3>L (# n)J => ($3 n)

(($3n)())=>($Nn)
($E(@i)) =>($4i)
(($4 i) ()) => ((access i) ())
($N 0) => zero

($N 1) => one
($N 2) => two
($N 3) => three

(SN 4) => four

($N 5) => five

FIGURE 6-8

conclude that it is best to order the single-threading module first, control binding

second and lambda- lifting last.

44

Chapter 7

Evaluators

In this chapter, the concepts of the compile-time and run-time evaluators are intro-

duced. Conceptually, the purpose of an evaluator is to apply rewriting rules to its

argument until a normal formal is reached. FIGURE 7-1 shows the data flow of the

compile-time and run-time evaluators.

7.1. Compiled-Time Evaluator.

The purpose of a compile-time evaluator is to perform compile-time computations that

are encoded in a set-of-equations language definition. Examples of compile-time com-

putations are translation to intermediate code, symbol table building, type checking,

and constant folding. The input argument to the evaluator is the program to be com-

piled. The compile-time evaluator uses the "compile-time rules", (see FIGURE 5-9.)

The rewriting rules and the expression to be evaluated are represented by trees. An

easy way to convert the expression to one that uses tree structure is to run it through

the parser. The central idea of our implementation of the evaluator is to play a tree

matching game. Each subexpression in the expression is matched against the left-hand

expression of the rule. If a match is found, the subexpression is replaced by the right-

hand expression of the rule. Using these techniques repeatedly, each subexpression is

simplied as far as possible until a normal form is formed. As an example, suppose the

45

FIGURE 5-1

T
New Compile-Time Rules

New Run-Time Rules

^-

1'

Source Compile-Time

EvaluatorProgram

Compiled Program

Data
Run-Time

Evaluator

Answer

FIGURE 7-1

evaluator is to evaluate the expression:

$C ((;((:= A) #0)) ((:= B) @A)).

Using the compile-time rules in FIGURE 5-9, the evaluator makes the following reduc-

tions:

=> %1 ($C ((:= B) @A)) (SC (:= A #0))
=> %1 (update B ($E @A)) ($C (:= A #0))
=> %1 (update B (access A)) ($C (:= A #0))
=> %1 (update B (access A)) (update A ($E #0))
=> %1 (update B (access A)) (update A ($N 0))
=> %1 (update B (access A)) (update A zero)

The reductions proceed from the left to right; the left subtree is reduced first before

46

the right subtree. The resultant normal form expression contains a few run-time

operators; they are %1, updatt and access. They cannot be simplied any further

because they are run-time-dependent store algebras. The operator %1 is special and

section 7.2 clarifies it.

If one uses the compile-time rules in FIGURE 5-3, the translation of the program

above would be the expression

lam s. (lam s. update B (lam s. access A s) s) (lam s. update A (lam s. zero) s
)

Notice that the resultant expression contains a large number of trivial bindings of the

form (lam s.E)s. Thus, we have justified that inefficient code would be generated if an

unevaluated compiled-time rules like the one in FIGURE 5-3 is used.

7.2. Run-Time Evaluator.

The purpose of the run-time evaluator is to perform run-time computations. The input

argument to the evaluator is the output from the compile-time evaluator. The run-

time evaluator uses the "run-time rules", (see FIGURE 5-8.) The run-time evaluator

has not been implemented. A general notion of how it works is provided here. Let us

consider the expression

%1 (update B (access A)) (update A zero).

The operator %1 in it is sometimes called a "control structure" for it distributes con-

trol to its arguments. The subexpressions (update B (access A)) and (update A zero)

are arguments to this operator. The operator %1 first grants the control to its right-

most argument. The leftmost argument gains the control after the rightmost argu-

ment has released it. The run-time evaluator uses the following simplification strategy

when evaluating the expression above using the run-time rules in FIGURE 5-8.

%1 (update B (access A)) (update A zero) <>
=> %l (update B (access A))

(

)

<(A, zero)>

47

= > (update B (access A)) <(A, zero)>
=> (update B zero) <(A, zero)>
=> <(B, zero),(A, zero)>

The values () are the simplified results from the update operations. The values <>

and <(B, zero),(A, zero)> are the initial and final state of the global store variable

respectively.

The are two ways to implement the run-time evaluator. Using software to simulate

the global store variable is one of the possible ways. Under this approach, the store

variable is implemented as a list of identifier-number pairs. The update operation con-

catenates a new pair to the list. The access operation lookups the value for a given

identifier from the list. It is not an ideal approach, although it is less expensive to

implement the evaluator this way.

A more practical approach would be to design a machine which treats the global store

variable as its primary storage. Using this approach, the operators update and access

can be encoded as primitive machine instructions. As a result, we gain a faster imple-

mentation this way. Is it an ongoing research topic to design a machine that matches

semantic definitions.

48

Chapter 8

Conclusions

An automated tool for compiler generation has been developed. Most of the work was

devoted to making it capable of performing partial evaluation. Partial evaluation in a

form of compile-time simplification make use of the techniques of single-threading,

control binding and lambda-lifting. Through this research, we discovered that one can

get the best results by applying single-threading first, control binding second, and

lambda-lifting last. Another desirable feature which is also included in the system is

the ability to perform type checking and parsing. Thus, a language designer who uses

the system need not check by hand the well-defmedness of a language.

Virtually any denotational definition can be implemented by the system. Besides

that, the generated compilers are small and the compiled programs run faster. But

most important is the fact that it is an automated system that produces correct com-

pilers from a language's formal specifications.

Although users of the generated compilers are forced to deal with programs written in

the typed lambda calculus, there are ways to avoid this. Peyton Jones proposed algo-

rithms which allow one to translate a high-level functional program into one which

uses the lambda calculus [4]. By doing this, the lambda calculus is viewed as an inter-

mediate language between the high level language program and the concrete imple-

mentation. In our framework, the concrete implementation can be treated as our

49

compiler generator system. Consequently, the users do not have to deal with the

lambda calculus.

