
IONIZATION IN DIRECT FREQUENCY COMB

SPECTROSCOPY

by

BACHANA LOMSADZE

B.S., Tbilisi State University, Georgia, 2007

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics

College of Arts and Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012



Abstract

Direct frequency comb spectroscopy (DFCS) is currently the highest resolution, abso-

lute frequency spectroscopic technique known. In general, one does DFCS by scanning the

repetition rate, frep, of a comb laser and measuring fluorescence from the excited states

of the specie under study. The technique has already been successfully characterized by a

theoretical model that starts with the optical Bloch equations and, with a few simplifying

assumptions converts them into linear coupled iterative equations. In the present work we

build on that successful model to predict the characteristics of the ion yield from photoion-

ization by the comb laser, as a function of frep. We show that the ion spectrum yields the

same atomic structure as the fluorescence spectra, but with greater efficiency. Here, we also

set up an experiment and test this theory by measuring the ion signal from direct frequency

comb spectroscopy. Furthermore, instead of actively controlling the frequency comb param-

eters, we allow them to drift, passively measuring them and the ion signal simultaneously.

The experiments were found to be in agreement with theory, and the passive comb approach

was found to be functional, though not as convenient as the conventional active comb.
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Chapter 1

Introduction

High precision/sensitivity measurements are, and always have been, of interest in the sci-

ences, partly because of the wide practical application. Despite incremental progress, the

measuring precision of the spectral properties of materials had been limited by the resolution

and range of the measuring tools themselves, until roughly a decade ago when the optical

frequency comb was developed. Frequency combs have revolutionized atomic molecular and

optical physics. They have made it possible to determine standards of fundamental quan-

tities of time, frequency and length.1,2 Nowadays they are used in many fields, from doing

spectroscopy of atomic and molecular systems, to biology, and to medicine.3–9 Scientists

from all over the world have been conducting research using frequency combs. Our group is

also part of this big community. The work presented in this dissertation is about estimating

the ionization rate in Direct Frequency Comb Spectroscopy.

1.1 Frequency Combs and Their Application

In general frequency combs are described in the frequency domain, partly because it is easy

to visualize and partly because most of the research involving frequency combs is carried

out in the frequency domain.

But if one wants to study the physics behind the interaction between the comb and the

target system it is useful to look at the combs in the time domain. Here we briefly review

both representations.
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Let’s imagine that we have a Ti:Sapphire femto-second oscillator10 that operates with a

repetition frequency of 80 MHz. In the time domain that means that the time separation

between pulses is about 12.5 ns. In addition to this, these pulses differ from each other by

a phase called the carrier envelope phase (CEP). Because of temperature fluctuations or

small ground vibrations, the time difference between pulses and the phase jump from pulse

to pulse change in time. Using fast responding servo electronics one can manage to keep

these parameters stable. Then mathematically the output of the oscillator can be written

as:

E(t) =
∞∑

n=0

E0 · e
−ln(2)(t−nT )2

τ2 eı(ωct−nωcT )eınϕcepeıϕo (1.1)

where E0 is the peak electric field of the pulses, T the time separation between pulses, τ is

the full width at half maximum (FWHM) of the pulse duration, ωc is the carrier frequency

of the laser, ϕcep is the phase jump from pulses to pulse, and ϕo is the initial constant phase

between the envelope of the pulse and the carrier

So, a frequency comb is nothing but a train of an infinite number of pulses whose time

separation and CEP are locked. See Fig. 1.1.

Now if we take the Fourier transform of Eq. 1.1 we will get the frequency representation

of a comb; the spectrum is shown in Fig. 1.2. The spectrum is composed of discrete narrow-

band teeth that are separated by the repetition frequency of the laser. The envelope under

which the teeth lie is just the Fourier transform of a single pulse in the train. Because of the

CEP the comb structure doesn’t exactly start from 0 Hz but is shifted from it by the amount

called the offset frequency (foff). Mathematically it relates to CEP as foff = frep(2πϕcep)−1

Then the frequency of the nth tooth in the spectrum can be written as

fn = nfrep − foff, (1.2)

where n is an integer.

Considering that the FWHM bandwidth of a typical Ti:Sapphire laser is about 100 nm,

this gives us about 106 teeth within the frequency envelope. This means that if one wants

2



Figure 1.1: This graph shows a frequency comb in the time domain. It represents a train
of an infinite number of pulses separated from each other by constant time T = 1/frep and
having constant phase slip ϕcep from pulse to pulse.
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Figure 1.2: This is the Fourier transform of the pulse train of Fig. 1.1, it consists of very
sharp lines called “teeth” separated by the repetition frequency of the laser, frep. Because of
the phase shift between the pulse envelope and carrier (ϕcep), the “zeroth” tooth doesn’t start
from 0 Hz but is shifted by an amount called the offset frequency foff.
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to study the structure of a system of interest one has the equivalent of 106 well stabilized

narrow bandwidth CW lasers available at the same time. That is why the frequency combs

are fascinating tools for spectroscopy. For example, using a frequency comb and a newly

developed technique called Direct Frequency Comb Spectroscopy (DFCS),8,9 one can study

the internal structure of atoms, molecules and complicated systems with extremely high

precision.

1.2 Direct Frequency Comb Spectroscopy

Direct Frequency Comb Spectroscopy is a powerful, relatively new technique for high-

resolution spectroscopy on atomic or molecular systems. There are other spectroscopic

techniques that have comparable resolution (10-400 kHz). For example a group11 using a

diode laser determined the absolute frequencies of the hyperfine transitions of the Rb two D

lines interferometrically by comparison with an 127I2-stabilized He−Ne laser, but they are

limited with the scanning range of the diode laser and that limits the transitions one wants

to measure. In the case of DFCS the range is not an issue. Using just one frequency comb

one can measure the absolute frequencies of many different levels. In general, as was de-

scribed in many scientific articles,8,9,12 one does DFCS by taking a frequency comb, shining

it at the system of interest and looking at the excitation signal through fluorescence as one

scans either the repetition frequency, frep, or offset frequency, foff, of the laser. Scanning

frep just means changing the separation between teeth in the frequency domain. So as one

scans frep, every time a tooth becomes resonant with a transition frequency, an excitation

can happen. Then, after a decay, the fluorescence signal is detected using a photodiode or

photomultiplier. Doing DFCS by scanning foff is very similar. In this case all the comb

teeth move as a whole rigid system and again every time a tooth matches a transition fre-

quency in the system, an excited state can become populated, which one detects though the

florescence.

In the time domain we can understand this process as follows. One pulse (broad band-

5



width) comes and hits a target system and excites it to an excited state. Before the second

pulse comes along this quantum mechanical state evolves in time, and hence picks up some

phase. Now if the phase of this state and the phase of the second pulse (shifted by the CEP

with respect to the first) constructively interfere, we get an enhancement in excitation.13 On

the other hand if they interfere destructively, then the excitation is suppressed. The same

process happens for the next pulse and every pulse in the train. Basically, the excitation

one detects is an effect of accumulated phase. So as one scans either frep or foff one can

study the structure of the system because at one particular frep or foff only a few states

constructively interfere with the laser pulses and for some different frep or foff other states

do.

This technique was first used by Ye’s group.8,9,12 They used this method to study the

structure of 87Rb atoms with very high precision. States of interest were the hyperfine states

of the 5s, 5p and 5d manifold. Measuring the hyperfine structure of the 5p states was done

by keeping frep constant and scanning foff. By doing so, when a comb tooth is shifted into

resonance with a transition between states in the 5s and 5p manifolds, for example from

5s1/2, F = 2 to 5p3/2, F = 3, then the upper state (5p3/2, F = 3) will be populated, and a

fluorescence signal from the 5p manifold can be detected.

Perhaps even more interesting, 2-photon excitation can occur when the frequencies of

two comb teeth sum to the frequency difference between states via a non-resonant transition

to an intermediate state. At first, this type of transition seems unlikely, due to the non-

resonant character of the intermediate transition. However, as Ye’s group has pointed out,8

if one pair of teeth is 2-photon resonant, then thousands of other pairs of teeth will also

be resonant with that same transition. For example, if fn and fm combine to be 2-photon

resonant, then so will fn+1 + fm−1 and fn+2 + fm−2, etc. That is how the hyperfine structure

of the 5d states was studied. The important thing to mention here is that with the DFCS

method Ye’s group measured all the possible transitions in the 5s, 5p and 5d states with

sub-Hz precision.
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1.3 Motivation

DFCS, as we mentioned in the previous section, is done by counting fluorescence photons

as one scans frep or foff. Considering that a frequency comb is a train of femtosecond

pulses having high peak intensity, it is reasonable to ask if, in addition to the excitation,

do frequency combs also ionize the system? The relevant questions are, “Is the ionization

signal negligible? And if the ionization signal is strong enough, can that be used to do DFCS

instead of looking at the fluorescence signal?” These are the questions that motivated our

work.

In this dissertation we answer these questions both theoretically and experimentally.

Having answers to these questions will be very beneficial for theoreticians of course, but it

will be even more so for experimentalists for the reasons described in the following section.

1.4 Ion Detection vs Photon Detection

Detecting ions has some advantages. First, ion detection is far more efficient than photon

detection: Use of electric fields can give 4π steradian ion collection (if Stark effects from

the extraction fields are a problem, the electric field can be pulsed) and quantum detection

efficiency (QDE) for ion detectors is typically higher than photon detectors (for example

QDE for photomultiplier tubes is about 30%, whereas for ion detectors it is 40-80 %).

Furthermore, although in the original experiment8 (described in section 1.2) the photons

detected after 2-photon excitation were at a different wavelength from the laser, this will

not be the case in general. For example if one wants to study the structure of the Rb 4d

states using two different combs, one comb centered at 780 nm used for excitation from 5s

to 5p, and the second centered at 1529 nm for 5p to 4d, the photons resulting from decay

will have the same wavelengths as the lasers because the decay and excitation pathways are

identical. In contrast, background counts should be negligible in appropriately designed ion

detectors.
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1.5 Dissertation Overview

This dissertation is divided into 5 chapters.

• In the second chapter we model the continuum states to study the ionization process

in DFCS. In the same chapter we show the results of the calculations. While we were

calculating the ionization rate we found some very interesting results related to the

excitation process and these results are shown below too.

• In the third chapter we describe the construction of an experimental setup to test the

results predicted by our newly developed code.

• In the fourth chapter the results of the experiment are shown and compared to the

theory.

• In the fifth chapter we summarize our work.
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Chapter 2

Theoretical Modeling and
Calculations

In this chapter we describe the theoretical model, developed by our group, that was used to

calculate the ionization rate in DFCS. The calculation is based on the model by Felinto14,15

created for calculating the excitation process in DFCS. This chapter is divided into the

following sections:

• In the first section the Felinto model is reviewed.14,15

• In the second section we model the continuum states and incorporate them into the

Felinto model.

