The Structural Behavior of Higher Strength Concrete

by

Narayan Babu D. Hiremagalur B.E., Bangalore University, 1982

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1985

Approved by:

Major Professor

LD TABLE OF CONTENTS	
115 115 157 1	PAGE
List of Tables	III
List of Figures	v
Chapter 1 - Introduction	1
Present Usage	1
Objectives	3
Chapter 2 - Selection of Materials	- 4
Introduction	4
Cement	4
Coarse Aggregate	6
Strength	7
Maximum Size and Graduation	7
Particle Shape and Surface Texture	8
Cleanliness	8
Mineralogy and Formation	8
Aggregate-Paste Bond	9
Fine Aggregate	9
Water	10
Admixtures	10
Chapter 3 - Literature Survey For Compressive Stress Block	12
Chapter 4 - Test Specimen and Method of Testing	15
Method of Testing	15
Strain Gages	17
Chapter 5 - Experimental Work and Results	18
Casting	18

TABLE OF CONTENTS (Continued)

PAGE

		LUGU
	Curing	18
	Instrumentation and Apparatus	18
	Test Procedure	19
	Results and Discussion of the Results	20
	Strain Behavior	23
Chapter 6 -	Summary and Conclusions	25
	Summary	25
	Conclusions	25
	Recommendations For Future Work	26
Appendix I	References	27
Appendix II	a) Mix Proporations b) Derivation of Ultimate Strength Factors	30 31
	c) Steel Frame d) Computer Program for Calculating $\frac{dm_o}{d_o} \le \frac{df_o}{d_o}$	33 34
	e) Calibration of Minor Load P2	36
Appendix II	I - Tables and Figures	37
Appendix IV	- Notation	

Acknowledgements

LIST OF TABLES

TABLE		PAGE
5.0	Information about the test specimens	38
5.1	Cylinder data corresponding to Beam I	39
5.2	Cylinder data corresponding to Beam II	40
5.3	Cylinder data corresponding to Beam III	41
5.4	Cylinder data corresponding to Beam IV	42
5.5	Stress-strain relation for cylinder #1, corresponding to Beam I	43
5.6	Stress-strain relation for cylinder #2, corresponding to Beam I	44
5.7	Stress-strain relation for cylinder #2 corresponding to Beam II	45
5.8	Stress-strain relation for cylinder #1 corresponding to Beam II	46
5.9	Stress-strain relation for cylinder #1 corresponding to Beam III	47
5,10	Stress-strain relation for cylinder #2 corresponding to Beam III	48
5,11	Stress-strain relation for cylinder #1 corresponding to Beam IV	50
5.12	Load-Strain data for flexural test of Beam I	51
5.13	Load-Strain data for flexural test of Beam II	53
5.14	Load-Strain data for flexural test of Beam III	55
5.15	Load-Strain data for flexural test of Beam IV	57
5.16	Load and average strain at each level for flexural test of Beam I	59
5.17	Load and average strain at each level for flexural test of Beam II	61
5.18	Load and average strain at each level for flexural test of Beam III	63
5.19	Load and average strain at each level for flexural test of Beam IV	65

LIST OF TABLES (Continued)

TABLE	PAGI
5.20 Load and ultimate strength factors for Beam I	67
5.21 Load and ultimate strength factors for Beam II	69
5.22 Load and ultimate strength factors for Beam III	71
5.23 Load and ultimate strength factors for Beam IV	73
5.24 Load and stress data for flexural test of Beam I using equations (4.1) and (4.2)	75
5.25 Load and stress data for flexural test of Beam II using equations (4.1) and (4.2)	78
5.26 Load and stress data for flexural test of Beam III using equations (4.1) and (4.2)	80
5.27 Load and stress data for flexural test of Beam IV using equations (4.1) and (4.2)	82
5.28 Load and stress data for flexural test of Beam I using equations (4.1) and (4.2) and cylinder stress-strain curve	84
5.29 Load and stress data for flexural test of Beam II using equations (4.1) and (4.2) and cylinder stress-strain curve	86
5.30 Load and stress data for flexural test of Beam III using equations (4.1) and (4.2) and cylinder stress-strain curve	87
5.31 Load and stress data for flexural test of Beam IV using equations (4.1) and (4.2) and cylinder stress-strain curve	88

LIST OF FIGURES

FIGURE		PAG E
2.1	Effect of various brands of type I cement on concrete compressive strength (20)	89
2.2	Effect of various cements on concrete compressive strength (2)	90
2.3	Effect of size of coarse aggregate on compressive strength in different types of concrete (adapted from Ref. 5)	91
2.4	Maximum size aggregate for strength efficiency envelope (15)	92
2.5	Compressive strength of concrete using two sizes and types of coarse aggregate for 7500 psi concrete (1).	93
2.6	Compressive strength of high-strength concrete using three sizes and types of coarse aggregate.	94
2.7	Slump vs. time when using superplasticizer (11)	95
4.1	C-Shape structural element for flexure test.	96
4.2	Concrete stress-strain relations (7)	97
4.3	Reinforcement layout	98
4.4	An arbitrary section $\lambda-\lambda$ with rebar arrangement at each leg (11)	99
4.5	An arbitrary section of column part with rebar arrangement (11)	100
5.1	Cylinder compressive stress-strain curve for Beam I	101
5.2	Cylinder compressive stress-strain curve for Beam II	102
5.3	Cylinder compressive stress-strain curve for Beam III	103
5.4	Cylinder compressive stress-strain curve for Beam IV	104
5.5	Location of strain gages vs. strain for Beam I	105

LIST OF FIGURES (continued)

FIGURE		PAG E
5.6	Location of strain gages vs. strain for Beam II	106
5.7	Location of strain gages vs. strain for Beam III	107
5.8	Location of strain gages vs. strain for Beam IV	108
5.9	Stress block of Beam I	109
5.10	Stress block of Beam II	110
5.11	Stress block of Beam III	111
5.12	Stress block of Beam IV	112
5.13	Axial load vs. strain for gages 4 and 5 for Beam I	113
5.14	Axial load vs. strain for gages 4 and 5 for Beam II	114
5.15	Axial load vs. strain for gages 4 and 5 for Beam III	115
5.16	Axial load vs. strain for gages 4 and 5 for Beam IV	116
5.17	Stress factors $\mathbf{k}_2,~\mathbf{k}_1\mathbf{k}_3$ vs. concrete strain for Beam I	117
5.18	Stress factors $\mathbf{k_2},\ \mathbf{k_1k_3}$ vs. concrete strain for Beam II	118
5.19	Stress factors k ₂ , k ₁ k ₃ vs. concrete strain for Beam III	119
5.20	Stress factors k_2 , $k_1 k_3$ vs. concrete strain for Beam IV	120
5.21	Condition at ultimate load in test specimen	121
5.22	f _o vs concrete strain for Beam I	122
5.23	f _o vs concrete strain for Beam II	123
5.24	f _o vs concrete strain for Beam III	124
5.25	f _o vs concrete strain for Beam IV	125
5.26	m _o vs concrete strain for Beam I	126

vi

LIST OF FIGURES (continued)

FIGURE		PAGE
5.27	m _o vs concrete strain for Beam II	127
5.28	m _o vs concrete strain for Beam III	128
5.29	m_{o} vs concrete strain for Beam IV	129
5.30	Average f from Eq. (4.1) and (4.2) vs. strain for Beam II	130
5.31	Average f from Eq. (4.1) and (4.2) vs. strain for Beam $\hat{I}V$	131

Chapter 1

INTRODUCTION:

The term high strength concrete is relative to any assemblage of concrete technologists. Most concrete technologists classify concrete as follows:

2500 - 6000 Psi -----> Normal strength concrete; (13.8 to 41.5 MPa)

6000 - 12000 Psi -----> Higher strength concrete; (41.5 MPa - 83 MPa)

> 12000 Psi -----> High strength concrete. (> 83 MPa)

In this report higher strength concrete implies concrete of strength 6000 Psi (41.5 MPa) and above.

A few years ago concrete of 5000 Fsi (34.5 MFA) and above was considered high strength concrete. But, today with the development of new materials, admixtures and processers, even concrete of 6000 Fsi (41.5 MFA) is considered normal strength concrete.

PRESENT USAGE:

There are many advantages in using higher strength concrete over normal strength concrete.

a) Higher strength concrete has greater load carrying capacity than normal strength concrete. This helps in reduction of member dimensions and hence dead weight is greatly reduced.

- b) Higher strength concrete is very advantageous in compression members. In columns, if the section is decreased the self weight decreases, and the stress due to self weight is much lower, hence greater external load can be taken.
- c) The precast and prestress industry is the largest user of higher strength concrete. In prestressed concrete members, the moment due to self weight is decreased, higher external moment can be taken, and the efficiency of the structure is increased. In prestressed concrete, concrete strengths of up to 10000 Psi (68.9 MPa) have been used.
- It is not particularly advantageous to use higher strength concrete in slabs, as thin sections have more deflections.

Higher strength concrete is being used extensively in New York and Chicago. In the Chicago area concrete of 10,000 Psi (18.9 MPa) was used in at least six different buildings (21). Nuclear power plants require concrete in the 8000 Psi (55 MPa) range.

OBJECTIVES

- a) To study the compressive and flexural behavior of higher strength concrete [1],000 Psi or 75.8 MPa] made with Kanaas aggregate, in order to verify proposed stressstrain relationships and to study the shape of the stress block.
- b) To compare the cylinder and flexural stress-strain curves.
- c) To find Poisson's ratio.
- d) To determine strain at f' and at rupture.
- e) To determine modulus of elasticity.

CHAPTER 2

SELECTION OF MATERIALS

INTRODUCTION

Material selection is an important factor in the production of higher strength concrete as it has to meet requirements for workability and strength development. Locally available materials should be used to fullest advantage, subject to suitability, to make the production of higher strength concrete economical. Once the materials are selected, the remaining variables should be studied to develop an optimum mix on the basis of strength, cost and field performance.

CEMENT

The strength of a mix is proportional to the strength of the cement. As reported in the state-of-the-art report of high-strength concrete [24] published in the ACI Journal "The choice of Portland cement for high strength concrete is attremely important. Unless high initial strength is the objective, such as in prestressed concrete, there is no need to use a Type III cement. Furthermore, within a given cement type, different brands will have different strength development characteristics because of the variations in compound composition and fineness that are permitted by ASTM c 150°.

Walker and Bloom (see Ref. 5) presented values of compressive strength for concrete from different cement suppliers and offered the following conclusions:

- a) Average strength for different cements varied substantially.
- b) At least one-half of the individual cament differs from shipment to shipment sufficiently to have an effect on uniformity of concrete strength.
- c) There is a need for better control of uniformity of the cement within individual sources.

Figure 2.1 (20) shows the effect of various coment types on concrete compressive strengths based on mixes having the same workability (5). Type I (standard) or Type II (low heat) cement should be recommended for high strength concrete mixes and the same brand of cement is to be used throughout the job (5). Type III cement is too finely ground and results in rapid setting, accelarated heat of hydration, and high early strength development with relatively moderate strength gains at 91-day or one year intervals (5).

In the present investigation, a mix developed by Nikaen (11) was used. Type I coment was used. Figure 2.2 shows that Type I coment gives the highest compressive strength at all ages.

COARSE AGGREGATE

As coarse aggregate comprises a major portion of the volume, it is very important to use proper coarse aggregate in developing higher strength concrete. Kaplan (8) has reported that the use of different coarse aggregates has a marked effect on the strength of concrete with the same mix proportions. Depending on the aggregates, a difference of 40% in flexural strength and 29% in compressive strength were obtained in Kaplan's experiments.

The strength, up to 5000 Psi (34.5 MPa) depends essentially on the quality of the hardened cement pasts that holds the aggregate particles together. The aggregate at this strength level and above always has a much greater strength than the cement paste. The following factors should be considered in selecting a coarse aggregate for higher strength concrete.

- a) Strength
- b) Maximum size and gradation
- c) Particle shape and surface texture
- d) Cleanliness
- e) Mineralogy and formation
- f) Aggregate-cement bond

STRENGTH

The aggregates chosen for higher strength concrete should have a crushing strength at least equal to the hardened cement paste. Most good quality aggregates have crushing strength in excess of 12000 Psi (83 MFa) and, hence, strength is not a major problem in the production of higher strength concrete.

MAXIMUM SIZE AND GRADATION

Several researchers (3, 4, 10) have shown that in higher strength concrete the compressive strength increases when the maximum size of aggregate decreases. However, it is obvious that there should be some limitation in order to keep drving shrinkage and creep to a reasonable and practical value. A maximum size of 0.4 in. (10 mm) is recommended for most cases (10). Figures 2.3 and 2.4 show the size effect of coarse aggregate on compressive strength. In Figure 2.4, it is indicated that the smaller size aggregate provides the most efficient use of cement in higher strength concrete. This higher strength efficiency which is obtained when using smaller aggregate is due to greater bond between the cement and coarse aggregate because of the increase in surface area. However, there is a different optimum size for each aggregate and for each level of strength desired, depending on the economics of the

situation. Therefore final batching for each job is highly recommended.

PARTICLE SHAPE AND SURFACE TEXTURE

In the research done by Carraequillo, Ramon and Nilson (5), it is indicated that the ideal coarse aggregate for high-strength concrete appears to be clean, cubical, angular, 100% crushed stone with minimum flat size and elongated particles. It is also stated that if all other factors are equal, crushed stone coarse aggregate produces higher strength concrete than does a rounded aggregate. In Figures 2.5 and 2.6, the compressive strength of correte using different types of coarse aggregate is shown.

CLEANL INESS

Coarse aggregate used in higher strength concrete should be free of dust coating, because the dust content coauses an increase in the fines, and consequently an increase in the water requirement of the resulting concrete mixture. Hence, the water-cement ratio increases and the strength decreases. Washing the crushed stone coarse aggregate may not always be necessary, but is always recommended (22).

MINERALOGY AND FORMATION

As discussed above, the compressive strength of concrete increases when using crushed stone as the coarse

aggregate. This is not only because of the shape of the aggregate but also due to its mineralogy. The Waterways Experiment Station has done some work on the effect of mineralogy on concrete strength. They achieved 17000 Psi (117 MPa) using granite rock (14).

AGGREGATE-PASTE BOND

When high-strength concrete is desired, the aggregate paste-bond should be strong, a good quality aggregate with a suitable surface texture should be used.

The aggregate-paste bond is known to decrease with increasing water-cement ratio and increasing the size of aggregate. Alexander (1) found that the cement-aggregate bond to a 3 inch particle was almost 1/10 of that to a corresponding 1/2 inch particle.