50

References

[1] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman. Compilers, Principle, Tech-

niques and Tools. Addison-Wesley, Reading, Mass., 1987.

[2] Ghezzi Carlo and Mehdi Jazayeri. Programming Language Concepts. John

Wiley k Sons, Inc., New York, 1982.

[3] Harper, Robert. Introduction to Standard ML. Technical report, Laboratory for

Foundation of Computer Science, Department of Computer Science, University

of Edinburgh, 1986.

[4] Peyton Jones, S.L. The Implementation of Functional Programming Languages.

Prentice-Hall International, Englewood Cliffs, NJ, 1987.

[5] Schmidt, D.A. Denotational Semantics: A Methodology for Language Develop-

ment. Allyn and Bacon, Boston, 1986.

[6] Schmidt, D.A. Detecting Global Variables in Denotational Specifications. ACM
Trans. Prog. Lang. Syst., 7 (1985) 299-310.

[7] Schmidt, D.A. An Implementation from A Direct Semantics Definition. In Pro-

grams as Data Objects, Lecture Notes in Computer Science 217, Springer, Ber-

ling, (1985) 222-235.

[8] Schmidt, D.A. Detecting Stack-Based Environments in Denotational Definitions.

Science of Computer Programming, (1988) 107-131.

51

[9] Wikstrom Ake. Functional Programming Using Standard ML. Prentice Hall,

Englewood Cliffs, NJ, 1987.

52

Appendix A

This appendix contains listings of the source files for the compiler generator system.

Type.sml

Pretty_Print.sml

S can_P arse_Type .sml

St_Trans.sml

CbPartl.sml

CbPartll.sml

Lam_Lifting.sml

Eta.sml

Main.sml

Evaluator.sml

Lang_Def

5.3

(* File name: Type.sml

Date completed: 4-1-89

Purpose: This file contains user-defined data types.

Input: None

Output: None *)

Declaration of Data Types

datatype data_type = nat|

booll|

store

|

iden
|

cmd|

numeral
|

expr|

func of data_type * data_type;

datatype tree = lam of tree * tree * data_type|

apply of tree * tree * data_type|

idenfy of string * data_type|

const of string * data_type;

datatype constant = a_const| not_const| unused;

datatype enviroment = typelist of (string * constant * datajype) list;

datatype free_id_list = ids of (string * datajype) list;

datatype rewrite_rules = rule of (tree * tree) list;

datatype lifted_table = ttable of int * rewrite_rules;

System.Control.Print.printDepth :=50;

54

(* File name : Pretty_Print.sml

Date completed : 4-1-89

Purpose: To analyse the rewriting rules and prints them in

such a way that the structure of the rules become
clearly visible.

Input : A pair of lists. The first list corresponds to the

Run-Time Rules and the second list corresponds to the

Compiler-Time Rules.

Output
: The pretty printed Run-Time Rules and Compiler-Time Rules.

The Run-Time Rules and Compile-Time Rules still remain
a pair of lists. *)

Pr^_ printer

fun pretty_print ttree =
case ttree of

lam(ttreel,ttree2,ddatatype) =>
let val strl = pretty_print(ttreel) in

let val str2 = pretty_print(ttree2) in

"lam" "strl"" . "*str2

end

end
|

apply(ttreel,ttree2,ddatatype) =>
let val strl = pretty_print(ttreel) in

let val str2 = pretty_print(ttree2) in

"(""strr" "-str2"")"

end

end|

const(str,ddatatype) => str|

idenfy(str,ddatatype) => str;

fun doprint(rn_rules,tr_rules) =
let fun print_rw

[]
= output std_out "n"|

print_rw((lhs,rhs)::rest) =
let val strjhs = pretty_print(lhs) in

let val str_rhs = pretty_print(rhs) in

let val dummy = output std_out (strjhs-" => "-str_rhs""n") in
print_rw rest

end

55

end

end

in

let val dummy = output std_out ("nrun-time rules" ""n n") in

let val dummy = print_rw rn_rules in

let val dummy = output std_out ("ncompile-time rules"*

"n n") in print_rw tr_rules

end

end

end

end;

56

(* File name : Scan_Parse_Type.sml

Date completed : 4-1-89

Purpose: This file handles the scanning, parsing and
type-checking.

Input : A pair of lists of strings. The first list corresponds

to the Run-Time Rules and the second list corresponds

to the Compiler-Time Rules.

Output : The Run-Time Rules and Compiler-Time Rules. Each rule is

represented by a pair of parse trees.*)

Print Error Message

exception error;

fun found_error message =
let val dummy = output std_out ("n— ""message"" —n") in

raise error

end;

Scanner

fun reverse word ans =
if word = nil then

ans

else

let val str = hd word in

reverse (tl word) (str::ans)

end;

fun gather_word strlst word =
if strlst = nil then

nil

else let val token = hd strlst in

if token = " " then

(implode (reverse word nil))::gather_word (tl strlst) nil

else

gather_word (tl strlst) (token::word)

end;

fun scan str =
let val strlst= explode str in

gather_word strlst nil

57

end;

Loading Predefined Environment

fun load_env empty_env =
let val typelist(emptyjist) = empty_env in

("update", a_const, func(iden,func(nat,func(store,store))))::

("access", a_const, func(iden,func(store,nat)))::

("empty", a_const, store)::

("$C", a_const, func(cmd,func(store,store)))::

("$E", aconst, func(expr,func(store,nat)))::

("SN", a_const, func(numeral,nat))::

("$I", a_const, func(expr.iden))::

("@", a_const, func(iden,expr))::

("#". a_const, func(numeral,expr))::

(";", a_const, func(cmd,func(cmd,cmd)))::
("