• In the third section we show the results of our newly developed model.

• In the final section we apply our code to look at the effects of chirp, optical pumping,

and the number of pulses in a train on the excitation.

2.1 Felinto Model

The model developed by Felinto calculates the population of ground and excited states of

the system of interest after interacting with a train of equally (temporally) spaced pulses,

all identical, except for a fixed pulse-to-pulse phase shift, φ.

9



The Felinto model starts with the optical Bloch equations

∂ρij

∂t
= − ı

~
〈i|[Ĥ, ρ̂]|j〉 − Γijρij + δij

∑
r

γijρrr, (2.1)

where ρ is the density matrix, Ĥ is the total Hamiltonian ( the Hamiltonian of the field-free

system Ĥ0, plus the interaction potential V̂ (t)), Γij is the relaxation rate of the ij component

of the density matrix, δij is the Kronecker function, and
∑

r γijρrr is the incoherent feeding

term of the ith level by the population of all the upper r states. Felinto, uses the Eq. 2.1

to study the excitation of rubidium 5s, 5p, and 5d manifolds by calculating the diagonal

elements of the density matrix. By “manifold” is meant the full structure with fine and

hyperfine levels; those 3 manifolds include a total of 16 states when summed over the

magnetic quantum number mF . The Bloch equations are not integrated over the entire

interaction time. Rather, the excitation is calculated for a single laser pulse and the effects

of multiple pulses are added coherently using an iterative algorithm that includes incoherent

redistribution of population by spontaneous decay occurring between pulses.

ρn+1
ij = e(ıωij+Γij)T (ρn

ij −
ı

~

∫ ∞
0

eıωijt〈i|[V̂ n(t), ρ̂c]|j〉 dt + δij
∑

r

γir

∫ ∞
0

eΓiitρrr(t) dt ) (2.2)

where ωij = (Ei −Ej)/~ is the transition frequency between i, j energy levels, and T is the

time separation between pulses. This equation gives the population of a state impulsively

excited by (n + 1)th pulse in terms of the population of the same state prior to that pulse.

In deriving Eq. 2.2 Felinto assumed that the incoherent redistribution of populations (due

to spontaneous emission) occurs on a timescale that is long compared to that of coherent

excitation. It was also assumed that the time between pulses is long compared to the width

of the pulses.

In the formulation developed by Felinto, one can compute the time evolution of the

population of each state in all three manifolds to any chosen level of perturbation, at a

computation cost that is linear in order of perturbation. In Felinto’s (and our) computer

code, computer round-off limits us to 12th order perturbation,16 which is at the low end of

the strong field regime.
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2.2 Our Model

For this work we want to include photoionization of the 5d states, so two extra manifolds

were added to the model: the “continuum”, labeled 4, and “holding” states, labeled 5. The

continuum manifold is modeled by 26 discrete energy levels. Each level is composed of

14 energy-degenerate angular momentum states, one for every possible angular momentum

required to allow a transition from each of the 8 states in the 5d manifold. The 26 discrete

levels are spaced 2 THz apart, for a total frequency spread in the manifold of 50 THz (or

about 100 nm at the laser’s central wavelength), allowing us to span the bandwidth of the

excitation laser. Manifold 4 lies above manifold 3 by an energy equivalent to the central

frequency of the comb laser. We are modeling ionization by excitation to the pseudo states

that we placed above the ionization potential. All the angular portions of the dipole matrix

elements for excitation to the continuum manifold were computed using the usual angular

momentum algebra, thereby guaranteeing orthonormality. The reduced matrix element for

ionization was estimated using the Rb(5d) photoionization cross section measured17 using a

cw laser with frequency near that of the center of the comb envelope. The photoionization

cross section is expected17 to vary little over the bandwidth of the comb envelope frequency.

Simply modeling a continuum in this fashion is unsatisfactory because the levels are still

discrete and the model would therefore not predict ionization if the photon energies added to

something between the discrete levels. Furthermore, states in the continuum manifold must

be treated differently from bound states: ions do not spontaneously decay back down to

bound states. And while it is possible for an atom excited to the ion continuum to undergo

stimulated emission in the same short laser pulse, it is unrealistic to allow electrons ionized

with one pulse to be stimulated back down to the bound state with the next pulse, several

nanoseconds later.

In order to address these two issues and make our code more realistic we added a 5th

manifold to our model, a so-called “holding” manifold. This manifold consists of 18 degener-

ate states, one for every possible angular momentum required to allow a transition from each
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of the continuum states in manifold 4. The single energy of these 18 states was chosen to lie

a couple of laser bandwidths below the continuum states and is coupled to the continuum

states only through spontaneous emission. The decay rate for the continuum states, Γ, was

chosen to be 2 THz. That is, the line width of the “continuum” levels is equal to the spacing

between adjacent levels. Furthermore, atoms that are excited to the continuum, decay to

the holding manifold on a timescale consistent with a true ionization process. In total, then,

398 discrete states are used to model the Rb atom and its continuum: 2 in manifold 1, 6 in

manifold 2, 8 in manifold 3, 14 × 26 = 364 in manifold 4, and 18 in manifold 5. A partial

energy level diagram of the model 87Rb system is shown in Fig. 2.1. We note that for some

purposes this model of the continuum is unsatisfactory. For example, if our goal was to

measure the energy distribution of the photoionized electrons, this model would be a poor

one, because when an electron is ionized, we have no way of knowing which comb tooth (and

consequently what photon energy) was responsible for the ionization. However, for simply

counting the number of ionization events, we expect the model to be quite satisfactory.

In the original Felinto model, one of the approximations made was that incoherent

redistribution occurs on a timescale that is long compare with that of coherent excitation.15

Therefore in Eq. 2.2, terms containing Γij, the decay rate between levels i and j, could be

removed from their integrals and neglected during the pulse. It is clear that in our model

for which the Γ’s of the continuum states equal 2 THz, this approximation is no longer

valid. Therefore we numerically integrate these terms. The only additional approximation

we are making in this model is to ignore excitation to and ionization from the 7s states,

which could be populated with one photon excitation from the 5p states. Justification for

this approximation is that the 5p → 7s transition wavelengths are on the edge of the laser

bandwidth of a typical Ti:Sapphire comb laser and correspondingly their contribution to

the ionization signal should be negligible. Nevertheless, at some later time it may prove

interesting to include the 7s states in the calculation to see what role they may play in ion

production.
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Figure 2.1: Simplified energy level diagram for 87Rb. Individual states are grouped into
manifolds. The continuum is modeled by manifolds 4 and 5. See text for details.
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The initial repetition rate of the comb laser in the computation was 75557551 Hz, which

is typical of the comb used in our laboratory. We define this frequency to be fref. Most

calculations were made using 950 pulses in the train. This seems to be a good compromise15

between the narrowing of the comb teeth that more pulses cause, and broadening of the

resonances from the incoherent process of spontaneous emission.

2.3 Theoretical Results

Figure 2.2 shows the result of a typical calculation. Here, relative populations in the 5p, 5d,

and Rb+ (continuum plus holding) manifolds are plotted versus frep − fref. Though their

heights vary over several orders of magnitude, each peak in the 5d and ion curves has been

identified as resulting from a specific 2-photon transition between the 5s→ 5d manifolds; a

few representative peaks are labeled in the figure. The individual laser pulses were hyperbolic

secant, having temporal widths of 50 fs, and peak intensities of 104 W cm−2. The central

wavelength of the laser was 778.6 nm, and the offset frequency was set to foff = 14.5 MHz.

Several aspects of Fig. 2.2 are noteworthy. First, every line in the 5d spectrum has a

corresponding line in the ion spectrum, and vice versa. That is, the ion signal has exactly

the same information content as the photon signal. It should also be noted that the ion

population is nearly an order of magnitude greater than the 5d population. This does not

indicate that ionization is significantly depleting the atomic population. Rather, what it

shows is that once an ion is formed it cannot relax back into a neutral state. Therefore, ions

accumulate throughout the 950 pulse interrogation time. The 5d states, on the other hand,

are constantly decaying and being re-excited. An estimate of the number of photons that

are produced on the 6p→ 5s transition from cascade decays of the 5d states shows that an

atom would emit, on average, about 5 photons at 420 nm during this interrogation time.

Thus, the photon yield and ion yield are quite comparable for these typical laser intensities.

However, the detection efficiencies for ions and photons can differ substantially.

One might expect additional structure in the ion spectra from 2-photon ionization of
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Figure 2.2: Plot of the relative populations in the 5p, 5d and Rb+ manifolds as functions of
the comb laser repetition frequency, minus a fixed reference frequency, fref = 75557551 Hz.
The 5p population is plotted as round points connected by a line (green ) and uses the linear
scale on the far right; the 5d population is plotted as a solid line without points (red) and uses
the log scale on the left; the Rb+ population is plotted as crosses connected by a line (blue)
and also uses the log scale on the left. All of the peaks in the 5d and ion curves have been
identified as resulting from 2-photon transitions from the 5s→ 5d manifolds. A few selected
peaks are labeled as (1) 5s1/2, F = 1 → 5d5/2, F = 2; (2) 5s1/2, F = 2 → 5d5/2, F = 2; (3)
5s1/2, F = 1→ 5d5/2, F = 1; (4) 5s1/2, F = 2→ 5d5/2, F = 4.
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atoms in the 5p states. That is, once an atom has been excited to a 5p state, virtually any

pair of comb teeth is “resonant” with 2-photon ionization to a continuum. This 2-photon

process is similar to the one that excites states from the 5s to the 5d manifold, but should

occur when a comb tooth has a frequency resonant with a 5s→ 5p transition. However, the

ion signal shows no structure corresponding to direct 5p excitation, followed by 2-photon

ionization.

To understand the reason for the lack of 5p structure in the ionization spectrum we

tried to estimate the probability for direct 2-photon ionization of the 5p states. To do this

we modified our code, prohibiting spontaneous emission from the 5p states. (Stimulated

emission and absorption were still permitted.) We then artificially set the initial population

of the 5p manifold to vary sinusoidally with frep, with its population shared equally between

all states in the manifold. The remainder of the population was equally split between the

2 states in the 5s manifold. The result of this calculation is shown in Fig. 2.3, where we

plot manifold populations as a function of frep. Clearly, the ion population follows the 5d

population, even though the 5p population is many orders of magnitude larger than that

of the 5d manifold. However, we can also see that the ion population does not have the

detailed structure contained in the 5d spectrum, but rather has the smooth profiles of the

5p spectrum. Based on this calculation we estimate that, for the intensity used in these

computations, the probability of 2-photon ionization from the 5p states is on the order of

10−5. Recognizing that this analysis is crude, we nevertheless can say that for the realistic

calculations typified by Fig. 2.2, when a comb tooth is resonant with a 5s→ 5p transition,

the population of the 5p manifold is about 10−4, and that the resulting 2-photon ionization

should be on the scale of 10−9, consistent with us not seeing it in the spectra.