FINE AGGREGATE:

The gradation and particle shape of fine aggregate are very important factors in the production of higher strength concrete. Fine aggregate has a great effect on the water requirement and consequently the strength of the concrete mix. In sand of the same grading, a 1% increase in fine aggregate voids may cause a 1 gallon per cubic yard increase in water demand (6).

One of the important functions of fine aggregate in conventional concrete is its role in providing workability

and good surface finishing. Since higher-strength concrete contains a large amount of cement paste, the role of fine aggregate in providing workability and good finishing is not so crucial. Fine aggregates with a fineness modulus between 2.7 and 3.2 have been most satisfactory (9). Blick (2) reported that fine aggregates with fineness modulus below this range might produce low strength and "sticky mixes". A reduction of the amount passing the No. 50 and No. 100 sieve on the lower side of the specification limit from ASTMEC-33 is suggested. Such reductions have shown an increase in compressive strength of 500 to 1000 Psi (3.5 to 7.0 MPa) (15).

In this investigation, Kaw River Sand with a maximum sieve size of No. 4 was used.

WATER

Studies (6,20) have shown that water meeting specification ASTM C-94(19) has no harmful effect on high-strength concrete. Therefore, water meeting ASTM C-94 is adequate.

ADMIXTURES

Due to the low water-cement ratio, high-strength concrete has low slump and workability is not adequate. A chemical admixture called superplasticizer or "super water reducer" can be used to improve workability and slump. This admixture actually reduces the friction angle between the

water and surface of contact and causes the mix to be more workable. It is important to note that this effect is for a limited time and the mix changes to its original property after a short time. Therefore superplaticizer increases the slump within a limited time without altering the compressive strength, because the slump will go back to its original position as if no admixture was used in the mix. Figure 2.7 shows the effect of superplacticizer on the slump versus the time on mix with water coment ratio of 0.35 (11). It is believed to have a similar effect on all other mixes. In this investigation, the brand of superplacticizer used was Sikament. The quantity of superplacticizer used was in accordance with the mix proportion developed by Nikaeen (11). As slump decreases rapidly with time, it is important to consider this effect on the 10b mite.

CHAPTER 3

LITERATURE SURVEY FOR COMPRESSIVE STRESS BLOCK

The ultimate strength of reinforced concrete members subjected to flexure and axial loading can be predicted using the equivalent rectangular stress distribution in the concrete compressive stress distribution in the depth of the equivalent compressive stress block to the depth of the actual one, and $*_{cu}$, the extreme fibre compressive strain, are to be known. Based on beam tests, using concretes with compressive strength less than 6000 psi, (41.3 MFa) the American Concrete Institute (ACI) (17) suggested values for β_1 , depending on the concrete strength. In 1975, a minimum value of β_1 , equal to 0.65, was suggested by the ACI. The validity of this stress block, has always been in question with regard to higher-strength concretes. Block in higher strength noncretes.

Many views have been expressed concerning high strength concrete, but the views are not consistent and they contradict each other.

In the work done by Leslie, Rajagopalan and Everard [9], they concluded:

- a) The ACI building code rectangular stress block does not predict the behavior of beams with f'_c above 8000 psi (55 MPa).
- Further research is warranted with respect to maximum strain in concrete for f'_c exceeding 8000 psi (55 MPa).
- c) Pending further tests, a triangular stress block with an extreme fibre stresses of f₀¹ and zero stress at the neutral axis is recommended as a conservative model for predicting the behavior of beams with f¹ a hove 8000 pgi (55 MPA).

In the work done by Wang, Shah, and Naaman [16], the following conclusions were made:

- a) The rectangular stress distribution gives a sufficiently accurate prediction of ultimate loads and moments for reinforced concrete beams and columns made with high strength concrete.
- b) The value of maximum concrete compressive strain at ultimate was always higher than 0.003 in/in.
- In the work done by Nikaeen [11], he concludes:
- a) The shape of the stress block at ultimate changes from rectangular to parabolic type as the strength increases, because he found that the position of the concrete internal reaction force is $k_2 = 0.37$ at ultimate condition for higher strength mix

(i.e., $f_{\rm c}^*=9500~{\rm psi},~65~{\rm Mpa}$). This value is very close to 0.375 which is the center of gravity of a parabolic stress block rather than 0.5 which is the center of gravity of a rectangular stress block.

b) The strain behavior of high strength concrete is different from normal strength concrete, because strain at the ultimate condition is less than 0.003 in/in. proposed by ACI code (17) or it might be greater than that proposed by ACI, but it decreases with time drastically. Therefore, a more conservative value of 0.002 in/in. was recommended.

CHAPTER 4

TEST SPECIMEN AND METHOD OF TESTING

In 1955, Bognestad, McHenry and Hanson (7) formulated the ultimate strength design criterion for concrete. In their work, they used a special C-shaped structural element. Tensile stresses were completely eliminated in the test region of the specimen, by applying loads at two points and varying them such that the neutral axis remained at the face of the test specimen throughout the test.

The test specimen had a central unreinforced test region, and reinforced brackets at the end of the test specimen which accomodated the two thrusts.

The test reported here was done on a similar specimen and the dimensions were as used by Nikaeen [11] (Fig 4.1).

In this test, the method and analogy adopted by Nikaeen are very closely followed in order to investigate the behavior and shape of the stress block in the higher strength concrete beam section.

METHOD OF TESTING

Suitable tension, compression, and shear reinforcement were placed in the end bracket to assure that fallure would occur in the central, unreinforced test region. A major thrust P₁ was applied and the neutral axis was maintained at

the face of the test specimen throughout the test. Strains were measured over the test region.

In investigating the behavior and shape of the stress block, the method and equations developed by Hognestad, KcBenry, and Hanson [7] were used. To formulate the ultimate strength design criterion, they derived some equations and used a C-shaped structural element. The present ACI code for ultimate strength theory is based on their work. They formulated stress in concrete fibres as a function of strain in those fibres. They also showed that stress-strain relationships for concrete in concentric compression are indeed applicable to flexure (Figure 4.2 shows this fact). The following equations which permit stress to be expressed in terms of measured strain and other known parameters were developed by them [see 7].

$$f_{c} = \varepsilon_{c} \frac{df_{o}}{d\varepsilon_{c}} + f_{o}$$
(4.1)

- $f_{c} = e_{c} \frac{dm_{o}}{de_{c}} + 2m_{o} \qquad (4.2)$
- $f_{0} = \frac{P_{1} + P_{2}}{bc}$ (4.3)
- $m_{0} = \frac{P_{1}a_{1} + P_{2}a_{2}}{bc^{2}}$ (4.4)

where

 $f_{\rm c}$ = Concrete compressive stress in outer fiber of the beam; ${}^{\rm e}_{\rm c}$ = Concrete strain in outer fiber of the beam; ${}^{\rm p}_1$ = major thrust; ${}^{\rm p}_2$ = minor thrust; ${}^{\rm a}_1$ and ${}^{\rm a}_2$ are lever arms; b is the width and c is the depth of the testing region.

The details are shown in Figure 4.1.

Figure 4.3 gives the reinforcement layout of the test specimen. Figures 4.4 and 4.5 give the sections at A-A and B-B respectively (see Figure 4.1).

STRAIN GAGES

Strain gages were used to measure strains. The strains were monitered by an automated data acquisition system controlled by a model 2E Apple Computer.

Ten of Micro Measurement EA-06-750DT-120 electrical resistance strain gages were used on the test beam of the locations shown in Fig. (4.1).

CHAPTER 5

EXPERIMENTAL WORK AND RESULTS

CASTING

The specimens were cast horizontally on a level surface. Vibration was used to consolidate the concrete. There was a minimum cover of 3/8 in. The mix proportions used for all the 4 specimens are shown in Appendix IIa. Some 3x6 in. cylinders were cast at the same time with each mix.

CURING

Twenty-four hours after casting, the specimen was taken out of the mold and then placed in a 100k humidity curing room. All the specimens were in the curing room for 52 days. The specimens were then taken from the curing room and were kept in a 50k humidity environment for 7 days in order to prepare them for the test. Table 5.0 shows details of the test specimens. Cylinders corresponding to each specimen were taken out at the same time as the macimen.

INSTRUMENTATION AND APPARATUS

The location of the strain gages used to measure the strain can be seen in Fig. 4.1. The major load P_1 , Figure 4.1, is applied by a 300,000 lb, load-controlled testing

machine through a system of bearing plates and rollers. The minor load P₂ is applied by a hydraulc jack through a steel frame shown in Appendix II-c. A pressure gage system, calibrated prior to the test, was used to control the load,

TEST PROCEDURE

Tables 5.1, 5.2, 5.3, and 5.4 give the average compressive stress for the 3x6in cylinders corresponding to the 4 test specimens. Two strain gages were mounted on some cylinders and strain was recorded as a function of load up to failure. Cylinders were tested on the same day that the corresponding structural element was tested in order to determine the strength of the mix. The data are in the tables 5.5 and 5.6 corresponding to beam I, 5.7 and 5.8 corresponding to beam II, 5.9 and 5.10 corresponding to beam III, and 5.11 corresponding to beam IV. Cylinders corresponding to structural elements I and II and some of the cylinders of structural element III were tested on a machine which was not functioning properly. Hence, the strength of the mix corresponding to specimen IV (f' = 11100 psi or 76.49 MPa) was used in all the 4 specimens in computing the stress factors.

The test specimen was loaded in such a manner that the neutral axis always coincided with the outside face of the specimen. The location of the neutral axis is shown in Figure 4.1. After each increment of major thrust P₁, the

corresponding increment was such that the average strain across the neutral surface was approximately zero. This was monitored by connecting the strain gages on the neutral face to a wheatstone bridge and maintaining zero potential. The load and strain at each level were recorded and the procedure repeated up to failure. The zero strain surface represents the neutral axis of the specimen and the opposite side of the cross section represents the extreme compressive surface. The recorded data for specimens J, HJ, and TV are shown in 5.12, 5.13, 5.14, and 5.15 respectively. The average strain at each level is given as a function of load and is in Tables 5.16, 5.17, 5.18, and 5.19 corresponding to the 4 specimens.

RESULTS AND DISCUSSION OF THE RESULTS

The average values of cylinder stress-strain data of Tables 5.6, 5.7, 5.10, and 5.11 corresponding to Specimens I, II, III, and IV are plotted in Figures 5.1, 5.2, 5.3, and 5.4 respectively. Using the corresponding cylinder stressstrain curve and the strain values for the flexure test (indicated in Tables 5.16, 5.17, 5.18, and 5.19) the stress values at each loading level could be directly determined. The variation of strain along the depth is shown for beams I, II, III, and IV in Figures 5.5, 5.6, 5.7, and 5.8 respectively. The maps of the stress block for beams I, II, III,

and IV are shown in Figures 5.9, 5.10, 5.11, and 5.12 respectively. The average values of flexural strain at the inner face (maximu compression) are plotted against load in Figures 5.13, 5.14, 5.15, and 5.16 for beams I, II, III, and IV respectively.

To determine the ultimate strength factors, k_1k_3 and k_2 the equilibrium concept is used. The details are shown in Appendix II-b. By equilibrium of forces and moment from Figure 5.21, k_1k_3 , and k_2 can be determined.

$$k_1 k_3 = \frac{C}{bcf'_c} = \frac{P_1 + P_2}{bcf'_c}$$
(5.1)

$$k_2 = 1 - \frac{P_1 a_1 + P_2 a_2}{(P_1 + P_2)c}$$
(5.2)

The values of k_1k_3 , k_2 and $\frac{k_2}{k_1k_3}$ can be measured directly from zero up to failure. The individual value of the coefficient k_3 is the ratio of maximum compressive stress in the beam (i.e., f_max flexural test) to the corresponding average cylinder strength f_0^L . To calculate k_1 , which is the shape factor, k_1k_3 and k_2 are to be evaluated. The values of ultimate strength factors are given in Tables 5.20, 5.21, 5.22, and 5.23 for beams I, II, III, and IV. The ultimate strength factor k_2 indicates the position of the resultant reaction force which is produced by concrete.

Figures 5.17, 5.18, 5.19, and 5.20 show the values of k1k3 and k2 computed by equations (5.1) and (5.2) as a function of strain *c at the compression face for Beams I, II, III, and IV. The term k2 indicates the position of the resultant force in the concrete from the outer fiber of the beam. Figure 5.18 shows that the position of the resultant force is 0.32 at lower loads and 0.36 at ultimate condition. In beam II, k2 changes from 0.32 at lower loads to 0.36 at ultimate (Figure 5.19). From Figure 5.19, 5.20, and 5.21, one can see that k, changes from 0.31 to 0.35. This indicates that the stress block is more triangular than rectangular or parabolic, but it tends to become closer to parabolic towards the ultimate. Beam I unlike the other three beams had k2 changing from 0.37 to 0.43 which indicates the stress block appears to be close to a rectangular shape. The curve pattern for beam I looks exactly like the curves for the other three specimens but it seems to be shifted. This may be due to some error in conducting the experiment.

The $f_{\rm c}^{\rm t}$ value corresponding to the beam IV cylinder was used in calculating k_3 for all the four specimens as the cylinders corresponding to the other beams were tested in a defective machine. The outer fiber stress is calculated using equations 4.1 and 4.2 for all the specimens. The results are given in the Tables 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, and 5.31 corresponding to beams I, II,

III, and IV. A computer program was used to find the differential parts. Tables 5.28, 5.29, 5.30, and 5.31 give flexural stresses using both the methods i.e., Equations 4.1, 4.2, and the cylinder stress-strain curve, for comparison purpose for beams I, II, III, and IV.

Figures 5.22, 5.23, 5.24, and 5.25 show the values of f_0 (Equation 4.3) as a function of strain $*_c$ at the compression face for the four beams respectively. Figures 5.26, 5.27, 5.28, and 5.29 show the values of m_0 (Equation 4.4) as a function of strain $*_c$ at the compression for the four beams respectively. Figures 5.30 and 5.22 give average f_c from Equation (4.1) and Equation (4.2) vs. strain for beam II and beam Y respectively.

Comparing the area of the ACI stress block (17), with the area of the parabolic, stress block, we have

 $0.85 f_{1}^{*}(\beta_{1}c)b = k_{1}k_{3}f_{2}^{*}bc$

or

$$\beta_1 = \frac{k_1 k_3}{0.85}$$

The values of β_1 , so calculated are 0.88, 0.8, 0.8, 0.8, and 0.72 for beams I, II, III and IV respectively. This is higher than the ACI recommended value of 0.65.