:=", a_const, func(iden,func(expr,cmd)))::

("+", a_const, func(expr,func(expr,expr)))::

("plus", a_const, func(nat,func(nat,nat)))::

("times", a_const, func(nat,func(nat,nat)))::

("eqO",a_const, func(nat,booll))::

("pred",a_const, func(nat,nat))::

("if",a_const, func(booll,func(func(nat,nat),func(func(nat,nat),

func(nat,nat)))))::

("Yop",a_const,func(func(nat,nat),func(nat,nat)))::

("A", aconst, iden)::("B", a_const, iden)::("C", a_const, iden):
("X", a_const, iden)::("Y", a_const, iden)::("Z", a_const, iden):

("0", a_const, numeral)::("l", a_const, numeral):
("2", a_const, numeral)::("3", a_const, numeral):
("4", a_const, numeral)::("5", a_const, numeral):
("6", a_const, numeral)::("7", a_const, numeral):
("8", a_const, numeral)::("9", a_const, numeral):

("zero", a_const, nat) :: ("one", a_const, nat) ::

("two", a_const, nat) :: ("three", a_const, nat) ::

("four", a_const, nat) :: ("five", a_const, nat) ::

("six", a_const, nat) :: ("seven", a_const, nat) ::

("eight", a_const, nat) :: ("nine", a_const, nat) ::

("true", a_const, booll):: ("false", a_const,booIl)::

(*The following constants won't be here if the run time evaluator is implemented*)

("s(i)", a_const,nat) :: ("s:=[i|->n]s", a_const,store) ::

("m+n", a_const,nat) :: ("m*n", a_const,nat) ::

58

("n=0", a_const,booll) :: ("n-1", a_const,nat)

("s:=lami.zero", a_const,store) ::

empty_list

end;

Update Environment Try to define the same identifier with more than one data type is forbited

fun update_env(list,id,typed) =
if list = nil then

(id, not_const, typed)::nil

else

let val (str, const_or_id, data_type) = hd list in

if (id = str) then

if (typed = data_type) then

list

else

found_error ("identifier '"-id*"' has already been""" defined ...")

end;

else

hd list::update_env(tl list,id,typed)

Access Environment Try to access the data type for an undefined identifier is forbited

fun access_env(list,id) =
if list = nil then

found_error ("identifier '"*id
M" is undefined ...")

else

let val (str, const_or_id, data_type) = hd list in

if id = str then

(const_or_id, data_type)

else

access_env(tl list,id)

end;

Converting^ String
"

To
"

Datatype

fun str_to_datatype rest =
let val typed = hd rest in

let val rest = tl rest in

if typed = "nat" then (nat, rest)

else if typed = "booll" then (booll, rest)

else if typed = "store" then (store, rest)

else if typed = "iden" then (iden, rest)

else if typed = "cmd" then (cmd, rest)

59

else if typed = "numeral" then (numeral, rest)

else if typed = "expr" then (expr, rest)

else if typed = "(" then

(* a function type *)

let val (typel, restl) = str_to_datatype rest in

ifhdrestl = "->" then

let val (type2, rest2) = str_to_datatype (tl restl) in

ifhdrest2 = ")" then

(func(typel, type2), tl rest2)

else

found_error "syntax_err... missing ')'"

end

else

founderror "syntax_err... missing '->'"

end

else found_error ("type '""typed*"' is undefined ...")

end

end;

Parse^ and Type Check

fun parse_type Q typejist = found_error "no input"
|

parsejype (word::rest) typejist =
if word = "lam" then let val id = (hd rest) in

if (hd(tl rest)) = ":" then

let val (typed, rest) = str_to_datatype(tl(tl rest)) in

let val typejist = update_env(typejist,id,typed) in

if hd rest = "." then

let val (subJree,treeJype,rest,typejist) =
parsejype (tl rest) typejist in

if hd rest = "mal" then

(lam(idenfy(id, typed),subjree,func(typed,treejype)).

func(typed, treeJype), tl rest,typejist)

else found_error ("syntax_err... """ missing 'mal'")

end

else found_error "syntax_err ... missing '.'"

end

end

else found_error "syntax_err ... missing ':'"

end

else if word = "(" then

let val (subjreel,treejypel,restl, typejist) = parsejype rest typejist in
let val (subjree2,treejype2,rest2, typejist) =

parsejype restl typejist in

let val func(argjype,resultjype) = treejypel in

if argJype = treeJype2 then

ifhdrest2 = ")" then

(apply(subjreel,subjree2,resultjype),

CO

result_type, tl rest2, typejist)

else

found_error "syntax_err ... missing ')'"

else

found_error "type error ..."

end

end

end

else

let val (const_or_id, tree_type) = access_env(type_list, word) in

if const_or_id = notconst then

(idenfy(word, treejype), tree_type, rest, typejist)

else

(const(word, tree_type), tree_type, rest, typejist)

end

Main Entry to Load_Env and Parse_Type

fun spt(strjist,typejist) =
let val typejist = load_env (typelist typejist) in

let val (typedjree, treejype, not_used, typejist)

parsejype (scan(strjist)) typejist in

(typedJree,treejype,typejist)

end

end;

Gl

(* File name : St_Trans.sml

Date completed : 4-1-89

Purpose: Implement the Single-Threading Criteria and

the Transformation Algorithm.

Input : A pair of lists. The first list corresponds to the

Run-Time Rules and the second list corresponds to the

Compiler-Time Rules.