2.4 Additional Results

A related question is why is the 5p population so small? The absence of nearly all direct

5p excitation from 5s is readily explained by optical pumping, which is the process whereby
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light depletes a state in atoms and molecules by moving most of the electrons from this state

to some other state. In Fig. 2.4 we plot the population of the 5p manifold as a function

of frep − fref for two different laser intensities. We see that the peak corresponding to

the 5s1/2, F = 2 → 5p3/2, F = 2 transition disappears when the intensity of the laser is

increased by a factor of 10. Further evidence of optical pumping is shown in Fig. 2.5a where

we plot the 5s hyperfine levels F = 1 and F = 2 as a function of frep − fref. For the lower

intensities, optical pumping is not noticeable, but by increasing the intensity by a factor

of 10 almost all the population is pumped from F = 2 to F = 1 as shown in Fig. 2.5.

Therefore, attempting to see the 5p population by increasing the laser intensity, results in

increased optical pumping to an inaccessible 5s hyperfine level. The only two transitions in

this system for which optical pumping does not take place are 5s1/2, F = 2→ 5p3/2, F = 3

and 5s1/2, F = 1→ 5p3/2, F = 0.

As Eq. 1.2 shows, the frequency of the nth comb tooth depends on both frep and foff.

This means that it should be possible to have one comb tooth resonant with, say, the

5s1/2, F = 2 → 5p3/2, F = 2 transition, and a second tooth resonant with the 5s1/2, F =

1 → 5p3/2, F = 2 transition. In this case, much less optical pumping should take place.18

In Fig. 2.5c (low intensity) and Fig. 2.5d (high intensity) we plot the 5s1/2 hyperfine levels

F = 1 and F = 2 as a function of frep − fref, but now with a value of foff chosen to negate

optical pumping. The contrast between plots 2.5b and 2.5d is obvious.

Next we decided to see what the effect of a quadratic spectral phase ϕ(ω) = Cω2 (where

C is the chirp parameter) has on excitation. In this calculation instead of varying the

repetition frequency of the laser we decided to take two peaks from Fig. 2.2, one at 18.72

Hz and the second at 6.18 Hz and watch the populations of the states as we varied the

chirp parameter. The peak values of these two transitions are shown in Fig. 2.6, plotted

versus the chirp parameter. The first transition is called a type A transition by Felinto15

and is the result of two photon excitation via a resonant transition to an intermediate state.

The second transition (type B) is the result of two photon excitation via a non-resonant
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Figure 2.3: Computation of 5d (solid line without points, red) and ionization (solid line
with crosses, blue ) manifolds under the artificial initial condition that the initial population
of 5p states (solid line with circular points, green) varies sinusoidally with frep. The ioniza-
tion population largely follows the 5d population. However, the lack of 5d structure in the
ionization population is an indication of 2-photon ionization of states in the 5p manifold
(without being resonant with an intermediate 5d state.)
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Figure 2.4: Detail of 5p population for low and high intensity comb laser. The peak near
7 Hz is from the 5s1/2, F = 2 → 5p3/2, F = 2 transition and clearly shows the effects of
optical pumping. The peak near 15 Hz is from the 5s1/2, F = 2 → 5p3/2, F = 3 transition,
for which no optical pumping is expected. The two curves were scaled such that the peaks
near 15 Hz had the same magnitude.
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Figure 2.5: Ground state hyperfine populations versus frep when a comb tooth is resonant
with the 5s1/2, F = 2→ 5p3/2, F = 2 transition. (a) is for low comb laser intensity and does
not exhibit strong optical pumping. In (b) the comb laser intensity is high and strong optical
pumping from 5s1/2, F = 2 to 5s1/2, F = 1 is clearly seen. (c) and (d) are the same intensity
conditions as (a) and (b), respectively, but foff has been adjusted such that a second comb
tooth is resonant with the 5s1/2, F = 2 → 5p3/2, F = 2 transition. The optical pumping is
minimal, as expected.
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Figure 2.6: This is a plot of two particular states’ populations as a function of chirp
parameter. The blue curve on the graph is a so-called Type A transition (see text for details)
and the red curve is a Type B transition.

transition to an intermediate state. Similar calculations were made by Felinto but only with

two values of chirp parameter. In Fig. 2.6 we present results of our calculation with a large

range of chirp parameters.

From Fig. 2.6 we see huge effects in excitation signal when pulses are chirped. From

Felinto,15 this enhancement can be explained using 2nd order perturbation theory.19

a ≈ −1

ı~2
µfiµig

[
ıπE(ωig)E(ωfg − ωig) + ℘

∫ +∞

−∞

E(ω)E(ωfg − ω)

ωig − ω
dω

]
(2.3)

where a is the excitation amplitude, µ is the dipole matrix element, E is the electric field
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of the laser pulses, the subscripts ig and fg refer to transitions between the ground to

intermediate and ground to final states, respectively, the integral is over all frequencies in

the optical spectrum, and now E includes the phase term containing the chirp parameter.

Note that a positive value of C means that the frequencies contained in the pulse are time-

ordered from low to high, and a negative value of C means the frequencies are ordered from

high to low. In this equation the two terms in the brackets represent resonant (first term)

and off-resonant (second term) excitation contributions, and they are shifted by π/2 with

respect to each other. Furthermore, the off-resonant term is asymmetric about the resonance

frequency, which results in a π phase difference between the blue and red portions of the

spectrum. Type A transitions can be understood very easily with this model. For this

transition we only have the first term in Eq. 2.3. In Rb atoms 5s - 5p transitions correspond

to 780 nm and 5p - 5d transitions correspond to 776 nm. In the case of negative chirp, 776

nm photons interact with the target system first and 780 nm photons later, which means

that a 5p - 5d transition would have to happen first and 5s - 5p second, which automatically

lowers the excitation amplitude. However, for a positive chirp, the 5s - 5d transition would

be driven first, which leads to a much larger excitation amplitude.

As for the Type B transitions, the second term in the Eq. 2.3 becomes dominant over

the first one. When the pulse is transform-limited (for which case the chirp parameter is

0), the transition amplitude is zero because the symmetric composition of the red and blue

components in the spectrum gives rise to an anti-symmetric integrand. But any little phase

(either positive or negative) added to the spectrum results in breaking the anti-symmetry

and correspondingly gives rise to a greater excitation amplitude. It is also noticeable from

Fig. 2.6 that a positive chirp enhances the transition much more compared to a negative

chirp and the reason for this is the same as for the Type A transitions.

Last, we varied the number of pulses in the train. Computation time is linear in the

number of pulses in the train; if we can decrease the number of pulses in the train without

significantly affecting the spectra, then the computations can be done more readily. However,
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as the number of pulses decreases, the width of the comb teeth grows, leading to a broadening

of the structure in our spectra.15 Furthermore, as already demonstrated,15 fewer pulses in

the train means less overall population movement. Figure 2.7 shows the same calculation

as in Fig. 2.2 but with 50 pulses in the train. One can see that the structure is broader

and the excitation/ionization decreased, as expected. However Fig. 2.7 still reflects the

essential features of the Rb atom’s structure, but with about 5% of the computer time (a

couple of hours on our system). In passing, we note that the 5d spectrum, for example,

has additional “ringing” on it compared to the corresponding spectrum in Fig. 2.2. The

ringing exists because the Fourier transform of a finite pulse train is the convolution of the

Fourier transform of an infinite train (an ideal comb) with the Fourier transform of a square

pulse having temporal width equal to the number of pulses in the train divided by frep.

The ripples, then, are actually a sinc function on the comb teeth and are reflected in the

excitation spectra.
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Figure 2.7: The same as Fig. 2.2, but for 50 pulses in the train. The peaks are slightly
broader and “ringing” is seen in the populations. The ringing is real, and is actually due
to the Fourier transform of a rectangular pulse, superimposing a sinc function on the comb
teeth, and is especially evident on the 5d curve.
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Chapter 3

Experimental Setup

It seems that our newly developed theory shows and predicts lots of very interesting results.

So we decided to go to the lab, set up the experiment and test these results. In this chapter

the experimental setup that was used to test our newly developed theoretical model is

described.

An overview of the chapter is as follows: First we talk about our target system and how

we cool and trap it. In the following subsection we also describe how we lock the lasers

necessary to cool and trap the neutral Rb atoms. Then, the next section describes the

detection of the ions that were produced by the frequency comb. In the third section the

experimental scheme itself for doing DFCS with ion detection is described. The last section

discusses the data acquisition system.

3.1 Target System

Doing spectroscopic measurements of a target system requires a lot of things to be taken care

of, such as Doppler broadening effects, power broadening,20 reducing background counts and

reducing the errors in the experiment. Even though our goal was just to see whether the

ionization is negligible or not in DFCS and we were not concerned much with a very high

precision measurement, we still tried to reduce some experimental uncertainties that would

make our measurements unreliable. One of the biggest uncertainties in any experimental

measurement comes from the Doppler broadening effect which is the result of the target
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system having a significantly wide range of translational velocities. In our experiment we

reduce this broadening effect by cooling and trapping our target. Cooling just simply means

slowing down the target system, and trapping is localizing the cloud of the cold target.

Cooling and trapping of neutral atoms have been documented in many research articles21–23

so here I will just briefly mention the main principle of the processes.

The best candidates to cool and trap are alkali metal atoms, because of the fact that they

have one unpaired electron in the outer s shell and excitation of that electron is used for the

cooling cycling transition. For our experiment we decided to cool and trap 87Rb atoms since

they have relatively simple structure. This was done by a Magneto Optical Trap (MOT)

setup. As is documented in many articles21–23 cooling and trapping of target atoms in a

MOT is done by combination of laser light and a spatially dependent magnetic field. The

laser light acts as a source of so-called radiation pressure force that, by interacting with the

atoms, slows them down. As for the magnetic field, it causes Zeeman splitting of the target

atoms and the force becomes position dependent with respect to the magnetic field; this

causes trapping at the zero of the magnetic field. A simplified energy level diagram for the

MOT transitions in 87Rb is given in Fig. 3.1.