The modulus of elasticity corresponding to cylinders of Beam III and Beam IV were 6.71×10^6 psi (0.452 GPa) and 6.67×10^6 psi (0.459 GPa) respectively. This was found to be mearly equal to the modulus of elasticity calculated from American Concrete Institute formula (17), which was 6.36 x 10^6 psi (0.438 GPa). The Poisson's ratio corresponding to a cylinder from Beam II was found to be 0.23.

STRAIN BEHAVIOR

The maximum recorded strains corresponding to Specimens I, II, III, and IV are 0.00330 in/in, 0.00303 in/in, 0.00280 in/in 00021 in/in. respectively. Maximum recorded cylinder strains at stress near ultimate corresponding to Specimens I, II, III, and IV are 0.0021 in/in. 0.00243 in/in, 0.002116 in/in. and 0.00203 in/in. respectively. The cylinders had maximum recorded strain values 1 east than 0.003 in/in. Two of the beams had maximum recorded strain values greater than 0.003 and two of them had maximum recorded strain values less than 0.003 in/in. Therefore, a more conservative value of 0.0025 in/in. is recommended. Reference (12) has also suggested a similar value. Nikaean (11) has suggested a very conservative value of 0.002 in/in.

CHAPTER 6

SUMMARY AND CONCLUSIONS

SUMMARY

Four "dogbone" shaped [7] beams of higher strength concrete were tested to investigate their structural bending properties. The beams were loaded such that zero strain was maintained at the outer face. The beams were made out of concrete of 11000 psi (76 Mps). A number of $3^{+}x$ 6" cylinders corresponding to each beam were tested in concentric compression. The main objective of this experiment was to study the shape of the stress block of failure for higherstrength concrete. The following conclusions were made from the test results.

CONCLUSIONS

- Bigher-strength concrete has a brittle mode of failure and failure is sudden without any formation of cracks before failure. The failure line passes through the stome and not through the interface of mortar as in normal strength concrete. [This was also observed by other investigators (12, 11)].
- The values of k₂ near the ultimate condition for beams II, III, and IV were 0.36, 0.36 and 0.35. These values

are very close to 0.375 the value for a parabolic stress distribution. Thus higher strength mixes appear to have a parabolic stress distribution of failure in bending.

- Strain-behavior in higher strength concrete is different from normal strength concrete and is observed to be less than the ACI proposed value of 0.003 in/in. A more conservative value of 0.0025 in/in. is recommended.
- The modulus of elasticity may be estimated by the ACI formula (17) (Eq. 10).
- 5. The value of β_1 in higher strength concrete is greater than the ACI recommended value of 0.65,

RECOMMENDATIONS FOR FUTURE WORK

For higher-strength concrete to be effectively used in the future, intensive research should be conducted. Higherstrength concretes of ranges 11,000 psi to 15000 psi (75.8 MPA to 103.4 MPA) should be tested to determine the structural behavior in bending. Also, experiments should be done on a larger scale i.e., more beams should be tested to get consistent results and some definite code requirements should be developed.

APPENDIX I

REFERENCES

- Alexander, K.M., "Factors controlling the Strength and the Shrinkage of Concrete," <u>Construction Review</u>, Vol. 33, No. 11, Nov. 1960, pp. 19-29.
- Blick, Ronald L., "Some Factors Influencing High Strength Concrete," <u>Modern Concrete</u>, April 1973.
- Bloem, D.L. and Gaynor, R.D. "Effect of Aggregates Properties on Strength of Concrete," <u>American Concrete</u> <u>Institute Journal</u>, Vol. 60, No. 10, October 1963, pp. 1429-1455.
- Burgess, A.J., Ryell, J., and Bunting, J., "High-Strength Concrete for the Willows Bridge," <u>American Concrete Institute Journal</u>, Vol. 67, No. 8, August 1970, p. 611.
- Carrasguillo, Ramon L., Nilson, A.H., and Slate, Floyd O., "The Production of Bigh-Strength Concrete," <u>Research Report</u> No. <u>18-1</u>, Department of Structural Engineering, Cornell University, Ithaca, May 1978, p.2.
- Freeman, Sidney, "High-Strength Concrete," Publication No. 15176, Portland Cement Association, 1971 (Reprint from Modern Concrete, 1970-71), p. 19.
- Bognestad, Eivind, Banson, N.W., and McBenry, Douglas, "Concrete Stress Distribution in Ultimate Strength Design," Journal of the American Concrete Institute, Dec. 1955, Vol. 27, No. 4, pp. 455-479.
 - Kaplan, M.F., "Flexural and Compressive Strength of Concrete as Affected by the Properties of Concrete Aggregate," <u>American</u> <u>Concrete Institute Journal</u>, Vol. 55, May 1959, pp. 1193-1208.
 - Leslie, Keith E., Rajagopalan, K.S., and Everard, Noel J., "Flexural Behavior of High-Strength Concrete Beams," <u>ACI</u> <u>JOURNAL</u>, Vol. 73, No. 9, September 1976, pp. 517-521.
- Mather, Katherine, "High-Strength Concrete, High Density Concrete," (ACI Summary Paper), <u>American Concrete Institute</u> <u>Journal</u>, Proceedings, Vol. 62, No. 8, August 1965, pp. 951-962.

- Nikaeen, Ali, "The Production and Structural Behavior of High-Strength Concrete," A Master's Thesis, Department of Civil Engineering, Kansas State University, 1982.
- Nilson, Arthur H. and State, Floyd O., "Structural Properties of Very High-Strength Concrete," <u>Second Progress</u> <u>Report Eng. 76-08752</u>, Department of Structural Engineering, Ithaca, New York, January 1975.
- Perenchio, W.F., "An Evaluation of Some of the Pactors Involved in Producing Very High-Strength Concrete," <u>Bulletin</u> No. RO14, Portland Cement Association, 1973.
- Saucier, Kenneth L., "High-Strength Concrete, Past, Present, Puture," <u>Concrete International</u>, American Concrete Institute, Vol. 2, No. 6, June 1960, pp. 46-50.
- 15. Smith, E.E., Tynees, H.O., and Sauciet, K.L., "High Compressive Strength Concrete, Development of Concrete Mixtures," <u>Technical Documentary Report No.</u> <u>TDB 61-3114</u>, U.S. Army Engineer Waterways Experiment Station, Vicksburg Mississippi, Pebruary 1964, p. 44.
- Wang, Pao-Tsan, Shah, Surendra P., Naaman, Antoine E., "High-Strength Concrete in Ultimate Strength Design," Journal of the Structural Division, ASCE, No. 1978, pp. 1761-1773.
- "Building Code Requirement for Reinforced Concrete (ACI 318-83)," American Concrete Institute, 1983.
- "Cement; Lime; Ceilings and Walls (including manual of oement testing)", <u>Annual Book of ASTM Skandard</u>, Part 13, 1976.
- "Concrete and Mineral Aggregates (including Manual of Concrete Testing)," <u>Annual Book of ASTE Standard</u>, Part 14, 1974.
- "High-Strength Concrete," First Edition, <u>Manual of Concrete</u> <u>Materials-Accregates</u>, National Crushed Stone Association, January 1975, p. 16.
- "High-Strength Concrete in Chicago High-Rise Buildings," <u>Task Porce Report No. 5</u>, Chicago Committee on High-Rise Buildings, Feb. 5, 1977.
- "High Strength Concrete-Crushed Stone Makes the Difference," Third Draft, Presented at the January 1975 National Crushed
Stone Association Convention in Florida, November 1974, p. 31.

- "New York Gets Its First High-Strength Concrete Tower," Engineering News-Records, Vol. 201, No. 18, November 2, 1978, p. 22.
- "State-of-the-Art Report on High-Strength Concrete," Reported by ACI Committee 363, <u>ACI Journal</u>, Vol. 81, No. 4, July-August 1984.
- Tentative Interim Report on High-Strength Concrete, <u>American</u> <u>Concrete Institute Journal</u>, Proceedings, Vol. 64, No. 9, September 1967, pp. 556-557.

APPENDIX II

 MIX PROPORTIONS (Based on trial mix done by Nikaeen (11))

Proportions used for 1 cu ft.

Materials	Quantity
Cement, Type I	31.93 lb
Quartzite	49.65 lb
Sand	60.88 lb
Water	8.28 lb
Superplasticizers	340 ml.
1 15 - 45 5-	

b. Derivation of ultimate strength factors k1k3, k2

Figure a: Force Couple System

Without any assumptions we obtain the equilibrium equation of force and moment:

$$k_2 = \frac{a}{c} = \frac{m_0}{Tc} = \frac{a}{c} = \frac{m_0}{Cc} \qquad (I.2)$$

Applying the same concept to the test specimen shown in figure 5.21, we have $O=P_1+P_2$. Substituting in Equation (I.1) we obtain

$$k_1 k_3 = \frac{p_1 + p_2}{bcf_c}$$
 (I-3)

where f_{C}^{t} is the cylinder compressive strength.

 $\label{eq:mu} \begin{array}{l} {\mathbb M}_{u} \ = \ {\mathbb P}_{1} {\mathbb a}_{1} \ + \ {\mathbb P}_{2} {\mathbb a}_{2} \end{array}$ Substituting in Equation (I.2)

$$k_2 = \frac{d}{c} - \frac{P_1 a_1 + P_2 a_2}{(P_1 + P_2)c}$$

d = c for the test specimen

Therefore:

 $k_2 = 1 - \frac{P_1 a_1 + P_2 a_2}{(P_1 + P_2)c}$

The minor load P_2 is applied by a hydraulic Jack through a steel frame shown below (Adapted from Ref. 11).

d. Computer Program For Calculating $\frac{dmo}{dfc}$, $\frac{dfo}{dc}$, fo, mo and fc

```
18 INPUT THE OF DATA POINTS NO?" IN
28 DIM X (N) , Y (N) , A (3) , DY (N) , Z (N)
30 N2 = N = 2
40 DIM B(5, 3), BB(3, 3), BF(3)
50 FOR 1 = 1 TO N
       PRINT DATA POINT NO. " 11
6.0
78
       INPUT*X(I)=?*:X(I)
88
       INPUT*Y(I)=7*1Y(I)
90
       INPUT*2([)=7*12([)
100 NEXT I
110 FOR T+1 TO 2
128 FOR 1 = 3 TO NE
130 FOR J = 1 TO 5
        B(J, 1)= 1
144
:50
        IJ = I - 3 + J
160
        R(J,2) = X(IJ) = X(I)
179
       B(J, 3) = B(J, 2) ~2
188 NEXT J
190 FOR J = 1 TO 3
200 FOR K = 1 TO 3
21.0
        BB(J.K) = 0
228 FOR L = 1 TO 5
220
        BB(J,K) = BB(J,K) + B(L,J)+ B(L,K)
240 NEXT L.K.J
258 FOR J = 1 TO 3
260
      RF(J) = 0
278 FOR K = 1 TO 5
        IK = I = 3 + K
288
290 IF T=2 THEN Y(1)=2(1)
200 IF THE THEN Y(IK)=Z(IK)
31.0
       BF(J) = BF(J) + B(K, J) + Y(IK)
220 NETT H. J
130 0 = 98(1,1) + (88(2,2) + 38(2,3) - 88(2,3) + 88(3,2)) - 88(1,2) + 88(2,1) +
    88 (3, 3)
343 D = 0 - 38(1,2) + 38(2,3) + 98(3,1) + 98(1,3) + (88(3,2) + 38(2,1) - 58(2,2))
    · BB(3, 1))
350 E = 38(1,1) + (BF(2)+68(3,3) = 38(2,3)+8F(3)) = 3F(1)+(88(2,1)+98(2,2) =
    BB (2, 3) + BB (3, 1))
360 E - E - 38(1,3) + (88(2,1) + 8F(3) - 8F(2) + 88(3,1))
378 C(2) = E/D
360 E = BB(1,1) + (BB(2,2) + BF(3) - BF(2) + BB(3,2)) - BB(1,2) + (BB(2,1)
    + BF(3) - BF(2) + BB(3, 1))
394 E = E - BF(1) + (BB(2,1) + BB(3,2) - BB(2,2) + BB(3,1))
who C(3) = F/D
418 IF I = 3 THEN 458
428 IF I - NE THEN 518
430 DY(1) = C(2)
440 GOTO 560
450 DY(1 - 2) = C(2) + 2 + C(3) + (X(1) - X(3))
468 LPRINT*DY/DX(1) ** (DY(1)
478 DY(2) = C(2) + 2 + C(3) + (X(2) - X(3))
488 LPRINT "DY/DX (2) =" 10Y (2)
498 DY(1) = C(2)
500 GOTO 560
```

```
518 0 7(1) = 0.02

518 0 7(1) = 0.02

518 0 7(1) = 0.02

520 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) = 0.02

540 0 7(1) =
```

e. Calibration of the minor load P_2

Pressure	(Psi)	Load	(1b)
75		50	0
150		100	0
235		150	0
315		200	0
3 9 5		250	0
475		300	0
550		350	0
625		400	0
700		450	0
750		4 85	0
800		520	0

l psi = 6.89 kPa l lb = 4.45 N

APPENDIX III TABLES AND FIGURES Table 5-0: Information About the Test Specimens

Specin	i pt	Water Cement Ratio	Casting Date	No. of Days in Curing Room	No. of Days in 50% Humidity	Age at test (Days)
Beam	н	0.30	6/ 7/84	6/8/84 to 7/31/84	8/1/84 to 8/6/84	60
Beam	11	0.30	6/14/84	6/15/84 to 8/7/84	8/8/84 to 8/13/84	60
Beam	III	0*30	6/21/84	6/22/84 to 8/14/84	8/15/84 to 8/20/84	60
Beam	N	0.30	6/28/84	6/29/84 to 8/21/84	8/22/84 to 8/29/84	60

Cylinder Data Corresponding to Beam I*

No. of	3 x 6 in.	Load	Stress
Cylinders	Area in-	lb.	psi
1	7.07	55,000	7779
2	7.07	56,500	7991
3	7.07	55,000	7779
4	7.07	53,500	7567
5	7.07	50,000	7072
6	7.07	53,500	7567

 f'_{c} average = $\frac{\sum f'_{c}}{6} = \frac{45755}{6} = 7626$ psi

1 in = 25.4 mm

1 1b = 4.45 N

1 psi = 6.89 KPa

* while testing these cylinders, the machine was not functioning properly and hence the strength indicated is not the true strength of the mix.