Output : The Run-Time Rules and Compiler-Time Rules. Each rule is

represented by a pair of parse trees. If the rules are

single-threaded, they transformed to ones that use

the global store variable. *)

Implementation of The Single-Threading Criteria

fun sgl_thrd (lam(ttreel, ttree2, ddatajype)) =
let val (st, const_or_id, stid, stexpr) = sgljhrd (ttree2) in

if st then

let val func(datatypel, datatype2) = ddata_type in

if datatypel = store then

if stid <> "no_active" then

if const_or_id = not_const then

let val idenfy(id, t) = ttreel in

if id = stid then

(true, unused, "no_active", "no_active")

else

(false, unused, "unused", "unused")

end

else

(true, const_or_id, stid, stexpr)

else

(true, const_or_id, stid , stexpr)

else

if stexpr = "no_active" then

(true, const_or_id, stid, stexpr)

else (false, unused, "unused", "unused")
end

else (false, unused, "unused", "unused")
end

|

sgljhrd (apply(ttreel, ttree2, ddatajype)) =
let val (stl, const_orJdl, stidl, stexprl) = sgljhrd (ttreel) in

let val (st2, const_orJd2, stid2, stexpr2) = sgljhrd(ttree2) in

if stl andalso st2 then

if ddatajype = store then

G2

if (stexprl <> "no_active") andalso

(stexpr2 <> "no_active") then

if (stexprl = stexpr2) andalso

(const_or_idl = not_const) then

(true, const_or_idl, stexprl, "apply")

else

(false, unused, "unused", "unused")

else

(true, const_or_id2, stid2, "apply")

else

if (stexprl <> "no_active") andalso

(stexpr2 <> "no_active") then

if (stexprl = stexpr2) andalso

(const_or_idl = not_const) then

(true, const_or_idl, stexprl, stexprl)

else

(false, unused, "unused", "unused")
else if (stexprl = "no_active") andalso

(stexpr2 <> "no_active") then

if stexpr2 = "apply" then

(false, unused, "unused", "unused")
else

if const_or_id2 = not_const then

(true, const_or_id2, stexpr2, stexpr2)

else

(false, unused, "unused",

"unused")

else (true, unused, "no_active", "no_active")
else (false, unused, "unused", "unused")

end

end
|

sgljhrd (idenfy(s, ddatajype)) =
if ddata_type = store then

(true, not_const, s, s)

else (true, not_const, "no_active", "no_active")|

sgl_thrd (const(s, ddata_type)) =
if ddata_type = store then

(true, a_const, s , s)

else (true, a_const, "no_active", "no_active");

Perform Global Variable Transformation

fun transform (lam(ttreel, ttree2, ddatajype)) =
let val idenfy(id, t) = ttreel in

if t = store then

03

(lam(const ("()", t), transform (ttree2), ddatajype))
else

(lam(ttreel, transform(ttree2), ddata_type))

end
|

transform (apply(ttreel, ttree2, ddata_type)) =
(apply(transform(ttreel), transform(ttree2), ddata_type))|

transform (idenfy(s, ddata_type)) =
if ddata_type = store then

const ("()", ddatajype)

else

idenfy(s, ddata_type)|

transform everything_else = everything_else;

Transform Single-Threaded Rules

fun trans_rw = D

trans_rw((lhs,rhs)::rest) =
let val lhs = transform(lhs) in

let val rhs = transform(rhs) in

(lhs,rhs)::trans_rw(rest)

end

end;

---- _^"try t0 The Single-Threading Check

fun st_trans(rn_rules,tr_rules) =

let

fun st_rw_rule
[]
= true

|st_rw_rule((lhs,rhs)::rest) =
let val (st,unl,un2,un3) = sgljhrd(rhs) in

if st then

st_rw_rule(rest)

else

found_error ((pretty_print rhs)"" is not single-threaded")
end

in

let val ok = (st_rw_rule rn_rules) andalso (st_rw_rule tr_rules) in
(trans_rw m_rules, trans_rw tr_rules)

end

end;

0-1

(* File name : CbPartl.sml

Date completed : 4-1-89

Purpose: Implement Part I of the extended control

binding technique.

Input : A pair of lists. The first list corresponds to the

Run-Time Rules and the second list corresponds to the

Compiler-Time Rules.

Output : The Run-Time Rules and Compiler-Time Rules. Each rule is

represented by a pair of parse trees. The rules are transformed. *)

Special Lambda-Lifting Technique

fun find_bind_id rhs =
case rhs of

lam(ttreel,ttree2,ddatatype) => ttreel::find_bind_id ttree2

|everything_else => Q;

fun find_rhs rhs =
case rhs of

lam(ttreel,ttree2,ddatatype) => findjrhs ttree2

|found_rhs => foundrhs;

fun apply_lhs(lhs,0) = ms

|apply_lhs(lhs,rhs::rest) =
let val (apply(ttreel,ttree2,ddatatype)) = lhs in

let val func(angs,ans) = ddatatype in

apply_lhs(apply(lhs,rhs,ans),rest)

end

end;

M*^_
^5

t0 Special Lambda-Lifting Technique

(* Convert Rule El => LAM (). E2 TO El () => E2.*)

fun nlifting(rn_rules,tr_rules) = let

fun newjift = D
|new_lift ((lhs,rhs)::rest) =
let val idenjist = find bind id rhs in

G5

let val new_rhs = find_rhs rhs in

(apply_lhs(lhs,iden_list),new_rhs)::new_lift rest

end

end in

(newjift rn_rules, newjift tr_rules) end;

66

(* File name : CbPartll.sml

Date completed : 4-1-89

Purpose: Implement part II of the extended control binding

technique.

Input : A pair of lists. The first list corresponds to the

Run-Time Rules and the second list corresponds to the

Compiler-Time Rules.