On the same graph we show the trapping laser transition as well. The laser is actually

detuned from resonance; this is required to slow down the atoms in a MOT.21–23

But having only a trapping laser is not sufficient for cooling and trapping. The reason

is that the trapping laser, in addition to exciting the target atom from 5s1/2, F = 2 to

5p3/2, F = 3, sometimes excites the system from 5s1/2, F = 2 to 5p3/2, F = 2. Once the

system is in this state it has two states in the 5s1/2 manifold to decay to: F = 1 or F = 2.

But the F = 1 state acts like a dark state since the trapping laser is not resonant with any

transition out of that state. The probability of exciting the system from 5s1/2, F = 2 to

5p3/2, F = 2 with the trapping laser is about 0.1 %. This seems to be very small but over

many optical cycles (roughly a millisecond for Rb) all the atoms end up in the 5s1/2, F = 1

state and fall out of the MOT. That is why a second laser, called the repump laser, is used.
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Figure 3.1: Hyperfine structure of 5s1/2 and 5p3/2 states of Rb atoms. The solid red arrow
pointing up shows trapping transition red detuned from resonance. The solid red arrow
pointing down and the dashed blue arrow show the decay possibilities.
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The laser is resonant with the 5s1/2, F = 1 to 5p3/2, F = 2 transition and puts the “stray”

atoms back into the cycle. A schematic of the repumping transition is given in Fig. 3.2.

Figure 3.2: Hyperfine structure of 5s1/2 and 5p3/2 states of Rb atoms. Solid red arrow
pointing up shows repump transition.

With this MOT setup we cooled our target to 120 micro-Kelvin, which allowed us to

neglect the Doppler broadening effect. The density of our cooled and trapped atoms was

1010 cm−3 and was confined to a roughly spherical volume having a diameter of a couple of

millimeters.
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3.1.1 Laser locking

In order to obtain and maintain a stable MOT, the stability of both trapping and repump

lasers is crucial. This means that the laser frequencies need to be stabilized with very stable

frequency references. In our case the lasers were locked to Rb atom hyperfine transitions.

This was accomplished using a Rb saturated absorption setup and a very robust “peak

locking”24–27 scheme. A schematic for the saturated absorption setup that was used to lock

the repump laser is shown in Fig. 3.3.

Figure 3.3: Schematic of saturated absorption setup for the repump laser; M-Mirror, BS-
Beam Splitter.

At first it seems strange that we can use an absorption signal from a room temperature

Rb cell to lock our lasers with Doppler-free precision. However, we employ a saturated
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absorption scheme that uses two counter-propagating beams, one of which is strong (the

so-called pump beam) and the other of which is weak (the so-called probe beam). This

scheme gives us a Doppler-free spectrum to which we can lock our lasers.25

The repump laser was locked to the so-called 1-2 crossover peak28 which is halfway

between 5s1/2, F = 1 - 5p3/2, F = 1 and 5s1/2, F = 1 - 5p3/2, F = 2. This is schematically

shown in Fig. 3.4. This signal is the strongest compared to other peaks in the saturated

absorption spectrum and that made the locking more robust. But before going into the

MOT the laser frequency was changed to the correct frequency necessary for the MOT

repump transition using an Acousto Optical Modulator (AOM).

For locking the repump laser, a laser frequency dither method was used. This means that

the laser frequency was repeatedly swept back and forth through the resonance, allowing

electronics to lock the laser to the peak in the saturated absorption spectrum.24 This method

has the drawback of effectively broadening the laser bandwidth. However for a re-pump laser,

this was not a problem.

Since a narrow bandwidth for the trapping laser is more crucial in constructing a MOT

than a narrow bandwidth for the repump laser, a magnetic field dither method was used

for its locking.24 In Fig. 3.5 we show the saturated absorption setup for the trapping laser.

This setup is very similar to the one for the repump laser. The only difference is that the Rb

cell is inside a Zeeman solenoid, and instead of linearly polarized light, circularly polarized

light was used. In a Zeeman dither lock, instead of sweeping the laser through the transition

resonance, the resonance itself is swept back and forth using the Zeeman effect.

The trapping laser was locked to the so-called 2-3 crossover peak shown in Fig. 3.4.

Then using an AOM, it was upshifted to the correct trapping frequency, before going into

the MOT chamber.
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Figure 3.4: Hyperfine structure of Rb 5s1/2 and 5p3/2 including (1-2) and (2-3) crossover
“states”.

31



Figure 3.5: Schematic of saturated absorption setup for the trapping laser; M-Mirror,
BS-Beam Splitter, λ/4 (quarter) wave plate.
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3.2 Ion Detection

As was mentioned in the introduction the goal of this research was to count the ions that

were produced in a cold target by a frequency comb. Our experimental setup is able to do

so because inside the trapping region a Recoil Ion Momentum Spectrometer (RIMS)29,30 is

built. A schematic of this arrangement is shown in Fig. 3.6.

Figure 3.6: Recoil Ion Momentum Spectrometer used for collecting the ions. Anti-Helmholtz
coils are for the MOT. Ions produced inside the trapping champer are extracted with the
electric field applied on the spectrometer and directed onto a recoil ion detector.

Any ions that were produced inside the chamber were extracted with the electric field
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applied on the spectrometer and directed toward the 2D position sensitive detector. The

value of the electric field is 10 V/cm . Because the field is so small we can neglect the Stark

shift of the Rb atom energy levels.

3.3 Experimental Setup for DFCS

A simplified schematic for an oscillator that is used to generate a frequency comb is shown

in Fig. 3.7. It consists of a crystal, dispersion compensation prisms, an output coupler, and

Figure 3.7: Simplified schematic of an oscillator. It consists of a couple of prisms, a
crystal, an output coupler and a pump laser.
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a pump laser.

Doing DFCS, as was explained in the introduction, requires simultaneous control over

frep and foff . In general, changing and controlling frep is done by moving the output

coupler which causes the cavity length, and hence the time between laser pulses, to change.

Controlling foff is done by modulating the pump power going into the crystal. To see how

this works it is better to look at the expression for the offset frequency:

foff = frep(2πϕcep)−1, (3.1)

where ϕcep is the carrier envelope phase, which is proportional to the difference between the

inverses of the group and phase velocities. Modulating the pump power causes temperature

of the crystal to change which results in a crystal length change, and hence it adds this

phase shift.

But unfortunately not all oscillators have individual control over frep and foff. Our

Kansas Laser Source KLS oscillator is one of those. In our lab we are only able to control

the ratio between frep and foff which means that our oscillator has CEP locking capability,

but we cannot lock and vary frep and foff individually. This is acceptable for the CEP

dependent experiments that many in the Macdonald Lab do, but as far as DFCS experiment

requirements go, it is not.

However with the existing oscillator we still managed to do the DFCS experiment but in

a little bit different way. Instead of varying frep and foff and counting the ions we decided

to measure frep and foff and do the experiment the other way around. I will discuss this a

little bit later. In the next subsection I would like to talk very briefly how these frep and

foff measurements were done.

3.3.1 Measuring frep and foff

The schematic for measuring frep and foff is shown in Fig. 3.8. The output of our oscillator

is split in two equal-intensity beams (50/50 splitter). The output then has 10 % split off
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Figure 3.8: Schematic for measuring frep and foff. Pulses coming from the oscillator are
split in half with a 50/50 beam splitter; half goes to f-2f interferometer and half goes to
another beam splitter, 10% of which is used to read frep and the rest is sent to the MOT
chamber.
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and sent to a fast photodiode for the frep measurement. The remaining 90 % was used

in the experiment. As for the second half, it was sent to the f-2f interferometer31,32 for

measuring foff. A schematic for the f-2f interferometer is shown in Fig. 3.9. It consists of a

Photonic Crystal Fiber (PCF),33 a dichroic beam splitter, a delay stage, a BBO crystal, a

diffraction grating, an iris, an assortment of optics, and a detector. The PCF is responsible

for generating an “octave in the spectrum”. That is, the output of the PCF stretches the

frequency output of the laser to span an octave. This process is based on the so-called the

Kerr effect.34 Spectra of the pulses before and after our PCF are shown in Fig. 3.10.

As we see from the graph, the spectrum after the PCF covers an octave as it has wave-

lengths 532 nm through 1064 nm. This optically broadened pulse is then split using a

dichroic beam splitter. The lower frequency components were transmitted and the higher

ones were reflected. The lower frequency components were frequency doubled using a BBO

crystal. The higher frequency components were sent to a delay stage and later combined

with the frequency doubled component. The beat frequency (difference frequency) between

the components is the offset frequency and it was measured using an avalanche photo-diode.

The idea behind measuring the beat frequency is demonstrated schematically in Fig. 3.11.

To accurately measure both frep and foff signals, the photodiode outputs were referenced to

the Global Positioning System (GPS).

3.3.2 Our experimental scheme

Now let’s return to our experimental setup. As we said earlier, our oscillator had no in-

dividual control over frep and foff, so this is how we decided to do the DFCS experiment

shown schematically in Fig. 3.12.

We took our KLS oscillator and didn’t lock either frep and foff, or their ratio. In other

words we used a free running oscillator and let nature help us to do this experiment, which

basically means that the change in frep and foff was done by the temperature fluctuations in

the laser room. The pulses from the oscillator were directed to the MOT and the ionizations
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Figure 3.9: Schematic of an f-2f interferometer; PCF-Photonic Crystal Fiber, DBS-
Dichroic Beam Splitter, PBS- Polarized Beam Splitter. Pulses from the oscillator are sent
through the PCF. It generates an octave in the laser spectrum. Then using the DBS, the
pulses are split. The lower frequency components are transmitted and frequency doubled
using a BBO crystal. The higher frequency components are reflected and sent to the delay
stage. Later on these two arms are combined and a beat frequency is measured.
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Figure 3.10: Spectra of the pulses before (top) and after (bottom) the PC Fiber. The lower
spectrum covers an octave as it has 532 and 1064 nm photons in it.
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Figure 3.11: Idea behind the f-2f interferometer. The spectrum shown above covers an
octave as it has frequencies fn and f2n. Using a BBO crystal, the fn component is frequency
doubled and beat against f2n . The beat frequency is the difference between the components
and as is shown above, it is foff.
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Figure 3.12: Experimental scheme for DFCS. The pulses from the oscillator were sent to
the MOT and the ions produced inside the chamber were counted simultaneously with frep

and foff.
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in the vapor were detected through the collection of ions on a PSD. I would like to emphasize

that the PSD was mainly used as a typical ion detector since we were not interested with

the position information of the ions. Meanwhile the parameters of the frequency comb, frep

and foff, that caused the excitation and the ionization, were measured. The gate time for

this measurement was chosen to be 100 ms, which is the time necessary for the frequency

counters to read frep and foff with 0.1 Hz precision. The idea of the measurement is the

following: In each 100 ms interval we read three numbers: the ions produced in the MOT,

frep and foff. In this measurement we were assuming that within 100 ms frep and foff were

not changing significantly, so our target was exposed to a real comb for 100 ms. As the

temperature in the room changed, it caused frep and foff to change and hence the ion signal

to change as the comb teeth matched atomic resonances. For good statistics we ran our

experiment for a couple of hours for each spectrum.