Cy]	linder	Data	Corres	ponding	to	Beam	II*
------	--------	------	--------	---------	----	------	-----

No. of	3 x 6 in.	Load	Stress
Cylinders	Area in ²	lb.	psi
1	7.07	63,000	8911
2	7.07	69,000	9760
3	7.07	65,000	9194
4	7.07	64,000	9052
5	7.07	66,000	9335
6	7.07	64,000	9052

 f'_{c} Average = $\frac{\sum f'_{c}}{6} = \frac{55305}{6} = 9220$ psi

- 1 in = 25.4 mm
- $1 \ 1b = 4.45 \ N$
- 1 psi = 6.89 kPa
- * while testing these cylinders, the machine was not functioning properly and hence the strength indicated is not the true strength of the mix.

No. of	3 x 6 in	Load	Stress
Cylinders	Area in ²	lb.	psi
1	7.07	76,000	10,750
2	7.07	68,500	9,689
3	7.07	68,500	9,689
4	7.07	68,000	9,618
5	7.07	67,000	9,477
6	7.07	75,000	10,622
7	7.07	67,500	9,547

Cylinder Data Corresponding to Beam III*

$$f'_{c}$$
 Average = $\frac{\sum f'_{c}}{7} = \frac{69592}{7} = 9920$ ps:

- 1 in = 25.4 mm
- $1 \ 1b = 4.45 \ N$
- 1 psi = 6.89 kPa
- * while testing these cylinders, the machine was not functioning properly and hence the strength indicated is not the true strength of the mix.

Cylinder Data Corresponding to Beam IV

No. of	3 x 6 in	Load	Stress
Cylinders	Area in ²	1b.	psi
1	7.07	78,000	11,033
2	7.07	72,000	10,184
3	7.07	80,000	11,315
4	7.07	82,000	11,598
5	7.07	80,000	11,315
6	7.07	78,600	10,750
7	7.07	81,800	11,570

 $f_{C}^{i} \text{ Average } = \frac{\sum f_{C}^{i}}{7} = 77765 = 11110 \text{ psi}$ l in = 25.4 mm l lb = 4.45 N l psi = 6.89 kPa

Stress-Strain Relationship for Cylinder #1

Corresponding to Beam I

Load (Lb)	Stress (psi)	Strain Reading in Gage #1 (µ#)	Strain Reading in Gage #2 (µ#)	Average (µs)
0.		0	0	0
5,000	7 07	- 32	- 216	- 124
10,000	1420	- 57	- 420	- 239
15,000	2120	- 117	- 615	- 366
20,000	2 83 0	- 220	- 793	- 506
25,000	3540	- 360	- 965	- 662
30,000	42 40	- 524	-1140	- 831
35,000	4950	- 707	-1330	-1019
40,000	5660	- 937	-1560	-1248
45,000	6370	-1190	-1820	-1500
50,000	7070	- 240	- 276	- 258

 $1 \ 1b = 4.45 N$

1 psi = 6.89 kPa

Stress-Strain Relationship for Cylinder #2

Corresponding to Beam I

°,		-		~		10	10	_		-	-
Poisson Ratio	.51	.08	°00	.041	.07	060.	.106	.121	.13	.147	.185
Aversge of Transvorac Strain Readings (µe)	-57	-21	2	-24	50	78	105	144	192	256	399
Strain Roading in Transverse Gage #2 (µs)	-95	-75	-11	-66	10	42	70	115	167	234	326
Strain Reading in Transverse Gage #1 (µs)	-19	33	47	99	90	113	140	173	217	279	472
Average of Longitudinal Strain Readings (µs)	- 111	- 254	- 365	- 498	- 653	- 815	- 986	-1188	-1420	-1740	-2110
Strain Reading in Long Gage #2 (µc)	- 132	- 273	- 402	- 541	- 705	- 878	-1070	-1280	-1540	-1900	-2340
Strain Reading in Long Gage #1 (µs)	- 91	- 215	- 328	- 454	- 600	- 752	606 -	-1094	-1300	-1570	-1880
Stress (psi)	707	1420	2120	2830	3540	4240	4950	5660	6370	7070	7570
Load (Lb)	5,000	10,000	15,000	20,000	25,000	30,000	35,000	40,000	45,000	50,000	53,500

44

1 psi = 6.89 kPa

 $1 \ 1b = 4.45N$

Stress-Strain Relationship For Cylinder #2

Corresponding to Beam II

Load (Lb)	Stress (psi)	Strain Reading in Long Gage #1 (µs)	Strain Reading in Long Gage #2 (µs)	Average of Longitudinal Strain Readings (µs)	Strain Reading in Transverse Gage #1 (µs)	Strain Reading in Transverse Gage #2 (µs)	Poisson's Ratio
0		0	4		2	2	
5,000	707	37	- 280	- 158	30	19	.155
10,000	1420	- 56	- 290	- 173	18	28	.133
15,000	2120	- 102	- 368	- 234	48	43	.194
20,000	2830	140	- 570	- 355	82	55	.193
25,000	3540	- 184	- 785	- 485	125	70	.201
30,000	4240	- 255	- 938	- 596	161	81	.203
36,200	5120	- 344	-1080	- 713	200	97	.208
40,000	5660	- 474	-1258	- 866	250	117	.212
43,000	6080	- 570	-1370	- 972	288	134	.217
46,000	6510	- 645	-1460	-1050	317	145	.220
49,000	6930	- 717	-1540	-1130	346	158	.223
52,000	7360	- 805	-1640	-1220	381	177	.229
55,000	7780	- 901	-1750	-1330	415	196	.230
58,000	8210	- 996	-1860	-1430	449	21.8	.233
61,000	8630	-1110	-2000	-1560	496	244	.237
63,000	8910	-1240	-2160	-1700	559	271	.244
64,000	9050	-1422	-2440	-1930	627	284	.236

 $1 \, 1b = 4.45N$

1 psi = 6.89 kPa

Stress-Strain Relationship For Cylinder #1

Corresponding to Beam II

Load (Lb)	Stress (pai)	Strain Reading in Gage #1 (µs)	Strain Reading in Gage #2 (με)	Average (µs)
0		- 508	- 13	
5,000	707	- 110	- 253	- 121
10,000	1420	- 219	- 253	- 236
15,000	2120	- 315	- 402	- 358
20,000	2830	- 403	- 546	- 474
25,000	3540	- 516	- 689	- 602
30,000	4240	- 627	- 816	- 721
33,000	4670	- 707	- 904	- 806
36,000	5090	- 784	- 988	- 886
39,000	5520	- 865	-1080	- 970
42,000	5940	- 945	-1160	-1054
45,000	6370	-1020	-1240	-1130
48,000	6790	-1110	-1347	-1230
51,000	7210	-1200	-1450	-1325
54,000	7640	-1290	-1550	-1424
57,000	8060	-1390	-1670	-1530
60,000	8630	-1490	-1797	-1645
62,000	8770	-1576	-1930	-1750
64,000	9050	-1670	-2060	-1870
66,000	9340	-1770	-2080	-1930

1 1b = 4.45 N

1 psi = 6.89 kPa

Load (Lb)	Stress (psi)	Strain Reading in Gage #1 (με)	Strain Reading in Gage #2 (µe)	Average (µɛ)
0		6	3	4
2,000	280	- 54	- 45	- 50
5,000	707	- 115	- 116	- 115
10,000	1420	- 239	- 224	- 231
15,000	2120	- 359	- 356	- 357
20,000	2830	- 463	- 484	- 474
25,000	3540	- 570	- 623	- 597
30,000	4240	- 673	- 753	- 713
33,000	4670	- 738	- 830	- 784
36,000	5090	- 810	- 916	- 863
39,000	5520	- 879	- 999	- 939
42,000	5940	- 950	-1080	-1020
45,000	6370	-1023	-1165	-1090
48,000	6790	-1110	-1260	-1180
51,000	7210	-1200	-1360	-1280
54,000	7640	-1290	-1460	-1380
57,000	8060	-1390	-1571	-1480
60,000	8490	-1510	-1700	-1600
63,000	8910	-1650	-1830	-1740
66,000	9340	-1840	-2010	-1930
67,500	9550	-2090	-2150	-2120

Stress-Strain Relationship For Cylinder #1 Corresponding To Beam III

1 1b = 4.45 N 1 psi = 6.89 kPa

		Streas-Strain	Relationship for	Cylinder #2 C	Drrespondi	ng to Bea	III a	
Load (Lb)	Stress (psi)	Strain Reading in Longitudinal Gage #1 (µc)	Strain Reading in Longitudinal Gage #2 (µs)	Average of Longitudinal Strain Readings (µs)	Strain Roading in Gage #1 (µs)	Strain Reading in Gage #2 (µe)	Average of Transverse Strain Readings (µs)	Poisson'i Ratio
2,000	280	- 39	- 40	- 40	12	=	11	0.28
5,000	707	- 73	- 134	- 104	20	27	24	0.23
10,000	1420	- 88	- 344	- 216	30	69	50	0.23
15,000	2120	- 118	- 517	- 317	40	108	74	0.23
20,000	2830	- 170	- 663	- 417	54	141	98	0.24
25,000	3540	- 234	- 810	- 552	68	176	122	0.22
30,000	4240	- 300	- 944	- 622	82	208	145	0.22
35,000	4950	- 374	-1090	- 730	94	247	171	0.23
39,000	5520	- 434	-1198	- 816	105	281	193	0.24
43,000	6080	- 495	-1310	- 904	120	317	218	0.24
46,000	6510	- 547	-1410	- 976	127	352	240	0.25
49,000	6930	- 601	-1510	-1050	136	396	266	0.25
52,000	7360	- 655	-1610	-1130	145	455	300	0.27

Table 5.10 zss-Strain Relationship for Cylindor #2 Corresponding to Beam

Load (Lb)	Stress (psi)	Strain Reading in Longitndinal Gage #1 (µc)	Strain Reading in Longitudinal Gage #2 (µc)	Average of Longitudinal Strain Readings (µs)	Strain Reading in Gage #1 (µs)	Strain Reading in Gage #2 (µm)	Average of Transverse Strain Roadings (µs)	Poisson's Ratio
5,000	7780	- 713	-1710	-1209	154	524	339	0.33
8,000	8210	- 772	-1820	-1300	161	594	378	0.29
1,000	8630	- 836	-1930	-1390	170	619	424	0.31
4,000	9050	- 902	-2060	-1480	177	823	500	0.34
000'L	9480	- 974	-2190	-1580	183	1030	909	0.38
1,000	10000	-1100	-2450	-1770	191	1490	841	0.48
5,000	10600	-1250	-2950	-2100	179	2860	1520	0.72
5,100	10600	FAILURE	C LOAD					

Table 5.10: Continued

1 1b = 4.45 N 1 psi = 6.89 kPa

Load (1b)	Stress (pai)	Strain Reading in Gage #1 (µg)	Strain Reading in Gage #2 (µg)	Average (µɛ)
0	0			0
5,000	707	- 36	- 161	- 99
10,000	1410	- 161	- 238	- 200
15,000	2120	- 284	- 313	- 298
20,000	2830	- 401	- 432	- 417
27,000	3820	- 517	- 603	- 560
30,000	4240	- 655	- 609	- 632
35,000	4950	- 740	- 698	- 719
39,000	5520	- 811	- 881	- 846
43,000	6080	- 868	- 960	- 914
46,000	6510	- 941	-1051	- 969
49,000	6932	-1010	-1120	-1050
52,000	7360	-1140	-1120	-1130
55,000	7780	-1290	-1190	-1240
58,000	8210	-1350	-1260	-1310
61,000	8630	-1430	-1340	-1390
64,000	9050	-1500	-1460	-1480
67,000	9480	-1600	-1570	-1580
71,000	10000	-1620	-1720	-1670
75,000	10600	-1880	-1880	-1880
78,200	11100	-1960	-2010	-1990
81,000	11500	-2010	-2190	-2100

Table 5.11 Stress-Strain Relation for Cylinder #1 Corresponding to Beam IV

1 psi = 6.89 kPa

Table 5.12 : Load-Strain Data for Flexural Test of Beam I

,										
Azial ¹ Load (M/C Load) (1b)	Ram Pressure (psi)	P2 Eccentric Load Ram Load (1b)	Gage #1	Gago #2	Strain Re Gage . #3	adings in Gage #4	Gage #1 Gage #5	to #8 (μs) Gage #6	Gage #7	Gage #8
10,000	0	0	- 67	- 67	- 74	- 70	- 58	- 47	- 43	- 51
10,500	28	183	- 45	- 86	- 125	- 131	- 106	- 62	- 34	-
20,500	83	550	- 86	- 167	- 256	- 268	- 227	- 227	- 76	- 15
30,000	128	850	-130	- 247	- 374	- 392	- 335	- 206	- 110	- 21
40,400	180	1180	-173	- 338	- 500	- 527	- 450	- 279	- 146	- 27
50,400	220	1410	-222	- 426	- 618	- 649	- 550	- 342	- 173	- 29
60,400	270	1720	-281	- 529	- 755	- 794	- 660	- 409	- 206	- 26
70,000	318	2020	-315	- 613	- 867	- 915	- 776	- 487	- 246	- 37
80,000	363	2300	-357	669 -	- 983	-1030	- 895	- 568	- 296	- 55
90,000	410	2590	390	617 -	-1100	-1150	-1020	- 652	- 344	- 71
100,000	450	2840	-424	- 871	-1220	-1300	-1160	- 754	- 463	- 91
110,000	503 -	3180	-465	- 965	-1340	-1460	-1290	- 849	- 463	-114
120,000	540	3430	-499	-1050	-1460	-1590	-1420	- 943	- 518	-130
125,000	555	3530	-521	-1100	-1530	-1650	-1490	- 994	- 552	-145
130,000	570	3630	-542	-1160	-1600	-1710	-1580	-1060	- 594	-158

Table 5.12: Continued

Arial ¹ Load (M/C Load) (1b)	Ram Pressure (psi)	Eccontric Load Ram Load (1b)	Gage #1	Gage #2	Gage #3	Gaga #4	Gage #5	Gage #6	Gage #7	Gage #8
135,000	589	3750	- 560	-1210	-1650	-1760	-1650	-1110	- 626	-166
140,000	598	3820	- 575	-1250	-1700	-1770	-1720	-1160	- 659	-181
145,000	618	3950	- 598	-1310	-1780	-1580	-1820	-1230	- 707	-199
150,000	635	4070	- 617	-1370	-1860	-1150	-1910	-1300	- 751	-215
155,000	645	4130	- 637	-1430	-1940	- 928	-2000	-1370	- 796	-236
160,000	660	4230	- 655	-1480	-2010	- 836	-2100	-1440	- 840	-253
162,000	658	4220	- 678	-1530	-2060	- 751	-2160	-1480	- 875	-272
162,700	658	4220	- 682	-1550	-2090	- 675	-2200	-1500	- 887	-273
165,000	660	4230	- 691	-1580	-2140	- 597	-2260	-1550	- 912	-280
10,000	668	4280	- 714	-1650	-2230	- 476	-2370	-1620	- 964	-306
175,100	668	4350	- 737	-1720	-2320	- 270	-1700	-1700	-1020	-329
79,600	668 -	4350	- 760	-1780	-2420	54	-2610	-1790	-1070	-350
85,000	668	4350	- 788	-1860	-2520	313	-2730	-1870	-1120	-372
000,000	676	4330	- 832	-1990	-2870	1770	-2880	-1950	-1160	-359
000,200	500	3170	-1180	-2910	-1450	2050	-3340	-2110	-1160	-119