Output : The Run-Time Rules and Compiler-Time Rules. Each rule is

represented by a pair of smaller parse trees. *)

Step No. 1 of Extended Control Binding Technique

(* Rewrite (LAM () .E) () to E *)

fun stepl(lam(ttreel, ttree2, ddatatype)) =
let val (dummy 1, dummy2, ttree2) = stepl(ttree2) in

(ttreel, ttree2, lam(ttreel, ttree2, ddatatype))
end|

stepl(apply(ttreel, ttree2, ddatatype)) =
let val (ttreell, ttreel2, ttreel) = stepl(ttreel) in

let val (dummy 1, dummy2, ttree2) = stepl(ttree2) in

let val ttree = apply(ttreel,ttree2,ddatatype) in

case ttreell of

const(oprt,oprt_type) => if (oprt = "()") andalso (ttreell = ttree2) then
(ttreel2,ttreel2,ttreel2)

else (ttree,ttree,ttree)|

everything_else => (ttree, ttree.ttree)

end end end|

stepl(ttree) = (ttree, ttree, ttree);

fun apply_stepl Q = Q

|
apply_stepl ((lhs,rhs)::rest) =
let val (unusedl,unused2,lhs) = stepl lhs in

let val (unusedl,unused2,rhs) = stepl rhs in

((lhs,rhs)::apply_stepl rest)

end

end;

Step No - 2 of Extended Control Binding Technique

G7

(* If All Uses of 'oprt' in The LHS of Rewrite Rules Have The
Form (oprt el .. en ()) => rhs Then
1. Alter All Uses of The 'oprt' in The LHS of Rewrite Rules to (oprt el .. en) => rhs.

2. All Uses of () To The 'oprt' in The RHS Also Disappear.

3. All Uses of The 'oprt' That Are Lacking The () in RHS Are Enclosed

By A New Combinator. *)

fun insert_list(oprt_new,d,0) = (oprt_new,d)::[]|

insert_list(oprt_new,dl,(oprt_old,d2)::rest) =
if oprt_new = oprt_old then

((oprt_old,d2)::rest)

else

((oprt_old,d2)::insert_list(oprt_new,dl,rest));

fun get_info(ttree,list) =

let fun go_get_info(ttree,list) =
case ttree of

lam(ttreel,ttree2,ddatatype) => go_get_info(ttree2,list)

|apply(ttreel,ttree2,ddatatype) =>
let val (listl,oprtl,depthl) = go_get_info(ttreel,list) in

let val (list2,oprt2,dummy) = go_get_info(ttree2,listl) in

ifoprt2= "()" then

let val list = insert_list(oprtl,depthl+l,list2) in

(list/'dummy",0)

end

else

(list2,oprtl,depthl+ l)

end

end

|const(oprt,ddatatype) => (list,oprt,0)

|idenfy(oprt,ddatatype) => (list,"dummy",0)

in

let val (list,dummyl,dummy2) = go_get_info(ttree,list) in

list

end

end;

fun retrieve_info(oprt_new,[|) = (oprt_new,0)|

retrieve_info(oprt_new,(oprt_old,d)::rest) =
if oprt_new = oprt_old then

(oprt_new,d)

68

else

retrieve_info(oprt_new,rest)

;

fun mk_rn_cbnt(apply(ttreel,ttree2,ddatatype),c,cbnt) =
let

fun find_type ttree =
case ttree of

lam(ttreel,ttree2,dtype) => dtype

|apply(ttreel,ttree2,dtype) => dtype

|const(ttreel,dtype) => dtype

|idenfy(ttreel,dtype) => dtype

in

let val typel = find_type ttree 1 in

let val type2 = flnd_type ttree2 in

let val cbnt_type = func(typel,func(type2,typel)) in

let val c = c + 1 in

let val cbnt_name = "%""makestring c in

(apply(apply(const(cbnt_name,cbnt_type),ttreel,func(type2,typel)),ttree2,typel),

0,c,(apply (apply(const(cbnt_name,cbnt_type),idenfy("c",typel),

func(type2,typel)),const(M
()

M
,type2),typel),idenfy("c",typel))::cbnt)

end

end

end

end

end

end;

fun bind_tree(ttree,list,c,cbnt) = (* c = count , cbnt = runtime combinator *)

let fun adjust_type(d,ddatatype)=

if d=2 then

let val func(ang,ans)=ddatatype in

ans

end

else

let val func(ang,ans)=ddatatype in

func(ang,adjust_type(d-l,ans))

end

in

case ttree of

lam(ttreel,ttree2,ddatatype) =>
let val (ttree2,d,c,cbnt) = bind_tree(ttree2,list,c,cbnt) in

(lam(ttreel,ttree2,ddatatype),0,c,cbnt)

end

|apply(ttreel,ttree2,ddatatype) =>
let val (ttreel,dl,c,cbnt) = bind_tree(ttreel,list,c,cbnt) in

69

end;

let val (ttree2,d2,c,cbnt) =
bind_tree(ttree2,list,c,cbnt) in

if dl = then

(apply(ttreel,ttree2,ddatatype),0,c,cbnt)

else

if (dl = 1) then

if ttree2 = const("()",store) then

(ttreel,0,c,cbnt)

else

(* mk_cb returns -> tree,0,c,cbnt *)

mk_rn_cbnt(apply(ttreel,ttree2,ddatatype),c,cbnt)

else

(apply(ttreel,ttree2,adjust_type(dl,ddatatype)),dl-l,c,cbnt)

end

end

|const(oprt,ddatatype) =>
let val (oprt.d) = retrieve_info(oprt,list) in

if d>0 then

(const(oprt,adjust_type(d+l,ddatatype)),d,c,cbnt)

else

(ttree,d,c,cbnt)

end

|idenfy(oprt,ddatatype) =>
(ttree,0,c,cbnt)

fun get_info_rw(0,list) = list

|get_info_rw((lhs,rhs)::rest,list)=

let val list = get_info(lhs,list) in

let val list = get_info(rhs,list) in

get_info_rw(rest,list)

end

end;

fun bind_tree_rw(0,list,c,cbnt,rules) = (c,cbnt,rules)|

bind_tree_rw((lhs,rhs)::rest,list,c,cbnt,rules) =
let val(lhs,unusedl,c,cbnt) = bind_tree(lhs,list,c,cbnt) in

let val(rhs,unused2,c,cbnt) = bind_tree(rhs,list,c,cbnt) in

bind_tree_rw(rest,list,c,cbnt,(lhs,rhs)::rules)

end

end;

fun get_bind (rn_rules,tr_rules) =

70

let val list = get_info_rw(rn_rules,|]) in

let val list = get_info_r\v(tr_rules.liM) in

list

end

end:

Entry Point To The Extended Control Binding Algorithm

fun ct_bind(rn_rules,tr_rules) =
let

fun apply_step2(rn_rules,tr_rules) =
let fun cat([], rn_rules) = rn_rules

|cat(hdd::rest,rn_rules) = cat (rest,hdd::rn_rules)

in

let val bind = get_bind(rn_rules.tr_rules) in

let val (c,cbnt.rn_rules) =
bind_tree_rw(rn_rules.bind.O,nil,nil) in

let val (c,cbnt,tr_rules) =
bind_tree_rw(tr_rules.bind,c,cbnt,nil) in

(reverse (cat(cbnt.rn_rules)) nil,reverse tr_rules nil)

end

end

end

end

in

let val rn_rules = apply_stepl rnrules in

let val tr_rules = apply_stepl tr_rules in

apply_step2(rn_rules,tr_rul. -)

end

end

end;

71

(* File name : LamJLifting.sml

Date completed : 4-1-89

Purpose: Implement the lambda-lifting algorithm.

Input : A pair of lists. The first list corresponds to the

Run-Time Rules and the second list corresponds to the

Compiler-Time Rules.

Output
: The Run-Time Rules and Compiler-Time Rules. Each rule is

represented by a pair of parse trees. The rules

have no lambda operators but may be augmented with new rules.*)

Implement The Beta Abstraction

(* Function build_abst Takes Out All Innermost Lambda Abstractions 's

Free Variables As Extra Parameters. *)

fun build_abst(ttreel, ttree2, ddatatype, ids 0) = (ttree2, ids Q)|

build_abst(ttreel, ttree2, ddatatype, ids (head::list)) =
let val si = case ttreel of

idenfy(s, ddatatypel) => s|

const(s, ddatatypel) => s|

everthing_else => "will_not_happend" in

let val (s2, ddatatype2) = head in

if si = s2 then

(* s2 already has a binding identifier *)

build_abst (ttreel, ttree2 ,ddatatype, ids list)

else

(* build new binding identifier for s2 *)

let val newtype = func(ddatatype2, ddatatype) in

let val ttree2 = (lam(idenfy(s2, ddatatype2),ttree2, newjype)) in
let val (ttree2, list) = build_abst(ttreel, ttree2, newjype, ids list) in

(apply(ttree2, idenfy(s2, ddatatype2), ddatatype), list)

end

end

end

end

end;

(* Function searchjree Searches Free Variables in The Innermost Lambda Abstraction and
Records Them in A List Called free_ids *)

72

fun search_free(ttree,free_ids) =
case ttree of

lam(ttreel, ttree2, ddatatype) =>
let val (ttree2, free_ids) = search_free(ttree2, freejds) in

let val ttree2 = (lam(ttreel, ttree2, ddatatype)) in

build_abst(ttreel, ttree2, ddatatype, free_ids)

end

end

|apply(ttreel, ttree2, ddatatype) =>
let val (ttreel, freejdsl) = search_free(ttreel, freejds) in

let val (ttree2, free_ids2) = search_free(ttree2, freejdsl) in

(apply(ttreel, ttree2, ddatatype), free_ids2)

end

end

|idenfy(s, ddatatype) =>
let val ids list = freejds in

(idenfy(s, ddatatype), ids((s, ddatatype)::list))

end

|const(s, ddatatype) => (const(s, ddatatype), freejds);

fun betajibst ttree =
let val (newjree, emptyJist) = search_free(ttree, idsQ) in

newjree
end;

(* Function setjule Construct A New Rewrite Rule *)

fun setjule(lam(ttreel, ttree2, ddatatype), lhs, rhs) =
let val func(typel,type2) = ddatatype in

let val newjhs = apply(lhs, ttreel,type2) in

setjule(ttree2, newjhs, rhs)

end

end
|

setjule(newjhs, lhs, rhs) = (lhs,newjhs);

(* Function lamjift Gives Supercombinator A Name And Constructs
New Supercombinator Definition and Tree *)

fun lam_lift(ttree,table) =
case ttree of

lam(ttreel, ttree2, ddatatype) =>
let val ttable(num, rule list) = table in

73

let val func(typel,type2) = ddatatype in

let val name = "$"*makestring num in

let val newjhs = apply(const(name, ddatatype),ttreel,type2) in

let val (lhs.rhs) = set_rule(ttree2, newjhs, newjhs) in

(const(name, ddatatype), (ttable(num+l, rule((lhs,rhs)::list))))

end end end

end end

|apply(ttreel, ttree2, ddatatype) =>
let val (ttreel, table) = lamjift(ttreel, table) in

let val (ttree2, table) = lamjift(ttree2, table) in

(apply(ttreel, ttree2, ddatatype), table)

end

end

|everything_else => (everything_else, table);

(* Function dt_sc Finds The Innermost Lambda Anstraction and Then
Calls Functions beta_abst and lamjift *)

fun dt_sc(ttree, table) =
case ttree of

lam(ttreel, ttree2, ddatajype) =>
let val (ttree2, table) = dt_sc(ttree2, table) in

let val ttree2 = beta_abst(lam(ttreel, ttree2, ddatajype)) in

lamjift(ttree2, table)

end

end

|apply(ttreel, ttree2, ddatajype) =>
let val (ttreel, table) = dt_sc(ttreel, table) in

let val (ttree2, table) = dt_sc(ttree2, table) in

(apply (ttreel, ttree2, ddatajype), table)

end

end

|everything_else => (everything_else, table);