3.3.3 Stability of the laser and range of frep and foff

Doing the experimental method just described above has some potential problems. First of

all, to study the structure of Rb atoms some range of frep and foff is necessary, so is the

temperature fluctuation in the room enough? In the other words, is it going to cause enough

change in frep and foff to look at all the transitions in the atom? And second, is the laser

stable in the 100 ms time interval, allowing us to assume that our target is exposed to a

real comb?

To address the first issue we did the experiment shown schematically in Fig. 3.13. This

is basically the same experimental scheme as our actual experimental one except that here

we were not counting the ions. We took the output of our oscillator and split it in half. One

part was directed onto a fast photodiode that was connected to a frequency counter, and

the second we sent through the f-2f interferometer,31,32 the output of which was connected

to a second frequency counter. These counters were reading the frequencies every 100 ms

and these readings were stored in a computer. The result of this experiment is shown in
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Figure 3.13: This is the same setup as Fig. 3.12, but with no ion detection. Pulses were
split in half. 50% was sent to the f-2f interferometer for the foff measurement, and the rest
was sent to a fast photo-detector for the frep measurement.
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Fig. 3.14.

Figure 3.14: This is a plot to demonstrate how foff and frep change in time. In this case
only 2 hours of data are presented.

As we can see from these data, the scanning range for frep is 30 Hz and the scanning

range for foff is 2 MHz in about 2 hours. Since the frequency of a tooth equals nfrep-foff,

where n is on the order of 106, this gives us about 110 MHz scanning range for a tooth,

which completely covers all the hyperfine transitions of the Rb atoms for the manifolds

under study.

As for the second question, is the laser stable in this 100 ms interval? We took the above

data and applied the Allan deviation formula,35 which is a tool for estimating the stability
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of data: σf (τ) =
√

1
2
〈(fn+1 − fn)2〉, where τ is the sampling time and fn is the nth frequency

averaged over this sampling time.

Figure 3.15: This is a plot to estimate how stable foff and frep are in different sampling
times. The calculation below the figure was done for a 1 second sampling time.

In Fig. 3.15 we plot the Allan deviations in frep and foff as functions of the sampling

time. We see that in a 1 second sampling time, the maximum deviation in frep was under

0.3 Hz and for foff the deviation was under 300 kHz. This gives an uncertainty in comb tooth

frequency of less than 1.7 MHz. Furthermore, if we extrapolate the Allan deviation in frep

down to 100 msec, the shortest period over which our counters can sample with adequate

precision, we would expect an Allan deviation of about 0.2 Hz, leading to a comb tooth
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uncertainty of about 1 MHz. This is not much broader than the 0.7 MHz line width36 of

the states in the 5d manifold of Rb.

3.4 Data Acquisition

Our data acquisition system was very simple. As we described earlier we only needed to

record three signals in a 100 ms window: A signal from the repetition frequency counter, a

signal from the offset frequency counter, and the number of ions that were produced. For

this purpose we wrote a simple LabView code that read these signals and wrote them into

3 dimensional arrays.

Repetition and offset frequencies were read with Agilent Universal Frequency Counters.37

These counters have a GPIB output port and with GPIB -USB converters the frequencies

were read by the LabView code, running on a computer running Windows.

As for the ion counts, the signal from the PSD was converted into a NIM logic pulse

using a constant fraction discriminator (CFD). The NIM pulse was then converted into

a TTL pulse using a NIM-to-TTL converter and sent to the computer using a National

Instruments 12 bit DAQ box (NI USB-6008). A simple schematic for this data acquisition

system is shown in Fig. 3.16. The LabView code is shown in the appendix B.
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Figure 3.16: Data acquisition scheme. Signals from foff and frep counters were sent to the
computer through a GPIB-USB converter. The ion signal from the PSD was read in through
the CFD-NI DAQ.
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Chapter 4

Experimental Results

In this chapter we present the results of our experiments. As we mentioned in the intro-

duction section our emphasis here was not to do an ultra high precision measurement but

rather to see whether the ionization signal is significant when doing DFCS, and if it is, then

see if one can learn the structure of the target system by looking at the ion signal as a

function of frep and foff. Therefore we didn’t address issues that most of the high precision

measurement groups do, such as turning off the MOT magnetic fields, that would allow us

to ignore Zeeman broadening effects, or decreasing the intensity of the laser to reduce power

broadening, or turning off the RIMS electric field to eliminate Stark splitting effects, or even

turning off the trapping and repump lasers while the frequency comb is hitting the target

to make sure that all the atoms are in the 5s1/2, F = 2 ground state.

This chapter we divided into two parts. In the first part we show our binned experimental

data and explain how the binning process was carried out. In the second section we show the

results from a different perspective where we take advantage of the repetition of the structure

in frep and foff and add the cycles. In the same section we compare our experimental results

to those predicted by our theoretical code and we draw our conclusions.

4.1 Binned 2D Plot of Our Experimental Results

Figure 4.1 shows a typical experimental result. This represents 130 minutes of data collection

with an average laser power of 25 mW, focused to a beam diameter of 5.7 × 10−4 m. (See
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appendix A for more details). The laser pulse width was 50 fs. The density (color) in the

figure gives the average ion count rate at each set of parameters frep and foff. Since the

laser was allowed to drift passively, frep and foff do not necessarily fill out the full phase

space represented in the plot, i.e. a zero count rate could mean that no ions were generated

when the laser was in that range, or it could mean that the laser never drifted into the

range represented. The data from the experiment are made up of a stream of three-value

vectors, each accounting for 100 msec of elapsed time. The vectors are composed of an frep

measurement, an foff measurement, and the number of ion counts accumulated during the

measurement period. The data are then run through a routine (appendix C) that divides

the parameter space into bins of width 0.1 Hz in frep and 2 MHz in foff and sums the ion

counts into the appropriate bin as each datum is read . After binning, the ion count total in

each bin is divided by the number of data points that were summed into that bin in order

to get the ion production rate. These ion production rates are plotted in Fig. 4.1. This

spectrum was extremely reproducible over many runs taken months apart.

Ionization in Fig. 4.1 appear as nearly vertical stripes. This is because of the relationship

between frep and foff expressed by Eq. 1.2. For a single-photon resonance at frequency

ft, all frep and foff satisfying nfrep − foff = ft will produce enhanced ionization. Thus,

resonances appear as lines with slope n in Fig. 4.1. For our laser, n is about 5.1 × 106,

so a change of 1 MHz in foff would shift a resonance peak 0.2 Hz in frep. For two-photon

resonances, the stripes will have slopes given by the average of the tooth orders for the two

transition frequencies. In principle, we could determine n by fitting the two-dimensional

data in Fig. 4.1. This would not yield very good precision in our case both because of our

experimental resolution and because of the random nature of our parameter space coverage.

4.2 1D Plot in Comparison with Theory

We choose, for demonstration purposes, to condense the data to one dimension by projecting

to the frep axis along diagonals of slope n. We further choose to project to the arbitrary
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Figure 4.1: Plot of rubidium ion count rate, in ions per 100 ms, as a function of the freely
varying parameters frep and foff. fref = 75616231 Hz.
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value of foff = −23.5 MHz. A further compression of the data can be made by noticing

that Eq. 1.2 is cyclic in the order n. Thus, if two repetition frequencies are related by

nf1 = (n + 1)f2, both could excite the same atomic resonance, for constant foff. For our

laser a given one-photon transition should repeat at intervals of approximately 14.9 Hz in

frep. We can, thus, combine repeated lines in our projected spectrum into a single range by

cutting the frep axis at intervals of 14.9 Hz and shifting segments to the left by multiples

of the cyclic interval (appendix C). Each ion rate is averaged over the number of segments

combined this way. The projected data are shown in Fig. 4.2. The projection routine is

not exact and contributes an additional width of approximately 0.1 Hz to the peaks in the

DFCS scan, which is minor compared to the experimental resolution of 1 Hz. We note that

this kind of analysis is not needed in active DFCS since there is no reason to simultaneously

scan both frep and foff; nor is it necessary to scan frep over multiple orders.

The solid curve in Fig. 4.2 is from the measured ion rates, while the crosses are theoretical

calculations, the latter plotted with an arbitrary vertical axis. The theory is the same as

used for Fig. 2.2, but with the laser power set to the experimental value and frep and foff

also matched to the range of the measurements.

From Fig. 4.2 we can see that we obtain a large ionization rate, clearly adequate for

spectroscopic measurements. There is also clear structure in the graph that is consistent

with the calculated ionization spectrum. The differences between theory and experiment

are due to the trapping laser being left on. For example, the apparent shift of some of the

experimental peaks toward lower frequencies (near 2Hz) and higher frequencies (near 13 Hz)

are actually due to enhanced excitation of the 5p3/2, F = 3, due to the trapping laser. In

other words the peaks correspond to excitation with frequency teeth from 5p3/2, F = 3 to

the allowed 5d hyperfine states, which are then ionized by any photon in the comb.

Considering all of these factors we can conclude that the theory and experiment agree

very well.
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Figure 4.2: The data from Fig. 4.1 (solid black line). The ion count rates have been aver-
aged over the cycles in frep and foff and plotted versus frep − fref, wherefref = 75616232 Hz.
Also plotted is the calculated ion signal rate (crosses connected by a line). For both theory
and experiment foff = −23.5 MHz.
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Chapter 5

Conclusion and Future Possibilities

In this chapter we give a brief summary of both theoretical and experimental results that

were discussed in this dissertation. Then in the following section we point out some inter-

esting ideas for future theoretical and experiential work.

5.1 Summary

As we pointed out earlier, this work mainly was motivated with two questions:

• First, we wanted to understand whether the ionization process was negligible compared

excitation when doing DFCS.

• Second if the ionization signal was strong enough, we wanted to see if this signal could

be used for studying the structure of the system of interest.

5.1.1 Theory

We adopted a theoretical model developed by Felinto that (in his case) was used to calculate

the excited state populations of a target system while interacting with a frequency comb,

as a function of the repetition frequency of a the comb. Since our goal was ionization we

added continuum states to this model. We applied our code to 87Rb atoms. The manifolds

of interest were 5s, 5p, 5d and the continuum. Results of the calculations showed us that

the ionization signal is actually greater than the 5d population. And at the same time it

53



showed us that everywhere we had a peak in the populations of the 5d states, we had the

corresponding peak in the ionization signal, which answers the second question – at least

theoretically.