	0 00 10 00 10		32	99	48	60	74	92	117	141	171	202	236	275	315
	Ŭ	1	1	1	1	1	1	1	1	1	1	4	1	I	I.
I	Gago #7	40	- 86	- 121	- 167	- 211	- 260	- 309	- 359	- 420	- 482	- 546	- 620	- 702	- 780
Specimen 1	о#8 (µs) Gaga #6	- 92	- 167	- 208	- 322	- 409	- 494	- 578	- 661	- 760	- 856	- 958	-1070	-1200	-1320
trnctnral	Gage #1 t Gage #5	- 125	- 232	- 281	- 469	- 599	- 724	- 840	- 956	-1090	-1220	-1350	-1490	-1650	-1790
Test of S	adings in Gago #4	- 132	- 248	- 320	- 521	- 669	- 803	- 929	-1060	-1200	-1330	-1470	-1620	-1790	-1940
Flexural	Strain Re Gaga #3	- 11	- 166	- 234	- 362	- 465	- 568	- 659	- 752	- 854	- 949	-1050	-1150	-1260	-1360
lata for	Gage #2	- 42	- 102	- 164	- 233	- 293	- 359	- 423	- 484	- 550	- 613	- 678	- 746	- 813	- 883
Strain I	Gage #1	6 -	- 40	- 91	- 99	- 125	- 152	- 182	- 209	- 236	- 263	- 290	- 314	- 336	- 365
.13: Losd and	P2 Econntric Load Ram Load (1b)	0	600	670	1380	1900	2359	2670	2970	3330	6670	3980	4320	4570	4830
Tabla 5.	Ram Pressnre (psi)	0	90	100	215	303	373	423	470	525	575	623	673	710	750
	P1 Arial Load (M/C Load) (1b)	9,500	19,800	30,000	40,500	50,000	60,100	70,000	80,000	90,100	100,000	110,000	119,800	129,500	139,500

Table 5.13: Continued

F1 xial Load M/C Load) (1b)	Ram Pressure (psi)	Eccentric Load Ram Load (1b)	Gago #1	Gage #2	Gago #3	Gage #4	Gage #5	19 19 19 19 19 19 19 19 19 19 19 19 19 1	Gago #7	Gage #8
49,400	783	5050	- 400	- 970	-1490	-2130	-1960	-1470	- 876	- 367
54,500	798	5150	- 423	-1030	-1570	-2250	-2060	-1550	- 934	- 394
59,500	800	5170	- 442	-1080	-1640	-2340	-2150	-1630	- 987	- 419
54,500	808	5220	- 460	-1120	-1700	-2450	-2240	-1710	-1040	- 445
59,400	810	5230	- 484	-1190	-1790	-2600	-2350	-1820	-1110	- 479
15,200	823	5320	- 510	-1250	-1880	-2750	-2460	-1920	-1180	- 511
000,000	823	5320	- 534	-1310	-1970	-2920	-2570	-2020	-1230	- 537
35,000	823	5320	- 605	-1480	-2180	-3310	-2830	-2350	-1460	- 665
000,000	810	5230								
000, 50		FAILURE								

1 1b = 4.45 N

1 psi = 6.89 kPa

		"AT"C ATABY	TOBO TO BOT	CELD DELE	MALL TOTAL	ITAL LOSI	or Beam	111		
P1 Laal Load M/C Load) (1b)	Ramp Pressure (psi)	P2 Eccentric Load Ramp Load (1b)	Gage #1	Gage #2	Strain Res Gage #3	dings in Gage #4	Gage #1 Gage #5	to #8 (µs) Gage #6	Gage #7	Gage #8
10,000	0	0	- 46	- 51	- 51	- 54	- 59	- 47	- 49	- 48
10,000	60	400	- 26	- 76	- 113	- 149	- 149	- 75	- 39	- 3
20,000	120	800	- 50	- 133	- 191	- 263	- 283	- 167	- 108	- 45
30,000	175	1150	- 66	- 180	- 261	- 369	- 408	- 255	- 169	- 79
39,000	235	1500	- 82	- 231	- 336	- 487	- 539	- 348	- 232	-114
50,000	295	1875	-100	- 287	- 421	- 615	- 685	- 458	- 306	-159
60,000	350	2220	-115	- 335	- 492	- 730	- 822	- 562	- 381	-209
70,000	395	2500	-131	- 382	- 563	- 842	- 948	- 661	- 449	-252
80,400	455	2875	-151	- 440	- 651	- 973	-1090	- 769	- 523	-296
90,000	505	3200	-172	- 495	- 733	-1100	-1230	- 869	- 592	-335
00,000	563	3580	-193	- 560	- 528	-1240	-1380	- 981	- 666	-378
10,000	612	3920	-219	- 626	- 927	-1390	-1530	-1100	- 744	-419
20,000	650	4170	-248	- 691	-1020	-1530	-1670	-1200	- 815	-465
30,000	695	4470	-273	- 762	-1120	-1680	-1820	-1320	- 896	508
40,000	735	4730	-302	- 840	-1240	-1860	-2000	-1450	- 982	-555

			Tab	ie 5.14:	Continue	ą				
P1 Load M/C Load (1b)	Ram Pressuro (psi)	P2 Eccentric Load Ram Load (1b)	Gage #1	Gage #2	Gage #3	Gage #4	Gage #5	Gage #6	Gage #7	Gage #8
50,500	775	5000	-334	- 929	-1370	-2060	-2190	-1590	-1080	-611
60,000	815	5270	-364	-1010	-1500	-2260	-2380	-1740	-1180	-665
65,000	818	5280	-384	-1060	-1570	-2370	-2490	-1820	-1240	-705
70,000	825	5330	-400	-1120	-1660	-2500	-2630	-1920	-1310	-747
75,000	828	5350	-419	-1180	-1730	-2630	-2750	-2010	-1380	-790
85,000	815	5270	-441	-1240	-1840	-2760	-2860	-2080	-1450	-830
95,000	820			FAILUR	рű					

1 1b = 4.45 N

I psi = 6.89 kPa

		HE DOOT	n otrain	DALA IOF	TEXTOTA	Lest of St	ructural	ope camen J		
P ₁ Arial ¹ Load (M/C Load) (1b)	Ram Pressnre (psi)	P2 Eccentric Load Ram Load (1b)	Gage #1	Gago #2	Strain Ree Gage #3	dings in Gago #4	Gage #1 1 Gage #5	:o #8 (με) Gage #6	Gage #7	Gage #8
7,000	0	0	- 12	6		- 17	- 30	- 36	- 35	- 29
10,000	0	0	- 20	- 17	- 21	- 31	- 48	- 62	- 58	- 50
11,500	30	200	-	- 18	- 60	- 100	- 135	- 157	- 113	- 76
20,000	98	650	0	- 44	- 119	- 183	- 223	- 226	- 152	- 86
30,000	153	1020	- 10	- 87	- 211	- 307	- 352	- 336	- 220	-114
40,000	238	1520	- 20	- 138	- 321	- 456	- 509	- 458	- 292	-152
50,500	293	1860	- 45	- 191	- 419	- 583	- 642	- 563	- 358	-175
60,100	363	2300	- 70	- 254	- 528	- 724	- 785	- 671	- 421	-200
70,300	458	2890	- 74	- 315	- 653	- 899	- 969	- 803	- 490	-210
80,000	498	3150	-103	- 373	- 744	-1013	-1086	- 893	- 547	-240
90,000	530	3370	-143	- 440	- 838	-1126	-1198	- 986	- 611	-277
000,000	605	3870	-166	- 516	- 965	-1294	-1375	-1117	- 683	-298
110,100	643	4120	-208	- 591	-1077	-1430	-1510	-1230	- 754	-333
120,000	713	4580	-231	- 672	-1220	-1620	-1670	-1370	- 830	-351
130,000	748	4820	-268	- 754	-1330	-1770	-1850	-1490	- 901	-378

Table 5.15: Load

20	Ramp Pressure (psi)	P2 Eccentric Load Ramp (1b)	Gago #1	Strain Gago #2	Roadings Gago #3	in Gago #1 Gago #4	to #8 (μs) Gage #5	Gage #6	Gago #7	Gage #8
	775	\$000	-316	-836	-1440	-1910	-1990	-1600	- 971	-413
	808	5220	-363	-930	-1570	-2080	-2160	-1740	-1050	-446
	840	5630	-415	-1040	-1720	-2280	-2350	-1910	-1150	-486
	824	5330	-452	-1110	-1800	-2390	-2460	-2010	-1210	-515
					FAILURE					

1 1b = 4.45 N 1 psi = 6.89 kPa

AVERAOE STRAIN READING (µ¢) Average Average Average Gage #2, #7 Gage #3, #6 Gage #4, #5	- 55 - 60 - 64	- 59 - 93 - 118	- 121 - 197 - 247	- 178 - 289 - 363	- 239 - 389 - 488	- 299 - 479 - 599	- 367 - 582 - 726	- 429 - 676 - 845	- 497 - 775 - 963	- 561 - 873 -1080	- 637 - 987 -1230	- 714 -1100 -1370	- 785 -1200 -1500	- 827 -1260 -1570
Average Gage #1, #8	- 58	- 23	- 50	- 75	-100	-125	-153	-176	-206	-230	-257	-289	-314	-332
P2 Eccentric Load Ram Load (1b)	0	183	550	850	1180	1410	1720	2020	2300	2590	2840	3180	3430	3530
Ram Pressure Reading (psi)	0	28	83	128	180	220	270	318	363	410	450	503	540	555
P1 Arial Load (Machine Load) (1b)	10,000	10,500	20,500	30,000	40,400	50,400	60,400	70,000	80,000	000,00	100,000	110,000	120,000	125,000

ng (
3750
3820
3950
4070
4130
4230
4220
4220
4230
4280
4350
4350
4350
4330
3170
*From this of same #

Table 5,16: Continued

н
Веаш
ŝ
Test
Flexural
For
Level,
Each
Åt
Strain
Average
and
Load
5.17:
le

9,500 19,800 30,000	Reading (psi)	Eccentric Load Ram Load (1b)	Average Gage #1, #8	Average Gage #2, #7	Average Gage #3, #6	Average Gage #4, #5
30.000	0	0	6 -	- 41	- 85	- 129
30.000	90	600	- 36	- 94	- 166	- 240
	100	670	- 79	- 143	- 221	- 300
40,500	215	1380	- 73	- 200	- 342	- 495
50,000	303	1900	- 93	- 252	- 437	- 631
60,100	373	2359	-113	- 310	- 531	- 764
70,000	423	2670	-137	- 366	- 619	- 884
80,000	470	2970	-163	- 422	- 707	-1000
90,100	525	3330	-188	- 485	- 807	-1150
100,000	575	3670	-217	- 548	- 902	-1270
110,000	623	3980	-246	- 612	-1000	-1410
119,800	673	4320	-275	- 683	-1110	-1560
129,500	710	4570	-306	- 758	-1230	-1720
139,500	750	4830	-340	- 832	-1340	-1860
149,400	783	5050	-384	- 923	-1480	-2040

P ₁ Azial Load fachine Load) (1b)	Ram Pressure Reading (pai)	P2 Eccentric Load Ram Load (1b)	Average Gage #1. #8	AVERAUD SIRAIF Average Gage #2, #7	Average Gage #3, #6	Average Gage #4, #5
154,500	798	5150	-409	- 980	-1560	-2150
159,500	800	5170	-431	-1030	-1630	-2250
164,500	808	5230	-452	-1080	-1700	-2350
169,400	810	5320	-482	-1150	-1810	-2470
175,200	823	5320	-511	-1210	-1900	-2610
180,000	823	5320	-535	-1270	-2000	-2740
185,000	823	5320	635	-1470	-2270	-3070
190,000	810	5230				
195,000		FATLURE				

Table 5.17: Continued

62

N C4.4 = 0

1 psi = 6.89 kPa

10,000 10,000 20,000 30,000	Ram Pressure Reading (psi)	P2 Eccentric Load Ram Load (1b)	Average Gage #1, #8	AVERAGE STRAIN Average Gage #2, #7	READING (µa) Average Gage #3, #6	Average Gage #4, #5
10,000 20,000 30,000	0	0	- 47	- 50	- 49	- 57
20,000 30,000	60	400	- 29	- 58	- 94	- 149
30,000	120	800	- 47	- 120	- 179	- 273
	175	1150	- 73	- 175	- 258	- 388
39,000	235	1500	- 98	- 231	- 342	- 513
50,000	295	1875	-130	- 297	- 440	- 650
60,000	350	2220	-162	- 358	- 527	- 176
70,000	395	2500	-192	- 415	- 612	- 895
80,000	455	2875	-225	- 481	- 710	-1030
000*06	505	3200	-254	- 543	- 801	-1160
100,000	563	3580	-285	- 613	- 904	-1310
110,000	612	3920	-319	- 685	-1010	-1460
120,000	650	4170	-357	- 753	-1110	-1600
130,000	695	4470	-390	- 829	-1220	-1750
140,000	735	4730	-429	- 911	-1340	-1930