^_ Lift The Rewrite "~Ru7e7

fun dt_sc_rw(num,rw_rule) =
let fun cons list num rw_rule =

case list of

=> dt_sc_rw(num,rw_rule)

|(lhs,rhs)::rest => (lhs,rhs)::cons rest num rw_rule

74

Ill

case rw_rule of

D=>D
|(lhs,rhs)::rest =>

let val (lhs,ttable(num,ru]e list)) = dt_sc(lhs,ttable(num, rule 0)) in

let val (rhs,ttable(num,rule list)) = dt_sc(rhs,ttable(num,rule list)) in

(lhs,rhs)::cons (reverse list nil) num rest

end

end

end;

Main Entry To The Lambda-Lifting Algorithm

fun lam_lifting(rn_rules,tr_rules) =
let val rn_rules = dt_sc_rw(0,rn_rules) in

let val tr_rules = dt_sc_rw(0,tr_rules) in

(rn_rules,tr_rules)

end

end;

75

(* File name : Eta.sml

Date completed : 4-1-89

Purpose: To implement the eta-reduction.

Input : A pair of lists. The first list corresponds to the

Run-Time Rules and the second list corresponds to the

Compiler-Time Rules.

Output : The Run-Time Rules and Compiler-Time Rules. Each rule is

represented by a pair of parse trees. All redundant

rewriting rule has been optimized out of the list if

there is any. *)

Perform Eta Reduction on Rewrite-Rule

fun extract ttree =
case ttree of

apply(ttreel,ttree2,ddatatype) =>
let val (opr,ttreel) = extract ttreel in

(opr,apply(ttreel,ttree2,ddatatype))

end|

const(opr,ddatatype) => (opr,const("dummy",ddatatype))|

anything_else => ("dummy",anything_else);

fun build(oprl,opr2,ttree) =
case ttree of

apply(ttreel,ttree2,ddatatype) =>
let val ttreel = build(oprl,opr2,ttreel) in

apply(ttreel,ttree2,ddatatype)

end|

const(opr,ddatatype) =>
if opr = opr2 then

const(oprl,ddatatype)

else

const(opr.ddatatype)
|

anything_else => anything_else;

fun is_safe(oprl,opr2,ttree) =
case ttree of

apply(ttreel,ttree2,ddatatype) => safe(oprl,opr2,ttreel)|

const(opr,ddatatype) =>
if opr = opr2 then

70

true

else

false

|

anything_else => false;

fun reduce (oprl,opr2,[|)=[]|

reduce (oprl,opr2,(lhs,rhs)::rest) =
let val newjhs = build(oprl,opr2,lhs) in

(new_lhs,rhs)::(reduce(oprl,opr2,rest))

end;

fun ok_reduce (oprl,opr2,Q)=false|

ok_reduce (oprl,opr2,(lhs,rhs)::rest) =
let val ok = is_safe(oprl,opr2,lhs) in

if ok then

ok

else

ok_reduce(oprl,opr2,rest)

end;

Main^ Entry To The Eta Reduction

fun do_eta D = Q|

do_eta((lhs,rhs)::rest) =
let val (oprl,newjhs) = extract lhs in

let val (opr2,new_rhs) = extract rhs in

if (newjhs = new_rhs) then

if ok_reduce(oprl,opr2,rest) then

do_eta (reduce(oprl,opr2,rest))

else

((lhs,rhs)::do_eta rest)

else

((lhs,rhs)::do_eta rest)

end

end;

77

(* File : Main.sml

Date completed : 4-1-89

Purpose: Main module to invoke the compiler generator system.

Input : A pair of lists. The first list corresponds to the

Run-Time Rules and the second list corresponds to

the Compiler-Time Rules. The rules are represented

by a pair of strings.

Output : The Run-Time Rules and Compiler-Time Rules. Each
rule is represented by a pair of parse trees. The
rules are partially evaluated. *)

fun strip_lam lf_tree =
case lf_tree of

lam(ttreel,ttree2,ddatatype) => stripjam ttree2

|apply(ttreel,ttree2,ddatatype) => (apply(ttreel,ttree2,ddatatype),ddatatype)
|idenfy(str,ddatatype) => (idenfy(str,ddatatype),ddatatype)

|const(str,ddatatype) => (const(str,ddatatype),ddatatype);

fun conv = D

|conv((left_str,right_str)::rest) =
let val (lf_tree,dummyl,type_list) = spt(left_str, Q) in

let val (lf_tree,t_lf) = strip_lam(lf_tree) in

let val (rt_tree,t_rt,type_list) = spt(right_str,type_list) in

if t_lf = t_rt then

(lf_tree,rt_tree)::conv rest

else

found_error ((pretty_print lfjree)*" => ""(pretty_print rtjree)'
"Oype incompatible of lhs and rhs")

end

end

end;

Ma»n_ ^Module To Involke The Compiler Generator

fun main(rn_rules,tr_rules) =
let val rn_rules = conv rn_rules in

let val tr_rules = conv tr_rules in

let val dummy = output std_out ("0 Ot cb liftO"" 0) in
let val (rn_rules,tr_rules) =

ct_bind(nlifting(lam_lifting(st_trans(m_rules,tr_rules)))) in

78

System

doprint(do_eta rn_rules, do_eta tr_rules)

end

end

end

end;

79

(* File name : Evaluator.sml

Date completed : 4-1-89

Purpose: To implement the compile-time evaluator to

perform compile-time computations.

Input : 1) The compile-time rules

2) Program to be compiled.