We also showed that direct two photon ionization from the 5p states was negligible, which

was the result of having a small population in the 5p excited states after interacting with

the frequency comb. We tried to increase the population of the 5p states by increasing the

intensity of the laser pulses, but it turned out that it actually had a negative effect, because

of the process called optical pumping. The optical pumping is the effect of accumulating

the populations in a so-called “dark” state, meaning none of the frequency comb teeth can

resonantly excite a transition to any excited states from that state. At the same time we

showed that with the same frequency comb one can undo the optical pumping, by choosing

the appropriate repetition frequency and offset frequency. That basically means, while one

tooth does optical pumping, another tooth re-pumps atoms from the dark state into the

active ground state, much in the same way that our MOT repump works.

We also decided to see how the 5d excited state populations change as a function of

chirp (both positive and negative). We considered two types of two photon transitions:

One resonant with transition to the intermediate states (Type A) and a second not being

resonant with transition to the intermediate states (Type B). The result showed us that

in the case of type B transitions, the excitation was enhanced by a factor of 100 for both

positive and negative chirp compared to the result with transform limited pulses. As for the

Type A transitions, the negative chirp showed decreasing excitation amplitude whereas a

positive chirp increased it. These results are in good agreement with 2nd order perturbation

theory.

Last we looked at the effect of decreasing the number of pulses interacting with the

system on the excited state populations. The idea was to decrease the number of pulses in

the train without affecting the structure, so that computation could be done more readily.

The results were satisfactory as we managed to obtain the same structure with a greatly
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reduced number of pulses in a train. This means that future computations can be made

much more efficiently in terms of computer time.

5.1.2 Experiment

Next we decided to address the two questions experimentally. We used a 87Rb MOT as the

target system in order to eliminate the Doppler broadening effect. This target was subjected

to an “infinite” train of pulses. All the ions that were produced in the interaction region

were collected with RIMS spectrometer and counted using an ion detector.

Since our oscillator didn’t have the repetition frequency and offset frequency locking

capability (which is necessary for doing DFCS) we used a different approach. We counted

the ions produced in 100 ms window while reading the repetition and offset frequencies of

the pulses that caused the ionization. In other words we were doing DFCS only 100 ms

at a time, but for good statistics our experiments ran for hours. It was estimated that

within this 100 ms window the laser repetition and offset frequency were very stable. As the

temperature was changing in the laser room so were the repetition and offset frequencies,

which was equivalent to scanning them, although not uniformly in time. Then the ion counts

were plotted as a function of repetition and offset frequency. After sophisticated analysis

we showed that the ionization signal was significant and it showed the level structure of the

Rb atoms.

Unfortunately the resolution in our spectra is not very good. Our goal was to demon-

strate the strength of the ionization channel rather than the resolution for which frequency

comb spectroscopy is already known. By following the standard procedure of taking a se-

ries of measurements with gradually lower comb laser power and then extrapolating those

spectra to zero intensity we would eliminate power broadening effects. Furthermore, if high

resolution were our goal, we could have taken the pains to chop the trap’s B-field gradient,

thereby eliminating Zeeman broadening.

While our data were in satisfactory agreement with theory, there were some discrepancies.

55



These were caused by processes due to the trapping lasers, and were therefore irrelevant to

the hypothesis we were testing. Just as in the case of the B-field gradient, the trapping laser

could have been chopped to eliminate these effects, though the starting point in the comb

laser excitation would still have been with optically pumped rubidium in the ground state.

The loss in duty cycle would have simply given rise to reduced counting statistics.

Finally, we also demonstrated a novel implementation of DFCS in which frep and foff

were not controlled, but were varied through the natural interaction of the laser system

and the changing ambient temperature. Our assessment of this passive comb is that, while

workable, it has significant disadvantages over a conventional comb. The most serious of

these is that one cannot simply dial in a tooth frequency of interest. Thus, we could not

look for double resonances, in which one comb tooth was resonant with a transition between

the 5s and 5p manifolds, while another tooth was resonant with a transition between the 5p

and 5d manifolds. This makes it virtually impossible to use a passive comb to investigate,

for example, optical pumping effects. Nevertheless, for laboratories that have an ultrafast

oscillator but no true comb, impromptu passive comb experiments could still be done. We

would like to emphasize here that the way we did our experiment doesn’t have any advantage

over DFCS experiment with a real comb, except that we showed that one need not have an

actively stabilized comb laser to do DFCS.

5.2 Future Possibilities

Even though we did a lot of calculations and obtained lots of interesting results both theo-

retically and experimentally, there is still a lot to be done in this field.

First of all it would be very interesting to watch the population evolution on a time scale

of ns, which is the time between two successive pulses in the train, basically to see how the

population changes from pulses to pulse to pulse. We could do this theoretically since we

already have a well developed code, and experimentally using our MOTRIMS apparatus.

Also the frequency range for a given frequency comb laser is limited; furthermore there

56



are some frequency regions where frequency combs do not exist at all. This clearly limits the

atomic and molecular species that can be detected. In the future our group plans to increase

the useful domain of comb frequencies by using two separate combs having very different

frequency ranges. Combining the light from these two different color combs will open the

door to a wide range of opportunities such as detecting trace amounts of particles of nearly

any kind, studying very complex molecules such as DNA, controlling and predicting the

results of chemical reactions, contributing toward the development of a quantum computer,

and detecting the position and velocity of distant objects. Detecting trace amounts of

materials is especially interesting in terms of its potential for commercialization: Two color

comb techniques can be used for security purposes to detect potential explosive and bio-

hazards and toxic gases, and to investigate contaminated areas. In the medical field, the

technique can be used as a diagnostic for a broad range of pathogens through breath analysis.

Our group’s initial object of study will be atomic rubidium. This is an ideal test system

because the study of its structure requires use of two frequency combs having wavelengths

centered at 780 and 1529 nm. Furthermore, we are already optically trapping and cooling

rubidium atoms down to 150 microKelvin using a Magneto Optical Trap. This eliminates

all Doppler broadening effects, which would introduce complications in the interpretation

of the data. Finally, rubidium atomic lines have already been studied with high precision,

providing a benchmark against which we can compare our results, thereby allowing us to

determine how good our new technique is.
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[30] H. Nguyen, X. Fléchard, R. Brédy, H. A. Camp, and B. D. DePaola, Rev. Sci. Instrum.

75, 2638 (2004).

[31] D. J. Jones et al., Science. (2000).

[32] R. Holzwarth, T. Udem, and T. W. Hansch, Phys. Rev. Lett. 85, 2264 (2008).

[33] Photonic Crystal Fiber. “http://en.wikipedia.org/wiki/Photonic-crystal_

fiber”.

[34] Kerr effect, self phase modulation. “http://en.wikipedia.org/wiki/Self-phase_

modulation”.

[35] Allan variance. “http://en.wikipedia.org/wiki/Allan_variance”.

[36] O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).

[37] Hewlett Packard Model 53131A Counter.

[38] G. Veshapidze, M. L. Trachy, M. H. Shah, and B. D. DePaola, Appl. Opt. 45, 8197

(2006).

60

http://en.wikipedia.org/wiki/Photonic-crystal_fiber
http://en.wikipedia.org/wiki/Photonic-crystal_fiber
http://en.wikipedia.org/wiki/Self-phase_modulation
http://en.wikipedia.org/wiki/Self-phase_modulation
http://en.wikipedia.org/wiki/Allan_variance


[39] C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72 (2001).

61



Appendix A

Estimating the Laser Beam Size

The spot size of the laser beam was estimated with an edge-scanning method.38 This process

was done in free space at the focus of the identical lens that was used to focus the laser

beam inside the MOT chamber. The results of this measurement are shown in Fig. A.1.

The black line represents the derivative of the data and the red line is a fitted Gaussian.

From the fit we see that the FWHM of the beam is about 5.7× 10−4 m.
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Figure A.1: Here we estimate size of the beam using the so-called knife-edge method. The
black line is data, and the red line is a fitted Gaussian.
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Appendix B

Labview Program for Data
Acquisition

Below is the labview code that was used for data acquisition. The code (main structure)

was written by Vince Needham and later was modified by me. This code reads in three

signals, two from the frequency counters and the third from the PSD, and it stores them in

three columns.
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Figure B.1: LabView code1.
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Figure B.2: LabView code2.

66



Appendix C

Binning-Program

Here we show the programs used to add cycles in frep and foff and then bin the results.

// Global Stuff:

// Libraries:

#include <iostream> #include <fstream> #include <string> #include

<cstring> #include <cstdlib> #include <vector>

using namespace std;

// Global Constants & Variables:

ifstream in_stream;

ofstream out_stream;

int main() {

vector<double> cntin;
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vector<double> f0in;

vector<double> fRin;

vector<double> f0_out;

vector<double> fR_out;

vector<double> cnts_out;

vector<double> norm_out;

vector <double> fin_norm;

vector <double> bin_norm;

vector<double> average;

vector<int> mod;

double cnts,f0,fR,pmt,fRmin,fRmax,f0min,f0max,dfR,df0, fofflow, foffhigh;

double fmintmp,fmaxtmp;

int numf0,numfR;

int Nraw=0,fint,lenout,Nout=0;

int r,r1,r2, r3,r4,m,l;

char infilenam[30],outfilenam[30], binned;

char dummy; // use this for debugging

// set the precisions for output to the screen:

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(5);

// input the raw data; find mins, maxs and numlines of data:
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//cout<<"\n What is the name of the output file (with an extension)?\n";

// cin>>outfilenam;

in_stream.open("comb052711D.dat"); // open the raw data file

// in_stream.open(infilenam); // open the raw data file

if((in_stream.fail())) // make sure file can be found

{

cout<<"Input file opening failed.\n";

exit(1);

}

in_stream>>cnts>>f0>>fR>>pmt; //read in first line of file

//find min and max

fRmin=fR;

fRmax=fR;

f0min=f0;

f0max=f0;

cntin.push_back(cnts);

f0in.push_back(f0);

fRin.push_back(fR);

while (!in_stream.eof())

{

in_stream>>cnts>>f0>>fR >>pmt;

if(fR>fRmax){fRmax=fR;}

if(fR<fRmin){fRmin=fR;}

if(f0>f0max){f0max=f0;}

if(f0<f0min){f0min=f0;}
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Nraw++;

cntin.push_back(cnts);

f0in.push_back(f0);

fRin.push_back(fR);

}

in_stream.close(); // close raw data file

//output mins and maxes:

cout << endl;

cout << "min and max of fR: " << fRmin << " " << fRmax << endl;

cout << "min and max of f0: " << f0min << " " << f0max << endl;

cout << "number of lines of data: " << Nraw << endl;

// these are default values:

// fRmin=75557551;

// fRmax=75557616;

// f0min=5000000;

// f0max=15000000;

//fn=nfrep-f0; fix one f0 and shift all other f0 respect to it,

//shiftng means changing frep.