P ₁ Arial Load Machine Load) (1b)	Ram Pressure Reading (psi)	Recentric Load Ram Load (1b)	Average Gage #1, #8	AVERAGE STRAIN Average Gage #2, #7	i READING (με) Average Gage #3, #6	Average Gage #4, #
150,500	775	5000	-473	-1000	-1480	-2130
160,000	815	5270	-515	-1100	-1620	-2320
165,000	818	5280	-544	-1150	-1700	-2430
170,000	825	5330	-573	-1220	-1790	-2570
175,000	828	5350	-605	-1280	-1870	-2690
185,000	815	5270	-635	-1350	-1960	-2810
195,000	820	\$300	FAI	LURE		
P1 Azial Load Machine Load) (1b)	Ram Pressure Reading (psi)	P2 Eccentric Load Ram Load (1b)	Average Gage #1, #8	AVERAGE STRAIN Average Gage #2, #7	READING (μs) Average Gage #3, #6	Average Gage #4, #5
---	-------------------------------------	--	------------------------	--	--	------------------------
7,000	0	0	- 20	- 22	- 24	- 23
10,000	0	0	- 35	- 37	- 41	- 39
11,500	30	200	- 39	- 66	- 108	- 117
20,000	86	650	- 43	- 98	- 173	- 203
30,000	153	1020	- 62	- 154	- 274	- 329
40,000	238	1520	- 81	- 215	- 390	- 482
50,500	293	1860	-110	- 275	- 491	- 613
60,100	363	2300	-135	- 337	- 599	- 755
70,300	458	2890	-142	- 402	- 728	- 934
80,000	498	3150	-171	- 460	- 819	-1050
90,000	530	3370	-210	- 526	- 912	-1160
100,000	605	3870	-232	- 599	-1040	-1330
110,100	643	4120	-270	- 672	-1150	-1470
120,000	713	4580	-291	- 751	-1420	-1660
130,000	748	4820	-323	- 828	-1410	-1800
140,000	775	5000	-364	- 903	-1520	-1950

#12				
Average Gage #4,	-2120	-2320	-2420	
READING (µc) Average Gage #3, #6	-1660	-1810	-1900	
AVERAGE STRAIN Average Gage #2, #7	- 991	-1100	-1160	
Average Gage #1, #8	-404	-450	-483	
P2 Eccentric Load Ram Load (1b)	5220	5630	5530	FAILURE
Ram Pressure Reading (psi)	808	840	824	
P ₁ Arial Load Machine Load) (1b)	149,500	159,000	164,400	170,000

Table 5.19: Continued

1 1b = 4.45 N

1 psi = 6.89 kPa

					-	1181011		TomToode 1			
P1 Iajor Thrust (1b)	Minor Thrust (1b)	Comp I	ace	fo* psi	k1	k 2	k3 fo/fo	k1k3	$\frac{k_2}{k_1k_3}$	fo.**	no
10,000	0	1	+	- 528	0.851	0.50	0.047	0.040	12.50	400	200
10,000	183	- 11	00	683	0.655	0.41	0.061	0.040	10.25	407	240
20,500	550	- 24	F	- 1580	0.567	0.37	0.141	0.080	4.63	842	529
30,000	850	- 36	m	- 2430	0.504	0.36	0.218	0.110	3.27	1230	784
40,400	1180	- 48		- 3280	0.512	0.36	0.293	0.150	2.40	1660	1060
50,400	1410	- 59	6	- 4030	0.528	0.37	0.360	0.190	1.95	2070	1310
60,400	1720	- 72	9	- 4840	0.508	0.36	0.433	0.220	1.64	2490	1580
70,000	2020	- 84	5	- 5620	0.516	0.36	0.503	0.260	1.38	2880	1840
80,000	2300	- 96	ŝ	- 6350	0.510	0.36	0.568	0.290	1.24	3290	2100
000,000	2590	-108		- 7010	0.526	0.36	0.627	0.330	1.09	5700	2360
100,000	2840	-123	0	- 7680	0.538	0.36	0.687	0.370	76.0	4110	2610
110,000	3180	-137		8480	0.540	0.36	0.759	0.410	0.88	4530	2890
120,000	3430	-150		- 9220	0.533	0.36	0.825	0.440	0.82	4940	3140
125,000	3530	-157		9660	0.532	0.37	0.864	0.460	0.80	5140	3260
130,000	3630	-165		10600	0.508	0.37	0.944	0.480	0.77	5350	3390
135,000	3750	-171		11000	0.507	0.37	0.986	0.500	0.74	5550	3510

Table 5.20: Load and Ultimate Strength Factors For S

			Tabl	e 5.20:	Contin	ped				
P ₁ isjor Thrust (1b)	P2 Minor Thrust (1b)	so at Comp Face µs	fo.	r,	k 2	£3/£'	k ₁ k ₃	$\frac{k_2}{k_1k_3}$	foss	no ••• Psi
140,000	3820	-1750	-11300	0.512	0.37	1.014	0.520	0.71	\$750	3620
145,000	3950	-1820	-11000	0.538	0.37	0.985	0.530	0.70	5960	3750
150,000	4070	-1910	-10500	0.585	0.37	0.939	0.550	0.67	6160	3880
155,000	4130	-2000	-10400	0.613	0.37	0.930	0.570	0.65	6370	3990
160,000	4230	-2100	- 9960	0.662	0.37	0.891	0.590	0.63	6570	4110
162,000	4220	-2160	- 9750	0.688	0.38	0.872	0.600	0.63	6650	4160
162,700	4220	-2200	- 9660	0.707	0.38	0,863	09.0	0.63	6680	4170
165,000	4230	-2260	-10200	0.68	0.38	010.010	0.61	0.62	6770	4210
170,000	4280	-2370	-10900	0.635	0.38	0.976	0.62	0.61	6970	4330
175,100	4350	-2490	-11300	0.632	0.38	1.012	0.64	0.59	7180	4440
179,600	4350	-2610	-11400	0.646	0.38	1.021	0,660	0.58	7360	4530
185,000	4350	-2730	-11500	0,660	0.39	1.030	0.68	0.57	7570	4640
190,000	4330	-2880	-11300	0.692	0.39	11011	0.70	0.56	7770	4740
205,000	3170	-3340	-10200	0.824	0.43	0.913	0.750	0.57	8330	4780
$f_c = 11180 \text{ psi}$ $f_c = obtaine$ $f_o = \frac{P_1 + P}{P_1 + P}$	(77 MPa) d from equations	P ₁ a ₁ +	d (4.2) P2 ^a 2	(average	-	I lb = 4.4 1 psi = 6.	5 N 89 kPa			
þo		bot								

н
Beam
for
Factors
Strength
Ultimate
and
Load
5.21:
[able

no	190	526	744	1110	1410	1710	1980	2240	2520	2790	3330	3580	3830	4080	4200
fo psi	380	816	1230	1680	2080	2500	2900	3320	3740	4150	4970	5360	5770	6180	6390
$\frac{k_2}{k_1k_3}$	16.67	5.14	3.55	2.27	1.68	1.41	1.23	1.07	1.00	0.89	0.75	0.69	0.65	0.62	0.60
k1k3	0.03	0.07	0.11	0.15	0.19	0.22	0.26	0.30	0.33	0.37	0.44	0.48	0.52	0.55	0.57
k3/f'	0.080	0.159	0.208	0.290	0.365	0.453	0.524	0.591	0.658	0.717	0.834	0.885	0.922	0.958	0.976
k 2	0.50	0.36	0.39	0.34	0.32	0.31	0.32	0.32	0.33	0.33	0.33	0.33	0.34	0.34	0.34
r,	0.375	0.440	0.529	0.517	0.520	0.486	0.496	0.507	0.502	0.516	0.528	0.542	0.564	0.574	0.584
fe*	- 894	- 1770	- 2320	- 3240	- 4080	- 5060	- 5850	- 6600	- 7350	- 8010	- 9310	- 9880	-10300	-10700	-10900
е _{с at} Comp Pace µe	- 129	- 240	- 301 -	- 495	- 631	- 764	- 885	-1000	-1140	-1270	-1560	-1720	-1860	-2040	-2150
Minor Thrust (1b)	0	600	670	1380	1900	2360	2670	2970	3330	3670	3980	4320	4570	5050	5150
Major Thrust (1b)	9,500	19,800	30,000	40,500	50,000	60,100	70,000	80,000	90,100	100,000	119,800	129,500	139,500	149,400	154,500

Table 5.21: Continued

P ₁ Msjor Thrust	P2 Minor Thrust	comp Face	• °3	ų	ŗ,	r_7r'	k, k,	k 2	**.3	*** "
(19)	(19)	вщ	psi	•	•	2	•	k1 ^k 3	psi	psi
159,500	5170	-2250	-10900	0.604	0.35	0.976	0.59	0.59	6590	4310
164,500	5230	-2350	-11200	0.608	0.35	1,003	0.61	0.57	6790	4420
169,400	53.20	-2480	-11200	0.628	0.35	1.003	0.63	0.56	6990	4520
175,200	5320	-2610	-11100	0.653	0.36	0.994	0.65	0.55	7220	4650
180,000	5320	-2740	-10800	0.682	0.36	0.967	0.66	0.55	7420	4740
185,000	5320	-3070	- 9580	0.790	0.36	0.857	0.68	0.53	7610	4850
11b = 4.45 N	1 psi = 6.	89 kPs			Failur	e at 195,00	0 1b			

*, **, ***, see Table 5.20

P1 Thrust (1b)	Minor Thrust (1b)	Comp Face	fe psi	r,	k2	k3 fo/fo	k1k3	$\frac{k_2}{k_1k_3}$	fo** Psi	ee.
10,000	0	- 57	- 490	0.930	0.50	0.043	0.04	12.5	400	200
10,000	400	- 149	- 785	0.571	0.31	0.070	0.04	7.75	416	286
20,000	800	- 273	- 1650	0.472	0.31	0.148	0.07	4.43	832	573
30,000	1150	- 389	- 2550	0.482	0.32	0.228	0.11	2.91	1250	848
39,000	1500	- 513	- 3320	0.505	0.32	0.297	0.15	2.13	1620	1100
50,000	1880	- 650	- 4210	0.504	0.32	0.377	0.19	1.68	2080	1410
60,000	2220	- 776	- 5050	0.487	0.33	0.452	0.22	1.50	2490	1680
70,000	2500	- 895	- 5800	0.501	0.33	0.519	0.26	1.27	2900	1940
80,400	2880	-1030	- 6560	0.511	0.33	0.587	0.30	1.10	3330	2230
90,000	3200	-1160	- 7210	0.511	0.33	0.645	0.33	1.00	3730	2490
100,000	3580	-1310	- 7970	0.519	0.33	0.713	0.37	0.89	4140	2770
10,000	3920	-1460	- 8620	0.532	0.33	0.771	0.41	0.80	4560	3050
20,000	4170	-1600	- 9290	0.530	0.34	0.831	0.44	0.77	4970	3300
30,000	4470	-1750	- 9800	0.547	0.35	0.877	0.48	0.73	5370	3500

Table 5.22: Load And Ultimate Strongth Factors For Specimen III

••
- 0
- 14
-
•
× 5.
-
~
••
2
÷00
•
-
_
_
_

Major Thrust (1b)	P2 Minor Thrust (1b)	comp Face	fo.*	ł	k2	k3/f',	$\mathbf{k_1}\mathbf{k_3}$	$\frac{k_2}{k_1k_3}$	foes	mo *** psi
140,000	4730	-1930	-10400	0.561	0.34	0.927	0.52	0.65	5790	3820
150,500	5000	-2130	-10800	0.578	0.34	0.969	0.56	0.61	6220	4090
160,000	5270	-2320	-11000	0.600	0.34	0.983	0.59	0.58	6110	4340
165,000	5280	-2430	-11500	0.595	0.35	1.026	0.61	0.57	6810	4440
170,000	5330	-2570	-11600	0.610	0.35	1.033	0.63	0.56	7010	4550
175,000	5350	-2690	-11600	0.626	0.35	1.038	0.65	0.54	7210	4660
185,000	5270	-2810	-11800	0.644	0.36	1.056	0.68	0.53	7610	4840
195,000	FAILURE LOA	q								
11b = 4.45 N	1 psi =	6.89 kp.								

.

*, **, ***, See Table 5.20

Mejor ¹ Thrust (1b)	Minor Thrust (1b)	comp Face με	fe*	4	k 2	k3/f°	k1k3	k2 k1k3	fo** pei	mo *** Psi
7,000	0	- 23	- 324	1.034	0.50	0.029	0.03	16.67	280	140
10,000	0	- 39	- 477	0.930	0.50	0.043	0.04	12.50	400	200
11,500	200	- 117	- 782	0.571	0.42	0.070	0.04	10.50	468	273
20,000	650	- 203	- 1480	0.530	0.35	0.132	0.07	5.00	826	540
30,000	1020	- 329	- 2360	0.521	0.34	0.211	0.11	3,09	1240	819
40,000	1520	- 482	- 3190	0.526	0.32	0.285	0.15	2.13	1660	1130
50,500	1860	- 613	- 3960	0.537	0.33	0.354	0.19	1.74	2090	1410
60,100	2300	- 755	- 4790	0.536	0.32	0.551	0.22	1.45	2500	1700
70,300	2890	- 934	- 5880	0.494	0.32	0.551	0.22	1.45	2930	2030
80,000	3150	-1090	-6580	0.510	0.31	0.588	0.30	1.03	3330	2280
000,000	3370	-1162	-7400	0.499	0,31	0.661	0.33	0.97	3740	2530
100,000	3870	-1330	-7960	0.520	0,32	0.712	0.37	0.86	4260	2840
110,100	4120	-1470	- 8560	0.536	0.32	0.765	0.41	0.78	4570	3090
120,000	4580	-1660	- 9450	0.532	0.32	0.845	0.45	0.71	4980	3390
130,000	4820	-1800	-10100	0.533	0.32	0.901	0.48	0.67	5400	3640

Table 5.23: Continued

Major Thrust (1b)	P ₂ Minor Thrust (1b)	sc at Comp Face με	fe*	4	k 2	k ³ , f ^c ₆	k_1k_3	$\frac{\mathtt{k_2}}{\mathtt{k_1}\mathtt{k_3}}$	fo**	a.
140,000	5000	-1950	-10700	0.544	0.33	0.956	0.52	0.63	5800	3880
149,500	5220	-2120	-10900	0.565	0.33	0.973	0.55	0.60	6190	4120
159,000	5630	-2320	-11000	0.602	0.34	0.980	0.59	0.58	6580	4350
164,000	5530	-2420	-10900	0.625	0.35	0.976	0.61	0.57	6790	4440
										- 11