Output : Compiled program. *)

(* Each Subexpression Is Matched Against The Left-Hand Expression
Of The Rule. The Return Is Either True or False. *)

fun match(lhs,ttree,tenv) =
case lhs of

apply(tll,tl2,dtypel) =>
let val (found,tenv) =

case ttree of

apply(t21,t22,dtype2) =>
let val (found,tenv) = match(tll,t21,tenv) in

if found then

match(tl2,t22,tenv)

else

(found,tenv)

end

|anything_else => (false.tenv)

in

(found,tenv)

end

|const(oprtl,dtypel) =>
let val (found,tenv) =

case ttree of

const(oprt2,dtype2) =>
if oprtl=oprt2 then

(true,tenv)

else

(false,tenv)

|anything_else => (false.tenv)

in

(found,tenv)

end

|identifier => (true,(identifier,ttree)::tenv);

(* If A Match Is Found, The Subexpression Is Replaced By The

80

Right-Hand Expression Of The Rule. *)

fun replace(rhs,tenv) =
let

fun do_replace(identifier,[|) = found_error (pretty_print rhs~" is an illegel rhs rule ")

|do_replace(identifier,(old,new)::rest) =
if identifier=old then

new
else

do_replace(identifier,rest)

in

case rhs of

apply (ttreel,ttree2,dtype) =>
let val ttreel = replace(ttreel,tenv) in

let val ttree2 = replace(ttree2,tenv) in

apply (ttreel,ttree2,dtype)

end

end

|const(oprt,dtype) => const(oprt,dtype)

|identifier => do_replace(identifier,tenv)

end;

fun match_rule(nil,ttree) = ttree

|match_rule((lhs,rhs)::rest,ttree) =
let val (found,tenv) = match(lhs,ttree,nil) in

if found then

replace(rhs,tenv)

else

match_rule(rest, ttree)

end;

Main Entry To The Compile-Time

fun eval(tr_rule,prog) =
let fun keep_eval ttree =

let val ttree = match_rule(tr_rule,ttree) in

case ttree of

apply(ttreel,ttree2,dtype) =>
match_rule(tr_rule,apply(keep_eval ttreel,keep_eval ttree2,dtype))

|everything_else => everything_else
end

in

let val (ttree,dl,d2) = spt(prog,Q) in

pretty_print(keep_eval ttree)

end

end;

81

Evaluator

(* File name: Lang_Def

Date completed: 4-1-89

Purpose: A Sample Language Definition

Input: None

Output: None *)

Rim-Time Rules

(* Xalural Numbers *)

main ((("lam m : nat . lam n : nat .

((
plus m) n) mal mal ", "m+n ") ::

"lam m : nat . lam n : nat .

((times m) n) mal mal ", "m*n ") ::

"lain n : nat . (eqO n) mal ", "n=0 ") ::

"lain n : nat .
(
pred n) mal ", "n-1 ") ::

"lam f : (
nat -> nat) . lam g : (nat -> nat) .

(((if true) f
) g) mal mal ", "f ") ::

"lain f
: (

nat -> nat
) . lam g : (nat -> nat) .

(((if false) f
) g) mal mal ", "g ") ::

"lam f
: (

nat -> nat
) . lam n : nat .

((Yop f) n) mal mal ", "(f
((Yop f) n

)
) ") ::

(* blore *)

"empty ", "s:=lami.zero ") ::

"lam i
: iden . lam s : store .

((access i) s) mal mal ","s(i) ")::

("lam i
:
iden

.
lam n

: nat . lam s : store .
(((update i) n) s) mal mal mal ", "s:=[i|->n]s

Compile-Time Rules

(* S'C: and -> store -> store *)

(("lam cl
:
cmd

. lam c2 : cmd . ($C ((; cl) c2
)) mal mal ", "lam s : store .

(($C c2
) ((

82

$C cl) s
)) mal ")::

("lam i : iden . lam e : expr . (SC ((:= i) e
)) mal mal ", "lam s : store . (((update i) ((

SE e) s
)) s) mal ")::

(* SE: expr -> store -> nat *)

("lam el
: expr . lam e2 : expr . ($E ((+ el) e2

)) mal mal ", "lam s : store . ((plus ((SE
el) s

)) (($E e2) s
)) mal ")::

("lam n : numeral . ($E (# n
)) mal ", "lam s : store . ($N n) mal ")::

("lam i : iden . (SE (@ i
)) mal ", "lam s : store .

((access i) s) mal ")::

(* SN: numeral -> nat *)

("(SN) ", "zero ")::("($N 1) ", "one ")::("($N 2) ", "two "):: ("(SN 3) ", "three ")•("(
SN 4) «, "four ")::("($N 5) », "five "):: ("($N 6) ", "six ")::("($N 7) ", "seven "):•("($N 8
)

", "eight "):: ("($N 9) ", "nine ")::[]));

88

Generation of Efficient Compilers

by Application of

Single-Threading, Control Binding and Lambda-Lifting Techniques

by

Kok Hui Chong

B.A., Coe College, Cedar Rapids, IA, 1987

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1989

Abstract

The semantics definition of a language can be used to generate an error-free compiler.

A drawback with the early work in automated compiler generation is that the gen-

erated compilers ran slower than the handwritten ones. Clues presented by the

domains and valuation functions in the semantic definitions can be used to transform

a denotational definition of a programming language into a more efficient form.

Among the techniques which improve the efficiency of the generated compiler are

Single-Threading. Control Binding, and Lambda- Lifting.

The motivation of this research is to tie together these techniques in the right order

to maximize their effectiveness. We designed and implemented a compiler generator

system which enables us to intermix these techniques in any order. Virtually any

denotational definition can be implemented by the system. The output from the sys-

tem together with a compile- time evaluator form a correct and efficient compiler.

As a result of testing the system with the semantics definition of a typical imperative

language, we concluded the best results are obtained by applying Single-Threading

first. Control Binding second and Lamb da- Lifting last.