//

for (int i=0; i<= Nraw; i++)

{

fRin[i]=(fRin[i]+(23500000-f0in[i])/(5.1e6));

70



f0in[i]=f0in[i];

}

//after shifting find min value of frep and subtract it from all the

//freps

double min=fRmax;

for (int i=0; i<=Nraw; i++)

{

if (min > fRin[i]) { min =fRin[i];}

}

cout<<min;

for (int i=0; i<= Nraw; i++)

{

fRin[i]=fRin[i]-min;

}

for (int i=0; i<= Nraw; i++)

{

mod.push_back(0);

f0_out.push_back(0.0);

fR_out.push_back(0.0);
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}

//adding cycles in frep

for (int i=0; i<= Nraw; i++)

{

mod[i]=fRin[i]/14.91; fR_out[i]=fRin[i]-mod[i]*14.91;

f0_out[i]=23500000;

//cout<< fR_out[i]<<endl;

}

//output of the program

out_stream.open("comb_shifted.dat");

// out_stream.open(outfilenam);

// set the precisions for output to a file:

out_stream.setf(ios::fixed);

out_stream.setf(ios::showpoint);

out_stream.precision(6);

for (int i=0; i<Nraw; i++)

out_stream<<cntin[i]<< " " << f0_out[i]<< " "<< fR_out[i]<<""<<cntin[i]<< endl;

out_stream.close();

}

The next program uses the output of the previous code and bins it.
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// Global Stuff:

// Libraries:

#include <iostream> #include <fstream> #include <string> #include

<cstring> #include <cstdlib> #include <vector>

using namespace std;

// Global Constants & Variables:

ifstream in_stream;

ofstream out_stream;

int main() {

vector<double> cntin;

vector<double> f0in;

vector<double> fRin;

vector<double> f0_out;

vector<double> fR_out;

vector<double> cnts_out;

vector<double> norm_out;

vector <double> fin_norm; vector <double> bin_norm;

vector<double> average;

double cnts,f0,fR,pmt,fRmin,fRmax,f0min,f0max,dfR,df0, fofflow, foffhigh;

double fmintmp,fmaxtmp;
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int numf0,numfR;

int Nraw=0,fint,lenout,Nout=0;

int r,r1,r2, r3,r4,m,l;

char infilenam[30],outfilenam[30], binned;

char dummy; // use this for debugging

// set the precisions for output to the screen:

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

// input the raw data; find mins, maxs and numlines of data:

cout<<"What is the name of the file to bin (with an extension)?\n";

cin>>infilenam;

cout<<"\n What is the name of the output file (with an extension)?\n";

cin>>outfilenam;

// in_stream.open("comb052811A.dat"); // open the raw data file

in_stream.open(infilenam); // open the raw data file

if((in_stream.fail())) // make sure file can be found

{

cout<<"Input file opening failed.\n";

exit(1);

}

in_stream>>cnts>>f0>>fR>>pmt; //read in first line of file

fRmin=fR;

fRmax=fR;

74



f0min=f0;

f0max=f0;

cntin.push_back(cnts);

f0in.push_back(f0);

fRin.push_back(fR);

while (!in_stream.eof())

{

in_stream>>cnts>>f0>>fR >>pmt;

if(fR>fRmax){fRmax=fR;}

if(fR<fRmin){fRmin=fR;}

if(f0>f0max){f0max=f0;}

if(f0<f0min){f0min=f0;}

Nraw++;

cntin.push_back(cnts);

f0in.push_back(f0);

fRin.push_back(fR);

}

in_stream.close(); // close raw data file

//output mins and maxes:

cout << endl;

cout << "min and max of fR: " << fRmin << " " << fRmax << endl;

cout << "min and max of f0: " << f0min << " " << f0max << endl;

cout << "number of lines of data: " << Nraw << endl;

// these are default values:
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// fRmin=75557551;

// fRmax=75557616;

// f0min=5000000;

// f0max=15000000;

// input ranges and bin sizes:

cout << endl;

cout << "Input minimum and maximum values of fR you are interested in.\n";

cout << "The default values are "<<fRmin<< " "<<fRmax<<endl;

cout <<"(To use a default values, enter 0 for each that value)\n";

cin >> fmintmp >> fmaxtmp;

if (fmintmp>0.0001) fRmin=fmintmp;

if (fmaxtmp>0.0001) fRmax=fmaxtmp;

cout << endl;

cout << "Input minimum and maximum values of f0 you are interested in.\n";

cout << "The default values are "<<f0min<< " "<<f0max<<endl;

cout << "(To use a default values, enter 0 for that value)\n";

cin >> fmintmp >> fmaxtmp;

if (fmintmp>0.0001) f0min=fmintmp;

if (fmaxtmp>0.0001) f0max=fmaxtmp;

// cout << "input the size of your frep (in Hz) and f0 (in Hz) bins.\n";

//cin >> dfR >> df0;

// cout <<endl;

// df0=df0 *1.0e6;

dfR=0.1;
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df0=1000000;

// bin the data:

for (int i=0; i<= Nraw; i++)

{

fint=fRin[i]/dfR;

fRin[i]=(fint+0.5)*dfR;

fint=f0in[i]/df0;

f0in[i]=(fint+0.5)*df0;

// cout <<f0in[i] << ’ ’ << fRin[i]<< endl;

}

// create output data:

numf0=(f0max-f0min)/df0;

numfR=(fRmax-fRmin)/dfR;

lenout=(numf0+1)*(numfR+1);

cout<< "lenout, numf0, numfR= "<<lenout << " "<<numf0<<" "<<numfR<<endl;

// first initialize:

for (int i=0; i<=lenout; i++)

{

f0_out.push_back(0.0);

fR_out.push_back(0.0);

cnts_out.push_back(0.0);

norm_out.push_back(0.001);

}

// now fill in the frequencies:

for (int if0=0; if0<=numf0; if0++)
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for (int ifR=0; ifR<=numfR; ifR++)

{

f0_out[if0*(numfR+1)+ifR]=f0min+(if0+0.5)*df0;

fR_out[if0*(numfR+1)+ifR]=(ifR+0.5)*dfR;

Nout++;

}

cout<<"Nout= "<<Nout<<" lenout= "<<lenout<<endl;

// collapse the raw data into the new vectors:

for (int i=0; i<=Nraw; i++)

{

if (( f0in[i]>=f0min)&(f0in[i]<=f0max)&(fRin[i]>=fRmin)&(fRin[i]<fRmax))

{

r1=(f0in[i]-f0min)/df0;

r2=(fRin[i]-fRmin)/dfR;

r=(numfR+1)*r1+r2;

if((r<=Nout) & (r>=0))

{

cnts_out[r]=cnts_out[r]+cntin[i];

norm_out[r]=norm_out[r]+1.0;

}

}

}

out_stream.open("comb2d.dat");

// out_stream.open(outfilenam);

// set the precisions for output to a file:
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out_stream.setf(ios::fixed);

out_stream.setf(ios::showpoint);

out_stream.precision(6);

for (int i=0; i<Nout; i++)

out_stream<<f0_out[i]<<" "<<fR_out[i]<<" "

<<cnts_out[i]/norm_out[i]<<endl;

out_stream.close();

}
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Appendix D

Identifying Structure Lines

Here we show the Matlab code that was used to identify 5d and 5p hyperfine energy lines

in our theoretical and experimental data. In this code we specify what the offset frequency

was for the laser and the range we scanned our laser repetition frequency and it calculates

the position (in frep) for the teeth that cause 1 photon or two photon excitation to the 5p

and 5d states correspondingly followed by ionization.

D.1 Two Photon Transition

Below is the code for the 5s to 5d transitions.

close all

clear all

clc

format long

foff=-23500000;

frepmin=75616304.25;

frepmax=frepmin+20;
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load rho.dat %read in raw data

mat1=rho;

shift=6834682600;

% input all the transition frequencies from

% the 5s F=2 to the 5d hyperfine states.

D32F0=770487024638000-shift;

D32F1=770487038137000-shift;

D32F2=770487066067800-shift;

D32F3=770487110290200-shift;

D52F4=770569132732600;

D52F3=770575996238200-shift;

D52F2=770576019193000-shift;

D52F1=770576035133000-shift;

tran2=[D32F0 D32F1 D32F2 D32F3 D52F4 D52F3 D52F2 D52F1];

format long

for k=1:1:length(tran2)

% finding minimum and maximum teeth number for each transition.

topn(k)=floor((tran2(k)-2*foff)/frepmin);

to(k)=((tran2(k)-2*foff)/frepmin);

bottomn(k)=floor((tran2(k)-2*foff)/frepmax);

bot(k)=((tran2(k)-2*foff)/frepmax);

l=0;
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% use the teeth numbers, increment it by one and find,

%where the repetition frequencies

%need to be to get an excitation with the teeth.

for m=bottomn(k):1:topn(k)

s=bot(k):1:to(k);

l=l+1;

frep(l,k)=(tran2(k)-2*foff)/m;

end

end

yaxis=(1:topn(1)-bottomn(1)+1)*0+140;

D32F0=[(frep(:,1))-frepmin,yaxis’];

D32F1=[frep(:,2)-frepmin,yaxis’];

D32F2=[frep(:,3)-frepmin,yaxis’];

D32F3=[frep(:,4)-frepmin,yaxis’];

D52F4=[frep(:,5)-frepmin,yaxis’];

D52F3=[frep(:,6)-frepmin,yaxis’];

D52F2=[frep(:,7)-frepmin,yaxis’];

D52F1=[frep(:,8)-frepmin, yaxis’]

%plot the input data and the lines describing which

% peak corresponds to which transition

subplot(2,1,1)

semilogy(mat1(:,1),mat1(:,6))%,mat(:,1),mat(:,5))

factor=1000000000000000000;
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axis([0 20 min(mat1(:,6)) max(mat1(:,6))])

hold on

bar(D32F0(:,1),D32F0(:,2)./factor,0.00001,’g’,’edgecolor’,’g’)