11b = 4.45 N 1 psi = 6.89 kPa

e, ee, eee See Table 5.20

	Table	5.24: Load	i And Str	ess Date	k For F1	exural	Test Of Beam I Usi:	ng Equations (4.1, 4.	2)
jor nat b)	Minor Thrast P2 (15)	Average Strain At Comp Face a (µs)	f.o.	a la	df o da c	dan o dan o	$f_{c} = \frac{df_{o}}{da_{c}} + f_{o}$ $E_{q} \cdot (4.1)$ (ps1)	$f_{c} = a_{c} \frac{d a_{o}}{d a_{c}} + 2 m_{o}$ Eq. (4.1) (ps1)	fc Average of Eq. (4.1), Eq. (4.2) (psi)
000	•	- 64	400	200	2.244	1.730	- 544	- 511	. 528
000	183	- 118	407	240	2.469	1.824	- 670	- 696	- 683
200	550	- 247	842	529	3.005	2.049	-1590	-1560	-1580
000	850	- 363	1230	784	3.456	2.229	-2490	-2380	-2430
001	1180	- 488	1660	1060	3.453	2.201	-3350	-3200	-3280
00	1410	- 599	2070	1310	3.427	2.180	-4130	-3930	-4030
0	1720	- 726	2490	1580	3.398	2.165	-4660	-4730	-4830
00	2020	- 850	2880	1840	3.383	2.170	-5740	-5500	-5620
8	2300	- 963	3290	2100	3.302	2.101	-6480	6220	-6350
00	2590	-1080	3700	2360	3.158	2.011	-7120	-6900	-7010
00	2840	-1230	4110	2610	2.990	1.905	-7790	-7570	-7680
8	3180	-1380	4530	2890	2.974	1.872	-8610	-8350	-8480
00	3430	-1500	4940	3140	2.980	1.815	-9420	-9020	-9220
	-								

Table 5.24: Continued

	$ \begin{array}{l} = & g_{0} & \frac{dm_{0}}{de} + 2m_{0} & f_{0} & Avorago \\ g_{1} & g_{1} & (4.1) \\ g_{2} & (4.1) & g_{2} & (4.2) \\ (psi) & (psi) \end{array} $	- 9400 - 9660	-10100 -10600		-10600 -11000	-10600 -11000 -10900 -11300	-10600 -11000 -10900 -11300 -10700 -11000	-10600 -11000 -10900 -11300 -10700 -11000 -10400 -10500	-10600 -11000 -10900 -11300 -10700 -11000 -10400 -10400	-10600 -11000 -10900 -11300 -10700 -11000 -10400 -10400 -10400 -960	-10600 -11000 -10700 -11200 -10700 -11200 -10700 -10500 -10200 - 1940 -1070 - 9710	-10600 -11000 -10700 -11000 -10700 -10500 -10700 -10500 -10400 -10400 -10400 - 9750 - 9730 - 8660	-10600 -11000 -10700 -11300 -10700 -10500 -10400 -10500 -10500 - 9560 - 9560 - 9730 - 9560 - 9730 - 10200	-10600 -11000 -10700 -11300 -10700 -11300 -10700 -10500 -10600 - 9960 - 9700 - 9960 - 9780 - 10500 -10500 -10500
	$\frac{df_0}{de_c} + f_0 \qquad f_c = g_c$ $\frac{4.1}{(2s)}$ $Eq. (4$	- 006	-101		101- 001-	400 -100 800 -101	800105 300105	004 001- 002- 000 000 000- 000	100 800 - 103 800 - 103 800 - 10 800 - 10	001- 101 101- 101- 101- 101- 101 101- 101 101	001- 101- 101- 101- 101- 101- 101- 101-	000 880 - 102 800 - 102 800 - 102 890 - 101 530 - 91 530 - 91	100 860 - 100 800 - 100 800 - 100 800 - 100 810 - 91 810	100 100 100 100 100 100 100 100
	$e = e_{c} \frac{de_{c}}{de}$ Eq. (4.1 (ps1)	0066 -	-11000		-11400	-11400 -11800	-11400 -11800 -11300	-11400 -11800 -11300 -11300	-11400 -11300 -11300 -10600 -10500	-11400 -11800 -11300 -10600 -10500 - 9890	-11400 -11800 -11300 -10600 -10600 - 9890 - 9630	-11400 -11800 -11300 -10500 -10500 - 9890 - 9630 - 9530	-11400 -11800 -11800 -10600 -10600 - 9890 - 9630 - 9530 - 9530 - 9530	-11400 -11800 -11800 -10600 -10500 -10500 - 9530 - 9530 -10120
	da c da c	1.829	2.033		2.075	2.073	2.075 2.073 1.767	2.075 2.073 1.767 1.387	2.073 2.073 1.767 1.387 1.173	2.075 2.073 1.767 1.387 1.173 0.860	2.075 2.073 1.767 1.387 1.173 0.860 0.860	2.073 2.073 1.767 1.387 1.173 0.860 0.860 0.727	2.073 2.073 1.767 1.387 1.173 0.860 0.860 0.661	2.075 2.073 1.767 1.187 1.173 0.860 0.727 0.727 0.799 0.799
	df o de c	3.028	3.433	3 460		3.464	3.464	3.464 2.940 2.313	3.464 2.940 2.313 2.042	3.464 2.940 2.313 2.042 1.583	3.464 2.940 2.313 2.042 1.583 1.381	2.9464 2.940 2.313 2.042 1.583 1.381 1.381	3.464 3.464 2.940 2.042 1.583 1.381 1.381 1.482 1.482	3.464 3.464 2.313 2.042 1.583 1.583 1.298 1.298 1.482 1.696
	psi.	3260	3390	3510		3620	3620 3750	3620 3750 3880	3620 3750 3880 3990	3620 3750 3880 3990 4110	3620 3750 3750 3880 3990 4110 4150	3620 3750 3880 3880 3990 4110 4170	3620 3750 3990 4110 4170 4170	3620 3750 3750 3990 4110 4170 4170 4170 4210
	fo psi	5140	5350	6550		5750	5750 5960	5750 5960 6160	5750 5960 6160 6370	5750 5960 6160 6370 6570	5750 5960 6160 6370 6570	5750 5750 5960 6160 6370 6570 6680	5750 5960 6370 6370 6570 6680 6680	5750 5750 6160 6370 6570 6650 6670 6770
Strain	At Comp Face sc (µs) c	-1570	-1650		-1700	-1700 -1750	-1700 -1750 -1820	-1700 -1750 -1820 -1910	-1700 -1750 -1820 -1910 -2000	-1700 -1750 -1820 -1910 -2000	-1700 -1750 -1820 -1910 -2000 -2100	-1700 -1750 -1820 -1910 -2100 -2160 -2160	-1700 -1750 -1820 -1910 -2000 -2160 -2260	-1700 -1750 -1820 -1910 -2000 -2160 -2160 -2260 -2260
Minor	Thrust P2 (15)	3530	3630		3750	3750 3820	3750 3820 3950	3750 3820 3950 4070	3750 3820 3950 4070 4130	3750 3820 3950 4070 4130 4230	3750 3820 4070 4130 4230	3750 3820 3950 4070 4130 4230 4220	3750 3820 4070 4130 4230 4220 4220 4220	3750 3820 3950 4070 4130 4230 4230 4230 4230 4280
Major	Thrust P1 (1b)	125,000	130,000		135,000	135,000 140,000	135,000 140,000 145,000	135,000 140,000 145,000 150,000	135,000 140,000 145,000 150,000 155,000	135,000 140,000 145,000 150,000 155,000 160,000	135,000 140,000 145,000 150,000 155,000 160,000	135,000 140,000 145,000 155,000 155,000 160,000 162,700	135,000 146,000 145,000 155,000 160,000 162,000 162,700 162,700	135,000 140,000 150,000 155,000 160,000 162,000 162,000 162,000 162,000

Table 5.24: Continued

Major Thruat P1 (1b)	Minor Thrust P2 (15)	Strain Strain At Comp Face s (µz)	fo pei	a a a a a a a a a a a a a a a a a a a	df.	de de	$f_{0} = \frac{df_{0}}{de_{0}} + f_{0}$ Eq. (4.1) (ps1)	$ f_{c} = e_{c} \frac{dm_{o}}{ds_{c}} + 2m_{o} \\ Eq. (4,1) \\ (psi) $	fc Average of Eq. (4.1). Eq. (4.2) (pei)
179,600	4350	-2610	7360	4530	1.616	0.829	-11600	-11200	-11400
185,000	4350	-2730	7570	4640	1.529	0.704	-11700	-11200	-11500
190,000	4330	-2880	7770	4740	1.396	0.473	-11800	-10800	-11300
205,000	3170	-3340	8330	4780	0.994	0.227	-11600	- 8810	-10200
116 = 4.	45 N	1 pei = 6.8	89 kPa						

Table 5.25: Load and Stress Data for Flexural Test of Beam II Using Equations (4.1, 4.2)

<pre>fc Average of Eq. (4.1), Eq. (4.2) (psi)</pre>	- 894	- 1770	- 2320	- 3240	- 4080	- 5060	- 5850	- 6600	- 7350	- 8010	- 9310	- 9880	-10340
$ \begin{aligned} f_{\sigma} &= \pi_{\sigma} \frac{dm_{o}}{d\pi_{\sigma}} + 2m_{o} \\ B_{q}, (4,1) \\ (pei) \end{aligned} $	- 791	- 1730	- 2280	- 3300	- 4190	- 5130	- 5890	- 6620	7390	- 8080	- 9400	- 9950	-10430
$ \begin{aligned} f_{\sigma} &= \frac{df_{\sigma}}{g_{\sigma}} + \frac{df_{\sigma}}{d\sigma} \\ g_{q} & (4,1) \\ (psi) \end{aligned} $	- 996	- 1810	- 2360	- 3170	- 3970	- 4990	- 5810	- 6590	- 7310	- 7940	- 9250	- 9810	-10254
de di	3,182	2.823	2.627	2.186	2.165	2.230	2.183	2.130	2.057	1.965	1.760	1.627	1.478
df o de c	4.768	4.123	3.773	3,007	2.995	3.262	3.282	3.255	3.127	2.978	2.748	2.590	2.402
Ded 1	190	526	744	1110	1410	1710	1980	2240	2520	2790	3330	3580	3830
fo psi	380	816	1230	1680	2080	2500	2910	3320	3740	4150	4970	5360	5770
Average Strain At Comp Face c (µc)	- 129	- 240	- 301	- 495	- 631	- 764	- 885	-1000	-1140	-1270	-1560	-1720	-1860
Minor Thrust P2 (15)	0	600	667	1382	1900	2360	2670	2970	3330	3670	4320	4570	4830
Major Thruet P1 (15)	9,500	19,800	30,000	40,500	50,000	60,100	70,000	80,000	90,100	100,000	119,800	129,500	139,500

Table 5.25: Continued

		195,000 Ibs.	llure at	Fai		.89 kPa	1 psi = 6	S N	11b = 4.4
-10800	-10100	-11500	0.126	1.269	4850	7610	-3070	5320	185,000
-11900	-11000	-12700	0.559	1.929	4740	7410	-2740	5320	180,000
-12100	-11200	-12900	0.717	2.164	4650	7220	-2610	5320	175,200
-12100	-11200	-12900	0.863	2,386	4520	6990	-2480	5230	169,400
-11200	-11200	-11200	866.0	1.876	4420	6190	-2350	5220	164,500
-10900	-11000	-10900	1.045	1.922	4310	6590	-2250	5170	159,500
-10880	-10980	-10850	1.162	2.073	4200	6390	-2150	5150	154,400
-10700	-10700	-10600	1.262	2.161	4080	6180	-2040	5050	149,400
fc Average of Eq. (4.1), Eq. (4.2) (psi)	$f_{o} = \frac{dm_{o}}{ds} + \frac{dm_{o}}{ds} + 2m_{o}$ Eq. (4.1) (psi)	$f_{0} = \frac{df_{0}}{a_{0}} + f_{0}$ Eq. (4.1) (p:1)	de o de o	de c	bsd.	fo Bei	Average Strain At Comp Face s (µs)	Miuor Thrust P2 (15)	Major Thrust P1 (15)

Table 5.26: Load and Stress Data for Flerural Test of Beam III Using Eq (4.1, 4.2)

fe Average of Eq. (4.1) Eq. (4.2) (psi)	- 490	- 785	- 1650	- 2550	- 3320	- 4210	- 5050	- 5800	- 6560	- 7210	- 7970	- 8620	- 9290
$ \begin{aligned} f_c &= t_c \frac{dm_o}{dt_c} + 2m_o \\ Eq. (4,1) \\ (pel) \end{aligned} $	- 490	- 838	- 1710	- 2570	- 3330	- 4220	- 5040	- 5790	- 6580	- 7270	- 8030	- 8610	- 9280
$f_{o} = e_{o} \frac{df_{o}}{de_{o}} + f_{o}$ Eq. (4.1) (pei)	- 490	- 731	- 1600	- 2540	- 3300	- 4210	- 5060	- 5810	- 6540	- 7150	- 7910	- 8630	- 9290
da o	1.584	1.780	2.043	2.236	2.186	2.163	2.167	2.130	2.057	1.966	1.892	1.725	1.679
df o da c	1.584	2,103	2.800	3.313	3.270	3.279	3.304	3.248	3.107	2.942	2.875	2.788	2.710
en de la companya de	200	286	573	848	1100	1410	619	1940	2230	2490	2770	3050	3300
fo psi	400	416	832	1250	1620	2080	2490	2900	3330	3730	4140	4560	4970
Average Strain At Comp Face sc (µs)	- 57	- 149	- 273	- 389	- 510	- 650	- 780	006 -	-1030	-1160	-1310	-1460	-1600
Minor Thrust P2 (15)	0	400	800	1150	1500	1880	2220	2500	2880	3200	3580	3920	4166
Major Thrust P1 (15)	10,000	10,000	20,000	30,000	39,000	50,000	60,000	70,000	80,400	90,000	100,000	110,000	120,000

Table 5.26: Continued

fe Average of Eq. (4.1), Eq. (4.2) (pal)	- 9810	-10400	-10800	-11000	-11500	-11600	-11600	-11800
$ \begin{aligned} f_{\rm c} &= e_{\rm c} \frac{{\rm d} m_{\rm c}}{{\rm d} e_{\rm c}} + 2m_{\rm c} \\ {\rm E}_{\rm q} \cdot (4,1) \\ (p_{\rm c}1) \end{aligned} $	- 9780	-10500	-11000	-11100	-11500	-11600	-11600	-11700
$f_{\sigma} = \frac{df_{\sigma}}{ds} + f_{\sigma}$ Eq. (4.1) (pei)	- 9840	-10200	-10700	-10800	-11400	-11500	-11600	-11900
da _o	1.584	1.480	1.332	1.062	1.077	0.954	0.844	0.731
df o de o	2.547	2.305	2.090	1.825	1.904	1.766	1.645	1.520
o no	3500	3820	4090	4340	4440	4550	4660	4840
fo pai	5370	5790	6220	6610	6810	7010	7210	7610
Average Strain At Comp Face a (µe)	-1750	-1930	-2130	-2320	-2430	-2570	-2690	-2810
Minor Thrast P2 (15)	4170	4730	5000	5270	5280	5330	5350	5270
Major Thrnst P ₁ (15)	130,000	140,000	150,500	160,000	165,000	170,000	175,000	185,000

11b = 4.45 N 1 pai = 6.89 kPa

Table 5.27: Load and Stress Data for Flerural Test of Beam IV Using Eq. (4.1, 4.2)

fo Average of Eq. (4.1), Eq. (4.2) (psi)	- 324	- 477	- 782	- 1480	- 2360	- 3190	- 3960	- 4780	- 5880	- 6580	- 7400	- 7960	- 8560
$f_{c} = \frac{dm_{o}}{de_{c}} + 2m_{o}$ Eq. (4.1) (pel)	- 319	- 468	- 782	- 1520	- 2400	- 3270	- 4070	- 4910	- 5980	- 6680	- 7410	- 8120	- 8740
$f_{o} = e_{o} \frac{df_{o}}{de_{o}} + f_{o}$ Eq. (4.1) (pel)	- 328	- 485	- 782	- 1430	- 2320	- 3120	- 3840	- 4650	- 5790	- 6480	- 7380	- 7810	- 8370
die o	1.657	1.716	2,004	2.178	2.302	2.096	2,025	2,009	2.048	2.020	2.030	1.844	1.738
df o de c	2.017	2.128	2.666	2.946	3.266	3.021	2.854	2.858	3.064	3.001	3.134	2.754	2.582
a T a d	140	200	273	540	819	1130	1410	1700	2030	2280	2530	2840	3090
fo	280	400	468	826	1240	1660	2090	2500	2930	3330	3740	4160	4570
Average Strain At Comp Face s (µs)	- 23	- 39	- 117	- 203	- 329	- 482	- 613	- 755	- 930	-1050	-1160	-1330	-1470
Minor Thrust P2 (1b)	۰	0	200	650	1010	1520	1860	2300	2890	3150	3370	3870	4120
Major Thrust P1 (15)	7,000	10,000	11,500	20,000	30,000	40,000	50,500	60,100	70,300	80,000	90,000	100,000	110,100

Table 5.27: Continued

fo Average of Eq. (4.1), Eq. (4.2) (pei) - 9450 -10900 -11000 -10100 -10700 -10900 $f_c = \varepsilon_c \frac{dm_o}{d\varepsilon_c} + 2m_o$ - 9560 -10200 -10700 -10900 -10900 Eq. (4.1) -11000 $f_{c} = e_{c} \frac{df_{o}}{de_{c}} + f_{o}$ Failure at 170,000 Ib - 9340 0666 --10700 Eq. (4.1) -10900 -10900 -10800 de e 1.676 1.605 1.509 1.275 0.999 0.851 2.626 2.560 2.504 2.193 1.876 1.693 df.o a diad 3390 3640 3880 4120 4350 4440 1 psi = 6.89 kPa f.o. 4980 6790 5390 5800 6190 5580 Face ec (µe) Average Strain At Comp -1800 -1950 -2120 -2320 -2430 -1660 Minor Thrust $^{P_{2}}_{(1b)}$ 4580 4820 5220 5430 5330 5000 11b = 4.45 N Major Thrust 120,000 130,000 140,000 149,500 159,000 164,400 P1 (1b)

Table 5.28: Load and Stress Data for Flexural Test of

Beam I Using Eq. 4.1 and Eq. 4.2 and

Cylinder Stress-Strain Curve

Major Thrust P ₁ (1b)	Minor Thrust P ₂ (1b)	Strain at Compression (µs)	f _c Average of Eq. (4.1) and (4.2) (psi)	f _c Using Cylinder Stress Strain Curve (psi
10,000	0	- 64	- 528	- 458
10,000	183	- 118	- 683	- 840
20,500	550	- 247	- 1580	- 1740
30,000	850	- 363	- 2430	- 2530
40,400	1180	- 488	- 3280	- 3370
50,400	1410	- 599	- 4030	- 4090
60,400	1720	- 726	- 4840	- 4900
70,000	2020	- 845	- 5620	- 5630
80,000	2300	- 963	- 6350	- 6330
90,000	2590	-1080	- 7010	- 7010
100,000	2840	-1230	- 7680	- 7810
110,000	3180	-1370	- 8480	- 8560
120,000	3430	-1500	- 9220	- 9180
125,000	3530	-1570	- 9660	- 9490
130,000	3630	-1650	-10600	- 9870
135,000	3750	-1710	-11000	-10000
140,000	3820	-1750	-11300	-10200
145,000	3950	-1820	-11000	-10500
150,000	4070	-1910	-10500	-10800
155,000	4130	-2000	-10400	-11100
160,000	4230	-2100	- 9660	-11400

		Average		
Major Thrust P ₁ (1b)	Minor Thrust P ₂ (1b)	Strain at Compression (µe)	f _c Average of Eq. (4.1) and (4.2) (pai)	f _c Using Cylinder Stress Strain Curve (pai)
162,000	4220	-2160	- 9750	-11500 •
162,700	4220	-2200	- 9660	-11700
165,000	4230	-2260	-10200	-11800
170,000	4280	-2370	-10900	-12000
175,100	43 50	-2490	-11300	-12300
179,600	4350	-2610	-11400	-12400
185,000	43 50	-2730	-11500	-12500
190,000	4330	-2880	-11300	-12500
205,000	3170	-3340	-10200	

11b = 4.45 N

1 psi = 6.89 kPa

* values of stress from this point on obtained from extrapolated curve.

Table 5.29: Load and Stress Data for Flexural Test of Beam II

	0			
9,500		- 129	- 894	- 915
19,800	600	- 240	- 1770	- 1690
30,000	670	- 301	- 2320	- 2100
40,500	1380	- 495	- 3240	- 3410
50,000	1900	- 631	- 4080	- 4300
60,100	2360	- 764	- 5060	- 5130
70,000	2670	- 885	- 5850	- 5870
80,000	2970	-1000	- 6600	- 6570
90,100	3330	-1140	- 7350	- 7350
100,000	3670	-1270	- 8010	~ 8040
119,800	4320	-1560	- 9310	- 9410
129,500	4570	-1720	- 9880	-10100
139,500	4830	-1860	-10300	-10700
149,400	5050	-2040	-10700	-11300
154,500	5150	-2150	-10900	-11600 *
159,500	5170	-2250	-10900	-11800
164,500	5220	-2350	-11200	-12000
169,400	5230	-2480	-11200	-12200
175,000	5320	-2610	-11100	-12400
180,000	5320	-2740	-10800	-12500
185,000	5320	-3070	- 9580	-12500

Using Eq. (4.1) and Eq. (4.2) and Cylinder Stress-Strain Curve

* values of stress from this point on obtained from extrapolated curve.

Table 5.30: Load and Stress Data for Flexnral Test of Beam III

Major Thrnst P ₁ . (1b)	Minor Thrust P ₂ (1b)	Average Strainat Compression (µs)	f c Average of Eq. (4.1) and (4.2) (psi)	f Using Cylinder Stress Strain Curve (psi)
10,000	0	- 57	- 490	- 408
10,000	400	- 149	- 785	- 1060
20,000	800	- 273	- 1650	- 1920
30,000	1150	- 389	- 2550	- 2700
39,000	1500	- 513	- 3320	- 3530
50,000	1875	- 650	- 4210	- 4420
60,000	2220	- 776	- 5050	- 1680
70,000	2500	- 895	- 5800	- 1940
80,400	2875	-1030	- 6560	- 6740
90,000	3200	-1160	- 7210	- 7450
100,000	3580	-1310	- 7970	- 8240
110,000	3920	-1460	- 8620	- 8980
120,000	4166	-1600	- 9290	- 9590
130,000	4170	-1750	- 9800	-10200
140,000	4733	-1930	-10400	-10900
150,500	5000	-2130	-10800	-11500 *
160,000	5270	-2320	-11000	-12000
165,000	5280	-2430	-11500	-12200
170,000	5330	-2570	-11600	-12300
175,000	5350	-2690	-11600	-12500
185,000	5270	-2810	-11800	-12500
11b = 4.45	N 1 psi -	- 6.89 kPa	Failure at 195,000	1b

Using Eq. (4.1) and Eq. (4.2) and Cylinder Stress-Strain Curve

* values of stress from this point on obtained from extrapolated curve.

Table 5.31: Load and Stress Data for Flexure Test of Beam IV

Major Thrust P ₁ (1b)	Minor Thruat P ₂ (1b)	Average Strainat Compression (µa)	f Average of Eq. (4.1) and (4.2) (pai)	f _c Using Cylinder Stress Strain Curve (psi)	
7,000	0	- 23	- 324	- 173	
10,000	0	- 39	- 477	- 286	
11,500	200	- 117	- 782	- 834	
20,000	650	- 203	- 1480	- 1430	
30,000	1010	- 329	- 2360	- 2290	
40,000	1520	- 482	- 3193	- 3330	
50,500	1860	- 613	- 3960	- 4180	
60,100	2300	- 755	- 4790	- 5080	
70,300	2890	- 934	- 5880	- 6160	
80,000	3150	-1050	- 6580	- 6830	
90,000	3370	-1160	- 7400	- 7450	
100,00	3870	-1330	- 7960	- 8310	
110,100	4120	-1470	- 8560	- 9030	
120,000	4580	-1660	- 9450	- 9860	
130,000	4820	-1800	-10100	-10400	
140,000	5000	-1950	-10700	-11000	
149,500	5220	-2120	-10900	-11500	
159,000	5430	-2320	-11000	-12000	
164,400	5330	-2420	-10900	-12100	
11b - 4.45 N		1 pai = 6.89 kl	Pa Failure a:	Failure at 170,000 1b	

Using Eq. (4.1) and Eq. (4.2) and Cylinder Stress Strain Curve

* values of atress from this point on obtained from extrapolated curve.

Figure 2.2: Effect of Various Cements on Concrete Compressive Strength (2)

Lifect of Size of Coarse Aggregate on Compressive Strength 5 in Different Types of Concrete (sdapted from Ref. Figure 2.3:

Compressive strength, psi

Figure 2.4: Maximum Size Aggregate for Strength Efficiency Envelope (15)

AGE, DAYS

Figure 2.5: Compressive Strength of Concrete Using Two Sizes and Types of Coarse Aggregate for 7,500 psi Concrete (1)

COMPRESSIVE STRENGTH psi

Figure 4.2: Concrete Stress-Strain Relations (.7)

z STRESS CONCRETE

Figure 4.3: Reinforcement Layout (11)

SECTION A-A (SEE FIG. 4.2, 43)

a = the leg size of stirrup

Figure 4.4: An Arbitrary Section A-A With Rebar Arrangement at Each Lag (11)

1"= 25.4 mm

Figure 4.5: An Arbitrary Section of Column Part With Rebar Arrangement (11)

Figure 5.2: CYlinder Compressive Stress-Strain Curve for Beam II, Data from Table 5.7

Figure 5.4: Cylinder Compressive Stress-Strain Curve for Beam IV, Data from Table 5.11

Figure 5.7: Location of Strain Gages vs. Strain for Beam III

Figure 5.9: Stress Block of Beam I

Figure 5.10: Stress Block of Beam II

Figure 5.11: Stress Block of Beam III

Figure 5.12: Stress Block of Beam IV

Figure 5.13: Axial Load vs. strain for gages 4 and 5 for Beam I

Figure 5.14: Axial Load vs. strain for gages 4 and 5 for Beam II

Figure 5.15: Azial load vs. strain for gages 4 and 5 for Beam III

Figure 5.16: Axial load vs. strain for gages 4 and 5 for Beam IV

Pigure 5.17: Stress Factors k2, k1k3 Vs. Concrete Strain For Beam I

Figure 5.18: Stress Factors k₂, k₁k₃ Vs. Concrete Strain For Beam II

Figure 5.19: Stress Factors k₂, k₁k₃ Vs. Concrete Strain For Beam III

Figure 5.20: Stress Factors k₂, k₁k₃ Vs. Concrete Strain For Beam IV

Figure 5.21: Condition at Ultimate Load in Test Specimen

1 psi = 6.89 kPa

Figure 5.22: fo vs concrete strain for Beam I

Figure 5.26: mo vs concrete strain for Beam I

Figure 5.27: mo vs concrete strain for Beam II

1 psi = 6.89 k Pa

Figure 5.30: Average f_C from Eq (4.1) and (4.2) vs strain for Beam II

1 psi = 6.89 k Pa

Figure 5.31: Average f_c from Eq (4.1) and (4.2) vs strain for Beam IV

APPENDIX IV

NOTATION

- s = strain.
- «c = strain at compression face.
- a = level arm.
- b = width of beam.
- c = depth of beam.
- d= distance for outermost fiber to center of gravity of steel.
- fc = stress in concrete at different levels of loading.

f' = concrete cylinder strength.

for mo = cross-section stress parameters.

fy = estimated allowable strength in reinforcement.

- h = height of beam.
- k₁, k₂, k₃ = ultimate strength factors (k₁, k₂ are shape factors and k₂ is the position of concrete internal force from outermost compresion fiber.
- C = concrete internal force.
- A_e = area of reinforcement.
 - M = moment.

M, = ultimate moment.

P1 = axial load applied by testing machine (i.e., major thrust).

- P₂ = eccentric load applied by hydraulic ram system (i.e., minor thrust).
- T = force carried by reinforcement.
- y = depth of stress block.

ACKNOWLEDG EMENTS

The author is greatly indebted to his major professor, Dr. Staurt E. Swartz, for invaluable advice and guidance during his study at Kansas State University and carrying out this investigation.

Sincere thanks are due to Dr. Robert R. Snell, Head of the Department of Civil Engineering, for providing financial support for this project. Sincere thanks are extended to Dr. Cecil Best for his guidance. Appreciation is also due to the other committee member, Dr. Teddy O. Rodees.

Special thanks to Mr. Ali Nikaeen who helped me in this project.

Special appreciation is expressed to Russell L. Gillespie, Civil Engineering technician, for his guidance and help in using the facilities.

Special thanks also to Ms. Christy Schroller, Word Processor of the Electrical and Computer Engineering Department, for typing this thesis. The Structural Behavior of Higher Strength Concrete

by

Narayan Babu D. Hiremagalur B.E., Bangalore University, 1982

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

An experimental investigation into the structural bending properties of plain beams of higher strength concrete was performed.

The objective of this study was to obtain further information on the shape of the compressive stress block at failure for higher strength concrete beams.

Four "dogbone" shaped beans were cast with an unreinforced test region. Loads were applied so that bending was produced in the unreinforced test region and the neutral aris maintained at the outer surface of the test region.

Experimental data were obtained up to the failure of the test specimen and the k_2 values of beams II, III, and IV were 0.36, 0.36, and 0.35. These were very close to 0.375, the k_2 value for a parabolic stress distribution.