%if 0

bar(D32F1(:,1),D32F1(:,2)./factor,0.0001,’r’,’edgecolor’,’r’)

bar(D32F2(:,1),D32F2(:,2)./factor,0.0001,’b’,’edgecolor’,’b’)

bar(D32F3(:,1),D32F3(:,2)./factor,0.00001,’y’,’edgecolor’,’y’)

bar(D52F1(:,1),D52F1(:,2)./factor,0.00001,’m’,’edgecolor’,’m’)

bar(D52F2(:,1),D52F2(:,2)./factor,0.00001,’c’,’edgecolor’,’c’)

bar(D52F3(:,1),D52F3(:,2)./factor,0.00001,’k’,’edgecolor’,’k’)

bar(D52F4(:,1),D52F4(:,2)./factor,0.00001,’w’,’edgecolor’,orange)

legend(’data’,’D32F0’,’D32F1’,’D32F2’,’D32F3’,’D52F1’,’D52F2’,’D52F3’,’D52F4’)

title(’F=2’)

% the same procedure but from 5s F=1 state to all the 5d hyperfine states.

clear all

clc

format long

foff=-23500000;
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frepmin=75616304.25;

frepmax=frepmin+20;

shift=6834600000;

load rho.dat

mat1=rho;

shift=6834682600;

D32F0=770487024638000;

D32F1=770487038137000;

D32F2=770487066067800;

D32F3=770487110290200;

D52F4=770569132732600+shift;

D52F3=770575996238200;

D52F2=770576019193000;

D52F1=770576035133000;

tran2=[D32F0 D32F1 D32F2 D32F3 D52F4 D52F3 D52F2 D52F1]; format long

for k=1:1:length(tran2)

topn(k)=floor((tran2(k)-2*foff)/frepmin);

to(k)=((tran2(k)-2*foff)/frepmin);
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bottomn(k)=floor((tran2(k)-2*foff)/frepmax);

bot(k)=((tran2(k)-2*foff)/frepmax);

l=0;

for m=bottomn(k):1:topn(k)

s=bot(k):1:to(k);

l=l+1;

frep(l,k)=(tran2(k)-2*foff)/m;

end

end

%topn-bottomn

yaxis=(1:topn(1)-bottomn(1)+1)*0+140;

%yaxiss=(1:to(1)-bot(1)+0)*0+45;

D32F0=[(frep(:,1))-frepmin,yaxis’];

D32F1=[frep(:,2)-frepmin,yaxis’];

D32F2=[frep(:,3)-frepmin,yaxis’];

D32F3=[frep(:,4)-frepmin,yaxis’];

D52F4=[frep(:,5)-frepmin,yaxis’];

D52F3=[frep(:,6)-frepmin,yaxis’];

D52F2=[frep(:,7)-frepmin,yaxis’];

D52F1=[frep(:,8)-frepmin, yaxis’]
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subplot(2,1,2)

semilogy(mat1(:,1),mat1(:,6))%,mat(:,1),mat(:,5))

%factor=1000;

factor=10000000000000000;

axis([0 20 min(mat1(:,6)) max(mat1(:,6))])

hold on

bar(D32F0(:,1),D32F0(:,2)./factor,0.00001,’g’,’edgecolor’,’g’)

%if 0

bar(D32F1(:,1),D32F1(:,2)./factor,0.0001,’r’,’edgecolor’,’r’)

bar(D32F2(:,1),D32F2(:,2)./factor,0.00001,’b’,’edgecolor’,’b’)

bar(D32F3(:,1),D32F3(:,2)./factor,0.00001,’y’,’edgecolor’,’y’)

bar(D52F1(:,1),D52F1(:,2)./factor,0.00001,’m’,’edgecolor’,’m’)

bar(D52F2(:,1),D52F2(:,2)./factor,0.00001,’c’,’edgecolor’,’c’)

bar(D52F3(:,1),D52F3(:,2)./factor,0.00001,’k’,’edgecolor’,’k’)

bar(D52F4(:,1),D52F4(:,2)./factor,0.00001,’w’,’edgecolor’,orange)

%legend(’data’,’D32F0’,’D32F1’,’D32F2’,’D32F3’,’D52F1’,’D52F2’,’D52F3’,’D52F4’)

%end

title(’F=1’)
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D.2 One Photon Transition

And here we show the code for the 5s to 5p transitions

close all

clear all

clc

% this program is similar to the program above.

% It is written to identify all the peaks from the 5s to 5p states.

%

%s=0;

format long Eng

foff=-23500000;

%s=s+1;

frepmin=75616304.25;

frepmax=frepmin+20;

%load comb053011Afull.dat

load rho.dat

%mat=comb053011Afull;
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mat1=rho;

shift=6834682600;

P12F1=377111224728600-shift;

P12F2=377112041387600-shift;

P32F0=384234454070900-shift;

P32F1=384234526288900-shift;

P32F2=384234683235900-shift;

P32F3=384228115203300;

tran1=[P12F1 P12F2 P32F0 P32F1 P32F2 P32F3];

for k=1:1:length(tran1)

topn(k)=floor((tran1(k)-foff)/frepmin);

bottomn(k)=floor((tran1(k)-foff)/frepmax);

l=0;

for m=bottomn(k):1:topn(k);

l=l+1;

frep(l,k)=(tran1(k)-foff)/m;

end

end

topn-bottomn; yaxis=(1:(topn(1)-bottomn(1)+1))*0+140;
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P12F1=[(frep(:,1))-frepmin,yaxis’];

P12F2=[frep(:,2)-frepmin,yaxis’];

P32F0=[frep(:,3)-frepmin,yaxis’];

P32F1=[frep(:,4)-frepmin,yaxis’];

P32F2=[frep(:,5)-frepmin,yaxis’];

P32F3=[frep(:,6)-frepmin,yaxis’];

subplot(2,1,1)

%plot(mat(:,2),mat(:,3),mat1(:,1),mat1(:,2)*15*10^3 )

%,mat(:,1),mat(:,5))

factor=1000000000000;

semilogy(mat1(:,1),mat1(:,6)) axis([0 20 min(mat1(:,6))

max(mat1(:,6))])

hold on

bar(P12F1(:,1),P12F1(:,2)./factor,0.000001,’g’,’edgecolor’,’g’)

bar(P12F2(:,1),P12F2(:,2)./factor,0.000001,’r’,’edgecolor’,’r’)

bar(P32F0(:,1),P32F0(:,2)./factor,0.000001,’b’,’edgecolor’,’b’)

bar(P32F1(:,1),P32F1(:,2)./factor,0.000001,’y’,’edgecolor’,’y’)

bar(P32F2(:,1),P32F2(:,2)./factor,0.0000001,’m’,’edgecolor’,’m’)

89



bar(P32F3(:,1),P32F3(:,2)./factor,0.00001,’c’,’edgecolor’,’c’)

%bar(D52F3(:,1),D52F3(:,2)./factor,0.00001,’k’,’edgecolor’,’k’)

%bar(D52F4(:,1),D52F4(:,2)./factor,0.00001,’w’,’edgecolor’,orange)

legend(’data1’,’P12F1’,’P12F2’,’P32F0’,’P32F1’,’P32F2’,’P32F3’)

title(’F=2’)

%legend(’5p’,’5d’,’cont’)

clear all clc

format long Eng

foff=-23500000;

%s=s+1;

frepmin=75616304.25;

frepmax=frepmin+20;

%load comb053011Afull.dat

load rho.dat

%mat=comb053011Afull;

mat1=rho;

shift=6834682600;

P12F1=377111224728600;
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P12F2=377112041387600;

P32F0=384234454070900;

P32F1=384234526288900;

P32F2=384234683235900;

P32F3=384228115203300+shift;

tran1=[P12F1 P12F2 P32F0 P32F1 P32F2 P32F3];

for k=1:1:length(tran1)

topn(k)=floor((tran1(k)-foff)/frepmin);

bottomn(k)=floor((tran1(k)-foff)/frepmax);

l=0;

for m=bottomn(k):1:topn(k)

l=l+1;

frep(l,k)=(tran1(k)-foff)/m;

end

end topn-bottomn; yaxis=(1:(topn(1)-bottomn(1)+2))*0+130;

P12F1=[frep(:,1)-frepmin,yaxis’];

P12F2=[frep(:,2)-frepmin,yaxis’];

P32F0=[frep(:,3)-frepmin,yaxis’];

P32F1=[frep(:,4)-frepmin,yaxis’];

P32F2=[frep(:,5)-frepmin,yaxis’];
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P32F3=[frep(:,6)-frepmin,yaxis’];

subplot(2,1,2)

%plot(mat(:,2),mat(:,3),mat1(:,1),mat1(:,2)*15*10^3 )

%,mat(:,1),mat(:,5))

%factor=10;

factor=1000000000000; semilogy(mat1(:,1),mat1(:,6)) axis([0 20

min(mat1(:,6)) max(mat1(:,6))]) hold on

bar(P12F1(:,1),P12F1(:,2)./factor,0.00001,’g’,’edgecolor’,’g’)

%if 0

bar(P12F2(:,1),P12F2(:,2)./factor,0.0001,’r’,’edgecolor’,’r’)

bar(P32F0(:,1),P32F0(:,2)./factor,0.0001,’b’,’edgecolor’,’b’)

bar(P32F1(:,1),P32F1(:,2)./factor,0.0001,’y’,’edgecolor’,’y’)

bar(P32F2(:,1),P32F2(:,2)./factor,0.00001,’m’,’edgecolor’,’m’)

bar(P32F3(:,1),P32F3(:,2)./factor,0.00001,’c’,’edgecolor’,’c’)

%bar(D52F3(:,1),D52F3(:,2)./factor,0.00001,’k’,’edgecolor’,’k’)

%bar(D52F4(:,1),D52F4(:,2)./factor,0.00001,’w’,’edgecolor’,orange)

%legend(’data’,’P12F1’,’P12F2’,’P32F0’,’P32F1’,’P32F2’,’P32F3’)

title(’F=1’)
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Appendix E

External Cavity Diode Laser

Below I show photos of the external cavity diode laser that I built. That was my first project

in the lab. Idea of operation is very simple and is described in many scientific articles.39

The laser beam from the diode hits the diffraction grating. The angle of the grating is set

so that the first order diffracted beam is sent back to the diode while the zeroth order is

used in the experiment. External cavity diode lasers are widely used for spectroscopy, as

they have very very narrow line-width and capability of wavelength tuning by changing the

grating angle, which can be done by piezoelectric transducers (PZT) attached to the back

side of the grating.

The laser shown below was used as a repump laser for our MOT throughout my PhD

time.

93



Figure E.1: Home-made external cavity diode laser 1.
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Figure E.2: Home-made external cavity diode laser 2.
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Appendix F

Moving MOTRIMS

In addition to all the physics I have done in the J.R. Macdonald lab, including main projects

(presented in this dissertation) and side projects, I spent my last period of my PhD program

moving our MOTRIMS setup from one room to another and making it operational again.
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Figure F.1: This is how the MOTRIMS apparatus looks after we moved into the new room.
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